WO2017099411A1 - Catalyst for oxidative dehydrogenation reaction and method for producing same - Google Patents

Catalyst for oxidative dehydrogenation reaction and method for producing same Download PDF

Info

Publication number
WO2017099411A1
WO2017099411A1 PCT/KR2016/013919 KR2016013919W WO2017099411A1 WO 2017099411 A1 WO2017099411 A1 WO 2017099411A1 KR 2016013919 W KR2016013919 W KR 2016013919W WO 2017099411 A1 WO2017099411 A1 WO 2017099411A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aluminum silicate
slurry
oxidative dehydrogenation
porous
Prior art date
Application number
PCT/KR2016/013919
Other languages
French (fr)
Korean (ko)
Inventor
서명지
민윤재
고동현
차경용
백세원
한준규
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150179406A external-priority patent/KR102017207B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN201680006625.6A priority Critical patent/CN107206359B/en
Priority to EP16873276.6A priority patent/EP3222347B1/en
Priority to US15/540,425 priority patent/US11117119B2/en
Publication of WO2017099411A1 publication Critical patent/WO2017099411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a catalyst for an oxidative dehydrogenation reaction and a method for preparing the same, and more particularly, to oxidation of a product having excellent selectivity to a product by easily controlling a high temperature and high pressure reaction conditions and exothermic reactions from side reactions from a porous structure.
  • the present invention relates to a catalyst for the dehydrogenation reaction and a preparation method thereof.
  • 1,3-Butadiene is an intermediate of petrochemical products, and its demand and value are gradually increasing all over the world.
  • the 1,3-butadiene is produced using naphtha cracking, direct dehydrogenation of butene, oxidative dehydrogenation of butene, and the like.
  • the naphtha cracking process has a high energy consumption due to the high reaction temperature, and because it is not a sole process for producing 1,3-butadiene alone, there is a problem that other basic oils other than 1,3-butadiene are produced in excess. .
  • the present invention provides a catalyst for oxidative dehydrogenation reaction comprising a porous aluminum silicate support and a metal oxide having a composition represented by the following formula (1).
  • A is at least one member selected from the group consisting of divalent cation metals
  • B is at least one member selected from the group consisting of trivalent cation metals.
  • the present invention comprises the steps of immersing and coating aluminum silicate in the porous rubber; Firing the porous rubber coated with aluminum silicate; Obtaining a porous aluminum silicate support; Preparing a catalyst slurry including a metal oxide, or a coprecipitation slurry including a precursor of the metal oxide; Coating the porous aluminum silicate support by dipping in the catalyst slurry or the co-precipitate slurry; And calcining the porous aluminum silicate support on which the catalyst slurry or the co-precipitate slurry is coated.
  • the present invention by easily controlling the exothermic conditions of the reaction conditions and side reactions of the high temperature and high pressure from the porous structure, there is an effect of providing a catalyst for oxidative dehydrogenation reaction excellent in the selectivity to the product and a method for producing the same.
  • 1 is a live-action of a porous rubber, a porous aluminum silicate support and a catalyst for an oxidative dehydrogenation reaction according to the manufacturing process of the present invention.
  • the present inventors have continuously studied the catalyst for the oxidative dehydrogenation reaction, and when the catalyst support is prepared by using a porous rubber, the high selectivity to the product by reducing the heat generated by the reaction conditions and side reactions of high temperature and high pressure
  • the present invention was completed based on the fact that it can be maintained.
  • the oxidative dehydrogenation catalyst is characterized in that it comprises a porous aluminum silicate support and a metal oxide having a composition represented by the following formula (1).
  • the A may be at least one selected from the group consisting of, for example, a divalent cation metal, specifically, from the group consisting of Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co, and Fe (II). It may be at least one selected, preferably at least one selected from the group consisting of Zn, Mg, Mn and Co.
  • the B may be at least one selected from the group consisting of trivalent cationic metal, for example, may be at least one selected from the group consisting of Al, Fe (III), Cr, Ga, In, Ti, La and Ce. , Preferably Al, Fe (III) and Cr may be one or more selected from the group consisting of.
  • the metal oxide having the composition represented by Chemical Formula 1 may be, for example, a metal oxide having a spinel structure.
  • the spinel structure is composed of eight divalent cations, 16 trivalent cations, and 32 oxygen ions in a unit lattice in an equiaxed system, and the oxygen ions generally form a face-centered cubic lattice, with divalent cations (A ) And trivalent cations (B) can be understood.
  • the metal oxide may be included in an amount of 1 to 50 wt%, 1 to 30 wt%, 5 to 30 wt%, 2 to 15 wt%, or 5 to 15 wt% with respect to the catalyst for oxidative dehydrogenation reaction. In this range, there is an effect that the oxidative dehydrogenation reaction is initiated.
  • the porous aluminum silicate support may be, for example, a sponge-type support, and in this case, there is an effect of easily controlling heat generation due to reaction conditions and side reactions of high temperature and high pressure.
  • the aluminum silicate of the porous aluminum silicate support may be at least one selected from the group consisting of metal oxides, metal carbides, metal nitrides, and aluminum hydride silicates.
  • the aluminum silicate may be a kaolin mineral, and in particular, kaolinite, dickite, nacrite, halloysite, cordierite , Diatomite, aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), zirconium carbide (ZrC), tungsten carbide (WC), alumina (Al 2 O 3 ), mullite (Mullite) And zirconia (ZrO 2 ), which may be inert to oxidative dehydrogenation or have a very low catalytic activity, resulting in an uncompetitive physical support for the metal oxide of the catalyst.
  • the porous aluminum silicate support may have, for example, a pore distribution of 1 to 500 ppi (pores per inch), 1 to 300 ppi, or 1 to 100 ppi, and within this range, high porosity for the product during oxidative dehydrogenation reaction. There is an effect that can maintain the selectivity.
  • the average particle diameter of the pores of the porous aluminum silicate support may be, for example, 0.2 to 10 mm, 0.5 to 5 mm, 1 to 5 mm, or 0.5 to 3 mm, within the range of the catalyst phase of the gaseous reactants and products. It facilitates the adsorption and desorption of the gas to facilitate the flow of gas.
  • the porous aluminum silicate support may have, for example, a porosity calculated from the pore volume measured by the liquid impregnation method, from 10 to 99%, 30 to 98%, 70 to 99%, or 70 to 98% of the total volume. Since the heat retention caused by the exothermic reaction is alleviated within the range, the heat generated by the exothermic reaction can be effectively controlled to maintain high selectivity to the product.
  • the porous aluminum silicate support has, for example, a pore volume calculated from the pore volume measured by liquid impregnation, 0.1 to 120 cm 3 / g, 0.1 to 60 cm 3 / g, 20 to 60 cm 3 / g, 0.1 to 45 cm 3 / g, 5 to 45 cm 3 / g, or 0.1 to 10 cm 3 / g.
  • the catalyst for the oxidative dehydrogenation reaction may be, for example, a sponge type catalyst, and in this case, there is an effect of easily controlling the exotherm due to reaction conditions and side reactions of high temperature and high pressure.
  • the oxidative dehydrogenation catalyst may have a pore distribution of, for example, 1 to 500 ppi, 1 to 300 ppi, or 1 to 100 ppi, and has high selectivity for the product during oxidative dehydrogenation within this range. It has a sustainable effect.
  • the average particle diameter of the pores of the catalyst for the oxidative dehydrogenation reaction may be, for example, 1 to 10 mm, 1 to 5 mm, or 1 to 3 mm, within the range of the catalyst on the gas phase reactants and products It facilitates the adsorption and desorption of the gas to facilitate the flow of gas.
  • the catalyst for the oxidative dehydrogenation reaction may be, for example, the porosity calculated from the pore volume measured by the liquid impregnation method may be 10 to 99%, 30 to 98%, 70 to 99%, or 70 to 98% of the total volume. In this range, since heat retention caused by exothermic reaction is alleviated within this range, heat generated in the exothermic reaction can be effectively controlled to maintain high selectivity to the product.
  • the catalyst for the oxidative dehydrogenation reaction for example, the pore volume calculated from the pore volume measured by the liquid impregnation method, 0.1 to 120 cm 3 / g, 0.1 to 60 cm 3 / g, 20 to 60 cm 3 / g, 0.1 to 45 cm 3 / g, 5 to 45 cm 3 / g, or 0.1 to 10 cm 3 / g.
  • the oxidative dehydrogenation reaction refers to a reaction in which olefins and oxygen react to generate conjugated diene and water in the presence of a metal oxide, and in particular, butene and oxygen may react to generate 1,3-butadiene and water. have.
  • the oxygen may be, for example, 0.5 to 5 mol, 0.5 to 3 mol, or 0.6 to 1.5 mol based on 1 mol of the reactant, and the nitrogen may be 0 to 30 mol, 2 to 25 mol, based on 1 mol of the reactant, Or it may be 2 to 15 moles, for example, the steam may be 2 to 50 moles, 3 to 30 moles, or 4 to 25 moles, based on 1 mole of the reactants, the catalyst activity is excellent in this range.
  • the gas space velocity (GHSV) may be, for example, 200 to 30,000, 250 to 25,000, or 250 to 20,000 based on the reactant.
  • reaction temperature (T) may be, for example, 300 to 500 ° C, 320 to 400 ° C, or 320 to 380 ° C.
  • reaction pressure may be, for example, 0 to 10 bar, 0 to 5 bar, or 0 to 3 bar.
  • the method for preparing a catalyst for the oxidative dehydrogenation reaction comprises the steps of immersing and coating aluminum silicate in a porous rubber; Firing the porous rubber coated with aluminum silicate; Obtaining a porous aluminum silicate support; Preparing a catalyst slurry including a metal oxide, or a coprecipitation slurry including a precursor of the metal oxide; Coating the porous aluminum silicate support by dipping in the catalyst slurry or the co-precipitate slurry; And calcining the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
  • the weight ratio of the aluminum silicate and water may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5, in which the aluminum silicate is entirely contained in the porous rubber. It has a coating effect.
  • the aluminum silicate slurry may include, for example, 0.01 to 10% by weight, 0.01 to 8% by weight, or 0.01 to 5% by weight of a binder for increasing the viscosity.
  • the binder is, for example, polyvinyl alcohol, starch, carboxymethylcellulose, dextrin, wax emulsion, polyethylene glycol, lignosulfonate , Methyl cellulose (methylcellulose), paraffin (paraffin) and polyacrylate (polyacrylate) may be one or more selected from the group consisting of, in this case there is an effect of improving the adhesion of the aluminum silicate to the porous rubber.
  • Immersion of the porous rubber may be carried out for a time that the aluminum silicate slurry can contact the entire area of the porous rubber, the time is not particularly limited, 0.1 to 30 minutes, 0.1 to 10 minutes, or 0.1 to It may be one minute.
  • the aeration means that a gas is blown onto the porous rubber coated with the aluminum silicate slurry so that the aluminum silicate slurry does not block the pores of the porous rubber
  • the gas may be, for example, air, nitrogen, helium or argon.
  • the pressure and temperature of the gas are not particularly limited as long as it is within a range in which the effect of the coating is maintained.
  • Drying of the porous rubber coated with the aluminum silicate slurry is, for example, 0.5 to 24 hours, 0.5 to 16 hours, or 80 to 160 ° C., 90 to 150 ° C., or 100 to 140 ° C. for the porous rubber coated with the aluminum silicate slurry. It can be carried out for 0.5 to 3 hours, there is an effect that all the moisture is removed within this range.
  • Coating the porous rubber by dipping in the aluminum silicate slurry; And aeration and drying the porous rubber coated with the aluminum silicate slurry may be repeated 1 to 10 times, or 1 to 5 times, respectively.
  • Firing of the aluminum silica-coated porous rubber may be carried out for 1 to 10 hours, or 1 to 5 hours at 1,000 to 2,000 °C, 1,200 to 1,800 °C, or 1,400 to 1,800 °C, for example, porous within this range Alpha alumina is formed in the aluminum silicate support, thereby improving the strength and durability.
  • the porous rubber is not particularly limited as long as it can be used in the form of a foam, but may be, for example, polyurethane. In this case, it is easy to form a large pore structure.
  • the catalyst slurry may be prepared by diluting a metal oxide having a composition represented by Chemical Formula 1 in water.
  • the A may be at least one selected from the group consisting of, for example, a divalent cation metal, specifically, from the group consisting of Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co, and Fe (II). It may be at least one selected, preferably at least one selected from the group consisting of Zn, Mg, Mn and Co.
  • the B may be at least one selected from the group consisting of trivalent cationic metal, for example, may be at least one selected from the group consisting of Al, Fe (III), Cr, Ga, In, Ti, La and Ce. , Preferably Al, Fe (III) and Cr may be one or more selected from the group consisting of.
  • the weight ratio of the metal oxide and water may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5, and the metal oxide may be formed on the porous aluminum silicate support within this range. This has the effect of being coated as a whole.
  • the metal precursor of step (1) is not particularly limited as long as it is conventionally used, but may be, for example, a metal salt including a divalent or trivalent cationic metal component, and specific examples of nitrate, ammonium salt, sulfate or chloride of the metal component. Can be.
  • Maintaining the pH of step (3) may be carried out by, for example, dropwise addition of an additional aqueous ammonia solution simultaneously with the dropwise addition of the aqueous catalyst precursor solution.
  • the co-precipitated slurry including the precursor of the metal oxide may be prepared by coprecipitating a catalyst precursor having the same stoichiometric ratio as the metal oxide having the composition represented by Chemical Formula 1, for example.
  • the coprecipitation slurry is prepared by preparing a catalyst precursor solution including, for example, (1 ′) divalent and trivalent cationic metal precursors; (2 ') adding the catalyst precursor solution dropwise to an aqueous ammonia solution (pH 7 to 10) at 10 to 50 ° C; (3 ') maintaining the pH of the aqueous ammonia solution in which the catalyst precursor solution is added dropwise, and coprecipitation by stirring for 30 minutes to 24 hours;
  • the coprecipitation solution (4 ′) may be prepared by filtration under reduced pressure to adjust the concentration of the coprecipitation slurry.
  • the metal precursor of step (1 ′) is not particularly limited as long as it is conventionally used, but may be, for example, a metal salt including a divalent or trivalent cationic metal component, and specific examples include nitrates, ammonium salts, sulfates, or the like. Chloride.
  • the concentration of the catalyst precursor solution may be, for example, 1 to 70% by weight, 2 to 50% by weight, or 3 to 30% by weight, and when the coprecipitation is fired within this range, the effect of having a composition represented by Chemical Formula 1 may be obtained. have.
  • Maintaining the pH of the step (3 ′) may be performed by, for example, adding an additional aqueous ammonia solution dropwise simultaneously with the dropwise addition of the catalyst precursor solution.
  • the concentration of the coprecipitate slurry in step (4 ′) may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5 based on the weight ratio of the coprecipitate and water, Within this range, the co-precipitate is coated on the porous aluminum silicate support as a whole.
  • the coprecipitation slurry may include, for example, 0.01 to 10% by weight, 0.01 to 8% by weight, or 0.01 to 5% by weight of a binder for increasing the viscosity.
  • the binder is, for example, polyvinyl alcohol, starch, carboxymethylcellulose, dextrin, wax emulsion, polyethylene glycol, lignosulfonate , Methyl cellulose (methylcellulose), paraffin (paraffin) and polyacrylate (polyacrylate) may be one or more selected from the group consisting of, in this case there is an effect of improving the adhesion to the porous aluminum silicate support of the coprecipitation.
  • Coating the porous aluminum silicate support by immersing the catalyst slurry or the co-precipitate slurry may include, for example, immersing the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry. And aeration and drying the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
  • the aeration means that a gas is blown onto the porous aluminum silicate support coated with the catalyst slurry or the coprecipitation slurry so that the catalyst slurry or the coprecipitation slurry does not block the pores of the porous rubber.
  • the gas may be, for example, air, nitrogen, Helium or argon.
  • the pressure and temperature of the gas are not particularly limited as long as it is within a range in which the effect of the coating is maintained.
  • Immersing the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry; And aeration and drying the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry may be repeated 1 to 10 times or 1 to 5 times, respectively.
  • Firing of the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry is not particularly limited in the case of the firing method used when preparing the catalyst for the oxidative dehydrogenation reaction, for example, 0.5 to 10 ° C./min, 0.5 to 5 After heating up to 400 to 800 ° C, or 450 to 750 ° C at a temperature increase rate of 0.5 ° C to 3 ° C / min, it may be a method of baking for 2 to 16 hours or 3 to 9 hours.
  • a slurry of kaolinite (Al 2 Si 2 O 5 (OH) 4 ) and maltodextrin was mixed in a 1: 1 weight ratio.
  • the slurry was immersed in a 15 ppi (pores per inch) porous rubber of a polyurethane foam (foam), coated, and aerated so as not to block the pores and dried at 120 °C for at least 1 hour.
  • the dried polyurethane foam was again immersed in the slurry, the process of aeration and drying was repeated four times, and then calcined at 1,600 ° C. for 2 hours to prepare a porous aluminum silicate support.
  • the zinc-iron oxide (ZnFe 2 O 4 ) powder having a spinel structure was prepared, and the prepared metal oxide powder was pulverized to 250 ⁇ m or less and diluted in water at a weight ratio of 1: 1 to prepare a catalyst slurry.
  • the prepared porous aluminum silicate support was immersed in the prepared catalyst slurry, aerated, and dried at 120 ° C. for 1 hour. Thereafter, the dried porous aluminum silicate support was again immersed in the catalyst slurry, aerated and dried three times.
  • the catalyst thus obtained was dried at 120 ° C. for 16 hours, heated to 80 ° C. at a temperature increase rate of 1 ° C./min at 80 ° C. under an air atmosphere, and then maintained for 4 hours to oxidative dehydrogenation reaction having a porous structure. Catalyst was prepared.
  • Example 1 When preparing the porous aluminum silicate support of Example 1, the same method as in Example 1 except for using a polyurethane foam of 10 ppi porous rubber instead of a polyurethane foam of 15 ppi (pores per inch) porous rubber was carried out.
  • Example 1 When preparing the porous aluminum silicate support of Example 1, the same method as in Example 1 except for using a polyurethane foam of 45 ppi porous rubber instead of a polyurethane foam of 15 ppi (pores per inch) porous rubber was carried out.
  • Example 1 In preparing the metal oxide and the catalyst slurry in Example 1, the coprecipitation liquid was filtered under reduced pressure to obtain a coprecipitated slurry, and the prepared porous aluminum silicate support was prepared in the prepared coprecipitated slurry when the catalyst for oxidative dehydrogenation reaction was prepared. The same procedure as in Example 1 was carried out except for immersion in.
  • Example 2 The same metal oxide as in Example 1 was prepared, but the coprecipitation solution was filtered under reduced pressure to obtain a coprecipitate, which was dried at 90 ° C. for 16 hours, and then the dried coprecipitate was pulverized to form a powder. After mixing and kneading maltodextrin, it is extruded using a screw-type rotor, cut to a size of 5 mm and dried to prepare a catalyst having a cylindrical pellet (cylindrical pellet) form, under an air atmosphere, The catalyst was heated to 80 ° C. at a temperature increase rate of 1 ° C./min to 650 ° C., and then maintained for 6 hours and calcined to prepare a catalyst in pellet form.
  • Butadiene was prepared by the following method using the catalyst for oxidative dehydrogenation reaction prepared in Examples 1 to 7 and Comparative Example 1, and the results are shown in Table 1 below.
  • a reaction a mixture of 1-butene, trans-2-butene and cis-2-butene and oxygen were used, and additionally nitrogen and steam were introduced together.
  • a metal tubular fixed bed reactor was used as the reactor.
  • the proportion of reactants and gas hourly space velocity (GHSV) were set based on the butene mixture as described in Table 1 below.
  • 10 cc of the catalysts prepared in Examples and Comparative Examples were charged to a fixed bed reactor, and steam was injected in the form of water, and vaporized at 150 ° C. using a vaporizer to be mixed with reactant butene mixture and oxygen to react with the reactor. It was allowed to flow into.
  • the present inventors confirmed that when the porous catalyst was prepared using the porous rubber, high selectivity to the product could be maintained by alleviating the heat generated by reaction conditions and side reactions at high temperature and high pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalyst for an oxidative dehydrogenation reaction and a method for producing the same. The present invention has effects of providing a catalyst for an oxidative dehydrogenation reaction and a method for producing the catalyst, wherein the catalyst has excellent selectivity to a product by easily controlling the heat, which is generated by high-temperature and high-pressure reaction conditions and a side effect, through a porous structure.

Description

산화적 탈수소화 반응용 촉매 및 이의 제조방법Catalyst for oxidative dehydrogenation reaction and preparation method thereof
〔출원(들)과의 상호 인용〕[Reciprocal citation with application (s)]
본 출원은 2015년 12월 09일자 한국 특허 출원 제10-2015-0174676호 및 2015년 12월 15일자 한국 특허 출원 제10-2015-0179406호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0174676 of December 09, 2015 and Korean Patent Application No. 10-2015-0179406 of December 15, 2015, All content disclosed in the literature is included as part of this specification.
본 발명은 산화적 탈수소화 반응용 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 다공성 구조로부터 고온 및 고압의 반응 조건과 부반응에 의한 발열을 용이하게 제어함으로써, 생성물에 대한 선택도가 우수한 산화적 탈수소화 반응용 촉매 및 이의 제조방법에 관한 것이다.The present invention relates to a catalyst for an oxidative dehydrogenation reaction and a method for preparing the same, and more particularly, to oxidation of a product having excellent selectivity to a product by easily controlling a high temperature and high pressure reaction conditions and exothermic reactions from side reactions from a porous structure. The present invention relates to a catalyst for the dehydrogenation reaction and a preparation method thereof.
1,3-부타디엔은 석유화학 제품의 중간체로서 전세계적으로 그 수요와 가치가 점차 증가하고 있다. 상기 1,3-부타디엔은 납사 크래킹, 부텐의 직접 탈수소화 반응, 부텐의 산화적 탈수소화 반응 등을 이용해 제조되고 있다. 그러나, 상기 납사 크래킹 공정은 높은 반응 온도로 인해 에너지 소비량이 많을 뿐만 아니라, 1,3-부타디엔 생산만을 위한 단독 공정이 아니기 때문에, 1,3-부타디엔 이외에 다른 기초 유분이 잉여로 생상된다는 문제가 있다. 또한, 노르말-부텐의 직접 탈수소화 반응은 열역학적으로 불리할 뿐만 아니라, 흡열반응으로써 높은 수율의 1,3-부타디엔 생산을 위해 고온 및 저압의 조건이 요구되어, 1,3-부타디엔을 생산하는 상용화 공정으로는 적합하지 않다.1,3-Butadiene is an intermediate of petrochemical products, and its demand and value are gradually increasing all over the world. The 1,3-butadiene is produced using naphtha cracking, direct dehydrogenation of butene, oxidative dehydrogenation of butene, and the like. However, the naphtha cracking process has a high energy consumption due to the high reaction temperature, and because it is not a sole process for producing 1,3-butadiene alone, there is a problem that other basic oils other than 1,3-butadiene are produced in excess. . In addition, the direct dehydrogenation reaction of normal-butene is not only thermodynamically disadvantageous, but also requires commercialization to produce 1,3-butadiene, requiring high temperature and low pressure conditions to produce high yield of 1,3-butadiene as an endothermic reaction. It is not suitable as a process.
한편, 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재 하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점을 갖는다. 또한, 부텐의 직접 탈수소화 반응과 달리 발열 반응이므로, 직접 탈수소화 반응에 비해 낮은 반응온도에서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 추가적인 열 공급을 필요로 하지 않아 1,3-부타디엔 수요를 충족시킬 수 있는 효과적인 단독 생산 공정이 될 수 있다. 하지만, 상기 산화적 탈수소화 반응은, 고온의 반응 조건에 의한 높은 발열량이 금속산화물 촉매의 활성 및 내구성에 영향을 미치며, 이로 인해 1,3-부타디엔에 대한 선택도가 저하되는 문제가 있다. 또한, 반응 공정 시스템을 용이하게 하기 위해 고압의 반응 조건이 적용되는 경우, COx가 생성되는 부반응에 의한 발열량이 더욱 커지게 되므로 촉매의 활성 감소 및 성능 저하 속도가 빨라지는 문제가 있다.On the other hand, the oxidative dehydrogenation of butene is a reaction of butene and oxygen in the presence of a metal oxide catalyst to produce 1,3-butadiene and water, which has a thermodynamically advantageous advantage because stable water is produced. In addition, unlike direct dehydrogenation of butenes, it is exothermic, so that a higher yield of 1,3-butadiene can be obtained at lower reaction temperatures than direct dehydrogenation, and 1,3-butadiene is not required because no additional heat supply is required. It can be an effective standalone production process that can meet demand. However, in the oxidative dehydrogenation reaction, a high calorific value due to a high temperature reaction condition affects the activity and durability of the metal oxide catalyst, which causes a problem that the selectivity to 1,3-butadiene is lowered. In addition, when a high-pressure reaction condition is applied to facilitate the reaction process system, the calorific value due to side reactions in which COx is generated becomes larger, thereby decreasing the activity of the catalyst and speeding up the performance.
이러한 문제를 해결하고자, 기공 분자체 구조를 갖는 제올라이트를 촉매의 지지체로 이용하거나, 촉매의 표면을 상기 제올라이트로 코팅하는 등의 여러 기술들이 보고되고 있으나, 상기 제올라이트의 기공의 크기는 매우 미세하여, 발열 완화가 미미하다는 단점이 있다. 따라서, 이러한 고온 및 고압의 반응 조건과 부반응으로 인한 발열을 보다 효과적으로 완화시킬 수 있는 촉매에 대한 개발이 절실히 요구되고 있는 실정이다. In order to solve this problem, various techniques such as using a zeolite having a pore molecular sieve structure as a support of the catalyst or coating the surface of the catalyst with the zeolite have been reported, but the pore size of the zeolite is very fine, There is a disadvantage in that fever is not alleviated. Therefore, the development of a catalyst that can more effectively alleviate the heat generated by the reaction conditions and side reactions of the high temperature and high pressure is urgently required.
〔선행기술문헌〕[Prior art document]
〔특허문헌〕 (특허문헌 1) US5041401 A[Patent Documents] (Patent Document 1) US5041401 A
본 발명은 이러한 종래 기술의 문제점을 극복하기 위해, 다공성 구조로부터 고온 및 고압의 반응 조건과 부반응에 의한 발열을 용이하게 제어함으로써, 생성물에 대한 선택도가 우수한 산화적 탈수소화 반응용 촉매를 제공하는 것을 목적으로 한다.The present invention to provide a catalyst for oxidative dehydrogenation reaction having excellent selectivity to the product by easily controlling the heat generated by the reaction conditions and side reactions of high temperature and high pressure from the porous structure from the porous structure. For the purpose of
또한, 본 발명은 상기 산화적 탈수소화 반응용 촉매의 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for preparing the catalyst for oxidative dehydrogenation reaction.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
상기 목적을 달성하기 위하여, 본 발명은 다공성 규산알루미늄 지지체 및 하기 화학식 1로 표시되는 조성을 갖는 금속산화물을 포함하는 산화적 탈수소화 반응용 촉매를 제공한다.In order to achieve the above object, the present invention provides a catalyst for oxidative dehydrogenation reaction comprising a porous aluminum silicate support and a metal oxide having a composition represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2016013919-appb-I000001
Figure PCTKR2016013919-appb-I000001
상기 A는 2가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이고, 상기 B는 3가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이다.A is at least one member selected from the group consisting of divalent cation metals, and B is at least one member selected from the group consisting of trivalent cation metals.
또한 본 발명은 다공성 고무에 규산알루미늄을 침지하여 코팅하는 단계; 상기 규산알루미늄이 코팅된 다공성 고무를 소성하는 단계; 다공성 규산알루미늄 지지체를 수득하는 단계; 금속산화물이 포함된 촉매 슬러리, 또는 상기 금속산화물의 전구체가 포함된 공침물 슬러리를 제조하는 단계; 상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하여 코팅하는 단계; 및 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 소성하는 단계를 포함하는 산화적 탈수소화 반응용 촉매 제조방법을 제공한다.In addition, the present invention comprises the steps of immersing and coating aluminum silicate in the porous rubber; Firing the porous rubber coated with aluminum silicate; Obtaining a porous aluminum silicate support; Preparing a catalyst slurry including a metal oxide, or a coprecipitation slurry including a precursor of the metal oxide; Coating the porous aluminum silicate support by dipping in the catalyst slurry or the co-precipitate slurry; And calcining the porous aluminum silicate support on which the catalyst slurry or the co-precipitate slurry is coated.
본 발명에 따르면 다공성 구조로부터 고온 및 고압의 반응 조건과 부반응에 의한 발열을 용이하게 제어함으로써, 생성물에 대한 선택도가 우수한 산화적 탈수소화 반응용 촉매 및 이의 제조방법을 제공하는 효과가 있다.According to the present invention, by easily controlling the exothermic conditions of the reaction conditions and side reactions of the high temperature and high pressure from the porous structure, there is an effect of providing a catalyst for oxidative dehydrogenation reaction excellent in the selectivity to the product and a method for producing the same.
도 1은 본 발명의 제조 과정에 따른 다공성 고무, 다공성 규산알루미늄 지지체 및 산화적 탈수소화 반응용 촉매의 실사이다.1 is a live-action of a porous rubber, a porous aluminum silicate support and a catalyst for an oxidative dehydrogenation reaction according to the manufacturing process of the present invention.
이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은 산화적 탈수소화 반응용 촉매에 대해 지속적으로 연구한 결과, 다공성 고무를 이용하여 촉매 지지체를 제조할 경우, 고온 및 고압의 반응 조건과 부반응에 의한 발열을 완화시켜 생성물에 대한 고선택성을 유지할 수 있는 것을 확인하여 이를 토대로 본 발명을 완성하게 되었다.The present inventors have continuously studied the catalyst for the oxidative dehydrogenation reaction, and when the catalyst support is prepared by using a porous rubber, the high selectivity to the product by reducing the heat generated by the reaction conditions and side reactions of high temperature and high pressure The present invention was completed based on the fact that it can be maintained.
본 발명에 의한 산화적 탈수소화 반응용 촉매를 상세하게 살펴보면 다음과 같다.Looking at the catalyst for the oxidative dehydrogenation reaction according to the present invention in detail.
상기 산화적 탈수소화 반응용 촉매는 다공성 규산알루미늄 지지체 및 하기 화학식 1로 표시되는 조성을 갖는 금속산화물을 포함하는 것을 특징으로 한다.The oxidative dehydrogenation catalyst is characterized in that it comprises a porous aluminum silicate support and a metal oxide having a composition represented by the following formula (1).
Figure PCTKR2016013919-appb-C000001
Figure PCTKR2016013919-appb-C000001
상기 A는 일례로 2가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co 및 Fe(Ⅱ)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 Zn, Mg, Mn 및 Co로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The A may be at least one selected from the group consisting of, for example, a divalent cation metal, specifically, from the group consisting of Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co, and Fe (II). It may be at least one selected, preferably at least one selected from the group consisting of Zn, Mg, Mn and Co.
상기 B는 일례로 3가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 Al, Fe(Ⅲ), Cr, Ga, In, Ti, La 및 Ce로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 Al, Fe(Ⅲ) 및 Cr로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The B may be at least one selected from the group consisting of trivalent cationic metal, for example, may be at least one selected from the group consisting of Al, Fe (III), Cr, Ga, In, Ti, La and Ce. , Preferably Al, Fe (III) and Cr may be one or more selected from the group consisting of.
상기 화학식 1로 표시되는 조성을 갖는 금속산화물은 일례로 스피넬(spinel) 구조를 갖는 금속산화물일 수 있다. 상기 스피넬 구조는 등축정계에서 단위격자 중에 8개의 2가 양이온, 16개의 3가 양이온 및 32개의 산소 이온으로 이루어지고, 상기 산소 이온은 대체적으로 면심입방격자를 만들며, 그 사이에 2가 양이온(A) 및 3가 양이온(B)이 채워지는 구조로 이해될 수 있다.The metal oxide having the composition represented by Chemical Formula 1 may be, for example, a metal oxide having a spinel structure. The spinel structure is composed of eight divalent cations, 16 trivalent cations, and 32 oxygen ions in a unit lattice in an equiaxed system, and the oxygen ions generally form a face-centered cubic lattice, with divalent cations (A ) And trivalent cations (B) can be understood.
상기 금속산화물은 일례로 상기 산화적 탈수소화 반응용 촉매에 대하여 1 내지 50 중량%, 1 내지 30 중량%, 5 내지 30 중량%, 2 내지 15 중량%, 혹은 5 내지 15 중량%로 포함될 수 있고, 이 범위 내에서 산화적 탈수소화 반응이 개시되는 효과가 있다.For example, the metal oxide may be included in an amount of 1 to 50 wt%, 1 to 30 wt%, 5 to 30 wt%, 2 to 15 wt%, or 5 to 15 wt% with respect to the catalyst for oxidative dehydrogenation reaction. In this range, there is an effect that the oxidative dehydrogenation reaction is initiated.
상기 다공성 규산알루미늄 지지체는 일례로 스펀지형 지지체일 수 있고, 이 경우 고온 및 고압의 반응 조건과 부반응에 의한 발열을 용이하게 제어하는 효과가 있다.The porous aluminum silicate support may be, for example, a sponge-type support, and in this case, there is an effect of easily controlling heat generation due to reaction conditions and side reactions of high temperature and high pressure.
상기 다공성 규산알루미늄 지지체의 규산알루미늄은 일례로 금속산화물, 금속탄화물, 금속질화물 및 수화규산알루미늄으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 또 다른 예로 상기 규산알루미늄은 카올린계 광물(kaolin mineral)일 수 있고, 구체적인 예로, 카올리나이트(kaolinite), 디카이트(dickite), 내크라이트(nacrite), 할로이사이트(halloysite), 코디어라이트(cordierite), 규조토(diatomite), 질화알루미늄(AlN), 질화규소(Si3N4), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 알루미나(Al2O3), 뮬라이트(Mullite) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 경우 산화적 탈수소화 반응에 비활성이거나, 매우 낮은 촉매 활성을 가져, 촉매의 금속산화물과 비경쟁적인 물리적 지지체로써 효과가 있다.The aluminum silicate of the porous aluminum silicate support may be at least one selected from the group consisting of metal oxides, metal carbides, metal nitrides, and aluminum hydride silicates. In another example, the aluminum silicate may be a kaolin mineral, and in particular, kaolinite, dickite, nacrite, halloysite, cordierite , Diatomite, aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), zirconium carbide (ZrC), tungsten carbide (WC), alumina (Al 2 O 3 ), mullite (Mullite) And zirconia (ZrO 2 ), which may be inert to oxidative dehydrogenation or have a very low catalytic activity, resulting in an uncompetitive physical support for the metal oxide of the catalyst.
상기 다공성 규산알루미늄 지지체는 일례로 1 내지 500 ppi(pores per inch), 1 내지 300 ppi, 혹은 1 내지 100 ppi의 다공 분포를 가질 수 있고, 이 범위 내에서 산화적 탈수소화 반응 시 생성물에 대한 고선택성을 유지할 수 있는 효과가 있다.The porous aluminum silicate support may have, for example, a pore distribution of 1 to 500 ppi (pores per inch), 1 to 300 ppi, or 1 to 100 ppi, and within this range, high porosity for the product during oxidative dehydrogenation reaction. There is an effect that can maintain the selectivity.
상기 다공성 규산알루미늄 지지체의 기공의 평균입경은 일례로 0.2 내지 10 mm, 0.5 내지 5 mm, 1 내지 5 mm, 혹은 0.5 내지 3 mm일 수 있고, 이 범위 내에서 기체상 반응물 및 생성물의 촉매 표면에 대한 흡착 및 탈착을 용이하게 하여 기체유동을 원활히 하는 효과가 있다.The average particle diameter of the pores of the porous aluminum silicate support may be, for example, 0.2 to 10 mm, 0.5 to 5 mm, 1 to 5 mm, or 0.5 to 3 mm, within the range of the catalyst phase of the gaseous reactants and products. It facilitates the adsorption and desorption of the gas to facilitate the flow of gas.
상기 다공성 규산알루미늄 지지체는 일례로 액체 함침법에 의해 측정된 기공부피로부터 계산된 기공률이 전체 체적의 10 내지 99 %, 30 내지 98 %, 70 내지 99 %, 혹은 70 내지 98 %일 수 있고, 이 범위 내에서 발열반응에 의해 발생한 열의 체류를 완화시키므로 발열반응에서 발생하는 열을 효과적으로 제어하여 생성물에 고선택성을 유지하는 효과가 있다.The porous aluminum silicate support may have, for example, a porosity calculated from the pore volume measured by the liquid impregnation method, from 10 to 99%, 30 to 98%, 70 to 99%, or 70 to 98% of the total volume. Since the heat retention caused by the exothermic reaction is alleviated within the range, the heat generated by the exothermic reaction can be effectively controlled to maintain high selectivity to the product.
상기 다공성 규산알루미늄 지지체는 일례로 액체 함침법에 의해 측정된 기공부피로부터 계산된 세공 용적이 0.1 내지 120 cm3/g, 0.1 내지 60 cm3/g, 20 내지 60 cm3/g, 0.1 내지 45 cm3/g, 5 내지 45 cm3/g, 혹은 0.1 내지 10 cm3/g일 수 있다.The porous aluminum silicate support has, for example, a pore volume calculated from the pore volume measured by liquid impregnation, 0.1 to 120 cm 3 / g, 0.1 to 60 cm 3 / g, 20 to 60 cm 3 / g, 0.1 to 45 cm 3 / g, 5 to 45 cm 3 / g, or 0.1 to 10 cm 3 / g.
상기 산화적 탈수소화 반응용 촉매는 일례로 스펀지형 촉매일 수 있고, 이 경우 고온 및 고압의 반응 조건과 부반응에 의한 발열을 용이하게 제어하는 효과가 있다.The catalyst for the oxidative dehydrogenation reaction may be, for example, a sponge type catalyst, and in this case, there is an effect of easily controlling the exotherm due to reaction conditions and side reactions of high temperature and high pressure.
상기 산화적 탈수소화 반응용 촉매는 일례로 1 내지 500 ppi, 1 내지 300 ppi, 혹은 1 내지 100 ppi의 다공 분포를 가질 수 있고, 이 범위 내에서 산화적 탈수소화 반응 시 생성물에 대한 고선택성을 유지할 수 있는 효과가 있다.The oxidative dehydrogenation catalyst may have a pore distribution of, for example, 1 to 500 ppi, 1 to 300 ppi, or 1 to 100 ppi, and has high selectivity for the product during oxidative dehydrogenation within this range. It has a sustainable effect.
상기 산화적 탈수소화 반응용 촉매의 기공의 평균입경은 일례로 일례로 1 내지 10 mm, 1 내지 5 mm, 혹은 1 내지 3 mm일 수 있고, 이 범위 내에서 기체상 반응물 및 생성물의 촉매 표면에 대한 흡착 및 탈착을 용이하게 하여 기체유동을 원활히 하는 효과가 있다.The average particle diameter of the pores of the catalyst for the oxidative dehydrogenation reaction may be, for example, 1 to 10 mm, 1 to 5 mm, or 1 to 3 mm, within the range of the catalyst on the gas phase reactants and products It facilitates the adsorption and desorption of the gas to facilitate the flow of gas.
상기 산화적 탈수소화 반응용 촉매는 일례로 액체 함침법에 의해 측정된 기공부피로부터 계산된 기공률이 전체 체적의 10 내지 99 %, 30 내지 98 %, 70 내지 99 %, 혹은 70 내지 98 %일 수 있고, 이 범위 내에서 발열반응에 의해 발생한 열의 체류를 완화시키므로 발열반응에서 발생하는 열을 효과적으로 제어하여 생성물에 고선택성을 유지하는 효과가 있다.The catalyst for the oxidative dehydrogenation reaction may be, for example, the porosity calculated from the pore volume measured by the liquid impregnation method may be 10 to 99%, 30 to 98%, 70 to 99%, or 70 to 98% of the total volume. In this range, since heat retention caused by exothermic reaction is alleviated within this range, heat generated in the exothermic reaction can be effectively controlled to maintain high selectivity to the product.
상기 산화적 탈수소화 반응용 촉매는 일례로 액체 함침법에 의해 측정된 기공부피로부터 계산된 세공 용적이 0.1 내지 120 cm3/g, 0.1 내지 60 cm3/g, 20 내지 60 cm3/g, 0.1 내지 45 cm3/g, 5 내지 45 cm3/g, 혹은 0.1 내지 10 cm3/g일 수 있다.The catalyst for the oxidative dehydrogenation reaction, for example, the pore volume calculated from the pore volume measured by the liquid impregnation method, 0.1 to 120 cm 3 / g, 0.1 to 60 cm 3 / g, 20 to 60 cm 3 / g, 0.1 to 45 cm 3 / g, 5 to 45 cm 3 / g, or 0.1 to 10 cm 3 / g.
상기 산화적 탈수소화 반응은 금속산화물 존재 하에 올레핀과 산소가 반응하여 공액디엔 및 물을 생성하는 반응을 의미하고, 구체적인 예로 부텐과 산소가 반응하여 1,3-부타디엔 및 물을 생성하는 반응일 수 있다.The oxidative dehydrogenation reaction refers to a reaction in which olefins and oxygen react to generate conjugated diene and water in the presence of a metal oxide, and in particular, butene and oxygen may react to generate 1,3-butadiene and water. have.
상기 산화적 탈수소화 반응에 사용되는 반응기는 산화적 탈수수화 반응에 사용될 수 있는 반응기인 경우 특별히 제한되지 않으나, 일례로 설치된 촉매층의 반응온도가 일정하게 유지되고, 반응물이 촉매층을 연속적으로 통과하면서 산화적 탈수소화 반응이 진행되는 반응기일 수 있고, 구체적인 예로, 관형 반응기, 조형 반응기, 유동상 반응기 또는 고정상 반응기일 수 있으며, 상기 고정상 반응기는 일례로 다관식 반응기 또는 플레이트식 반응기일 수 있다.The reactor used for the oxidative dehydrogenation reaction is not particularly limited if the reactor can be used for the oxidative dehydrogenation reaction, for example, the reaction temperature of the installed catalyst layer is kept constant, and the reactant is oxidized while continuously passing through the catalyst layer. It may be a reactor in which the dehydrogenation reaction proceeds, and in particular, it may be a tubular reactor, a tank reactor, a fluidized bed reactor or a fixed bed reactor, and the fixed bed reactor may be, for example, a multi-tubular reactor or a plate reactor.
상기 산화적 탈수소화 반응의 반응물은 일례로 부단, 이소부탄, 1-부텐, 트랜스-2-부텐 및 시스-2-부텐으로 이루어진 군으로부터 선택된 1종 이상과 산소일 수 있고, 부가적으로 질소 및 스팀을 포함할 수 있다.The reactant of the oxidative dehydrogenation reaction may be, for example, oxygen and at least one selected from the group consisting of butan, isobutane, 1-butene, trans-2-butene and cis-2-butene, and additionally nitrogen and May comprise steam.
상기 산소는 일례로 반응물 1 몰을 기준으로 0.5 내지 5 몰, 0.5 내지 3 몰, 혹은 0.6 내지 1.5 몰일 수 있고, 상기 질소는 일례로 반응물 1 몰을 기준으로 0 내지 30 몰, 2 내지 25 몰, 혹은 2 내지 15 몰일 수 있으며, 상기 스팀은 일례로 반응물 1몰을 기준으로 2 내지 50 몰, 3 내지 30 몰, 혹은 4 내지 25 몰일 수 있고, 이 범위 내에서 촉매 활성이 우수한 효과가 있다.The oxygen may be, for example, 0.5 to 5 mol, 0.5 to 3 mol, or 0.6 to 1.5 mol based on 1 mol of the reactant, and the nitrogen may be 0 to 30 mol, 2 to 25 mol, based on 1 mol of the reactant, Or it may be 2 to 15 moles, for example, the steam may be 2 to 50 moles, 3 to 30 moles, or 4 to 25 moles, based on 1 mole of the reactants, the catalyst activity is excellent in this range.
상기 산화적 탈수소화 반응 시, 기체공간속도(GHSV)는 일례로 반응물 기준 200 내지 30,000, 250 내지 25,000, 혹은 250 내지 20,000일 수 있다.In the oxidative dehydrogenation reaction, the gas space velocity (GHSV) may be, for example, 200 to 30,000, 250 to 25,000, or 250 to 20,000 based on the reactant.
상기 산화적 탈수소화 반응 시, 반응 온도(T)는 일례로 300 내지 500 ℃, 320 내지 400 ℃, 혹은 320 내지 380 ℃일 수 있다.In the oxidative dehydrogenation reaction, the reaction temperature (T) may be, for example, 300 to 500 ° C, 320 to 400 ° C, or 320 to 380 ° C.
상기 산화적 탈수소화 반응 시, 반응 압력은 일례로 0 내지 10 bar, 0 내지 5 bar, 혹은 0 내지 3 bar일 수 있다.In the oxidative dehydrogenation reaction, the reaction pressure may be, for example, 0 to 10 bar, 0 to 5 bar, or 0 to 3 bar.
상기 산화적 탈수소화 반응용 촉매는 일례로 1,3-부타디엔 선택도가 80 % 이상, 85 내지 99.9 %, 85 내지 93 %, 혹은 93 내지 99.9 %일 수 있다.The catalyst for oxidative dehydrogenation may be, for example, 1,3-butadiene selectivity of 80% or more, 85 to 99.9%, 85 to 93%, or 93 to 99.9%.
본 발명에 의한 산화적 탈수소화 반응용 촉매 제조방법은 다공성 고무에 규산알루미늄을 침지하여 코팅하는 단계; 상기 규산알루미늄이 코팅된 다공성 고무를 소성하는 단계; 다공성 규산알루미늄 지지체를 수득하는 단계; 금속산화물이 포함된 촉매 슬러리, 또는 상기 금속산화물의 전구체가 포함된 공침물 슬러리를 제조하는 단계; 상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하여 코팅하는 단계; 및 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 소성하는 단계를 포함하는 것을 특징으로 한다.The method for preparing a catalyst for the oxidative dehydrogenation reaction according to the present invention comprises the steps of immersing and coating aluminum silicate in a porous rubber; Firing the porous rubber coated with aluminum silicate; Obtaining a porous aluminum silicate support; Preparing a catalyst slurry including a metal oxide, or a coprecipitation slurry including a precursor of the metal oxide; Coating the porous aluminum silicate support by dipping in the catalyst slurry or the co-precipitate slurry; And calcining the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
상기 다공성 고무에 규산알루미늄을 침지하여 코팅하는 단계는 일례로 규산알루미늄 슬러리를 제조하는 단계; 다공성 고무를 상기 규산알루미늄 슬러리에 침지하여 코팅하는 단계; 및 상기 규산알루미늄 슬러리가 코팅된 다공성 고무를 에어레이션(aeration) 및 건조하는 단계;를 포함할 수 있다.Immersion and coating the aluminum silicate on the porous rubber, for example, preparing an aluminum silicate slurry; Coating the porous rubber by immersing it in the aluminum silicate slurry; And aeration and drying the porous rubber coated with the aluminum silicate slurry.
상기 규산알루미늄 슬러리는 일례로 규산알루미늄을 물에 희석하여 제조될 수 있다.The aluminum silicate slurry can be prepared, for example, by diluting aluminum silicate with water.
상기 규산알루미늄 및 물의 중량비는 일례로 10:1 내지 1:10, 8:1 내지 1:8, 혹은 5:1 내지 1:5일 수 있고, 이 범위 내에서 상기 다공성 고무에 상기 규산알루미늄이 전체적으로 코팅되는 효과가 있다.The weight ratio of the aluminum silicate and water may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5, in which the aluminum silicate is entirely contained in the porous rubber. It has a coating effect.
상기 규산알루미늄 슬러리는 일례로 점도를 높이기 위한 바인더(binder)를 0.01 내지 10 중량%, 0.01 내지 8 중량%, 혹은 0.01 내지 5 중량%로 포함할 수 있다. 상기 바인더는 일례로 폴리비닐 알코올(polyvinyl alcohol), 녹말(starch), 카르복시메틸셀룰로스(carboxymethylcellulose), 덱스트린(dextrin), 왁스(wax emulsion), 폴리에틸렌 글리콜(polyethylene glycol), 리그노술폰산염(lignosulfonate), 메틸셀룰로스(methylcellulose), 파라핀(paraffin) 및 폴리아크릴레이트(polyacrylate)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 규산알루미늄의 다공성 고무에 대한 접착성을 향상시키는 효과가 있다.The aluminum silicate slurry may include, for example, 0.01 to 10% by weight, 0.01 to 8% by weight, or 0.01 to 5% by weight of a binder for increasing the viscosity. The binder is, for example, polyvinyl alcohol, starch, carboxymethylcellulose, dextrin, wax emulsion, polyethylene glycol, lignosulfonate , Methyl cellulose (methylcellulose), paraffin (paraffin) and polyacrylate (polyacrylate) may be one or more selected from the group consisting of, in this case there is an effect of improving the adhesion of the aluminum silicate to the porous rubber.
상기 다공성 고무의 침지는 일례로 규산알루미늄 슬러리가 다공성 고무의 전체 면적에 접촉할 수 있는 시간 동안 시행될 수 있고, 상기 시간은 특별히 제한하지 않으나, 0.1 내지 30분, 0.1 내지 10분, 혹은 0.1 내지 1분일 수 있다.Immersion of the porous rubber, for example, may be carried out for a time that the aluminum silicate slurry can contact the entire area of the porous rubber, the time is not particularly limited, 0.1 to 30 minutes, 0.1 to 10 minutes, or 0.1 to It may be one minute.
상기 에어레이션은 규산알루미늄 슬러리가 코팅된 다공성 고무에 기체를 불어 규산알루미늄 슬러리가 다공성 고무의 기공을 막지 않도록 하는 것을 의미하고, 상기 기체는 일례로 공기, 질소, 헬륨 또는 아르곤일 수 있다. 상기 기체의 압력 및 온도는 상기 코팅의 효과가 유지되는 범위 내라면 특별히 제한되지 않는다.The aeration means that a gas is blown onto the porous rubber coated with the aluminum silicate slurry so that the aluminum silicate slurry does not block the pores of the porous rubber, and the gas may be, for example, air, nitrogen, helium or argon. The pressure and temperature of the gas are not particularly limited as long as it is within a range in which the effect of the coating is maintained.
상기 규산알루미늄 슬러리가 코팅된 다공성 고무의 건조는 일례로 규산알루미늄 슬러리가 코팅된 다공성 고무를 80 내지 160 ℃, 90 내지 150 ℃, 혹은 100 내지 140 ℃에서 0.5 내지 24시간, 0.5 내지 16시간, 혹은 0.5 내지 3시간 동안 실시될 수 있고, 이 범위 내에서 수분이 모두 제거되는 효과가 있다.Drying of the porous rubber coated with the aluminum silicate slurry is, for example, 0.5 to 24 hours, 0.5 to 16 hours, or 80 to 160 ° C., 90 to 150 ° C., or 100 to 140 ° C. for the porous rubber coated with the aluminum silicate slurry. It can be carried out for 0.5 to 3 hours, there is an effect that all the moisture is removed within this range.
상기 다공성 고무를 상기 규산알루미늄 슬러리에 침지하여 코팅하는 단계; 및 상기 규산알루미늄 슬러리가 코팅된 다공성 고무를 에어레이션(aeration) 및 건조하는 단계;는 각각 1 내지 10회, 혹은 1 내지 5회 반복하여 실시될 수 있다.Coating the porous rubber by dipping in the aluminum silicate slurry; And aeration and drying the porous rubber coated with the aluminum silicate slurry may be repeated 1 to 10 times, or 1 to 5 times, respectively.
상기 규산알루미늄이 코팅된 다공성 고무의 소성은 일례로 1,000 내지 2,000 ℃, 1,200 내지 1,800 ℃, 혹은 1,400 내지 1,800 ℃에서 1 내지 10시간, 혹은 1 내지 5시간 동안 실시될 수 있고, 이 범위 내에서 다공성 규산알루미늄 지지체 내에 알파알루미나가 형성되어 강도 및 내구성을 향상시키는 효과가 있다.Firing of the aluminum silica-coated porous rubber may be carried out for 1 to 10 hours, or 1 to 5 hours at 1,000 to 2,000 ℃, 1,200 to 1,800 ℃, or 1,400 to 1,800 ℃, for example, porous within this range Alpha alumina is formed in the aluminum silicate support, thereby improving the strength and durability.
상기 다공성 고무는 일례로 소성 시 300 내지 800 ℃, 350 내지 700 ℃, 혹은 400 내지 660 ℃의 온도에서 연소될 수 있고, 이 경우 다공성 규산알루미늄 지지체 내에 고무가 잔류하지 않는 효과가 있다. For example, the porous rubber may be burned at a temperature of 300 to 800 ° C., 350 to 700 ° C., or 400 to 660 ° C. upon firing, and in this case, the rubber does not remain in the porous aluminum silicate support.
상기 다공성 고무는 폼(foam)의 형태로 사용될 수 있는 것이면 특별히 제한되지 않으나, 일례로 폴리우레탄일 수 있고, 이 경우 기공이 큰 구조의 형성이 용이한 효과가 있다.The porous rubber is not particularly limited as long as it can be used in the form of a foam, but may be, for example, polyurethane. In this case, it is easy to form a large pore structure.
상기 촉매 슬러리는 일례로 하기 화학식 1로 표시되는 조성을 갖는 금속산화물을 물에 희석하여 제조될 수 있다.For example, the catalyst slurry may be prepared by diluting a metal oxide having a composition represented by Chemical Formula 1 in water.
[화학식 1][Formula 1]
Figure PCTKR2016013919-appb-I000002
Figure PCTKR2016013919-appb-I000002
상기 A는 일례로 2가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co 및 Fe(Ⅱ)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 Zn, Mg, Mn 및 Co로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The A may be at least one selected from the group consisting of, for example, a divalent cation metal, specifically, from the group consisting of Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co, and Fe (II). It may be at least one selected, preferably at least one selected from the group consisting of Zn, Mg, Mn and Co.
상기 B는 일례로 3가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 Al, Fe(Ⅲ), Cr, Ga, In, Ti, La 및 Ce로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 Al, Fe(Ⅲ) 및 Cr로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The B may be at least one selected from the group consisting of trivalent cationic metal, for example, may be at least one selected from the group consisting of Al, Fe (III), Cr, Ga, In, Ti, La and Ce. , Preferably Al, Fe (III) and Cr may be one or more selected from the group consisting of.
상기 금속산화물 및 물의 중량비는 일례로 10:1 내지 1:10, 8:1 내지 1:8, 혹은 5:1 내지 1:5일 수 있고, 이 범위 내에서 상기 다공성 규산알루미늄 지지체에 상기 금속산화물이 전체적으로 코팅되는 효과가 있다.The weight ratio of the metal oxide and water may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5, and the metal oxide may be formed on the porous aluminum silicate support within this range. This has the effect of being coated as a whole.
상기 금속산화물은 일례로 분말의 형태일 수 있고, 공침 단계, 여과 단계, 건조 단계 및 소성 단계를 거쳐 제조될 수 있다. 구체적인 예로 상기 금속산화물은 (1) 2가 및 3가 양이온 금속전구체를 포함하는 촉매전구체 용액을 준비하는 단계; (2) 10 내지 50 ℃의 암모니아 수용액(pH 7 내지 10)에 상기 촉매전구체 용액을 적가하는 단계; (3) 상기 촉매전구체 용액이 적가된 암모니아 수용액의 pH를 유지하고 30분 내지 24시간 동안 교반하여 공침하는 단계; (4) 공침액을 감압여과하여 공침물을 수득하는 단계; (5) 수득된 공침물을 60 내지 150 ℃에서 6 내지 30시간 동안 건조하는 단계; 및 (6) 0.5 내지 10 ℃/min의 승온 속도로 400 내지 800 ℃로 승온시킨 후, 2 내지 16시간 동안 유지하여 소성하는 단계;를 통해 제조될 수 있다.The metal oxide may be in the form of a powder, for example, and may be prepared through a coprecipitation step, a filtration step, a drying step, and a firing step. As a specific example, the metal oxide may include (1) preparing a catalyst precursor solution including a divalent and trivalent cation metal precursor; (2) adding the catalyst precursor solution dropwise to an aqueous ammonia solution (pH 7 to 10) at 10 to 50 ° C .; (3) maintaining the pH of the aqueous ammonia solution in which the catalyst precursor solution is added dropwise, and coprecipitation by stirring for 30 minutes to 24 hours; (4) filtering the co-precipitate under reduced pressure to obtain a co-precipitate; (5) drying the obtained coprecipitate at 60 to 150 ° C. for 6 to 30 hours; And (6) heating to 400 to 800 ° C. at a heating rate of 0.5 to 10 ° C./min, and then holding and baking for 2 to 16 hours.
상기 (1) 단계의 금속전구체는 통상적으로 사용되는 것이면 특별히 제한되지 않으나, 일례로 2가 또는 3가 양이온 금속 성분을 포함하는 금속염일 수 있고, 구체적인 예로 상기 금속 성분의 질산염, 암모늄염, 황산염 또는 염화물일 수 있다. 상기 (3) 단계의 pH 유지는 일례로 추가의 암모니아 수용액을 상기 촉매전구체 수용액의 적가와 동시에 적가하여 실시될 수 있다.The metal precursor of step (1) is not particularly limited as long as it is conventionally used, but may be, for example, a metal salt including a divalent or trivalent cationic metal component, and specific examples of nitrate, ammonium salt, sulfate or chloride of the metal component. Can be. Maintaining the pH of step (3) may be carried out by, for example, dropwise addition of an additional aqueous ammonia solution simultaneously with the dropwise addition of the aqueous catalyst precursor solution.
상기 금속산화물의 전구체가 포함된 공침물 슬러리는 일례로 상기 화학식 1로 표시되는 조성을 갖는 금속산화물과 동일한 양론비의 촉매 전구체를 공침하여 제조될 수 있다.The co-precipitated slurry including the precursor of the metal oxide may be prepared by coprecipitating a catalyst precursor having the same stoichiometric ratio as the metal oxide having the composition represented by Chemical Formula 1, for example.
상기 공침물 슬러리는 일례로 (1') 2가 및 3가 양이온 금속전구체를 포함하는 촉매전구체 용액을 준비하는 단계; (2') 10 내지 50 ℃의 암모니아 수용액(pH 7 내지 10)에 상기 촉매전구체 용액을 적가하는 단계; (3') 상기 촉매전구체 용액이 적가된 암모니아 수용액의 pH를 유지하고 30분 내지 24시간 동안 교반하여 공침하는 단계; (4') 공침액을 감압여과하여 공침물 슬러리의 농도를 조절하는 단계를 통해 제조될 수 있다.The coprecipitation slurry is prepared by preparing a catalyst precursor solution including, for example, (1 ′) divalent and trivalent cationic metal precursors; (2 ') adding the catalyst precursor solution dropwise to an aqueous ammonia solution (pH 7 to 10) at 10 to 50 ° C; (3 ') maintaining the pH of the aqueous ammonia solution in which the catalyst precursor solution is added dropwise, and coprecipitation by stirring for 30 minutes to 24 hours; The coprecipitation solution (4 ′) may be prepared by filtration under reduced pressure to adjust the concentration of the coprecipitation slurry.
상기 (1') 단계의 금속전구체는 통상적으로 사용되는 것이면 특별히 제한되지 않으나, 일례로 2가 또는 3가 양이온 금속 성분을 포함하는 금속염일 수 있고, 구체적인 예로 상기 금속 성분의 질산염, 암모늄염, 황산염 또는 염화물일 수 있다. 상기 촉매전구체 용액의 농도는 일례로 1 내지 70 중량%, 2 내지 50 중량%, 혹은 3 내지 30 중량%일 수 있고, 이 범위 내에서 공침물을 소성하면 상기 화학식 1로 표시되는 조성을 갖는 효과가 있다. 상기 (3') 단계의 pH 유지는 일례로 추가의 암모니아 수용액을 상기 촉매전구체 수용액의 적가와 동시에 적가하여 실시될 수 있다. 상기 (4') 단계의 공침물 슬러리 농도는 일례로 공침물 및 물의 중량비를 기준으로 10:1 내지 1:10, 8:1 내지 1:8, 혹은 5:1 내지 1:5일 수 있고, 이 범위 내에서 상기 다공성 규산알루미늄 지지체에 상기 공침물이 전체적으로 코팅되는 효과가 있다.The metal precursor of step (1 ′) is not particularly limited as long as it is conventionally used, but may be, for example, a metal salt including a divalent or trivalent cationic metal component, and specific examples include nitrates, ammonium salts, sulfates, or the like. Chloride. The concentration of the catalyst precursor solution may be, for example, 1 to 70% by weight, 2 to 50% by weight, or 3 to 30% by weight, and when the coprecipitation is fired within this range, the effect of having a composition represented by Chemical Formula 1 may be obtained. have. Maintaining the pH of the step (3 ′) may be performed by, for example, adding an additional aqueous ammonia solution dropwise simultaneously with the dropwise addition of the catalyst precursor solution. The concentration of the coprecipitate slurry in step (4 ′) may be, for example, 10: 1 to 1:10, 8: 1 to 1: 8, or 5: 1 to 1: 5 based on the weight ratio of the coprecipitate and water, Within this range, the co-precipitate is coated on the porous aluminum silicate support as a whole.
상기 공침물 슬러리는 일례로 점도를 높이기 위한 바인더(binder)를 0.01 내지 10 중량%, 0.01 내지 8 중량%, 혹은 0.01 내지 5 중량%로 포함할 수 있다. 상기 바인더는 일례로 폴리비닐 알코올(polyvinyl alcohol), 녹말(starch), 카르복시메틸셀룰로스(carboxymethylcellulose), 덱스트린(dextrin), 왁스(wax emulsion), 폴리에틸렌 글리콜(polyethylene glycol), 리그노술폰산염(lignosulfonate), 메틸셀룰로스(methylcellulose), 파라핀(paraffin) 및 폴리아크릴레이트(polyacrylate)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 공침물의 다공성 규산알루미늄 지지체에 대한 접착성을 향상시키는 효과가 있다.The coprecipitation slurry may include, for example, 0.01 to 10% by weight, 0.01 to 8% by weight, or 0.01 to 5% by weight of a binder for increasing the viscosity. The binder is, for example, polyvinyl alcohol, starch, carboxymethylcellulose, dextrin, wax emulsion, polyethylene glycol, lignosulfonate , Methyl cellulose (methylcellulose), paraffin (paraffin) and polyacrylate (polyacrylate) may be one or more selected from the group consisting of, in this case there is an effect of improving the adhesion to the porous aluminum silicate support of the coprecipitation.
상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하여 코팅하는 단계는 일례로 상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하는 단계; 및 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 에어레이션 및 건조하는 단계를 포함할 수 있다.Coating the porous aluminum silicate support by immersing the catalyst slurry or the co-precipitate slurry may include, for example, immersing the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry. And aeration and drying the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
상기 다공성 규산알루미늄 지지체의 침지는 일례로 상기 촉매 슬러리 또는 상기 공침물 슬러리가 다공성 규산알루미늄 지지체의 전체 면적에 접촉할 수 있는 시간 동안 시행될 수 있고, 상기 시간은 특별히 제한하지 않으나, 0.1 내지 30분, 0.1 내지 10분, 혹은 0.1 내지 1분일 수 있다.Immersion of the porous aluminum silicate support may be performed, for example, for a time when the catalyst slurry or the co-precipitate slurry can contact the entire area of the porous aluminum silicate support, and the time is not particularly limited, but is 0.1 to 30 minutes. , 0.1 to 10 minutes, or 0.1 to 1 minutes.
상기 에어레이션은 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체에 기체를 불어 촉매 슬러리 또는 공침물 슬러리가 다공성 고무의 기공을 막지 않도록 하는 것을 의미하고, 상기 기체는 일례로 공기, 질소, 헬륨 또는 아르곤일 수 있다. 상기 기체의 압력 및 온도는 상기 코팅의 효과가 유지되는 범위 내라면 특별히 제한되지 않는다.The aeration means that a gas is blown onto the porous aluminum silicate support coated with the catalyst slurry or the coprecipitation slurry so that the catalyst slurry or the coprecipitation slurry does not block the pores of the porous rubber. The gas may be, for example, air, nitrogen, Helium or argon. The pressure and temperature of the gas are not particularly limited as long as it is within a range in which the effect of the coating is maintained.
상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체의 건조는 일례로 80 내지 160 ℃, 90 내지 150 ℃, 혹은 100 내지 140 ℃에서 0.5 내지 24시간, 0.5 내지 16시간, 혹은 0.5 내지 3시간 동안 실시될 수 있고, 이 범위 내에서 수분이 모두 제거되는 효과가 있다.Drying of the porous aluminum silicate support coated with the catalyst slurry or the coprecipitation slurry is, for example, 0.5 to 24 hours, 0.5 to 16 hours, or 0.5 to 3 at 80 to 160 ° C, 90 to 150 ° C, or 100 to 140 ° C. It can be carried out for a time, and there is an effect that all moisture is removed within this range.
상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하는 단계; 및 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 에어레이션 및 건조하는 단계;는 각각 1 내지 10회, 혹은 1 내지 5회 반복하여 실시될 수 있다.Immersing the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry; And aeration and drying the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry may be repeated 1 to 10 times or 1 to 5 times, respectively.
상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체의 소성은 산화적 탈수소화 반응용 촉매 제조 시 이용되는 소성 방법인 경우 특별히 제한되지 않으나, 일례로 0.5 내지 10 ℃/min, 0.5 내지 5 ℃/min , 혹은 0.5 내지 3 ℃/min의 승온 속도로 400 내지 800 ℃, 혹은 450 내지 750 ℃까지 승온시킨 후, 2 내지 16시간, 혹은 3 내지 9시간 동안 유지하여 소성하는 방법일 수 있다.Firing of the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry is not particularly limited in the case of the firing method used when preparing the catalyst for the oxidative dehydrogenation reaction, for example, 0.5 to 10 ° C./min, 0.5 to 5 After heating up to 400 to 800 ° C, or 450 to 750 ° C at a temperature increase rate of 0.5 ° C to 3 ° C / min, it may be a method of baking for 2 to 16 hours or 3 to 9 hours.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid in understanding the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예 1Example 1
<다공성 규산알루미늄 지지체 제조><Production of Porous Aluminum Silicate Support>
카올리나이트(kaolinite, Al2Si2O5(OH)4) 및 말토덱스트린(maltodextrin)을 1:1 중량비로 섞은 슬러리를 제조하였다. 이 슬러리에 15 ppi(pores per inch)의 다공성 고무인 폴리우레탄 폼(foam)을 침지하여 코팅시키고, 기공이 막히지 않도록 에어레이션한 후 120 ℃에서 1시간 이상 건조하였다. 상기 건조된 폴리우레탄 폼을 다시 상기 슬러리에 침지하고, 에어레이션 및 건조하는 과정을 4번 반복한 후, 1,600 ℃에서 2시간 동안 소성하여 다공성 규산알루미늄 지지체를 제조하였다.A slurry of kaolinite (Al 2 Si 2 O 5 (OH) 4 ) and maltodextrin was mixed in a 1: 1 weight ratio. The slurry was immersed in a 15 ppi (pores per inch) porous rubber of a polyurethane foam (foam), coated, and aerated so as not to block the pores and dried at 120 ℃ for at least 1 hour. The dried polyurethane foam was again immersed in the slurry, the process of aeration and drying was repeated four times, and then calcined at 1,600 ° C. for 2 hours to prepare a porous aluminum silicate support.
<금속산화물 및 촉매 슬러리 제조><Metal Oxide and Catalyst Slurry Preparation>
염화아연(ZnCl2) 12 g 및 염화제이철(FeCl3) 48 g을 증류수에 용해시켜 금속전구체 용액을 준비하였다. 이 때, 상기 금속전구체 용액에 포함된 금속 성분들의 몰비는 Zn:Fe=1:2이였다. 상온의 pH 9의 암모니아 수용액에, 상기 준비된 금속전구체 용액과 pH 9를 유지하기 위한 암모니아 수용액을 동시에 적가하고, 1시간 동안 교반하여 공침시켰다. 이 후, 공침액을 감압 여과하여 공침물을 수득하였고, 이를 90 ℃에서 16시간 동안 건조한 뒤, 공기 분위기 하에, 80 ℃에서 1 ℃/min의 승온 속도로 650 ℃까지 승온시킨 후, 6시간 동안 유지하여 스피넬 구조를 갖는 아연-철 산화물(ZnFe2O4) 분말을 제조하였고, 제조된 금속산화물 분말을 250 ㎛ 이하로 분쇄하여 물에 1:1의 중량비로 희석하여 촉매 슬러리를 제조하였다.12 g of zinc chloride (ZnCl 2 ) and 48 g of ferric chloride (FeCl 3 ) were dissolved in distilled water to prepare a metal precursor solution. At this time, the molar ratio of the metal components included in the metal precursor solution was Zn: Fe = 1: 2. To the aqueous ammonia solution of pH 9 at room temperature, the prepared metal precursor solution and the aqueous ammonia solution to maintain pH 9 were simultaneously added dropwise, and stirred for 1 hour to coprecipitate. Thereafter, the coprecipitate was filtered under reduced pressure to obtain a coprecipitate, which was dried at 90 ° C. for 16 hours, and then heated up to 650 ° C. at 80 ° C. at a temperature increase rate of 1 ° C./min under an air atmosphere for 6 hours. The zinc-iron oxide (ZnFe 2 O 4 ) powder having a spinel structure was prepared, and the prepared metal oxide powder was pulverized to 250 μm or less and diluted in water at a weight ratio of 1: 1 to prepare a catalyst slurry.
<산화적 탈수소화 반응용 촉매 제조><Preparation of catalyst for oxidative dehydrogenation reaction>
상기 제조된 다공성 규산알루미늄 지지체를 상기 제조된 촉매 슬러리에 침지하고, 에어레이션(aeration)한 후 120 ℃에서 1시간 동안 건조하였다. 이 후, 상기 건조된 다공성 규산알루미늄 지지체를 다시 촉매 슬러리에 침지하고, 에어레이션한 후 건조하는 과정을 3회 반복하였다. 이렇게 얻어진 촉매를 120 ℃에서 16시간 동안 건조하고, 공기 분위기 하에, 80 ℃에서 1 ℃/min의 승온 속도로 650 ℃까지 승온시킨 후, 4시간 동안 유지하여 다공성 구조를 갖는 산화적 탈수소화 반응용 촉매를 제조하였다.The prepared porous aluminum silicate support was immersed in the prepared catalyst slurry, aerated, and dried at 120 ° C. for 1 hour. Thereafter, the dried porous aluminum silicate support was again immersed in the catalyst slurry, aerated and dried three times. The catalyst thus obtained was dried at 120 ° C. for 16 hours, heated to 80 ° C. at a temperature increase rate of 1 ° C./min at 80 ° C. under an air atmosphere, and then maintained for 4 hours to oxidative dehydrogenation reaction having a porous structure. Catalyst was prepared.
실시예 2Example 2
상기 실시예 1의 다공성 규산알루미늄 지지체 제조 시, 15 ppi(pores per inch)의 다공성 고무인 폴리우레탄 폼(foam) 대신 10 ppi의 다공성 고무인 폴리우레탄 폼을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.When preparing the porous aluminum silicate support of Example 1, the same method as in Example 1 except for using a polyurethane foam of 10 ppi porous rubber instead of a polyurethane foam of 15 ppi (pores per inch) porous rubber Was carried out.
실시예 3Example 3
상기 실시예 1의 다공성 규산알루미늄 지지체 제조 시, 15 ppi(pores per inch)의 다공성 고무인 폴리우레탄 폼(foam) 대신 45 ppi의 다공성 고무인 폴리우레탄 폼을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.When preparing the porous aluminum silicate support of Example 1, the same method as in Example 1 except for using a polyurethane foam of 45 ppi porous rubber instead of a polyurethane foam of 15 ppi (pores per inch) porous rubber Was carried out.
실시예 4Example 4
상기 실시예 1의 금속산화물 제조 시, 염화아연(ZnCl2) 12 g 및 염화제이철(FeCl3) 48 g 대신 염화아연(ZnCl2) 12 g, 철 나이트레이트(FeNO3) 42 g 및 염화알루미늄(AlCl3) 6 g을 증류수에 용해시켜 금속전구체 용액을 준비한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. 이 때, 상기 금속전구체 용액에 포함된 금속 성분들의 몰비는 Zn:Fe:Al=1:1.75:0.25이였다.In preparing the metal oxide of Example 1, 12 g of zinc chloride (ZnCl 2 ) and 48 g of ferric chloride (FeCl 3 ), 12 g of zinc chloride (ZnCl 2 ), 42 g of iron nitrate (FeNO 3 ), and aluminum chloride ( 6 g of AlCl 3 ) was dissolved in distilled water, and a metal precursor solution was prepared in the same manner as in Example 1. At this time, the molar ratio of the metal components included in the metal precursor solution was Zn: Fe: Al = 1: 1.75: 0.25.
실시예 5Example 5
상기 실시예 1의 금속산화물 제조 시, 염화아연(ZnCl2) 12 g 및 염화제이철(FeCl3) 48 g 대신 마그네슘 나이트레이트(MgNO3) 18 g 및 염화제이철(FeCl3) 48 g을 증류수에 용해시켜 금속전구체 용액을 준비한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. 이 때, 상기 금속전구체 용액에 포함된 금속 성분들의 몰비는 Mg:Fe=1:2이였다.In preparing the metal oxide of Example 1, instead of 12 g of zinc chloride (ZnCl 2 ) and 48 g of ferric chloride (FeCl 3 ), 18 g of magnesium nitrate (MgNO 3 ) and 48 g of ferric chloride (FeCl 3 ) were dissolved in distilled water. It was carried out in the same manner as in Example 1 except that the metal precursor solution was prepared. At this time, the molar ratio of the metal components included in the metal precursor solution was Mg: Fe = 1: 2.
실시예 6Example 6
상기 실시예 1의 금속산화물 제조 시, 염화아연(ZnCl2) 12 g 및 염화제이철(FeCl3) 48 g 대신 망간 나이트레이트(MnNO3) 18 g 및 염화제이철(FeCl3) 48 g을 증류수에 용해시켜 금속전구체 용액을 준비한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. 이 때, 상기 금속전구체 용액에 포함된 금속 성분들의 몰비는 Mn:Fe=1:2이였다.Dissolving the first embodiment in the manufacture of a metal oxide, zinc chloride (ZnCl 2) 12 g and ferric chloride (FeCl 3) 48 g instead of the manganese nitrate (MnNO 3) 18 g, and ferric chloride (FeCl 3) 48 g of distilled water It was carried out in the same manner as in Example 1 except that the metal precursor solution was prepared. At this time, the molar ratio of the metal components included in the metal precursor solution was Mn: Fe = 1: 2.
실시예 7Example 7
상기 실시예 1에서 금속산화물 및 촉매 슬러리 제조 시, 공침액을 감압 여과하여 공침물 슬러리를 수득하고, 산화적 탈수소화 반응용 촉매 제조 시, 상기 제조된 다공성 규산알루미늄 지지체를 상기 제조된 공침물 슬러리에 침지한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In preparing the metal oxide and the catalyst slurry in Example 1, the coprecipitation liquid was filtered under reduced pressure to obtain a coprecipitated slurry, and the prepared porous aluminum silicate support was prepared in the prepared coprecipitated slurry when the catalyst for oxidative dehydrogenation reaction was prepared. The same procedure as in Example 1 was carried out except for immersion in.
비교예 1Comparative Example 1
상기 실시예 1과 동일한 금속산화물을 제조하되, 공침액을 감압 여과하여 공침물을 수득하고, 이를 90 ℃에서 16시간 동안 건조한 뒤, 건조된 공침물을 분쇄하여 분말로 만들고, 상기 분말에 물과 말토덱스트린을 섞어 반죽한 뒤, 스크류타입의 로터(rotor)를 사용하여 압출하고, 5 mm 크기로 절단한 후 건조하여 원통형의 펠렛(cylindrical pellet) 형태를 갖는 촉매를 제조하고, 이를 공기 분위기 하에, 80 ℃에서 1 ℃/min의 승온 속도로 650 ℃까지 승온시킨 후, 6시간 동안 유지하여 소성시켜 펠렛 형태의 촉매를 제조하였다.The same metal oxide as in Example 1 was prepared, but the coprecipitation solution was filtered under reduced pressure to obtain a coprecipitate, which was dried at 90 ° C. for 16 hours, and then the dried coprecipitate was pulverized to form a powder. After mixing and kneading maltodextrin, it is extruded using a screw-type rotor, cut to a size of 5 mm and dried to prepare a catalyst having a cylindrical pellet (cylindrical pellet) form, under an air atmosphere, The catalyst was heated to 80 ° C. at a temperature increase rate of 1 ° C./min to 650 ° C., and then maintained for 6 hours and calcined to prepare a catalyst in pellet form.
[시험예] [Test Example]
상기 실시예 1 내지 7 및 비교예 1에서 제조된 산화적 탈수소화 반응용 촉매를 사용하여 하기의 방법으로 부타디엔을 제조하였고, 그 결과를 하기 표 1에 나타내었다.Butadiene was prepared by the following method using the catalyst for oxidative dehydrogenation reaction prepared in Examples 1 to 7 and Comparative Example 1, and the results are shown in Table 1 below.
부타디엔 제조Butadiene manufacturing
반응물로 1-부텐, 트랜스-2-부텐 및 시스-2-부텐의 혼합물과 산소를 사용하였고, 부가적으로 질소와 스팀이 함께 유입되도록 하였다. 반응기로는 금속 관형 고정층 반응기를 사용하였다. 반응물의 비율 및 GHSV(gas hourly space velocity)는 하기 표 1에 기재된 바와 같이 부텐 혼합물을 기준으로 설정하였다. 실시예 및 비교예에서 제조된 촉매 10 cc를 고정층 반응기에 충전하였으며, 스팀은 물의 형태로 주입되되, 기화기(vaporizer)를 이용해 150 ℃에서 스팀으로 기화되어 반응물인 부텐 혼합물 및 산소와 함께 혼합되어 반응기에 유입되도록 하였다. 반응 후 생성물은 가스 크로마토그래피(GC)를 이용하여 분석하였으며, 부텐 혼합물의 전환율(X_butene), 선택도(S_1,3-butadiene, S_COx) 및 수율(Yield)은 가스 크로마토그래피로 측정된 결과를 통해, 하기 수학식 1 내지 3에 따라 계산하였다.As a reaction, a mixture of 1-butene, trans-2-butene and cis-2-butene and oxygen were used, and additionally nitrogen and steam were introduced together. As the reactor, a metal tubular fixed bed reactor was used. The proportion of reactants and gas hourly space velocity (GHSV) were set based on the butene mixture as described in Table 1 below. 10 cc of the catalysts prepared in Examples and Comparative Examples were charged to a fixed bed reactor, and steam was injected in the form of water, and vaporized at 150 ° C. using a vaporizer to be mixed with reactant butene mixture and oxygen to react with the reactor. It was allowed to flow into. After the reaction, the product was analyzed by gas chromatography (GC), and the conversion (X_butene), selectivity (S_1,3-butadiene, S_CO x ) and yield of the butene mixture were measured by gas chromatography. Through, it was calculated according to the following formulas (1) to (3).
Figure PCTKR2016013919-appb-M000001
Figure PCTKR2016013919-appb-M000001
Figure PCTKR2016013919-appb-M000002
Figure PCTKR2016013919-appb-M000002
Figure PCTKR2016013919-appb-M000003
Figure PCTKR2016013919-appb-M000003
Figure PCTKR2016013919-appb-T000001
Figure PCTKR2016013919-appb-T000001
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 제조된 다공성 구조를 갖는 촉매를 이용한 실시예 1 내지 7의 경우, 부텐 전환율, 부타디엔 선택도 및 수율이 모두 우수한 것을 확인할 수 있었다.As shown in Table 1, in Examples 1 to 7 using the catalyst having a porous structure prepared according to the present invention, it was confirmed that the butene conversion, butadiene selectivity and yield are all excellent.
반면, 실시예 1과 동일한 조성의 금속산화물을 이용하여 펠렛 형태의 촉매를 이용한 비교예 1의 경우, 실시예 1에 비해 부텐 전환율, 부타디엔 선택도 및 수율이 모두 열악한 것을 확인할 수 있었다.On the other hand, in the case of Comparative Example 1 using a pellet-type catalyst using a metal oxide of the same composition as in Example 1, butene conversion, butadiene selectivity and yield were all poor compared to Example 1.
[참고예][Reference Example]
상기 시험예의 부타디엔 제조 시, 실시예 1에서 제조된 산화적 탈수소화 반응용 촉매를 사용하여, 반응온도(T) 360 ℃에서 O2, steam 및 N2의 몰비를 각각 부텐 1몰에 대해 1:4:12로 주입하여 반응을 실시하였고, 이에 따른 결과는 각각 X_butene은 56.56, S_1,3-butadiene은 90.55, Yield는 51.22, S_COx는 7.46이였다. 이로부터, 부텐 혼합물 대비 스팀의 함량이 높을수록 촉매 활성이 우수한 것을 확인할 수 있었다.When preparing butadiene of the test example, using the catalyst for the oxidative dehydrogenation reaction prepared in Example 1, the molar ratio of O 2 , steam and N 2 in the reaction temperature (T) 360 ℃ 1: 1 with respect to 1 mol of butene, respectively. The reaction was performed at 4:12, and the results were 56.56 for X_butene, 90.55 for S_1,3-butadiene, 51.22 for Yield, and 7.46 for S_CO x , respectively. From this, it was confirmed that the higher the content of steam compared to the butene mixture, the better the catalytic activity.
이로부터 본 발명자들은 다공성 고무를 이용하여 다공성 촉매를 제조할 경우, 고온 및 고압의 반응 조건과 부반응에 의한 발열을 완화시켜 생성물에 대한 고선택성을 유지할 수 있는 것을 확인할 수 있었다.From this, the present inventors confirmed that when the porous catalyst was prepared using the porous rubber, high selectivity to the product could be maintained by alleviating the heat generated by reaction conditions and side reactions at high temperature and high pressure.

Claims (18)

  1. 다공성 규산알루미늄 지지체 및 하기 화학식 1로 표시되는 조성을 갖는 금속산화물을 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.A catalyst for oxidative dehydrogenation reaction comprising a porous aluminum silicate support and a metal oxide having a composition represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2016013919-appb-I000003
    Figure PCTKR2016013919-appb-I000003
    (상기 A는 2가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이고, 상기 B는 3가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이다)(A is at least one selected from the group consisting of divalent cation metals, and B is at least one selected from the group consisting of trivalent cation metals.)
  2. 제1항에 있어서,The method of claim 1,
    상기 A는 Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co 및 Fe(Ⅱ)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.A is a catalyst for oxidative dehydrogenation reaction, characterized in that at least one selected from the group consisting of Cu, Ra, Ba, Sr, Ca, Be, Zn, Mg, Mn, Co and Fe (II).
  3. 제1항에 있어서,The method of claim 1,
    상기 B는 Al, Fe(Ⅲ), Cr, Ga, In, Ti, La 및 Ce로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.B is a catalyst for oxidative dehydrogenation reaction, characterized in that at least one selected from the group consisting of Al, Fe (III), Cr, Ga, In, Ti, La and Ce.
  4. 제1항에 있어서,The method of claim 1,
    상기 다공성 규산알루미늄 지지체의 규산알루미늄은 금속산화물, 금속탄화물, 금속질화물 및 수화규산알루미늄으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.Aluminum silicate of the porous aluminum silicate support is a catalyst for oxidative dehydrogenation reaction, characterized in that at least one selected from the group consisting of metal oxides, metal carbides, metal nitrides and aluminum hydride silicate.
  5. 제1항에 있어서,The method of claim 1,
    상기 다공성 규산알루미늄 지지체의 규산알루미늄은 카올린계 광물인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.Catalyst for oxidative dehydrogenation reaction, characterized in that the aluminum silicate of the porous aluminum silicate support is a kaolin mineral.
  6. 제1항에 있어서,The method of claim 1,
    상기 다공성 규산알루미늄 지지체는 1 내지 500 ppi(pores per inch)의 다공 분포를 갖는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.The porous aluminum silicate support is a catalyst for oxidative dehydrogenation, characterized in that it has a pore distribution of 1 to 500 ppi (pores per inch).
  7. 제1항에 있어서,The method of claim 1,
    상기 금속산화물은 상기 산화적 탈수소화 반응용 촉매에 대하여 1 내지 50 중량%로 포함되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.The metal oxide is an oxidative dehydrogenation catalyst, characterized in that contained in 1 to 50% by weight relative to the oxidative dehydrogenation catalyst.
  8. 제1항에 있어서,The method of claim 1,
    상기 산화적 탈수소화 반응용 촉매는 1,3-부타디엔 선택도가 80 % 이상인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매.The catalyst for oxidative dehydrogenation is oxidative dehydrogenation catalyst, characterized in that 1,3-butadiene selectivity is 80% or more.
  9. 다공성 고무에 규산알루미늄을 침지하여 코팅하는 단계;Immersing and coating aluminum silicate in the porous rubber;
    상기 규산알루미늄이 코팅된 다공성 고무를 소성하는 단계;Firing the porous rubber coated with aluminum silicate;
    다공성 규산알루미늄 지지체를 수득하는 단계;Obtaining a porous aluminum silicate support;
    금속산화물이 포함된 촉매 슬러리, 또는 상기 금속산화물의 전구체가 포함된 공침물 슬러리를 제조하는 단계;Preparing a catalyst slurry including a metal oxide, or a coprecipitation slurry including a precursor of the metal oxide;
    상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하여 코팅하는 단계; 및Coating the porous aluminum silicate support by dipping in the catalyst slurry or the co-precipitate slurry; And
    상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 소성하는 단계를 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.A method for preparing a catalyst for oxidative dehydrogenation reaction, comprising calcining the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
  10. 제9항에 있어서,The method of claim 9,
    상기 다공성 고무에 규산알루미늄을 침지하여 코팅하는 단계는 규산알루미늄 슬러리를 제조하는 단계; 다공성 고무를 상기 규산알루미늄 슬러리에 침지하여 코팅하는 단계; 및 상기 규산알루미늄 슬러리가 코팅된 다공성 고무를 에어레이션(aeration) 및 건조하는 단계;를 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The dipping and coating the aluminum silicate on the porous rubber may include preparing an aluminum silicate slurry; Coating the porous rubber by immersing it in the aluminum silicate slurry; And aeration and drying the porous rubber coated with the aluminum silicate slurry, wherein the catalyst is prepared for oxidative dehydrogenation.
  11. 제9항에 있어서,The method of claim 9,
    상기 규산알루미늄이 코팅된 다공성 고무의 소성은 1,200 내지 2,000 ℃에서 1 내지 4시간 동안 실시되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.Firing of the aluminum silica-coated porous rubber is a catalyst for producing an oxidative dehydrogenation reaction, characterized in that carried out for 1 to 4 hours at 1,200 to 2,000 ℃.
  12. 제9항에 있어서,The method of claim 9,
    상기 다공성 고무는 소성 시 300 내지 800 ℃의 온도에서 연소되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The porous rubber is a method for producing a catalyst for the oxidative dehydrogenation reaction, characterized in that when firing at a temperature of 300 to 800 ℃.
  13. 제9항에 있어서,The method of claim 9,
    상기 다공성 고무는 폴리우레탄인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The porous rubber is a method for producing a catalyst for oxidative dehydrogenation reaction, characterized in that the polyurethane.
  14. 제9항에 있어서,The method of claim 9,
    상기 촉매 슬러리는 하기 화학식 1로 표시되는 조성을 갖는 금속산화물을 물에 희석하여 제조되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The catalyst slurry is prepared by diluting a metal oxide having a composition represented by the following formula (1) in water.
    [화학식 1][Formula 1]
    Figure PCTKR2016013919-appb-I000004
    Figure PCTKR2016013919-appb-I000004
    (상기 A는 2가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이고, 상기 B는 3가 양이온 금속으로 이루어진 군으로부터 선택된 1종 이상이다)(A is at least one selected from the group consisting of divalent cation metals, and B is at least one selected from the group consisting of trivalent cation metals.)
  15. 제14항에 있어서,The method of claim 14,
    상기 금속산화물 및 물의 중량비는 10:1 내지 1:10인 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The weight ratio of the metal oxide and water is 10: 1 to 1:10, characterized in that the catalyst for oxidative dehydrogenation reaction method.
  16. 제9항에 있어서,The method of claim 9,
    상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하여 코팅하는 단계는 상기 다공성 규산알루미늄 지지체를 상기 촉매 슬러리 또는 상기 공침물 슬러리에 침지하는 단계; 및 상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체를 에어레이션 및 건조하는 단계;를 포함하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.Immersing and coating the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry comprises immersing the porous aluminum silicate support in the catalyst slurry or the co-precipitate slurry; And aeration and drying the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry.
  17. 제16항에 있어서,The method of claim 16,
    상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체의 건조는 80 내지 160 ℃에서 0.5 내지 24시간 동안 실시되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.Drying of the catalyst slurry or the porous aluminum silicate support coated with the co-precipitate slurry is carried out at 80 to 160 ℃ for 0.5 to 24 hours, characterized in that the catalyst for oxidative dehydrogenation reaction.
  18. 제9항에 있어서,The method of claim 9,
    상기 촉매 슬러리 또는 상기 공침물 슬러리가 코팅된 다공성 규산알루미늄 지지체의 소성은 0.5 내지 10 ℃/min 승온 속도로 400 내지 800 ℃까지 승온시킨 후, 2 내지 16시간 유지하여 실시되는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매 제조방법.The calcining of the porous aluminum silicate support coated with the catalyst slurry or the co-precipitate slurry is carried out by raising the temperature to 400 to 800 ° C. at a temperature increase rate of 0.5 to 10 ° C./min, and then maintaining the mixture for 2 to 16 hours. Method for producing catalyst for dehydrogenation reaction.
PCT/KR2016/013919 2015-12-09 2016-11-30 Catalyst for oxidative dehydrogenation reaction and method for producing same WO2017099411A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680006625.6A CN107206359B (en) 2015-12-09 2016-11-30 Catalyst for oxidative dehydrogenation and preparation method thereof
EP16873276.6A EP3222347B1 (en) 2015-12-09 2016-11-30 Catalyst for oxidative dehydrogenation reaction and method for producing same
US15/540,425 US11117119B2 (en) 2015-12-09 2016-11-30 Catalyst for oxidative dehydrogenation and method of preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0174676 2015-12-09
KR20150174676 2015-12-09
KR10-2015-0179406 2015-12-15
KR1020150179406A KR102017207B1 (en) 2015-12-09 2015-12-15 Catalyst for oxidative dehydrogenation and method for preparing the catalyst

Publications (1)

Publication Number Publication Date
WO2017099411A1 true WO2017099411A1 (en) 2017-06-15

Family

ID=59013435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013919 WO2017099411A1 (en) 2015-12-09 2016-11-30 Catalyst for oxidative dehydrogenation reaction and method for producing same

Country Status (1)

Country Link
WO (1) WO2017099411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190329226A1 (en) * 2017-04-12 2019-10-31 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041401A (en) 1990-03-28 1991-08-20 Mobil Oil Corporation Thermally stable noble metal-containing zeolite catalyst
KR100847206B1 (en) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20120009687A (en) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
CN102974357B (en) * 2011-09-06 2015-09-30 北京中石润达科技发展有限公司 A kind of lattice oxygen catalyst for preparing butadiene with butylene oxo-dehydrogenation and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041401A (en) 1990-03-28 1991-08-20 Mobil Oil Corporation Thermally stable noble metal-containing zeolite catalyst
KR100847206B1 (en) * 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20120009687A (en) * 2010-07-20 2012-02-02 에스케이이노베이션 주식회사 Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
CN102974357B (en) * 2011-09-06 2015-09-30 北京中石润达科技发展有限公司 A kind of lattice oxygen catalyst for preparing butadiene with butylene oxo-dehydrogenation and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIBSON, MICHAEL A. ET AL.: "Oxidative Dehydrogenation ofButenes over Magnesium Ferrite Catalyst Deactivation Studies", JOURNAL OF CATALYSIS, vol. 41, no. 3, 1976, pages 431 - 439, XP055390134 *
TOLEDO, J. A. ET AL.: "Oxidative Dehydrogenation of 1-butene over Zn-A1 Ferrites", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 125, no. 1, 1997, pages 53 - 62, XP055069766, DOI: doi:10.1016/S1381-1169(97)00052-6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190329226A1 (en) * 2017-04-12 2019-10-31 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst
US10888844B2 (en) * 2017-04-12 2021-01-12 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst
US11660584B2 (en) 2017-04-12 2023-05-30 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst

Similar Documents

Publication Publication Date Title
KR102017207B1 (en) Catalyst for oxidative dehydrogenation and method for preparing the catalyst
KR101781656B1 (en) Monolith catalyst and use thereof
WO2017171441A2 (en) Ferrite-based catalyst, preparation method therefor, and method for preparing butadiene using same
WO2016017994A1 (en) Dehydrogenation catalyst, and preparation method therefor
WO2017213360A1 (en) Oxidative dehydrogenation reaction catalyst and preparation method therefor
WO2012011659A2 (en) Mixed manganese ferrite coated catalyst, method of preparing the same, and method of preparing 1,3-butadiene using the same
WO2010011101A2 (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
WO2014098448A1 (en) Mixed manganese ferrite honeycomb-type catalyst, preparation method therefor, and method for preparing 1,3-butadiene using same
JP6657510B2 (en) Porous body surface coating catalyst and porous body surface treatment method
CA1151676A (en) Production of tertiary olefins
JP2019527133A (en) Oxidative dehydrogenation catalyst, process for producing the same, and oxidative dehydrogenation process using the same
CN107486197A (en) The preparation method of dehydrogenating low-carbon alkane microspherical catalyst
WO2017099411A1 (en) Catalyst for oxidative dehydrogenation reaction and method for producing same
KR970001520B1 (en) Carrier material for a catalyst and a process for making such a carrier material
WO2017090864A1 (en) Cobalt-supported catalyst for low-temperature reforming reaction and production method therefor
JP3038047B2 (en) Production method of high purity mullite
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
WO2019143030A1 (en) Cobalt-iron hybrid catalyst for fischer-tropsch synthesis reaction, having ordered mesoporous main framework, preparation method therefor, and hydrocarbon preparation method using same
JP2017165667A (en) Manufacturing method of conjugated diene
Mizukami et al. Preparation of thermostable high-surface-area aluminas and properties of the alumina-supported Pt catalysts
WO2021107541A1 (en) Dehydrogenation catalyst for preparing olefine from alkanes gas and method for preparing same
KR101618407B1 (en) Oxidative Dehydrogenation Catalyst of Butane, Method for Preparing Them, and Oxidative Dehydrogenation Method of Butane
WO2018190641A1 (en) Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
WO2016152796A1 (en) Method for producing conjugated diene
WO2024111832A1 (en) Catalyst for oxidative dehydrogenation, and preparation method therefor

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016873276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15540425

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE