WO2017099121A1 - Method for storing treatment liquid for semiconductor devices and treatment liquid-containing body - Google Patents

Method for storing treatment liquid for semiconductor devices and treatment liquid-containing body Download PDF

Info

Publication number
WO2017099121A1
WO2017099121A1 PCT/JP2016/086368 JP2016086368W WO2017099121A1 WO 2017099121 A1 WO2017099121 A1 WO 2017099121A1 JP 2016086368 W JP2016086368 W JP 2016086368W WO 2017099121 A1 WO2017099121 A1 WO 2017099121A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
semiconductor device
storage container
mass
hydroxylamine
Prior art date
Application number
PCT/JP2016/086368
Other languages
French (fr)
Japanese (ja)
Inventor
祐継 室
智美 高橋
智威 高橋
清水 哲也
朗子 吉井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59013161&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017099121(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187014632A priority Critical patent/KR102067444B1/en
Priority to JP2017555097A priority patent/JP6518788B2/en
Publication of WO2017099121A1 publication Critical patent/WO2017099121A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0073Anticorrosion compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • C11D2111/22

Definitions

  • the present invention relates to a method for storing a processing liquid for a semiconductor device and a processing liquid container.
  • Semiconductor devices such as a CCD (Charge-Coupled Device) and a memory are manufactured by forming a fine electronic circuit pattern on a substrate using a photolithography technique. Specifically, a resist film is applied on a laminated film such as a metal film (for example, Co, W), an interlayer insulating film, etc., which is a wiring material formed on the substrate, and a photolithography process / dry etching process (for example, Manufactured through a plasma etching process).
  • a metal film for example, Co, W
  • an interlayer insulating film etc.
  • a photoresist stripping process for stripping mainly organic components such as photoresist is performed by a stripping means such as a dry ashing process (for example, plasma ashing process). Is done.
  • a dry ashing process for example, plasma ashing process
  • Patent Document 1 discloses a composition containing hydroxylamine as a reducing agent in the treatment liquid.
  • the present inventors have examined the time-lapse performance of the treatment liquid containing hydroxylamine described in Patent Document 1, and have found that the residue removal performance may deteriorate. More specifically, generally, the processing liquid is refrigerated and stored at a predetermined temperature when not in use, and the processing liquid is taken out from the refrigerated storage and returned to room temperature when used. When the present inventors repeatedly carried out a series of operations in which the treatment liquid was kept refrigerated for a predetermined time and allowed to stand at room temperature for a predetermined time, the residue removal performance of the treatment liquid deteriorated. I know that there is a case to go. Therefore, there has been a demand for a storage method that suppresses the deterioration of the residue removal performance of the treatment liquid even if the temperature environment changes as described above.
  • this invention is a storage method of the processing liquid for semiconductor devices containing any 1 type chosen from hydroxylamine and hydroxylamine salt, Comprising: Even if it repeats the temperature environment change of refrigeration storage and room temperature still, it becomes a processing liquid It is an object of the present invention to provide a method for storing a processing liquid for a semiconductor device that is unlikely to deteriorate the residue removal performance and a processing liquid container.
  • the present inventors have found that there is a correlation between the degradation of the residue removal performance of the treatment liquid and the porosity in the storage container that contains this treatment liquid.
  • the present invention has been completed. That is, it has been found that the above object can be achieved by the following configuration.
  • a method for storing a semiconductor device processing solution wherein a semiconductor device processing solution containing at least any one selected from hydroxylamine and hydroxylamine salt and water is stored in a storage container.
  • a method for storing a processing liquid for a semiconductor device wherein the porosity in the storage container is 0.01 to 30% by volume.
  • the porosity is calculated
  • Porosity ⁇ 1 ⁇ (volume of the semiconductor device treatment liquid in the storage container / volume of the storage container) ⁇ ⁇ 100
  • Porosity ⁇ 1 ⁇ (volume of the semiconductor device treatment liquid in the storage container / volume of the storage container) ⁇ ⁇ 100 (12)
  • the material of the inner wall of the storage container is high density polyethylene, high density polypropylene, 6,6-nylon, tetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, polychlorotrifluoroethylene, ethylene (11) or (12), which is one or more resins selected from a chlorotrifluoroethylene copolymer, an ethylene / tetrafluoroethylene copolymer, and a tetrafluoroethylene / hexafluoropropylene copolymer
  • a storage method for a semiconductor device processing solution containing any one selected from hydroxylamine and hydroxylamine salt and the processing solution can be used even when repeated temperature environment changes such as refrigeration storage and standing at room temperature are repeated. It is possible to provide a method for storing a processing liquid for a semiconductor device and a processing liquid container that are unlikely to cause degradation of residue removal performance.
  • the dry etching residue is a by-product generated by performing dry etching (for example, plasma etching), for example, an organic residue derived from a photoresist, a Si-containing residue, and a metal. Refers to the contained residue. In the following description, the dry etching residue may be simply referred to as “residue”.
  • the dry ash residue is a by-product generated by performing dry ashing (for example, plasma ashing), for example, an organic residue derived from a photoresist, an Si-containing residue, and Refers to a metal-containing residue.
  • dry ashing for example, plasma ashing
  • the description that does not indicate substitution and non-substitution is the one that has a substituent together with the one that does not have a substituent, as long as the effect of the present invention is not impaired.
  • the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). . This is synonymous also about each compound.
  • preparation in the present specification means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like.
  • the method for storing a semiconductor device treatment liquid (hereinafter also referred to as “treatment liquid”) of the present invention is a semiconductor device treatment comprising at least one selected from hydroxylamine and a hydroxylamine salt, and at least water.
  • Hydroxylamine (or hydroxylamine salt) in the treatment liquid is not only oxygen contained in the treatment liquid but also in the upper space where there is no treatment liquid in the storage container containing the treatment liquid (or the treatment liquid and the upper part). It is considered that partial decomposition is caused also by oxygen at the space interface, and a predetermined decomposition product (hereinafter also referred to as decomposition product X) is generated in the processing liquid.
  • Presence of a certain amount of the decomposed product X in the processing liquid is estimated to have an effect of preventing a reduction in residue removal performance of the processing liquid.
  • the reduction in the residue removal performance of the treatment liquid should be confirmed by preparing a model film of components constituting the residue and observing the reduction in the etching rate due to the treatment liquid. Can do.
  • the porosity is less than 0.01%, the generation of the decomposition product X is not promoted so much in the first place. As a result, the amount of the decomposition product X in the processing solution is small, and the performance degradation of the processing solution is suppressed. It is difficult.
  • the treatment liquid is often used by repeatedly performing the refrigerated storage and the room temperature stationary treatment.
  • the influence of the porosity described above is particularly significant. It is estimated that the difference in performance of the processing liquid is large and is likely to occur.
  • the treatment liquid of the present invention contains at least one selected from hydroxylamine and a hydroxylamine salt and water.
  • the treatment liquid of the present invention contains water as a solvent.
  • the water content is preferably 60 to 98% by mass, more preferably 70 to 95% by mass, based on the total mass of the treatment liquid.
  • ultrapure water used for semiconductor production is preferable.
  • those in which the ion concentration of metal elements of Fe, Co, Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn is reduced are preferable.
  • those adjusted to the ppt order or lower are preferred. Examples of the adjustment method include the methods described in paragraphs [0074] to [0084] of JP2011-110515A.
  • the treatment liquid of the present invention contains at least one selected from hydroxylamine and a hydroxylamine salt. Hydroxylamine and its salt promote decomposition and solubilization of the residue, and further have a corrosion prevention effect on the object to be treated.
  • hydroxylamine according to the hydroxylamine and hydroxylamine salt of the treatment liquid of the present invention refers to a broadly-defined hydroxylamine containing a substituted or unsubstituted alkylhydroxylamine and the like. The effect of the present application can also be obtained.
  • the hydroxylamine is not particularly limited, and preferred embodiments include unsubstituted hydroxylamine and hydroxylamine derivatives.
  • the hydroxylamine derivative is not particularly limited, and examples thereof include O-methylhydroxylamine, O-ethylhydroxylamine, N-methylhydroxylamine, N, N-dimethylhydroxylamine, N, O-dimethylhydroxylamine, N-ethyl.
  • the salt of hydroxylamine is preferably the inorganic acid salt or organic acid salt of hydroxylamine described above, and is a salt of an inorganic acid formed by bonding a nonmetal such as Cl, S, N, and P with hydrogen. More preferred is a salt of any acid selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid.
  • Hydroxylamine salts used to form the treatment liquid of the present invention include hydroxylammonium nitrate (also referred to as HAN), hydroxylammonium sulfate (also referred to as HAS), and hydroxylammonium hydrochloride (also referred to as HAC).
  • HAS hydroxylammonium sulfate
  • HAC hydroxylammonium hydrochloride
  • hydroxylammonium phosphate N, N-diethylhydroxylammonium sulfate, N, N-diethylhydroxylammonium nitrate, and mixtures thereof.
  • an organic acid salt of hydroxylamine can be used, and examples thereof include hydroxylammonium citrate, hydroxylammonium oxalate, and hydroxylammonium fluoride.
  • hydroxylamine or its salt may be sufficient as the processing liquid of this invention.
  • Hydroxylamine or hydroxylamine salt may be used alone or in combination of two or more. Among these, hydroxylamine or hydroxylammonium sulfate is preferable, and hydroxylammonium sulfate is more preferable from the viewpoint that the desired effect of the present invention is remarkably obtained.
  • the content of hydroxylamine and its salt in the treatment liquid is not particularly limited, but is preferably in the range of 0.01 to 40% by mass, more preferably 1 to 30% by mass with respect to the total mass of the treatment liquid of the present invention. It is preferably 4 to 25% by mass, more preferably 12 to 18% by mass.
  • the treatment liquid of the present invention may contain a fluoride.
  • Fluoride promotes decomposition and solubilization of the residue.
  • the fluoride is not particularly limited, but hydrofluoric acid (HF), fluorosilicic acid (H 2 SiF 6 ), fluoroboric acid, fluorosilicate ammonium salt ((NH 4 ) 2 SiF 6 ), hexafluorophosphoric acid Tetramethylammonium, ammonium fluoride, ammonium fluoride salt, ammonium bifluoride salt, quaternary ammonium tetrafluoroborate represented by the formula NR 4 BF 4 (for example, tetramethylammonium tetrafluoroborate, tetrafluoroborate) Tetraethylammonium acid, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate (TBA-BF 4 ) and the like,
  • Fluoride may be used alone or in combination of two or more.
  • Rs are the same or different from each other. It's okay.
  • R represents hydrogen, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group), and a carbon number of 6 ⁇ 10 aryl groups and the like.
  • Fluoride may be used alone or in combination of two or more. Among the above, ammonium fluoride or fluorosilicic acid is preferable.
  • the content thereof is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the total mass of the treatment liquid of the present invention. 0.1 to 1% by mass is more preferable.
  • the present inventors have found that the content of Fe ions contained in the treatment liquid of the present invention has a great influence on various performances. In particular, the desired effect of the present invention becomes remarkable when Fe ions interact with at least one selected from hydroxylamine and salts thereof. In general, it is preferable that the amount of metal ions is small, but in the present invention, a specific amount of Fe ions is preferably included.
  • the content of Fe ions is preferably 10 mass ppt to 10 mass ppm, preferably 1 mass ppb to 1 mass ppm, with respect to the total mass of the treatment liquid of the present invention.
  • the content of Fe ions is a mass ratio with respect to at least one content selected from hydroxylamine and a salt thereof (the total amount when a plurality of compounds selected from hydroxylamine and a salt thereof are included). And preferably 5 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 10 , more preferably 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 10 , and 5 ⁇ 10 ⁇ 6 to 5 ⁇ 10 ⁇ 7 . More preferably. By setting it as the said structure, the residue removal performance of a process liquid improves more.
  • Fe ions are usually components that can be included as impurities in solvents, drugs, and the like. Therefore, the solvent contained in the treatment liquid and / or the prepared treatment liquid can be prepared in a desired amount by purifying it by means such as distillation and ion exchange resin. The amount of Fe ions in the treatment liquid can be measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
  • the treatment liquid of the present invention preferably contains a corrosion inhibitor.
  • the corrosion inhibitor has a function of eliminating over-etching of a metal (for example, Co, W) that becomes a wiring film.
  • the corrosion inhibitor is not particularly limited.
  • 1,2,4-triazole (TAZ) 5-aminotetrazole (ATA), 5-amino-1,3,4-thiadiazole-2-thiol, 3-amino -1H-1,2,4 triazole, 3,5-diamino-1,2,4-triazole, tolyltriazole, 3-amino-5-mercapto-1,2,4-triazole, 1-amino-1,2 , 4-triazole, 1-amino-1,2,3-triazole, 1-amino-5-methyl-1,2,3-triazole, 3-mercapto-1,2,4-triazole, 3-isopropyl-1 , 2,4-triazole, naphthotriazole, 1H-tetrazole-5-acetic acid,
  • a substituted or unsubstituted benzotriazole as a corrosion inhibitor.
  • the substituted benzotriazole for example, an benzotriazole substituted with an alkyl group, an aryl group, a halogen group, an amino group, a nitro group, an alkoxy group, or a hydroxyl group is preferable.
  • the substituted benzotriazole may be condensed with one or more aryl (eg, phenyl) or heteroaryl groups.
  • Substituted or unsubstituted benzotriazoles include, for example, benzotriazole (BTA), 1-hydroxybenzotriazole, 5-phenylthiol-benzotriazole, 5-chlorobenzotriazole, 4-chlorobenzotriazole, 5 -Bromobenzotriazole, 4-bromobenzotriazole, 5-fluorobenzotriazole, 4-fluorobenzotriazole, naphthotriazole, tolyltriazole, 5-phenyl-benzotriazole, 5-nitrobenzotriazole, 4-nitrobenzotriazole, 2- (5-amino-pentyl) -benzotriazole, 1-amino-benzotriazole, 5-methyl-1H-benzotriazole, benzotriazole-5-carboxylic acid, 4-methylbenzotri Sol, 4-ethylbenzotriazole, 5-ethylbenzotriazole, 4-propylbenzotriazole, 5-propylbenz
  • the corrosion inhibitor is preferably at least one selected from the group consisting of compounds represented by the following formulas (A) to (C) and substituted or unsubstituted tetrazole. More preferably, it is at least one selected from the group consisting of compounds represented by formulas (A) to (C).
  • R 1A to R 5A each independently represents a hydrogen atom, a substituent or an unsubstituted hydrocarbon group, a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group. However, the structure contains at least one group selected from a hydroxyl group, a carboxy group, and a substituted or unsubstituted amino group.
  • R 1B to R 4B each independently represents a hydrogen atom, a substituent, or an unsubstituted hydrocarbon group.
  • R 1C, R 2C and R N are each independently represent a hydrogen atom, a substituent or unsubstituted hydrocarbon group. R 1C and R 2C may be bonded to form a ring.
  • the hydrocarbon group represented by R 1A to R 5A is an alkyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6, and particularly preferably 1-3), alkenyl group (The carbon number is preferably 2-12, more preferably 2-6), an alkynyl group (the carbon number is preferably 2-12, more preferably 2-6), an aryl group (the carbon number is 6-22). 6 to 14 are more preferable, and 6 to 10 are more preferable.) And aralkyl groups (the carbon number is preferably 7 to 23, more preferably 7 to 15, and further preferably 7 to 11). .
  • the substituent examples include a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group (the substituent is preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 3 carbon atoms). Is more preferable).
  • the structure includes a hydroxyl group, a carboxy group, and a substituted or unsubstituted amino group (the substituent is preferably an alkyl group having 1 to 6 carbon atoms, and having 1 to 6 carbon atoms). 3 alkyl groups are more preferable).
  • examples of the substituent or unsubstituted hydrocarbon group represented by R 1A to R 5A include an unsubstituted hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, a carboxy group, or an amino group. And a hydrocarbon group having 1 to 6 carbon atoms substituted with a group.
  • examples of the compound represented by the formula (A) include 1-thioglycerol, L-cysteine, thiomalic acid, and the like.
  • the hydrocarbon groups and substituents represented by R 1B to R 4B have the same meanings as the hydrocarbons and substituents represented by R 1A to R 5A in the formula (A) described above.
  • the substituted or unsubstituted hydrocarbon group represented by R 1B to R 4B include hydrocarbon groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a t-butyl group. It is done.
  • Examples of the compound represented by the formula (B) include catechol and t-butylcatechol.
  • R 1C hydrocarbon groups and substituents represented by R 2C and R N, respectively and hydrocarbon and substituents represented by R 1A ⁇ R 5A of formula (A) described above synonymous is there.
  • R 1C, as a substituted or unsubstituted hydrocarbon group represented by R 2C and R N are, for example, include a methyl group, an ethyl group, a propyl group and a hydrocarbon group having 1 to 6 carbon atoms such as butyl group, It is done.
  • R 1C and R 2C may be combined to form a ring, and examples thereof include a benzene ring.
  • R 1C and R 2C are combined to form a ring, it may further have a substituent (for example, a hydrocarbon group having 1 to 5 carbon atoms).
  • a substituent for example, a hydrocarbon group having 1 to 5 carbon atoms.
  • Examples of the compound represented by the formula (C) include 1H-1,2,3-triazole, benzotriazole, and 5-methyl-1H-benzotriazole. Etc.
  • substituted or unsubstituted tetrazole examples include, in addition to the unsubstituted tetrazole, a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group as a substituent (the substituent includes an alkyl group having 1 to 6 carbon atoms).
  • the substituent includes an alkyl group having 1 to 6 carbon atoms.
  • tetrazole having an alkyl group having 1 to 3 carbon atoms is more preferable.
  • the content of the corrosion inhibitor is preferably 0.01 to 5% by mass, more preferably 0.05 to 5% by mass with respect to the total mass of the treatment liquid of the present invention. More preferably, the content is 0.1 to 3% by mass.
  • the treatment liquid may further contain a chelating agent.
  • the chelating agent chelates with the oxidized metal contained in the residue.
  • it does not specifically limit as a chelating agent, It is preferable that it is polyamino polycarboxylic acid.
  • the polyaminopolycarboxylic acid is a compound having a plurality of amino groups and a plurality of carboxylic acid groups. Examples of the polyaminopolycarboxylic acid include mono- or polyalkylene polyamine polycarboxylic acid, polyaminoalkane polycarboxylic acid, polyaminoalkanol polycarboxylic acid, and hydroxyalkyl ether polyamine polycarboxylic acid.
  • polyaminopolycarboxylic acid examples include butylene diamine tetraacetic acid, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetrapropionic acid, triethylenetetraminehexaacetic acid, 1,3-diamino-2-hydroxypropane-N, N, N ′, N'-tetraacetic acid, propylenediaminetetraacetic acid, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, 1,6-hexamethylene-diamine-N, N , N ′, N′-tetraacetic acid, N, N-bis (2-hydroxybenzyl) ethylenediamine-N, N-diacetic acid, diaminopropanetetraacetic acid, 1,4,7,10-tetraaza
  • ethylenediaminetetraacetic acid EDTA
  • diethylenetriaminepentaacetic acid DTPA
  • trans-1,2-diaminocyclohexanetetraacetic acid is preferred.
  • Chelating agents may be used alone or in combination of two or more.
  • the content of the chelating agent is preferably 0.01 to 5% by mass, and more preferably 0.01 to 3% by mass with respect to the total mass of the treatment liquid of the present invention.
  • the treatment liquid of the present invention preferably contains a water-soluble organic solvent.
  • the water-soluble organic solvent can promote the solubilization of additive components and organic residue, and can further improve the corrosion prevention effect.
  • a water-soluble organic solvent For example, water-soluble alcohol, water-soluble ketone, water-soluble ester, water-soluble ether (for example, glycol diether) etc. are mentioned.
  • water-soluble alcohol examples include alkane diol (for example, including alkylene glycol), glycol, alkoxy alcohol (for example, including glycol monoether), saturated aliphatic monohydric alcohol, unsaturated non-aromatic monohydric alcohol, and And low molecular weight alcohols containing a ring structure.
  • alkanediol examples include 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl-1,3-diol, 1,4-butanediol, 1,3-butanediol, Examples include 1,2-butanediol, 2,3-butanediol, pinacol, and alkylene glycol.
  • alkylene glycol examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tetraethylene glycol.
  • alkoxy alcohol examples include 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, and 1-methoxy-2-butanol.
  • glycol monoether examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol mono n-butyl ether, diethylene glycol monomethyl ether, and diethylene glycol.
  • saturated aliphatic monohydric alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and Examples include 1-hexanol.
  • Examples of the unsaturated non-aromatic monohydric alcohol include aryl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, and 4-penten-2-ol.
  • Examples of the low molecular weight alcohol containing a ring structure include tetrahydrofurfuryl alcohol, furfuryl alcohol, 1,3-cyclopentanediol, and the like.
  • water-soluble ketones include acetone, propanone, cyclobutanone, cyclopentanone, cyclohexanone, diacetone alcohol, 2-butanone, 5-hexanedione, 1,4-cyclohexanedione, 3-hydroxyacetophenone, 1,3-cyclohexane.
  • Examples include dione and cyclohexanone.
  • water-soluble esters examples include glycol monoesters such as ethyl acetate, ethylene glycol monoacetate, and diethylene glycol monoacetate, and propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, And glycol monoether monoesters such as ethylene glycol monoethyl ether acetate.
  • the water-soluble organic solvents may be used alone or in appropriate combination of two or more.
  • water-soluble organic solvents water-soluble alcohols are preferable, alkanediols, glycols, and alkoxy alcohols are more preferable, alkoxy alcohols are more preferable, ethylene glycol monobutyl ether, tripropylene glycol, from the viewpoint of further improving the corrosion prevention effect.
  • Monomethyl ether or diethylene glycol monoethyl ether is particularly preferred.
  • the content of the water-soluble organic solvent in the treatment liquid is preferably 0.1 to 15% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the treatment liquid of the present invention.
  • the pH of the treatment liquid of the present invention is not particularly limited, but is preferably not less than pKa of hydroxylamine and a conjugate acid of hydroxylamine salt.
  • the pH of the treatment liquid of the present invention is not less than the pKa of the hydroxylamine and the conjugate acid of the hydroxylamine salt, residue removal properties are dramatically improved.
  • the pKa of the conjugate acid of hydroxylamine is about 6.
  • the treatment liquid of the present invention is preferably adjusted to pH 6-11.
  • the treatment liquid contains a pH adjusting agent. Moreover, if pH of a process liquid is in the said range, both are excellent in a corrosion rate and a residue removal performance.
  • the lower limit of the pH of the treatment liquid is preferably 6.5 or more, more preferably 7 or more, and still more preferably 7.5 or more, from the viewpoint of detergency.
  • the upper limit is preferably 10.5 or less, more preferably 10 or less, further preferably 9.5 or less, and 8.5 or less from the viewpoint of corrosion inhibition. Particularly preferred.
  • As a measuring method of pH it can measure using a well-known pH meter.
  • pH adjuster Although a well-known thing can be used as a pH adjuster, generally it is preferable that a metal ion is not included.
  • the pH adjuster include ammonium hydroxide, monoamines, imines (eg, 1,8-diazabicyclo [5.4.0] undec-7-ene, and 1,5-diazabicyclo [4.3.0]. Non-5-ene etc.), 1,4-diazabicyclo [2.2.2] octane, and guanidine salts (for example, guanidine carbonate).
  • ammonium hydroxide or imines for example, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, etc.
  • the pH adjusters may be used alone or in appropriate combination of two or more.
  • the content of the pH adjusting agent is not particularly limited as long as the desired pH of the treatment liquid can be achieved.
  • the content of the pH adjuster may be 0.1 to 5% by mass with respect to the total mass of the treatment liquid in the treatment liquid. Desirably, 0.1 to 2% by mass is more desirable.
  • the treatment liquid of the present invention preferably contains quaternary ammonium hydroxides.
  • residue removal performance can be further improved, and it can also function as a pH adjuster.
  • the quaternary ammonium hydroxide is preferably a compound represented by the following general formula (4).
  • R 4A to R 4D each independently represents an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a benzyl group, or an aryl group.
  • R 4A to R 4D each independently represent an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, and a butyl group), a hydroxyalkyl group having 1 to 6 carbon atoms ( For example, it represents a hydroxymethyl group, a hydroxyethyl group, and a hydroxybutyl group), a benzyl group, or an aryl group (for example, a phenyl group, a naphthyl group, and a naphthalene group). Of these, an alkyl group, a hydroxyethyl group, or a benzyl group is preferable.
  • the compound represented by the formula (4) include tetramethylammonium hydroxide, tetrabutylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methyltri (hydroxyethyl) ammonium hydroxide, tetra It is preferably at least one quaternary ammonium hydroxide selected from the group consisting of (hydroxyethyl) ammonium hydroxide, trimethylbenzylammonium hydroxide, and choline. Among them, in the present invention, tetramethylammonium hydroxide, tetraethyl are preferred.
  • ammonium hydroxide More preferred is ammonium hydroxide, benzyltrimethylammonium hydroxide, choline, or tetrabutylammonium hydroxide. Quaternary ammonium hydroxides may be used alone or in combination of two or more.
  • the content of the quaternary ammonium hydroxide is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass, based on the total mass of the treatment liquid of the present invention. preferable.
  • the treatment liquid preferably contains alkanolamines from the viewpoint of preventing corrosion while promoting solubilization of the additive components and organic residue.
  • the alkanolamines may be any of primary amines, secondary amines, and tertiary amines, and are preferably monoamines, diamines, or triamines, and more preferably monoamines.
  • the alkanol group of the amine preferably has 1 to 5 carbon atoms.
  • a compound represented by the following formula (5) is preferable.
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a hydroxyethyl group, and R 3 represents a hydrogen atom or a hydroxyethyl group, provided that (In the formula, at least one alkanol group is included)
  • the alkanolamines include monoethanolamine, diethanolamine, triethanolamine, tert-butyldiethanolamine, isopropanolamine, 2-amino-1-propanol, 3-amino-1-propanol, and isobutanolamine.
  • 2-amino-2-ethoxy-propanol, and 2-amino-2-ethoxy-ethanol also known as diglycolamine.
  • Alkanolamines may be used alone or in combination of two or more.
  • the content of alkanolamines is preferably 0.1 to 80% by mass, more preferably 0.5 to 60% by mass, based on the total mass of the treatment liquid of the present invention. More preferably, the content is 0.5 to 20% by mass.
  • the treatment liquid of the present invention may contain other additives as long as the effects of the present invention are achieved.
  • other additives include surfactants and antifoaming agents.
  • a treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, a corrosion inhibitor, a chelating agent, and a water-soluble organic solvent.
  • a treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, a corrosion inhibitor, a water-soluble organic solvent and / or alkanolamines.
  • a treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, and fluoride.
  • the Fe ion content is preferably the above-described content
  • the Fe ion and hydroxylamine compound content hydroxylamine and
  • the content ratio (mass ratio) with respect to the total amount when a plurality of compounds selected from the salt are included is preferably the content ratio described above.
  • the treatment liquid of the present invention is preferably filtered with a filter for the purpose of removing foreign substances and reducing defects.
  • the material of the filter can be used without particular limitation as long as it has been conventionally used for filtration and the like, for example, a fluororesin such as PTFE (polytetrafluoroethylene), a polyamide system such as nylon Resins, and polyolefin resins (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP).
  • a fluororesin such as PTFE (polytetrafluoroethylene)
  • a polyamide system such as nylon Resins
  • polyolefin resins including high density and ultra high molecular weight
  • polyethylene and polypropylene (PP) polypropylene
  • polypropylene including high density polypropylene
  • nylon is preferable.
  • the pore size of the filter is suitably about 0.001 to 1.0 ⁇ m, preferably about 0.02 to 0.5 ⁇ m, more preferably about 0.01 to 0.1 ⁇ m. By setting this range, it is possible to reliably remove fine foreign matters such as impurities and aggregates contained in the liquid while suppressing clogging of filtration.
  • filters different filters may be combined. Filtering in each filter may be performed only once or may be performed twice or more. This filtering twice or more means, for example, a case where the liquid is circulated and filtering is performed twice or more by the same filter.
  • the filtering can be performed by combining different filters as described above.
  • the second and subsequent hole diameters are the same or larger than the first filtering hole diameter.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • the commercially available filter can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.), KITZ Micro Filter Co., Ltd. and the like.
  • the second filter can be a filter formed of the same material as the first filter described above.
  • the pore size of the second filter is suitably about 0.01 to 1.0 ⁇ m, preferably about 0.1 to 0.5 ⁇ m. By setting it as this range, when the component particles are contained in the liquid, the foreign matters mixed in the liquid can be removed while the component particles remain. For example, only a part of the components of the treatment liquid to be finally prepared is mixed in advance to prepare a mixed liquid, and the mixed liquid is filtered by the first filter, and then the first filter is used. The remaining components for constituting the treatment liquid may be added to the mixed liquid after filtering, and the second filtering may be performed on the mixed liquid.
  • the treatment liquid of the present invention preferably has few impurities in the liquid, such as a metal content.
  • the Na, K, and Ca ion concentrations in the liquid are preferably in the range of 5 ppm (mass basis) or less.
  • the treatment liquid does not substantially contain coarse particles.
  • the coarse particles contained in the treatment liquid are particles such as dust, dust, organic solids, and inorganic solids contained as impurities in the raw material, and dust and dust brought in as contaminants during the preparation of the treatment liquid. These include particles such as organic solids and inorganic solids, which finally exist as particles without being dissolved in the treatment liquid.
  • the number of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measuring apparatus in a light scattering type in-liquid particle measurement method using a laser as a light source.
  • the treatment liquid of the present invention has an ion concentration of a metal (a metal element of Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn) excluding Fe contained as an impurity in the liquid.
  • a metal a metal element of Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn
  • the metal concentration may be lower than the ppm order, that is, ppb order or less. More preferably, it is more preferably in the order of ppt (all the above concentrations are based on mass), and it is particularly preferable that the concentration is not substantially contained.
  • the material of the storage container that stores the processing liquid is more preferably a resin from the viewpoint of no metal elution.
  • the material of the inner wall of the storage part for storing the processing liquid in the storage container is preferably a resin.
  • the resin include high density polyethylene (HDPE), high density polypropylene (PP), 6,6-nylon, tetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA).
  • the material of the inner wall of the accommodating part is preferably a fluorine-based resin containing fluorine atoms in the molecule.
  • a fluorine-based resin containing fluorine atoms in the molecule.
  • a FluoroPure PFA composite drum manufactured by Entegris can be cited.
  • the containers described on page 4 of JP-T-3-502677, page 3 of WO 2004/016526 pamphlet, pages 9 and 16 of WO 99/46309 pamphlet, etc. Can be used.
  • the pressure in the storage container is preferably a pressure near atmospheric pressure, more preferably 96000 to 106000 Pa, and further preferably 99000 to 103300 Pa.
  • the storage container preferably has a plurality of openings that can be sealed with a lid, a valve, or the like in the upper part of the container in order to facilitate control of the porosity. That is, by removing the lid, the valve, and the like, it is possible to exchange the gas in the storage container and the atmosphere through the opening.
  • at least one of the plurality of openings is preferably a gas vent provided with a gas venting function, and more preferably has a gas vent valve at the gas vent.
  • the degassing valve may be in a form (method) integrated with the opening of the container or in a form (method) that is separate from the opening and can be attached at the time of use.
  • a compound selected from hydroxylamine and a salt thereof contained in the treatment liquid of the present invention may decompose in a storage state to produce a gas containing nitrogen oxides and the like. This decomposition is more likely to occur in the presence of carbon dioxide or in a high temperature environment. Therefore, it is preferable to store at the storage temperature mentioned later from a viewpoint of maintaining the effect of the present invention. Further, the treatment liquid of the present invention may be stored in an atmosphere of an inert gas such as nitrogen gas. In this case, it is preferable that the storage container has a mechanism in which a void in the storage container is filled with an inert gas.
  • a storage container having a function of taking out a gas containing nitrogen oxides generated by decomposition of a compound selected from hydroxylamine and a salt thereof from the container, and a plurality of openings as described above.
  • a mode in which at least one opening is a gas vent provided with a gas venting function are more preferable, and it is particularly preferable that the gas vent has a gas vent valve.
  • the porosity in the storage container when the processing liquid is stored in the storage container is 0.01 to 30% by volume, and the deterioration of the residue removal performance of the processing liquid is further suppressed. 1 to 25% by volume is more preferable, and 12 to 20% by volume is still more preferable. When the porosity is 0.01 to 30% by volume, the effect of the present invention becomes remarkable.
  • the porosity is calculated
  • Porosity ⁇ 1- (Volume of processing solution for semiconductor device in storage container / container volume of storage container) ⁇ ⁇ 100
  • the container volume of the storage container means the volume of the storage container that stores the processing liquid.
  • the volume of the processing liquid in the storage container means the volume of the processing liquid accommodated in the storage container. Note that the space that is not filled with the processing liquid in the storage container contains air containing oxygen.
  • the liquid temperature of the treatment liquid in the storage container is from room temperature standing (around 25 ° C., preferably 23 to 27 ° C.) to refrigerated storage (5 ° C.) from the viewpoint of achieving the effects of the present invention. And a temperature range of 0 to 7 ° C. is preferable, and a temperature range of 0 to 5 ° C. is more preferable. Even when the treatment liquid of the present invention is stored under the above-mentioned thermocycle environment at room temperature and refrigerated storage, the residue removal performance is unlikely to deteriorate.
  • the temperature at which the treatment liquid is sealed in the storage container is preferably 20 to 25 ° C.
  • the treatment liquid container of the present invention includes a storage container, a treatment liquid for semiconductor devices, containing at least one selected from hydroxylamine and hydroxylamine salt, and water, contained in the storage container. And the porosity in the storage container is 0.01 to 30% by volume.
  • the processing liquid container is intended to be one in which the semiconductor device processing liquid is stored in a storage container.
  • the porosity is calculated
  • about the suitable aspect and effect of a processing liquid container it is the same as that of the aspect demonstrated in said storage method of a processing liquid.
  • the processing liquid for semiconductor devices is appropriately used in each process when manufacturing a semiconductor device.
  • it can be used as a cleaning solution for removing residues after the dry etching step, and a stripping solution for stripping a resist film and a permanent film (for example, a color filter). .
  • cleaning liquid can be suitably applied as a cleaning liquid after a dry etching process using a metal hard mask as a mask.
  • the material constituting the metal hard mask preferably includes, for example, one or more of Cu, Co, W, AlOx, AlN, AlOxNy, WOx, Ti, TiN, ZrOx, HfOx, and TaOx.
  • a dry etching process for example, a dry ashing process
  • a dry ashing process optionally performed after a dry etching process using a metal hard mask.
  • the following treatment liquids A to M were prepared (all pH 7 to 11).
  • the obtained treatment liquid was purified by passing through an ion exchange membrane, and Fe ions in the treatment liquid were removed.
  • content (mass%) of the various components to be used is as showing in a table
  • HA Hydroxylamine (BASF)
  • HAS hydroxylammonium sulfate (manufactured by BASF)
  • DPTA Diethylenetriaminepentaacetic acid (manufactured by Chubu Kirest Co., Ltd.)
  • EGBE ethylene glycol monobutyl ether (manufactured by Wako Pure Chemical Industries, Ltd.)
  • PH adjuster> DBU: 1,8-diazabicyclo [5.4.0] undec-7-ene (manufactured by San Apro)
  • NH 4 OH ammonium hydroxide (Wako Pure Chemical Industries, Ltd.)
  • NH 4 F ammonium fluoride (Wako Pure Chemical Industries, Ltd.)
  • each treatment liquid is brought into contact with the TiO film, and the TiO film is etched, and the etching rate is set.
  • ER Fr. (B) Etching rate after thermocycle test (ER Age ) Porosities shown in Tables 1 to 13 at 25 ° C. and atmospheric pressure (porosity (volume%) ⁇ 1 ⁇ (volume of processing liquid for semiconductor device in storage container / volume of storage container) ⁇ ⁇ 100 ),
  • ER Age Etching rate after thermocycle test
  • Porosity (volume%) ⁇ 1 ⁇ (volume of processing liquid for semiconductor device in storage container / volume of storage container) ⁇ ⁇ 100 )
  • Each of the treatment liquids A to M was sealed in a resin container.
  • the resin container is an Aicero Chemical clean bottle, and the total capacity of the container is 500 ml.
  • a thermocycle test was repeated for 180 days with a cycle of 4 hours at 25 ° C.
  • the TiO film was etched using the treatment liquid after the thermocycle test, and the etching rate (etching rate) was defined as ER Age .
  • etching rate maintenance rate (%) ER Age / ER Fr ⁇ 100) was calculated, Evaluation was performed according to the following evaluation criteria. ⁇ Etching rate maintenance rate (%)> "1": 60% or less "2": Over 60% to 70% or less "3": Over 70% to 80% or less "4": Over 80% to 90% or less "5": Over 90% to 95% “6”: Over 95% to 100%
  • the porosity was 0.01 to 30% by volume (preferably 1 to 25% by volume, more preferably 12 to 20% by volume) in any of the treatment liquids used. It was confirmed that the decrease in the etching rate was sometimes suppressed (in other words, the etching rate was maintained satisfactorily). From these results, it can be seen that if the porosity is a predetermined porosity, deterioration of the residue removal performance is suppressed. On the other hand, when the porosity was out of the numerical range of 0.01 to 30% by volume, a decrease in the etching rate was confirmed.
  • Examples A11 to 17 Next, in the formulation of the treatment liquid A, treatment liquids 2A to 7A with different amounts of hydroxylamine as shown in Table 14 were prepared, and the same method as in Example A1 with the void ratio in the container being 15% by volume. A thermocycle test was conducted. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated. The results are shown in Table 14.
  • Examples B11 to 17 Next, in the prescription of the treatment liquid B, treatment liquids 2B to 7B with different amounts of hydroxylamine salt as shown in Table 15 were prepared, all of which were the same as in Example B1 with the porosity in the container being 15% by volume.
  • the thermocycle test was carried out by the method. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated. The results are shown in Table 15.
  • the content of at least one compound selected from hydroxylamine and hydroxyamine salt was 4 to 25% by mass (preferably 12 to 18% by mass) with respect to the total mass of the treatment liquid. In some cases, it was confirmed that the decrease in the etching rate was further suppressed (in other words, the etching rate was kept good).
  • Example A21 to Example A27 the Fe ion content in the treatment liquid (amount relative to the total mass of the treatment liquid) was prepared as shown in Table 16. Liquids 12A to 17A were prepared, and all were subjected to a thermocycle test in the same manner as in Example A1, with the void ratio in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
  • Example A28 The treatment liquid 28A prepared so that the Fe concentration was 12 mass ppm was prepared from the treatment liquid A prepared above, and evaluation was performed under the same conditions as in Example A21 except that the evaluation was 5. .
  • Fe ions were contained in the treatment liquid at 10 mass ppt to 10 mass ppm (preferably 1 mass ppb to 1 mass ppm, more preferably 1 mass ppb to 50 mass ppb, and still more preferably 1). It was confirmed that the presence of a very small amount (mass ppb to 5 mass ppb) further suppresses the decrease in the etching rate (in other words, the etching rate is maintained satisfactorily).
  • Examples C11, D11, E11, F11, G11 the content of Fe ions in the treatment liquid (amount relative to the total mass of the treatment liquid) is 5 as shown in Table 17.
  • Treatment liquids 2C to 2G adjusted to a mass of ppb were prepared, and all were subjected to a thermocycle test in the same manner as in Example A1, with the void ratio in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
  • Fe ions in the treatment liquid are 10 mass ppt to 10 mass ppm (preferably 1 mass ppb to 1 mass ppm, more preferably 1 mass ppb to 50 mass). It was confirmed that the decrease in the etching rate is further suppressed (in other words, the etching rate is maintained satisfactorily) by being present in a trace amount of ppb, more preferably 1 mass ppb to 5 mass ppb.
  • processing speed maintenance ratio processing speed age / The processing speed Fr ⁇ 100
  • the pH was adjusted by adjusting the amount of choline.
  • it adjusted by adding oxalic acid dihydrate (made by Wako Pure Chemical Industries Ltd.).
  • treatment liquids N1 to N5 having a pH of 5.0 and 6.0, 7.0, 7.5, and 11.0 were prepared.
  • a thermocycle test was carried out in the same manner as in Example A1, with the porosity in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
  • the treatment liquid N1 (pH 5.0) was 3
  • the treatment liquid N2 was 4
  • the treatment liquids N3 to N5 were 5.
  • the etching rate maintenance rate was calculated in the same manner as in Example A1, except that the treatment liquid N3 was sealed in a container provided with a gas vent valve and stored at 70 ° C. for 2 days with a porosity of 15% by volume. And evaluated.
  • the container provided with a gas vent valve was not affected by changes in internal pressure, and there was no change in residue removal performance before and after storage. From this result, even if the storage environment is high temperature, such as outdoors in summer, a container having a gas vent valve is not affected by changes in internal pressure and the like, and the effects of the present invention can be expected to be obtained stably. Is done.

Abstract

The objective of the present invention is to provide: a method for storing a treatment liquid for semiconductor devices containing at least one substance selected from among hydroxylamine and hydroxylamine salts, which is not susceptible to deterioration of the residue removal performance of the treatment liquid even if temperature environment change between cold storage and standing at room temperature is repeated; and a treatment-liquid containing body. A method for storing a treatment liquid for semiconductor devices according to the present invention stores a treatment liquid for semiconductor devices, which contains at least water and at least one substance selected from among hydroxylamine and hydroxylamine salts, in a storage container. According to this method for storing a treatment liquid for semiconductor devices, the void ratio within the storage container is set to 0.01-30% by volume. In this connection the void ratio is obtained by the following formula (1). Formula (1): Void ratio = {1 - (volume of treatment liquid for semiconductor devices within storage container)/(container volume of storage container)} × 100

Description

半導体デバイス用処理液の保管方法、処理液収容体Storage method of processing liquid for semiconductor device, processing liquid container
 本発明は、半導体デバイス用処理液の保管方法、及び、処理液収容体に関する。 The present invention relates to a method for storing a processing liquid for a semiconductor device and a processing liquid container.
 CCD(Charge-Coupled Device)、メモリー等の半導体デバイスは、フォトリソグラフィー技術を用いて、基板上に微細な電子回路パターンを形成して製造される。具体的には、基板上に形成された配線材料となる金属膜(例えば、Co、W)、層間絶縁膜等の積層膜上にレジスト膜を塗布し、フォトリソグラフィー工程・ドライエッチング工程(例えば、プラズマエッチング処理)を経て製造される。
 また、必要に応じて、ドライエッチング工程の後、ドライアッシング工程(例えば、プラズマアッシン処理)等の剥離手段により、主としてフォトレジスト等の有機物由来の成分を剥離するためのフォトレジスト剥離工程が実施される。
Semiconductor devices such as a CCD (Charge-Coupled Device) and a memory are manufactured by forming a fine electronic circuit pattern on a substrate using a photolithography technique. Specifically, a resist film is applied on a laminated film such as a metal film (for example, Co, W), an interlayer insulating film, etc., which is a wiring material formed on the substrate, and a photolithography process / dry etching process (for example, Manufactured through a plasma etching process).
In addition, if necessary, after the dry etching process, a photoresist stripping process for stripping mainly organic components such as photoresist is performed by a stripping means such as a dry ashing process (for example, plasma ashing process). Is done.
 ドライエッチング工程を経た基板は、その金属膜及び層間絶縁膜上に、金属を含んだ残渣物成分であるドライエッチング残渣物が付着している。このため、強い還元力をもち、金属を可溶化できる処理液により、この残渣物を洗浄除去する処理が一般的に行われている。
 例えば、特許文献1では、処理液中に還元剤としてヒドロキシルアミンを含む組成物を開示している。
In the substrate that has undergone the dry etching process, a dry etching residue that is a metal-containing residue component adheres on the metal film and the interlayer insulating film. For this reason, the process which wash | cleans and removes this residue with the process liquid which has a strong reducing power and can solubilize a metal is generally performed.
For example, Patent Document 1 discloses a composition containing hydroxylamine as a reducing agent in the treatment liquid.
特開2012-195590号公報JP 2012-195590 A
 一方、本発明者らは、特許文献1に記載されたヒドロキシルアミンを含む処理液の経時性能について検討を行ったところ、残渣物除去性能が劣化する場合があることを知見している。
 より具体的には、一般的に、処理液は不使用時には所定温度で冷蔵保管され、使用時には処理液を冷蔵保管から取り出し室温に戻して使用する。本発明者らは、処理液を所定時間冷蔵保管した後、処理液を室温下にて所定時間静置する一連の操作を繰り返して実施した際に、処理液の残渣物除去性能が劣化していく場合があることを知見している。
 そのため、上記のような温度環境変化があっても、処理液の残渣物除去性能の劣化が抑制されるような保管方法が望まれていた。
On the other hand, the present inventors have examined the time-lapse performance of the treatment liquid containing hydroxylamine described in Patent Document 1, and have found that the residue removal performance may deteriorate.
More specifically, generally, the processing liquid is refrigerated and stored at a predetermined temperature when not in use, and the processing liquid is taken out from the refrigerated storage and returned to room temperature when used. When the present inventors repeatedly carried out a series of operations in which the treatment liquid was kept refrigerated for a predetermined time and allowed to stand at room temperature for a predetermined time, the residue removal performance of the treatment liquid deteriorated. I know that there is a case to go.
Therefore, there has been a demand for a storage method that suppresses the deterioration of the residue removal performance of the treatment liquid even if the temperature environment changes as described above.
 そこで、本発明は、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれるいずれか1種を含む半導体デバイス用処理液の保管方法であって、冷蔵保管及び室温静置という温度環境変化を繰り返しても処理液に残渣物除去性能の劣化が生じにくい半導体デバイス用処理液の保管方法、及び、処理液収容体を提供することを課題とする。 Then, this invention is a storage method of the processing liquid for semiconductor devices containing any 1 type chosen from hydroxylamine and hydroxylamine salt, Comprising: Even if it repeats the temperature environment change of refrigeration storage and room temperature still, it becomes a processing liquid It is an object of the present invention to provide a method for storing a processing liquid for a semiconductor device that is unlikely to deteriorate the residue removal performance and a processing liquid container.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、処理液の残渣物除去性能の劣化と、この処理液を収容する保管容器内の空隙率とが相関していることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that there is a correlation between the degradation of the residue removal performance of the treatment liquid and the porosity in the storage container that contains this treatment liquid. The present invention has been completed.
That is, it has been found that the above object can be achieved by the following configuration.
(1) ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液を保管容器内に保管する、半導体デバイス用処理液の保管方法であって、
 上記保管容器内の空隙率を0.01~30体積%とする、半導体デバイス用処理液の保管方法。
 なお、空隙率は、以下の式(1)によって求められる。
 式(1):空隙率={1-(上記保管容器内の上記半導体デバイス用処理液の体積/上記保管容器の容器体積)}×100
(2) 上記半導体デバイス用処理液が、さらに、腐食防止剤を含む(1)に記載の半導体デバイス用処理液の保管方法。
(3) 上記半導体デバイス用処理液が、さらに、水溶性有機溶剤及びアルカノールアミン類から選ばれる少なくとも1種を含む(1)又は(2)に記載の半導体デバイス用処理液の保管方法。
(4) 上記半導体デバイス用処理液が、さらに、4級水酸化アンモニウム類を含む(1)~(3)のいずれかに記載の半導体デバイス用処理液の保管方法。
(5) 上記半導体デバイス用処理液が、さらに、フッ化物を含む(1)~(4)のいずれかに記載の半導体デバイス用処理液の保管方法。
(6) 上記半導体デバイス用処理液が、さらに、キレート剤を含む(1)~(5)のいずれかに記載の半導体デバイス用処理液の保管方法。
(7) 上記腐食防止剤が、後述する式(A)~式(C)で表される化合物からなる群より選ばれる少なくとも1種である(2)~(6)のいずれかに記載の半導体デバイス用処理液の保管方法。
(8) 上記半導体デバイス用処理液のpHが6~11である(1)~(7)のいずれかに記載の半導体デバイス用処理液の保管方法。
(9) 上記処理液中、上記ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種の総含有量が、処理液全質量に対して1~30質量%である、(1)~(8)のいずれかに記載の半導体デバイス用処理液の保管方法。
(10) 上記処理液中、Feイオンの含有量が、10質量ppt~10質量ppmである、(1)~(9)のいずれかに記載の半導体デバイス用処理液の保管方法。
(11) 保管容器と、上記保管容器内に収容された、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液とを有する処理液収容体であって、上記保管容器内の空隙率が0.01~30体積%である、処理液収容体。
 なお、空隙率は、以下の式(1)によって求められる。
 式(1):空隙率={1-(上記保管容器内の上記半導体デバイス用処理液の体積/上記保管容器の容器体積)}×100
(12) 上記保管容器の内壁の材質が樹脂である、(11)に記載の処理液収容体。
(13) 上記保管容器の内壁の材質が、高密度ポリエチレン、高密度ポリプロピレン、6,6-ナイロン、テトラフルオロエチレン、テトラフルオロエチレンとパーフロロアルキルビニルエーテルの共重合体、ポリクロロトリフルオロエチレン、エチレン・クロロトリフルオロエチレン共重合体、エチレン・四フッ化エチレン共重合体、及び、四フッ化エチレン・六フッ化プロピレン共重合体から選ばれる1以上の樹脂である、(11)又は(12)に記載の処理液収容体。
(14) 上記保管容器の内壁の材質が、分子内にフッ素原子を含むフッ素系樹脂である、(11)~(13)のいずれかに記載の処理液収容体。
(15) 上記保管容器が、開口部を複数有する、(11)~(14)のいずれかに記載の処理液収容体。
(1) A method for storing a semiconductor device processing solution, wherein a semiconductor device processing solution containing at least any one selected from hydroxylamine and hydroxylamine salt and water is stored in a storage container. ,
A method for storing a processing liquid for a semiconductor device, wherein the porosity in the storage container is 0.01 to 30% by volume.
In addition, the porosity is calculated | required by the following formula | equation (1).
Formula (1): Porosity = {1− (volume of the semiconductor device treatment liquid in the storage container / volume of the storage container)} × 100
(2) The method for storing a semiconductor device processing liquid according to (1), wherein the semiconductor device processing liquid further includes a corrosion inhibitor.
(3) The method for storing a semiconductor device treatment liquid according to (1) or (2), wherein the semiconductor device treatment liquid further contains at least one selected from water-soluble organic solvents and alkanolamines.
(4) The method for storing a semiconductor device processing solution according to any one of (1) to (3), wherein the semiconductor device processing solution further contains a quaternary ammonium hydroxide.
(5) The method for storing a semiconductor device processing solution according to any one of (1) to (4), wherein the semiconductor device processing solution further contains a fluoride.
(6) The method for storing a semiconductor device processing solution according to any one of (1) to (5), wherein the semiconductor device processing solution further contains a chelating agent.
(7) The semiconductor according to any one of (2) to (6), wherein the corrosion inhibitor is at least one selected from the group consisting of compounds represented by formulas (A) to (C) described later. Storage method for device processing solution.
(8) The method for storing a semiconductor device processing solution according to any one of (1) to (7), wherein the pH of the semiconductor device processing solution is 6 to 11.
(9) The total content of at least one selected from the hydroxylamine and hydroxylamine salt in the treatment liquid is 1 to 30% by mass with respect to the total mass of the treatment liquid, (1) to (8 ) A method for storing a processing solution for a semiconductor device according to any one of the above.
(10) The method for storing a processing liquid for a semiconductor device according to any one of (1) to (9), wherein the content of Fe ions in the processing liquid is 10 mass ppt to 10 mass ppm.
(11) Storage of a processing liquid having a storage container, a processing liquid for semiconductor devices containing at least one selected from hydroxylamine and hydroxylamine salt, and water, stored in the storage container A treatment liquid container having a porosity in the storage container of 0.01 to 30% by volume.
In addition, the porosity is calculated | required by the following formula | equation (1).
Formula (1): Porosity = {1− (volume of the semiconductor device treatment liquid in the storage container / volume of the storage container)} × 100
(12) The processing liquid container according to (11), wherein the material of the inner wall of the storage container is a resin.
(13) The material of the inner wall of the storage container is high density polyethylene, high density polypropylene, 6,6-nylon, tetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, polychlorotrifluoroethylene, ethylene (11) or (12), which is one or more resins selected from a chlorotrifluoroethylene copolymer, an ethylene / tetrafluoroethylene copolymer, and a tetrafluoroethylene / hexafluoropropylene copolymer The treatment liquid container according to 1.
(14) The treatment liquid container according to any one of (11) to (13), wherein the material of the inner wall of the storage container is a fluorine-based resin containing fluorine atoms in the molecule.
(15) The treatment liquid container according to any one of (11) to (14), wherein the storage container has a plurality of openings.
 本発明によれば、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれるいずれか1種を含む半導体デバイス用処理液の保管方法であって、冷蔵保管及び室温静置という温度環境変化を繰り返しても処理液に残渣物除去性能の劣化が生じにくい半導体デバイス用処理液の保管方法、及び、処理液収容体を提供することができる。 According to the present invention, there is provided a storage method for a semiconductor device processing solution containing any one selected from hydroxylamine and hydroxylamine salt, and the processing solution can be used even when repeated temperature environment changes such as refrigeration storage and standing at room temperature are repeated. It is possible to provide a method for storing a processing liquid for a semiconductor device and a processing liquid container that are unlikely to cause degradation of residue removal performance.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明においてドライエッチング残渣物とは、ドライエッチング(例えば、プラズマエッチング)を行うことで生じた副生成物のことであり、例えば、フォトレジスト由来の有機物残渣物、Si含有残渣物、及び、金属含有残渣物をいう。なお、以下の説明においては、ドライエッチング残渣物を単に「残渣物」と称することもある。
 また、本発明においてドライアッシング残渣物とは、ドライアッシング(例えば、プラズマアッシング)を行うことで生じた副生成物のことであり、例えば、フォトレジスト由来の有機物残渣物、Si含有残渣物、及び、金属含有残渣物をいう。
 また、本明細書における基(原子群)の表記において、置換および無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を有する炭化水素基(置換炭化水素基)をも包含するものである。このことは、各化合物についても同義である。
 また、本明細書において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present invention, the dry etching residue is a by-product generated by performing dry etching (for example, plasma etching), for example, an organic residue derived from a photoresist, a Si-containing residue, and a metal. Refers to the contained residue. In the following description, the dry etching residue may be simply referred to as “residue”.
Further, in the present invention, the dry ash residue is a by-product generated by performing dry ashing (for example, plasma ashing), for example, an organic residue derived from a photoresist, an Si-containing residue, and Refers to a metal-containing residue.
In addition, in the description of groups (atom groups) in this specification, the description that does not indicate substitution and non-substitution is the one that has a substituent together with the one that does not have a substituent, as long as the effect of the present invention is not impaired. Is also included. For example, the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). . This is synonymous also about each compound.
In addition, the term “preparation” in the present specification means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like.
 〔半導体デバイス用処理液の保管方法〕
 本発明の半導体デバイス用処理液(以下「処理液」ともいう。)の保管方法は、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液を保管容器内に収容して保管する、半導体デバイス用処理液の保管方法であって、
 上記保管容器内の空隙率を0.01~30体積%とするものである。
 なお、空隙率は、上述した式(1)によって求められる。式(1)について、後段で詳述する。
[Storage method of processing solution for semiconductor devices]
The method for storing a semiconductor device treatment liquid (hereinafter also referred to as “treatment liquid”) of the present invention is a semiconductor device treatment comprising at least one selected from hydroxylamine and a hydroxylamine salt, and at least water. A method for storing a processing liquid for a semiconductor device, storing and storing the liquid in a storage container,
The porosity in the storage container is 0.01 to 30% by volume.
In addition, the porosity is calculated | required by Formula (1) mentioned above. Formula (1) will be described in detail later.
 本発明の半導体デバイス用処理液の保管方法によれば、冷蔵保管及び室温静置という温度環境変化を繰り返しても処理液の残渣物除去性能の劣化を抑制することができる。
 これは、詳細には明らかではないが、以下のように推測される。
 処理液中のヒドロキシルアミン(又はヒドロキシルアミン塩)は、処理液中に含まれる酸素だけでなく、処理液が収容された保管容器中の処理液がない上部の空間中(又は、処理液と上部空間の界面)の酸素によっても一部分解を起こして、処理液中には所定の分解物(以後、分解物Xとも称する)が生成していると考えられる。この分解物Xが、処理液中にある量存在することで、処理液の残渣物除去性能の低下を防ぐ効果があると推定される。なお、後段で詳述するが、処理液の残渣物除去性能の低下は、残渣物を構成する成分のモデル膜を作製して、処理液によるエッチングレートの低下を観察することにより、確認することができる。
 上述した空隙率が0.01%未満の場合は、そもそも分解物Xの生成があまり促進されないため、結果として、処理液中での分解物Xの量が少なく、処理液の性能低下を抑制することが難しい。一方、空隙率が30%超の場合、分解物Xが比較的生成されるものの、得られた分解物Xが更に分解されて、別の分解物になりやすく、別の分解物になると本発明の効果が得られなくなる、と推測される。
 なお、上述したように、処理液は、冷蔵保管と室温静置との処理を繰り返して使用される場合が多いが、このような温度環境変化の場合には、上述した空隙率による影響が特に大きく、処理液の性能差が生じやすい、と推測される。
According to the method for storing a processing liquid for a semiconductor device of the present invention, it is possible to suppress deterioration of the residue removal performance of the processing liquid even when the temperature environment change such as refrigeration storage and standing at room temperature is repeated.
Although this is not clear in detail, it is estimated as follows.
Hydroxylamine (or hydroxylamine salt) in the treatment liquid is not only oxygen contained in the treatment liquid but also in the upper space where there is no treatment liquid in the storage container containing the treatment liquid (or the treatment liquid and the upper part). It is considered that partial decomposition is caused also by oxygen at the space interface, and a predetermined decomposition product (hereinafter also referred to as decomposition product X) is generated in the processing liquid. Presence of a certain amount of the decomposed product X in the processing liquid is estimated to have an effect of preventing a reduction in residue removal performance of the processing liquid. As will be described in detail later, the reduction in the residue removal performance of the treatment liquid should be confirmed by preparing a model film of components constituting the residue and observing the reduction in the etching rate due to the treatment liquid. Can do.
When the porosity is less than 0.01%, the generation of the decomposition product X is not promoted so much in the first place. As a result, the amount of the decomposition product X in the processing solution is small, and the performance degradation of the processing solution is suppressed. It is difficult. On the other hand, when the porosity is more than 30%, the decomposed product X is relatively generated, but the obtained decomposed product X is further decomposed and easily becomes another decomposed product. It is estimated that the effect of is not obtained.
As described above, the treatment liquid is often used by repeatedly performing the refrigerated storage and the room temperature stationary treatment. However, in the case of such a change in the temperature environment, the influence of the porosity described above is particularly significant. It is estimated that the difference in performance of the processing liquid is large and is likely to occur.
 以下、本発明における処理液、保管容器及び保管条件について詳細に説明する。
(処理液)
 本発明の処理液は、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種と、水と、を含む。
Hereinafter, the treatment liquid, the storage container, and the storage conditions in the present invention will be described in detail.
(Processing liquid)
The treatment liquid of the present invention contains at least one selected from hydroxylamine and a hydroxylamine salt and water.
 <水>
 本発明の処理液は、溶剤として水を含有する。水の含有量は処理液全体の質量に対して60~98質量%であることが好ましく、70~95質量%であることがより好ましい。
 水としては、半導体製造に使用される超純水が好ましい。特に限定されるものではないが、Fe、Co、Na、K、Ca、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属元素のイオン濃度が低減されているものが好ましく、本発明の処理液の調液に用いる際に、pptオーダー若しくはそれ以下に調整されているものが好ましい。調整の方法としては、特開2011-110515号公報段落[0074]から[0084]に記載の方法が挙げられる。
<Water>
The treatment liquid of the present invention contains water as a solvent. The water content is preferably 60 to 98% by mass, more preferably 70 to 95% by mass, based on the total mass of the treatment liquid.
As the water, ultrapure water used for semiconductor production is preferable. Although not particularly limited, those in which the ion concentration of metal elements of Fe, Co, Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn is reduced are preferable. When used for the preparation of the treatment liquid of the present invention, those adjusted to the ppt order or lower are preferred. Examples of the adjustment method include the methods described in paragraphs [0074] to [0084] of JP2011-110515A.
 <ヒドロキシルアミン化合物>
 本発明の処理液は、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種を含有する。ヒドロキシルアミン及びその塩は、残渣物の分解及び可溶化を促進し、さらに処理対象物の腐食防止効果を有する。
<Hydroxylamine compound>
The treatment liquid of the present invention contains at least one selected from hydroxylamine and a hydroxylamine salt. Hydroxylamine and its salt promote decomposition and solubilization of the residue, and further have a corrosion prevention effect on the object to be treated.
 ここで、本発明の処理液のヒドロキシルアミン及びヒドロキシルアミン塩に係る「ヒドロキシルアミン」は、置換若しくは無置換のアルキルヒドロキシルアミン等を含む広義のヒドロキシルアミン類をさすものであって、いずれであっても本願の効果を得ることができる。
 ヒドロキシルアミンとしては、特に限定はされないが、好ましい態様として、無置換ヒドロキシルアミン及びヒドロキシルアミン誘導体が挙げられる。
 ヒドロキシルアミン誘導体としては、特に限定されないが、例えば、O-メチルヒドロキシルアミン、O-エチルヒドロキシルアミン、N-メチルヒドロキシルアミン、N,N-ジメチルヒドロキシルアミン、N,O-ジメチルヒドロキシルアミン、N-エチルヒドロキシルアミン、N,N-ジエチルヒドロキシルアミン、N,O-ジエチルヒドロキシルアミン、O,N,N-トリメチルヒドロキシルアミン、N,N-ジカルボキシエチルヒドロキシルアミン、及びN,N-ジスルホエチルヒドロキシルアミン等が挙げられる。
 ヒドロキシルアミンの塩は、上述したヒドロキシルアミンの無機酸塩又は有機酸塩であることが好ましく、Cl、S、N、及びP等の非金属が水素と結合してできた無機酸の塩であることがより好ましく、塩酸、硫酸、及び硝酸よりなる群から選ばれるいずれかの酸の塩であることが特に好ましい。
 本発明の処理液を形成するのに使われるヒドロキシルアミンの塩としては、ヒドロキシルアンモニウム硝酸塩(HANとも称される)、ヒドロキシルアンモニウム硫酸塩(HASとも称される)、ヒドロキシルアンモニウム塩酸塩(HACとも称される)、ヒドロキシルアンモニウムリン酸塩、N,N-ジエチルヒドロキシルアンモニウム硫酸塩、N,N-ジエチルヒドロキシルアンモニウム硝酸塩、及びこれらの混合物が好ましい。
 また、ヒドロキシルアミンの有機酸塩も使用することができ、ヒドロキシルアンモニウムクエン酸塩、ヒドロキシルアンモニウムシュウ酸塩、及びヒドロキシルアンモニウムフルオライド等が例示できる。
 なお、本発明の処理液は、ヒドロキシルアミン及びその塩をいずれも含んだ形態であってもよい。
 ヒドロキシルアミン又はヒドロキシルアミン塩は、単独でも2種類以上適宜組み合わせて用いてもよい。
 上記の中でも、本発明の所望の効果が顕著に得られる観点で、ヒドロキシルアミン、又はヒドロキシルアンモニウム硫酸塩が好ましく、ヒドロキシルアンモニウム硫酸塩がより好ましい。
Here, “hydroxylamine” according to the hydroxylamine and hydroxylamine salt of the treatment liquid of the present invention refers to a broadly-defined hydroxylamine containing a substituted or unsubstituted alkylhydroxylamine and the like. The effect of the present application can also be obtained.
The hydroxylamine is not particularly limited, and preferred embodiments include unsubstituted hydroxylamine and hydroxylamine derivatives.
The hydroxylamine derivative is not particularly limited, and examples thereof include O-methylhydroxylamine, O-ethylhydroxylamine, N-methylhydroxylamine, N, N-dimethylhydroxylamine, N, O-dimethylhydroxylamine, N-ethyl. Hydroxylamine, N, N-diethylhydroxylamine, N, O-diethylhydroxylamine, O, N, N-trimethylhydroxylamine, N, N-dicarboxyethylhydroxylamine, N, N-disulfoethylhydroxylamine, etc. Is mentioned.
The salt of hydroxylamine is preferably the inorganic acid salt or organic acid salt of hydroxylamine described above, and is a salt of an inorganic acid formed by bonding a nonmetal such as Cl, S, N, and P with hydrogen. More preferred is a salt of any acid selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid.
Hydroxylamine salts used to form the treatment liquid of the present invention include hydroxylammonium nitrate (also referred to as HAN), hydroxylammonium sulfate (also referred to as HAS), and hydroxylammonium hydrochloride (also referred to as HAC). Are preferred), hydroxylammonium phosphate, N, N-diethylhydroxylammonium sulfate, N, N-diethylhydroxylammonium nitrate, and mixtures thereof.
Further, an organic acid salt of hydroxylamine can be used, and examples thereof include hydroxylammonium citrate, hydroxylammonium oxalate, and hydroxylammonium fluoride.
In addition, the form containing both hydroxylamine and its salt may be sufficient as the processing liquid of this invention.
Hydroxylamine or hydroxylamine salt may be used alone or in combination of two or more.
Among these, hydroxylamine or hydroxylammonium sulfate is preferable, and hydroxylammonium sulfate is more preferable from the viewpoint that the desired effect of the present invention is remarkably obtained.
 処理液中におけるヒドロキシルアミン及びその塩の含有量は特に制限されないが、本発明の処理液の全質量に対して、0.01~40質量%の範囲内が好ましく、1~30質量%がより好ましく、4~25質量%が更に好ましく、12~18質量%が特に好ましい。 The content of hydroxylamine and its salt in the treatment liquid is not particularly limited, but is preferably in the range of 0.01 to 40% by mass, more preferably 1 to 30% by mass with respect to the total mass of the treatment liquid of the present invention. It is preferably 4 to 25% by mass, more preferably 12 to 18% by mass.
 <フッ化物>
 本発明の処理液は、フッ化物を含んでいてもよい。フッ化物は、残渣物の分解及び可溶化を促進する。
 フッ化物としては、特に限定されないが、フッ化水素酸(HF)、フルオロケイ酸(HSiF)、フルオロホウ酸、フルオロケイ酸アンモニウム塩((NHSiF)、ヘキサフルオロリン酸テトラメチルアンモニウム、フッ化アンモニウム、フッ化アンモニウム塩、重フッ化アンモニウム塩、式NRBFで表されるテトラフルオロホウ酸第4級アンモニウム(例えば、テトラフルオロホウ酸テトラメチルアンモニウム、テトラフルオロホウ酸テトラエチルアンモニウム、テトラフルオロホウ酸テトラプロピルアンモニウム、及びテトラフルオロホウ酸テトラブチルアンモニウム(TBA-BF)等)、及び、式PRBFで表されるテトラフルオロホウ酸第4級ホスホニウム等が挙げられる。
 フッ化物は、単独でも2種類以上適宜組み合わせて用いてもよい。
 なお、上述の式NRBFで表されるテトラフルオロホウ酸第4級アンモニウム及び式PRBFで表されるテトラフルオロホウ酸第4級ホスホニウムにおいて、Rは、互いに同種又は異種であってよい。Rとしては、水素、直鎖、分岐、又は環状の炭素数1~6のアルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基等)、及び炭素数6~10のアリール基等が挙げられる。これらは更に置換基を含んでいてもよい。
 フッ化物は、単独でも2種類以上適宜組み合わせて用いてもよい。
 上記の中でも、フッ化アンモニウム、又はフルオロケイ酸が好ましい。
 処理液がフッ化物を含有する場合、その含有量は、本発明の処理液の全質量に対して、0.01~10質量%の範囲内が好ましく、0.1~5質量%がより好ましく、0.1~1質量%が更に好ましい。
<Fluoride>
The treatment liquid of the present invention may contain a fluoride. Fluoride promotes decomposition and solubilization of the residue.
The fluoride is not particularly limited, but hydrofluoric acid (HF), fluorosilicic acid (H 2 SiF 6 ), fluoroboric acid, fluorosilicate ammonium salt ((NH 4 ) 2 SiF 6 ), hexafluorophosphoric acid Tetramethylammonium, ammonium fluoride, ammonium fluoride salt, ammonium bifluoride salt, quaternary ammonium tetrafluoroborate represented by the formula NR 4 BF 4 (for example, tetramethylammonium tetrafluoroborate, tetrafluoroborate) Tetraethylammonium acid, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate (TBA-BF 4 ) and the like, and quaternary phosphonium tetrafluoroborate represented by the formula PR 4 BF 4 Can be mentioned.
Fluoride may be used alone or in combination of two or more.
In the above-described quaternary ammonium tetrafluoroborate represented by the formula NR 4 BF 4 and quaternary phosphonium tetrafluoroborate represented by the formula PR 4 BF 4 , Rs are the same or different from each other. It's okay. R represents hydrogen, a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group), and a carbon number of 6 ˜10 aryl groups and the like. These may further contain a substituent.
Fluoride may be used alone or in combination of two or more.
Among the above, ammonium fluoride or fluorosilicic acid is preferable.
When the treatment liquid contains a fluoride, the content thereof is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the total mass of the treatment liquid of the present invention. 0.1 to 1% by mass is more preferable.
 <Feイオン>
 本発明者らは、本発明の処理液中に含まれるFeイオンの含有量が、諸性能に大きな影響があることを見出した。特に、ヒドロキシルアミン及びその塩から選ばれる少なくともいずれか1種と、Feイオンが相互に作用することで、本発明の所望の効果が顕著になる。一般的に金属イオンは少ないことが好ましいとされるが、本発明では、Feイオンが特定量含まれることが好ましい。
 本発明の処理液中、Feイオンの含有量は、本発明の処理液の全質量に対して、10質量ppt~10質量ppmであることが好ましく、1質量ppb~1質量ppmであることがより好ましく、1質量ppb~50質量ppbであることが更に好ましく、1質量ppb~5質量ppbであることが特に好ましい。
 Feイオンが上記の範囲で含まれることで、処理液の経時後における残渣物除去性能の低下がより抑制される。
 更に、Feイオンの含有量は、ヒドロキシルアミン及びその塩から選ばれる少なくとも1種の含有量(ヒドロキシルアミン及びその塩から選ばれる化合物が複数種含まれる場合にはその合計量)に対して質量比で、5×10-2~5×10-10であることが好ましく、5×10-4~5×10-10であることがより好ましく、5×10-6~5×10-7であることが更に好ましい。上記構成とすることで、処理液の残渣物除去性能がより向上する。
<Fe ion>
The present inventors have found that the content of Fe ions contained in the treatment liquid of the present invention has a great influence on various performances. In particular, the desired effect of the present invention becomes remarkable when Fe ions interact with at least one selected from hydroxylamine and salts thereof. In general, it is preferable that the amount of metal ions is small, but in the present invention, a specific amount of Fe ions is preferably included.
In the treatment liquid of the present invention, the content of Fe ions is preferably 10 mass ppt to 10 mass ppm, preferably 1 mass ppb to 1 mass ppm, with respect to the total mass of the treatment liquid of the present invention. More preferably, it is 1 mass ppb to 50 mass ppb, more preferably 1 mass ppb to 5 mass ppb.
By including Fe ions in the above range, a decrease in the residue removal performance after aging of the treatment liquid is further suppressed.
Furthermore, the content of Fe ions is a mass ratio with respect to at least one content selected from hydroxylamine and a salt thereof (the total amount when a plurality of compounds selected from hydroxylamine and a salt thereof are included). And preferably 5 × 10 −2 to 5 × 10 −10 , more preferably 5 × 10 −4 to 5 × 10 −10 , and 5 × 10 −6 to 5 × 10 −7 . More preferably. By setting it as the said structure, the residue removal performance of a process liquid improves more.
 Feイオンは、通常、溶剤及び薬剤等に不純物として含まれ得る成分である。したがって、処理液中に含まれる溶剤及び/又は調製後の処理液を蒸留及びイオン交換樹脂等の手段により精製することにより所望の量に調製することが可能となる。
 処理液中のFeイオンの量は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定することができる。
Fe ions are usually components that can be included as impurities in solvents, drugs, and the like. Therefore, the solvent contained in the treatment liquid and / or the prepared treatment liquid can be prepared in a desired amount by purifying it by means such as distillation and ion exchange resin.
The amount of Fe ions in the treatment liquid can be measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
 <腐食防止剤>
 本発明の処理液は腐食防止剤を含むことが好ましい。腐食防止剤は、配線膜となる金属(例えば、Co、W)のオーバーエッチングを解消する機能を有する。
 腐食防止剤としては特に限定されないが、例えば、1,2,4-トリアゾール(TAZ)、5-アミノテトラゾール(ATA)、5-アミノ-1,3,4-チアジアゾール-2-チオール、3-アミノ-1H-1,2,4トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、トリルトリアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、1-アミノ-1,2,4-トリアゾール、1-アミノ-1,2,3-トリアゾール、1-アミノ-5-メチル-1,2,3-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-イソプロピル-1,2,4-トリアゾール、ナフトトリアゾール、1H-テトラゾール-5-酢酸、2-メルカプトベンゾチアゾール(2-MBT)、1-フェニル-2-テトラゾリン-5-チオン、2-メルカプトベンゾイミダゾール(2-MBI)、4-メチル-2-フェニルイミダゾール、2-メルカプトチアゾリン、2,4-ジアミノ-6-メチル-1,3,5-トリアジン、チアゾール、イミダゾール、ベンゾイミダゾール、トリアジン、メチルテトラゾール、ビスムチオールI、1,3-ジメチル-2-イミダゾリジノン、1,5-ペンタメチレンテトラゾール、1-フェニル-5-メルカプトテトラゾール、ジアミノメチルトリアジン、イミダゾリンチオン、4-メチル-4H-1,2,4-トリアゾール-3-チオール、5-アミノ-1,3,4-チアジアゾール-2-チオール、ベンゾチアゾール、リン酸トリトリル、インダゾール、アデニン、シトシン、グアニン、チミン、ホスフェート阻害剤、アミン類、ピラゾール類、プロパンチオール、シラン類、第2級アミン類、ベンゾヒドロキサム酸類、複素環式窒素阻害剤、クエン酸、アスコルビン酸、チオ尿素、1,1,3,3-テトラメチル尿素、尿素、尿素誘導体類、尿酸、エチルキサントゲン酸カリウム、グリシン、ドデシルホスホン酸、イミノ二酢酸、酸、ホウ酸、マロン酸、コハク酸、ニトリロ三酢酸、スルホラン、2,3,5-トリメチルピラジン、2-エチル-3,5-ジメチルピラジン、キノキサリン、アセチルピロール、ピリダジン、ヒスタジン(histadine)、ピラジン、グルタチオン(還元型)、システイン、シスチン、チオフェン、メルカプトピリジンN-オキシド、チアミンHCl、テトラエチルチウラムジスルフィド、2,5-ジメルカプト-1,3-チアジアゾールアスコルビン酸、カテコール、t-ブチルカテコール、フェノール、及び、ピロガロール等が挙げられる。
<Corrosion inhibitor>
The treatment liquid of the present invention preferably contains a corrosion inhibitor. The corrosion inhibitor has a function of eliminating over-etching of a metal (for example, Co, W) that becomes a wiring film.
The corrosion inhibitor is not particularly limited. For example, 1,2,4-triazole (TAZ), 5-aminotetrazole (ATA), 5-amino-1,3,4-thiadiazole-2-thiol, 3-amino -1H-1,2,4 triazole, 3,5-diamino-1,2,4-triazole, tolyltriazole, 3-amino-5-mercapto-1,2,4-triazole, 1-amino-1,2 , 4-triazole, 1-amino-1,2,3-triazole, 1-amino-5-methyl-1,2,3-triazole, 3-mercapto-1,2,4-triazole, 3-isopropyl-1 , 2,4-triazole, naphthotriazole, 1H-tetrazole-5-acetic acid, 2-mercaptobenzothiazole (2-MBT), 1-phenyl-2-tetrazoli -5-thione, 2-mercaptobenzimidazole (2-MBI), 4-methyl-2-phenylimidazole, 2-mercaptothiazoline, 2,4-diamino-6-methyl-1,3,5-triazine, thiazole, Imidazole, benzimidazole, triazine, methyltetrazole, bismuthiol I, 1,3-dimethyl-2-imidazolidinone, 1,5-pentamethylenetetrazole, 1-phenyl-5-mercaptotetrazole, diaminomethyltriazine, imidazoline thione, 4 -Methyl-4H-1,2,4-triazole-3-thiol, 5-amino-1,3,4-thiadiazole-2-thiol, benzothiazole, tolyl phosphate, indazole, adenine, cytosine, guanine, thymine, Phosphate inhibitor, amino , Pyrazoles, propanethiol, silanes, secondary amines, benzohydroxamic acids, heterocyclic nitrogen inhibitors, citric acid, ascorbic acid, thiourea, 1,1,3,3-tetramethylurea, urea , Urea derivatives, uric acid, potassium ethylxanthate, glycine, dodecylphosphonic acid, iminodiacetic acid, acid, boric acid, malonic acid, succinic acid, nitrilotriacetic acid, sulfolane, 2,3,5-trimethylpyrazine, 2- Ethyl-3,5-dimethylpyrazine, quinoxaline, acetylpyrrole, pyridazine, histadine, pyrazine, glutathione (reduced form), cysteine, cystine, thiophene, mercaptopyridine N-oxide, thiamine HCl, tetraethylthiuram disulfide, 2, 5-dimercapto-1,3-thiadiazole Colvin acid, catechol, t- butyl catechol, phenol, and pyrogallol.
 更に、腐食防止剤として、置換又は無置換のベンゾトリアゾールを含むことも好ましい。置換ベンゾトリアゾールとしては、例えば、アルキル基、アリール基、ハロゲン基、アミノ基、ニトロ基、アルコキシ基、又は水酸基で置換されたベンゾトリアゾールが好ましい。なお、置換ベンゾトリアゾールは、1以上のアリール(例えば、フェニル)又はヘテロアリール基が縮合していてもよい。 Furthermore, it is also preferable to contain a substituted or unsubstituted benzotriazole as a corrosion inhibitor. As the substituted benzotriazole, for example, an benzotriazole substituted with an alkyl group, an aryl group, a halogen group, an amino group, a nitro group, an alkoxy group, or a hydroxyl group is preferable. The substituted benzotriazole may be condensed with one or more aryl (eg, phenyl) or heteroaryl groups.
 置換又は無置換のベンゾトリアゾールは、上述したものの他に、例えば、ベンゾトリアゾール(BTA)、1-ヒドロキシベンゾトリアゾール、5-フェニルチオール-ベンゾトリアゾール、5-クロロベンゾトリアゾール、4-クロロベンゾトリアゾール、5-ブロモベンゾトリアゾール、4-ブロモベンゾトリアゾール、5-フルオロベンゾトリアゾール、4-フルオロベンゾトリアゾール、ナフトトリアゾール、トリルトリアゾール、5-フェニル-ベンゾトリアゾール、5-ニトロベンゾトリアゾール、4-ニトロベンゾトリアゾール、2-(5-アミノ-ペンチル)-ベンゾトリアゾール、1-アミノ-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、ベンゾトリアゾール-5-カルボン酸、4-メチルベンゾトリアゾール、4-エチルベンゾトリアゾール、5-エチルベンゾトリアゾール、4-プロピルベンゾトリアゾール、5-プロピルベンゾトリアゾール、4-イソプロピルベンゾトリアゾール、5-イソプロピルベンゾトリアゾール、4-n-ブチルベンゾトリアゾール、5-n-ブチルベンゾトリアゾール、4-イソブチルベンゾトリアゾール、5-イソブチルベンゾトリアゾール、4-ペンチルベンゾトリアゾール、5-ペンチルベンゾトリアゾール、4-ヘキシルベンゾトリアゾール、5-ヘキシルベンゾトリアゾール、5-メトキシベンゾトリアゾール、5-ヒドロキシベンゾトリアゾール、ジヒドロキシプロピルベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]-ベンゾトリアゾール、5-t-ブチルベンゾトリアゾール、5-(1’,1’-ジメチルプロピル)-ベンゾトリアゾール、5-(1’,1’,3’-トリメチルブチル)ベンゾトリアゾール、5-n-オクチルベンゾトリアゾール、及び5-(1’,1’,3’,3’-テトラメチルブチル)ベンゾトリアゾール等が挙げられる。
 腐食防止剤は、単独でも2種類以上適宜組み合わせて用いてもよい。
Substituted or unsubstituted benzotriazoles include, for example, benzotriazole (BTA), 1-hydroxybenzotriazole, 5-phenylthiol-benzotriazole, 5-chlorobenzotriazole, 4-chlorobenzotriazole, 5 -Bromobenzotriazole, 4-bromobenzotriazole, 5-fluorobenzotriazole, 4-fluorobenzotriazole, naphthotriazole, tolyltriazole, 5-phenyl-benzotriazole, 5-nitrobenzotriazole, 4-nitrobenzotriazole, 2- (5-amino-pentyl) -benzotriazole, 1-amino-benzotriazole, 5-methyl-1H-benzotriazole, benzotriazole-5-carboxylic acid, 4-methylbenzotri Sol, 4-ethylbenzotriazole, 5-ethylbenzotriazole, 4-propylbenzotriazole, 5-propylbenzotriazole, 4-isopropylbenzotriazole, 5-isopropylbenzotriazole, 4-n-butylbenzotriazole, 5-n- Butylbenzotriazole, 4-isobutylbenzotriazole, 5-isobutylbenzotriazole, 4-pentylbenzotriazole, 5-pentylbenzotriazole, 4-hexylbenzotriazole, 5-hexylbenzotriazole, 5-methoxybenzotriazole, 5-hydroxybenzo Triazole, dihydroxypropylbenzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] -benzotriazole, 5-t-butylbenzene Zotriazole, 5- (1 ′, 1′-dimethylpropyl) -benzotriazole, 5- (1 ′, 1 ′, 3′-trimethylbutyl) benzotriazole, 5-n-octylbenzotriazole, and 5- (1 ', 1', 3 ', 3'-tetramethylbutyl) benzotriazole and the like.
Corrosion inhibitors may be used alone or in appropriate combination of two or more.
 腐食防止剤としては、なかでも、下記式(A)~式(C)で表される化合物、及び、置換又は無置換のテトラゾールからなる群より選ばれる少なくとも1種であることが好ましく、下記式(A)~式(C)で表される化合物からなる群より選ばれる少なくとも1種であることがより好ましい。 Among them, the corrosion inhibitor is preferably at least one selected from the group consisting of compounds represented by the following formulas (A) to (C) and substituted or unsubstituted tetrazole. More preferably, it is at least one selected from the group consisting of compounds represented by formulas (A) to (C).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(A)において、R1A~R5Aは、それぞれ独立に、水素原子、置換基若しくは無置換の炭化水素基、水酸基、カルボキシ基、又は、置換若しくは無置換のアミノ基を表す。ただし、構造中に水酸基、カルボキシ基、及び、置換若しくは無置換のアミノ基から選ばれる基を少なくとも1つ含む。
 上記式(B)において、R1B~R4Bは、それぞれ独立に、水素原子、置換基若しくは無置換の炭化水素基を表す。
 上記式(C)において、R1C、R2C及びRは、それぞれ独立に、水素原子、置換基若しくは無置換の炭化水素基を表す。また、R1CとR2Cとが結合して環を形成してもよい。
In the above formula (A), R 1A to R 5A each independently represents a hydrogen atom, a substituent or an unsubstituted hydrocarbon group, a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group. However, the structure contains at least one group selected from a hydroxyl group, a carboxy group, and a substituted or unsubstituted amino group.
In the above formula (B), R 1B to R 4B each independently represents a hydrogen atom, a substituent, or an unsubstituted hydrocarbon group.
In the above formula (C), R 1C, R 2C and R N are each independently represent a hydrogen atom, a substituent or unsubstituted hydrocarbon group. R 1C and R 2C may be bonded to form a ring.
 上記式(A)中、R1A~R5Aが表す炭化水素基としては、アルキル基(炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数は、2~12が好ましく、2~6がより好ましい)、アルキニル基(炭素数は、2~12が好ましく、2~6がより好ましい)、アリール基(炭素数は、6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)、及び、アラルキル基(炭素数は、7~23が好ましく、7~15がより好ましく、7~11が更に好ましい)が挙げられる。
 また、置換基としては、例えば、水酸基、カルボキシ基、又は、置換若しくは無置換のアミノ基(置換基としては、炭素数が1~6のアルキル基が好ましく、炭素数が1~3のアルキル基がより好ましい)が挙げられる。
 なお、式(A)においては、構造中に、水酸基、カルボキシ基、及び、置換若しくは無置換のアミノ基(置換基としては、炭素数が1~6のアルキル基が好ましく、炭素数が1~3のアルキル基がより好ましい)から選ばれる基を少なくとも1つ含む。
In the above formula (A), the hydrocarbon group represented by R 1A to R 5A is an alkyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6, and particularly preferably 1-3), alkenyl group (The carbon number is preferably 2-12, more preferably 2-6), an alkynyl group (the carbon number is preferably 2-12, more preferably 2-6), an aryl group (the carbon number is 6-22). 6 to 14 are more preferable, and 6 to 10 are more preferable.) And aralkyl groups (the carbon number is preferably 7 to 23, more preferably 7 to 15, and further preferably 7 to 11). .
Examples of the substituent include a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group (the substituent is preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 3 carbon atoms). Is more preferable).
In the formula (A), the structure includes a hydroxyl group, a carboxy group, and a substituted or unsubstituted amino group (the substituent is preferably an alkyl group having 1 to 6 carbon atoms, and having 1 to 6 carbon atoms). 3 alkyl groups are more preferable).
 式(A)において、R1A~R5Aで表される置換基若しくは無置換の炭化水素基としては、例えば、無置換の炭素数1~6の炭化水素基、及び、水酸基、カルボキシ基又はアミノ基で置換された炭素数1~6の炭化水素基等が挙げられる。
 式(A)で表される化合物としては、例えば、1-チオグリセロール、L-システイン、及びチオリンゴ酸等が挙げられる。
In the formula (A), examples of the substituent or unsubstituted hydrocarbon group represented by R 1A to R 5A include an unsubstituted hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, a carboxy group, or an amino group. And a hydrocarbon group having 1 to 6 carbon atoms substituted with a group.
Examples of the compound represented by the formula (A) include 1-thioglycerol, L-cysteine, thiomalic acid, and the like.
 式(B)において、R1B~R4Bで表される炭化水素基及び置換基としては、上述した式(A)のR1A~R5Aが表す炭化水素及び置換基とそれぞれ同義である。R1B~R4Bで表される置換基若しくは無置換の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、及びt-ブチル基等の炭素数1~6の炭化水素基が挙げられる。
 式(B)で表される化合物としては、例えば、カテコール、及びt-ブチルカテコール等が挙げられる。
In the formula (B), the hydrocarbon groups and substituents represented by R 1B to R 4B have the same meanings as the hydrocarbons and substituents represented by R 1A to R 5A in the formula (A) described above. Examples of the substituted or unsubstituted hydrocarbon group represented by R 1B to R 4B include hydrocarbon groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a t-butyl group. It is done.
Examples of the compound represented by the formula (B) include catechol and t-butylcatechol.
 式(C)において、R1C、R2C及びRで表される炭化水素基及び置換基としては、上述した式(A)のR1A~R5Aが表す炭化水素及び置換基とそれぞれ同義である。R1C、R2C及びRで表される置換又は無置換の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、及びブチル基等の炭素数1~6の炭化水素基が挙げられる。
 また、R1CとR2Cとが結合して環を形成してもよく、例えば、ベンゼン環が挙げられる。R1CとR2Cとが結合して環を形成した場合、更に置換基(例えば、炭素数1~5の炭化水素基)を有していてもよい。
 式(C)で表される化合物としては、例えば、1H-1,2,3-トリアゾール、ベンゾトリアゾール、及び5-メチル-1H-ベンゾトリアゾール等が挙げられる。
等が挙げられる。
In formula (C), R 1C, hydrocarbon groups and substituents represented by R 2C and R N, respectively and hydrocarbon and substituents represented by R 1A ~ R 5A of formula (A) described above synonymous is there. R 1C, as a substituted or unsubstituted hydrocarbon group represented by R 2C and R N are, for example, include a methyl group, an ethyl group, a propyl group and a hydrocarbon group having 1 to 6 carbon atoms such as butyl group, It is done.
R 1C and R 2C may be combined to form a ring, and examples thereof include a benzene ring. When R 1C and R 2C are combined to form a ring, it may further have a substituent (for example, a hydrocarbon group having 1 to 5 carbon atoms).
Examples of the compound represented by the formula (C) include 1H-1,2,3-triazole, benzotriazole, and 5-methyl-1H-benzotriazole.
Etc.
 置換又は無置換のテトラゾールとしては、例えば、無置換テトラゾールのほか、置換基として水酸基、カルボキシ基、又は、置換若しくは無置換のアミノ基(置換基としては、炭素数が1~6のアルキル基が好ましく、炭素数が1~3のアルキル基がより好ましい)を有するテトラゾールが挙げられる。 Examples of the substituted or unsubstituted tetrazole include, in addition to the unsubstituted tetrazole, a hydroxyl group, a carboxy group, or a substituted or unsubstituted amino group as a substituent (the substituent includes an alkyl group having 1 to 6 carbon atoms). Preferably, tetrazole having an alkyl group having 1 to 3 carbon atoms is more preferable.
 処理液中、腐食防止剤の含有量は、本発明の処理液の全質量に対して、0.01~5質量%であることが好ましく、0.05~5質量%であることがより好ましく、0.1~3質量%であることが更に好ましい。 In the treatment liquid, the content of the corrosion inhibitor is preferably 0.01 to 5% by mass, more preferably 0.05 to 5% by mass with respect to the total mass of the treatment liquid of the present invention. More preferably, the content is 0.1 to 3% by mass.
 <キレート剤>
 処理液は、更にキレート剤を含んでいてもよい。キレート剤は、残渣物中に含まれる酸化した金属とキレート化する。
 キレート剤としては、特に限定されないが、ポリアミノポリカルボン酸であることが好ましい。
 ポリアミノポリカルボン酸は、複数のアミノ基及び複数のカルボン酸基を有する化合物である。ポリアミノポリカルボン酸としては、例えば、モノ-又はポリアルキレンポリアミンポリカルボン酸、ポリアミノアルカンポリカルボン酸、ポリアミノアルカノールポリカルボン酸、及びヒドロキシアルキルエーテルポリアミンポリカルボン酸が挙げられる。
<Chelating agent>
The treatment liquid may further contain a chelating agent. The chelating agent chelates with the oxidized metal contained in the residue.
Although it does not specifically limit as a chelating agent, It is preferable that it is polyamino polycarboxylic acid.
The polyaminopolycarboxylic acid is a compound having a plurality of amino groups and a plurality of carboxylic acid groups. Examples of the polyaminopolycarboxylic acid include mono- or polyalkylene polyamine polycarboxylic acid, polyaminoalkane polycarboxylic acid, polyaminoalkanol polycarboxylic acid, and hydroxyalkyl ether polyamine polycarboxylic acid.
 ポリアミノポリカルボン酸としては、例えば、ブチレンジアミン四酢酸、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミンテトラプロピオン酸、トリエチレンテトラミン六酢酸、1,3-ジアミノ-2-ヒドロキシプロパン-N,N,N’,N’-四酢酸、プロピレンジアミン四酢酸、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン四酢酸、エチレンジアミン二酢酸、エチレンジアミンジプロピオン酸、1,6-ヘキサメチレン-ジアミン-N,N,N’,N’-四酢酸、N,N-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N-二酢酸、ジアミノプロパン四酢酸、1,4,7,10-テトラアザシクロドデカン-四酢酸、ジアミノプロパノール四酢酸、及び(ヒドロキシエチル)エチレンジアミン三酢酸等が挙げられる。なかでも、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、又はトランス-1,2-ジアミノシクロヘキサン四酢酸が好ましい。
 キレート剤は、単独でも2種類以上適宜組み合わせて用いてもよい。
Examples of the polyaminopolycarboxylic acid include butylene diamine tetraacetic acid, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetrapropionic acid, triethylenetetraminehexaacetic acid, 1,3-diamino-2-hydroxypropane-N, N, N ′, N'-tetraacetic acid, propylenediaminetetraacetic acid, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, 1,6-hexamethylene-diamine-N, N , N ′, N′-tetraacetic acid, N, N-bis (2-hydroxybenzyl) ethylenediamine-N, N-diacetic acid, diaminopropanetetraacetic acid, 1,4,7,10-tetraazacyclododecane-tetraacetic acid , Diaminopropanoltetraacetic acid, and (hydroxyethyl) Examples include tylenediamine triacetic acid. Of these, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), or trans-1,2-diaminocyclohexanetetraacetic acid is preferred.
Chelating agents may be used alone or in combination of two or more.
 処理液中、キレート剤の含有量は、本発明の処理液の全質量に対して、0.01~5質量%であることが好ましく、0.01~3質量%であることがより好ましい。 In the treatment liquid, the content of the chelating agent is preferably 0.01 to 5% by mass, and more preferably 0.01 to 3% by mass with respect to the total mass of the treatment liquid of the present invention.
 <水溶性有機溶剤>
 本発明の処理液は、水溶性有機溶剤を含有することが好ましい。水溶性有機溶剤は、添加成分及び有機物残渣物の可溶化を促進するほか、腐食防止効果をより向上させることができる。
 水溶性有機溶剤としては、特に限定されないが、例えば、水溶性アルコール、水溶性ケトン、水溶性エステル、及び水溶性エーテル(例えば、グリコールジエーテル)等が挙げられる。
<Water-soluble organic solvent>
The treatment liquid of the present invention preferably contains a water-soluble organic solvent. The water-soluble organic solvent can promote the solubilization of additive components and organic residue, and can further improve the corrosion prevention effect.
Although it does not specifically limit as a water-soluble organic solvent, For example, water-soluble alcohol, water-soluble ketone, water-soluble ester, water-soluble ether (for example, glycol diether) etc. are mentioned.
 水溶性アルコールとしては、例えば、アルカンジオール(例えば、アルキレングリコールを含む)、グリコール、アルコキシアルコール(例えば、グリコールモノエーテルを含む)、飽和脂肪族一価アルコール、不飽和非芳香族一価アルコール、及び、環構造を含む低分子量のアルコールが挙げられる。 Examples of the water-soluble alcohol include alkane diol (for example, including alkylene glycol), glycol, alkoxy alcohol (for example, including glycol monoether), saturated aliphatic monohydric alcohol, unsaturated non-aromatic monohydric alcohol, and And low molecular weight alcohols containing a ring structure.
 アルカンジオールとしては、例えば、2-メチル-1,3プロパンジオール、1,3-プロパンジール、2,2-ジメチル-1,3-ジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、ピナコール、及びアルキレングリコール等が挙げられる。 Examples of the alkanediol include 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl-1,3-diol, 1,4-butanediol, 1,3-butanediol, Examples include 1,2-butanediol, 2,3-butanediol, pinacol, and alkylene glycol.
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、及びテトラエチレングリコール等が挙げられる。 Examples of the alkylene glycol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tetraethylene glycol.
 アルコキシアルコールとしては、例えば、3-メトキシ-3-メチル-1-ブタノール、3-メトキシ-1-ブタノール、及び1-メトキシ-2-ブタノール等が挙げられる。 Examples of the alkoxy alcohol include 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, and 1-methoxy-2-butanol.
 グリコールモノエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、2-メトキシ-1-プロパノール、1-エトキシ-2-プロパノール、2-エトキシ-1-プロパノール、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル及びエチレングリコールモノベンジルエーテル、及びジエチレングリコールモノベンジルエーテル等が挙げられる。 Examples of the glycol monoether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol mono n-butyl ether, diethylene glycol monomethyl ether, and diethylene glycol. Monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol 2-ethoxy-1-propanol, propi Glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monomethyl ether and ethylene glycol monobenzyl ether And diethylene glycol monobenzyl ether.
 飽和脂肪族一価アルコールとしては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-ペンタノール、t-ペンチルアルコール、及び1-ヘキサノール等が挙げられる。 Examples of saturated aliphatic monohydric alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and Examples include 1-hexanol.
 不飽和非芳香族一価アルコールとしては、例えば、アリールアルコール、プロパルギルアルコール、2-ブテニルアルコール、3-ブテニルアルコール、及び4-ペンテン-2-オール等が挙げられる。 Examples of the unsaturated non-aromatic monohydric alcohol include aryl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, and 4-penten-2-ol.
 環構造を含む低分子量のアルコールとしては、例えば、テトラヒドロフルフリルアルコール、フルフリルアルコール、及び1,3-シクロペンタンジオール等が挙げられる。 Examples of the low molecular weight alcohol containing a ring structure include tetrahydrofurfuryl alcohol, furfuryl alcohol, 1,3-cyclopentanediol, and the like.
 水溶性ケトンとしては、例えば、アセトン、プロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ジアセトンアルコール、2-ブタノン、5-ヘキサンジオン、1,4-シクロヘキサンジオン、3-ヒドロキシアセトフェノン、1,3-シクロヘキサンジオン、及びシクロヘキサノン等が挙げられる。 Examples of water-soluble ketones include acetone, propanone, cyclobutanone, cyclopentanone, cyclohexanone, diacetone alcohol, 2-butanone, 5-hexanedione, 1,4-cyclohexanedione, 3-hydroxyacetophenone, 1,3-cyclohexane. Examples include dione and cyclohexanone.
 水溶性エステルとしては、酢酸エチル、エチレングリコールモノアセタート、及びジエチレングリコールモノアセタート等のグリコールモノエステル、並びに、プロピレングリコールモノメチルエーテルアセタート、エチレングリコールモノメチルエーテルアセタート、プロピレングリコールモノエチルエーテルアセタート、及びエチレングリコールモノエチルエーテルアセタート等のグリコールモノエーテルモノエステル等が挙げられる。 Examples of water-soluble esters include glycol monoesters such as ethyl acetate, ethylene glycol monoacetate, and diethylene glycol monoacetate, and propylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, And glycol monoether monoesters such as ethylene glycol monoethyl ether acetate.
 水溶性有機溶剤は、単独でも2種類以上適宜組み合わせて用いてもよい。
 水溶性有機溶剤のなかでも、腐食防止効果をより向上させる観点からは、水溶性アルコールが好ましく、アルカンジオール、グリコール、アルコキシアルコールがより好ましく、アルコキシアルコールが更に好ましく、エチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルが特に好ましい。
The water-soluble organic solvents may be used alone or in appropriate combination of two or more.
Among water-soluble organic solvents, water-soluble alcohols are preferable, alkanediols, glycols, and alkoxy alcohols are more preferable, alkoxy alcohols are more preferable, ethylene glycol monobutyl ether, tripropylene glycol, from the viewpoint of further improving the corrosion prevention effect. Monomethyl ether or diethylene glycol monoethyl ether is particularly preferred.
 処理液中、水溶性有機溶剤の含有量は、本発明の処理液の全質量に対して、0.1~15質量%であることが好ましく、1~10質量%であることがより好ましい。 The content of the water-soluble organic solvent in the treatment liquid is preferably 0.1 to 15% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the treatment liquid of the present invention.
 <pH調整剤>
 本発明の処理液のpHは特に限定されないが、ヒドロキシルアミン及びヒドロキシルアミン塩の共役酸のpKa以上であることが好ましい。本発明の処理液のpHが、ヒドロキシルアミン及びヒドロキシルアミン塩の共役酸のpKa以上であることで、残渣物除去性が飛躍的に向上する。言い換えると、処理液中でヒドロキシルアミン及びヒドロキシルアミン塩が分子状態で存在している比率が多い場合に、本発明の効果が顕著に得られる。なお、例えば、ヒドロキシルアミンの共役酸のpKaは約6である。
 上記の観点から、本発明の処理液は、pH6~11とすることが好ましい。処理液のpHを上記範囲とするため、処理液にはpH調整剤を含むことが望ましい。また、処理液のpHが上記範囲内であれば、腐食速度及び残渣物除去性能にいずれもより優れる。
 処理液のpHの下限は洗浄性の観点から、6.5以上であることが好ましく、7以上であることがより好ましく、7.5以上であることが更に好ましい。一方、その上限は、腐食抑制の観点から、10.5以下であることが好ましく、10以下であることがより好ましく、9.5以下であることが更に好ましく、8.5以下であることが特に好ましい。
 pHの測定方法としては、公知のpHメーターを用いて測定することができる。
<PH adjuster>
The pH of the treatment liquid of the present invention is not particularly limited, but is preferably not less than pKa of hydroxylamine and a conjugate acid of hydroxylamine salt. When the pH of the treatment liquid of the present invention is not less than the pKa of the hydroxylamine and the conjugate acid of the hydroxylamine salt, residue removal properties are dramatically improved. In other words, when the ratio of hydroxylamine and hydroxylamine salt present in the molecular state in the treatment liquid is large, the effect of the present invention is remarkably obtained. For example, the pKa of the conjugate acid of hydroxylamine is about 6.
From the above viewpoint, the treatment liquid of the present invention is preferably adjusted to pH 6-11. In order to bring the pH of the treatment liquid into the above range, it is desirable that the treatment liquid contains a pH adjusting agent. Moreover, if pH of a process liquid is in the said range, both are excellent in a corrosion rate and a residue removal performance.
The lower limit of the pH of the treatment liquid is preferably 6.5 or more, more preferably 7 or more, and still more preferably 7.5 or more, from the viewpoint of detergency. On the other hand, the upper limit is preferably 10.5 or less, more preferably 10 or less, further preferably 9.5 or less, and 8.5 or less from the viewpoint of corrosion inhibition. Particularly preferred.
As a measuring method of pH, it can measure using a well-known pH meter.
 pH調整剤としては、公知のものが使用できるが、一般的に金属イオンを含んでいないことが好ましい。
 pH調整剤としては、例えば、水酸化アンモニウム、モノアミン類、イミン類(例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、及び1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等)、1,4-ジアザビシクロ[2.2.2]オクタン、及びグアニジン塩類(例えば、炭酸グアニジン)等が挙げられる。なかでも、水酸化アンモニウム、又はイミン類(例えば、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、及び1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等)が好ましい。
 pH調整剤は、単独でも2種類以上適宜組み合わせて用いてもよい。
Although a well-known thing can be used as a pH adjuster, generally it is preferable that a metal ion is not included.
Examples of the pH adjuster include ammonium hydroxide, monoamines, imines (eg, 1,8-diazabicyclo [5.4.0] undec-7-ene, and 1,5-diazabicyclo [4.3.0]. Non-5-ene etc.), 1,4-diazabicyclo [2.2.2] octane, and guanidine salts (for example, guanidine carbonate). Among them, ammonium hydroxide or imines (for example, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, etc. ) Is preferred.
The pH adjusters may be used alone or in appropriate combination of two or more.
 pH調整剤の含有量は、処理液を所望のpHを達成できれば特に限定されないが、一般的には、処理液中において、処理液全質量に対して0.1~5質量%とすることが望ましく、0.1~2質量%とすることがより望ましい。 The content of the pH adjusting agent is not particularly limited as long as the desired pH of the treatment liquid can be achieved. In general, the content of the pH adjuster may be 0.1 to 5% by mass with respect to the total mass of the treatment liquid in the treatment liquid. Desirably, 0.1 to 2% by mass is more desirable.
 <4級水酸化アンモニウム類>
 また、本発明の処理液は、4級水酸化アンモニウム類を含むことが好ましい。4級水酸化アンモニウム類を添加することで残渣物除去性能をより向上させることができるほか、pH調整剤としても機能させることができる。
 4級水酸化アンモニウム類としては、下記一般式(4)で表される化合物であることが好ましい。
<Quaternary ammonium hydroxides>
Further, the treatment liquid of the present invention preferably contains quaternary ammonium hydroxides. By adding quaternary ammonium hydroxides, residue removal performance can be further improved, and it can also function as a pH adjuster.
The quaternary ammonium hydroxide is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(4)中、R4A~R4Dは、それぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のヒドロキシアルキル基、ベンジル基、又はアリール基を表す。) (In Formula (4), R 4A to R 4D each independently represents an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a benzyl group, or an aryl group.)
 式(4)中、R4A~R4Dは、それぞれ独立に、炭素数1~6のアルキル基(例えば、メチル基、エチル基、及びブチル基等)、炭素数1~6のヒドロキシアルキル基(例えば、ヒドロキシメチル基、ヒドロキシエチル基、及びヒドロキシブチル基等)、ベンジル基、又はアリール基(例えば、フェニル基、ナフチル基、及びナフタレン基等)を表す。なかでも、アルキル基、ヒドロキシエチル基、又はベンジル基が好ましい。 In the formula (4), R 4A to R 4D each independently represent an alkyl group having 1 to 6 carbon atoms (for example, a methyl group, an ethyl group, and a butyl group), a hydroxyalkyl group having 1 to 6 carbon atoms ( For example, it represents a hydroxymethyl group, a hydroxyethyl group, and a hydroxybutyl group), a benzyl group, or an aryl group (for example, a phenyl group, a naphthyl group, and a naphthalene group). Of these, an alkyl group, a hydroxyethyl group, or a benzyl group is preferable.
 式(4)で表される化合物として、具体的には、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド、メチルトリ(ヒドロキシエチル)アンモニウムヒドロキシド、テトラ(ヒドロキシエチル)アンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、及びコリンよりなる群から選ばれる少なくとも1つの4級水酸化アンモニウム類であることが好ましく、中でも、本発明においてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、コリン、又はテトラブチルアンモニウムヒドロキシドがより好ましい。
 4級水酸化アンモニウム類は、単独でも2種類以上の組み合わせで用いてもよい。
Specific examples of the compound represented by the formula (4) include tetramethylammonium hydroxide, tetrabutylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methyltri (hydroxyethyl) ammonium hydroxide, tetra It is preferably at least one quaternary ammonium hydroxide selected from the group consisting of (hydroxyethyl) ammonium hydroxide, trimethylbenzylammonium hydroxide, and choline. Among them, in the present invention, tetramethylammonium hydroxide, tetraethyl are preferred. More preferred is ammonium hydroxide, benzyltrimethylammonium hydroxide, choline, or tetrabutylammonium hydroxide.
Quaternary ammonium hydroxides may be used alone or in combination of two or more.
 処理液中、4級水酸化アンモニウム類の含有量は、本発明の処理液の全質量に対して、0.1~15質量%であることが好ましく、1~10質量%であることがより好ましい。 In the treatment liquid, the content of the quaternary ammonium hydroxide is preferably 0.1 to 15% by mass, more preferably 1 to 10% by mass, based on the total mass of the treatment liquid of the present invention. preferable.
<アルカノールアミン類>
 添加成分及び有機物残渣物の可溶化を促進させるとともに、腐食防止の観点から、処理液はアルカノールアミン類を含有することが好ましい。
 アルカノールアミン類は、第一アミン、第二アミン、及び第三アミンのいずれであってもよく、モノアミン、ジアミン、又はトリアミンであることが好ましく、モノアミンがより好ましい。アミンのアルカノール基は炭素原子を1~5個有することが好ましい。
 本発明の処理液においては、下記式(5)で表される化合物が好ましい。
 式(5): R-N-CHCH-O-R
(式(5)中、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基、又はヒドロキシエチル基を表し、Rは、水素原子、又はヒドロキシエチル基を表す。ただし、式中、アルカノール基が少なくとも1つは含まれる)
 アルカノールアミン類としては、具体的には、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、第三ブチルジエタノールアミン、イソプロパノールアミン、2-アミノ-1-プロパノール、3-アミノ-1-プロパノール、イソブタノールアミン、2-アミノ-2-エトキシ-プロパノール、及びジグリコールアミンとしても知られている2-アミノ-2-エトキシ-エタノールが挙げられる。
 アルカノールアミン類は、単独でも2種類以上の組み合わせで用いてもよい。
<Alkanolamines>
The treatment liquid preferably contains alkanolamines from the viewpoint of preventing corrosion while promoting solubilization of the additive components and organic residue.
The alkanolamines may be any of primary amines, secondary amines, and tertiary amines, and are preferably monoamines, diamines, or triamines, and more preferably monoamines. The alkanol group of the amine preferably has 1 to 5 carbon atoms.
In the treatment liquid of the present invention, a compound represented by the following formula (5) is preferable.
Formula (5): R 1 R 2 —N—CH 2 CH 2 —O—R 3
(In Formula (5), R 1 and R 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a hydroxyethyl group, and R 3 represents a hydrogen atom or a hydroxyethyl group, provided that (In the formula, at least one alkanol group is included)
Specific examples of the alkanolamines include monoethanolamine, diethanolamine, triethanolamine, tert-butyldiethanolamine, isopropanolamine, 2-amino-1-propanol, 3-amino-1-propanol, and isobutanolamine. 2-amino-2-ethoxy-propanol, and 2-amino-2-ethoxy-ethanol, also known as diglycolamine.
Alkanolamines may be used alone or in combination of two or more.
 処理液中、アルカノールアミン類の含有量は、本発明の処理液の全質量に対して、0.1~80質量%であることが好ましく、0.5~60質量%であることがより好ましく、0.5~20質量%であることが更に好ましい。 In the treatment liquid, the content of alkanolamines is preferably 0.1 to 80% by mass, more preferably 0.5 to 60% by mass, based on the total mass of the treatment liquid of the present invention. More preferably, the content is 0.5 to 20% by mass.
<その他の添加剤>
 本発明の処理液には、本発明の効果を奏する範囲で、その他の添加剤を含有していてもよい。その他の添加剤としては、例えば、界面活性剤、及び消泡剤等が挙げられる。
<Other additives>
The treatment liquid of the present invention may contain other additives as long as the effects of the present invention are achieved. Examples of other additives include surfactants and antifoaming agents.
<処理液の好適態様>
 本発明の処理液の好ましい態様としては以下のものが挙げられるが、特にこれに限定されない。
(1)ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種のヒドロキシルアミン化合物と、水と、腐食防止剤と、キレート剤と、水溶性有機溶剤と、を含む処理液。
(2)ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種のヒドロキシルアミン化合物と、水と、腐食防止剤と、水溶性有機溶剤及び/又はアルカノールアミン類と、を含む処理液。
(3)ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種のヒドロキシルアミン化合物と、4級水酸化アンモニウム類と、水と、腐食防止剤と、水溶性有機溶剤及び/又はアルカノールアミン類と、を含む処理液。
(4)ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種のヒドロキシルアミン化合物と、水と、フッ化物と、を含む処理液。
(5)ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくとも1種のヒドロキシルアミン化合物と、水と、下記式(A)~式(C)で表される化合物(式中の各定義は上述のとおりである。)、及び、置換又は無置換のテトラゾールからなる群より選ばれる少なくとも1種と、を含む処理液。
<Preferred embodiment of treatment liquid>
Although the following are mentioned as a preferable aspect of the processing liquid of this invention, It does not specifically limit to this.
(1) A treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, a corrosion inhibitor, a chelating agent, and a water-soluble organic solvent.
(2) A treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, a corrosion inhibitor, a water-soluble organic solvent and / or alkanolamines.
(3) at least one hydroxylamine compound selected from hydroxylamine and hydroxylamine salt, quaternary ammonium hydroxide, water, a corrosion inhibitor, a water-soluble organic solvent and / or an alkanolamine. Treatment liquid containing.
(4) A treatment liquid comprising at least one hydroxylamine compound selected from hydroxylamine and a hydroxylamine salt, water, and fluoride.
(5) at least one hydroxylamine compound selected from hydroxylamine and hydroxylamine salt, water, and a compound represented by the following formulas (A) to (C) (wherein the definitions in the formula are as described above) And at least one selected from the group consisting of substituted or unsubstituted tetrazole.
(6)上述の(1)~(5)のそれぞれの処理液において、Feイオン含有量は、上述した含有量であることが好ましく、また、Feイオンとヒドロキシルアミン化合物の含有量(ヒドロキシルアミン及びその塩から選ばれる化合物が複数種含まれる場合にはその合計量)との含有比率(質量比)は、上述した含有比率であることが好ましい。 (6) In each of the treatment liquids (1) to (5) described above, the Fe ion content is preferably the above-described content, and the Fe ion and hydroxylamine compound content (hydroxylamine and The content ratio (mass ratio) with respect to the total amount when a plurality of compounds selected from the salt are included is preferably the content ratio described above.
 <フィルタリング>
 本発明の処理液は、異物の除去及び欠陥の低減等の目的で、フィルタで濾過されたものであることが好ましい。
 フィルタの材質としては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができ、例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度及び超高分子量を含む)等が挙げられる。これら材質の中でも、ポリプロピレン(高密度ポリプロピレンを含む)又はナイロンが好ましい。
 フィルタの孔径は、0.001~1.0μm程度が適しており、好ましくは0.02~0.5μm程度、より好ましくは0.01~0.1μm程度である。この範囲とすることにより、ろ過詰まりを抑えつつ、液中に含まれる不純物及び凝集物等の微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。
 各々のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。この2回以上のフィルタリングとは、例えば、液を循環させて、同一のフィルタで2回以上のフィルタリングを行う場合を意味する。
<Filtering>
The treatment liquid of the present invention is preferably filtered with a filter for the purpose of removing foreign substances and reducing defects.
The material of the filter can be used without particular limitation as long as it has been conventionally used for filtration and the like, for example, a fluororesin such as PTFE (polytetrafluoroethylene), a polyamide system such as nylon Resins, and polyolefin resins (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP). Among these materials, polypropylene (including high density polypropylene) or nylon is preferable.
The pore size of the filter is suitably about 0.001 to 1.0 μm, preferably about 0.02 to 0.5 μm, more preferably about 0.01 to 0.1 μm. By setting this range, it is possible to reliably remove fine foreign matters such as impurities and aggregates contained in the liquid while suppressing clogging of filtration.
When using filters, different filters may be combined.
Filtering in each filter may be performed only once or may be performed twice or more. This filtering twice or more means, for example, a case where the liquid is circulated and filtering is performed twice or more by the same filter.
 フィルタリングは、上述のように異なるフィルタを組み合わせて実施することもできる。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、もしくは大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)及び株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。
 第2のフィルタは、上述した第1のフィルタと同様の材質等で形成されたフィルタを使用できる。第2のフィルタの孔径は、0.01~1.0μm程度が適しており、好ましくは0.1~0.5μm程度である。この範囲とすることにより、液中に、成分粒子が含まれている場合には、この成分粒子を残存させたまま、液中に混入している異物を除去できる。
 例えば、最終的に調製される処理液の一部の成分のみを予め混合して混合液を調製し、この混合液に対して第1のフィルタによるフィルタリングを実施した後、上記第1のフィルタによるフィルタリング後の混合液に処理液を構成するための残りの成分を添加し、この混合液に対し第2のフィルタリングを行ってもよい。
The filtering can be performed by combining different filters as described above. When filtering two or more times by combining different filters, it is preferable that the second and subsequent hole diameters are the same or larger than the first filtering hole diameter. Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. The commercially available filter can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.), KITZ Micro Filter Co., Ltd. and the like.
The second filter can be a filter formed of the same material as the first filter described above. The pore size of the second filter is suitably about 0.01 to 1.0 μm, preferably about 0.1 to 0.5 μm. By setting it as this range, when the component particles are contained in the liquid, the foreign matters mixed in the liquid can be removed while the component particles remain.
For example, only a part of the components of the treatment liquid to be finally prepared is mixed in advance to prepare a mixed liquid, and the mixed liquid is filtered by the first filter, and then the first filter is used. The remaining components for constituting the treatment liquid may be added to the mixed liquid after filtering, and the second filtering may be performed on the mixed liquid.
 <不純物及び粗大粒子>
 本発明の処理液は、その使用用途に鑑み、液中の不純物、例えば金属分等が少ないことが好ましい。特に、液中のNa、K、及びCaイオン濃度が5ppm(質量基準)以下の範囲にあることが好ましい。
 また、処理液において、粗大粒子は実質的に含まないことが好ましい。
 なお、処理液に含まれる粗大粒子とは、原料に不純物として含まれる塵、埃、有機固形物、及び無機固形物等の粒子、並びに、処理液の調製中に汚染物として持ち込まれる塵、埃、有機固形物、及び無機固形物等の粒子等であり、最終的に処理液中で溶解せずに粒子として存在するものが該当する。処理液中に存在する粗大粒子数は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定することができる。
<Impurities and coarse particles>
In view of the intended use, the treatment liquid of the present invention preferably has few impurities in the liquid, such as a metal content. In particular, the Na, K, and Ca ion concentrations in the liquid are preferably in the range of 5 ppm (mass basis) or less.
Further, it is preferable that the treatment liquid does not substantially contain coarse particles.
The coarse particles contained in the treatment liquid are particles such as dust, dust, organic solids, and inorganic solids contained as impurities in the raw material, and dust and dust brought in as contaminants during the preparation of the treatment liquid. These include particles such as organic solids and inorganic solids, which finally exist as particles without being dissolved in the treatment liquid. The number of coarse particles present in the treatment liquid can be measured in the liquid phase using a commercially available measuring apparatus in a light scattering type in-liquid particle measurement method using a laser as a light source.
 <メタル濃度>
 本発明の処理液は、液中に不純物として含まれるFeを除くメタル(Na、K、Ca、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属元素)のイオン濃度がいずれも5ppm以下(好ましくは1ppm以下)であることが好ましい。特に、最先端の半導体素子の製造においては、さらに高純度の処理液が求められることが想定されることから、そのメタル濃度がppmオーダーよりもさらに低い値、すなわち、ppbオーダー以下であることがより好ましく、pptオーダー(上記濃度はいずれも質量基準)であることが更に好ましく、実質的に含まれないことが特に好ましい。
<Metal concentration>
The treatment liquid of the present invention has an ion concentration of a metal (a metal element of Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn) excluding Fe contained as an impurity in the liquid. In any case, it is preferably 5 ppm or less (preferably 1 ppm or less). In particular, in the manufacture of the most advanced semiconductor elements, it is assumed that a higher-purity processing solution is required. Therefore, the metal concentration may be lower than the ppm order, that is, ppb order or less. More preferably, it is more preferably in the order of ppt (all the above concentrations are based on mass), and it is particularly preferable that the concentration is not substantially contained.
(保管容器及び保管条件)
 処理液を収容する保管容器の材質(すなわち、処理液に接触する部位)は、金属溶出がないという観点から、樹脂がより好ましい。処理液を収容する保管容器は、特に、上記保管容器の処理液を収容する収容部の内壁の材質が樹脂であることが好ましい。
 樹脂の具体的な例としては、高密度ポリエチレン(HDPE)、高密度ポリプロピレン(PP)、6,6-ナイロン、テトラフルオロエチレン(PTFE)、テトラフルオロエチレンとパーフロロアルキルビニルエーテルの共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、エチレン・四フッ化エチレン共重合体(ETFE)、及び四フッ化エチレン・六フッ化プロピレン共重合体(FEP)等が挙げられる。なかでも、収容部の内壁の材質には、が分子内にフッ素原子を含むフッ素系樹脂が好ましい。
 収容部の内壁の材質がフッ素系樹脂である容器の具体例としては、例えば、Entegris社製 FluoroPurePFA複合ドラム等が挙げられる。また、特表平3-502677号公報の第4頁、国際公開第2004/016526号パンフレットの第3頁、及び、国際公開第99/46309号パンフレットの第9及び16頁等に記載の容器も用いることができる。
(Storage container and storage conditions)
The material of the storage container that stores the processing liquid (that is, the portion that contacts the processing liquid) is more preferably a resin from the viewpoint of no metal elution. In particular, in the storage container for storing the processing liquid, the material of the inner wall of the storage part for storing the processing liquid in the storage container is preferably a resin.
Specific examples of the resin include high density polyethylene (HDPE), high density polypropylene (PP), 6,6-nylon, tetrafluoroethylene (PTFE), a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (PFA). ), Polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), ethylene / tetrafluoroethylene copolymer (ETFE), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP) and the like. Especially, the material of the inner wall of the accommodating part is preferably a fluorine-based resin containing fluorine atoms in the molecule.
As a specific example of the container in which the material of the inner wall of the housing portion is a fluororesin, for example, a FluoroPure PFA composite drum manufactured by Entegris can be cited. In addition, the containers described on page 4 of JP-T-3-502677, page 3 of WO 2004/016526 pamphlet, pages 9 and 16 of WO 99/46309 pamphlet, etc. Can be used.
 保管容器中、保管容器内の圧力は大気圧近傍圧力であることが好ましく、96000~106000Paであることがより好ましく、99000~103300Paであることが更に好ましい。 In the storage container, the pressure in the storage container is preferably a pressure near atmospheric pressure, more preferably 96000 to 106000 Pa, and further preferably 99000 to 103300 Pa.
 また、保管容器は、空隙率を制御しやすくするため、容器上部に、蓋部及び弁等によって封止可能な開口部を複数有していることが好ましい。つまり、蓋部及び弁等を取り外すことにより、開口部を通じて保管容器内の気体と大気とを交換することが可能となる。
 また、上記の複数の開口部のうち、少なくも1つの開口部は、ガス抜き機能が備えられているガス抜き口であることが好ましく、上記ガス抜き口にガス抜き弁を有することがより好ましい。ガス抜き弁は容器の開口部と一体にされた形態(方法)であっても、開口部とは別体であって使用時に取り付け可能な形態(方法)であっても構わない。
The storage container preferably has a plurality of openings that can be sealed with a lid, a valve, or the like in the upper part of the container in order to facilitate control of the porosity. That is, by removing the lid, the valve, and the like, it is possible to exchange the gas in the storage container and the atmosphere through the opening.
In addition, at least one of the plurality of openings is preferably a gas vent provided with a gas venting function, and more preferably has a gas vent valve at the gas vent. . The degassing valve may be in a form (method) integrated with the opening of the container or in a form (method) that is separate from the opening and can be attached at the time of use.
 本発明の処理液に含まれる、ヒドロキシルアミン及びその塩から選ばれる化合物は、保管状態において分解して、窒素酸化物等を含むガスを生じることがある。この分解は、二酸化炭素の存在下、又は、高温環境下においてより起こりやすい。
 そのため、本発明の効果を維持する観点から、後述する保管温度で保管することが好ましい。
 また、本発明の処理液は、窒素ガス等の不活性ガスの雰囲気下で保管してもよい。この場合、保管容器は、保管容器内の空隙に、不活性ガスを充填する機構を備えた態様であることが好ましい。
 さらには、ヒドロキシルアミン及びその塩から選ばれる化合物の分解により生じた窒素酸化物等を含むガスを容器外に出す機能を有する保管容器で保管する態様が好ましく、上記のように、複数の開口部を有する態様、及び、少なくも1つの開口部が、ガス抜き機能が備えられているガス抜き口である態様がより好ましく、特に、上記ガス抜き口にガス抜き弁を有することが好ましい。
A compound selected from hydroxylamine and a salt thereof contained in the treatment liquid of the present invention may decompose in a storage state to produce a gas containing nitrogen oxides and the like. This decomposition is more likely to occur in the presence of carbon dioxide or in a high temperature environment.
Therefore, it is preferable to store at the storage temperature mentioned later from a viewpoint of maintaining the effect of the present invention.
Further, the treatment liquid of the present invention may be stored in an atmosphere of an inert gas such as nitrogen gas. In this case, it is preferable that the storage container has a mechanism in which a void in the storage container is filled with an inert gas.
Further, it is preferable to store in a storage container having a function of taking out a gas containing nitrogen oxides generated by decomposition of a compound selected from hydroxylamine and a salt thereof from the container, and a plurality of openings as described above. And a mode in which at least one opening is a gas vent provided with a gas venting function are more preferable, and it is particularly preferable that the gas vent has a gas vent valve.
 上述したように、処理液を保管容器に収容した際の保管容器内の空隙率は、0.01~30体積%であり、処理液の残渣物除去性能の劣化がより抑制される点で、1~25体積%がより好ましく、12~20体積%が更に好ましい。
 空隙率が、0.01~30体積%であることで本発明の効果が顕著となる。
 なお、空隙率は、以下の式(1)によって求められる。
 式(1):空隙率={1-(保管容器内の半導体デバイス用処理液の体積/保管容器の容器体積)}×100
 上記式中、「保管容器の容器体積」とは、処理液を収容する保管容器の体積を意味する。また、「保管容器内の処理液の体積」とは、保管容器内中に収容された処理液の体積を意味する。なお、保管容器中の処理液で満たされていない空間には、酸素を含む空気が含まれる。
 また、保存容器内の処理液の液温は、上述した通り、本発明の効果を奏する観点からは、室温静置(25℃近傍であり、好ましくは23~27℃)から冷蔵保管(5℃近傍であり、好ましくは0~7℃が好ましい)の間の温度領域であればよく、0~5℃の温度領域であることがより好ましい。本発明の処理液は、上記室温静置と冷蔵保管でのサーモサイクル環境下で保存した場合であっても、残渣物除去性能の劣化が生じにくい。
As described above, the porosity in the storage container when the processing liquid is stored in the storage container is 0.01 to 30% by volume, and the deterioration of the residue removal performance of the processing liquid is further suppressed. 1 to 25% by volume is more preferable, and 12 to 20% by volume is still more preferable.
When the porosity is 0.01 to 30% by volume, the effect of the present invention becomes remarkable.
In addition, the porosity is calculated | required by the following formula | equation (1).
Formula (1): Porosity = {1- (Volume of processing solution for semiconductor device in storage container / container volume of storage container)} × 100
In the above formula, “the container volume of the storage container” means the volume of the storage container that stores the processing liquid. Further, “the volume of the processing liquid in the storage container” means the volume of the processing liquid accommodated in the storage container. Note that the space that is not filled with the processing liquid in the storage container contains air containing oxygen.
In addition, as described above, the liquid temperature of the treatment liquid in the storage container is from room temperature standing (around 25 ° C., preferably 23 to 27 ° C.) to refrigerated storage (5 ° C.) from the viewpoint of achieving the effects of the present invention. And a temperature range of 0 to 7 ° C. is preferable, and a temperature range of 0 to 5 ° C. is more preferable. Even when the treatment liquid of the present invention is stored under the above-mentioned thermocycle environment at room temperature and refrigerated storage, the residue removal performance is unlikely to deteriorate.
 また、処理液を保管容器に封入する際の温度は、20~25℃であることが好ましい。 Further, the temperature at which the treatment liquid is sealed in the storage container is preferably 20 to 25 ° C.
〔処理液収容体〕
 本発明の処理液収容体は、保管容器と、保管容器内に収容された、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液とを有し、上記保管容器内の空隙率が0.01~30体積%であるものである。つまり、処理液収容体とは、上記半導体デバイス用処理液が保管容器内に収容されたものを意図する。なお、空隙率は、上述の式(1)によって求められる。
 処理液収容体の好適な態様及びその効果については、上記の処理液の保管方法において説明した態様と同様である。
[Treatment solution container]
The treatment liquid container of the present invention includes a storage container, a treatment liquid for semiconductor devices, containing at least one selected from hydroxylamine and hydroxylamine salt, and water, contained in the storage container. And the porosity in the storage container is 0.01 to 30% by volume. In other words, the processing liquid container is intended to be one in which the semiconductor device processing liquid is stored in a storage container. In addition, the porosity is calculated | required by the above-mentioned Formula (1).
About the suitable aspect and effect of a processing liquid container, it is the same as that of the aspect demonstrated in said storage method of a processing liquid.
(半導体デバイス用処理液の用途)
 半導体デバイス用処理液は、半導体デバイスを製造する際の各工程にて適宜使用される。例えば、上述したように、ドライエッチング工程を実施した後の残渣物を除去するための洗浄液、並びに、レジスト膜及び永久膜(例えば、カラーフィルタ)等を剥離するための剥離液として用いることができる。なかでも、洗浄液として好適に用いることができる。
 また、半導体デバイス用処理液は、メタルハードマスクをマスクとして用いたドライエッチング工程の後の洗浄液としても好適に適用することができる。メタルハードマスクを構成する材料としては、例えば、Cu、Co、W、AlOx、AlN、AlOxNy、WOx、Ti、TiN、ZrOx、HfOx及びTaOxのいずれか1以上を含んでいることが好ましい。ここで、x、yは、それぞれ、x=1~3、y=1~2で表される数である。
 また、メタルハードマスクを用いたドライエッチング工程の後に任意で行われるドライエッチング工程(例えば、ドライアッシング処理)を経たことによるドライアッシング残渣物除去にも好適に用いることができる。
(Applications of processing solutions for semiconductor devices)
The processing liquid for semiconductor devices is appropriately used in each process when manufacturing a semiconductor device. For example, as described above, it can be used as a cleaning solution for removing residues after the dry etching step, and a stripping solution for stripping a resist film and a permanent film (for example, a color filter). . Especially, it can use suitably as a washing | cleaning liquid.
The semiconductor device processing liquid can also be suitably applied as a cleaning liquid after a dry etching process using a metal hard mask as a mask. The material constituting the metal hard mask preferably includes, for example, one or more of Cu, Co, W, AlOx, AlN, AlOxNy, WOx, Ti, TiN, ZrOx, HfOx, and TaOx. Here, x and y are numbers represented by x = 1 to 3 and y = 1 to 2, respectively.
Further, it can be suitably used for removing a dry ash residue by a dry etching process (for example, a dry ashing process) optionally performed after a dry etching process using a metal hard mask.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
(実施例A1~A7、B1~B7、C1~C7、D1~D7、E1~E7、F1~F7、G1~G7、H1~H7、I1~I7、J1~J7、K1~K7、L1~L7、M1~M7、比較例A1、A2、B1、B2、C1、C2、D1、D2、E1、E2、F1、F2、G1、G2、H1、H2、I1、I2、J1、J2、K1、K2、L1、L2、M1、M2) (Examples A1 to A7, B1 to B7, C1 to C7, D1 to D7, E1 to E7, F1 to F7, G1 to G7, H1 to H7, I1 to I7, J1 to J7, K1 to K7, L1 to L7 , M1 to M7, Comparative Examples A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2, J1, J2, K1, K2 , L1, L2, M1, M2)
(1)処理液の調製
<水の精製>
 特開2011-110515号公報段落[0074]から[0084]に記載の方法を用いて以下の処理液の調製に用いる水を準備した。なお、この方法は、金属イオン除去工程を含むものである。
 得られた水は、Feイオンの含有量及びCoイオンの含有量がそれぞれ1ppt質量以下であった。なお、Feイオン、及びCoイオンの各含有量は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定した。
(1) Preparation of treatment solution <Water purification>
Water used for the preparation of the following treatment liquid was prepared using the method described in paragraphs [0074] to [0084] of JP-A 2011-110515. This method includes a metal ion removal step.
The obtained water had an Fe ion content and a Co ion content of 1 ppt mass or less, respectively. In addition, each content of Fe ion and Co ion was measured with an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
 次に、下記に示す処理液A~Mを各々調製した(いずれもpH7~11)。次いで、得られた処理液をイオン交換膜に通して精製を行い、処理液中のFeイオンの除去を実施した。
 なお、各処理において、使用する各種成分の含有量(質量%)は表中に記載の通りであり、残部は上記で得られた水である。
Next, the following treatment liquids A to M were prepared (all pH 7 to 11). Next, the obtained treatment liquid was purified by passing through an ion exchange membrane, and Fe ions in the treatment liquid were removed.
In addition, in each process, content (mass%) of the various components to be used is as showing in a table | surface, and the remainder is the water obtained above.
 処理液に使用した各種成分を以下に示す。
<還元剤>
 HA:ヒドロキシルアミン(BASF社製)
 HAS:ヒドロキシルアンモニウム硫酸塩(BASF社製)
Various components used in the treatment liquid are shown below.
<Reducing agent>
HA: Hydroxylamine (BASF)
HAS: hydroxylammonium sulfate (manufactured by BASF)
<腐食防止剤>
 1-チオグリセロール(式(A)に相当、和光純薬社製)
 5-メチル-1H-ベンゾトリアゾール(5MBTA:式(C)に相当、東京化成工業社製)
 カテコール(式(B)に相当、関東化学社製)
<Corrosion inhibitor>
1-thioglycerol (equivalent to formula (A), manufactured by Wako Pure Chemical Industries, Ltd.)
5-methyl-1H-benzotriazole (5MBTA: equivalent to formula (C), manufactured by Tokyo Chemical Industry Co., Ltd.)
Catechol (equivalent to formula (B), manufactured by Kanto Chemical Co., Inc.)
<キレート剤>
 DPTA:ジエチレントリアミン五酢酸(中部キレスト社製)
<Chelating agent>
DPTA: Diethylenetriaminepentaacetic acid (manufactured by Chubu Kirest Co., Ltd.)
<水溶性有機溶剤>
 EGBE:エチレングリコールモノブチルエーテル(和光純薬社製)
<pH調整剤>
 DBU:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(サンアプロ社製)
 NHOH:水酸化アンモニウム(和光純薬社製)
<4級水酸化アンモニウム類>
 コリン:セイケム社製
<フッ化物>
 NHF:フッ化アンモニウム(和光純薬社製)
<Water-soluble organic solvent>
EGBE: ethylene glycol monobutyl ether (manufactured by Wako Pure Chemical Industries, Ltd.)
<PH adjuster>
DBU: 1,8-diazabicyclo [5.4.0] undec-7-ene (manufactured by San Apro)
NH 4 OH: ammonium hydroxide (Wako Pure Chemical Industries, Ltd.)
<Quaternary ammonium hydroxides>
Colin: manufactured by Sechem <fluoride>
NH 4 F: ammonium fluoride (Wako Pure Chemical Industries, Ltd.)
<アルカノールアミン類>
 モノエタノールアミン(東京化成工業株式会社製)
 ジグリコールアミン(別名:2-(2-アミノエトキシ)エタノール、東京化成工業株式会社製)
 TEA:トリエタノールアミン(東京化成工業社製)
<Alkanolamines>
Monoethanolamine (Tokyo Chemical Industry Co., Ltd.)
Diglycolamine (also known as 2- (2-aminoethoxy) ethanol, manufactured by Tokyo Chemical Industry Co., Ltd.)
TEA: Triethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
(2)評価
 上記で調製した各処理液について、下記に示す評価を行った。なお、以下の評価では、残渣物の一種であるTiOからなるモデル膜を作製し、そのエッチングレートを評価することにより残渣物除去性能を評価した。つまり、エッチングレートが高い場合は、残渣物除去性能に優れ、エッチングレートが低い場合は、残渣物除去性能に劣る、といえる。
 (a)Fresh時におけるエッチングレート(ERFr
 基板表面にTiO膜を積層したモデル膜を準備した。処理液A~Mの各々について、処理液調製直後(処理液を組成した直後、fresh)に、各処理液とTiO膜とを接触させ、TiO膜のエッチング処理を実施して、そのエッチングレートをERFrとした。
 (b)サーモサイクル試験後のエッチングレート(ERAge
 25℃、大気圧下で、それぞれ表1~13に示す空隙率(空隙率(体積%)={1-(保管容器内の半導体デバイス用処理液の体積/保管容器の容器体積)}×100)となるように、処理液A~Mの各々を樹脂製容器に封入した。樹脂製容器は、アイセロ化学製クリーンボトルであり、容器の総容量は500ミリリットルのものを用いた。
 次いで、容器に封入された各処理液に対し、通常の冷蔵保管温度である5℃で8時間→室温である25℃で4時間→通常の冷蔵保管温度である5℃で8時間→室温である25℃で4時間を1サイクルとして180日間繰り返すサーモサイクル試験を実施した。次いで、上記サーモサイクル試験後の処理液を用いてTiO膜をエッチング処理し、そのエッチングレート(エッチング速度)をERAgeとした。
(2) Evaluation The following evaluations were performed on the treatment liquids prepared above. In the following evaluation, a model film made of TiO, which is a kind of residue, was produced, and the residue removal performance was evaluated by evaluating the etching rate. That is, it can be said that when the etching rate is high, the residue removal performance is excellent, and when the etching rate is low, the residue removal performance is poor.
(A) Etching rate at fresh time (ER Fr )
A model film was prepared by laminating a TiO film on the substrate surface. For each of the treatment liquids A to M, immediately after preparation of the treatment liquid (immediately after the composition of the treatment liquid, fresh), each treatment liquid is brought into contact with the TiO film, and the TiO film is etched, and the etching rate is set. was ER Fr.
(B) Etching rate after thermocycle test (ER Age )
Porosities shown in Tables 1 to 13 at 25 ° C. and atmospheric pressure (porosity (volume%) = {1− (volume of processing liquid for semiconductor device in storage container / volume of storage container)} × 100 ), Each of the treatment liquids A to M was sealed in a resin container. The resin container is an Aicero Chemical clean bottle, and the total capacity of the container is 500 ml.
Next, for each processing solution sealed in the container, the normal refrigerated storage temperature of 5 ° C. for 8 hours → the room temperature of 25 ° C. for 4 hours → the normal refrigerated storage temperature of 5 ° C. for 8 hours → the room temperature. A thermocycle test was repeated for 180 days with a cycle of 4 hours at 25 ° C. Next, the TiO film was etched using the treatment liquid after the thermocycle test, and the etching rate (etching rate) was defined as ER Age .
 (c)エッチングレート維持率の算定及び評価
 得られたエッチングレートERFr及びERAgeに基づき、エッチングレートの維持率(エッチングレート維持率(%)=ERAge/ERFr×100)を算定し、下記の評価基準により評価を行った。
<エッチングレート維持率(%)>
 「1」: 60%以下
 「2」: 60%超~70%以下
 「3」: 70%超~80%以下
 「4」: 80%超~90%以下
 「5」: 90%超~95%以下
 「6」: 95%超~100%
(C) Calculation and evaluation of etching rate maintenance rate Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate (etching rate maintenance rate (%) = ER Age / ER Fr × 100) was calculated, Evaluation was performed according to the following evaluation criteria.
<Etching rate maintenance rate (%)>
"1": 60% or less "2": Over 60% to 70% or less "3": Over 70% to 80% or less "4": Over 80% to 90% or less "5": Over 90% to 95% “6”: Over 95% to 100%
(処理液A)
  HA     4質量%
   水    96質量%
(Processing liquid A)
4% by mass of HA
96% by weight of water
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(処理液B)
  HAS        4質量%
  NHOH       pH7.8に調整するのに必要な量
  水          残量
(Processing liquid B)
HAS 4% by mass
The amount water balance required to adjust the NH 4 OH pH 7.8
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(処理液C)
  HA           15質量%
  水            84質量%
  1-チオグリセロール    1質量%
(Processing liquid C)
HA 15% by mass
84% by weight of water
1-thioglycerol 1% by mass
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(処理液D)
  HA           20質量%
  水          72.5質量%
  TEA         7.5質量%
(Processing liquid D)
HA 20% by mass
72.5% by weight of water
TEA 7.5% by mass
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(処理液E)
  HA           20質量%
  水          72.5質量%
  コリン         7.5質量%
(Processing liquid E)
HA 20% by mass
72.5% by weight of water
Choline 7.5% by mass
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(処理液F)
  HA           20質量%
  水            79質量%
  NHF         0.5質量%
  NHOH        0.5質量%
(Processing liquid F)
HA 20% by mass
79% by weight of water
NH 4 F 0.5% by mass
NH 4 OH 0.5% by mass
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(処理液G)
  HA           4質量%
  水         89.4質量%
  EGBE         5質量%
  DBU       0.85質量%
  DTPA       0.5質量%
  5MBTA     0.25質量%
(Processing liquid G)
4% by mass of HA
89.4% by weight of water
EGBE 5% by mass
DBU 0.85 mass%
DTPA 0.5% by mass
5MBTA 0.25% by mass
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(処理液H)
  HA           15質量%
  水          83.5質量%
  1-チオグリセロール    1質量%
  5MBTA       0.5質量%
(Processing liquid H)
HA 15% by mass
83.5% by mass of water
1-thioglycerol 1% by mass
5MBTA 0.5% by mass
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(処理液I)
  HA           20質量%
  水            72質量%
  TEA         7.5質量%
  5MBTA       0.5質量%
(Processing liquid I)
HA 20% by mass
72% by weight of water
TEA 7.5% by mass
5MBTA 0.5% by mass
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(処理液J)
  HA           20質量%
  水            72質量%
  コリン         7.5質量%
  5MBTA       0.5質量%
(Processing liquid J)
HA 20% by mass
72% by weight of water
Choline 7.5% by mass
5MBTA 0.5% by mass
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(処理液K)
  HA            20質量%
  水           78.5質量%
  NHF         0.5質量%
  NHOH        0.5質量%
  5MBTA        0.5質量%
(Processing liquid K)
HA 20% by mass
78.5% by mass of water
NH 4 F 0.5% by mass
NH 4 OH 0.5% by mass
5MBTA 0.5% by mass
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(処理液L)
  HA                 20質量%
  水                  20質量%
  ジグリコールアミン          55質量%
  カテコール               5質量%
(Processing liquid L)
HA 20% by mass
20% by weight of water
Diglycolamine 55% by mass
Catechol 5% by mass
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(処理液M)
  HA                 20質量%
  水                  20質量%
  モノエタノールアミン         55質量%
  カテコール               5質量%
(Processing liquid M)
HA 20% by mass
20% by weight of water
Monoethanolamine 55% by mass
Catechol 5% by mass
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1~13に示す結果から、いずれの処理液を用いた場合においても、空隙率を0.01~30体積%(好ましくは1~25体積%、より好ましくは12~20体積%)としたときにエッチングレートの低下が抑制されている(言い換えると、エッチングレートが良好に維持される)ことが確認された。これらの結果より、所定の空隙率であれば、残渣除去性能の劣化が抑制されることが分かる。
 一方、空隙率が0.01~30体積%の数値範囲から外れた場合には、エッチングレートの低下が確認された。
From the results shown in Tables 1 to 13, the porosity was 0.01 to 30% by volume (preferably 1 to 25% by volume, more preferably 12 to 20% by volume) in any of the treatment liquids used. It was confirmed that the decrease in the etching rate was sometimes suppressed (in other words, the etching rate was maintained satisfactorily). From these results, it can be seen that if the porosity is a predetermined porosity, deterioration of the residue removal performance is suppressed.
On the other hand, when the porosity was out of the numerical range of 0.01 to 30% by volume, a decrease in the etching rate was confirmed.
(実施例A11~17)
 次に、処理液Aの処方において、表14に示すようにヒドロキシルアミン量を変えた処理液2A~7Aを準備し、いずれも容器内の空隙率を15体積%として実施例A1と同様の方法によりサーモサイクル試験を実施した。得られたエッチングレートERFr及びERAgeに基づき、エッチングレート維持率を算定して評価した。
 結果を表14に示す。
(Examples A11 to 17)
Next, in the formulation of the treatment liquid A, treatment liquids 2A to 7A with different amounts of hydroxylamine as shown in Table 14 were prepared, and the same method as in Example A1 with the void ratio in the container being 15% by volume. A thermocycle test was conducted. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(実施例B11~17)
 次に、処理液Bの処方において、表15に示すようにヒドロキシルアミン塩量を変えた処理液2B~7Bを準備し、いずれも容器内の空隙率を15体積%として実施例B1と同様の方法によりサーモサイクル試験を実施した。得られたエッチングレートERFr及びERAgeに基づき、エッチングレート維持率を算定して評価した。
 結果を表15に示す。
(Examples B11 to 17)
Next, in the prescription of the treatment liquid B, treatment liquids 2B to 7B with different amounts of hydroxylamine salt as shown in Table 15 were prepared, all of which were the same as in Example B1 with the porosity in the container being 15% by volume. The thermocycle test was carried out by the method. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表14及び表15の結果から、ヒドロキシルアミン及びヒドロキシアミン塩から選ばれる少なくとも1種の化合物の含有量を処理液全質量に対して4~25質量%(好ましくは12~18質量%)とした場合において、エッチングレートの低下がより抑制される(言い換えると、エッチングレートが良好に維持される)ことが確認された。 From the results of Tables 14 and 15, the content of at least one compound selected from hydroxylamine and hydroxyamine salt was 4 to 25% by mass (preferably 12 to 18% by mass) with respect to the total mass of the treatment liquid. In some cases, it was confirmed that the decrease in the etching rate was further suppressed (in other words, the etching rate was kept good).
(実施例A21~実施例A27)
 次に、処理液Aの処方において、処理液をイオン交換膜に通して精製する際に処理液中のFeイオンの含有量(処理液全質量に対する量)を表16のようにそれぞれ調製した処理液12A~17Aを準備し、いずれも容器内の空隙率を15体積%として実施例A1と同様の方法によりサーモサイクル試験を実施した。得られたエッチングレートERFr及びERAgeに基づき、エッチングレート維持率を算定して評価した。
 なお、処理液中の処理液全質量に対するFeイオンの含有量は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定した。
 結果を表16に示す。
(Example A21 to Example A27)
Next, in the formulation of the treatment liquid A, when the treatment liquid was purified through an ion exchange membrane, the Fe ion content in the treatment liquid (amount relative to the total mass of the treatment liquid) was prepared as shown in Table 16. Liquids 12A to 17A were prepared, and all were subjected to a thermocycle test in the same manner as in Example A1, with the void ratio in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
In addition, the content of Fe ions with respect to the total mass of the treatment liquid in the treatment liquid was measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
The results are shown in Table 16.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(実施例A28)
 上記で調製した処理液AをFe濃度が12質量ppmとなるように調製した処理液28Aを作製し、それ以外は実施例A21と同様の条件で評価を行ったところ、評価は5であった。
(Example A28)
The treatment liquid 28A prepared so that the Fe concentration was 12 mass ppm was prepared from the treatment liquid A prepared above, and evaluation was performed under the same conditions as in Example A21 except that the evaluation was 5. .
 表16及び実施例A28の結果から、処理液中にFeイオンを10質量ppt~10質量ppm(好ましくは1質量ppb~1質量ppm、より好ましくは1質量ppb~50質量ppb、更に好ましくは1質量ppb~5質量ppb)と微量に存在させることでエッチングレートの低下がより抑制される(言い換えると、エッチングレートが良好に維持される)ことが確認された。 From the results of Table 16 and Example A28, Fe ions were contained in the treatment liquid at 10 mass ppt to 10 mass ppm (preferably 1 mass ppb to 1 mass ppm, more preferably 1 mass ppb to 50 mass ppb, and still more preferably 1). It was confirmed that the presence of a very small amount (mass ppb to 5 mass ppb) further suppresses the decrease in the etching rate (in other words, the etching rate is maintained satisfactorily).
(実施例C11、D11、E11、F11、G11)
 次に、処理液C~Gの処方において、処理液をイオン交換膜に通して精製する際に処理液中のFeイオンの含有量(処理液全質量に対する量)を表17のようにそれぞれ5質量ppbに調整した処理液2C~2Gを準備し、いずれも容器内の空隙率を15体積%として実施例A1と同様の方法によりサーモサイクル試験を実施した。得られたエッチングレートERFr及びERAgeに基づき、エッチングレート維持率を算定して評価した。
 なお、処理液中の処理液全質量に対するFeイオンの含有量は、誘導結合プラズマ質量分析装置(横河アナリティカルシステムズ製、Agilent 7500cs型)により測定した。
 結果を表17に示す。
(Examples C11, D11, E11, F11, G11)
Next, in the formulations of the treatment liquids C to G, when purifying the treatment liquid through an ion exchange membrane, the content of Fe ions in the treatment liquid (amount relative to the total mass of the treatment liquid) is 5 as shown in Table 17. Treatment liquids 2C to 2G adjusted to a mass of ppb were prepared, and all were subjected to a thermocycle test in the same manner as in Example A1, with the void ratio in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
In addition, the content of Fe ions with respect to the total mass of the treatment liquid in the treatment liquid was measured by an inductively coupled plasma mass spectrometer (manufactured by Yokogawa Analytical Systems, Agilent 7500cs type).
The results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表17の結果から、処理液C~Gの処方においても、処理液中にFeイオンを10質量ppt~10質量ppm(好ましくは1質量ppb~1質量ppm、より好ましくは1質量ppb~50質量ppb、更に好ましくは1質量ppb~5質量ppb)と微量に存在させることでエッチングレートの低下がより抑制される(言い換えると、エッチングレートが良好に維持される)ことが確認された。 From the results of Table 17, also in the formulations of the treatment liquids C to G, Fe ions in the treatment liquid are 10 mass ppt to 10 mass ppm (preferably 1 mass ppb to 1 mass ppm, more preferably 1 mass ppb to 50 mass). It was confirmed that the decrease in the etching rate is further suppressed (in other words, the etching rate is maintained satisfactorily) by being present in a trace amount of ppb, more preferably 1 mass ppb to 5 mass ppb.
(半導体基板への適用)
 (1)Co膜を有する積層物の作製
 まず、基板(Si)上に、Co膜、SiN膜、SiO膜、及び所定の開口部を有するメタルハードマスク(TiN)をこの順で備える積層物を形成した。
 次に、この積層物を使用し、メタルハードマスクをマスクとしてプラズマエッチングを実施して、Co膜表面が露出するまでSiN膜及びSiO膜のエッチングを行い、ホールを形成した。ホールが形成された積層物の断面を走査型電子顕微鏡写真(SEM:Scanning Electron Microscope)で確認すると、ホール壁面にはプラズマエッチング残渣物が認められた。
 (2)半導体基板の洗浄
 上記で調製した処理液Aに対して所定の空隙率条件で上述のサーモサイクル試験を行った各処理液(実施例A1~A7及び比較例A1、A2で調製した各処理液に相当)を準備し、得られた半導体基板上に付着したプラズマエッチング残渣物の処理速度を評価した。
(Application to semiconductor substrate)
(1) Production of Laminate Having Co Film First, a laminate comprising a Co film, a SiN film, a SiO 2 film, and a metal hard mask (TiN) having a predetermined opening in this order on a substrate (Si). Formed.
Next, using this laminate, plasma etching was performed using a metal hard mask as a mask, and the SiN film and the SiO 2 film were etched until the Co film surface was exposed to form holes. When the cross section of the laminate in which the holes were formed was confirmed by a scanning electron micrograph (SEM), plasma etching residues were observed on the wall surfaces of the holes.
(2) Cleaning of Semiconductor Substrate Each of the treatment liquids prepared in Examples A1 to A7 and Comparative Examples A1 and A2 were subjected to the above-described thermocycle test under the predetermined porosity conditions for the treatment liquid A prepared above. (Corresponding to the treatment liquid) was prepared, and the treatment rate of the plasma etching residue adhered on the obtained semiconductor substrate was evaluated.
 プラズマエッチング残渣物の処理速度の評価についても、上述したエッチングレート維持率と同様の方法により行った。
 具体的には、Fresh時における処理速度(処理速度Fr)とサーモサイクル試験後の処理速度(処理速度age)に基づき、処理速度の維持率(処理速度の維持率(%)=処理速度age/処理速度Fr×100)を算定し、上述したエッチングレート維持率と同様の評価基準により評価を行った。
 この結果、処理液Aを半導体基板の洗浄液として適用した場合においても、実施例A1~A7及び比較例A1、A2と同様の結果が得られ、すなわち、処理液の保存下において空隙率を0.01~30体積%(好ましくは1~25体積%、より好ましくは12~20体積%)としたときにプラズマエッチング残渣物の処理速度の低下が抑制されている(プラズマエッチング残渣物の処理速度が良好に維持される)ことが確認された。
 また、処理液Aに代えて処理液B~Mについても同様の結果が確認された。
Evaluation of the processing rate of the plasma etching residue was also performed by the same method as the etching rate maintenance rate described above.
Specifically, based on the processing speed (processing speed Fr ) at the time of Fresh and the processing speed after the thermocycle test (processing speed age ), the processing speed maintenance ratio (processing speed maintenance ratio (%) = processing speed age / The processing speed Fr × 100) was calculated and evaluated according to the same evaluation criteria as the etching rate maintenance rate described above.
As a result, even when the treatment liquid A is applied as a semiconductor substrate cleaning liquid, the same results as in Examples A1 to A7 and Comparative Examples A1 and A2 are obtained. When the content is 01 to 30% by volume (preferably 1 to 25% by volume, more preferably 12 to 20% by volume), a decrease in the processing rate of the plasma etching residue is suppressed (the processing rate of the plasma etching residue is Maintained well).
Similar results were confirmed for the treatment liquids B to M instead of the treatment liquid A.
 また、処理液C~Mについて、HAをHASに置き換えた処理液を作製して、同様の実験を行ったところ、いずれも同様の結果が得られた。 Further, for the treatment liquids C to M, a treatment liquid in which HA was replaced with HAS was prepared, and the same experiment was performed. The same results were obtained in all cases.
 処理液Jにおいて、コリンの量を調整することによりpHを調整した。なお、酸性のpHにする場合にはシュウ酸2水和物(和光純薬工業(株)製)を添加して調整した。このようにして、pH5.0と、6.0、7.0、7.5、及び11.0の処理液N1~N5を作製した。容器内の空隙率を15体積%として実施例A1と同様の方法によりサーモサイクル試験を実施した。得られたエッチングレートERFr及びERAgeに基づき、エッチングレート維持率を算定して評価した。
 評価の結果、処理液N1(pH5.0)は3、処理液N2は4となり、処理液N3~N5は5となった。
In the treatment liquid J, the pH was adjusted by adjusting the amount of choline. In addition, in order to make acidic pH, it adjusted by adding oxalic acid dihydrate (made by Wako Pure Chemical Industries Ltd.). In this way, treatment liquids N1 to N5 having a pH of 5.0 and 6.0, 7.0, 7.5, and 11.0 were prepared. A thermocycle test was carried out in the same manner as in Example A1, with the porosity in the container being 15% by volume. Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate was calculated and evaluated.
As a result of the evaluation, the treatment liquid N1 (pH 5.0) was 3, the treatment liquid N2 was 4, and the treatment liquids N3 to N5 were 5.
 処理液N3を、ガス抜き弁を設けた容器に封入し、空隙率を15体積%として70℃で2日間保管した以外は同様にして、実施例A1と同様の方法によりエッチングレート維持率に関して算定して評価した。
 ガス抜き弁を設けた容器では内圧変化等の影響が無く、保管前後で残渣除去性能に変化は見られなかった。
 この結果から、夏場の屋外等、高温での保管環境下であっても、ガス抜き弁を有する容器であれば内圧変化等の影響がなく、安定して本発明の効果が得られることが期待される。
The etching rate maintenance rate was calculated in the same manner as in Example A1, except that the treatment liquid N3 was sealed in a container provided with a gas vent valve and stored at 70 ° C. for 2 days with a porosity of 15% by volume. And evaluated.
The container provided with a gas vent valve was not affected by changes in internal pressure, and there was no change in residue removal performance before and after storage.
From this result, even if the storage environment is high temperature, such as outdoors in summer, a container having a gas vent valve is not affected by changes in internal pressure and the like, and the effects of the present invention can be expected to be obtained stably. Is done.

Claims (15)

  1.  ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液を保管容器内に保管する、半導体デバイス用処理液の保管方法であって、
     前記保管容器内の空隙率を0.01~30体積%とする、半導体デバイス用処理液の保管方法。
     なお、空隙率は、以下の式(1)によって求められる。
     式(1):空隙率={1-(前記保管容器内の前記半導体デバイス用処理液の体積/前記保管容器の容器体積)}×100
    A method for storing a semiconductor device processing solution, comprising: storing a semiconductor device processing solution containing at least one selected from hydroxylamine and a hydroxylamine salt and water in a storage container,
    A method for storing a processing liquid for a semiconductor device, wherein the porosity in the storage container is 0.01 to 30% by volume.
    In addition, the porosity is calculated | required by the following formula | equation (1).
    Formula (1): Porosity = {1− (Volume of processing solution for semiconductor device in storage container / container volume of storage container)} × 100
  2.  前記半導体デバイス用処理液が、さらに、腐食防止剤を含む請求項1に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing liquid according to claim 1, wherein the semiconductor device processing liquid further contains a corrosion inhibitor.
  3.  前記半導体デバイス用処理液が、さらに、水溶性有機溶剤及びアルカノールアミン類の少なくとも一方を含む請求項1又は請求項2に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing liquid according to claim 1 or 2, wherein the semiconductor device processing liquid further contains at least one of a water-soluble organic solvent and alkanolamines.
  4.  前記半導体デバイス用処理液が、さらに、4級水酸化アンモニウム類を含む請求項1~3のいずれか1項に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing solution according to any one of claims 1 to 3, wherein the semiconductor device processing solution further contains a quaternary ammonium hydroxide.
  5.  前記半導体デバイス用処理液が、さらに、フッ化物を含む請求項1~4のいずれか1項に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing solution according to any one of claims 1 to 4, wherein the semiconductor device processing solution further contains a fluoride.
  6.  前記半導体デバイス用処理液が、さらに、キレート剤を含む請求項1~5のいずれか1項に記載の半導体デバイス用処理液の保管方法。 6. The method for storing a semiconductor device processing solution according to claim 1, wherein the semiconductor device processing solution further contains a chelating agent.
  7.  前記腐食防止剤が、下記式(A)~式(C)で表される化合物からなる群より選ばれる少なくとも1種である請求項2~6のいずれか1項に記載の半導体デバイス用処理液の保管方法。
    Figure JPOXMLDOC01-appb-C000001

     前記式(A)において、R1A~R5Aは、それぞれ独立に、水素原子、炭化水素基、水酸基、カルボキシ基、又は、アミノ基を表す。ただし、構造中に水酸基、カルボキシ基、及び、アミノ基から選ばれる基を少なくとも1つ含む。
     前記式(B)において、R1B~R4Bは、それぞれ独立に、水素原子、又は、炭化水素基を表す。
     前記式(C)において、R1C、R2C及びRは、それぞれ独立に、水素原子、又は、炭化水素基を表す。また、R1CとR2Cとが結合して環を形成してもよい。
    The semiconductor device processing solution according to any one of claims 2 to 6, wherein the corrosion inhibitor is at least one selected from the group consisting of compounds represented by the following formulas (A) to (C). Storage method.
    Figure JPOXMLDOC01-appb-C000001

    In the formula (A), R 1A to R 5A each independently represents a hydrogen atom, a hydrocarbon group, a hydroxyl group, a carboxy group, or an amino group. However, the structure contains at least one group selected from a hydroxyl group, a carboxy group, and an amino group.
    In the formula (B), R 1B to R 4B each independently represent a hydrogen atom or a hydrocarbon group.
    In the formula (C), R 1C, R 2C and R N are each independently a hydrogen atom, or represents a hydrocarbon group. R 1C and R 2C may be bonded to form a ring.
  8.  前記半導体デバイス用処理液のpHが6~11である請求項1~7のいずれか1項に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing solution according to any one of claims 1 to 7, wherein the semiconductor device processing solution has a pH of 6 to 11.
  9.  前記処理液中、前記ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種の総含有量が、処理液全質量に対して1~30質量%である、請求項1~8のいずれか1項に記載の半導体デバイス用処理液の保管方法。 The total content of at least one selected from the hydroxylamine and hydroxylamine salt in the treatment liquid is 1 to 30% by mass with respect to the total mass of the treatment liquid. The storage method of the processing liquid for semiconductor devices as described in a term.
  10.  前記処理液中、Feイオンの含有量が、10質量ppt~10質量ppmである、請求項1~9のいずれか1項に記載の半導体デバイス用処理液の保管方法。 The method for storing a semiconductor device processing solution according to any one of claims 1 to 9, wherein the content of Fe ions in the processing solution is 10 mass ppt to 10 mass ppm.
  11.  保管容器と、前記保管容器内に収容された、ヒドロキシルアミン及びヒドロキシルアミン塩から選ばれる少なくともいずれか1種と、水と、を少なくとも含有する半導体デバイス用処理液とを有する処理液収容体であって、前記保管容器内の空隙率が0.01~30体積%である、処理液収容体。
     なお、空隙率は、以下の式(1)によって求められる。
     式(1):空隙率={1-(前記保管容器内の前記半導体デバイス用処理液の体積/前記保管容器の容器体積)}×100
    A processing liquid container comprising: a storage container; and at least one selected from hydroxylamine and a hydroxylamine salt, and a processing liquid for semiconductor devices, which is contained in the storage container, and contains at least water. A treatment liquid container having a porosity in the storage container of 0.01 to 30% by volume.
    In addition, the porosity is calculated | required by the following formula | equation (1).
    Formula (1): Porosity = {1− (Volume of processing solution for semiconductor device in storage container / container volume of storage container)} × 100
  12.  前記保管容器の内壁の材質が樹脂である、請求項11に記載の処理液収容体。 The treatment liquid container according to claim 11, wherein the material of the inner wall of the storage container is a resin.
  13.  前記保管容器の内壁の材質が、高密度ポリエチレン、高密度ポリプロピレン、6,6-ナイロン、テトラフルオロエチレン、テトラフルオロエチレンとパーフロロアルキルビニルエーテルの共重合体、ポリクロロトリフルオロエチレン、エチレン・クロロトリフルオロエチレン共重合体、エチレン・四フッ化エチレン共重合体、及び、四フッ化エチレン・六フッ化プロピレン共重合体から選ばれる1以上の樹脂である、請求項11又は請求項12に記載の処理液収容体。 The material of the inner wall of the storage container is high density polyethylene, high density polypropylene, 6,6-nylon, tetrafluoroethylene, copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, polychlorotrifluoroethylene, ethylene / chlorotri 13. The resin according to claim 11 or 12, which is one or more resins selected from a fluoroethylene copolymer, an ethylene / tetrafluoroethylene copolymer, and a tetrafluoroethylene / hexafluoropropylene copolymer. Treatment liquid container.
  14.  前記保管容器の内壁の材質が、分子内にフッ素原子を含むフッ素系樹脂である、請求項11~13のいずれか1項に記載の処理液収容体。 The treatment liquid container according to any one of claims 11 to 13, wherein the material of the inner wall of the storage container is a fluorine-based resin containing fluorine atoms in the molecule.
  15.  前記保管容器が、開口部を複数有する、請求項11~14のいずれか1項に記載の処理液収容体。 The treatment liquid container according to any one of claims 11 to 14, wherein the storage container has a plurality of openings.
PCT/JP2016/086368 2015-12-11 2016-12-07 Method for storing treatment liquid for semiconductor devices and treatment liquid-containing body WO2017099121A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187014632A KR102067444B1 (en) 2015-12-11 2016-12-07 Storage method of processing liquid for semiconductor devices, processing liquid container
JP2017555097A JP6518788B2 (en) 2015-12-11 2016-12-07 Method of storing treatment liquid for semiconductor device, treatment liquid container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-242707 2015-12-11
JP2015242707 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017099121A1 true WO2017099121A1 (en) 2017-06-15

Family

ID=59013161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086368 WO2017099121A1 (en) 2015-12-11 2016-12-07 Method for storing treatment liquid for semiconductor devices and treatment liquid-containing body

Country Status (4)

Country Link
JP (1) JP6518788B2 (en)
KR (1) KR102067444B1 (en)
TW (1) TWI716510B (en)
WO (1) WO2017099121A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017333A1 (en) * 2017-07-18 2020-03-26 富士フイルム株式会社 Container, container manufacturing method, and medical solution container
WO2020071042A1 (en) * 2018-10-03 2020-04-09 富士フイルム株式会社 Chemical liquid, chemical liquid housing body, resist pattern formation method, and production method for semiconductor chips
WO2021106460A1 (en) * 2019-11-25 2021-06-03 昭和電工株式会社 Method for producing decomposing/cleaning composition
WO2021176913A1 (en) * 2020-03-04 2021-09-10 富士フイルム株式会社 Processing solution and processing solution container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261312A (en) * 2000-03-24 2001-09-26 Nisshin Kako Kk Aqueous solution of hydroxylamine and method of producing the same
JP2005236050A (en) * 2004-02-19 2005-09-02 Az Electronic Materials Kk Apparatus for supplying chemical solutions for manufacturing electronic device and method for exchanging solution vessel
JP2006501327A (en) * 2002-09-26 2006-01-12 エア プロダクツ アンド ケミカルズ インコーポレイテッド Composition substrate for removing etching residue and use thereof
JP2009217267A (en) * 2008-03-07 2009-09-24 Air Products & Chemicals Inc Stripper for dry film removal
WO2012090669A1 (en) * 2010-12-28 2012-07-05 Jsr株式会社 Binder composition for electrodes, electrode slurry, electrode, electrochemical device, and production method and storage method of binder composition for electrodes
JP2012195590A (en) * 2011-03-16 2012-10-11 Air Products & Chemicals Inc Cleaning formulations and method of using cleaning formulations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261312A (en) * 2000-03-24 2001-09-26 Nisshin Kako Kk Aqueous solution of hydroxylamine and method of producing the same
JP2006501327A (en) * 2002-09-26 2006-01-12 エア プロダクツ アンド ケミカルズ インコーポレイテッド Composition substrate for removing etching residue and use thereof
JP2005236050A (en) * 2004-02-19 2005-09-02 Az Electronic Materials Kk Apparatus for supplying chemical solutions for manufacturing electronic device and method for exchanging solution vessel
JP2009217267A (en) * 2008-03-07 2009-09-24 Air Products & Chemicals Inc Stripper for dry film removal
WO2012090669A1 (en) * 2010-12-28 2012-07-05 Jsr株式会社 Binder composition for electrodes, electrode slurry, electrode, electrochemical device, and production method and storage method of binder composition for electrodes
JP2012195590A (en) * 2011-03-16 2012-10-11 Air Products & Chemicals Inc Cleaning formulations and method of using cleaning formulations

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017333A1 (en) * 2017-07-18 2020-03-26 富士フイルム株式会社 Container, container manufacturing method, and medical solution container
JP6997187B2 (en) 2017-07-18 2022-01-17 富士フイルム株式会社 Containers, manufacturing methods for containers, and chemical containers
WO2020071042A1 (en) * 2018-10-03 2020-04-09 富士フイルム株式会社 Chemical liquid, chemical liquid housing body, resist pattern formation method, and production method for semiconductor chips
JPWO2020071042A1 (en) * 2018-10-03 2021-09-24 富士フイルム株式会社 Chemical solution, chemical container, resist pattern forming method, semiconductor chip manufacturing method
WO2021106460A1 (en) * 2019-11-25 2021-06-03 昭和電工株式会社 Method for producing decomposing/cleaning composition
CN114746536A (en) * 2019-11-25 2022-07-12 昭和电工株式会社 Method for producing decomposition cleaning composition
CN114746536B (en) * 2019-11-25 2024-01-09 株式会社力森诺科 Method for producing decomposition cleaning composition
WO2021176913A1 (en) * 2020-03-04 2021-09-10 富士フイルム株式会社 Processing solution and processing solution container
JPWO2021176913A1 (en) * 2020-03-04 2021-09-10

Also Published As

Publication number Publication date
TWI716510B (en) 2021-01-21
TW201732914A (en) 2017-09-16
KR102067444B1 (en) 2020-01-17
KR20180074755A (en) 2018-07-03
JPWO2017099121A1 (en) 2018-08-30
JP6518788B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
KR102051346B1 (en) Processing liquid, substrate cleaning method and resist removal method
JP6629880B2 (en) Cleaning solution, substrate cleaning method, and semiconductor device manufacturing method
EP1576072B1 (en) Aqueous phosphoric acid compositions for cleaning semiconductor devices
WO2018061670A1 (en) Processing solution, and method for processing laminate
WO2018043440A1 (en) Processing liquid, substrate cleaning method, and method for producing semiconductor devices
JP6542392B2 (en) PROCESSING LIQUID, METHOD FOR CLEANING SUBSTRATE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP6518788B2 (en) Method of storing treatment liquid for semiconductor device, treatment liquid container
TWI702286B (en) Process liquid, method for cleaning substrate, and method for manufacturing semiconductor device
JP6033314B2 (en) Microelectronic substrate cleaning composition comprising a copper / azole polymer inhibitor
JP7469474B2 (en) Semiconductor substrate cleaning solution
JP6542393B2 (en) PROCESS LIQUID, METHOD FOR CLEANING SUBSTRATE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP7324290B2 (en) Processing liquid, kit, manufacturing method of processing liquid, cleaning method of substrate, processing method of substrate
JP7220808B2 (en) Cleaning liquid, cleaning method
WO2022024609A1 (en) Treatment liquid and substrate washing method
WO2022176663A1 (en) Cleaning liquid and method for cleaning semiconductor substrate
WO2022163350A1 (en) Composition, and method for cleaning substrate
JP7340614B2 (en) cleaning method
JP7273165B2 (en) Treatment liquid, treatment method for treated object
US20240134284A1 (en) Treatment liquid, method for washing substrate, and method for removing resist

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555097

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187014632

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16873014

Country of ref document: EP

Kind code of ref document: A1