WO2017099259A1 - Cooling structure for flange of aluminum egr cooler - Google Patents

Cooling structure for flange of aluminum egr cooler Download PDF

Info

Publication number
WO2017099259A1
WO2017099259A1 PCT/JP2016/087129 JP2016087129W WO2017099259A1 WO 2017099259 A1 WO2017099259 A1 WO 2017099259A1 JP 2016087129 W JP2016087129 W JP 2016087129W WO 2017099259 A1 WO2017099259 A1 WO 2017099259A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
flange portion
cooling water
gas
casing
Prior art date
Application number
PCT/JP2016/087129
Other languages
French (fr)
Japanese (ja)
Inventor
和田 努
弘仁 杉本
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Priority to JP2017555183A priority Critical patent/JPWO2017099259A1/en
Publication of WO2017099259A1 publication Critical patent/WO2017099259A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the present invention relates to a flange cooling structure of an aluminum EGR cooler used as a cooling device around an engine of a vehicle or the like.
  • the EGR cooler is used to cool high-temperature exhaust gas when returning a part of the high-temperature exhaust gas discharged from an engine such as a vehicle to the intake side of the engine.
  • an aluminum EGR cooler in which the material of the casing or the like is aluminum-based is often used.
  • a flange portion is provided in the casing of the EGR cooler, and the flange portion is fixed to a flange portion formed in an intake manifold provided around the engine with a bolt or the like.
  • the intake manifold has a high temperature due to the temperature of exhaust gas discharged from the engine, and the temperature is transferred to the casing body via the flange portion of the EGR cooler.
  • Patent Document 1 discloses a cooling structure that cools a flange portion of an EGR cooler.
  • a cooling path is formed in the flange portion on the intake manifold side that fixes the flange portion of the EGR cooler.
  • a groove portion is formed in the joint surface of the flange portion of the intake manifold, and the joint surface of the flange portion on the EGR cooler side is brought into close contact with the joint surface, whereby the surface of the groove portion is closed and the cooling water flow passage is formed.
  • a gas inflow portion and a gas are formed in the casing, each of which includes a core for cooling the gas with cooling water and exchanging heat, a gas flow passage, and a cooling water flow passage.
  • a cooling water inflow portion and a cooling water outflow portion communicating with the outflow portion and the cooling water flow passage are formed in the casing, respectively, and the gas inflow portion communicates with an external gas supply pipe via a flange portion.
  • the flange portion is formed in a flat plate shape, a flow passage is formed therein, and the flow passage communicates with a cooling water supply pipe.
  • the flange cooling structure of the aluminum EGR cooler is characterized in that
  • the invention according to claim 2 is the flange cooling structure of the aluminum EGR cooler according to claim 1, wherein the flat flange portion has a laminated structure including a plurality of plates.
  • the flat flange portion has a three-layer structure in which an intermediate plate is disposed between two outer plates, and the flow passage has a through hole that penetrates the gas supply pipe.
  • the flange part cooling structure for an aluminum EGR cooler according to claim 2 wherein the flange part cooling structure is formed so as to bypass the periphery.
  • the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, a flange surface of the flange portion is formed in a plane parallel to the axial direction, and the cooling water 4.
  • the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, and the flange surface of the flange portion is formed in a plane perpendicular to the axial direction. 4.
  • the first invention is characterized in that the flange portion is formed in a flat plate shape, a flow passage is formed therein, and the flow passage communicates with the cooling water supply pipe.
  • the flange portion has a laminated structure including a plurality of plates. If comprised in this way, the flow path provided in the inside of a flange part can be processed easily.
  • the flat plate flange portion has a three-layer structure in which an intermediate plate is disposed between two outer plates, and the flow path bypasses around a through hole that penetrates the gas supply pipe. It is formed as follows. If comprised in this way, the penetration circumference
  • the casing is formed in a tubular shape, a flange portion is fixed to one axial end portion thereof, a flange surface of the flange portion is formed in a plane parallel to the axial direction, and the cooling water inflow portion Is communicated with the cooling water supply pipe through a flange.
  • the casing configured in this manner can be suitably applied when a joint surface such as an intake manifold is disposed in a direction parallel to the axial direction of the casing. Further, no special piping is required for communication between the cooling water flow passage inside the flange and the cooling water supply pipe.
  • the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, and the flange surface of the flange portion is formed in a plane perpendicular to the axial direction.
  • the casing configured in this manner can be suitably applied when a joint surface such as an intake manifold is disposed in a direction perpendicular to the axial direction of the casing.
  • FIG. 1 is an exploded perspective view of a flange portion according to the first embodiment.
  • FIG. 2 is a perspective view showing a state when the flange portion of FIG. 1 is fixed to the casing.
  • FIG. 3 is a perspective view assuming that after fixing the flange portion shown in FIG. 1 to the casing, the outer plate on the upper side of the flange portion is temporarily removed.
  • FIG. 4 is a bottom view showing a state in which the flange portion of the second embodiment is fixed to the casing.
  • FIG. 5 is an enlarged perspective view of the flange portion in FIG. 4.
  • 6 is an exploded perspective view of the flange portion shown in FIG. FIG.
  • FIG. 7 is a diagram schematically showing a temperature distribution in a state where cooling water is circulated through the flange portion shown in FIG. 3.
  • FIG. 8 is a diagram schematically showing a temperature distribution in a state where cooling water is not circulated through the flange portion shown in FIG. 3.
  • FIG. 9 shows an example 1 of a flange portion composed of two plates.
  • FIG. 10 shows an example 2 of a flange portion composed of two plates.
  • FIG. 11 shows an example 3 of a flange portion composed of two plates.
  • An aluminum flange portion 1 shown in FIG. 1 includes two upper and lower outer plates 2 and 3 and an intermediate plate 4 mounted between them, and the outer shape of each plate has a shape close to a square.
  • a portion close to the center of the two outer plates 2 and 3 and the intermediate plate 4 is provided at a position where the cross-sectional shape for penetrating the gas supply pipe is flat and elliptical through-holes 5 overlap each other.
  • the cross-sectional shape of the through hole 5 is elliptical so as to be applicable when the cross-sectional shape of the gas supply pipe is elliptical.
  • the upper outer plate 2 is provided with cooling water inflow holes 6 and bolt holes 7 at three corners.
  • the intermediate plate 4 is provided with an elongated through hole so as to surround and circumvent the through hole 5, and a cooling water flow passage 8 is formed by the elongated through hole.
  • These bolt holes 7 are holes for fixing the flange portion 1 to the flange portion of the fixing counterpart with bolts.
  • the lower outer plate 3 is provided with cooling water outflow holes 9 so as to overlap with the inflow holes 6 of the upper outer plate 2, and bolt holes 7 are respectively provided at three corners. Further, a cooling water outflow hole 9 a communicating with the outflow side of the flow passage 8 formed in the intermediate plate 4 is provided at a corner of the lower outer plate 3 where the bolt hole 7 is not provided.
  • FIG. 2 shows a state in which the flange portion 1 of FIG. 1 is brought close to the aluminum casing 10 as indicated by an arrow of a chain line and fixed by brazing or the like.
  • the flange portion 1 shown in FIG. 1 is integrated by being brought into close contact with each other by brazing or the like with an intermediate plate 4 sandwiched between two outer plates 2 and 3 in advance. That is, a plate stacking type flange portion 1 formed by stacking a plurality of plates and closely fixing them to each other is formed.
  • the outer peripheral surface of the casing 10 is formed in a tubular shape having a substantially rectangular cross section in the axial direction, and a core in which a plurality of tubes are laminated in parallel, and a gas flow passage and a cooling water flow passage communicating therewith are formed.
  • a gas inflow portion 11 that flows in the gas A
  • a cooling water inflow portion 12 that flows in the cooling water B
  • the cooling water C that flows out from the outlet side of the flow path of the flange portion 1 are collected.
  • a second cooling water inflow portion 13 is provided.
  • the opening surface of the gas inflow portion 11 is a surface parallel to the axial direction of the casing 10.
  • the other end of the casing 10 in the axial direction is provided with a gas outflow portion 14 through which the gas A flows out, and the cooling water outflow through which the cooling waters B and C merged inside the casing 10 flow out to the outside.
  • a part 15 is provided.
  • a flat fixing portion 10a is formed on a part of the circumferential surface at one axial end of the casing 10, and the outer plate 3 below the flange portion 1 is fixed to the fixing portion 10a by brazing or the like. As a result, the flange surface of the flange portion 1 fixed to the casing 10 is formed in a plane parallel to the axial direction.
  • FIG. 3 assumes that the outer plate 2 on the upper side of the flange 1 is temporarily removed in order to explain the flow direction of the cooling water in the flow passage 8 formed inside after fixing the flange portion 1 of FIG. 1 to the casing 10.
  • the ratio of the coolant flowing in from the inflow hole 6 of the upper outer plate 2 to the outflow hole 9 and the flow passage 8 is changed by changing the ratio of the flow resistance between the two. For example, by changing the ratio of the cross-sectional size of the flow passage 8 and the cross-section of the outflow hole 9, the flow dividing ratio can be changed.
  • FIG. 7 and FIG. 8 schematically show the results of experiments in which the cooling water is circulated through the flow passage 8 of the flange portion 1 shown in FIG. 2 or FIG. 3 and the state where the cooling water is not circulated.
  • 7 shows a state in which cooling water is circulated through the flow passage 8
  • FIG. 8 shows a state in which cooling water is not circulated.
  • the inlet side of the flow passage 8 is closed so that the cooling water flow flowing from the outer plate 2 on the upper side of the flange 1 does not flow into the flow passage 8. It was set to flow out from the outflow hole 9.
  • the hatched area in the figure represents a high temperature area of 200 ° C.
  • FIG. 4 is a bottom view showing a state in which the flange portion 1 of the second embodiment is fixed to the casing 10. 4, parts that are the same as those in FIGS. 1 to 3 are given the same reference numerals, and redundant descriptions are omitted.
  • the outer peripheral surface of the casing 10 is formed in a tubular shape having a substantially rectangular cross section in the axial direction, and the opening surface of the gas inflow portion 11 provided at one axial end portion of the casing 10 is a surface perpendicular to the axial direction of the casing 10.
  • the opening surface forms a fixing portion 10 a for fixing the flange portion 1.
  • the outer plate of the flange portion 1 is fixed to the fixing portion 10a by brazing or the like.
  • a bypass pipe 1a is branched from a cooling water supply pipe for supplying cooling water to the casing 10, and the branched bypass pipe 1a supplies cooling water to the cooling water inflow hole of the flange portion 1 from the cooling water outflow hole.
  • the cooling water flowing out is collected in the second cooling water inflow portion 13 in the casing 10.
  • FIG. 6 is an exploded perspective view of the flange portion 1 shown in FIG.
  • the flange portion 1 is a flat plate laminated type in which two outer plates 2 and 3 and an intermediate plate 4 are fixed to each other.
  • the outer peripheral shape of the flange part 1 is a square, and the through-hole 5 which penetrates a gas supply pipe is provided in the central axis.
  • the cross-sectional shape of the through-hole 5 is circular according to the shape so that it can be applied when the cross-sectional shape of the gas supply pipe is circular.
  • a circular cylinder 2a is provided at the periphery of the through hole 5 formed in the outer plate 2 on the right side of the drawing, and the two outer plates 2 and 3 and the intermediate plate 4 are combined.
  • the cylindrical body 2 a passes through the through hole 5 of the intermediate plate 4, and its tip is inserted into the through hole 5 of the outer plate 3.
  • a cooling water flow passage 8 as shown in FIG. 5 is formed between the outer peripheral surface of the cylinder 2 a and the inner peripheral surface of the intermediate plate 4.
  • the inner diameter of the cylindrical body 2a is adapted to the outer diameter of the gas supply pipe passing therethrough.
  • FIG. 9 shows another example of the first embodiment. Instead of the intermediate plate 4, one of the two plates 2 and 3 is grooved, and the flow path 8 is formed by the groove portion. Is formed, and the other one is a simple lid without a flow passage.
  • FIG. 10 shows still another example of the first embodiment. Both the two plates 2 and 3 are grooved, and the grooves are joined together to form one flow passage 8.
  • the thing of FIG. 11 is another example of 2nd Embodiment, and is a modification of FIG.
  • one of the two plates 2 and 3 is grooved, and the flow passage 8 is formed by the groove portion, and the other one is a simple lid without the flow passage.
  • groove processing can be performed on each of the two plates 2 and 3.
  • the flange part cooling structure of the present invention can be used to cool the flange part of an aluminum EGR cooler in a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

The objective of the present invention is to efficiently cool a flange of an aluminum EGR cooler with the use of a simple configuration. A cooling structure for a flange of an aluminum EGR cooler in which a core that performs heat exchange by cooling a gas with a coolant, a gas flow passage, and a coolant flow passage are each formed inside a casing 10, and in which a gas inflow portion 11 and a gas outflow portion 14 which are in communication with the gas flow passage, and a coolant inflow portion 12 and a coolant outflow portion 15 which are in communication with the coolant flow passage are each formed in the casing 10, and the gas inflow portion 11 is in communication with an external gas supply pipe via a flange 1, said structure characterized in that the flange 1 is formed in the shape of a plate, a flow passage 8 is formed therein, and the flow passage 8 is in communication with a coolant supply pipe.

Description

アルミ製EGRクーラのフランジ部冷却構造Flange cooling structure for aluminum EGR cooler
 本発明は、車両などのエンジン回りの冷却装置として利用されるアルミ製EGRクーラのフランジ部冷却構造に関する。 The present invention relates to a flange cooling structure of an aluminum EGR cooler used as a cooling device around an engine of a vehicle or the like.
 EGRクーラは、車両等のエンジンから排出される高温の排ガスの一部をエンジンの吸気側に戻す際に、高温の排ガスを冷却するために用いられる。EGRクーラの軽量化や小型化を目的として、そのケーシングなどの材質をアルミニウム系としたアルミ製EGRクーラが多く採用されている。
 EGRクーラのケーシングにはフランジ部が設けられ、そのフランジ部はエンジン回りに設けられた吸気マニホールドに形成したフランジ部にボルトなどで固定される。吸気マニホールドはエンジンから排出する排ガスの温度により高温になっており、その温度はEGRクーラのフランジ部を介してケーシング本体に伝熱される。
 EGRクーラのケーシングで一番高温となるのは前記フランジ部であり、何らかの冷却をしないとエンジンの排ガス温度に近い温度まで上昇してしまう。アルミ製のフランジ部の場合、その強度を維持するには温度を200℃以下に維持する必要がある。
 特許文献1にはEGRクーラのフランジ部を冷却する冷却構造が開示されている。特許文献1の冷却構造は、EGRクーラのフランジ部を固定する吸気マニホールド側のフランジ部に冷却路が形成される。具体的には、吸気マニホールドのフランジ部の接合面に溝部を形成し、その接合面にEGRクーラ側のフランジ部の接合面を密着させることにより、前記溝部の表面が閉鎖されて冷却水流通路を形成する。
 上記構造において、EGRクーラの冷却水は先ず吸気マニホールド側のフランジ部に形成された冷却路に供給され、次にその排出側から流出する冷却水がEGRクーラ側のフランジ部に設けた貫通孔を介してケーシング内に供給される。
The EGR cooler is used to cool high-temperature exhaust gas when returning a part of the high-temperature exhaust gas discharged from an engine such as a vehicle to the intake side of the engine. For the purpose of reducing the weight and size of the EGR cooler, an aluminum EGR cooler in which the material of the casing or the like is aluminum-based is often used.
A flange portion is provided in the casing of the EGR cooler, and the flange portion is fixed to a flange portion formed in an intake manifold provided around the engine with a bolt or the like. The intake manifold has a high temperature due to the temperature of exhaust gas discharged from the engine, and the temperature is transferred to the casing body via the flange portion of the EGR cooler.
It is the flange portion that has the highest temperature in the casing of the EGR cooler. If it is not cooled, it will rise to a temperature close to the exhaust gas temperature of the engine. In the case of an aluminum flange portion, it is necessary to maintain the temperature at 200 ° C. or lower in order to maintain its strength.
Patent Document 1 discloses a cooling structure that cools a flange portion of an EGR cooler. In the cooling structure of Patent Document 1, a cooling path is formed in the flange portion on the intake manifold side that fixes the flange portion of the EGR cooler. Specifically, a groove portion is formed in the joint surface of the flange portion of the intake manifold, and the joint surface of the flange portion on the EGR cooler side is brought into close contact with the joint surface, whereby the surface of the groove portion is closed and the cooling water flow passage is formed. Form.
In the above structure, the cooling water of the EGR cooler is first supplied to the cooling passage formed in the flange portion on the intake manifold side, and then the cooling water flowing out from the discharge side passes through a through hole provided in the flange portion on the EGR cooler side. Through the casing.
特開2003−314376号公報JP 2003-314376 A
 特許文献1に開示された冷却構造は、吸気マニホールド側のフランジ部に特殊な溝部を形成している。このような形状の大きな吸気マニホールド側のフランジを特殊形状に加工するには手間がかかる上に、吸気マニホールド全体構造が複雑化し、コスト増加の一因になる畏れがある。
 本発明は、上記の問題を解決することを課題とする。
In the cooling structure disclosed in Patent Document 1, a special groove is formed in the flange portion on the intake manifold side. It takes time to process such a large flange on the intake manifold side into a special shape, and the overall structure of the intake manifold is complicated, which may increase the cost.
An object of the present invention is to solve the above problems.
 請求項1に記載の本発明は、気体を冷却水で冷却し熱交換するコア、気体流通路、および冷却水流通路がそれぞれケーシング内部に形成され、さらに気体流通路に連通する気体流入部と気体流出部、および冷却水流通路に連通する冷却水流入部と冷却水流出部がそれぞれケーシングに形成され、前記気体流入部がフランジ部を介して外部の気体供給管に連通されるアルミ製EGRクーラのフランジ部冷却構造において、
 前記フランジ部は、平板状に形成され、その内部に流通路が形成され、該流通路は冷却水供給管に連通していることを特徴とするアルミ製EGRクーラのフランジ部冷却構造である。
 請求項2に記載の発明は、前記平板状のフランジ部が複数枚のプレートからなる積層構造をしていることを特徴とする請求項1に記載のアルミ製EGRクーラのフランジ部冷却構造である。
 請求項3に記載の発明は、前記平板状のフランジ部が2枚の外プレートの間に中間プレートを配置した3層構造になっており、前記流通路は気体供給管を貫通させる貫通孔の周りを迂回するように形成されていることを特徴とする請求項2に記載のアルミ製EGRクーラのフランジ部冷却構造である。
 請求項4に記載の発明は、前記ケーシングが管状に形成され、その軸方向の一端部にフランジ部が固定され、フランジ部のフランジ面は該軸方向に平行な面に形成され、前記冷却水流入部がフランジを介して冷却水供給管に連通していることを特徴とする請求項1~請求項3に記載のアルミ製EGRクーラのフランジ部冷却構造である。
 請求項5に記載の発明は、前記ケーシングが管状に形成され、その軸方向の一端部にフランジ部が固定され、フランジ部のフランジ面は該軸方向に垂直な面に形成されていることを特徴とする請求項1~請求項3に記載のアルミ製EGRクーラのフランジ部冷却構造である。
In the first aspect of the present invention, a gas inflow portion and a gas are formed in the casing, each of which includes a core for cooling the gas with cooling water and exchanging heat, a gas flow passage, and a cooling water flow passage. A cooling water inflow portion and a cooling water outflow portion communicating with the outflow portion and the cooling water flow passage are formed in the casing, respectively, and the gas inflow portion communicates with an external gas supply pipe via a flange portion. In the flange cooling structure,
The flange portion is formed in a flat plate shape, a flow passage is formed therein, and the flow passage communicates with a cooling water supply pipe. The flange cooling structure of the aluminum EGR cooler is characterized in that
The invention according to claim 2 is the flange cooling structure of the aluminum EGR cooler according to claim 1, wherein the flat flange portion has a laminated structure including a plurality of plates. .
According to a third aspect of the present invention, the flat flange portion has a three-layer structure in which an intermediate plate is disposed between two outer plates, and the flow passage has a through hole that penetrates the gas supply pipe. The flange part cooling structure for an aluminum EGR cooler according to claim 2, wherein the flange part cooling structure is formed so as to bypass the periphery.
According to a fourth aspect of the present invention, the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, a flange surface of the flange portion is formed in a plane parallel to the axial direction, and the cooling water 4. The flange cooling structure for an aluminum EGR cooler according to claim 1, wherein the inflow portion communicates with the cooling water supply pipe via the flange.
According to a fifth aspect of the present invention, the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, and the flange surface of the flange portion is formed in a plane perpendicular to the axial direction. 4. The flange part cooling structure for an aluminum EGR cooler according to claim 1, wherein the flange part cooling structure is an aluminum EGR cooler.
 前記第1の発明は、前記フランジ部が平板状に形成され、その内部に流通路が形成され、該流通路は前記冷却水供給管に連通していることを特徴とする。
 このようにケーシング側のフランジ部と、フランジ部の冷却機構を一体化させることにより、その製造が容易化されると共に、吸気マニホールド等の固定相手側の構造が複雑化することを回避できる。その結果、熱交換システム全体の構成や構造が簡略化され、メンテナンスやコスト面の効果も大きい。
 前記第2の発明は、前記フランジ部が複数枚のプレートからなる積層構造をしていることを特徴とする。
 このように構成すると、フランジ部の内部に設けられる流通路が容易に加工できる。
 前記第3の発明は、前記平板状のフランジ部が2枚の外プレートの間に中間プレートを配置した3層構造とされ、前記流通路は気体供給管を貫通させる貫通孔の周りを迂回するように形成されている。
 このように構成すると、発熱源である気体供給管の貫通周囲を効率よく冷却することができる。また2枚の外プレートの間に中間プレートを配置した3層構造とすることにより、フランジ部が容易に加工できると共に、全体の厚さも薄くできる。そのためフランジ部の構造もより簡単化し且つ小型化される。
 前記第4の発明は、前記ケーシングが管状に形成され、その軸方向の一端部にフランジ部が固定され、フランジ部のフランジ面は該軸方向に平行な面に形成され、前記冷却水流入部がフランジを介して冷却水供給管に連通していることを特徴とする。
 このように構成したケーシングは、ケーシングの軸方向と平行な方向に吸気マニホールド等の接合面が配置される場合に好適に適用できる。また、フランジ内部の冷却水流通路と冷却水供給管との連通に、特別な配管が不要となる。
 本発明の第5の発明は、前記ケーシングが管状に形成され、その軸方向の一端部にフランジ部が固定され、フランジ部のフランジ面は該軸方向に垂直な面に形成されていることを特徴とする。
 このように構成したケーシングは、ケーシングの軸方向と直角な方向に吸気マニホールド等の接合面が配置される場合に好適に適用できる。
The first invention is characterized in that the flange portion is formed in a flat plate shape, a flow passage is formed therein, and the flow passage communicates with the cooling water supply pipe.
Thus, by integrating the flange portion on the casing side and the cooling mechanism of the flange portion, the manufacture thereof is facilitated, and it is possible to avoid complication of the structure on the fixed counterpart side such as the intake manifold. As a result, the configuration and structure of the entire heat exchange system are simplified, and maintenance and cost effects are great.
The second invention is characterized in that the flange portion has a laminated structure including a plurality of plates.
If comprised in this way, the flow path provided in the inside of a flange part can be processed easily.
In the third aspect of the present invention, the flat plate flange portion has a three-layer structure in which an intermediate plate is disposed between two outer plates, and the flow path bypasses around a through hole that penetrates the gas supply pipe. It is formed as follows.
If comprised in this way, the penetration circumference | surroundings of the gas supply pipe | tube which is a heat generating source can be cooled efficiently. Further, by adopting a three-layer structure in which an intermediate plate is disposed between two outer plates, the flange portion can be easily processed and the overall thickness can be reduced. Therefore, the structure of the flange portion is further simplified and reduced in size.
In the fourth aspect of the invention, the casing is formed in a tubular shape, a flange portion is fixed to one axial end portion thereof, a flange surface of the flange portion is formed in a plane parallel to the axial direction, and the cooling water inflow portion Is communicated with the cooling water supply pipe through a flange.
The casing configured in this manner can be suitably applied when a joint surface such as an intake manifold is disposed in a direction parallel to the axial direction of the casing. Further, no special piping is required for communication between the cooling water flow passage inside the flange and the cooling water supply pipe.
According to a fifth aspect of the present invention, the casing is formed in a tubular shape, a flange portion is fixed to one end portion in the axial direction, and the flange surface of the flange portion is formed in a plane perpendicular to the axial direction. Features.
The casing configured in this manner can be suitably applied when a joint surface such as an intake manifold is disposed in a direction perpendicular to the axial direction of the casing.
 図1は第1の実施形態のフランジ部の分解斜視図。
 図2は図1のフランジ部をケーシングに固定する際の状態を示す斜視図。
 図3は図1に示すフランジ部をケーシングに固定した後、フランジ部の上側の外プレートを仮に外したと想定した斜視図。
 図4は第2の実施形態のフランジ部をケーシングに固定した状態を示す底面図。
 図5は図4におけるフランジ部の拡大斜視図。
 図6は図5に示すフランジ部の分解斜視図。
 図7は図3に示すフランジ部に冷却水を流通させた状態の温度分布を模式的に示す図。
 図8は図3に示すフランジ部に冷却水を流通させない状態の温度分布を模式的に示す図。
 図9は2枚のプレートから成るフランジ部の例1。
 図10は2枚のプレートから成るフランジ部の例2。
 図11は2枚のプレートから成るフランジ部の例3。
FIG. 1 is an exploded perspective view of a flange portion according to the first embodiment.
FIG. 2 is a perspective view showing a state when the flange portion of FIG. 1 is fixed to the casing.
FIG. 3 is a perspective view assuming that after fixing the flange portion shown in FIG. 1 to the casing, the outer plate on the upper side of the flange portion is temporarily removed.
FIG. 4 is a bottom view showing a state in which the flange portion of the second embodiment is fixed to the casing.
FIG. 5 is an enlarged perspective view of the flange portion in FIG. 4.
6 is an exploded perspective view of the flange portion shown in FIG.
FIG. 7 is a diagram schematically showing a temperature distribution in a state where cooling water is circulated through the flange portion shown in FIG. 3.
FIG. 8 is a diagram schematically showing a temperature distribution in a state where cooling water is not circulated through the flange portion shown in FIG. 3.
FIG. 9 shows an example 1 of a flange portion composed of two plates.
FIG. 10 shows an example 2 of a flange portion composed of two plates.
FIG. 11 shows an example 3 of a flange portion composed of two plates.
 図1に示すアルミ製のフランジ部1は、上下2枚の外プレート2、3と、それらの間に装着する中間プレート4を備え、各プレートの外形は方形に近い形状になっている。2枚の外プレート2、3と中間プレート4の中央部に近い部分には気体供給管を貫通するための断面形状が偏平状で楕円形の貫通孔5が互いに重なる位置に設けられる。なお本実施形態においては、気体供給管の断面形状が楕円形の場合に適用できるように、上記貫通孔5の断面形状をそれに合わせて楕円形になっている。
 上側の外プレート2には冷却水の流入孔6が設けられると共に、隅部の3か所にボルト孔7がそれぞれ設けられる。中間プレート4には貫通孔5を取り囲みそれを迂回するように細長い貫通孔が設けられ、この細長い貫通孔により冷却水の流通路8が形成される。これらボルト孔7はフランジ部1を固定相手のフランジ部にボルトで固定する孔である。
 下側の外プレート3には前記上側の外プレート2の流入孔6に重なるように冷却水の流出孔9が設けられると共に、隅部の3か所にボルト孔7がそれぞれ設けられる。さらに下側の外プレート3におけるボルト孔7の設けられていない隅部には、中間プレート4に形成された流通路8の流出側に連通する冷却水の流出孔9aが設けられる。なお中間プレート4に形成される流通路8の一方の端部(冷却水の流入側)は、上側プレート2の流入孔6と下側プレートの流出孔9に重なっている。
 図2は、図1のフランジ部1をアルミ製のケーシング10に一転鎖線の矢印のように近づけてロウ付けなどにより固定する際の状態を示す。図1のフランジ部1は予め2枚の外プレート2、3の間に中間プレート4を挟んだ状態でロウ付け等により互いに密着させて一体化される。すなわち複数のプレートを積層し互いに密着固定して構成したプレート積層型のフランジ部1を形成しておく。
 ケーシング10の外周面は、その軸方向断面がほぼ方形な管状に形成され、内部に複数のチューブが並列積層したコアと、それに連通する気体流通路および冷却水流通路が形成されている。ケーシング10の軸方向一端部には、気体Aを流入する気体流入部11、冷却水Bを流入する冷却水流入部12および前記フランジ部1の流通路の出口側から流出する冷却水Cを回収して流入させる第2冷却水流入部13が設けられる。そして気体流入部11の開口面は、ケーシング10の軸方向に平行な面になっている。
 ケーシング10の軸方向の他端部には、気体Aを流出する気体流出部14が設けられ、ケーシング10の中間部にはその内部で合流した冷却水B,Cを外部に流出する冷却水流出部15が設けられる。
 ケーシング10の軸方向一端部の周面の一部には、平坦な固定部10aが形成され、その固定部10aにフランジ部1の下側の外プレート3がロウ付け等により固定される。その結果、ケーシング10に固定されたフランジ部1のフランジ面は該軸方向に平行な面に形成される。なおフランジ部1をケーシング10に固定する際は、フランジ部1の流入孔6,9とケーシング10の冷却水流入部12、フランジ部1の冷却水の流出孔9aとケーシング10の冷却水流入部13等をそれぞれ互いに位置合わせする。
 図3は図1のフランジ部1をケーシング10に固定した後、内部に形成された流通路8における冷却水の流通方向を説明するため、フランジ1の上側の外プレート2を仮に外したと想定した場合の斜視図である。上側の外プレート2の流入孔6から流入した冷却水の一部は、下側の外プレート3の流出孔9からケーシング10の冷却水流入部12に流入し、残りの一部は気体供給管用の貫通孔11の周りを迂回する流通路8に沿って出口側の流出孔9aに流れ、そこからケーシングの第2冷却水流入部13に流入する。
 なお上側の外プレート2の流入孔6から流入した冷却水が流出孔9と流通路8に分流する割合は、両者の流通抵抗の比率を変えることにより変化される。例えば流通路8の流通断面と流出孔9の断面の大きさの比率を変えることによりその分流割合を変えることができる。
 図2または図3に示すフランジ部1の流通路8に冷却水を流通させた状態と、冷却水を流通させない状態を実験した結果を図7、図8に模式的に示す。図7は流通路8に冷却水を流通させた状態で、図8は冷却水を流通させない状態である。実験では冷却水を流通させない状態を作るため、フランジ1の上側の外プレート2から流入する冷却水流が流通路8に流入しないように、流通路8の入口側を閉鎖し、全ての冷却水が流出孔9から流出するように設定した。
 図中のハッチング領域は、アルミ製品にとって危険な200℃以上の高温領域を表し、細かい点の集合領域は200℃までは達しないが、比較的温度の高い領域を表している。図7に示すように、冷却水を流通させた状態では、高温の気体供給管が貫通する貫通孔11の内側のみが200℃以上の高温領域になっているが、その外側領域は全て充分に冷却効果が発揮されている。一方、図8に示す冷却水を流通させない場合は、フランジ部1を冷却水が通過する流通孔9付近から離れるに従ってより温度の高い領域が広範囲に発生し、200℃以上の部分もかなり存在する。
 図4は第2の実施形態のフランジ部1をケーシング10に固定した状態を示す底面図である。図4において図1~図3と同様な部分には同一符号を付し、重複する説明は省略する。
 ケーシング10の外周面は、その軸方向断面がほぼ方形な管状に形成され、ケーシング10の軸方向一端部に設けられた気体流入部11の開口面は、ケーシング10の軸方向に垂直な面になっており、該開口面はフランジ部1を固定する固定部10aを形成する。固定部10aにフランジ部1の外プレートがロウ付け等により固定される。その結果、ケーシング10に固定されたフランジ部1のフランジ面は該軸方向に垂直な面となる。
 ケーシング10に冷却水を供給する冷却水供給管からバイパス管1aが分岐しており、分岐したバイパス管1aはフランジ部1の冷却水の流入孔に冷却水を供給し、冷却水の流出孔から流出する冷却水をケーシング10における第2冷却水流入部13に回収する。このようなバイパス管方式とすることにより、フランジ部1とケーシング部10に分流する冷却水の分流割合を、調整弁等により容易に設定もしくは変更することができる。
 図5は図4に示すフランジ部1の拡大斜視図で、図6は図5に示すフランジ部1の分解斜視図である。フランジ部1は、2つの外プレート2,3と中間プレート4を互いに固定した平板状のプレート積層型となっている。フランジ部1の外周形状は方形であり、その中心軸に気体供給管を貫通する貫通孔5が設けられる。なお本実施形態では、気体供給管の断面図形状が円形の場合に適用できるように、上記貫通孔5の断面形状をそれに合わせて円形になっている。
 なお、分解斜視図である図6において、図面右側の外プレート2に形成した貫通孔5の周縁に円形の筒体2aが設けられており、2つの外プレート2,3と中間プレート4を組み合わせる際に、その筒体2aが中間プレート4の貫通孔5を貫通し、その先端が外プレート3の貫通孔5に挿入される。そして筒体2aの外周面と中間プレート4の内周面の間に、図5に示されているような冷却水の流通路8が形成される。なお筒体2aの内径はそれを貫通する気体供給管の外径に適合している。
 以上、3枚のプレートによるフランジ部1の構造を説明したが、図9と図10、図11に示すように、2枚のプレートからなるフランジ部1であっても良い。
 図9のものは、第1の実施形態の他の例であり、中間プレート4の替りに、2枚のプレート2、3のうち、1枚に溝加工がされ、その溝部分により流通路8が形成され、他1枚は流通路の形成されない単なる蓋となっている。
 図10のものは、第1の実施形態のさらに他の例であり、2枚のプレート2、3ともに溝加工が施され、それらの溝が合わさって1つの流通路8が形成される。
 図11のものは、第2の実施形態の他の例であり、図5の変形例である。図9のように、2枚のプレート2、3のうち、1枚に溝加工がされ、その溝部分により流通路8が形成され、他1枚は流通路の形成されない単なる蓋となっている。図10の例のように、2枚のプレート2、3の夫々に溝加工を施こすこともできる。
An aluminum flange portion 1 shown in FIG. 1 includes two upper and lower outer plates 2 and 3 and an intermediate plate 4 mounted between them, and the outer shape of each plate has a shape close to a square. A portion close to the center of the two outer plates 2 and 3 and the intermediate plate 4 is provided at a position where the cross-sectional shape for penetrating the gas supply pipe is flat and elliptical through-holes 5 overlap each other. In the present embodiment, the cross-sectional shape of the through hole 5 is elliptical so as to be applicable when the cross-sectional shape of the gas supply pipe is elliptical.
The upper outer plate 2 is provided with cooling water inflow holes 6 and bolt holes 7 at three corners. The intermediate plate 4 is provided with an elongated through hole so as to surround and circumvent the through hole 5, and a cooling water flow passage 8 is formed by the elongated through hole. These bolt holes 7 are holes for fixing the flange portion 1 to the flange portion of the fixing counterpart with bolts.
The lower outer plate 3 is provided with cooling water outflow holes 9 so as to overlap with the inflow holes 6 of the upper outer plate 2, and bolt holes 7 are respectively provided at three corners. Further, a cooling water outflow hole 9 a communicating with the outflow side of the flow passage 8 formed in the intermediate plate 4 is provided at a corner of the lower outer plate 3 where the bolt hole 7 is not provided. Note that one end (the cooling water inflow side) of the flow passage 8 formed in the intermediate plate 4 overlaps the inflow hole 6 of the upper plate 2 and the outflow hole 9 of the lower plate.
FIG. 2 shows a state in which the flange portion 1 of FIG. 1 is brought close to the aluminum casing 10 as indicated by an arrow of a chain line and fixed by brazing or the like. The flange portion 1 shown in FIG. 1 is integrated by being brought into close contact with each other by brazing or the like with an intermediate plate 4 sandwiched between two outer plates 2 and 3 in advance. That is, a plate stacking type flange portion 1 formed by stacking a plurality of plates and closely fixing them to each other is formed.
The outer peripheral surface of the casing 10 is formed in a tubular shape having a substantially rectangular cross section in the axial direction, and a core in which a plurality of tubes are laminated in parallel, and a gas flow passage and a cooling water flow passage communicating therewith are formed. At one end in the axial direction of the casing 10, a gas inflow portion 11 that flows in the gas A, a cooling water inflow portion 12 that flows in the cooling water B, and the cooling water C that flows out from the outlet side of the flow path of the flange portion 1 are collected. Thus, a second cooling water inflow portion 13 is provided. The opening surface of the gas inflow portion 11 is a surface parallel to the axial direction of the casing 10.
The other end of the casing 10 in the axial direction is provided with a gas outflow portion 14 through which the gas A flows out, and the cooling water outflow through which the cooling waters B and C merged inside the casing 10 flow out to the outside. A part 15 is provided.
A flat fixing portion 10a is formed on a part of the circumferential surface at one axial end of the casing 10, and the outer plate 3 below the flange portion 1 is fixed to the fixing portion 10a by brazing or the like. As a result, the flange surface of the flange portion 1 fixed to the casing 10 is formed in a plane parallel to the axial direction. When the flange portion 1 is fixed to the casing 10, the inflow holes 6 and 9 of the flange portion 1, the cooling water inflow portion 12 of the casing 10, the outflow hole 9 a of the cooling water of the flange portion 1, and the cooling water inflow portion of the casing 10. 13 etc. are aligned with each other.
FIG. 3 assumes that the outer plate 2 on the upper side of the flange 1 is temporarily removed in order to explain the flow direction of the cooling water in the flow passage 8 formed inside after fixing the flange portion 1 of FIG. 1 to the casing 10. FIG. A part of the cooling water flowing in from the inflow hole 6 of the upper outer plate 2 flows into the cooling water inflow part 12 of the casing 10 from the outflow hole 9 of the lower outer plate 3, and the remaining part is for the gas supply pipe. It flows into the outflow hole 9a on the outlet side along the flow path 8 that bypasses the periphery of the through hole 11 and then flows into the second cooling water inflow portion 13 of the casing.
Note that the ratio of the coolant flowing in from the inflow hole 6 of the upper outer plate 2 to the outflow hole 9 and the flow passage 8 is changed by changing the ratio of the flow resistance between the two. For example, by changing the ratio of the cross-sectional size of the flow passage 8 and the cross-section of the outflow hole 9, the flow dividing ratio can be changed.
FIG. 7 and FIG. 8 schematically show the results of experiments in which the cooling water is circulated through the flow passage 8 of the flange portion 1 shown in FIG. 2 or FIG. 3 and the state where the cooling water is not circulated. 7 shows a state in which cooling water is circulated through the flow passage 8, and FIG. 8 shows a state in which cooling water is not circulated. In the experiment, in order to create a state in which the cooling water is not circulated, the inlet side of the flow passage 8 is closed so that the cooling water flow flowing from the outer plate 2 on the upper side of the flange 1 does not flow into the flow passage 8. It was set to flow out from the outflow hole 9.
The hatched area in the figure represents a high temperature area of 200 ° C. or more, which is dangerous for an aluminum product, and the aggregate area of fine dots does not reach 200 ° C., but represents a relatively high temperature area. As shown in FIG. 7, in the state where the cooling water is circulated, only the inside of the through-hole 11 through which the high-temperature gas supply pipe penetrates is a high-temperature region of 200 ° C. or more, but all the outside regions are sufficient. The cooling effect is demonstrated. On the other hand, when the cooling water shown in FIG. 8 is not circulated, a region having a higher temperature is generated in a wider range as the distance from the vicinity of the circulation hole 9 through which the cooling water passes through the flange portion 1, and there is a considerable portion of 200 ° C. .
FIG. 4 is a bottom view showing a state in which the flange portion 1 of the second embodiment is fixed to the casing 10. 4, parts that are the same as those in FIGS. 1 to 3 are given the same reference numerals, and redundant descriptions are omitted.
The outer peripheral surface of the casing 10 is formed in a tubular shape having a substantially rectangular cross section in the axial direction, and the opening surface of the gas inflow portion 11 provided at one axial end portion of the casing 10 is a surface perpendicular to the axial direction of the casing 10. The opening surface forms a fixing portion 10 a for fixing the flange portion 1. The outer plate of the flange portion 1 is fixed to the fixing portion 10a by brazing or the like. As a result, the flange surface of the flange portion 1 fixed to the casing 10 is a surface perpendicular to the axial direction.
A bypass pipe 1a is branched from a cooling water supply pipe for supplying cooling water to the casing 10, and the branched bypass pipe 1a supplies cooling water to the cooling water inflow hole of the flange portion 1 from the cooling water outflow hole. The cooling water flowing out is collected in the second cooling water inflow portion 13 in the casing 10. By adopting such a bypass pipe system, it is possible to easily set or change the diversion ratio of the cooling water diverted to the flange portion 1 and the casing portion 10 using an adjustment valve or the like.
5 is an enlarged perspective view of the flange portion 1 shown in FIG. 4, and FIG. 6 is an exploded perspective view of the flange portion 1 shown in FIG. The flange portion 1 is a flat plate laminated type in which two outer plates 2 and 3 and an intermediate plate 4 are fixed to each other. The outer peripheral shape of the flange part 1 is a square, and the through-hole 5 which penetrates a gas supply pipe is provided in the central axis. In the present embodiment, the cross-sectional shape of the through-hole 5 is circular according to the shape so that it can be applied when the cross-sectional shape of the gas supply pipe is circular.
In FIG. 6, which is an exploded perspective view, a circular cylinder 2a is provided at the periphery of the through hole 5 formed in the outer plate 2 on the right side of the drawing, and the two outer plates 2 and 3 and the intermediate plate 4 are combined. At this time, the cylindrical body 2 a passes through the through hole 5 of the intermediate plate 4, and its tip is inserted into the through hole 5 of the outer plate 3. A cooling water flow passage 8 as shown in FIG. 5 is formed between the outer peripheral surface of the cylinder 2 a and the inner peripheral surface of the intermediate plate 4. The inner diameter of the cylindrical body 2a is adapted to the outer diameter of the gas supply pipe passing therethrough.
The structure of the flange portion 1 using three plates has been described above. However, as shown in FIGS. 9, 10, and 11, the flange portion 1 including two plates may be used.
FIG. 9 shows another example of the first embodiment. Instead of the intermediate plate 4, one of the two plates 2 and 3 is grooved, and the flow path 8 is formed by the groove portion. Is formed, and the other one is a simple lid without a flow passage.
FIG. 10 shows still another example of the first embodiment. Both the two plates 2 and 3 are grooved, and the grooves are joined together to form one flow passage 8.
The thing of FIG. 11 is another example of 2nd Embodiment, and is a modification of FIG. As shown in FIG. 9, one of the two plates 2 and 3 is grooved, and the flow passage 8 is formed by the groove portion, and the other one is a simple lid without the flow passage. . As in the example of FIG. 10, groove processing can be performed on each of the two plates 2 and 3.
 本発明のフランジ部冷却構造は、自動車などの車両におけるアルミ製EGRクーラのフランジ部を冷却するために利用できる。 The flange part cooling structure of the present invention can be used to cool the flange part of an aluminum EGR cooler in a vehicle such as an automobile.
 1 フランジ部
 1a バイパス管
 2 外プレート
 2a 筒体
 3 外プレート
 4 中間プレート
 5 貫通孔
 6 流入孔
 7 ボルト孔
 8 流通路
 9 流出孔
 9a 流出孔
 10 ケーシング
 10a 固定部
 11 気体流入部
 12 冷却水流入部
 13 第2冷却水流入部
 14 気体流出部
 15 冷却水流出部
 A 気体
 B,C 冷却水
DESCRIPTION OF SYMBOLS 1 Flange part 1a Bypass pipe 2 Outer plate 2a Cylindrical body 3 Outer plate 4 Intermediate plate 5 Through hole 6 Inflow hole 7 Bolt hole 8 Flow path 9 Outflow hole 9a Outflow hole 10 Casing 10a Fixed part 11 Gas inflow part 12 Cooling water inflow part 13 Second cooling water inflow portion 14 Gas outflow portion 15 Cooling water outflow portion A Gas B, C Cooling water

Claims (5)

  1.  気体を冷却水で冷却し熱交換するコア、気体流通路、および冷却水流通路がそれぞれケーシング(10)内部に形成され、さらに気体流通路に連通する気体流入部(11)と気体流出部(14)、および冷却水流通路に連通する冷却水流入部(12)と冷却水流出部(15)がそれぞれケーシング(10)に形成され、前記気体流入部(11)がフランジ部(1)を介して外部の気体供給管に連通されるアルミ製EGRクーラのフランジ部冷却構造において、
     前記フランジ部(1)は、平板状に形成され、その内部に流通路(8)が形成され、該流通路(8)は冷却水供給管に連通していることを特徴とするアルミ製EGRクーラのフランジ部冷却構造。
    A core for cooling the gas with cooling water and exchanging heat, a gas flow path, and a cooling water flow path are formed inside the casing (10), respectively, and a gas inflow part (11) and a gas outflow part (14) communicating with the gas flow path. ), And a cooling water inflow portion (12) and a cooling water outflow portion (15) communicating with the cooling water flow passage are respectively formed in the casing (10), and the gas inflow portion (11) is interposed via the flange portion (1). In the flange cooling structure of the aluminum EGR cooler communicated with the external gas supply pipe,
    The flange portion (1) is formed in a flat plate shape, a flow passage (8) is formed therein, and the flow passage (8) communicates with a cooling water supply pipe. Cooler flange cooling structure.
  2.  前記平板状のフランジ部(1)が複数枚のプレートからなる積層構造をしていることを特徴とする請求項1に記載のアルミ製EGRクーラのフランジ部冷却構造。 The flange portion cooling structure for an aluminum EGR cooler according to claim 1, wherein the flat flange portion (1) has a laminated structure composed of a plurality of plates.
  3.  前記平板状のフランジ部(1)は、2枚の外プレート(2),(3)の間に中間プレート(4)を配置した3層構造であり、前記流通路(8)は気体供給管を貫通させる貫通孔(5)の周りを迂回するように形成されていることを特徴とする請求項2に記載のアルミ製EGRクーラのフランジ部冷却構造。 The flat flange portion (1) has a three-layer structure in which an intermediate plate (4) is disposed between two outer plates (2) and (3), and the flow passage (8) is a gas supply pipe. The flange portion cooling structure for an aluminum EGR cooler according to claim 2, wherein the flange portion cooling structure is formed so as to bypass the periphery of the through hole (5) that passes through the aluminum EGR cooler.
  4.  前記ケーシング(10)は管状に形成され、その軸方向の一端部にフランジ部(1)が固定され、フランジ部(1)のフランジ面は該軸方向に平行な面に形成され、前記冷却水流入部(12)がフランジ(1)を介して冷却水供給管に連通していることを特徴とする請求項1~請求項3に記載のアルミ製EGRクーラのフランジ部冷却構造。 The casing (10) is formed in a tubular shape, and a flange portion (1) is fixed to one end portion in the axial direction. The flange surface of the flange portion (1) is formed in a plane parallel to the axial direction, and the cooling water 4. The flange cooling structure for an aluminum EGR cooler according to claim 1, wherein the inflow portion (12) communicates with the cooling water supply pipe via the flange (1).
  5.  前記ケーシング(10)は管状に形成され、その軸方向の一端部にフランジ部(1)が固定され、フランジ部(1)のフランジ面は該軸方向に垂直な面に形成されていることを特徴とする請求項1~請求項3に記載のアルミ製EGRクーラのフランジ部冷却構造。 The casing (10) is formed in a tubular shape, the flange portion (1) is fixed to one end portion in the axial direction, and the flange surface of the flange portion (1) is formed in a plane perpendicular to the axial direction. The flange cooling structure for an aluminum EGR cooler according to any one of claims 1 to 3, wherein
PCT/JP2016/087129 2015-12-07 2016-12-06 Cooling structure for flange of aluminum egr cooler WO2017099259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017555183A JPWO2017099259A1 (en) 2015-12-07 2016-12-06 Flange cooling structure for aluminum EGR cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-238717 2015-12-07
JP2015238717 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017099259A1 true WO2017099259A1 (en) 2017-06-15

Family

ID=59014258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087129 WO2017099259A1 (en) 2015-12-07 2016-12-06 Cooling structure for flange of aluminum egr cooler

Country Status (2)

Country Link
JP (1) JPWO2017099259A1 (en)
WO (1) WO2017099259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677202B2 (en) 2018-03-27 2020-06-09 Ford Global Technologies, Llc System for exhaust gas recirculation tube alignment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100883U (en) * 1978-12-28 1980-07-14
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
US20090165449A1 (en) * 2006-02-24 2009-07-02 Behr Gmbh & Co. Kg Valve for regulating an exhaust gas flow of an internal combustion engine, heat exchanger for exhaust gas cooling, system having at least one valve and having at least one heat exchanger
JP2010090881A (en) * 2008-10-13 2010-04-22 Denso Corp Heat exchanger for exhaust gas
JP2012002481A (en) * 2010-06-21 2012-01-05 Denso Corp Exhaust heat exchanging device
JP2013113482A (en) * 2011-11-28 2013-06-10 Maruyasu Industries Co Ltd U-turn type heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100883U (en) * 1978-12-28 1980-07-14
US20090165449A1 (en) * 2006-02-24 2009-07-02 Behr Gmbh & Co. Kg Valve for regulating an exhaust gas flow of an internal combustion engine, heat exchanger for exhaust gas cooling, system having at least one valve and having at least one heat exchanger
JP2009133607A (en) * 2007-10-30 2009-06-18 Denso Corp Heat exchanger
JP2010090881A (en) * 2008-10-13 2010-04-22 Denso Corp Heat exchanger for exhaust gas
JP2012002481A (en) * 2010-06-21 2012-01-05 Denso Corp Exhaust heat exchanging device
JP2013113482A (en) * 2011-11-28 2013-06-10 Maruyasu Industries Co Ltd U-turn type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677202B2 (en) 2018-03-27 2020-06-09 Ford Global Technologies, Llc System for exhaust gas recirculation tube alignment

Also Published As

Publication number Publication date
JPWO2017099259A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US20110308778A1 (en) Egr cooler
JP5696031B2 (en) Exhaust heat recovery device
RU2020107386A (en) IN-WHEEL MOTOR WITH COOLING DUCTS AND COOLING SHIRT
US9897387B2 (en) Heat exchanger with double-walled tubes
US9702292B2 (en) Exhaust heat recovery device
US10330399B2 (en) Heat exchanger and heat exchanger tank
WO2005008055A1 (en) Egr cooler
JP2015155692A5 (en)
JP2017172864A5 (en)
US9995250B2 (en) Exhaust gas heat exchanger
US20140000848A1 (en) Exhaust-gas heat exchanger
WO2017099259A1 (en) Cooling structure for flange of aluminum egr cooler
JP2010014111A (en) Integrated water-cooled air-cooling intercooler for reciprocating air compressor
JP2015031509A (en) Heat exchange device and heat exchanger assembly
US20130183140A1 (en) Fan shroud with cooling passage
CN103867334A (en) Gasket and cylinder head gasket
JP2009114923A (en) Egr cooler
JP6243114B2 (en) Intercooler
JP2016142509A (en) Water-cooling cooler
JP2012018966A (en) Plate-type heatsink
WO2014103253A1 (en) Heat exchanger
WO2016138797A1 (en) Cylindrical member for cooling and heating
JP2007298228A (en) Heat exchanging device
US20160265475A1 (en) Cylinder Head/Cylinder Block Joint
JP2016098672A (en) Turbine housing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873151

Country of ref document: EP

Kind code of ref document: A1