WO2017099423A1 - Method for preparing super-absorbent resin - Google Patents

Method for preparing super-absorbent resin Download PDF

Info

Publication number
WO2017099423A1
WO2017099423A1 PCT/KR2016/014058 KR2016014058W WO2017099423A1 WO 2017099423 A1 WO2017099423 A1 WO 2017099423A1 KR 2016014058 W KR2016014058 W KR 2016014058W WO 2017099423 A1 WO2017099423 A1 WO 2017099423A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
surface crosslinking
super absorbent
water
formula
Prior art date
Application number
PCT/KR2016/014058
Other languages
French (fr)
Korean (ko)
Inventor
양예솔
김기철
이금형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160162032A external-priority patent/KR101855352B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/757,041 priority Critical patent/US10450428B2/en
Priority to EP16873288.1A priority patent/EP3321290B1/en
Priority to CN201680052151.9A priority patent/CN108026195B/en
Publication of WO2017099423A1 publication Critical patent/WO2017099423A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention relates to a method for producing a super absorbent polymer. More specifically, the present invention relates to a method for producing a super absorbent polymer having improved water absorption characteristics without deterioration in water holding capacity and pressure absorbing capacity.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (AMG) and absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
  • a method for producing such a super absorbent polymer a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known.
  • Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
  • a thermal polymerization method for breaking and perturbing the hydrogel polymer in a kneader having several shafts, and photopolymerization for simultaneously adding and drying a high concentration aqueous solution by irradiating ultraviolet rays or the like on a belt Method is known ⁇
  • the hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process, and then the desired absorption capacity and pressure absorption capacity To selectively crosslink the surface of the polymer.
  • the desired absorption capacity and pressure absorption capacity To selectively crosslink the surface of the polymer.
  • alcohol is used to control the penetration depth of the crosslinking agent, a large amount of alcohol is consumed, which is disadvantageous in terms of cost : an additional drying treatment is required.
  • the surface crosslinking reaction is performed by using a surface crosslinking agent that satisfies specific conditions, thereby maintaining the hydrophilicity of the superabsorbent polymer and appropriately adjusting the crosslinking density to further improve the physical properties of the final product. Without absorption rate. It is to provide a method for producing an improved superabsorbent polymer.
  • the step of thermally polymerizing or photopolymerizing the monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer; Drying the hydrogel polymer;
  • It provides a method for producing a super absorbent polymer, comprising the step of performing a surface crosslinking reaction by mixing the ground polymer and a surface crosslinking agent comprising a compound represented by the following formula (1):
  • R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen
  • n is an integer of 1-5.
  • the hydrophilicity of the surface of the superabsorbent polymer can be maintained while appropriately adjusting the surface penetration depth of the surface crosslinker.
  • the superabsorbent polymer having excellent physical properties can be prepared.
  • HSQC heteronuclear single quantum correlation spectroscopy
  • FIG. 3 is a 13 C NMR graph of the compound of Chemistry 1 in accordance with an embodiment of the present invention.
  • the method for preparing a super absorbent polymer of the present invention comprises the steps of thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer; Drying the hydrogel polymer; Pulverizing the dried polymer; And performing a surface crosslinking reaction by mixing the ground polymer with a surface crosslinking agent comprising a compound represented by the following Chemical Formula 1.
  • R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen
  • n is an integer of 1-5.
  • polymer or “polymer” means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges. After polymerization of the polymer, it may refer to a water content (water content) is at least about 40 weight 0/0 of the polymer to be dried before the gel state as a function polymer.
  • base resin or “base resin powder” means that the polymer is dried and ground to form a powder.
  • Superabsorbent resin also means the polymer or the base resin itself depending on the context, or further processes for the polymer or the base resin, for example surface crosslinking, fine powder reassembly, drying, grinding, classification, etc. It is used to cover everything that has been made suitable for commercialization through.
  • the step of forming a hydrogel polymer, the drying of the hydrogel polymer, and the step of pulverizing the dried polymer is in the art for preparing a super absorbent polymer It can be carried out by the steps and methods commonly used in the art.
  • the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
  • any monomer commonly used in the preparation of a super absorbent polymer may be used without limitation in the constitution.
  • any one or more selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • acrylic acid methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2 Anionic monomers and salts of (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
  • an amino group-containing unsaturated monomer of (N, N) -dimethylaminoethyl (meth) acrylate or (N, N) -dimethylaminopropyl (meth) acrylamide and a quaternized product thereof. Can be used.
  • acrylic acid or a salt thereof for example acrylic acid or Alkali metal salts, such as the sodium salt
  • acrylic acid or Alkali metal salts such as the sodium salt
  • acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • NaOH caustic soda
  • the degree of neutralization of the water-soluble ethylene unsaturated monomers may be adjusted to about 50 to about 95% or about 70 to about 85%, and within this range, the superabsorbent polymer having excellent water-retaining ability without any fear of precipitation during neutralization Can provide.
  • the polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • it may further include a thermal polymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • persulfate initiators examples include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ),
  • azo-based initiators examples include 2, 2-azobis- (2-amidinopropane) dihydrochloride, 2, 2-azobis- (N, N - dimethylene) isobutoxy Thira Mai Dean dihydrochloride (2,2-azobis- (N, N- dimethylene) isobutyramidine dihydrochloride), 2- ( acrylonitrile carbamoyl azo) isobutyronitrile (2 - (carbamoylazo) isobutylonitril) , 2 , 2-azobis [2- (2-imid
  • the thermal polymerization initiator may be included in a concentration of about 001 to about 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, and acyl. At least one selected from the group consisting of acyl phosphine and alpha -aminoketone may be used. Meanwhile, as an example of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . A wider variety of photoinitiators is well described in Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", pi 15, but is not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of about 0.005 to about 1.0 wt% based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and the concentration of the photopolymerization initiator may be When too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be nonuniform.
  • the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer.
  • the internal crosslinking agent may include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and at least one ethylenically unsaturated group;
  • a crosslinking agent having two or more water-soluble substituents and / or functional groups capable of reacting with the water-soluble substituents formed by hydrolysis of the monomers may be used.
  • the internal crosslinking agent examples include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly (meth) acrylate of polyol having 2 to 10 carbon atoms, poly (meth) allyl ether of polyol having 2 to 10 carbon atoms, and the like.
  • ⁇ , ⁇ '- methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, propyleneoxy (meth) acrylate, glycerol diacrylate , Glycerin triacrylate, trimethy triacrylate, triallylamine, triarylcyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol may be used.
  • Such an internal crosslinking agent may be included in a concentration of about 0.001 to about 2.0 wt% based on the monomer composition to crosslink the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-described components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, ' cyclopentanone, diethylene glycol monomethyl ether, diethylene Glycol ethyl ether, toluene, xylene, butyrolactone, carby, methyl cellosolve acetate, and one or more selected from N, N-dimethylacetamide and the like can be used in combination.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the method of preparing a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can proceed in a semi-unggi equipped with a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may be a semi-unggi outlet, depending on the shape of the stirring shaft provided in the reaction machine.
  • the hydrogel polymer discharged may be in the form of several centimeters to several millimeters.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the water-containing gel polymer having a particle size of 2 to 50 mm can be obtained.
  • the form of a generally obtained polymer may be a hydrous gel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 15 cm can be obtained.
  • the production efficiency is low, which is not preferable, and when the thickness of the polymer on the sheet exceeds 15 cm Due to the excessively thick thickness, the polymerization reaction may not occur evenly over the entire thickness.
  • the water content of the hydrogel or photopolymerized hydrogel polymer is the water content of the hydrogel or photopolymerized hydrogel polymer.
  • water content means the weight of the water-containing gel polymer subtracted from the weight of the dried polymer by the content of moisture to account for the total weight of the water-containing gel polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying conditions were a total drying time in such a manner as to maintain at 180 ° C after raising the temperature from room temperature to 180 ° C by including 5 at a temperature ramping up step is set to 40 minutes to measure the water content.
  • the hydrous gel polymer obtained is dried.
  • the rough grinding step before drying may be further roughened.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10mm.
  • drying temperature of the drying step may be 150 ° C to 250 ° C.
  • drying temperature refers to the drying of the heating medium including the heating medium and the polymer at the temperature or drying process of the heating medium supplied for drying. It can be defined as the temperature of the reaction.
  • the drying temperature is less than 150 ° C., the drying time is too long and there is a fear that the physical properties of the superabsorbent polymer to be finally formed is lowered, if the drying silver exceeds 250 ° C, only the polymer surface is too dry, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease.
  • the drying may be carried out at a temperature of 150 ° C to 200 ° C, more preferably at a temperature of 160 ° C to 180 ° C.
  • the drying time is not limited to the configuration, in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration.
  • the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after the drying step may be 0.1 to 10% by weight.
  • the dried polymer obtained through this drying step is subjected to a grinding step.
  • the polymer powder obtained after the final milling step may have a weight average particle diameter of 150 to 850 / in.
  • the grinder used to grind to such a weight average particle diameter is specifically a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill. Or a jog mill (jog mill) and the like can be used, but the present invention is not limited to the above examples.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed.
  • the polymer having a particle size of about 150 to about 850 mm 3 is classified, and the surface crosslinking reaction step may be performed only for the polymer powder having such a particle size.
  • a surface crosslinking agent is added to the ground polymer to proceed with a surface crosslinking reaction.
  • Surface crosslinking is the step of increasing the crosslink density near the polymer particle surface with respect to the crosslink density inside the particles.
  • the crosslinking agent is applied to the surface of the polymer particles.
  • this reaction occurs on the surface of the polymer particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • the surface crosslinked polymer particles thus have a higher degree of crosslinking near the surface than inside.
  • surface crosslinking reaction is performed using a surface crosslinking agent containing a compound represented by the following Chemical Formula 1.
  • R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen
  • n is an integer of 1-5.
  • R may be a hydroxyl group.
  • conventionally used surface crosslinking agents include polyhydric alcohol compounds, epoxy compounds, amine compounds, polyvalent metal salts, and the like.
  • the degree of penetration of the surface crosslinking agent is too deep and crosslinking tends to proceed to the inside of the polymer.
  • the crosslinking reaction in the polymer also increases the crosslinking density to reduce the water-retaining capacity (CRC), and also decreases the hydrophilicity of the surface of the superabsorbent polymer, resulting in deterioration of physical properties of the final product.
  • the surface crosslinking reaction time may be shortened or the reaction temperature may be lowered, but in this case, surface crosslinking may not occur sufficiently. In other words, it is difficult to control the penetration depth of the surface crosslinking agent.
  • a compound of a specific formula modified with a hydrophilic group as a surface crosslinking agent This solved this problem.
  • crosslinking reaction time does not increase even when the crosslinking reaction time increases, forming a crosslinking region only on the polymer surface, and at the same time, due to the hydrophilic modifier (R), The hydrophilicity of the resin surface can be maintained. Therefore, it is possible to obtain a superabsorbent polymer having an improved absorption rate while maintaining the water-retaining capacity and pressure-absorbing capacity of the base resin.
  • the content of the compound represented by Formula 1 may be about 0.02 to about 0.5 parts by weight, preferably about 0.02 to about 0.3 parts by weight, and more preferably about 0.02 to about 0.2 parts by weight, based on 100 parts by weight of the polymer. .
  • the compound represented by Chemical Formula 1 is not limited thereto, for example, epichlorohydrin and monoethylene glycol may be prepared according to a known organic synthesis method using starting materials, and NMR analysis. Its structure can be confirmed by applying such as a surface crosslinking agent.
  • the compound represented by Formula 1 in addition to the compound represented by Formula 1, it may further include a porous silica (silica) or clay (clay) as a surface crosslinking agent. Since silica or clay has porosity, the transmittance of the superabsorbent polymer may be improved by adding them as a surface crosslinking agent.
  • a porous silica silica or clay has porosity, the transmittance of the superabsorbent polymer may be improved by adding them as a surface crosslinking agent.
  • the surface crosslinking agent and the polymer powder may be mixed in a semi-permanent mixture, or a method of spraying the surface crosslinking agent on the polymer powder, a method of continuously supplying the polymer and the surface crosslinking agent to the mixer to be operated continuously, and the like may be used.
  • the surface crosslinker Upon addition of the surface crosslinker, water, low alcohol (methanol or Ethanol) or these can be mixed together and added.
  • the solvent When the solvent is added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer.
  • the content of the solvent is about 1 to about 10 parts by weight relative to 100 parts by weight of the polymer for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent. Is preferably added.
  • the surface cross-linking agent is about 160 with respect to the polymer particles was added to about 220 ° C, preferably from about 20 to about 120 minutes at a temperature of from about 180 to about 200 ° C: preferably heated for about 30 to 110 minutes by the surface cross-linking banung and drying can be done at the same time. If the crosslinking reaction temperature is less than 160 ° C, surface crosslinking reaction may not occur, and if it exceeds 220 ° C, foreign substances and odors may be generated due to carbonization, or property degradation and stable process operating conditions may be secured due to excessive reaction. Missing problems can occur.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • a heated fluid such as steam, hot air, or hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a temperature increase rate, and a temperature increase. It may be appropriately selected in consideration of the target temperature.
  • a heat source directly supplied a heating method through electricity, a heating method through a gas, but the present invention is not limited to the above examples.
  • the superabsorbent polymer obtained according to the production method of the present invention as described above has improved water retention, pressure absorption capacity and transmittance.
  • the super absorbent polymer prepared according to the preparation method of the present invention has a water retention capacity (CRC) of about 30 g / g to 40 g / g, preferably about 35 g / g, measured according to the EDANA method WSP 241.2.
  • CRC water retention capacity
  • WSP 241.2 a pressurized absorption capacity measured according to EDANA method WSP 242.2
  • AUP pressurized absorption capacity measured according to EDANA method WSP 242.2
  • the absorption rate measured by the Vortex test may be in the range of about 10 seconds to about 65 seconds, preferably about 30 seconds to about 65 seconds or less.
  • the solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer equipped with a light irradiation apparatus on the top and preheated to 80 ° C. and irradiated with light. After about 25 seconds after the light irradiation, the gel is generated from the surface, and after 50 seconds, the polymerization reaction occurs at the same time as the foaming, and after further reaction until the total reaction time is 3 minutes, the polymerized sheet is taken out and 3x3 cm of After cutting to size, a crumb was prepared by chopping using a meat chopper.
  • the crumb was dried in an oven capable of transferring air volume up and down.
  • the hot air at 185 ° C was uniformly dried by flowing 20 minutes from the bottom to the top and 20 minutes from the top to the bottom. After drying, the water content of the dried body was less than 2%. After drying, the resultant was pulverized with a pulverizer and then classified to select a size of 150 to 850 ⁇ .
  • the base resin was prepared.
  • FIG. 1 An NMR (solvent: CDC1 3 ) analysis graph of the compound using Aglient 500 MHz NMR is shown in FIG. 1, and a heteronuclear single quantum correlation spectroscopy (HSQC) analysis graph is shown in FIG. 2, and a 13 C NMR analysis graph is shown in FIG. 3.
  • HSQC heteronuclear single quantum correlation spectroscopy
  • a superabsorbent polymer having a particle size of 150 to 850 was obtained by classifying with a standard mesh of ASTM specification.
  • Example 3 Into 100 g of the base resin of Preparation Example 1, 3.5 g of water, 4.5 g of methanol, 0.2 g of Compound of Preparation Example 2 and silica (trade name DM30S) O.Olg were mixed to perform a surface crosslinking reaction at a temperature of 185 ° C. for 60 minutes. .
  • a superabsorbent polymer having a particle size of 150 / m to 850 was obtained by classifying to a standard network of ASTM standard.
  • the superabsorbent polymers of the Examples and Comparative Examples were measured for centrifugal water retention (CRC) by unloaded absorption ratio according to EDANA method WSP 241.2. Specifically, the resin obtained in Examples and Comparative Examples was classified into 300 600 micrometer (/ ⁇ ) size and W (g) (about 0.2g) was uniformly placed in a non-woven bag and sealed. , Impregnated in physiological saline of 0.9 mass 0 /. After 30 minutes, the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W2 (g) of the bag was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured. Using each mass obtained, CRC (g / g) was computed according to the following formula.
  • W (g) is the weight (g) of the absorbent resin
  • Wl (g) is a weight measuring device and then after a non-woven fabric bag not loaded the water absorbent resin during the impregnation of 0.9 parts by weight 0/0 30 minutes in physiological saline at room temperature by using the centrifugal dehydration 3 minutes at 250G,
  • W2 (g) is the weight of the device including the absorbent resin after 30 minutes of impregnation with the absorbent resin in a 0.9 wt% physiological saline solution in silver and then dehydrated at 250 G for 3 minutes using a centrifuge. .
  • the obtained resin is classified into 300-600 micrometer (m) size, W (g) (approximately 0.16g, A) is evenly sprayed on the AUL cylinder, 0.9psi weight is added and weighed (B) .
  • the petri dish containing 0.9 mass% of saline was swelled and swollen for 60 minutes. After 60 minutes, taken out and weighed (C),
  • AUL (g / g) was computed according to the following formula.
  • AUL (g / g) (C-B) / A
  • A is the weight of absorbent resin (g) .
  • C is the weight of the AUL Kit assembly after swelling in 0.9 wt% physiological saline for 60 minutes at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a method for preparing a super-absorbent resin. According to the preparation method of the present invention, the hydrophilicity of the super-absorbent resin is maintained and the crosslinking density thereof is appropriately controlled to lead uniform surface crosslinkage, thereby producing a super-absorbent resin having excellent physical properties. Therefore, an absorbent resin having an improved absorption rate without a deterioration in absorbency under pressure can be provided.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지의 제조 방법  Manufacturing method of super absorbent polymer
【기술분야】  Technical Field
관련 출원 (들)과의 상호 인용  Cross Citation with Related Application (s)
본 출원은 2015 년 12 월 9 일자 한국 특허 출원 제 10-2015- 0175001호 및 2016년 11월 30일자 한국 특허 출원 제 10-2016-0162032호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0175001 filed on December 9, 2015 and Korean Patent Application No. 10-2016-0162032 filed on November 30, 2016. All content disclosed in the literature is included as part of this specification.
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 상세하게는, 보수능과 가압 흡수능의 저하없이 흡수 특성이 향상된 고흡수성 수지의 제조 방법에 관한 것이다.  The present invention relates to a method for producing a super absorbent polymer. More specifically, the present invention relates to a method for producing a super absorbent polymer having improved water absorption characteristics without deterioration in water holding capacity and pressure absorbing capacity.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 개발업체마다 SAM (Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (AMG) and absorbent gel (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological devices, and are currently used in sanitary products such as paper diapers for children, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness retainers in food distribution, and It is widely used as a material for steaming.
상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209, 및 특개소 57-198714 등에 개시되어 있다. 수용액 중합에 의한 방법으로는 또 다시, 여러 개의 축을 구비한 반죽기 내에서 함수겔상 중합체를 파단, 넁각하면서 중합하는 열중합 방법, 및 고농도 수용액을 벨트상에서 자외선 등을 조사하여 증합과 건조를 동시에 행하는 광중합 방법 등이 알려져 있다ᅳ  As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known. Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714. As the method of aqueous solution polymerization, a thermal polymerization method for breaking and perturbing the hydrogel polymer in a kneader having several shafts, and photopolymerization for simultaneously adding and drying a high concentration aqueous solution by irradiating ultraviolet rays or the like on a belt Method is known 등
한편, 상기와 같은 중합 반웅을 거쳐 얻은 함수겔상 중합체는 일반적으로 건조 공정을 거쳐 분쇄한 뒤, 원하는 흡수능과 가압 흡수능을 갖기 위해 중합체의 표면을 선택적으로 가교하는 단계를 거치게 된다. 이러한 표면 가교에서는 표면 가교제의 침투 깊이를 조절하는 것이 필요하며, 이를 위해 알코올과 물을 사용하여 표면 가교제의 침투 깊이를 조절하는 것이 일반적이었다. 그러나, 알코을을 사용하여 가교제의 침투깊이를 조절하는 경우, 다량의 알코올이 소모되어 비용 면에서 불리하고: 추가적인 건조 처리가 필요하다는 단점이 있었다. On the other hand, the hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process, and then the desired absorption capacity and pressure absorption capacity To selectively crosslink the surface of the polymer. In such surface crosslinking, it is necessary to control the penetration depth of the surface crosslinking agent. For this purpose, it is common to control the penetration depth of the surface crosslinking agent by using alcohol and water. However, when alcohol is used to control the penetration depth of the crosslinking agent, a large amount of alcohol is consumed, which is disadvantageous in terms of cost : an additional drying treatment is required.
따라서, 상기 방법을 해결하기 위해 종래에는 알코올의 사용량을 최소화하거나 알코올을 사용하지 않는 방법들을 제시한 바 있다. 하지만, 알코올의 사용량을 무리하게 낮출 경우는 물이 중합체에 과도하게 흡수되어 겔의 뭉침 현상으로 인해 효율적인 가교가 어렵다는 문제점이 있었다.  Therefore, in order to solve the above method, conventionally, methods of minimizing the amount of alcohol or using no alcohol have been presented. However, when the amount of alcohol used is excessively lowered, water is excessively absorbed into the polymer and there is a problem that efficient crosslinking is difficult due to agglomeration of the gel.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 특정한 조건을 만족하는 표면 가교제를 이용하여 표면 가교 반웅을 수행함으로써, 고흡수성 수지의 친수성을 유지하고 가교 밀도를 적절히 조절하여 최종 제품의 물성을 더욱 향상시킬 수 있으며, 특히 가압 흡수능의 저하없이 흡수 속도가. 향상되는 고흡수성 수지의 제조 방법을 제공하는 것이다.  According to the present invention, the surface crosslinking reaction is performed by using a surface crosslinking agent that satisfies specific conditions, thereby maintaining the hydrophilicity of the superabsorbent polymer and appropriately adjusting the crosslinking density to further improve the physical properties of the final product. Without absorption rate. It is to provide a method for producing an improved superabsorbent polymer.
[과제의 해결 수단】  [Solution of problem]
상기와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 중합체를 건조하는 단계;  According to an aspect of the present invention for solving the above problems, the step of thermally polymerizing or photopolymerizing the monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer; Drying the hydrogel polymer;
건조된 중합체를 분쇄하는 단계; 및  Pulverizing the dried polymer; And
분쇄된 중합체와, 하기 화학식 1로 표시되는 화합물을 포함하는 표면 가교제를 흔합하여 표면 가교 반웅을 수행하는 단계를 포함하는, 고흡수성 수지의 제조 방법을 제공한다:  It provides a method for producing a super absorbent polymer, comprising the step of performing a surface crosslinking reaction by mixing the ground polymer and a surface crosslinking agent comprising a compound represented by the following formula (1):
[화학식 1]
Figure imgf000005_0001
[Formula 1]
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
R은 하이드록시, 카르복실기, 아미노기, 및 할로겐으로 이루어진 군으로부터 선택되고;  R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen;
n은 1 내지 5의 정수이다.  n is an integer of 1-5.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 고흡수성 수지의 제조 방법은, 표면 가교제로 친수성기로 개질된 화합물을 사용함으로써 표면 가교제의 표면 침투 깊이를 적절히 조절하면서 고흡수성 수지 표면의 친수성을 유지할 수 있으며, 아울러 균일한 표면 가교를 통해 물성이 우수한 고흡수성 수지를 제조할 수 있다.  In the method for preparing a super absorbent polymer according to the present invention, by using a compound modified with a hydrophilic group as the surface crosslinker, the hydrophilicity of the surface of the superabsorbent polymer can be maintained while appropriately adjusting the surface penetration depth of the surface crosslinker. Through the superabsorbent polymer having excellent physical properties can be prepared.
이에 따라 제품 물성을 더욱 향상시킬 수 있으며, 특히 가압 흡수능의 저하없이 흡수 속도가 향상된 고흡수성 수지를 제공할 수 있다. 【도면의 간단한 설명】  Accordingly, product properties can be further improved, and in particular, a superabsorbent polymer having an improved absorption rate can be provided without deteriorating the pressure absorption capacity. [Brief Description of Drawings]
도 1은 본 발명의 일 실시예에 따른 화학식 1의 화합물에 대한 !H NMR그래프이다. 1 is for the compound of formula 1 according to an embodiment of the present invention ! H NMR graph.
도 2는 본 발명의 일 실시예에 따른 화학식 1의 화합물에 대한 HSQC(heteronuclear single quantum correlation spectroscopy) 그래프이다.  2 is a heteronuclear single quantum correlation spectroscopy (HSQC) graph of the compound of Formula 1 according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 화학삭 1의 화합물에 대한 13C NMR그래프이다. FIG. 3 is a 13 C NMR graph of the compound of Chemistry 1 in accordance with an embodiment of the present invention. FIG.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나.또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, step, component, or combination thereof, and one or more other features or steps. , Components, or a combination of these It should be understood that they do not preclude the presence or the possibility of adding them.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지의 제조 방법에 대해 보다상세히 설명하기로 한다. 본 발명의 고흡수성 수지의 제조 방법은, 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열증합 또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 증합체를 건조하는 단계; 건조된 중합체를 분쇄하는 단계; 및 분쇄된 중합체와, 하기 화학식 1로 표시되는 화합물을 포함하는 표면 가교제를 흔합하여 표면 가교 반웅을 수행하는 단계를 포함한다:.  Hereinafter, a method for preparing a super absorbent polymer according to specific embodiments of the present invention will be described in detail. The method for preparing a super absorbent polymer of the present invention comprises the steps of thermally polymerizing or photopolymerizing a monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer; Drying the hydrogel polymer; Pulverizing the dried polymer; And performing a surface crosslinking reaction by mixing the ground polymer with a surface crosslinking agent comprising a compound represented by the following Chemical Formula 1.
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 1에서,  In Chemical Formula 1,
R은 하이드록시, 카르복실기, 아미노기, 및 할로겐으로 이루어진 군으로부터 선택되고;  R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen;
n은 1 내지 5의 정수이다.  n is an integer of 1-5.
참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율 (수분 함량)이 약 40 중량0 /0 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다. 또한, "베이스 수지 " 또는 "베이스 수지 분말"은 상기 중합체를 건조 및 분쇄하여 파우더 (powder) 형태로 만든 것을 의미한다. For reference, in the specification of the present invention, "polymer" or "polymer" means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and may cover all water content ranges or particle size ranges. After polymerization of the polymer, it may refer to a water content (water content) is at least about 40 weight 0/0 of the polymer to be dried before the gel state as a function polymer. In addition, "base resin" or "base resin powder" means that the polymer is dried and ground to form a powder.
또한, "고흡수성 수지"는 문맥에 따라 상기 중합체 또는 베이스 수지 자체를 의미하거나, 또는 상기 중합체나 상기 베이스 수지에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다.  "Superabsorbent resin" also means the polymer or the base resin itself depending on the context, or further processes for the polymer or the base resin, for example surface crosslinking, fine powder reassembly, drying, grinding, classification, etc. It is used to cover everything that has been made suitable for commercialization through.
상술한 일 구현예에 따른 본 발명의 제조 방법에 있어서, 함수겔상 중합체를 형성하는 단계, 상기 함수겔상 중합체를 건조하는 단계, 및 건조된 중합체를 분쇄하는 단계는 고흡수성 수지 제조를 위해 당해 기술 분야에서 통상사용되는 단계 및 방법으로 수행될 수 있다.  In the manufacturing method of the present invention according to the embodiment described above, the step of forming a hydrogel polymer, the drying of the hydrogel polymer, and the step of pulverizing the dried polymer is in the art for preparing a super absorbent polymer It can be carried out by the steps and methods commonly used in the art.
먼저 구체적으로, 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 수용성 에틸렌계 불포화 단량체 및 증합 개시제를 포함한다.  First, specifically, the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
상기 수용성 에틸렌계 불포화 단량체로는 고흡수성 수지의 제조에 통상 사용되는 단량체라면 그 구성의 한정이 없이 사용될 수 있다. 크게, 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있다. ' As the water-soluble ethylenically unsaturated monomer, any monomer commonly used in the preparation of a super absorbent polymer may be used without limitation in the constitution. In general, any one or more selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof can be used. '
구체적으로는 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산 , 2-메타아크릴로일에탄술폰산 , 2- (메타)아크릴로일프로판술폰산, 또는 2- (메타)아크릴아마드 -2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N- 치환 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2- 히드록시프로필 (메타)아크릴레이트,  Specifically, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2 Anionic monomers and salts of (meth) acrylamide-2-methyl propane sulfonic acid; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
메톡시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N, N)- 디메틸아미노에틸 (메타)아크릴레이트 또는 (N, N)- 디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 바람직하게 사용할 수 있다. Nonionic hydrophilic-containing monomers of methoxy polyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate; And an amino group-containing unsaturated monomer of (N, N) -dimethylaminoethyl (meth) acrylate or (N, N) -dimethylaminopropyl (meth) acrylamide and a quaternized product thereof. Can be used.
더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다. 이때, 상기 수용성 에될렌계 불포화 단량체의 중화 정도는 약 50 내지 약 95% 또는 약 70 내지 약 85%로 조절될 수 있으며, 이러한 범위 내에서 중화시 석출의 우려 없이 보수능이 뛰어난 고흡수성 수지를 제공할 수 있다. More preferably acrylic acid or a salt thereof, for example acrylic acid or Alkali metal salts, such as the sodium salt, can be used, but by using such a monomer, it becomes possible to manufacture a super absorbent polymer having better physical properties. When the alkali metal salt of acrylic acid is used as a monomer, acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH). In this case, the degree of neutralization of the water-soluble ethylene unsaturated monomers may be adjusted to about 50 to about 95% or about 70 to about 85%, and within this range, the superabsorbent polymer having excellent water-retaining ability without any fear of precipitation during neutralization Can provide.
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 모노머 조성물에 대해 약 20 내지 약 60 중량0 /0, 바람직하게는 약 40 내지 약 50 중량 %로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. 본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다. The concentration of the water-soluble ethylenically unsaturated monomer, in which the subject from about 20 to about 60 weight 0/0, preferably from about 40 to about 50% by weight based on the monomer composition containing a source material and a solvent of the water-absorbent resin, and In consideration of the polymerization time and reaction conditions, the concentration may be appropriate. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer. The polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation such as ultraviolet irradiation and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
구체적으로는 상기 열증합 개시제로 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N- 디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochloride), 2- (카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4- azobis-(4-cyanovaleric acid)) 등을 사용할 수 있다. 보다 다양한 열개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)" , ρ203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. Specifically, at least one selected from the group consisting of persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid may be used as the thermal polymerization initiator. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), ammonium persulfate (NH 4 ) 2 S 2 0 8 ), Examples of azo-based initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride, 2, 2-azobis- (N, N - dimethylene) isobutoxy Thira Mai Dean dihydrochloride (2,2-azobis- (N, N- dimethylene) isobutyramidine dihydrochloride), 2- ( acrylonitrile carbamoyl azo) isobutyronitrile (2 - (carbamoylazo) isobutylonitril) , 2 , 2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4 , 4 -azobis- (4-cyano-ballet rigs acid) and the like (4, 4- azobis- (4- cyanovaleric acid)). A wider variety of thermal initiators are well specified in the Odian book "Principle of Polymerization (Wiley, 1981)", p203, and are not limited to the examples described above.
상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 으 001 내지 약 0.5 중량 %의 농도로 포함될 수 있다. 이러한 열증합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of about 001 to about 0.5% by weight based on the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven. have.
상기 광중합 개시제로는 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl dimethyl ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸- 벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" , pi 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, and acyl. At least one selected from the group consisting of acyl phosphine and alpha -aminoketone may be used. Meanwhile, as an example of acylphosphine, commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . A wider variety of photoinitiators is well described in Reinhold Schwalm's book, "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)", pi 15, but is not limited to the examples described above.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.005 내지 약 1.0 중량 %의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. The photopolymerization initiator may be included in a concentration of about 0.005 to about 1.0 wt% based on the monomer composition. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and the concentration of the photopolymerization initiator may be When too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be nonuniform.
본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제를 더 포함할 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용성 치환기와 반웅할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 단량체의 수용성 치환기 및 /또는 단량체의 가수분해에 의해 형성된 수용성 치환기와 반웅할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.  According to an embodiment of the present invention, the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer. The internal crosslinking agent may include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and at least one ethylenically unsaturated group; Alternatively, a crosslinking agent having two or more water-soluble substituents and / or functional groups capable of reacting with the water-soluble substituents formed by hydrolysis of the monomers may be used.
상기 내부 가교제의 구체적인 예로는, 탄소수 8 내지 12의 비스아크릴아미드, 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리 (메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리 (메타)알릴에테르 등을 들 수 있고, 보다 구체적으로, Ν,Ν'- 메틸렌비스 (메타)아크릴레이트, 에틸렌옥시 (메타)아크릴레이트, 폴리에틸렌옥시 (메타)아크릴레이트, 프로필렌옥시 (메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티를 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 하나 이상을사용할 수 있다. 이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.001 내지 약 2.0 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다.  Specific examples of the internal crosslinking agent include bisacrylamide having 8 to 12 carbon atoms, bismethacrylamide, poly (meth) acrylate of polyol having 2 to 10 carbon atoms, poly (meth) allyl ether of polyol having 2 to 10 carbon atoms, and the like. More specifically, Ν, Ν'- methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, propyleneoxy (meth) acrylate, glycerol diacrylate , Glycerin triacrylate, trimethy triacrylate, triallylamine, triarylcyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol may be used. Such an internal crosslinking agent may be included in a concentration of about 0.001 to about 2.0 wt% based on the monomer composition to crosslink the polymerized polymer.
본 발명의 제조 방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, ' 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 N, N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. The solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-described components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, ' cyclopentanone, diethylene glycol monomethyl ether, diethylene Glycol ethyl ether, toluene, xylene, butyrolactone, carby, methyl cellosolve acetate, and one or more selected from N, N-dimethylacetamide and the like can be used in combination.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 방법 또한 통상 사용되는 중합 방법이면, 그 구성의 한정이 없다. 구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광증합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본.발명은 상술한 중합 방법에 한정되지는 않는다.  On the other hand, the method of preparing a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is not particularly limited as long as it is a commonly used polymerization method. Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can proceed in a semi-unggi equipped with a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더와 같은 반웅기에, 열풍을 공급하거나 반웅기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 입도가 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다.  For example, as described above, the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may be a semi-unggi outlet, depending on the shape of the stirring shaft provided in the reaction machine. The hydrogel polymer discharged may be in the form of several centimeters to several millimeters. Specifically, the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the water-containing gel polymer having a particle size of 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 증합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 모노머 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 15cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 모노머 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 모노머 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 15cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반웅이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다. In addition, when photopolymerization is performed in a reactor equipped with a movable conveyor belt as described above, the form of a generally obtained polymer may be a hydrous gel polymer on a sheet having a width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 15 cm can be obtained. When supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is low, which is not preferable, and when the thickness of the polymer on the sheet exceeds 15 cm Due to the excessively thick thickness, the polymerization reaction may not occur evenly over the entire thickness.
한편, 상기에서 열중합 또는 광중합된 함수겔상 중합체의 함수율은 On the other hand, the water content of the hydrogel or photopolymerized hydrogel polymer is
40 내지 80 증량%일 수 있다. 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해, 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 40분으로 설정하여, 함수율을 측정한다. 40 to 80% by weight. Throughout this specification, "water content" means the weight of the water-containing gel polymer subtracted from the weight of the dried polymer by the content of moisture to account for the total weight of the water-containing gel polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying conditions were a total drying time in such a manner as to maintain at 180 ° C after raising the temperature from room temperature to 180 ° C by including 5 at a temperature ramping up step is set to 40 minutes to measure the water content.
다음에, 얻어진 함수겔상 중합체를 건조한다. 이때 필요에 따라서는 건조 단계의 효율을 높이기 위해, 건조 전에 간단히 조분쇄하는 단계를 더 거칠 수 있다.  Next, the hydrous gel polymer obtained is dried. At this time, if necessary, in order to increase the efficiency of the drying step, the rough grinding step before drying may be further roughened.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는않는다. 이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도록 분쇄할 수 있다.  At this time, the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example. At this time, the grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10mm.
입경이 2mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 웅집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미하다.  Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause a phenomenon in which the crushed particles cross each other. On the other hand, when the particle size is pulverized more than 10mm, the effect of increasing the efficiency of the subsequent drying step is insignificant.
상기와 같이 분쇄되거나, 혹은 중합 직후의 함수겔상 중합체는 건조 단계를 거치는데, 바람직하게 상기 건조 단계의 건조 온도는 150°C 내지 250°C일 수 있다. 본 명세서 전체에서 "건조 온도"는 건조를 위해 공급되는 열매체의 온도 또는 건조 공정에서 열매체 및 중합체를 포함한 건조 반웅기의 온도로 정의 ¾ 수 있다. As described above, the hydrogel polymer after being pulverized or immediately after the polymerization is subjected to a drying step. Preferably, the drying temperature of the drying step may be 150 ° C to 250 ° C. Throughout this specification, "drying temperature" refers to the drying of the heating medium including the heating medium and the polymer at the temperature or drying process of the heating medium supplied for drying. It can be defined as the temperature of the reaction.
건조 온도가 150°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 은도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 바람직하게 상기 건조는 150°C 내지 200 °C의 온도에서, 더욱 바람직하게는 160°C 내지 180°C의 온도에서 진행될 수 있다. 한편, 건조 시간의 경우에는 그 구성의 한정은 없으나 공정 효율 등을 고려하여, 20분 내지 90분 동안 진행될 수 있다. If the drying temperature is less than 150 ° C., the drying time is too long and there is a fear that the physical properties of the superabsorbent polymer to be finally formed is lowered, if the drying silver exceeds 250 ° C, only the polymer surface is too dry, Fine powder may occur in the grinding process, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. Preferably the drying may be carried out at a temperature of 150 ° C to 200 ° C, more preferably at a temperature of 160 ° C to 180 ° C. On the other hand, in the case of the drying time is not limited to the configuration, in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes.
그리고, 이와 같은 건조 단계의 건조 방법 역시, 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이러한 건조 단계 진행 후의 중합체의 함수율은 0.1 내지 10 중량%일 수 있다.  In addition, if the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after the drying step may be 0.1 to 10% by weight.
이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체는 분쇄 단계를 거친다.  The dried polymer obtained through this drying step is subjected to a grinding step.
최종 분쇄 단계 후 얻어지는 중합체 분말은 중량평균 입경이 150 내지 850/ in일 수 있다. 이와 같은 중량평균 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The polymer powder obtained after the final milling step may have a weight average particle diameter of 150 to 850 / in. The grinder used to grind to such a weight average particle diameter is specifically a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill. Or a jog mill (jog mill) and the like can be used, but the present invention is not limited to the above examples.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850卿인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반응 단계를 거칠 수 있다.  In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed. Preferably, the polymer having a particle size of about 150 to about 850 mm 3 is classified, and the surface crosslinking reaction step may be performed only for the polymer powder having such a particle size.
다음에, 분쇄된 중합체에 표면 가교제를 첨가하여 표면 가교 반응을 진행한다.  Next, a surface crosslinking agent is added to the ground polymer to proceed with a surface crosslinking reaction.
표면 가교는 입자 내부의 가교결합 밀도와 관련하여 중합체 입자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교제는 중합체 입자의 표면에 도포된다. 따라서, 이 반웅은 중합체 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 중합체 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다. Surface crosslinking is the step of increasing the crosslink density near the polymer particle surface with respect to the crosslink density inside the particles. Generally, the surface The crosslinking agent is applied to the surface of the polymer particles. Thus, this reaction occurs on the surface of the polymer particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles. The surface crosslinked polymer particles thus have a higher degree of crosslinking near the surface than inside.
본 발명의 고흡수성 수지 제조 방법에서는 하기 화학식 1로 표시되는 화합물을 포함하는 표면 가교제를 이용하여 표면 가교 반웅을 수행한다.  In the method for preparing a super absorbent polymer of the present invention, surface crosslinking reaction is performed using a surface crosslinking agent containing a compound represented by the following Chemical Formula 1.
Figure imgf000014_0001
Figure imgf000014_0001
상기 화학식 1에서  In Chemical Formula 1
R은 하이드록시 , 카르복실기, 아미노기, 및 할로겐으로 이루어진 군으로부터 선택되고;  R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen;
n은 1 내지 5의 정수이다.  n is an integer of 1-5.
상기 화학식 1로 표시되는 화합물에서, 바람직하게는 R은 하이드록시기일 수 있다.  In the compound represented by Formula 1, preferably R may be a hydroxyl group.
고흡수성 수지 제조 방법에서, 통상적으로 사용되는 표면 가교제로는 다가 알콜 화합물, 에폭시 화합물, 아민 화합물, 다가 금속염 등이 알려져 있다. 그런데 이처럼 종래 사용되는 표면 가교제의 경우, 반웅 시간이 증가함에 따라 표면 가교제의 침투 정도가 지나치게 깊어져 중합체의 내부까지 가교가 진행되는 경향이 있다. 중합체 내부에도 가교 반웅이 진행되면 가교 밀도가 높아져 보수능 (CRC)이 감소되며, 고흡수성 수지 표면의 친수성 또한 감소하게 되어 최종 제품의 물성 저하를 야기하게 된다. 한편 이를 방지하기 위하여 표면 가교 반웅 시간을 짧게 하거나, 반웅 온도를 낮추는 방안도 있지만 이 경우 표면 가교가 층분히 일어나지 못할 우려가 있다. 즉, 표면 가교제의 침투 깊이 조절이 어려운 문제점이 있었다. 한편, 본 발명의 고흡수성 수지 제조 방법에서는 상기 화학식 1과 같이, 친수성기로 개질된 특정한 화학식의 화합물을 표면 가교제로 사용함으로써 이러한 문제점을 해결하였다. 상기 화학식 1의 화합물을 중합체에 첨가하여 표면 가교 반웅을 진행할 경우, 가교 반웅 시간이 증가하여도 중합체 내부 가교가 잘 일어나지 않고 중합체 표면에서만 가교 영역을 형성하며, 동시에 친수성 개질기 (R)로 인하여 고흡수성 수지 표면의 친수성이 유지될 수 있다. 따라서, 베이스 수지의 보수능 및 가압 흡수능이 유지되면서 향상된 흡수 속도를 갖는 고흡수성 수지를 얻을 수 있는 효과가 있다. In the method for producing a super absorbent polymer, conventionally used surface crosslinking agents include polyhydric alcohol compounds, epoxy compounds, amine compounds, polyvalent metal salts, and the like. However, in the case of the surface crosslinking agent conventionally used as described above, as the reaction time increases, the degree of penetration of the surface crosslinking agent is too deep and crosslinking tends to proceed to the inside of the polymer. The crosslinking reaction in the polymer also increases the crosslinking density to reduce the water-retaining capacity (CRC), and also decreases the hydrophilicity of the surface of the superabsorbent polymer, resulting in deterioration of physical properties of the final product. On the other hand, in order to prevent this, the surface crosslinking reaction time may be shortened or the reaction temperature may be lowered, but in this case, surface crosslinking may not occur sufficiently. In other words, it is difficult to control the penetration depth of the surface crosslinking agent. On the other hand, in the method of preparing a super absorbent polymer of the present invention, as shown in Formula 1, a compound of a specific formula modified with a hydrophilic group as a surface crosslinking agent This solved this problem. When the surface crosslinking reaction is performed by adding the compound of Formula 1 to the polymer, crosslinking reaction time does not increase even when the crosslinking reaction time increases, forming a crosslinking region only on the polymer surface, and at the same time, due to the hydrophilic modifier (R), The hydrophilicity of the resin surface can be maintained. Therefore, it is possible to obtain a superabsorbent polymer having an improved absorption rate while maintaining the water-retaining capacity and pressure-absorbing capacity of the base resin.
상기 화학식 1로 표시되는 화합물의 함량은 중합체 100 중량부에 대해, 약 0.02 내지 약 0.5 중량부, 바람직하게는 약 0.02 내지 약 0.3 중량부, 더욱 바람직하게는 약 0.02 내지 약 0.2 중량부를 사용할 수 있다.  The content of the compound represented by Formula 1 may be about 0.02 to about 0.5 parts by weight, preferably about 0.02 to about 0.3 parts by weight, and more preferably about 0.02 to about 0.2 parts by weight, based on 100 parts by weight of the polymer. .
상기 화학식 1로 표시되는 화합물의 함량이 지나치게 적으면, 표면 가교 반웅이 거의 일어나지 않으며, 너무 많이 포함될 경우, 과도한 표면 가교 반웅의 진행으로 인해 흡수 능력 및 물성의 저하 현상이 발생할 수 있다.  When the content of the compound represented by the formula (1) is too small, the surface crosslinking reaction hardly occurs, and if it contains too much, deterioration of absorption capacity and physical properties may occur due to the excessive surface crosslinking reaction.
상기 화학식 1로 표시되는 화합물은 이에 한정되는 것은 아니나, 예를 들어 에피클로로하이드린 (epichlorohydrin)과 모노에틸렌글리콜 (monoethylene glycol)를 출발 물질로 하여 알려진 유기합성 방법에 따라 제조할 수 있으며, NMR 분석 등을 통해 그 구조를 확인하여 표면 가교제로 적용할 수 있다.  The compound represented by Chemical Formula 1 is not limited thereto, for example, epichlorohydrin and monoethylene glycol may be prepared according to a known organic synthesis method using starting materials, and NMR analysis. Its structure can be confirmed by applying such as a surface crosslinking agent.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물에 더하여 표면 가교제로 다공성 실리카 (silica) 또는 클레이 (clay)를 추가로 포함할 수 있다. 상기 실리카나 클레이 등은 다공성을 가지므로 이들을 표면 가교제로 이들을 첨가함에 따라 고흡수성 수지의 투과율이 보다 향상될 수 있다.  According to an embodiment of the present invention, in addition to the compound represented by Formula 1, it may further include a porous silica (silica) or clay (clay) as a surface crosslinking agent. Since silica or clay has porosity, the transmittance of the superabsorbent polymer may be improved by adding them as a surface crosslinking agent.
상기 표면 가교제를 중합체에 첨가하는 방법에 대해서는 그 구성의 한정은 없다. 상기 표면 가교제와 중합체 분말을 반웅조에 넣고 흔합하거나, 중합체 분말에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 표면 가교제를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다.  There is no limitation in the structure about the method of adding the said surface crosslinking agent to a polymer. The surface crosslinking agent and the polymer powder may be mixed in a semi-permanent mixture, or a method of spraying the surface crosslinking agent on the polymer powder, a method of continuously supplying the polymer and the surface crosslinking agent to the mixer to be operated continuously, and the like may be used.
상기 표면 가교제의 첨가시, 용매로써 물, 저가 알코올 (메탄올 또는 에탄올) 또는 이들을 함께 흔합하여 첨가할 수 있다. 용매를 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 용매의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대해, 약 1 내지 약 10 중량부의 비율로 첨가되는 것이 바람직하다. Upon addition of the surface crosslinker, water, low alcohol (methanol or Ethanol) or these can be mixed together and added. When the solvent is added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the content of the solvent is about 1 to about 10 parts by weight relative to 100 parts by weight of the polymer for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent. Is preferably added.
상기 표면 가교제가 첨가된 중합체 입자에 대해 약 160 내지 약 220 °C , 바람직하게는 약 180 내지 약 200°C의 온도에서 약 20 내지 약 120분: 바람직하게는 약 30 내지 약 110분 동안 가열시킴으로써 표면 가교 결합 반웅 및 건조가 '동시에 이루어질 수 있다. 가교 반웅 온도가 160°C 미만일 경우 표면 가교 반웅이 일어나지 않을 수 있고, 220°C를 초과할 경우 탄화로 인한 이물질 및 냄새가 발생하거나, 지나친 반웅으로 인하여 물성 저하 및 안정적인 공정 운전 조건을 확보할 수 없는 문제가 발생할 수 있다. 또한 가교 반웅 시간이 20분 미만으로 지나치게 짧은 경우, 충분한 가교 반웅을 할 수 없고, 가교 반웅 시간이 120분을 초과하는 경우, 과도한 표면 가교 반웅으로 인해, 중합체 입자의 손상에 따른'물성 저하가 발생할 수 있다. 표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다. The surface cross-linking agent is about 160 with respect to the polymer particles was added to about 220 ° C, preferably from about 20 to about 120 minutes at a temperature of from about 180 to about 200 ° C: preferably heated for about 30 to 110 minutes by the surface cross-linking banung and drying can be done at the same time. If the crosslinking reaction temperature is less than 160 ° C, surface crosslinking reaction may not occur, and if it exceeds 220 ° C, foreign substances and odors may be generated due to carbonization, or property degradation and stable process operating conditions may be secured due to excessive reaction. Missing problems can occur. Also cause crosslinking banung If the time is over in less than 20 minutes is short, it can not be sufficient crosslinking banung, if the cross-linking banung time exceeds 120 minutes, due to excessive surface cross-linking banung, "Physical Properties of the damage of the polymer particle decreases Can be. The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. In this case, as the type of heat medium that can be used, a heated fluid such as steam, hot air, or hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a temperature increase rate, and a temperature increase. It may be appropriately selected in consideration of the target temperature. On the other hand, as a heat source directly supplied, a heating method through electricity, a heating method through a gas, but the present invention is not limited to the above examples.
상기와 같은 본 발명의 제조 방법에 따라 수득된 고흡수성 수지는 향상된 보수능, 가압 흡수능 및 투과율을 가진다.  The superabsorbent polymer obtained according to the production method of the present invention as described above has improved water retention, pressure absorption capacity and transmittance.
상기와 같이 본 발명의 제조 방법에 따라 제조된 고흡수성 수지는, EDANA 법 WSP 241.2에 따라 측정한 보수능 (CRC)이 약 30 g/g 내지 40 g/g, 바람직하게는 약 35 g/g 내지 약 40 g/g이며, EDANA 법 WSP 242.2에 따라 측정한 가압 흡수능 (AUP)이 약 15 g/g 내지 약 27 g/g, 바람직하게는 약 20 g/g내지 약 26 g/g, 보다 바람직하게는 약 24 g/g내지 약 26 g/g으로, 우수한 보수능 및 가압 흡수능을 보일 수 있다. 또한, 볼텍스 테스트 (Vortex test)에 의해 측정한 흡수 속도가 약 65초 이하로, 약 10 내지 약 65초, 바람직하게는 약 30 내지 약 65초의 범위일 수 있다. As described above, the super absorbent polymer prepared according to the preparation method of the present invention has a water retention capacity (CRC) of about 30 g / g to 40 g / g, preferably about 35 g / g, measured according to the EDANA method WSP 241.2. To about 40 g / g, with a pressurized absorption capacity (AUP) measured according to EDANA method WSP 242.2, from about 15 g / g to about 27 g / g, preferably about 20 g / g to about 26 g / g, more preferably about 24 g / g to about 26 g / g, it can exhibit excellent water retention and pressure absorption. In addition, the absorption rate measured by the Vortex test may be in the range of about 10 seconds to about 65 seconds, preferably about 30 seconds to about 65 seconds or less.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.  Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific embodiments of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
<실시예> <Example>
제조예 1: 베이스수지의 제조  Preparation Example 1 Preparation of Base Resin
25 °C로 미리 넁각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2L 들이 유리 반웅기에, 아크릴산 500g과 아크릴산에 희석된 0.21% IRGACURE 819 개시제 20g, 아크릴산에 희석된 10% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA, 분자량 400) 14g을 흔합하고, 24% 가성소다 용액 870g을 서서히 적가하여 흔합하였다. In a 2L-glass glass reactor, surrounded by a jacket in which the heat medium pre-cornered at 25 ° C is circulated, 20 g of 0.21% IRGACURE 819 initiator diluted in 500 g of acrylic acid and acrylic acid, 10% polyethylene glycol diacrylate (PEGDA, diluted in acrylic acid) 14 g of molecular weight 400) were mixed, and 870 g of a 24% caustic soda solution was slowly added dropwise.
두 용액의 흔합 시 중화열에 의해 흔합액의 온도가 80°C 이상으로 상승하는 것을 확인 후, 온도가 40°C로 넁각되기를 기다렸다가 반웅온도가 40°C에 이르렀을 때 물에 희석된 2% 과황산나트륨 용액 50g과 탄산수소나트륨 0.54g을 주입하였다. After confirming that the temperature of the mixture rises above 80 ° C due to the heat of neutralization when mixing the two solutions, wait for the temperature to rise to 40 ° C, and when the reaction temperature reaches 40 ° C, 50 g of sodium sulfate solution and 0.54 g of sodium bicarbonate were injected.
상기 용액을 광조사 장치가 상부에 장착되고 내부가 80°C로 예열된 정방형 중합기 내에 설치된 Vat 형태의 tray (가로 15cm x 세로 15cm)에 붓고 광조사를 행하여 광개시하였다. 광조사 후 약 25초 후 표면부터 겔이 발생하며 50초 정도가 되면 발포와 동시에 중합반웅이 일어나는 것을 확인 후, 총 반응 시간이 3분이 될 때까지 추가로 반웅시킨 뒤 중합된 시트를 꺼내어 3x3cm의 크기로 자른 뒤 Meat chopper를 이용하여 chopping 하여 crumb을 제조하였다. The solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer equipped with a light irradiation apparatus on the top and preheated to 80 ° C. and irradiated with light. After about 25 seconds after the light irradiation, the gel is generated from the surface, and after 50 seconds, the polymerization reaction occurs at the same time as the foaming, and after further reaction until the total reaction time is 3 minutes, the polymerized sheet is taken out and 3x3 cm of After cutting to size, a crumb was prepared by chopping using a meat chopper.
상기 crumb을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185 °C의 hot air를 20분은 하방에서 상방^로, 20분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되게 하였다. 건조 후, 분쇄기로 분쇄한 다음 분급하여 150 내지 850μιη 크기를 선별하여 베이스 수지를 준비하였다ᅳ 제조된 베이스 수지의 보수능은 44.7g/g, 수가용 성분 함량은 21.9중량%였다. 제조예 2: 화학식 1 화합물의 제조 The crumb was dried in an oven capable of transferring air volume up and down. The hot air at 185 ° C was uniformly dried by flowing 20 minutes from the bottom to the top and 20 minutes from the top to the bottom. After drying, the water content of the dried body was less than 2%. After drying, the resultant was pulverized with a pulverizer and then classified to select a size of 150 to 850 μιη. The base resin was prepared. Preparation Example 2 Preparation of Compound of Formula 1
에피클로로하이드린 (epichlorohydrin)과 모노에틸렌글리콜 (monoethylene glycol)를 출발 물질로 하고 촉매로 NaOH를 이용한 반응을 수행하여 화학식 1의 화합물 (R=OH이고 0=1~5의 흔합물 형태)을 합성하였다.  Using epichlorohydrin and monoethylene glycol as starting materials and carrying out a reaction using NaOH as a catalyst, a compound of formula 1 (R = OH and a complex form of 0 = 1 to 5) was synthesized. It was.
Aglient 500MHz NMR를 이용한 화합물의 NMR (solvent: CDC13) 분석 그래프를 도 1에, HSQC(heteronuclear single quantum correlation spectroscopy) 분석 그래프를 도 2에, 13C NMR분석 그래프를 도 3에 각각 나타내었다. An NMR (solvent: CDC1 3 ) analysis graph of the compound using Aglient 500 MHz NMR is shown in FIG. 1, and a heteronuclear single quantum correlation spectroscopy (HSQC) analysis graph is shown in FIG. 2, and a 13 C NMR analysis graph is shown in FIG. 3.
분석 결과를 종합하여 에폭시 (epoxy)기 1몰에 대하여 CH2OH기가 0.08몰, CHOH기가 0.52몰로 존재하며, 화학식 1올 갖는 화합물 (중량 평균 분자량: 약 500g/mol)임을 확인하였다. 실시예 1 Based on the analysis results, it was confirmed that the CH 2 OH group was present at 0.08 mol and the CHOH group was 0.52 mol with respect to 1 mol of the epoxy group, and the compound having the formula (I) (weight average molecular weight: about 500 g / mol). Example 1
제조예 1의 베이스 수지 100g에 물 3.5g, 메탄올 4.5g, 제조예 2의 화합물 O.lg 및 실리카 (상품명 DM30S) O.Olg을 흔합하여 185 °C의 온도에서 60분 동안 표면 가교 반웅을 수행하였다. Into 100 g of the base resin of Preparation Example 1, 3.5 g of water, 4.5 g of methanol, and Compound O.lg and Silica (trade name DM30S) O.Olg of Preparation Example 2 were mixed to perform a surface crosslinking reaction for 60 minutes at a temperature of 185 ° C. It was.
표면 가교 반응 후, ASTM 규격의 표준망체로 분급하여 150 /m 내지 After the surface cross-linking reaction, it was classified into a standard network of ASTM standard from 150 / m to
850/mi의 입자 크기를 갖는 고흡수성 수지를 얻었다. 실시예 2 A super absorbent polymer having a particle size of 850 / mi was obtained. Example 2
제조예 1의 베이스 수지 100g에 물 3.5g, 메탄올 4.5g, 화학식 1의 화합물 (R=OH이고 n=l~5의 흔합물 형태) O.lg을 흔합하여 185 °C의 온도에서 60분 동안 표면 가교 반웅을 수행하였다. 100 g of the base resin of Preparation Example 1 was mixed with 3.5 g of water, 4.5 g of methanol, and a compound of Formula 1 (R = OH and a form of a mixture of n = l to 5) O.lg for 60 minutes at a temperature of 185 ° C. Surface crosslinking reaction was performed.
표면 가교 반응 후, ASTM 규격의 표준망체로 분급하여 150 내지 850 의 입자 크기를 갖는 고흡수성 수지를 얻었다. 실시예 3 제조예 1의 베이스 수지 100g에 물 3.5g, 메탄올 4.5g, 제조예 2의 화합물 0.2g 및 실리카 (상품명 DM30S) O.Olg을 흔합하여 185 °C의 온도에서 60분 동안 표면 가교 반웅을 수행하였다. After the surface crosslinking reaction, a superabsorbent polymer having a particle size of 150 to 850 was obtained by classifying with a standard mesh of ASTM specification. Example 3 Into 100 g of the base resin of Preparation Example 1, 3.5 g of water, 4.5 g of methanol, 0.2 g of Compound of Preparation Example 2 and silica (trade name DM30S) O.Olg were mixed to perform a surface crosslinking reaction at a temperature of 185 ° C. for 60 minutes. .
표면 가교 반웅 후, ASTM 규격의 표준망체로 분급하여 150//m 내지 850 의 입자 크기를갖는 고흡수성 수지를 얻었다. 비교예 1  After surface crosslinking reaction, a superabsorbent polymer having a particle size of 150 // m to 850 was obtained by classifying to a standard mesh of ASTM specification. Comparative Example 1
제조예 1의 베이스 수지 100g에 물 3.5g, 메탄을 4.5g, PEG (Mw=200) O.lg 및 실리카 (상품명 DM30S) O.Olg을 흔합하여 185 °C의 온도에서 60분 동안 표면 가교 반웅을 수행하였다. To 100 g of the base resin of Preparation Example 1, 3.5 g of water, 4.5 g of methane, PEG (Mw = 200) O.lg and silica (trade name DM30S) O.Olg were mixed and subjected to surface crosslinking reaction at a temperature of 185 ° C for 60 minutes. Was performed.
표면 가교 반웅 후, ASTM 규격의 표준망체로 분급하여 150/ m 내지 850 의 입자크기를 갖는 고흡수성 수지를 얻었다.  After the surface crosslinking reaction, a superabsorbent polymer having a particle size of 150 / m to 850 was obtained by classifying to a standard network of ASTM standard.
〈실험예> Experimental Example
실시예 및 비교예의 고흡수성 수지에 대해, 다음의 방법으로 물성을 측정하였고, 그 결과를 표 1에 나타내었다.  For the superabsorbent polymers of Examples and Comparative Examples, physical properties were measured by the following method, and the results are shown in Table 1.
1) 보수능 (CRC, Centriftige Retention Capacity) 1) Concentration Retention Capacity (CRC)
상기 실시예 및 비교예의 고흡수성 수지에 대하여 EDANA 법 WSP 241.2에 따라무하중하 흡수배율에 의한 원심분리 보수능 (CRC)을 측정하였다. 구체적으로, 실시예 및 비교예로 얻어진 수지 얻어진 수지를 300 600 마이크로미터 (/ΛΠ) 크기로 분급하고 W(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후, 상온에서 0.9 질량0 /。의 생리 식염수에 함침시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Wl(g)을 측정했다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC (g/g)를 산출하였다. The superabsorbent polymers of the Examples and Comparative Examples were measured for centrifugal water retention (CRC) by unloaded absorption ratio according to EDANA method WSP 241.2. Specifically, the resin obtained in Examples and Comparative Examples was classified into 300 600 micrometer (/ ΛΠ) size and W (g) (about 0.2g) was uniformly placed in a non-woven bag and sealed. , Impregnated in physiological saline of 0.9 mass 0 /. After 30 minutes, the bag was centrifuged and drained at 250 G for 3 minutes, and then the mass W2 (g) of the bag was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured. Using each mass obtained, CRC (g / g) was computed according to the following formula.
[계산식 1]  [Calculation 1]
CRC(g/g) = {(W2(g) - Wl(g)-W(g)})/ W(g)}  CRC (g / g) = {(W2 (g)-Wl (g) -W (g)}) / W (g)}
상기 식에서, W(g)는 흡수성 수지의 무게 (g)이고, Where W (g) is the weight (g) of the absorbent resin,
Wl(g)는 흡수성 수지를 넣지 않은 부직포 봉투를 상온에서 0.9 중량0 /0의 생리식염수에 30분 동안 함침한 후 원심분리기를 사용하여 250G로 3분간 탈수한후 측정한 장치 무게이고, Wl (g) is a weight measuring device and then after a non-woven fabric bag not loaded the water absorbent resin during the impregnation of 0.9 parts by weight 0/0 30 minutes in physiological saline at room temperature by using the centrifugal dehydration 3 minutes at 250G,
W2(g)는 상은에서 0.9 중량%의 생리 식염수에 흡수성 수지를 넣은 부직포 봉투를 30분 동안 함침한 다음에 원심분리기를 사용하여 250G로 3분간 탈수한후 흡수성 수지를 포함하여 측정한 장치 무게이다.  W2 (g) is the weight of the device including the absorbent resin after 30 minutes of impregnation with the absorbent resin in a 0.9 wt% physiological saline solution in silver and then dehydrated at 250 G for 3 minutes using a centrifuge. .
2) 가압 흡수능 (AUL, Absorbency under Load) 2) Absorbency under Load (AUL)
상기 실시예 및 비교예의 고흡수성 수지에 대하여 EDANA 법 WSP EDANA method WSP for superabsorbent polymers of Examples and Comparative Examples
242.2에 따라 가압 흡수능 (AUL)을 측정하였다. Pressurized absorbent capacity (AUL) was measured according to 242.2.
구체적으로, 얻어진 수지를 300~600 마이크로미터 ( m) 크기로 분급하고, W(g) (약 0.16g, A)을 AUL 실린더에 골고루 뿌린 뒤, 0.9psi 추를 올린 뒤 무게를 겠다 (B). 0.9 질량 %의 생리 식염수가 포함된 Petri dish에 을리고 60분 간 팽윤시켰다. 60분 후 꺼내서 무게를 측정하였다 (C),  Specifically, the obtained resin is classified into 300-600 micrometer (m) size, W (g) (approximately 0.16g, A) is evenly sprayed on the AUL cylinder, 0.9psi weight is added and weighed (B) . The petri dish containing 0.9 mass% of saline was swelled and swollen for 60 minutes. After 60 minutes, taken out and weighed (C),
얻어진 각 질량을 이용하여 다음과 같은 식에 따라 AUL(g/g)를 산출하였다.  Using each mass obtained, AUL (g / g) was computed according to the following formula.
[계산식 2]  [Calculation 2]
AUL(g/g) = (C - B) / A  AUL (g / g) = (C-B) / A
상기 식에서,  Where
A는 흡수성 수지의 무게 (g)이고,  A is the weight of absorbent resin (g) ,
B는 흡수성 수지를 넣은 AUL Kit 에셈블리의 무게이며,  B is the weight of AUL Kit assembly with absorbent resin,
C는 상온에서 0.9 중량%의 생리 식염수에서 60분 간 팽윤시킨 후의 AUL Kit 에셈블리의 무게이다.  C is the weight of the AUL Kit assembly after swelling in 0.9 wt% physiological saline for 60 minutes at room temperature.
3) 흡수 속도 (Vortex test) 3) Vortex test
50.0±1.0 mL의 0.9 wt% 염수 (NaCl) 용액을 100 mL비커에 첨가하였다. 실린더형 교반 바 (30 X 6mm)를 첨가하고, 상기 염수 용액을 600 rpm으로 교반 플레이트 상에서 교반하였다. 2.000±0.010g의 고흡수성 수지 입자를 가능한 빨리 상기 비커에 첨가하고, 교반에 의해 생기는 액체의 소용돌이 (vortex)가 없어져 매끄러운 표면이 생길 때까지의 시간을 측정하였다ᅳ 50.0 ± 1.0 mL of 0.9 wt% saline (NaCl) solution was added to a 100 mL beaker. A cylindrical stir bar (30 × 6 mm) was added and the brine solution was stirred on a stir plate at 600 rpm. 2.000 ± 0.010 g of superabsorbent polymer particles are added to the beaker as soon as possible, and the vortex of the liquid Measure the time until disappearance and smooth surface 매끄러운
【표 1 ] Table 1
Figure imgf000021_0001
상기 표 1에서 알 수 있는 바와 같이, 화학식 1의 화합물을 표면 가교제로 사용한 실시예의 경우, 동일한 반웅 조건에서 폴리에틸렌글리콜을 사용한 비교예에 비해 향상된 보수능, 가압 흡수능, 및 흡수 속도를 보였다.
Figure imgf000021_0001
As can be seen in Table 1, in the case of using the compound of Formula 1 as a surface crosslinking agent, it showed improved water holding capacity, pressure absorption capacity, and absorption rate compared to the comparative example using polyethylene glycol under the same reaction conditions.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 중합체를 건조하는 단계;  Thermally polymerizing or photopolymerizing the monomer composition including a water-soluble ethylenically unsaturated monomer and a polymerization initiator to form a hydrogel polymer; Drying the hydrogel polymer;
건조된 중합체를 분쇄하는 단계; 및  Pulverizing the dried polymer; And
분쇄된 중합체와, 하기 화학식 1로 표시되는 화합물을 포함하는 표면 가교제를 흔합하여 표면 가교 반웅을 수행하는 단계를 포함하는,  Comprising the step of performing a surface crosslinking reaction by mixing the ground polymer and a surface crosslinking agent comprising a compound represented by the formula (1),
고흡수성 수지의 제조 방법:  Manufacturing method of super absorbent polymer:
Figure imgf000022_0001
Figure imgf000022_0001
상기 화학식 1에서,  In Chemical Formula 1,
R은 하이드록시, 카르복실기, 아미노기, 및 할로겐으로 이루어진 군으로부터 선택되고;  R is selected from the group consisting of hydroxy, carboxyl, amino, and halogen;
n은 1 내지 5의 정수이다.  n is an integer of 1-5.
【청구항 2】 [Claim 2]
거 11항에 있어서, 상기 화학식 1에서 R은 하이드록시기인, 고흡수성 수지의 제조 방법.  The method of claim 11, wherein in Formula 1, R is a hydroxyl group.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 중합체 According to claim 1, wherein the compound represented by Formula 1 is the polymer
100 중량부에 대해 0.02 내지 0.5 중량부로 포함되는, 고흡수성 수지의 제조 방법. 0.02 to 0.5 parts by weight based on 100 parts by weight, the method of producing a super absorbent polymer.
【청구항 4] [Claim 4]
거 U항에 있어서, 상기 표면 가교제로 다공성 실리카 (silica) 또는 클레이 (clay)를 더 포함하는, 고흡수성 수지의 제조 방법. According to claim U, Porous silica (silica) or as the surface crosslinking agent A method for producing a super absorbent polymer, further comprising clay.
【청구항 5】 [Claim 5]
제 1항에 있어서, 상기 고흡수성 수지의 보수능 (CRC)은 30 g/g 내지 40 g/g이고, 흡수능 (AUP)은 15 g/g 내지 27 g/g인, 고흡수성 수지의 제조 방법.  The method of claim 1, wherein the water absorbency (CRC) of the super absorbent polymer is 30 g / g to 40 g / g, and the absorbency (AUP) is 15 g / g to 27 g / g. .
【청구항 6] [Claim 6]
거 U항에 있어서, 상기 고흡수성 수지의 블텍스 테스트 (Vortex test)에 의해 측정한훔수 속도가 10 내지 65 초인, 고흡수성 수지의 제조 방법.  The method for producing a super absorbent polymer according to claim U, wherein the water removal rate measured by the Vortex test of the superabsorbent polymer is 10 to 65 seconds.
【청구항 7】 [Claim 7]
제 1항에 있어서, 상기 표면 가교 반웅은 160 내지 220°C의 온도에서 20 내지 120분 동안 수행되는, 고흡수성 수지의 제조 방법. The method of claim 1, wherein the surface crosslinking reaction is performed for 20 to 120 minutes at a temperature of 160 to 220 ° C.
PCT/KR2016/014058 2015-12-09 2016-12-01 Method for preparing super-absorbent resin WO2017099423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/757,041 US10450428B2 (en) 2015-12-09 2016-12-01 Method for preparing superabsorbent polymer
EP16873288.1A EP3321290B1 (en) 2015-12-09 2016-12-01 Method for preparing super-absorbent polymer
CN201680052151.9A CN108026195B (en) 2015-12-09 2016-12-01 Method for preparing superabsorbent polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150175001 2015-12-09
KR10-2015-0175001 2015-12-09
KR10-2016-0162032 2016-11-30
KR1020160162032A KR101855352B1 (en) 2015-12-09 2016-11-30 Preparation method of super absorbent polymer

Publications (1)

Publication Number Publication Date
WO2017099423A1 true WO2017099423A1 (en) 2017-06-15

Family

ID=59014354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014058 WO2017099423A1 (en) 2015-12-09 2016-12-01 Method for preparing super-absorbent resin

Country Status (1)

Country Link
WO (1) WO2017099423A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US5032628A (en) * 1988-05-13 1991-07-16 Lucky, Ltd. Process for the preparation of a highly water absorptive resin from acrylic resin, epoxy crosslinker and hydrophilic silicate
US6565981B1 (en) * 1999-03-30 2003-05-20 Stockhausen Gmbh & Co. Kg Polymers that are cross-linkable to form superabsorbent polymers
US20080140037A1 (en) * 2004-12-03 2008-06-12 Newman Thomas H Crosslinker for Superabsorbent Polymers
KR101393681B1 (en) * 2010-06-15 2014-05-13 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20140147200A (en) * 2013-06-18 2014-12-30 한국생산기술연구원 Adsorption materials of carbon dioxide using cross-linking reaction of amine and its application.
KR101507299B1 (en) * 2012-04-25 2015-03-30 주식회사 엘지화학 Preparation method of super absorbent polymer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US5032628A (en) * 1988-05-13 1991-07-16 Lucky, Ltd. Process for the preparation of a highly water absorptive resin from acrylic resin, epoxy crosslinker and hydrophilic silicate
US6565981B1 (en) * 1999-03-30 2003-05-20 Stockhausen Gmbh & Co. Kg Polymers that are cross-linkable to form superabsorbent polymers
US20080140037A1 (en) * 2004-12-03 2008-06-12 Newman Thomas H Crosslinker for Superabsorbent Polymers
KR101393681B1 (en) * 2010-06-15 2014-05-13 주식회사 엘지화학 Preparation method of super absorbent polymer
KR101507299B1 (en) * 2012-04-25 2015-03-30 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20140147200A (en) * 2013-06-18 2014-12-30 한국생산기술연구원 Adsorption materials of carbon dioxide using cross-linking reaction of amine and its application.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115

Similar Documents

Publication Publication Date Title
CN108026282B (en) Method for preparing superabsorbent polymer
KR102075737B1 (en) Preparation method for super absorbent polymer, and super absorbent polymer
JP6592461B2 (en) Super absorbent resin
JP6182206B2 (en) Superabsorbent resin and method for producing the same
JP6473162B2 (en) Superabsorbent resin and method for producing the same
JP6309553B2 (en) Super absorbent polymer
WO2014178588A1 (en) Highly absorbent resin
WO2014077612A1 (en) Method for preparing super absorbent resin, and super absorbent resin prepared by same
JP6277282B2 (en) Method for producing superabsorbent resin
CN108350188B (en) Superabsorbent polymer and method of making the same
WO2018004161A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
CN109923157B (en) Superabsorbent polymer and method of making the same
CN108350190B (en) Superabsorbent polymers
KR101668856B1 (en) Preparation method of super absorbent polymer
WO2017078228A1 (en) Method for preparing super-absorbent resin and super-absorbent resin prepared thereby
KR101595037B1 (en) Preparation method for super absorbent polymer
WO2018004162A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
JP6811259B2 (en) Highly absorbent resin and its manufacturing method
WO2015190879A1 (en) Super absorbent resin
JP7191403B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
KR101855352B1 (en) Preparation method of super absorbent polymer
KR101645684B1 (en) Super absorbent polymer
CN113785006A (en) Method for preparing super absorbent polymer composition
KR101857702B1 (en) Preparation method of super absorbent polymer
WO2017099423A1 (en) Method for preparing super-absorbent resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757041

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE