WO2017101157A1 - 一种指针式智能钟表的自动定期授时方法及授时系统 - Google Patents

一种指针式智能钟表的自动定期授时方法及授时系统 Download PDF

Info

Publication number
WO2017101157A1
WO2017101157A1 PCT/CN2015/099563 CN2015099563W WO2017101157A1 WO 2017101157 A1 WO2017101157 A1 WO 2017101157A1 CN 2015099563 W CN2015099563 W CN 2015099563W WO 2017101157 A1 WO2017101157 A1 WO 2017101157A1
Authority
WO
WIPO (PCT)
Prior art keywords
pointer
time
intelligent terminal
mcu module
mobile intelligent
Prior art date
Application number
PCT/CN2015/099563
Other languages
English (en)
French (fr)
Inventor
王辉
吉雨成
Original Assignee
深圳智能表芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智能表芯科技有限公司 filed Critical 深圳智能表芯科技有限公司
Priority to US15/775,851 priority Critical patent/US20190250567A1/en
Priority to EP15910626.9A priority patent/EP3392721A4/en
Priority to JP2018526520A priority patent/JP2019502904A/ja
Publication of WO2017101157A1 publication Critical patent/WO2017101157A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/26Setting the time according to the time information carried or implied by the radio signal the radio signal being a near-field communication signal
    • G04R20/28Tuning or receiving; Circuits therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R40/00Correcting the clock frequency
    • G04R40/06Correcting the clock frequency by computing the time value implied by the radio signal

Definitions

  • the invention relates to the field of timing devices, in particular to an automatic timing method and system for a smart watch.
  • the invention is limited to the field of intelligent modification of a quartz movement using a crystal oscillator as a time reference.
  • the invention is limited to the field of intelligent timepieces that use a pointer type and employ a quartz movement.
  • the quartz watch uses a quartz crystal oscillator for timing control, but the quartz crystal oscillator itself has a frequency error, and the travel time error of day and night at normal temperature may be about one second; while the conventional quartz watch has no timing function, and the accumulated error can only reach a certain degree. It is then corrected manually.
  • the crystal cost of a small frequency error is also high, which leads to the accuracy of the quartz watch depends on the accuracy of the crystal.
  • radio timepieces combine traditional watch technology with modern time-frequency technology, microelectronics technology, communication technology, computer technology, etc., and receive standard time signals transmitted by long-wave radio waves from the national time-grant center.
  • the auto-calibration timer moves, so that the time displayed by the radio clock is automatically synchronized with the standard time maintained by the country.
  • the unique technology consists of a built-in radio wave receiving antenna that automatically receives the "standard time” radio waves emitted by the time base station every day. This standard time radio wave contains the correct time information, including the year, month, day, hour, minute, and second.
  • the radio timepiece After receiving the correction time, the radio timepiece can automatically correct the time and calendar to display the correct time. Since the timing device of the time signal transmitting base station is made of rare cesium atoms, there is only one second error in 100,000 years, so it can be kept at the standard time almost permanently.
  • the radio wave meter has a built-in high-sensitivity small antenna that can receive time-accurate time by receiving standard radio waves for automatic timing. Internationally, Germany, the United Kingdom, the United States, and Japan have already sent standard radio waves.
  • the timing technique represented by the radio wave table has the following problems: First, it relies heavily on wireless transmission signals, and if the signal is not good, the timing cannot be performed. Secondly, the problem of pointer offset error cannot be solved. Specifically, the pointer of the pointer watch may have a mechanical deviation during the movement, so that the actual position of the pointer may not coincide with the internal time of the watch. Therefore, the timing of the internal chip of the watch can only ensure that the time of the internal chip of the watch is consistent with the real time, but the problem that the pointer indicating the scale coincides with the time of the internal chip of the watch cannot be solved.
  • the traditional pointer watch with crystal oscillator has the following problems: 1. Time error caused by crystal error; 2. Dependence on wireless network by wireless timing for solving problem 1; 3. Mechanical error of pointer of pointer watch, so even The automatic timing is successful, and the time of the internal MCU chip of the watch may be inconsistent with the time of the actual pointer.
  • the problem to be solved by the present invention is to provide a smart watch that can automatically perform error compensation according to multiple timings, and the invention also includes a timing system for a smart watch.
  • the present invention includes the following technical features: an automatic periodic timing method for a pointer type smart timepiece, the timepiece comprising an MCU module, a quartz crystal oscillator as a time reference, a movement for driving the pointer to rotate, and a wireless communication module for communicating with the mobile intelligent terminal;
  • the automatic timing method includes the following steps:
  • the mobile intelligent terminal acquires a standard time by using a registration carrier network
  • step Q2 the mobile intelligent terminal and the clock are connected by the wireless communication module, then jump to step Q3; if not connected, then jump to step Q4;
  • the clock periodically sends a request to the mobile intelligent terminal, and the mobile intelligent terminal sends a standard time to the clock according to the request according to the request; or the mobile intelligent terminal periodically takes the standard time as the command signal. Form is pushed to the timepiece;
  • the MCU module periodically calls an internal error correction parameter table by using a command signal
  • the MCU module parses the command signal of step Q3 or step Q4, and compares with the existing internal time of the MCU module. If the existing internal time data and the time data of the command signal are not synchronized, the movement control pointer Rotation, the synchronization time reaches the current correct time; if the current time data of the watch is synchronized with the time data of the command signal, no timing is performed;
  • step Q6 In the case of jumping to step Q3, the MCU module stores the standard time obtained by step Q3 and the internal time comparison data of step Q5 to generate an error correction parameter table for long-term precise travel.
  • the method adopted by the invention has the following beneficial effects: Firstly, the problem of time error caused by crystal error is solved.
  • the mobile intelligent terminal can be connected to the operator base station to obtain an accurate time, and then the smart terminal can perform the control operations such as Bluetooth zero calibration and timing on the other intelligent timepiece, even in an indoor or closed environment where the satellite signal cannot be covered. Accurate time source for timing operations.
  • the crystal precision of the smart watch can be reduced, and the cost of the smart watch is also saved.
  • the inventors have found through many studies that the errors of the quartz crystal oscillators are the same, that is, the same quartz crystal oscillator tends to have the same positive deviation (or negative deviation) at the same time interval. Therefore, the error value of the quartz crystal oscillator can be calculated by repeatedly measuring a plurality of times for a long time, and then the error value is periodically compensated to ensure the accuracy of time.
  • the invention realizes the error of the quartz crystal oscillator through the dynamic learning of the big data with multiple periodic timings, and can ensure the precision of the time by the automatic compensation even in the case of not being connected to the network.
  • the error correction parameter table is to calculate an average value of all stored comparison data after storing the standard time obtained in the case of step Q3 and the internal time comparison data of step Q5 in the database, and then using the average value.
  • the error correction parameter table is to calculate an average value of all stored comparison data after storing the standard time obtained in the case of step Q3 and the internal time comparison data of step Q5 in the database, and then using the average value.
  • the error correction parameter is corrected in real time with periodic timing in each case of performing step Q3; if the timing of step Q3 is not performed, the error correction parameter is not modified; the correction parameter is stored without being powered off by an external power source. Influencing the memory. Since the error correction parameter must be meaningful for each time the data obtained in step Q3 is performed, it is necessary to filter this data. If it is not the data obtained by regular timing, for example, it is a single time-scheduled behavior initiated by the user. Since the timing of this case has individualized requirements, it should not be included in the error correction parameters. Correction parameters that do not have a reference meaning should be excluded. In addition, the error correction parameter is the result of big data acquisition, which matches the crystal oscillator of the smart watch. The longer the time, the higher the precision and the higher the value, so it should be stored in the memory that is not affected by the power failure of the external power supply.
  • the periodic timing refers to 24xN hour timing, and N is an integer greater than or equal to 1.
  • the wireless communication module is a low power Bluetooth communication module, preferably a Bluetooth wireless communication module based on the Bluetooth 4.0 standard.
  • the Bluetooth wireless communication module based on the Bluetooth 4.0 standard can greatly reduce energy consumption and increase the service life of smart watches.
  • the step of correcting the pointer is added before the automatic timing to ensure that the time indicated by the dial indicated by the pointer is consistent with the existing internal time of the MCU module.
  • the preferred solution solves the problem of the mechanical error of the pointer of the pointer watch, which is a unique problem of the pointer watch.
  • the pointer type of the pointer type watch is supported on the rotating shaft during operation, and the structure is similar to a lever. Therefore, in the course of operation, mechanical errors are easily generated due to external vibration, and the watch MCU cannot recognize such deviation.
  • the internal time of the watch MCU is 12 o'clock, but the actual indicated time of the pointer may not be accurate at 12 o'clock (if it may be 12 o'clock and 5 seconds) due to mechanical errors, but it is impossible to judge and recognize the watch MCU. deviation.
  • the so-called pointer proofing means that the MCU recording time inside the watch is consistent with the time indicated by the pointer.
  • the pointer proofing step is to tell the clock MCU module that the current pointer indicates the actual position of the dial, and let it make the judgment adjustment, so that the internal time of the watch MCU module is consistent with the actual indication time of the pointer, and then the time is given to further ensure the accuracy of the timing. .
  • the pointer collating step is to move the smart phone terminal position of the pointer to the MCU module, and the MCU module adjusts the pointer according to the pointer dial position to ensure the position indicated by the current pointer and the existing internality of the MCU module.
  • the time is the same.
  • the mobile intelligent terminal obtains the dial position of the pointer by taking a photographing or photographing manner through the photographing module.
  • the position of the pointer is input by shooting and imaging, and the operation is simpler.
  • the mobile intelligent terminal obtains the dial position of the pointer by means of a manual button input or a touch screen input.
  • the input method greatly improves the efficiency of the pointer proofing, and greatly improves the user through the touch screen input mode. The experience of operation, and the convenience of operation.
  • the invention also includes a timing system applying the above automatic timing method, comprising an MCU module, a quartz crystal oscillator as a time reference, a movement for driving a pointer rotation, and a wireless communication module for communicating with a mobile intelligent terminal, and the mobile intelligent terminal operates and operates.
  • the smart phone connected to the base station network, the wireless communication module is a Bluetooth or low-power Bluetooth BLE module, the smart phone, the MCU module and the wireless communication module are connected by a circuit, and the MCU module is connected with the movement of the driving pointer, the pointer and the machine
  • the core is connected by a steering shaft, and the MCU module is used to parse the command and translate it into an instruction operation for adjusting the position of the pointer by controlling the rotation of the pointer by the movement.
  • the timing system of the automatic timing method provided by the invention also solves the problem of time error caused by crystal error, and solves the problem that the traditional time-scheduled watch must be networked via a wireless network. Furthermore, the system also solves the problem of pointer error of the pointer type smart watch.
  • an all-around solution for the accuracy of the smart watch is provided, and the error problem of the crystal oscillator, the dependence of the intelligent timing on the network, and the pointer error of the pointer watch are solved.
  • FIG. 2 is a block diagram of a module of the timing system of the present invention.
  • FIG. 3 is a schematic diagram of a physical position of a pointer input by using a touch screen method according to the present invention
  • FIG. 4 is a schematic diagram of the position of a physical pointer input by photography and imaging according to the present invention.
  • a specific embodiment of the present invention provides a technical solution for automatic timing of a smart watch.
  • the technical problem solved by the intelligent timing technical solution is aimed at a smart watch using a quartz crystal for timing control, and further a watch device using a pointer.
  • the technical solution of this embodiment is:
  • An automatic periodic timing method for a pointer type intelligent timepiece comprising an MCU module, a quartz crystal oscillator as a time reference, a movement for driving the pointer to rotate, and a wireless communication module for communicating with the mobile intelligent terminal; the wireless communication module is low
  • the power consumption Bluetooth communication module preferably, is a Bluetooth wireless communication module based on the Bluetooth 4.0 standard.
  • the automatic timing method includes the following steps:
  • the mobile intelligent terminal acquires a standard time by using a registration carrier network
  • step Q2 the mobile intelligent terminal and the clock are connected by the wireless communication module, then jump to step Q3; if not connected, then jump to step Q4;
  • the clock periodically sends a request to the mobile intelligent terminal, and the mobile intelligent terminal sends a standard time to the clock according to the request according to the request; or the mobile intelligent terminal periodically takes the standard time as the command signal. Form is pushed to the timepiece;
  • the MCU module periodically calls the internal error correction parameter table by means of a command signal.
  • the error correction parameter table is that after storing the standard time obtained in the case of step Q3 and the internal time comparison data of step Q5 in the database, the average value of all stored comparison data is calculated, and the average value is used as the average value. Error correction parameters for long-term precise travel time.
  • the MCU module parses the command signal of step Q3 or step Q4, and compares with the existing internal time of the MCU module. If the existing internal time data and the time data of the command signal are not synchronized, the movement control pointer Rotation, the synchronization time reaches the current correct time; if the current time data of the watch is synchronized with the time data of the command signal, no timing is performed;
  • step Q6 In the case of jumping to step Q3, the MCU module stores the standard time obtained by step Q3 and the internal time comparison data of step Q5 to generate an error correction parameter table for long-term precise travel.
  • the error correction parameter is corrected in real time with each time the step Q3 is performed; if the timing of step Q3 is not performed, the error correction parameter is not modified; the correction parameter is stored in a memory that is not affected by the power interruption of the external power source.
  • the periodic timing refers to 24xN hour timing, and N is an integer greater than or equal to 1.
  • the smart watch can perform timing through the network, or can learn the crystal oscillator error value of the smart watch according to each time, and automatically compensate the crystal oscillator in the absence of networking according to the learned error value. Therefore, the solution solves the problem of time error caused by crystal error.
  • the mobile intelligent terminal can be connected to the operator base station to obtain an accurate time, and then the smart terminal can perform the control operations such as Bluetooth zero calibration and timing on the other intelligent timepiece, even in an indoor or closed environment where the satellite signal cannot be covered. Accurate time source for timing operations. In order to overcome the time inaccuracy caused by the crystal error, the crystal precision of the smart watch can be reduced, saving the cost of the smart watch.
  • the inventors have found through many studies that the errors of the quartz crystal oscillators are the same, that is, the same quartz crystal oscillator tends to have the same positive deviation (or negative deviation) at the same time interval. Therefore, the error value of the quartz crystal oscillator can be calculated by repeatedly measuring a plurality of times for a long time, and then the error value is periodically compensated to ensure the accuracy of time.
  • the invention realizes the error of the quartz crystal oscillator through the dynamic learning of the big data with multiple periodic timings, and can ensure the precision of the time by the automatic compensation even in the case of not being connected to the network.
  • the pointer calibration step is added before the automatic timing to ensure that the time indicated by the dial indicated by the pointer is consistent with the existing internal time of the MCU module.
  • the pointer proofing step is to move the smart phone terminal position of the pointer to the MCU module, and the MCU module adjusts the pointer according to the pointer dial position to ensure that the position indicated by the current pointer is consistent with the existing internal time of the MCU module.
  • the mobile intelligent terminal sends the dial position of the pointer to the MCU module in the following manners: in the proofreading step, the mobile intelligent terminal obtains the dial position of the pointer by taking a photographing or photographing mode through the photographing module. In the proofreading step, the mobile intelligent terminal obtains the dial position of the pointer by means of a manual button input or a touch screen input.
  • Obtaining the pointer dial position by touch screen input method includes the following steps:
  • Step A1 The smart terminal establishes a wireless connection with the clock.
  • the wireless connection uses traditional wireless connection technologies, such as Bluetooth and infrared, and preferably low-power Bluetooth technology, such as Bluetooth standard technology based on Bluetooth 4.0 and above.
  • step A2 the physical pointer stops when the watch enters the calibration state. Since the pointer is corrected, the physical pointer of the clock must be left still. Here, you can set a calibration mode that stops when the calibration mode is entered.
  • the touch screen of the mobile intelligent terminal displays a screen dial and a screen pointer, the touch screen recognizes the touch track, and the image of the screen pointer dynamically changes through the recognized touch track change, and manually inputs the touch track to make the screen pointer
  • the end point is the position of the current physical pointer; the mobile intelligent terminal records the time corresponding to the position of the screen pointer.
  • the function of this step is to tell the mobile smart terminal the position of the physical pointer through the touch screen, and let the smart terminal record the position of the current physical pointer.
  • a dial displayed on the screen and a pointer displayed on the screen appear on the touch screen, and the user can directly dial the pointer of the screen on the screen.
  • A301 the screen dial of the touch screen has a coordinate zero position recordable by the mobile intelligent terminal
  • A302 the touch screen starts to recognize the coordinates of the touch start point, The coordinates of the touch start point are recorded by the mobile intelligent terminal
  • A303 the screen pointer points to the touch start point, and the touch screen recognizes that the touch track has changed
  • the coordinate of the process is dynamically recognized and called to the screen pointer, the screen pointer changes according to the change of the touch track
  • A304 the touch screen identifies the coordinates of the touch end point, and the coordinates of the touch end point are recorded by the mobile intelligent terminal
  • A305 Calculate the angle change of the touch track according to the coordinates of the touch start point, the coordinates of the touch end point, and the coordinate zero point position, and obtain the time data corresponding to the screen pointer.
  • FIG. 3 of the specification including the intelligent timepiece 1, the physical dial 11 of the intelligent timepiece, and the physical pointer 12.
  • a mobile smart terminal 2 including a screen dial 21 and a screen pointer 22.
  • the user touches the plane dial 21 of the mobile intelligent terminal by hand, the screen smart 22 changes along the touch movement track, the user moves the screen pointer 22 to the same position of the physical pointer, stops the touch, and the mobile intelligent terminal can calculate the current physics.
  • the position of the pointer 12 and the corresponding time data is obtained.
  • step A4 the mobile intelligent terminal transmits the data of the entered screen pointer to the watch in the form of an instruction signal, and the MCU module of the watch analyzes the signal and synchronizes with the physical pointer to achieve time expression of the MCU module and the physical pointer. Consistent. At this time, the location of the physical pointer is notified to the smart timepiece by the mobile intelligent terminal, and the smart timepiece is compared with the internal time of the MCU module according to the data, and finally adjusted to be synchronized.
  • A401 The MCU module obtains the position of the physical pointer and judges; A402: If the internal time of the MCU module and the physical pointer time are consistent, the calibration ends; if the internal time of the MCU module is inconsistent with the physical pointer time, the MCU module calculates The difference between the two, the instruction is issued so that the physical pointer is driven to the position consistent with the internal time of the MCU module and then continues to time.
  • the location of the pointer dial obtained by shooting includes the following steps:
  • step A1 the smart terminal establishes a wireless connection with the clock; the wireless connection uses traditional wireless connection technologies, such as Bluetooth and infrared, preferably low-power Bluetooth technology, such as Bluetooth 4.0 and above. Bluetooth standard technology.
  • traditional wireless connection technologies such as Bluetooth and infrared, preferably low-power Bluetooth technology, such as Bluetooth 4.0 and above. Bluetooth standard technology.
  • step A2 the physical pointer stops when the watch enters the calibration state; since the pointer is corrected, the physical pointer of the watch must be left still.
  • the mobile intelligent terminal captures the dial and the pointer, and after the captured image is recognized, the time data corresponding to the physical pointer is obtained. Further, the step A3 is specifically:
  • A301 The mobile intelligent terminal captures a dial and a pointer to obtain a picture
  • A302 performing pixel analysis on the picture data, and reading scale coordinate data of the pointer and the dial by pixel recognition;
  • A303 obtaining the relative position of the pointer and the dial scale according to the scale coordinate data of the pointer and the dial;
  • A304 Obtain time data corresponding to the physical pointer according to the data of the relative position.
  • the pointer and the dial are coated, inlaid or built with a marking material; the shooting module can identify the marking material; the step A3 is specifically:
  • A301 The mobile intelligent terminal captures a dial and a pointer to obtain a picture
  • A302 obtaining scale coordinate data of the pointer and the dial by using the marked material information of the picture;
  • A303 obtaining the relative position of the pointer and the dial scale according to the scale coordinate data of the pointer and the dial;
  • A304 Obtain time data corresponding to the physical pointer according to the data of the relative position.
  • the marking material is a fluorescent material, or a radioisotope material, or a reflective material.
  • the advantage of using marking materials is that it simplifies image analysis, especially for situations where there are multiple sets of hands on the dial.
  • For a smart watch with multiple sets of hands in addition to indicating the time, there is an indication function of the date, so the size of the partial pointer on the dial is small, and the probability of identifying the error only by pixel analysis is high.
  • the identification of the marking material can timely and accurately obtain the state of each group of pointers and the position of the dial, which greatly improves the accuracy of the identification.
  • step A4 the mobile intelligent terminal transmits the time data to the watch in the form of a command signal, and the MCU module of the watch analyzes the signal and synchronizes with the physical pointer to achieve time expression of the MCU module and the physical pointer. Consistent.
  • step A4 the step of synchronizing the MCU module of the clock with the physical pointer in the step A4 is:
  • the MCU module obtains the position of the physical pointer and makes a judgment
  • A402 If the internal time of the MCU module and the physical pointer time are consistent, the calibration ends; if the internal time of the MCU module is inconsistent with the physical pointer time, the MCU module calculates the difference between the two, and issues an instruction to cause the physical pointer to be driven to the MCU module. Continue to time after the internal time is consistent.
  • FIG. 4 of the specification including the intelligent timepiece 1, the physical dial 11 of the intelligent timepiece, and the physical pointer 12. Also included is a mobile smart terminal 2, including a shooting module 21. During the adjustment, the shooting module 21 takes a picture of the dial of the smart timepiece, and the mobile intelligent terminal can calculate the position of the current physical pointer 12 and obtain corresponding time data.
  • step A1 the smart terminal establishes a wireless connection with the clock;
  • the wireless connection may be a wireless connection technology of low power consumption Bluetooth, such as a Bluetooth connection technology based on Bluetooth 4.0 or above.
  • A2 The mobile intelligent terminal photographs a dial and a pointer, and the mobile intelligent terminal recognizes real-time image data, acquires movement coordinates of the physical pointer, and calculates time data indicated by the physical pointer. In this step, it is specifically:
  • A201 the mobile intelligent terminal photographs the dial and the pointer to obtain an image of the pointer movement in a period of time;
  • A202 performing pixel analysis on the image, and reading the scale coordinate data and the change speed of the pointer and the dial through the pixel recognition;
  • A203 Calculate a coordinate position of the current physical pointer and a motion trend by using the coordinate data and the change speed;
  • A204 forming a command signal of the time data by the coordinate position and the motion trend of the physical pointer.
  • the pointer and the dial are coated, inlaid or built with a marking material; the marking module can recognize the marking material.
  • the marking material is fluorescent material or radioactive Isotope material, or reflective material.
  • step A3 the mobile intelligent terminal transmits the time data to the timepiece in the form of an instruction signal, and the MCU module of the timepiece analyzes the signal and performs synchronization with the physical pointer, so that the moving position of the MCU module and the physical pointer are consistent.
  • the MCU module obtains the time data of the physical pointer and judges; A402: if the internal time of the MCU module is consistent with the position of the time data, the calibration ends; if the internal time of the MCU module is inconsistent with the physical pointer time, Then the MCU module calculates the difference between the two, and issues an instruction to cause the physical pointer to be driven to a position consistent with the internal time of the MCU module before continuing to time.
  • FIG. 4 of the specification including the intelligent timepiece 1, the physical dial 11 of the intelligent timepiece, and the physical pointer 12. Also included is a mobile smart terminal 2, including a photography module 21. During the adjustment, the photographing module 21 photographs the dial of the smart timepiece, and the mobile intelligent terminal can calculate the position of the current physical pointer 12 and obtain corresponding time data.
  • the present invention also discloses a system to which the above method is applied.
  • the system includes an MCU module, a quartz crystal as a time reference, a movement that drives the pointer to rotate, and a wireless communication module that communicates with the mobile intelligent terminal.
  • the mobile intelligent terminal is a smart phone connected to the network of the operator base station
  • the wireless communication module is a Bluetooth or low-power Bluetooth BLE module
  • the smart phone, the MCU module and the wireless communication module are connected by a circuit, and the MCU module and the driving pointer are rotated.
  • the movement is connected, the pointer is connected to the movement through the steering shaft, and the MCU module is used to parse the command and translate it into an instruction operation to adjust the position of the pointer by controlling the rotation of the pointer through the movement.

Abstract

一种指针式智能钟表的自动定期授时方法包括如下步骤:钟表通过无线通信模块与移动智能终端连接获取标准时间;钟表不连接移动智能终端时,通过MCU模块定期以指令信号方式调用内部的误差修正参数表获得修正时间;机芯控制指针旋转,同步时间达到标准时间或修正时间。还公开了一种指针式智能钟表的授时系统。该方法和系统解决了石英机芯晶振误差给钟表带来的走时误差问题,而且即使在不联网的情况下也可以进行自动授时。

Description

一种指针式智能钟表的自动定期授时方法及授时系统 技术领域
本发明涉及计时装置领域,特别是一种智能手表的自动授时方法及系统。
本发明仅限于采用晶振作为时间基准的石英机芯的智能化改造领域。
更进一步的,本发明仅限于采用指针式且采用石英机芯的智能钟表领域。
背景技术
目前,石英表采用石英晶振进行计时控制,但石英晶振自身具有频率误差,在常温下一昼夜的走时误差可能在一秒左右;而传统的石英手表没有校时功能,只能在累积误差达到一定程度后由人工加以校正。而频率误差小的晶振成本也很高,这就导致了石英表的准确程度取决于晶振的精度。
而现在已经具有可以通过GPS或电波对手表进行授时的技术。以电波校时为例,电波钟表将传统钟表技术与现代时频技术、微电子技术、通讯技术、计算机技术等多项技术相结合,通过接收国家授时中心以无线电长波传送的标准时间信号,经过内置微处理器解码处理后,自动校准计时器走时,使电波钟表显示的时间与国家保持的标准时间自动保持精确同步。独特的技术在于内藏一个具有电波接收天线,能每天自动接收由对时基地台发射出的“标准时刻”电波,此一标准时刻电波含有接收当下正确的时间讯息,包含年月日和时分秒,电波钟表在接收校正时刻之后,便能自动校正时刻及日历,显示出正确的时间。由于对时信号发射基地台的计时设备是用稀有的铯(Ces ium)原子所制,10万年只有一秒的误差,所以能几乎永久都保持在标准时刻。电波表内置高感度小型天线,接收标准电波进行自动对时,因而可以实现时间上的精准。在国际上,德国、英国、美国、日本都已经有标准电波的发送。
然而,以电波表为代表的授时技术存在以下问题:首先,极大的依赖无线传输信号,如果遇到信号不好的情况,则无法进行授时。其次,无法解决指针偏移误差的问题,具体而言,指针式手表的指针在运动过程中会出现机械偏差,从而导致指针实际所指的位置可能与手表内部时间并不一致。因此,通过电波授时只能保证手表内部芯片的时间与真实时间一致,但无法解决指针指示刻度是否与手表内部芯片时间一致的问题。
因此传统的采用晶振的指针式手表具有以下问题:1、晶振误差带来的时间误差;2、为了解决问题1采用无线授时对无线网络的依赖;3、指针式手表的指针机械误差,所以即使自动授时成功,手表内部MCU芯片的时间与实际指针的时间也可能存在不一致的问题。
发明内容
本发明所要解决的问题,是提供一种可根据多次授时自动进行误差补偿的智能手表,本发明还包括公开了一种智能手表的授时系统。
本发明包括如下技术特征:一种指针式智能钟表的自动定期授时方法,所述钟表包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块;该自动授时方法包括如下步骤:
Q1:所述移动智能终端用注册运营商网络,获取到标准时间;
Q2:所述移动智能终端与所述钟表通过无线通信模块连接,则跳转到步骤Q3;如果不连接,则跳转到步骤Q4;
Q3:所述钟表定期向所述移动智能终端发出请求,所述移动智能终端根据请求将标准时间以指令信号发送给所述钟表;或者,所述移动智能终端定时主动将标准时间以指令信号的形式推送给所述钟表;
Q4:所述MCU模块定期以指令信号方式调用内部的误差修正参数表;
Q5:所述MCU模块解析步骤Q3或步骤Q4的指令信号,并与MCU模块的现有内部时间进行对比,若现有内部时间数据与指令信号的时间数据不同步时,所述机芯控制指针旋转,同步时间达到当前的正确时间;若当前钟表时间数据与指令信号的时间数据同步时,则不进行授时;
Q6:在跳转到步骤Q3的情况下,所述MCU模块将由步骤Q3所获得的标准时间与步骤Q5的内部时间对比数据存储,生成用于长期精确走时的误差修正参数表。
本发明所采用的方法,具有如下有益效果:首先,解决了晶振误差带来的时间误差问题。通过移动智能终端与运营商基站进行网络连接获得准确时间,再通过智能终端对另外的智能钟表进行蓝牙校零及授时等控制操作,即使在卫星信号无法覆盖的室内或封闭环境下,也能获得准确的时间源,以进行授时的操作。从而克服晶振误差带来的时间不准确问题,智能手表采用的晶振精度可以降低,也节约了智能手表的成本。
其次,解决了传统授时手表必须经过无线网络联网的问题。发明人经过多次研究发现,石英晶振的误差具有同向性,即同一个石英晶振在相同时间间隔下都趋向于相同的正偏差(或负偏差)。因此可以通过多次长时间的多次测量去计算石英晶振的误差值,再将该误差值定期进行补偿,以保证时间的准确性。本发明的通过多次定期授时的大数据动态的学习获得石英晶振的误差,即使在不联网的情况下也可以通过自动补偿的方式,使得钟表能够保证时间的精准。
优选的,所述误差修正参数表是将每次在步骤Q3情况下获得的标准时间与步骤Q5的内部时间对比数据存储在数据库后,计算所有存储的对比数据的平均值,再以该平均值作为长期精确走时的误差修正参数。由于是要经过大量的大数据动态学习,因此必须要获得大量的对比数据,将该数据进行平均值计算,获得晶振的误差值,而且该误差值经过多次动态的修正,保存数据的及时更新和准确性。
优选的,所述误差修正参数随每次执行步骤Q3情况下定期授时而实时修正;如果不是执行步骤Q3的授时的,不对误差修正参数进行修改;所述修正参数存储在不受外部电源断电影响的存储器内。由於该误差修正参数必须是每次执行步骤Q3的情况下获得的数据才是有意义的,因此需要对这个数据进行筛选。如果不是定期授时获得的数据,比如,是用户自行发起的单次的授时行为,由于这种情况下的授时有个性化需求,因此不应该计算入误差修正参数中,这个时候的对比值对误差修正参数不具有参考意义应当排除。此外,误差修正参数是大数据获得的结果,与该智能手表的晶振相匹配,随着时间越长,精度越高,价值越高,因此应当存储在不受外部电源断电影响的存储器内。
优选的,所述定期授时是指24xN小时授时一次,N为大于或等于1的整数。
优选的,所述无线通信模块为低功耗蓝牙通信模块,优选的,为基于蓝牙4.0标准的低功耗蓝牙通信模块。基于蓝牙4.0标准的低功耗蓝牙通信模块,能极大的降低能耗,增加智能手表的使用寿命。
优选的,所述自动授时前增加指针校对步骤,用以确保指针所指示表盘标示的时间与MCU模块现有内部时间一致。
该优选方案解决的是指针式手表的指针机械误差问题,是指针式手表的独特问题。指针式钟表的指针类在运行时支撑在转动轴上,结构似于一个杠杆,因此在运行的过程之中容易因为外部的振动而产生机械误差,而手表MCU是无法识别这种偏差的。比如手表MCU的内部时间是12点,但是指针实际指示的时间由于机械误差,可能并不准确的在12点上(如可能是12点零5秒),而对于手表MCU是无法判断和识别该偏差。所谓的指针校对,就是指手表内部MCU记录时间与指针所指示时间一致。而如果没有进行指针校对,即使自动授时成功手表内部MCU芯片的时间为标准时间,但反映到指针上指示的时间却不一定是标准时间,这样手表的准确性就大打折扣了,也影响了授时的意义。而指针校对步骤就是要告诉钟表MCU模块当前指针指示表盘的实际位置,让其进行判断调整,使得钟表MCU模块的内部时间与指针的实际指示时间一致,然后再授时,以进一步确保授时的准确性。
优选的,所述指针校对步骤是通过移动智能终端将指针的表盘位置发生给所述MCU模块,所述MCU模块根据指针表盘位置调整指针,以确保当前指针所指示的位置与MCU模块现有内部时间一致。
进一步的,所述校对步骤中移动智能终端通过拍摄模块以拍照或摄像方式获得指针的表盘位置。该优选方案中,采用拍摄和摄像方式输入指针的位置,操作更为简便。
进一步的,所述校对步骤中移动智能终端通过人手按键输入或触屏输入的方式获得指针的表盘位置。该优选方案中,无论是人手按键输入还是触屏输入,都是通过智能终端的方式进行,这种输入方式使得指针校对的效率大大提升,而且通过触屏输入的方式,极大的提升了用户操作的体验,以及操作的便利性。
本发明还包括一种应用以上自动定时授时方法的授时系统,包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块,移动智能终端为与运营商基站网络连接的智能手机,无线通信模块为蓝牙或低功耗蓝牙BLE模块,智能手机、MCU模块以及无线通讯模块之间通过电路连接,MCU模块与驱动指针转动的机芯连接,指针与机芯通过转向轴连接,MCU模块用于解析指令,转化为对指令操作,以用于通过机芯控制指针旋转来调整指针的位置。
本发明所提供的自动定时授时方法的授时系统,同样解决了晶振误差带来的时间误差问题,以及解决了传统授时手表必须经过无线网络联网的问题。更进一步的,该受此系统也解决了指针式智能手表所具有的指针误差问题。采用本发明的授时方法和系统,提供了一种能够全方位的解决智能手表的准确性方案,同时解决了晶振的误差问题、智能授时对网络的依赖性,以及指针手表的指针误差问题。
附图说明
图1为本发明自动定期授时方法的步骤流程图;
图2为本发明授时系统的模块连接图;
图3为本发明采用触屏方式输入指针物理位置的示意图;
图4为本发明采用摄影以及摄像输入物理指针位置的示意图。
具体实施方式
本发明的具体实施方式,提供了一种智能手表的自动授时的技术方案。该智能授时的技术方案书解决的技术问题针对的是采用石英晶振进行计时控制的智能手表,更进一步的是采用指针的钟表设备。本实施例的技术方案为:
一种指针式智能钟表的自动定期授时方法,所述钟表包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块;所述无线通信模块为低功耗蓝牙通信模块,优选的,为基于蓝牙4.0标准的低功耗蓝牙通信模块。
该自动授时方法包括如下步骤:
Q1:所述移动智能终端用注册运营商网络,获取到标准时间;
Q2:所述移动智能终端与所述钟表通过无线通信模块连接,则跳转到步骤Q3;如果不连接,则跳转到步骤Q4;
Q3:所述钟表定期向所述移动智能终端发出请求,所述移动智能终端根据请求将标准时间以指令信号发送给所述钟表;或者,所述移动智能终端定时主动将标准时间以指令信号的形式推送给所述钟表;
Q4:所述MCU模块定期以指令信号方式调用内部的误差修正参数表。其中,所述误差修正参数表是将每次在步骤Q3情况下获得的标准时间与步骤Q5的内部时间对比数据存储在数据库后,计算所有存储的对比数据的平均值,再以该平均值作为长期精确走时的误差修正参数。
Q5:所述MCU模块解析步骤Q3或步骤Q4的指令信号,并与MCU模块的现有内部时间进行对比,若现有内部时间数据与指令信号的时间数据不同步时,所述机芯控制指针旋转,同步时间达到当前的正确时间;若当前钟表时间数据与指令信号的时间数据同步时,则不进行授时;
Q6:在跳转到步骤Q3的情况下,所述MCU模块将由步骤Q3所获得的标准时间与步骤Q5的内部时间对比数据存储,生成用于长期精确走时的误差修正参数表。
所述误差修正参数随每次执行步骤Q3情况下定期授时而实时修正;如果不是执行步骤Q3的授时的,不对误差修正参数进行修改;所述修正参数存储在不受外部电源断电影响的存储器内。所述定期授时是指24xN小时授时一次,N为大于或等于1的整数。
以上的实施方式中,智能手表可以通过网络进行授时,也可以根据每次授时学习智能手表的晶振误差值,并且根据学习得到的误差值,在没有办法联网的情况下,对晶振进行自动补偿。因此,该方案解决了晶振误差带来的时间误差问题。通过移动智能终端与运营商基站进行网络连接获得准确时间,再通过智能终端对另外的智能钟表进行蓝牙校零及授时等控制操作,即使在卫星信号无法覆盖的室内或封闭环境下,也能获得准确的时间源,进行授时的操作。从而克服晶振误差带来的时间不准确问题,智能手表采用的晶振精度可以降低,节约了智能手表的成本。
其次,解决了传统授时手表必须经过无线网络联网的问题。发明人经过多次研究发现,石英晶振的误差具有同向性,即同一个石英晶振在相同时间间隔下都趋向于相同的正偏差(或负偏差)。因此可以通过多次长时间的多次测量去计算石英晶振的误差值,再将该误差值定期进行补偿,以保证时间的准确性。本发明的通过多次定期授时的大数据动态的学习获得石英晶振的误差,即使在不联网的情况下也可以通过自动补偿的方式,使得钟表能够保证时间的精准。
为了解决指针偏差的问题,所述自动授时前增加指针校对步骤,用以确保指针所指示表盘标示的时间与MCU模块现有内部时间一致。所述指针校对步骤是通过移动智能终端将指针的表盘位置发生给所述MCU模块,所述MCU模块根据指针表盘位置调整指针,以确保当前指针所指示的位置与MCU模块现有内部时间一致。
移动智能终端将指针的表盘位置发送给MCU模块有以下几种方法:所述校对步骤中移动智能终端通过拍摄模块以拍照或摄像方式获得指针的表盘位置。所述校对步骤中移动智能终端通过人手按键输入或触屏输入的方式获得指针的表盘位置。
以下对上述几种获得指针的表盘位置的方式进行说明:
一、以触屏输入方式获得指针表盘位置包含以下步骤:
步骤A1:所述智能终端与所述钟表建立无线连接。无线连接采用的是传统的无线连接技术,比如说蓝牙和红外线,优选的是低功耗蓝牙技术,比如基于蓝牙4.0及以上版本的蓝牙标准的技术。
其次,步骤A2:当钟表进入较准状态下时物理指针停止不动。由于对指针进行校正,所以必须让钟表的物理指针静止不动。此处,可以设置一个校准模式,当进入校准模式时物理指针停止不动。
接着进入步骤A3:所述移动智能终端的触摸屏显示屏幕表盘及屏幕指针,所述触摸屏识别触摸轨迹,并通过所识别的触摸轨迹变化使得屏幕指针的图像动态地变化,人工输入触摸轨迹令屏幕指针终点为当前物理指针的位置;所述移动智能终端记录该屏幕指针位置所对应的时间。该步骤的作用是将物理指针的位置通过触摸屏告诉移动智能终端,让智能终端记录下当前物理指针的位置。为了增加校准的互动性,在触摸屏上出现了屏幕显示的表盘和屏幕显示的指针,用户可以直接在屏幕上拨动屏幕的指针。
进一步的,通过如果具体步骤实现屏幕指针动态跟随手指触摸而变化:首先,A301:所述触摸屏的屏幕表盘上具有可被移动智能终端记录的坐标零点位置;A302:触摸屏开始识别触摸起点的坐标,该触摸起点的坐标被移动智能终端记录;A303:所述屏幕指针指向触摸起点,并且所述触摸屏识别触摸轨迹变化过 程坐标,该过程坐标被动态识别并被调用给屏幕指针,所述屏幕指针跟随触摸轨迹变化而变化;A304:所述触摸屏识别触摸终点的坐标,该触摸终点的坐标被移动智能终端记录;A305:根据触摸起点的坐标、触摸终点的坐标和坐标零点位置,计算出触摸轨迹的角度变化,获得屏幕指针所对应的时间数据。
为了更好说明,请参考说明书附图3,包括智能钟表1,智能钟表的物理表盘11以及物理指针12。也包括移动智能终端2,包括屏幕表盘21和屏幕指针22。在调整时,用户用手触摸移动智能终端的平面表盘21,屏幕智能22延着触摸移动轨迹变化,用户将屏幕指针22移动到物理指针相同的位置,停止触摸,则移动智能终端可计算出当前物理指针12的位置,并获得对应的时间数据。
最终进入步骤A4:移动智能终端将录入的屏幕指针的数据以指令信号的形式传送给钟表,所述钟表的MCU模块解析信号后进行与物理指针的同步,以做到MCU模块和物理指针时间表达一致。此时,由移动智能终端将物理指针的位置告诉智能钟表,让智能钟表根据该数据与其MCU模块的内部时间进行比较,并最终调整为同步。具体为:A401:MCU模块获得物理指针的位置后进行判断;A402:如果MCU模块内部时间和物理指针时间表达一致,则结束校准;如果MCU模块内部时间与物理指针时间不一致,则MCU模块计算出两者差值,发出指令使得物理指针被驱动到与MCU模块内部时间一致的位置后再继续计时。
二、以拍摄方式获得指针表盘位置包含以下步骤:
首先进入步骤A1:所述智能终端与所述钟表建立无线连接;无线连接采用的是传统的无线连接技术,比如说蓝牙和红外线,优选的是低功耗蓝牙技术,比如基于蓝牙4.0及以上版本的蓝牙标准的技术。
其次进入步骤A2:当钟表进入较准状态下时物理指针停止不动;由于对指针进行校正,所以必须让钟表的物理指针静止不动。此处,可以设置一个校准模式,当进入校准模式时物理指针停止不动。
A3:所述移动智能终端对表盘以及指针拍摄,拍摄的图像被识别后,获得物理指针所对应的时间数据。进一步的,所述步骤A3具体为:
A301:所述移动智能终端对表盘以及指针进行拍摄获得图片;
A302:所述图片数据进行像素解析,通过像素识别读取指针和表盘的刻度坐标数据;
A303:根据指针和表盘的刻度坐标数据获得指针与表盘刻度的相对位置;
A304:根据所述相对位置的数据获得物理指针所对应的时间数据。
另一种优选方案中,所述指针和表盘刻度上涂覆、镶嵌或内置有标示材料;所述拍摄模块可以识别出该标示材料;所述步骤A3具体为:
A301:所述移动智能终端对表盘以及指针进行拍摄获得图片;
A302:通过所述图片的标示材料信息获得指针和表盘的刻度坐标数据;
A303:根据指针和表盘的刻度坐标数据获得指针与表盘刻度的相对位置;
A304:根据所述相对位置的数据获得物理指针所对应的时间数据。
该方案中,所述标示材料为荧光材料、或放射性同位素材料、或反光材料。
采用标示材料的好处是可以简化图像分析,特别是对于表盘上有多组指针的情形较为适合。对于多组指针的智能手表,除了指示时间外还具有日期的指示功能,因此在表盘上部分指针的尺寸较小,如果仅通过像素分析识别错误的概率较高。而采用标示材料进行识别,可以及时、准确的获得每组指针的状态和位于表盘的位置,极大的提高了识别的准确性。
最终的步骤是步骤A4:移动智能终端将所述时间数据以指令信号的形式传送给钟表,所述钟表的MCU模块解析信号后进行与物理指针的同步,以做到MCU模块和物理指针时间表达一致。
进一步的,所述步骤A4中令钟表的MCU模块与物理指针同步的步骤为:
A401:MCU模块获得物理指针的位置后进行判断;
A402:如果MCU模块内部时间和物理指针时间表达一致,则结束校准;如果MCU模块内部时间与物理指针时间不一致,则MCU模块计算出两者差值,发出指令使得物理指针被驱动到与MCU模块内部时间一致的位置后再继续计时。
为了更好说明,请参考说明书附图4,包括智能钟表1,智能钟表的物理表盘11以及物理指针12。也包括移动智能终端2,包括拍摄模块21。在调整时,拍摄模块21对智能钟表的表盘进行拍照,移动智能终端可计算出当前物理指针12的位置,并获得对应的时间数据。
三、以摄影方式获得指针表盘位置包含以下步骤:
首先是步骤A1:所述智能终端与所述钟表建立无线连接;该无线连接可以为低功耗蓝牙的无线连接技术,比如基于蓝牙4.0或以上标准的蓝牙连接技术。
A2:所述移动智能终端对表盘以及指针进行摄影,所述移动智能终端识别实时的影像数据,获取物理指针的移动坐标,计算物理指针所指示的时间数据。在该步骤中,具体为:
A201:所述移动智能终端对表盘以及指针进行摄影,获得一段时间内的指针运动的图像;A202:对所述图片进行像素解析,通过像素识别读取指针和表盘的刻度坐标数据和变化速度;A203:通过坐标数据和变化速度,计算当前物理指针的坐标位置以及运动趋势;A204:将所述物理指针的坐标位置及运动趋势形成时间数据的指令信号。
为了提高识别的准确性,所述指针和表盘刻度上涂覆、镶嵌或内置有标示材料;所述摄影模块可以识别出该标示材料。所述标示材料为荧光材料、或放射性 同位素材料、或反光材料。
最终步骤A3:移动智能终端将所述时间数据以指令信号的形式传送给钟表,所述钟表的MCU模块解析信号后进行与物理指针的同步,以做到MCU模块和物理指针的运动位置一致。该步骤中首先,A401:MCU模块获得物理指针的时间数据后进行判断;A402:如果MCU模块内部时间与时间数据的位置是一致的,则结束校准;如果MCU模块内部时间与物理指针时间不一致,则MCU模块计算出两者差值,发出指令使得物理指针被驱动到与MCU模块内部时间一致的位置后再继续计时。
为了更好说明,请参考说明书附图4,包括智能钟表1,智能钟表的物理表盘11以及物理指针12。也包括移动智能终端2,包括摄影模块21。在调整时,摄影模块21对智能钟表的表盘进行摄影,移动智能终端可计算出当前物理指针12的位置,并获得对应的时间数据。
当然,本发明也公开了一种应用以上方法的系统。该系统包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块。其中,移动智能终端为与运营商基站网络连接的智能手机,无线通信模块为蓝牙或低功耗蓝牙BLE模块,智能手机、MCU模块以及无线通讯模块之间通过电路连接,MCU模块与驱动指针转动的机芯连接,指针与机芯通过转向轴连接,MCU模块用于解析指令,转化为对指令操作,以用通过机芯控制指针旋转来调整指针的位置。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种指针式智能钟表的自动定期授时方法,所述钟表包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块;其特征在于,该自动授时方法包括如下步骤:
    Q1:所述移动智能终端用注册运营商网络,获取到标准时间;
    Q2:所述移动智能终端与所述钟表通过无线通信模块连接,则跳转到步骤Q3;如果不连接,则跳转到步骤Q4;
    Q3:所述钟表定期向所述移动智能终端发出请求,所述移动智能终端根据请求将标准时间以指令信号发送给所述钟表;或者,所述移动智能终端定时主动将标准时间以指令信号的形式推送给所述钟表;
    Q4:所述MCU模块定期以指令信号方式调用内部的误差修正参数表;
    Q5:所述MCU模块解析步骤Q3或步骤Q4的指令信号,并与MCU模块的现有内部时间进行对比,若现有内部时间数据与指令信号的时间数据不同步时,所述机芯控制指针旋转,同步时间达到当前的正确时间;若当前钟表时间数据与指令信号的时间数据同步时,则不进行授时;
    Q6:在跳转到步骤Q3的情况下,所述MCU模块将由步骤Q3所获得的标准时间与步骤Q5的内部时间对比数据存储,生成用于长期精确走时的误差修正参数表。
  2. 根据权利要求1所述的指针式智能钟表的自动定期授时方法,其特征在于,所述误差修正参数表是将每次在步骤Q3情况下获得的标准时间与步骤Q5的内部时间对比数据存储在数据库后,计算所有存储的对比数据的平均值,再以该平均值作为长期精确走时的误差修正参数。
  3. 根据权利要求2所述的指针式智能钟表的自动定期授时方法,其特征在于,所述误差修正参数随每次执行步骤Q3情况下定期授时而实时修正;如果不是执行步骤Q3的授时的,不对误差修正参数进行修改;所述修正参数存储在不受外部电源断电影响的存储器内。
  4. 根据权利要求1所述的指针式智能钟表的自动定期授时方法,其特征在于,所述定期授时是指24xN小时授时一次,N为大于或等于1的整数。
  5. 根据权利要求1所述的指针式智能钟表的自动定期授时方法,其特征在于,所述无线通信模块为低功耗蓝牙通信模块,优选的,为基于蓝牙4.0标准的低功耗蓝牙通信模块。
  6. 根据权利要求1-5任一项所述的自动定期授时方法,其特征在于,所述自动授时前增加指针校对步骤,用以确保指针所指示表盘标示的时间与MCU模块现有内部时间一致。
  7. 根据权利要求6所述的自动定期授时方法,其特征在于,所述指针校对 步骤是通过移动智能终端将指针的表盘位置发送给所述MCU模块,所述MCU模块根据指针表盘位置调整指针,以确保当前指针所指示的位置与MCU模块现有内部时间一致。
  8. 根据权利要求7所述的自动定时授时方法,其特征在于,所述校对步骤中移动智能终端通过拍摄模块以拍照或摄像方式获得指针的表盘位置。
  9. 根据权利要求7所述的自动定时授时方法,其特征在于,所述校对步骤中移动智能终端通过人手按键输入或触屏输入的方式获得指针的表盘位置。
  10. 一种应用根据权利要求1至5以及7至9任一项所述的自动定时授时方法的授时系统,包括MCU模块、作为时间基准的石英晶振、驱动指针转动的机芯和与移动智能终端通信的无线通信模块,其特征在于:移动智能终端为与运营商基站网络连接的智能手机,无线通信模块为蓝牙或低功耗蓝牙BLE模块,智能手机、MCU模块以及无线通讯模块之间通过电路连接,MCU模块与驱动指针转动的机芯连接,指针与机芯通过转向轴连接,MCU模块用于解析指令,转化为对指令操作,以用于通过机芯控制指针旋转来调整指针的位置。
PCT/CN2015/099563 2015-12-16 2015-12-29 一种指针式智能钟表的自动定期授时方法及授时系统 WO2017101157A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/775,851 US20190250567A1 (en) 2015-12-16 2015-12-29 Automatic regular time service method and time service system for pointer type intelligent clock
EP15910626.9A EP3392721A4 (en) 2015-12-16 2015-12-29 AUTOMATIC NORMAL TIME SERVICE METHOD AND TIME SERVICE SYSTEM FOR INTELLIGENT POINTER-TYPE CLOCK
JP2018526520A JP2019502904A (ja) 2015-12-16 2015-12-29 指針式インテリジェントクロックの自動定期的時刻修正方法及び時刻修正システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510953201.8 2015-12-16
CN201510953201.8A CN105446130B (zh) 2015-12-16 2015-12-16 一种指针式智能钟表的自动定期授时方法及授时系统

Publications (1)

Publication Number Publication Date
WO2017101157A1 true WO2017101157A1 (zh) 2017-06-22

Family

ID=55556467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099563 WO2017101157A1 (zh) 2015-12-16 2015-12-29 一种指针式智能钟表的自动定期授时方法及授时系统

Country Status (5)

Country Link
US (1) US20190250567A1 (zh)
EP (1) EP3392721A4 (zh)
JP (1) JP2019502904A (zh)
CN (1) CN105446130B (zh)
WO (1) WO2017101157A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911860A (zh) 2016-04-25 2016-08-31 惠州Tcl移动通信有限公司 一种蓝牙手表的时区自动更新方法及系统
CN105867109A (zh) * 2016-05-11 2016-08-17 深圳智能表芯科技有限公司 一种可自校的指针式智能钟表及其授时方法
WO2018181467A1 (ja) 2017-03-29 2018-10-04 シチズン時計株式会社 アナログ電子時計システムおよびアナログ電子時計
CN107255917B (zh) * 2017-07-25 2021-03-30 福州扬清环保科技有限公司 一种机芯自动对时的方法
CN107329397B (zh) * 2017-07-26 2023-06-20 歌尔科技有限公司 一种轻智能手表校准方法、装置和轻智能手表
CN107894703A (zh) * 2017-11-15 2018-04-10 广东乐心医疗电子股份有限公司 一种可穿戴设备时间校准方法及可穿戴设备
CN109031937A (zh) * 2018-08-06 2018-12-18 深圳市极智宏创科技有限公司 一种指针式手表自动校时方法、系统及装置
EP3611575A1 (en) * 2018-08-14 2020-02-19 Invoxia Computer-implemented method and system for diagnosing mechanical default of a mechanical watch, and mechanical watch for implementing said method
CN109613818B (zh) * 2018-12-29 2021-10-01 广西电网有限责任公司南宁供电局 基于北斗卫星的授时方法和系统、存储介质及电子设备
CN110568751B (zh) * 2019-08-30 2021-03-30 歌尔股份有限公司 手表及其时间校准方法、可读存储介质
CN111240184B (zh) * 2020-02-21 2021-12-31 华为技术有限公司 钟表误差的确定方法、终端、计算机存储介质
EP3926418A1 (fr) * 2020-06-18 2021-12-22 ETA SA Manufacture Horlogère Suisse Correction automatique de l'heure et/ou de la date
CN112731789B (zh) * 2020-12-25 2022-03-11 武汉航空仪表有限责任公司 一种开锁器时间检测装置及检测方法
CN113126472A (zh) * 2021-04-19 2021-07-16 广东电网有限责任公司计量中心 一种充电桩时钟示值误差检定方法、装置及设备
CN113835336B (zh) * 2021-11-24 2022-04-15 国网江苏省电力有限公司营销服务中心 支撑电力现货市场的多维自适应计量装置巡测与校时方法
CN114415490A (zh) * 2022-01-14 2022-04-29 广东外语外贸大学南国商学院 一种通过手机app设置电子钟的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354402A (zh) * 2001-11-30 2002-06-19 精中(珠海)表业有限公司 钟表系统
CN1421751A (zh) * 2001-11-30 2003-06-04 精中(珠海)表业有限公司 低功耗精确计时装置及校正其精确度的设备、系统和方法
JP2005351674A (ja) * 2004-06-08 2005-12-22 Citizen Watch Co Ltd 電波修正時計、電子機器および時刻修正方法
CN103995461A (zh) * 2014-05-14 2014-08-20 王辉 蓝牙无线电波校零、授时系统及方法
CN104503220A (zh) * 2014-11-18 2015-04-08 深圳市金立通信设备有限公司 一种终端、钟表及钟表校准系统
CN104503221A (zh) * 2014-11-18 2015-04-08 深圳市金立通信设备有限公司 一种钟表校准方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912381A (ja) * 1982-07-13 1984-01-23 Nec Corp 電子時計
JP3419407B1 (ja) * 2002-03-29 2003-06-23 セイコーエプソン株式会社 電子機器および電子機器の受信制御方法
JP4200835B2 (ja) * 2002-07-08 2008-12-24 セイコーエプソン株式会社 時刻修正システム、時刻修正指示装置、指針式時計、および時刻修正方法
CN100578396C (zh) * 2008-10-27 2010-01-06 深圳华为通信技术有限公司 一种终端及其时间配置方法
CN102354268A (zh) * 2011-05-09 2012-02-15 青岛海信移动通信技术股份有限公司 一种触控式设置时间的方法及装置
JP6047938B2 (ja) * 2011-11-22 2016-12-21 カシオ計算機株式会社 電子時計、時刻修正方法、及び、プログラム
CN102970125A (zh) * 2012-10-25 2013-03-13 中兴通讯股份有限公司 近距离同步时间的方法及装置
CN104035323A (zh) * 2014-06-14 2014-09-10 福州宜美电子有限公司 一种利用移动设备实现自动调校指针实现网络授时的方法
CN104281049B (zh) * 2014-09-24 2017-04-12 熊汉生 一种智能手表校时系统和方法
CN104777744A (zh) * 2015-03-30 2015-07-15 陈德林 一种通过蓝牙技术实现表针对时的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354402A (zh) * 2001-11-30 2002-06-19 精中(珠海)表业有限公司 钟表系统
CN1421751A (zh) * 2001-11-30 2003-06-04 精中(珠海)表业有限公司 低功耗精确计时装置及校正其精确度的设备、系统和方法
JP2005351674A (ja) * 2004-06-08 2005-12-22 Citizen Watch Co Ltd 電波修正時計、電子機器および時刻修正方法
CN103995461A (zh) * 2014-05-14 2014-08-20 王辉 蓝牙无线电波校零、授时系统及方法
CN104503220A (zh) * 2014-11-18 2015-04-08 深圳市金立通信设备有限公司 一种终端、钟表及钟表校准系统
CN104503221A (zh) * 2014-11-18 2015-04-08 深圳市金立通信设备有限公司 一种钟表校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392721A4 *

Also Published As

Publication number Publication date
CN105446130B (zh) 2018-03-16
CN105446130A (zh) 2016-03-30
EP3392721A1 (en) 2018-10-24
EP3392721A4 (en) 2019-07-10
JP2019502904A (ja) 2019-01-31
US20190250567A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2017101157A1 (zh) 一种指针式智能钟表的自动定期授时方法及授时系统
CN103995461B (zh) 蓝牙无线电波校零、授时系统及方法
JP6826123B2 (ja) 自動的に腕時計の時間情報を調整する方法
KR100596264B1 (ko) 전파 수정 시계 및 그 제어 방법
CN105527834A (zh) 智能指针式石英手表时间校准方法
CN105446129A (zh) 一种基于拍摄识别技术的指针式智能钟表的指针校准方法
CN105467829A (zh) 一种基于影像识别技术的指针式智能钟表的指针校准方法
CN110462529A (zh) 模拟电子表系统以及模拟电子表
CN102722099A (zh) 具有计算误差功能的时钟校正系统及校时方法
CN108398874A (zh) 一种手表指针校时的方法、装置及手表
JP2007085883A (ja) 時計およびその補正方法、情報処理装置および方法、並びに、プログラム
JP2018044842A (ja) 電子時計、電子時計の時刻変更方法、および、プログラム
US20200133203A1 (en) Time correction device and time correction method
WO2013063960A1 (zh) 一种校时方法及其系统
JPH04230890A (ja) 時計機能付き受信機及び時刻修正方法
JP6868960B2 (ja) コンピュータ及び時刻合わせシステム
CN205384454U (zh) 智能指针式石英手表时间校准系统
CN105467830A (zh) 一种基于触摸屏的指针式智能钟表的指针校准方法及应用的系统
US10996636B2 (en) Communication device, electronic timepiece, communication method, and recording medium
CN103415816B (zh) 电子时钟
CN109557564A (zh) 卫星电波接收装置、电子表、定位信息获取控制方法以及记录介质
CN106444966B (zh) 一种实时时钟rtc调整装置及方法
US20180046143A1 (en) Quick multifunctional smart watch for worship timing and orientation and control method
JP2016038274A (ja) 通信装置、電子時計、および通信装置の制御方法
US10705607B2 (en) Operation control system, wearable apparatus, operation control method, and operation control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018526520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE