WO2017098784A1 - Automotive body driving analysis method - Google Patents

Automotive body driving analysis method Download PDF

Info

Publication number
WO2017098784A1
WO2017098784A1 PCT/JP2016/078861 JP2016078861W WO2017098784A1 WO 2017098784 A1 WO2017098784 A1 WO 2017098784A1 JP 2016078861 W JP2016078861 W JP 2016078861W WO 2017098784 A1 WO2017098784 A1 WO 2017098784A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
vehicle
model
vehicle body
body skeleton
Prior art date
Application number
PCT/JP2016/078861
Other languages
French (fr)
Japanese (ja)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2018006940A priority Critical patent/MX2018006940A/en
Publication of WO2017098784A1 publication Critical patent/WO2017098784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a driving analysis method for a vehicle (automotive body), and more particularly, a vehicle driving analysis method for performing a driving analysis of a vehicle in which no fittings or lids are directly arranged.
  • the fitting is a general term for an engine, a transmission, a seat, and the like
  • the lid is a generic term for a door, a trunk, a hood, and the like.
  • Patent Document 1 discloses a support for stiffness evaluation method for evaluating the rigidity of a vehicle in a running state by numerical analysis.
  • the equipment installed at a position away from the center of the vehicle greatly affects the deformation of the body frame.
  • the mass of a component (assembly) in which a plurality of parts are combined may be several tens of kilograms or more, even if it is a fitting or a lid, and the body skeleton (about 100 to 300 kg) This is because it cannot be ignored for (body structure). Therefore, when evaluating the performance of the vehicle body skeleton, it is desirable to evaluate in a state in which the inertial force acting on the fitting or the lid is taken into consideration during actual traveling.
  • the vehicle stiffness evaluation support method disclosed in Patent Document 1 evaluates the vehicle stiffness in a freely supported state in which the vehicle body is supported by a shock absorber or a soft bushing. It is equipped with fittings and lids. However, in general, the appearance and design of the vehicle are not decided at the initial stage of the body skeleton design, and fittings and lids that are greatly influenced by the appearance and design of the vehicle are finally decided at the later stage of the design. Many.
  • the present invention has been made to solve the above-described problems, and considers the influence of the fitting or lid in the actual running state even before the automobile fitting or lid is determined. It is an object of the present invention to provide a vehicle travel analysis method for performing travel analysis.
  • the vehicle travel analysis method has a fixed coupling portion for fixing or connecting a fitting or a lid, and uses a planar element and / or a solid element.
  • the vehicle performs a running analysis using a vehicle model having a configured vehicle body skeleton model and chassis model, and the fitting or the lid is fixed or connected to a fixed connection portion of the vehicle body skeleton model.
  • a mass setting vehicle body skeleton model generating step for generating a mass setting vehicle body skeleton model by setting a mass corresponding to the mass of the fitting or lid at a predetermined position in the region to be set, and the mass setting vehicle body skeleton model and the chassis
  • a vehicle model generation step for generating a vehicle model by connecting the model, and a running analysis of the vehicle model, and a vehicle body characteristic during performance (performance of automotive And a travel analysis step for acquiring (body).
  • the vehicle travel analysis method is characterized in that, in the above-described invention, the predetermined position in the mass setting vehicle body skeleton model generation step is set on a straight line or a curve connecting the fixed connecting portions.
  • the fitting or the lid when the fitting or the lid is a rotatable movable part (part) that is rotatable, the fitting or the lid is rotatable. It is characterized in that it is set at a position excluding the rotationally movable central axis at the time.
  • the predetermined position in the mass setting vehicle body skeleton model generation step is set on a plane or a curved surface surrounded by a straight line or a curve connecting the fixed connecting portions (the straight line or the curved line). (Except on the curved line).
  • the mass setting vehicle body skeleton model generation step includes a mass element corresponding to a mass of the fitting or the lid, a mass element, and the mass element and the fixed connection. It is characterized by setting using a rigid element that connects the parts.
  • the mass setting vehicle body skeleton model generation step is set using a mass element and a beam element, and the mass element and beam The sum of the masses of the elements corresponds to the mass of the fitting or lid fixed or connected to the fixed connection part.
  • the vehicle travel analysis method according to the present invention is characterized in that, in the above invention, the mass setting vehicle body skeleton model generation step is set using a beam element having a mass corresponding to a mass of the fitting or the lid. Is.
  • a computer using a vehicle model having a vehicle body skeleton model and a chassis model having a fixed connection part for fixing or connecting a fitting or a lid and having a plane element and / or a three-dimensional element. Is used for running analysis, and a mass corresponding to the mass of the fitting or lid is set at a predetermined position in a region where the fitting or lid is fixed or connected to the fixed connection portion of the vehicle body skeleton model.
  • FIG. 1 is a flowchart showing a processing flow of a vehicle travel analysis method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a vehicle model used for vehicle travel analysis according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of the vehicle body skeleton model according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a mass setting vehicle body skeleton model according to the embodiment of the present invention.
  • FIG. 5 is a block diagram of a travel analysis apparatus that implements the vehicle travel analysis method according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram illustrating a predetermined position where the mass is set in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention.
  • FIG. 1 is a flowchart showing a processing flow of a vehicle travel analysis method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a vehicle model used for vehicle travel analysis according to the embodiment of
  • FIG. 7 is an explanatory diagram for explaining the mass setting vehicle body skeleton model in which the mass is set in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram for explaining a mass setting method in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a connecting portion that connects the mass setting vehicle body skeleton model and the chassis model according to the present embodiment.
  • FIG. 10 is a diagram for explaining an example of travel conditions set in the travel analysis according to the present embodiment.
  • FIG. 11 is a distribution diagram of von Mises stress in the vehicle body obtained by running analysis of the vehicle model in the embodiment.
  • FIG. 12 is a Mises stress distribution diagram in the vicinity of a front shock absorber of a vehicle body obtained by running analysis of a vehicle model in the example.
  • FIG. 13 is a Mises stress distribution diagram in the vicinity of the rear floor of the vehicle body obtained by running analysis of the vehicle model in the example.
  • FIG. 14 is a Mises stress distribution diagram in the vicinity of the rear wheelhouse of the vehicle body obtained by running analysis of the vehicle model in the example.
  • FIG. 15 is a distribution diagram of the deformation volume of the vehicle body in the vicinity of the rear wheel house of the vehicle body obtained by running analysis of the vehicle model in the embodiment.
  • FIG. 16 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the embodiment (part 1).
  • FIG. 17 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the example (part 2).
  • FIG. 18 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the example (part 3).
  • the vehicle running analysis method includes a vehicle body skeleton model 11 (see FIG. 3) having a fixed connection portion 13 for fixing or connecting a fitting or a lid as shown in FIG.
  • the vehicle body skeleton model 21 (see FIG. 4) generated by setting the mass corresponding to the mass and the vehicle model 1 generated by connecting the chassis model 31 are used for running analysis.
  • the vehicle travel analysis apparatus (analyzer) 41 (hereinafter simply referred to as “travel analysis apparatus 41”) configured as shown in the block diagram of FIG.
  • travel analysis apparatus 41 configured as shown in the block diagram of FIG.
  • the vehicle body skeleton model 11 used in the present invention is composed only of skeleton parts (structural parts) of an automobile body, and has a fixed connecting portion 13 for fixing or connecting a fitting or a lid. .
  • the vehicle body skeleton model 11 is configured using planar elements and / or solid elements, and element information and the like are stored in a vehicle body skeleton model file 60 (see FIG. 5).
  • the vehicle body skeleton model 11 is an elastic body, a viscoelastic body, a viscoelastic body, or the like in order to analyze a deformation behavior (deformation behavior) when a load or an inertial force is influenced. It is modeled as an elasto-plastic body.
  • the fixed connecting portion 13 of the vehicle body skeleton model 11 As an example of the fixed connecting portion 13 of the vehicle body skeleton model 11, as shown in FIG. 3, there are a hinge 13a and a hinge 13b for fixing or connecting a revolving door, and a door striker 13c.
  • the fixed connecting portion 13 is not limited to these, and is used for fixing fittings such as an engine mount for fixing an engine, a slide door other than a revolving door, a bonnet ( bonnet) etc., including those that fix or connect lids.
  • a chassis model 31 (see FIG. 2) according to the present embodiment includes a suspension mechanism having a tire, a suspension arm, a suspension spring, a shock absorber, and the like, and a steering handle.
  • components such as suspension arms (links) are rigid bodies, elastic bodies or elastic-plastic bodies, and tires and suspension springs are elastic bodies, viscoelastic bodies or elastic bodies. It is modeled as a plastic body.
  • the chassis model 31 may be a combination of components such as suspensions included in a commercially available vehicle travel analysis software.
  • the travel analysis device 41 used in the vehicle travel analysis method according to the present embodiment is a device that performs travel analysis on the vehicle model 1 shown in FIG. 2 as an analysis target, and is a computer such as a PC (personal computer). It is configured. As shown in FIG. 5, the travel analysis device 41 includes a display device 43, an input device 45, a memory storage 47, a working data memory 49, and arithmetic processing. Part (arithmetic processing unit) 50. In addition, a display device 43, an input device 45, a storage device 47, and a work data memory 49 are connected to the arithmetic processing unit 50, and each function is executed according to instructions from the arithmetic processing unit 50.
  • the display device 43 is used for displaying calculation results, and is composed of a liquid crystal monitor (LCD monitor) or the like.
  • the input device 45 is used for an instruction to display an analysis model such as the vehicle model 1 by the operator, input of analysis conditions, and the like, and is configured with a keyboard, a mouse, and the like.
  • the storage device 47 is used for storing files and is configured by a hard disk or the like, and stores at least various files such as the vehicle body skeleton model file 60, programs executed by the arithmetic processing unit 50, and the like.
  • the work data memory 49 is used for temporary storage and calculation of data used by the arithmetic processing unit 50, and includes a RAM or the like.
  • the arithmetic processing unit 50 is configured by a CPU (central processing unit) such as a PC, and includes a mass setting vehicle body skeleton model generation unit 51, a vehicle model generation unit 53, and a travel analysis unit 55. Each of the above units is realized by the CPU executing a predetermined program.
  • a CPU central processing unit
  • the mass setting vehicle body skeleton model generation unit 51 has the above-mentioned equipment or lid at a predetermined position in a region where the equipment or lid shown in FIG. 3 is fixed or connected to the fixed connection portion 13 of the vehicle body skeleton model 11.
  • the mass corresponding to the mass is set, and the mass setting vehicle body skeleton model 21 (example shown in FIG. 4) is generated.
  • the vehicle model generation unit 53 connects the mass setting vehicle body skeleton model 21 generated by the mass setting vehicle body skeleton model generation unit 51 to the chassis model 31 having a suspension system, a steering system, and the like. Thus, the vehicle model 1 is generated.
  • the travel analysis unit 55 performs a travel analysis using the vehicle model 1 generated by the vehicle model generation unit 53 as an analysis target, and acquires vehicle body characteristics during travel.
  • travel conditions such as driving and steering of the vehicle model 1.
  • Examples of the traveling condition to be set include a load applied to the vehicle model 1 for driving the vehicle model 1 and a steering angle set for a steering handle provided in the chassis model 31 for steering the vehicle model 1. Then, as the vehicle body characteristics of the vehicle model 1 that is traveling under the set traveling conditions, stress and deformation in the mass setting vehicle body skeleton model 21, load at a connection portion connected to the chassis model 31, and the like. get.
  • the vehicle travel analysis method includes a mass setting body skeleton model generation step S ⁇ b> 1 for setting a mass corresponding to a fitting or a lid in the body skeleton model 11, and a mass setting body skeleton.
  • a travel analysis step S5 for acquiring a vehicle body which utilizes a mechanism analysis (multibody dynamics analysis) used for motion analysis of a rigid body in a vehicle of an automobile. is there.
  • the object to be analyzed is a rigid body, and the operation to calculate from the mere flexibility of the parts connected by links etc. is simulated, but the analysis object is a travel analysis specialized for automobiles .
  • the analysis object is a travel analysis specialized for automobiles .
  • each step is executed by the computer in accordance with an instruction from the operator.
  • Mass setting body frame model generation step S1 a mass corresponding to the mass of the equipment or lid is set at a predetermined position in a region where the equipment or lid is fixed or connected to the fixed connection portion 13 of the vehicle body skeleton model 11.
  • the mass setting vehicle body skeleton model 21 is generated, and in the travel analysis device 41, the mass setting vehicle body skeleton model generation unit 51 performs.
  • the mass element 23 is set at a predetermined position in a region where the fitting or lid is fixed or connected, thereby A mass corresponding to the mass can be set.
  • the predetermined position for setting the mass element 23 is, as shown in FIG. 6, a set of a plurality of fixed connecting portions 13 (hinge 13a and striker 13c, hinge 13b and striker 13c, hinge 13a and hinge 13b). On the straight line L to be connected (FIG. 6A) or on the curve connecting the fixed connecting portions 13 along the shape of the vehicle body to which a lid or the like is attached.
  • the fitting or the lid is a rotatable movable part such as a revolving door
  • the rotationally movable central axis is substantially at the same position as the boundary of the region where the revolving door is fixed or connected to the vehicle body skeleton model 11.
  • the straight line connecting the hinge 13a and the striker 13c of the revolving door and the straight line connecting the hinge 13b and the striker 13c are located inside the region where the revolving door is fixed or connected to the vehicle body skeleton model 11. .
  • the predetermined position for setting the mass corresponding to the fitting or lid is a center of rotation when the fitting or lid is rotationally movable on the straight line L connecting the plurality of fixed connecting portions 13 or on the curve. It is desirable to set the position excluding the axis.
  • the predetermined position for setting the mass corresponding to the fitting or the lid is not limited to the straight line L or the curved line, but on the plane P surrounded by the straight line L (FIG. 6B), Or it is good also on the curved surface enclosed by the said curve.
  • the straight line L or the curved line is a boundary of the plane P or the curved surface, it is desirable to set a mass corresponding to the fitting or the lid inside the boundary. Therefore, it is more preferable to set the predetermined position for setting the mass corresponding to the fitting or the lid on the plane P excluding the straight line L or the curved line or on the curved surface.
  • the fixed connection parts 13 are connected by a straight line so that the two straight lines intersect each other, and the mass element 23 is set on the straight line. It is preferable. Also in this case, the fixed connecting portion 13 may be connected by a curve in accordance with the curvature of the vehicle body, and the mass element 23 may be set on the curve.
  • Specific mass setting methods for setting the mass at the predetermined position include, for example, the following (1), (2), and (3).
  • a mass element 23 having a mass corresponding to the mass of a fitting or a lid is set at the predetermined position, and the mass element 23 and the fixed connecting portion 13 are connected using a rigid element 25 (See FIG. 7).
  • FIG. 7A shows an example in which one mass element 23 is set on the center of the straight line L connecting the fixed connecting portions 13, but the straight line L is equally divided as shown in FIG. 7B.
  • a plurality of mass elements 23 may be set on the point. When a plurality of mass elements 23 are set, the mass of each mass element 23 may be determined so that the total mass of each mass element 23 corresponds to the mass of the fitting or the lid.
  • a mass element 23 having a mass corresponding to the mass of the fitting or lid is set at the predetermined position, and the mass element 23 and the fixed coupling portion 13 are connected using the beam element 27 (FIG. 8A )reference).
  • the sum of the mass of each of the mass element 23 and the beam element 27 is set so as to correspond to the mass of the fitting or lid fixed or coupled to the fixed coupling portion 13.
  • the mass of the beam element 27 is determined by the cross-sectional area given as the cross-sectional property of the beam element 27 and the material density given as the material property. It is done.
  • the cross-sectional area of the beam element 27 is determined by giving the radius of the beam element 27, for example.
  • the cross-sectional characteristics and material characteristics necessary for transmitting the load due to the inertial force acting on the mass element 23 and the beam element 27 to the mass setting vehicle body skeleton model 21 are given to the beam element 27. It is necessary to set appropriately.
  • the beam element 27 is a linear element and can be a rod element (bar element) as long as it can transmit a tension and compression load acting in the axial direction of the element. )), And the mass of the rod element is set by the cross-sectional area (or radius) given as the cross-sectional characteristic and the material density given as the material characteristic, as with the beam element 27. .
  • a beam element 27 having a mass corresponding to the mass of the fitting or lid is set (see FIG. 8B).
  • the mass of the beam element 27 is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element 27 and the material density given as the material characteristic.
  • the cross-sectional area is determined by giving the radius of the beam element 27. .
  • the vehicle model generation step S3 generates the vehicle model 1 by connecting the mass setting vehicle body skeleton model 21 generated in the mass setting vehicle body skeleton model generation step S1 and the chassis model 31 having a suspension mechanism and a steering mechanism. It is a step to do.
  • connection position of the chassis model 31 in the mass setting vehicle body skeleton model 21 is a portion (connection portion) to which a suspension or a sub-frame is attached.
  • FIG. 9 illustrates connection portions (Node 1 to Node 4 and Node 7 to Node 12) that connect the mass setting vehicle body skeleton model 21 and the chassis model 31.
  • the travel analysis step S5 is a step in which the vehicle model 1 generated in the vehicle model generation step S3 is used to perform a travel analysis of the vehicle model 1 under the set travel conditions and to acquire vehicle body characteristics during travel.
  • the vehicle model 1 in which the mass setting vehicle body skeleton model 21 in which the mass corresponding to the fitting or the lid is set is connected to the chassis model 31 is used, the inertia acting on the fitting or the lid during traveling is used. Car body characteristics can be acquired in consideration of force.
  • the driving conditions set in the driving analysis step S5 include driving of the vehicle model 1 and steering.
  • the vehicle model 1 is driven, for example, by applying a load to the vehicle model 1, and the vehicle model 1 can be accelerated (running) or constant speed (running).
  • the steering of the vehicle model 1 can be performed via a steering mechanism by controlling the steering angle of a steering handle provided in the chassis model 31, for example.
  • FIG. 10 as an example of the driving condition in the driving analysis, the driving path (FIG. 10 (a)) of the vehicle in the double lane change in which the lane change is continuously performed twice during driving
  • the steering angle of the steering wheel (FIG. 10B) is shown.
  • the vehicle body characteristics in the vehicle model 1 in the traveling state under the set traveling conditions are acquired.
  • the acquired vehicle body characteristics include stress and deformation in the mass setting vehicle body skeleton model 21, and loads in connection portions (for example, Node 1 to Node 4 and Node 7 to Node 12 in FIG. 9) connected to the chassis model 31. It is done.
  • the present invention can analyze the running analysis in consideration of the influence of the inertial force acting on the lid or the fitting in the running state even on the vehicle skeleton without the lid or the fitting or in an undetermined state. It is possible to accurately obtain vehicle body characteristics (stress distribution, deformation, load, etc.) during running. Furthermore, since the load acting on the vehicle body can be obtained with high accuracy, the load acting on the vehicle body during running can be given as an analysis condition even when the vehicle body skeleton model is analyzed for rigidity when not running. Thus, it becomes possible to analyze the deformation of the vehicle body during traveling with high accuracy.
  • traveling analysis was performed on a vehicle model 1 generated by connecting a mass-set vehicle body skeleton model 21 in which the mass was set to the vehicle body skeleton model 11 and a chassis model 31 having a suspension mechanism and a steering mechanism. .
  • a mass corresponding to the rotating door component is set at a predetermined position in a region where the rotating door component as a lid is fixed or connected to the fixed connecting portion 13 of the vehicle body skeleton model 11.
  • the mass of the target vehicle body skeleton model 11 was about 300 kg, while the mass of the rotating door component parts was about 79 kg. Therefore, in the vehicle body skeleton model 11, ten mass elements 23 are evenly arranged on a straight line connecting the upper hinge 13a and the striker 13c, and the mass element 23, the hinge 13a, and the striker 13c are connected by the rigid element 25. As a result, the mass setting vehicle body skeleton model 22 shown in FIG. 7B was generated. In addition, the mass of each mass element 23 was set so that the sum total of the mass of the mass elements 23 would be the mass of the rotating door components.
  • the vehicle model 1 which is an example of the invention was generated by connecting the mass setting vehicle body skeleton model 22 and the chassis model 31 by connecting portions (Node 1 to Node 4 and Node 7 to Node 12) shown in FIG.
  • the driving condition in the driving analysis of this experiment was the double lane change shown in FIG.
  • the vehicle model 1 is accelerated by applying a load to the vehicle model 1 from the start of analysis to 1.0 s, and is driven at a constant speed. Then, by controlling the steering angle of the steering wheel as shown in FIG. 10 (b), the steering lane is changed at the time of 1.0s, the lane is changed, and the vehicle returns to the original lane at the time of 15.0s. I did.
  • a vehicle model 1 (comparative example 1) in which a vehicle body skeleton model 11 and a chassis model 31 in which the mass of the rotational door component is not set is connected, and a vehicle door skeleton model 11 are set with a rotational door component
  • the vehicle model 1 (comparative example 2) generated by connecting to the vehicle 31 was also subjected to a travel analysis in the same manner as the invention example, and a comparative study of vehicle body characteristics during travel was performed.
  • the connection part of the vehicle body skeleton model 11 and the chassis model 31 in Comparative Examples 1 and 2 is Node 1 to Node 4 and Node 7 to Node 12 shown in FIG.
  • FIGS. 11 to 14 show the analysis results of Mises stress distribution in the vehicle body skeleton at 1.2 s immediately after the start of steering.
  • 11 is a stress distribution of the entire vehicle body
  • FIG. 12 is an enlarged view of the vicinity of the front shock
  • FIG. 13 is the vicinity of the rear floor
  • FIG. 14 is an enlarged view of the vicinity of the rear wheel house.
  • FIG. 15 shows an analysis result of the deformation amount of the vehicle body in the vicinity of the rear floor at 1.2 s immediately after the start of steering.
  • the X axis, the Y axis, and the Z axis are the front-rear direction, the vehicle width direction, and the vertical direction of the vehicle model 1, respectively.
  • (A) is Comparative Example 1
  • (b) is Comparative Example 2.
  • (C) is the result of the invention example.
  • the rotary door component is not displayed.
  • FIGS. 11 to 15 are gray scales of color contour diagrams of distribution of stress or deformation.
  • the invention example and the comparative example 2 show the distribution of the deformation amount approximated as a whole, but the comparison in which the mass of the rotating door component is not set.
  • Example 1 there was a difference in the distribution shape at the positions indicated by circles in the figure.
  • FIGS. 16 to 18 show the results of load changes at Node1, Node3, Node7, Node9, and Node11, which are the connections between the vehicle body skeleton model and the chassis model.
  • the loads in FIGS. 16 to 18 are the sum of the loads in the front and rear, left and right, and top and bottom directions of the vehicle.
  • the load in the invention example in which the mass of the rotating door component is set is the result of Comparative Example 1 in which the mass of the rotating door component is not set. Although it is different, the result was almost the same as Comparative Example 2 in which the rotating door components were set.
  • a vehicle travel analysis method for performing a travel analysis in consideration of the influence of a fitment or a cover in an actual traveling state even before the determination of the vehicle accessory or the cover. Can do.

Abstract

In an automotive body driving analysis method according to the present invention, a computer performs a driving analysis using an automotive body model 1 in which a vehicle body structure model 11 including fixed coupling portions 13 to which fittings or lid components are fixed or coupled, and a chassis model 31 are connected to one another. The automotive body driving analysis method is characterized in being provided with: a mass setting vehicle body structure model generating step S1 of generating a mass setting vehicle body structure model 21 by setting masses corresponding to the masses of the fittings or the lid components in prescribed positions within regions in which the fittings or the lid components are fixed or coupled to the fixed coupling portions 13 in the vehicle body structure model 11; an automotive body model generating step S3 of generating the automotive body model 1 by connecting the mass setting vehicle body structure model 21 to the chassis model 31; and a driving analysis step S5 of performing a driving analysis of the automotive body model 1 to acquire the performance of the automotive body while driving.

Description

車両の走行解析方法Vehicle travel analysis method
 本発明は、車両(automotive body)の走行解析(driving analysis)方法に関し、特に、艤装品(fittings)又は蓋物(lid compornent)が直接配設されていない車両の走行解析を行う車両の走行解析方法に関する。なお、本発明において、艤装品はエンジン(engine)、トランスミッション(transmission)、シート(seat)等を、蓋物はドア(door)、トランク(trunk)、フード(hood)等を総称するものである。 The present invention relates to a driving analysis method for a vehicle (automotive body), and more particularly, a vehicle driving analysis method for performing a driving analysis of a vehicle in which no fittings or lids are directly arranged. About. In the present invention, the fitting is a general term for an engine, a transmission, a seat, and the like, and the lid is a generic term for a door, a trunk, a hood, and the like.
 近年、特に自動車産業においては環境問題に起因した車体の軽量化(weight reduction of automotive body)が進められており、車体の設計にCAE解析(computer aided engineering analysis)は欠かせない技術となっている。このCAE解析では剛性解析(stiffness analysis)、衝突解析(crashworthiness analysis)、振動解析(vibration analysis)等が実施され、車体性能(performance of automotive body)の向上に大きく寄与している。さらに、CAE解析により単なる車体性能を評価するだけではなく、CAE解析により得られた解析結果を用いて数理最適化(mathematical optimization)、板厚最適化(thickness optimization)、形状最適化(shape optimization)、トポロジー最適化(topology optimization)等の最適化解析(optimization analysis)を行い、各種車体性能の向上や車体の軽量化が図れることが知られている。特許文献1には、走行状態の車両の剛性を数値解析(numerical analysis)により評価する剛性評価支援(support for stiffness evaluation)方法が開示されている。 In recent years, especially in the automobile industry, weight reduction of automotive bodies due to environmental problems has been promoted, and CAE analysis (computer aided engineering analysis) has become an indispensable technology for vehicle body design. . In this CAE analysis, stiffness analysis, crashworthiness analysis, vibration analysis, etc. are carried out, which greatly contributes to the improvement of the performance of the automotive body. Furthermore, not only vehicle body performance is evaluated by CAE analysis, but also mathematical optimization, thickness optimization, and shape optimization using the analysis results obtained by CAE analysis. It is known that optimization analysis such as topology optimization can be performed to improve various vehicle performance and reduce the weight of the vehicle. Patent Document 1 discloses a support for stiffness evaluation method for evaluating the rigidity of a vehicle in a running state by numerical analysis.
特許第5203851号公報Japanese Patent No. 5203851
 車両が実際に走行している状態を考えた場合、例えばレーンチェンジ(lane change)等により車体挙動(vehicle body behavior)が変化する際には、車両の中心から離れた位置に配設された艤装品又は蓋物に作用する慣性力(inertia force)が車体骨格の変形に大きく影響を及ぼす。これは、艤装品又は蓋物であっても、複数の部品が組み合わされた構成部品(assembly)の質量(mass)が数10kg以上となる場合もあり、質量が100~300kg程度である車体骨格(body structure)に対して無視できないためである。そのため、車体骨格の性能を評価する際には、実際の走行時に艤装品又は蓋物に作用する慣性力を考慮した状態で評価することが望まれる。 Considering the situation where the vehicle is actually traveling, for example, when the vehicle body behavior changes due to a lane change, etc., the equipment installed at a position away from the center of the vehicle The inertia force acting on the product or the lid greatly affects the deformation of the body frame. This is because the mass of a component (assembly) in which a plurality of parts are combined may be several tens of kilograms or more, even if it is a fitting or a lid, and the body skeleton (about 100 to 300 kg) This is because it cannot be ignored for (body structure). Therefore, when evaluating the performance of the vehicle body skeleton, it is desirable to evaluate in a state in which the inertial force acting on the fitting or the lid is taken into consideration during actual traveling.
 特許文献1に開示されている車両の剛性評価支援方法は、車体がアブソーバ(shock absorber)や柔らかいブッシュ(bushing)により支持された自由支持状態における車両の剛性を評価するものであり、前記車両は艤装品や蓋物が装備されたものである。しかしながら、一般的に、車体骨格の設計初期段階では車両の外観やデザインが決まっておらず、車両の外観やデザインに大きく左右される艤装品や蓋物は、設計後期段階において最終決定されることが多い。 The vehicle stiffness evaluation support method disclosed in Patent Document 1 evaluates the vehicle stiffness in a freely supported state in which the vehicle body is supported by a shock absorber or a soft bushing. It is equipped with fittings and lids. However, in general, the appearance and design of the vehicle are not decided at the initial stage of the body skeleton design, and fittings and lids that are greatly influenced by the appearance and design of the vehicle are finally decided at the later stage of the design. Many.
 そのため、艤装品や蓋物の形状が決定される前の段階において、特許文献1に開示されている車両の剛性評価支援方法により、実際の走行状態において艤装品や蓋物に作用する慣性力を考慮して車体骨格の性能を評価することは難しい。さらに、設計後期段階において艤装品や蓋物が最終決定されたとして、艤装品や蓋物が配設された車両(フルボディ)を対象としてCAE解析を行って車体骨格の性能を評価し、元に戻って車体骨格の設計を修正する時間的な余裕はない。そのため、従来は車体骨格のみを対象としたCAE解析により車体骨格の性能評価及び設計が強いられていた。 Therefore, in the stage before the shape of the fitting or the lid is determined, the inertial force acting on the fitting or the lid in the actual running state is taken into consideration by the vehicle stiffness evaluation support method disclosed in Patent Document 1. Therefore, it is difficult to evaluate the performance of the body frame. Furthermore, assuming that the fittings and lids are finally determined in the late stage of design, the CAE analysis is performed on the vehicle (full body) in which the fittings and lids are arranged, and the performance of the vehicle body skeleton is evaluated. There is no time to correct the design of the body frame. Therefore, conventionally, performance evaluation and design of the vehicle body skeleton has been forced by CAE analysis only for the vehicle body skeleton.
 本発明は、上記のような課題を解決するためになされたものであり、自動車の艤装品又は蓋物が決定される前であっても、実際の走行状態における艤装品又は蓋物の影響を考慮して走行解析を行う車両の走行解析方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and considers the influence of the fitting or lid in the actual running state even before the automobile fitting or lid is determined. It is an object of the present invention to provide a vehicle travel analysis method for performing travel analysis.
 本発明に係る車両の走行解析方法は、艤装品又は蓋物を固定又は連結する固定連結部(fixed coupling portion)を有し、平面要素(shell elements)及び/又は立体要素(solid elements)を使って構成された車体骨格モデルと車台(chassis)モデルとを有する車両モデルを用いて、コンピュータが走行解析を行うものであって、前記艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、該質量設定車体骨格モデルと前記車台モデルとを接続して車両モデルを生成する車両モデル生成ステップと、該車両モデルの走行解析を行い、走行時における車体特性(performance of automotive body)を取得する走行解析ステップとを備えたことを特徴とするものである。 The vehicle travel analysis method according to the present invention has a fixed coupling portion for fixing or connecting a fitting or a lid, and uses a planar element and / or a solid element. The vehicle performs a running analysis using a vehicle model having a configured vehicle body skeleton model and chassis model, and the fitting or the lid is fixed or connected to a fixed connection portion of the vehicle body skeleton model. A mass setting vehicle body skeleton model generating step for generating a mass setting vehicle body skeleton model by setting a mass corresponding to the mass of the fitting or lid at a predetermined position in the region to be set, and the mass setting vehicle body skeleton model and the chassis A vehicle model generation step for generating a vehicle model by connecting the model, and a running analysis of the vehicle model, and a vehicle body characteristic during performance (performance of automotive And a travel analysis step for acquiring (body).
 本発明に係る車両の走行解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とするものである。 The vehicle travel analysis method according to the present invention is characterized in that, in the above-described invention, the predetermined position in the mass setting vehicle body skeleton model generation step is set on a straight line or a curve connecting the fixed connecting portions.
 本発明に係る車両の走行解析方法は、上記発明において、前記艤装品又は蓋物が回転可動(rotatable)する回転可動部品(part)である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とするものである。 In the vehicle travel analysis method according to the present invention, in the above invention, when the fitting or the lid is a rotatable movable part (part) that is rotatable, the fitting or the lid is rotatable. It is characterized in that it is set at a position excluding the rotationally movable central axis at the time.
 本発明に係る車両の走行解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とするものである。 In the vehicle travel analysis method according to the present invention, in the above invention, the predetermined position in the mass setting vehicle body skeleton model generation step is set on a plane or a curved surface surrounded by a straight line or a curve connecting the fixed connecting portions (the straight line or the curved line). (Except on the curved line).
 本発明に係る車両の走行解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素、及び、該質量要素と前記固定連結部とを接続する剛体要素、を用いて設定することを特徴とするものである。 In the vehicle travel analysis method according to the present invention, in the above invention, the mass setting vehicle body skeleton model generation step includes a mass element corresponding to a mass of the fitting or the lid, a mass element, and the mass element and the fixed connection. It is characterized by setting using a rigid element that connects the parts.
 本発明に係る車両の走行解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、質量要素(mass element)とはり要素(beam element)とを用いて設定し、該質量要素とはり要素が有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とするものである。 In the vehicle travel analysis method according to the present invention, in the above invention, the mass setting vehicle body skeleton model generation step is set using a mass element and a beam element, and the mass element and beam The sum of the masses of the elements corresponds to the mass of the fitting or lid fixed or connected to the fixed connection part.
 本発明に係る車両の走行解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とするものである。 The vehicle travel analysis method according to the present invention is characterized in that, in the above invention, the mass setting vehicle body skeleton model generation step is set using a beam element having a mass corresponding to a mass of the fitting or the lid. Is.
 本発明においては、艤装品又は蓋物を固定又は連結する固定連結部を有し、平面要素及び/又は立体要素を使って構成された車体骨格モデルと車台モデルとを有する車両モデルを用いて、コンピュータが走行解析を行うものであって、艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、前記質量設定車体骨格モデルと前記車台モデルとを接続して車両モデルを生成する車両モデル生成ステップと、前記車両モデルの走行解析を行い、走行時における車体特性を取得する走行解析ステップとを備えたことにより、艤装品又は蓋物が決定される前であっても、走行状態において艤装品又は蓋物に作用する慣性力を考慮して車両の走行解析を行うことにより、走行時における車体特性を精度良く求めることができる。 In the present invention, a computer using a vehicle model having a vehicle body skeleton model and a chassis model having a fixed connection part for fixing or connecting a fitting or a lid and having a plane element and / or a three-dimensional element. Is used for running analysis, and a mass corresponding to the mass of the fitting or lid is set at a predetermined position in a region where the fitting or lid is fixed or connected to the fixed connection portion of the vehicle body skeleton model. A mass setting vehicle body skeleton model generating step for generating a mass setting vehicle body skeleton model, a vehicle model generating step for generating a vehicle model by connecting the mass setting vehicle body skeleton model and the chassis model, and a running analysis of the vehicle model And a travel analysis step for acquiring vehicle body characteristics during travel, so that even if the fitting or lid is not determined, the travel state By performing driving analysis of the vehicle in consideration of the inertial force acting on Oite fittings or Futamono it can be determined accurately vehicle characteristics during travel.
図1は、本発明の実施の形態に係る車両の走行解析方法の処理の流れを示すフローチャートである。FIG. 1 is a flowchart showing a processing flow of a vehicle travel analysis method according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る車両の走行解析に用いる車両モデルの説明図である。FIG. 2 is an explanatory diagram of a vehicle model used for vehicle travel analysis according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る車体骨格モデルの説明図である。FIG. 3 is an explanatory diagram of the vehicle body skeleton model according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る質量設定車体骨格モデルの説明図である。FIG. 4 is an explanatory diagram of a mass setting vehicle body skeleton model according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る車両の走行解析方法を実施する走行解析装置のブロック図(block diagram)である。FIG. 5 is a block diagram of a travel analysis apparatus that implements the vehicle travel analysis method according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る質量設定車体骨格モデル生成ステップにおいて、質量が設定される所定位置を説明する説明図である。FIG. 6 is an explanatory diagram illustrating a predetermined position where the mass is set in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る質量設定車体骨格モデル生成ステップにおいて、質量が設定された質量設定車体骨格モデルを説明する説明図である。FIG. 7 is an explanatory diagram for explaining the mass setting vehicle body skeleton model in which the mass is set in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る質量設定車体骨格モデル生成ステップにおける質量の設定方法を説明する説明図である。FIG. 8 is an explanatory diagram for explaining a mass setting method in the mass setting vehicle body skeleton model generation step according to the embodiment of the present invention. 図9は、本実施の形態に係る質量設定車体骨格モデルと車台モデルとを接続する接続部を説明する図である。FIG. 9 is a diagram for explaining a connecting portion that connects the mass setting vehicle body skeleton model and the chassis model according to the present embodiment. 図10は、本実施の形態に係る走行解析において設定される走行条件の一例を説明する図である。FIG. 10 is a diagram for explaining an example of travel conditions set in the travel analysis according to the present embodiment. 図11は、実施例において、車両モデルの走行解析により得られた車体におけるミーゼス応力(von Mises stress)分布図である。FIG. 11 is a distribution diagram of von Mises stress in the vehicle body obtained by running analysis of the vehicle model in the embodiment. 図12は、実施例において、車両モデルの走行解析により得られた車体のフロントショック(front shock absorber)付近におけるミーゼス応力分布図である。FIG. 12 is a Mises stress distribution diagram in the vicinity of a front shock absorber of a vehicle body obtained by running analysis of a vehicle model in the example. 図13は、実施例において、車両モデルの走行解析により得られた車体のリアフロア(rear floor)付近におけるミーゼス応力分布図である。FIG. 13 is a Mises stress distribution diagram in the vicinity of the rear floor of the vehicle body obtained by running analysis of the vehicle model in the example. 図14は、実施例において、車両モデルの走行解析により得られた車体のリアホイルハウス(rear wheelhouse)付近におけるミーゼス応力分布図である。FIG. 14 is a Mises stress distribution diagram in the vicinity of the rear wheelhouse of the vehicle body obtained by running analysis of the vehicle model in the example. 図15は、実施例において、車両モデルの走行解析により得られた車体のリアホイルハウス付近における車体の変形量(deformation volume)の分布図である。FIG. 15 is a distribution diagram of the deformation volume of the vehicle body in the vicinity of the rear wheel house of the vehicle body obtained by running analysis of the vehicle model in the embodiment. 図16は、実施例において、走行時における質量設定車体骨格モデルと車台モデルとの接続部における荷重(load)変化の解析結果を示すグラフである(その1)。FIG. 16 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the embodiment (part 1). 図17は、実施例において、走行時における質量設定車体骨格モデルと車台モデルとの接続部における荷重変化の解析結果を示すグラフである(その2)。FIG. 17 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the example (part 2). 図18は、実施例において、走行時における質量設定車体骨格モデルと車台モデルとの接続部における荷重変化の解析結果を示すグラフである(その3)。FIG. 18 is a graph showing an analysis result of a load change at a connection portion between the mass setting vehicle body skeleton model and the chassis model during traveling in the example (part 3).
 本発明の実施の形態を、図面を参照して以下に説明する。本実施の形態に係る車両の走行解析方法は、図2に示すような、艤装品又は蓋物を固定又は連結する固定連結部13を有する車体骨格モデル11(図3参照)に艤装品又は蓋物の質量に相当する質量を設定して生成された質量設定車体骨格モデル21(図4参照)と、車台モデル31とを接続して生成した車両モデル1を用いて走行解析を行うものであり、図5に示すブロック図のように構成された車両の走行解析装置(analyzer)41(以下、単に「走行解析装置41」という)を用いて行うことができる。以下、本発明で対象とする車体骨格モデル11及び質量設定車体骨格モデル21、車台モデル31ならびに走行解析装置41について説明した後に、本実施の形態に係る車両の走行解析方法の詳細を説明する。 Embodiments of the present invention will be described below with reference to the drawings. The vehicle running analysis method according to the present embodiment includes a vehicle body skeleton model 11 (see FIG. 3) having a fixed connection portion 13 for fixing or connecting a fitting or a lid as shown in FIG. The vehicle body skeleton model 21 (see FIG. 4) generated by setting the mass corresponding to the mass and the vehicle model 1 generated by connecting the chassis model 31 are used for running analysis. The vehicle travel analysis apparatus (analyzer) 41 (hereinafter simply referred to as “travel analysis apparatus 41”) configured as shown in the block diagram of FIG. Hereinafter, after describing the vehicle body skeleton model 11, the mass setting vehicle body skeleton model 21, the chassis model 31, and the travel analysis device 41 that are the subject of the present invention, details of the vehicle travel analysis method according to the present embodiment will be described.
<車体骨格モデル>
 本発明で用いる車体骨格モデル11は、図3に示すように、自動車車体の骨格部品(structual parts)のみで構成されるものであり、艤装品又は蓋物を固定又は連結する固定連結部13を有する。車体骨格モデル11は、平面要素及び/又は立体要素を使って構成され、要素情報等は車体骨格モデルファイル60(図5参照)に格納される。なお、本実施の形態において、荷重や慣性力が左右したときの変形挙動(deformation behavior)等を解析するため、車体骨格モデル11は、弾性体(elastic body)若しくは粘弾性体(viscoelastic body)又は弾塑性体(elasto-plastic body)としてモデル化されたものである。
<Body frame model>
As shown in FIG. 3, the vehicle body skeleton model 11 used in the present invention is composed only of skeleton parts (structural parts) of an automobile body, and has a fixed connecting portion 13 for fixing or connecting a fitting or a lid. . The vehicle body skeleton model 11 is configured using planar elements and / or solid elements, and element information and the like are stored in a vehicle body skeleton model file 60 (see FIG. 5). In the present embodiment, the vehicle body skeleton model 11 is an elastic body, a viscoelastic body, a viscoelastic body, or the like in order to analyze a deformation behavior (deformation behavior) when a load or an inertial force is influenced. It is modeled as an elasto-plastic body.
 車体骨格モデル11が有する固定連結部13としては、図3に一例を示すように、回転ドア(revolving door)を固定又は連結するヒンジ(hinge)13a及びヒンジ13bや、ストライカー(door striker)13cがあるが、固定連結部13はこれらに限定されるものではなく、エンジンを固定するエンジンマウント(engine mount)等の艤装品を固定するものや、回転ドア以外のスライドドア(slide door)、ボンネット(bonnet)等といった蓋物を固定又は連結するものを含む。 As an example of the fixed connecting portion 13 of the vehicle body skeleton model 11, as shown in FIG. 3, there are a hinge 13a and a hinge 13b for fixing or connecting a revolving door, and a door striker 13c. However, the fixed connecting portion 13 is not limited to these, and is used for fixing fittings such as an engine mount for fixing an engine, a slide door other than a revolving door, a bonnet ( bonnet) etc., including those that fix or connect lids.
<車台モデル>
 本実施の形態に係る車台モデル31(図2参照)は、タイヤ(tire)、サスペンションアーム(suspension arm)、サスペンションスプリング(suspension spring)、ショックアブソーバ等を有する足回り機構と、ステアリングハンドル(steering handle)等を有するステアリング機構を備えたものであり、サスペンションアーム等の部品(リンク(link))は剛体、弾性体又は弾塑性体で、又、タイヤやサスペンションスプリングは弾性体若しくは粘弾性体又は弾塑性体としてモデル化されたものである。本実施の形態に係る車両の走行解析方法において、車台モデル31は、市販されている車両の走行解析ソフトウェアが有するサスペンション等のコンポーネント(component)を組み合わせたものを用いることができる。
<Chassis model>
A chassis model 31 (see FIG. 2) according to the present embodiment includes a suspension mechanism having a tire, a suspension arm, a suspension spring, a shock absorber, and the like, and a steering handle. ) Etc., and components such as suspension arms (links) are rigid bodies, elastic bodies or elastic-plastic bodies, and tires and suspension springs are elastic bodies, viscoelastic bodies or elastic bodies. It is modeled as a plastic body. In the vehicle travel analysis method according to the present embodiment, the chassis model 31 may be a combination of components such as suspensions included in a commercially available vehicle travel analysis software.
<走行解析装置>
 本実施の形態に係る車両の走行解析方法に用いる走行解析装置41は、図2に一例を示す車両モデル1を解析対象として走行解析を行う装置であって、PC(パーソナルコンピュータ)等のコンピュータによって構成されている。走行解析装置41は、図5に示すように、表示装置(display device)43と入力装置(input device)45と記憶装置(memory storage)47と作業用データメモリ(working data memory)49と演算処理部(arithmetic processing unit)50とを有している。また、演算処理部50には、表示装置43と入力装置45と記憶装置47と作業用データメモリ49とが接続され、演算処理部50の指令によって各機能が実行される。
<Running analysis device>
The travel analysis device 41 used in the vehicle travel analysis method according to the present embodiment is a device that performs travel analysis on the vehicle model 1 shown in FIG. 2 as an analysis target, and is a computer such as a PC (personal computer). It is configured. As shown in FIG. 5, the travel analysis device 41 includes a display device 43, an input device 45, a memory storage 47, a working data memory 49, and arithmetic processing. Part (arithmetic processing unit) 50. In addition, a display device 43, an input device 45, a storage device 47, and a work data memory 49 are connected to the arithmetic processing unit 50, and each function is executed according to instructions from the arithmetic processing unit 50.
≪表示装置≫
 表示装置43は、計算結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。
≪Display device≫
The display device 43 is used for displaying calculation results, and is composed of a liquid crystal monitor (LCD monitor) or the like.
≪入力装置≫
 入力装置45は、操作者による車両モデル1等の解析モデルの表示指示、解析条件の入力等に用いられ、キーボードやマウス等で構成される。
≪Input device≫
The input device 45 is used for an instruction to display an analysis model such as the vehicle model 1 by the operator, input of analysis conditions, and the like, and is configured with a keyboard, a mouse, and the like.
≪記憶装置≫
 記憶装置47は、ファイルの記憶等に用いられ、ハードディスク等で構成され、少なくとも、車体骨格モデルファイル60等の各種ファイルや、演算処理部50が実行するプログラム等を格納する。
≪Storage device≫
The storage device 47 is used for storing files and is configured by a hard disk or the like, and stores at least various files such as the vehicle body skeleton model file 60, programs executed by the arithmetic processing unit 50, and the like.
≪作業用データメモリ≫
 作業用データメモリ49は、演算処理部50で使用するデータの一時保存や演算等に用いられ、RAM等で構成される。
≪Work data memory≫
The work data memory 49 is used for temporary storage and calculation of data used by the arithmetic processing unit 50, and includes a RAM or the like.
≪演算処理部≫
 演算処理部50は、PC等のCPU(中央演算処理装置(central processing unit))によって構成され、質量設定車体骨格モデル生成部51と車両モデル生成部53と走行解析部55とを備えている。上記各部はCPUが所定のプログラムを実行することによって実現される。以下、演算処理部50内の各部の構成を詳細に説明する。
≪Operation processing part≫
The arithmetic processing unit 50 is configured by a CPU (central processing unit) such as a PC, and includes a mass setting vehicle body skeleton model generation unit 51, a vehicle model generation unit 53, and a travel analysis unit 55. Each of the above units is realized by the CPU executing a predetermined program. Hereinafter, the configuration of each unit in the arithmetic processing unit 50 will be described in detail.
≪質量設定車体骨格モデル生成部≫
 質量設定車体骨格モデル生成部51は、図3に例を示す艤装品又は蓋物が、車体骨格モデル11の固定連結部13に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して、質量設定車体骨格モデル21(図4に示す例)を生成するものである。
≪Mass setting car body skeleton model generation part≫
The mass setting vehicle body skeleton model generation unit 51 has the above-mentioned equipment or lid at a predetermined position in a region where the equipment or lid shown in FIG. 3 is fixed or connected to the fixed connection portion 13 of the vehicle body skeleton model 11. The mass corresponding to the mass is set, and the mass setting vehicle body skeleton model 21 (example shown in FIG. 4) is generated.
≪車両モデル生成部≫
 車両モデル生成部53は、質量設定車体骨格モデル生成部51が生成した質量設定車体骨格モデル21と、足回り機構(suspension system)やステアリング機構(steering system)等を有する車台モデル31とを接続して、車両モデル1を生成するものである。
≪Vehicle model generation part≫
The vehicle model generation unit 53 connects the mass setting vehicle body skeleton model 21 generated by the mass setting vehicle body skeleton model generation unit 51 to the chassis model 31 having a suspension system, a steering system, and the like. Thus, the vehicle model 1 is generated.
≪走行解析部≫
 走行解析部55は、車両モデル生成部53により生成された車両モデル1を解析対象として走行解析を行い、走行時における車体特性を取得するものである。車両モデル1の走行解析においては、車両モデル1の駆動や操舵(steering)等の走行条件を設定する必要がある。設定する走行条件としては、車両モデル1を駆動するために車両モデル1に付与する荷重や、車両モデル1を操舵するために車台モデル31が備えるステアリングハンドルに設定される操舵角が挙げられる。そして、設定された走行条件の下で走行している車両モデル1の車体特性として、質量設定車体骨格モデル21における応力(stress)や変形、及び、車台モデル31と接続する接続部における荷重等を取得する。
≪Driving analysis part≫
The travel analysis unit 55 performs a travel analysis using the vehicle model 1 generated by the vehicle model generation unit 53 as an analysis target, and acquires vehicle body characteristics during travel. In the travel analysis of the vehicle model 1, it is necessary to set travel conditions such as driving and steering of the vehicle model 1. Examples of the traveling condition to be set include a load applied to the vehicle model 1 for driving the vehicle model 1 and a steering angle set for a steering handle provided in the chassis model 31 for steering the vehicle model 1. Then, as the vehicle body characteristics of the vehicle model 1 that is traveling under the set traveling conditions, stress and deformation in the mass setting vehicle body skeleton model 21, load at a connection portion connected to the chassis model 31, and the like. get.
<走行解析方法>
 本実施の形態に係る車両の走行解析方法は、図1に示すように、艤装品又は蓋物に相当する質量を車体骨格モデル11に設定する質量設定車体骨格モデル生成ステップS1と、質量設定車体骨格生成ステップS1で生成された質量設定車体骨格モデル21と車台モデル31とを接続して車両モデル1を生成する車両モデル生成ステップS3と、車両モデル1を用いて走行解析し、走行時における車体特性を取得する走行解析ステップS5とを備えており、剛体(rigid body)の運動解析(motion analysis)に用いられる機構解析(マルチボデーダイナミックス(multibody dynamics analysis))を自動車の車両に活用したものである。
<Running analysis method>
As shown in FIG. 1, the vehicle travel analysis method according to the present embodiment includes a mass setting body skeleton model generation step S <b> 1 for setting a mass corresponding to a fitting or a lid in the body skeleton model 11, and a mass setting body skeleton. A vehicle model generation step S3 in which the vehicle body model 1 is generated by connecting the mass setting vehicle body skeleton model 21 and the chassis model 31 generated in the generation step S1; And a travel analysis step S5 for acquiring a vehicle body, which utilizes a mechanism analysis (multibody dynamics analysis) used for motion analysis of a rigid body in a vehicle of an automobile. is there.
 一般に、機構解析では解析対象を剛体として、リンク等で結合された各部品の単なる自由度(flexibility)から計算させる動作をシミュレートするものであるが、解析対象を自動車用に特化した走行解析においては、解析対象の一部を弾性体又は弾塑性体にすることにより、車体の変形や応力、荷重等を計算することが可能となり、現実に近い車両の走行状態を模擬した車体特性を得ることができる。 In general, in the mechanism analysis, the object to be analyzed is a rigid body, and the operation to calculate from the mere flexibility of the parts connected by links etc. is simulated, but the analysis object is a travel analysis specialized for automobiles , By making a part of the analysis object an elastic body or an elastic-plastic body, it becomes possible to calculate deformation, stress, load, etc. of the vehicle body, and to obtain vehicle body characteristics simulating the vehicle running state close to reality be able to.
 以下、各ステップについて説明する。なお、各ステップとも、操作者の指示によりコンピュータが実行するものである。 Hereafter, each step will be described. Note that each step is executed by the computer in accordance with an instruction from the operator.
≪質量設定車体骨格モデル生成ステップ≫
 質量設定車体骨格モデル生成ステップS1は、艤装品又は蓋物が車体骨格モデル11の固定連結部13に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデル21を生成するステップであり、走行解析装置41においては、質量設定車体骨格モデル生成部51が行うものである。
≪Mass setting body frame model generation step≫
In the mass setting vehicle body skeleton model generation step S1, a mass corresponding to the mass of the equipment or lid is set at a predetermined position in a region where the equipment or lid is fixed or connected to the fixed connection portion 13 of the vehicle body skeleton model 11. Thus, the mass setting vehicle body skeleton model 21 is generated, and in the travel analysis device 41, the mass setting vehicle body skeleton model generation unit 51 performs.
 質量設定車体骨格モデル生成ステップS1においては、図6に示すように前記艤装品又は蓋物が固定又は連結される領域内の所定位置に、質量要素23を設定することにより、前記艤装品又は蓋物の質量に相当する質量を設定することができる。 In the mass setting vehicle body skeleton model generation step S1, as shown in FIG. 6, the mass element 23 is set at a predetermined position in a region where the fitting or lid is fixed or connected, thereby A mass corresponding to the mass can be set.
 すなわち、質量要素23を設定する前記所定位置は、図6に示すように、複数の固定連結部13のうち一組(ヒンジ13aとストライカー13c、ヒンジ13bとストライカー13c、ヒンジ13aとヒンジ13b)を結ぶ直線L上(図6(a))、若しくは、蓋物等が装着された車体の形状に沿って固定連結部13を結ぶ曲線上とする。 That is, the predetermined position for setting the mass element 23 is, as shown in FIG. 6, a set of a plurality of fixed connecting portions 13 (hinge 13a and striker 13c, hinge 13b and striker 13c, hinge 13a and hinge 13b). On the straight line L to be connected (FIG. 6A) or on the curve connecting the fixed connecting portions 13 along the shape of the vehicle body to which a lid or the like is attached.
 艤装品又は蓋物が、回転ドアのように回転可動する回転可動部品の場合、図3において、前記回転ドアのヒンジ13aとヒンジ13bとを結ぶ線上に、前記回転ドアが回転可動する際の回転可動中心軸がある。そして、前記回転可動中心軸は、前記回転ドアが車体骨格モデル11に固定又は連結される領域の境界とほぼ同位置にある。 In the case where the fitting or the lid is a rotatable movable part such as a revolving door, in FIG. 3, the revolving movement when the revolving door is revolved on the line connecting the hinges 13a and 13b of the revolving door in FIG. There is a central axis. The rotationally movable central axis is substantially at the same position as the boundary of the region where the revolving door is fixed or connected to the vehicle body skeleton model 11.
 これに対し、前記回転ドアのヒンジ13aとストライカー13cとを結ぶ直線、及び、ヒンジ13bとストライカー13cを結ぶ直線は、前記回転ドアが車体骨格モデル11に固定又は連結される領域の内部に位置する。 On the other hand, the straight line connecting the hinge 13a and the striker 13c of the revolving door and the straight line connecting the hinge 13b and the striker 13c are located inside the region where the revolving door is fixed or connected to the vehicle body skeleton model 11. .
 前記艤装品又は蓋物に相当する質量を、車体骨格モデル11に設定するにあたっては、車体骨格モデル11において前記艤装品又は蓋物が固定又は連結される領域の境界よりも内部とする方が、後述する走行解析ステップS5において前記艤装品又は蓋物に作用する慣性力を考慮する上で好ましい。そのため、前記艤装品又は蓋物に相当する質量を設定する所定位置を、複数の固定連結部13を結ぶ直線L上又は前記曲線上のうち、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定することが望ましい。 In setting the mass corresponding to the fitting or lid in the vehicle skeleton model 11, it will be described later that the inside of the vehicle skeleton model 11 is inside the boundary of the region where the fitting or lid is fixed or connected. This is preferable in consideration of the inertial force acting on the fitting or lid in the traveling analysis step S5. Therefore, the predetermined position for setting the mass corresponding to the fitting or lid is a center of rotation when the fitting or lid is rotationally movable on the straight line L connecting the plurality of fixed connecting portions 13 or on the curve. It is desirable to set the position excluding the axis.
 さらに、前記艤装品又は蓋物に相当する質量を設定する所定位置は、直線L又は前記曲線の線上に限定されるものではなく、直線Lで囲まれた平面P上(図6(b))、又は、前記曲線で囲まれた曲面上としても良い。 Furthermore, the predetermined position for setting the mass corresponding to the fitting or the lid is not limited to the straight line L or the curved line, but on the plane P surrounded by the straight line L (FIG. 6B), Or it is good also on the curved surface enclosed by the said curve.
 ここで、直線L又は前記曲線は、平面P又は前記曲面の境界であるので、前記境界の内側に前記艤装品又は蓋物に相当する質量を設定することが望ましい。そのため、前記艤装品又は蓋物に相当する質量を設定する所定位置を、直線L又は前記曲線の線上を除いた平面P上又は前記曲面上に設定することがより好ましい。 Here, since the straight line L or the curved line is a boundary of the plane P or the curved surface, it is desirable to set a mass corresponding to the fitting or the lid inside the boundary. Therefore, it is more preferable to set the predetermined position for setting the mass corresponding to the fitting or the lid on the plane P excluding the straight line L or the curved line or on the curved surface.
 また、艤装品が4点の固定連結部13で固定又は連結される場合は、2本の直線が互いに交差するように固定連結部13を直線で結び、この直線上に質量要素23を設定することが好ましい。この場合においても、固定連結部13は、車体のもつ曲率(curvature)に併せて曲線で接続し、この曲線上に質量要素23を設定しても良い。 When the fitting is fixed or connected by the four fixed connection parts 13, the fixed connection parts 13 are connected by a straight line so that the two straight lines intersect each other, and the mass element 23 is set on the straight line. It is preferable. Also in this case, the fixed connecting portion 13 may be connected by a curve in accordance with the curvature of the vehicle body, and the mass element 23 may be set on the curve.
 質量を前記所定位置に設定する具体的な質量設定方法として、例えば、以下の(1)、(2)及び(3)がある。 Specific mass setting methods for setting the mass at the predetermined position include, for example, the following (1), (2), and (3).
(1)前記所定位置に、艤装品又は蓋物の質量に相当する質量を有する質量要素23を設定し、質量要素23と固定連結部13とを剛体要素(rigid element)25を用いて接続する(図7参照)。図7(a)は、固定連結部13を結ぶ直線Lの中心上に1個の質量要素23を設定した例であるが、図7(b)に示すように、直線Lを均等に分割する点上に複数個の質量要素23を設定しても良い。複数の質量要素23を設定する場合、各質量要素23の質量の総和が前記艤装品又は蓋物の質量に相当するように、各質量要素23の質量を決定すれば良い。 (1) A mass element 23 having a mass corresponding to the mass of a fitting or a lid is set at the predetermined position, and the mass element 23 and the fixed connecting portion 13 are connected using a rigid element 25 ( (See FIG. 7). FIG. 7A shows an example in which one mass element 23 is set on the center of the straight line L connecting the fixed connecting portions 13, but the straight line L is equally divided as shown in FIG. 7B. A plurality of mass elements 23 may be set on the point. When a plurality of mass elements 23 are set, the mass of each mass element 23 may be determined so that the total mass of each mass element 23 corresponds to the mass of the fitting or the lid.
(2)前記所定位置に、艤装品又は蓋物の質量に相当する質量の質量要素23を設定し、質量要素23と固定連結部13とを、はり要素27を用いて接続する(図8(a)参照)。質量要素23とはり要素27それぞれの有する質量の和は、固定連結部13に固定又は連結される前記艤装品又は蓋物の質量に相当するように設定する。 (2) A mass element 23 having a mass corresponding to the mass of the fitting or lid is set at the predetermined position, and the mass element 23 and the fixed coupling portion 13 are connected using the beam element 27 (FIG. 8A )reference). The sum of the mass of each of the mass element 23 and the beam element 27 is set so as to correspond to the mass of the fitting or lid fixed or coupled to the fixed coupling portion 13.
 はり要素27の質量は、はり要素27の断面特性(cross-sectional property)として与えられる断面積(cross-sectional area)、及び、材料特性(material property)として与えられる材料密度(material density)により定められる。はり要素27の断面積は、例えば、はり要素27の半径を与えることにより決定される。 The mass of the beam element 27 is determined by the cross-sectional area given as the cross-sectional property of the beam element 27 and the material density given as the material property. It is done. The cross-sectional area of the beam element 27 is determined by giving the radius of the beam element 27, for example.
 さらに、後述する走行解析ステップS5において、質量要素23及びはり要素27に作用する慣性力による荷重を、質量設定車体骨格モデル21に伝達するために必要な断面特性及び材料特性を、はり要素27に適宜設定する必要がある。 Further, in the travel analysis step S5 described later, the cross-sectional characteristics and material characteristics necessary for transmitting the load due to the inertial force acting on the mass element 23 and the beam element 27 to the mass setting vehicle body skeleton model 21 are given to the beam element 27. It is necessary to set appropriately.
 なお、はり要素27は、線状の要素であり、前記要素の軸方向に作用する引張圧縮荷重(tension and compression load)を伝達できるものであればロッド要素(rod element)(棒要素(bar element))であっても良く、前記ロッド要素の質量は、はり要素27と同様に、断面特性として与えられる断面積(又は半径(radius))、及び、材料特性として与えられる材料密度により設定される。 The beam element 27 is a linear element and can be a rod element (bar element) as long as it can transmit a tension and compression load acting in the axial direction of the element. )), And the mass of the rod element is set by the cross-sectional area (or radius) given as the cross-sectional characteristic and the material density given as the material characteristic, as with the beam element 27. .
(3)艤装品又は蓋物の質量に相当する質量を有する、はり要素27を用いて設定する(図8(b)参照)。はり要素27の質量は、はり要素27の断面特性として与えられる断面積、及び、材料特性として与えられる材料密度により定められ、例えば、はり要素27の半径を与えることにより前記断面積が決定される。 (3) A beam element 27 having a mass corresponding to the mass of the fitting or lid is set (see FIG. 8B). The mass of the beam element 27 is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element 27 and the material density given as the material characteristic. For example, the cross-sectional area is determined by giving the radius of the beam element 27. .
≪車両モデル生成ステップ≫
 車両モデル生成ステップS3は、質量設定車体骨格モデル生成ステップS1で生成された質量設定車体骨格モデル21と、足回り機構やステアリング機構等を有する車台モデル31とを接続して、車両モデル1を生成するステップである。
≪Vehicle model generation step≫
The vehicle model generation step S3 generates the vehicle model 1 by connecting the mass setting vehicle body skeleton model 21 generated in the mass setting vehicle body skeleton model generation step S1 and the chassis model 31 having a suspension mechanism and a steering mechanism. It is a step to do.
 質量設定車体骨格モデル21における車台モデル31の接続位置は、サスペンションやサブフレーム(sub-frame)が取り付けられる部位(接続部)である。図9に、質量設定車体骨格モデル21と車台モデル31とを接続する接続部(Node1~Node4、及び、Node7~Node12)を例示する。 The connection position of the chassis model 31 in the mass setting vehicle body skeleton model 21 is a portion (connection portion) to which a suspension or a sub-frame is attached. FIG. 9 illustrates connection portions (Node 1 to Node 4 and Node 7 to Node 12) that connect the mass setting vehicle body skeleton model 21 and the chassis model 31.
≪走行解析ステップ≫
 走行解析ステップS5は、車両モデル生成ステップS3で生成された車両モデル1を用い、設定された走行条件の下で車両モデル1の走行解析を行い、走行時における車体特性を取得するステップである。前述のとおり、艤装品又は蓋物に相当する質量が設定された質量設定車体骨格モデル21と車台モデル31とを接続した車両モデル1を用いているため、走行時において艤装品又は蓋物に作用する慣性力を考慮して、車体特性を取得することができる。
≪Driving analysis step≫
The travel analysis step S5 is a step in which the vehicle model 1 generated in the vehicle model generation step S3 is used to perform a travel analysis of the vehicle model 1 under the set travel conditions and to acquire vehicle body characteristics during travel. As described above, since the vehicle model 1 in which the mass setting vehicle body skeleton model 21 in which the mass corresponding to the fitting or the lid is set is connected to the chassis model 31 is used, the inertia acting on the fitting or the lid during traveling is used. Car body characteristics can be acquired in consideration of force.
 走行解析ステップS5において設定される走行条件としては、車両モデル1の駆動(driving)と操舵等がある。車両モデル1は、例えば車両モデル1に荷重を付与することにより駆動され、車両モデル1を加速走行(acceleration running)や定速走行(constant speed running)させることができる。また、車両モデル1の操舵は、例えば、車台モデル31が備えるステアリングハンドルの操舵角を制御し、ステアリング機構を介して行うことができる。図10に、走行解析における走行条件の一例として、走行中に車線移行(lane change)を2回連続して行うダブルレーンチェンジにおける、車両の走行軌跡(running path)(図10(a))とステアリングハンドルの操舵角(図10(b))とを示す。 The driving conditions set in the driving analysis step S5 include driving of the vehicle model 1 and steering. The vehicle model 1 is driven, for example, by applying a load to the vehicle model 1, and the vehicle model 1 can be accelerated (running) or constant speed (running). Further, the steering of the vehicle model 1 can be performed via a steering mechanism by controlling the steering angle of a steering handle provided in the chassis model 31, for example. In FIG. 10, as an example of the driving condition in the driving analysis, the driving path (FIG. 10 (a)) of the vehicle in the double lane change in which the lane change is continuously performed twice during driving The steering angle of the steering wheel (FIG. 10B) is shown.
 そして、走行解析ステップS5においては、設定された走行条件の下で走行状態にある車両モデル1における車体特性が取得される。取得される車体特性としては、質量設定車体骨格モデル21における応力や変形、及び、車台モデル31と接続する接続部(例えば、図9におけるNode1~Node4、及び、Node7~Node12)における荷重等が挙げられる。 In the traveling analysis step S5, the vehicle body characteristics in the vehicle model 1 in the traveling state under the set traveling conditions are acquired. The acquired vehicle body characteristics include stress and deformation in the mass setting vehicle body skeleton model 21, and loads in connection portions (for example, Node 1 to Node 4 and Node 7 to Node 12 in FIG. 9) connected to the chassis model 31. It is done.
 以上より、本発明は、蓋物又は艤装品のついていない状態又は未定の状態の車体骨格でも、走行状態において蓋物又は艤装品に作用する慣性力が、車体骨格に及ぼす影響を考慮して走行解析を行い、走行時における車体特性(応力分布、変形、荷重等)を精度良く求めることができる。さらに、走行時において車体に作用する荷重が精度良く求められることにより、例えば走行させない状態で車体骨格モデルの剛性解析を行う場合であっても、走行時に車体に作用する荷重を解析条件として与えることにより、走行時における車体の変形を精度良く解析することが可能となる。 From the above, the present invention can analyze the running analysis in consideration of the influence of the inertial force acting on the lid or the fitting in the running state even on the vehicle skeleton without the lid or the fitting or in an undetermined state. It is possible to accurately obtain vehicle body characteristics (stress distribution, deformation, load, etc.) during running. Furthermore, since the load acting on the vehicle body can be obtained with high accuracy, the load acting on the vehicle body during running can be given as an analysis condition even when the vehicle body skeleton model is analyzed for rigidity when not running. Thus, it becomes possible to analyze the deformation of the vehicle body during traveling with high accuracy.
 以下、本発明の効果を確認する実験を行ったので、これについて説明する。実験は、車体骨格モデル11に質量を設定した質量設定車体骨格モデル21と、足回り機構及びステアリング機構を有する車台モデル31とを接続して生成した車両モデル1を解析対象として走行解析を行った。 Hereinafter, an experiment for confirming the effect of the present invention was performed, which will be described. In the experiment, traveling analysis was performed on a vehicle model 1 generated by connecting a mass-set vehicle body skeleton model 21 in which the mass was set to the vehicle body skeleton model 11 and a chassis model 31 having a suspension mechanism and a steering mechanism. .
 まず、車体骨格モデル11の固定連結部13に蓋物としての回転ドア構成部品が固定又は連結される領域内の所定位置に、前記回転ドア構成部品に相当する質量を設定する。 First, a mass corresponding to the rotating door component is set at a predetermined position in a region where the rotating door component as a lid is fixed or connected to the fixed connecting portion 13 of the vehicle body skeleton model 11.
 対象とした車体骨格モデル11の質量は約300kgであるのに対し、前記回転ドア構成部品の質量は4枚で約79kgであった。そこで、車体骨格モデル11において、上側のヒンジ13aとストライカー13cとを結ぶ直線上に10個の質量要素23を均等に配置し、質量要素23とヒンジ13aとストライカー13cとを剛体要素25で接続することにより、図7(b)に示す質量設定車体骨格モデル22を生成した。なお、質量要素23の質量の総和は、回転ドア構成部品の質量となるように、各質量要素23の質量を設定した。 The mass of the target vehicle body skeleton model 11 was about 300 kg, while the mass of the rotating door component parts was about 79 kg. Therefore, in the vehicle body skeleton model 11, ten mass elements 23 are evenly arranged on a straight line connecting the upper hinge 13a and the striker 13c, and the mass element 23, the hinge 13a, and the striker 13c are connected by the rigid element 25. As a result, the mass setting vehicle body skeleton model 22 shown in FIG. 7B was generated. In addition, the mass of each mass element 23 was set so that the sum total of the mass of the mass elements 23 would be the mass of the rotating door components.
 そして、質量設定車体骨格モデル22と車台モデル31とを、図9に示す接続部(Node1~Node4、及び、Node7~Node12)にて接続することにより、発明例である車両モデル1を生成した。 Then, the vehicle model 1 which is an example of the invention was generated by connecting the mass setting vehicle body skeleton model 22 and the chassis model 31 by connecting portions (Node 1 to Node 4 and Node 7 to Node 12) shown in FIG.
 本実験の走行解析における走行条件は、図10(a)に示すダブルレーンチェンジとした。まず、解析開始から1.0sまで、車両モデル1に荷重を与えて加速して、定速走行させる。そして、ステアリングハンドルの操舵角を、図10(b)に示すように制御することにより、1.0sの時点でハンドルを切り始めて車線を変更し、15.0sの時点で元の車線に戻るまでをシミュレートした。 The driving condition in the driving analysis of this experiment was the double lane change shown in FIG. First, the vehicle model 1 is accelerated by applying a load to the vehicle model 1 from the start of analysis to 1.0 s, and is driven at a constant speed. Then, by controlling the steering angle of the steering wheel as shown in FIG. 10 (b), the steering lane is changed at the time of 1.0s, the lane is changed, and the vehicle returns to the original lane at the time of 15.0s. I did.
 比較例として、回転ドア構成部品の質量を設定しない車体骨格モデル11と車台モデル31とを接続した車両モデル1(比較例1)と、車体骨格モデル11に回転ドア構成部品を設定し、車台モデル31と接続して生成した車両モデル1(比較例2)とについても、発明例と同様に走行解析を行い、走行時における車体特性の比較検討を行った。なお、比較例1及び2における車体骨格モデル11と車台モデル31との接続部は、発明例と同様に、図9に示すNode1~Node4、及び、Node7~Node12とした。 As a comparative example, a vehicle model 1 (comparative example 1) in which a vehicle body skeleton model 11 and a chassis model 31 in which the mass of the rotational door component is not set is connected, and a vehicle door skeleton model 11 are set with a rotational door component, The vehicle model 1 (comparative example 2) generated by connecting to the vehicle 31 was also subjected to a travel analysis in the same manner as the invention example, and a comparative study of vehicle body characteristics during travel was performed. In addition, the connection part of the vehicle body skeleton model 11 and the chassis model 31 in Comparative Examples 1 and 2 is Node 1 to Node 4 and Node 7 to Node 12 shown in FIG.
 図11~図14に、操舵開始直後の1.2s時点での車体骨格におけるミーゼス応力分布の解析結果を示す。図11は車体全体の応力分布であり、図12はフロントショック付近、図13はリアフロア付近、図14はリアホイルハウス付近をそれぞれ拡大して表示した図である。また、図15に、操舵開始直後の1.2s時点でのリアフロア付近における車体の変形量の解析結果を示す。 FIGS. 11 to 14 show the analysis results of Mises stress distribution in the vehicle body skeleton at 1.2 s immediately after the start of steering. 11 is a stress distribution of the entire vehicle body, FIG. 12 is an enlarged view of the vicinity of the front shock, FIG. 13 is the vicinity of the rear floor, and FIG. 14 is an enlarged view of the vicinity of the rear wheel house. FIG. 15 shows an analysis result of the deformation amount of the vehicle body in the vicinity of the rear floor at 1.2 s immediately after the start of steering.
 なお、図11~図15において、X軸、Y軸及びZ軸はそれぞれ車両モデル1の前後方向、車幅方向及び鉛直方向であり、(a)は比較例1、(b)は比較例2、(c)は発明例の結果である。また、回転ドア構成部品を設定した比較例2の解析結果(b)においては、回転ドア構成部品は表示させていない。さらに、図11~図15は、応力又は変形量のカラーコンター図(distribution map)をグレースケール(gray scale)表示したものである。 11 to 15, the X axis, the Y axis, and the Z axis are the front-rear direction, the vehicle width direction, and the vertical direction of the vehicle model 1, respectively. (A) is Comparative Example 1, and (b) is Comparative Example 2. , (C) is the result of the invention example. Moreover, in the analysis result (b) of the comparative example 2 which set the rotary door component, the rotary door component is not displayed. Further, FIGS. 11 to 15 are gray scales of color contour diagrams of distribution of stress or deformation.
 応力分布に関して、発明例と、比較例1及び比較例2とを比べると、回転ドア構成部品を設定した比較例2と発明例とは全体的に類似した応力分布を示しているが、回転ドア構成部品の質量を設定していない比較例1では、図中、丸印で示される位置の分布形状(distribution profile)に差異が見られた。 Regarding the stress distribution, comparing the invention example with the comparative example 1 and the comparative example 2, the comparative example 2 and the invention example in which the rotating door components are set show similar stress distributions as a whole. In Comparative Example 1 in which the mass of the component parts was not set, there was a difference in the distribution profile at the positions indicated by circles in the figure.
 また、車体の変形に関しても、図15に示すように、発明例と比較例2とは全体的に近似した変形量の分布を示しているが、回転ドア構成部品の質量を設定していない比較例1では、図中、丸印で示される位置の分布形状に差異が見られた。 Further, regarding the deformation of the vehicle body, as shown in FIG. 15, the invention example and the comparative example 2 show the distribution of the deformation amount approximated as a whole, but the comparison in which the mass of the rotating door component is not set. In Example 1, there was a difference in the distribution shape at the positions indicated by circles in the figure.
 次に、走行時に車体に作用する荷重について、質量設定車体骨格モデル21と車台モデル31とが接続される接続部における発生荷重を比較した。図16~図18に、車体骨格モデルと車台モデルとの接続部であるNode1、Node3、Node7、Node9及びNode11における荷重変化の結果を示す。図16~図18における荷重は、車両の前後、左右、上下の各方向の荷重を足し合わせたものである。 Next, the generated load at the connection portion where the mass setting vehicle body skeleton model 21 and the chassis model 31 are connected was compared with respect to the load acting on the vehicle body during traveling. FIGS. 16 to 18 show the results of load changes at Node1, Node3, Node7, Node9, and Node11, which are the connections between the vehicle body skeleton model and the chassis model. The loads in FIGS. 16 to 18 are the sum of the loads in the front and rear, left and right, and top and bottom directions of the vehicle.
 Node1、Node3、Node7、Node9及びNode11のいずれの接続部においても、回転ドア構成部品の質量を設定した発明例における荷重は、回転ドア構成部品の質量を設定していない比較例1の結果とは異なっているのに対し、回転ドア構成部品を設定した比較例2とほぼ一致する結果となった。 In any connection part of Node1, Node3, Node7, Node9, and Node11, the load in the invention example in which the mass of the rotating door component is set is the result of Comparative Example 1 in which the mass of the rotating door component is not set. Although it is different, the result was almost the same as Comparative Example 2 in which the rotating door components were set.
 以上より、本発明に係る車両の走行解析方法により、艤装品又は蓋物が装備されていない状態であっても、これらの質量を考慮して生成した車両モデルを用いて走行解析を行うことにより、走行時における車体特性を精度良く求めることができることが実証された。 From the above, according to the vehicle travel analysis method according to the present invention, even when the equipment or lid is not equipped, by performing the travel analysis using the vehicle model generated in consideration of these masses, It was proved that the vehicle body characteristics during running can be obtained with high accuracy.
 本発明によれば、自動車の艤装品又は蓋物が決定される前であっても、実際の走行状態における艤装品又は蓋物の影響を考慮して走行解析を行う車両の走行解析方法を提供することができる。 According to the present invention, it is possible to provide a vehicle travel analysis method for performing a travel analysis in consideration of the influence of a fitment or a cover in an actual traveling state even before the determination of the vehicle accessory or the cover. Can do.
  1 車両モデル
 11 車体骨格モデル
 13 固定連結部
 13a ヒンジ
 13b ヒンジ
 13c ストライカー
 21 質量設定車体骨格モデル
 22 質量設定車体骨格モデル
 23 質量要素
 25 剛体要素
 27 はり要素
 31 車台モデル
 41 走行解析装置
 43 表示装置
 45 入力装置
 47 記憶装置
 49 作業用データメモリ
 50 演算処理部
 51 質量設定車体骨格モデル生成部
 53 車両モデル生成部
 55 走行解析部
 60 車体骨格モデルファイル
DESCRIPTION OF SYMBOLS 1 Vehicle model 11 Vehicle body frame model 13 Fixed connection part 13a Hinge 13b Hinge 13c Striker 21 Mass setting vehicle body frame model 22 Mass setting vehicle body frame model 23 Mass element 25 Rigid body element 27 Beam element 31 Chassis model 41 Travel analysis apparatus 43 Display apparatus 45 Input Device 47 Storage device 49 Work data memory 50 Arithmetic processing unit 51 Mass setting vehicle body skeleton model generation unit 53 Vehicle model generation unit 55 Travel analysis unit 60 Car body skeleton model file

Claims (7)

  1.  艤装品又は蓋物を固定又は連結する固定連結部を有し、平面要素及び/又は立体要素を使って構成された車体骨格モデルと車台モデルとを有する車両モデルを用いて、コンピュータが走行解析を行う車両の走行解析方法であって、
     前記艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、
     該質量設定車体骨格モデルと前記車台モデルとを接続して車両モデルを生成する車両モデル生成ステップと、
     該車両モデルの走行解析を行い、走行時における車体特性を取得する走行解析ステップとを備えたことを特徴とする車両の走行解析方法。
    The computer performs a running analysis using a vehicle model having a vehicle body skeleton model and a chassis model having a fixed connection part for fixing or connecting a fitting or a lid, and configured using a planar element and / or a three-dimensional element. A vehicle running analysis method,
    A mass setting body skeleton model is generated by setting a mass corresponding to the mass of the equipment or lid at a predetermined position in a region where the equipment or lid is fixed or connected to the fixed connection portion of the body skeleton model. A mass setting body skeleton model generation step;
    A vehicle model generation step of generating a vehicle model by connecting the mass setting vehicle body skeleton model and the chassis model;
    A travel analysis method for a vehicle, comprising: a travel analysis step for performing travel analysis of the vehicle model and acquiring vehicle body characteristics during travel.
  2.  前記質量設定車体骨格モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上としたことを特徴とする請求項1記載の車両の走行解析方法。 2. The vehicle travel analysis method according to claim 1, wherein the predetermined position in the mass setting vehicle body skeleton model generation step is set on a straight line or a curve connecting the fixed connecting portions.
  3.  前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定したことを特徴とする請求項2記載の車両の走行解析方法。 In the case where the fitting or the lid is a rotationally movable part that is rotatable, the predetermined position is set to a position excluding a rotationally movable central axis when the fitting or the lid is rotationally movable. Item 3. A traveling analysis method for a vehicle according to Item 2.
  4.  前記質量設定車体骨格モデル生成ステップにおける所定位置を、前記固定連結部を結ぶ直線若しくは曲線で囲まれた平面上若しくは曲面上(前記直線若しくは曲線の線上を除く)としたことを特徴とする請求項1記載の車両の走行解析方法。 The predetermined position in the mass setting vehicle body skeleton model generation step is set on a plane or a curved surface (except on the straight line or curved line) surrounded by a straight line or a curve connecting the fixed connecting portions. The vehicle travel analysis method according to claim 1.
  5.  前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素、及び、該質量要素と前記固定連結部とを接続する剛体要素、を用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車両の走行解析方法。 In the mass setting vehicle body skeleton model generation step, the mass corresponding to the mass of the fitting or the lid is set using a mass element and a rigid element that connects the mass element and the fixed coupling portion. The vehicle travel analysis method according to claim 1, wherein the vehicle travel analysis method is according to claim 1.
  6.  前記質量設定車体骨格モデル生成ステップは、質量要素とはり要素とを用いて設定し、該質量要素とはり要素が有する質量の和は前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とする請求項1乃至4のいずれか一項に記載の車両の走行解析方法。 The mass setting vehicle body skeleton model generation step is set using a mass element and a beam element, and the sum of the mass of the mass element and the beam element is the mass of a fitting or lid fixed or connected to the fixed connection portion. 5. The vehicle travel analysis method according to claim 1, wherein the vehicle travel analysis method is a vehicle travel analysis method according to claim 1.
  7.  前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車両の走行解析方法。 5. The vehicle according to claim 1, wherein the mass setting vehicle body skeleton model generation step is set using a beam element having a mass corresponding to a mass of the fitting or the lid. Travel analysis method.
PCT/JP2016/078861 2015-12-08 2016-09-29 Automotive body driving analysis method WO2017098784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2018006940A MX2018006940A (en) 2015-12-08 2016-09-29 Automotive body driving analysis method.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-239210 2015-12-08
JP2015239210A JP6098699B1 (en) 2015-12-08 2015-12-08 Vehicle travel analysis method

Publications (1)

Publication Number Publication Date
WO2017098784A1 true WO2017098784A1 (en) 2017-06-15

Family

ID=58363087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078861 WO2017098784A1 (en) 2015-12-08 2016-09-29 Automotive body driving analysis method

Country Status (3)

Country Link
JP (1) JP6098699B1 (en)
MX (1) MX2018006940A (en)
WO (1) WO2017098784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340612A (en) * 2021-06-04 2021-09-03 一汽解放汽车有限公司 Static rigidity test platform for white vehicle body of vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381892B2 (en) 2020-04-08 2023-11-16 日本製鉄株式会社 Model conversion method, model conversion device, program and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330997A (en) * 2002-05-08 2003-11-21 Sumitomo Rubber Ind Ltd Vehicular simulation method
JP2005242463A (en) * 2004-02-24 2005-09-08 Mazda Motor Corp Simulation device and its method
JP2008015635A (en) * 2006-07-03 2008-01-24 Toyota Central Res & Dev Lab Inc Method and program for evaluating structure
JP2011076240A (en) * 2009-09-29 2011-04-14 Mazda Motor Corp Planning support system for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330997A (en) * 2002-05-08 2003-11-21 Sumitomo Rubber Ind Ltd Vehicular simulation method
JP2005242463A (en) * 2004-02-24 2005-09-08 Mazda Motor Corp Simulation device and its method
JP2008015635A (en) * 2006-07-03 2008-01-24 Toyota Central Res & Dev Lab Inc Method and program for evaluating structure
JP2011076240A (en) * 2009-09-29 2011-04-14 Mazda Motor Corp Planning support system for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340612A (en) * 2021-06-04 2021-09-03 一汽解放汽车有限公司 Static rigidity test platform for white vehicle body of vehicle

Also Published As

Publication number Publication date
JP2017106766A (en) 2017-06-15
JP6098699B1 (en) 2017-03-22
MX2018006940A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN109791577B (en) Method and device for optimizing and analyzing joint position of vehicle body
JP6090400B1 (en) Body rigidity analysis method
WO2018008233A1 (en) Automotive body joint location optimization analysis method and device
CN111684451B (en) Optimized analysis method and optimized analysis device for bonding position of vehicle body
US10956636B2 (en) Method for optimizing the construction of a car body
Santiciolli et al. Simulation of the scenario of the biaxial wheel fatigue test
WO2017098784A1 (en) Automotive body driving analysis method
Yarmohammadisatri et al. A family base optimization of a developed nonlinear vehicle suspension model using gray family design algorithm
Kim et al. Dynamic stress analysis of vehicle frame using a nonlinear finite element method
Tamarozzi et al. Investigating the use of reduction techniques in concept modeling for vehicle body design optimization
Saraf et al. Integration of real and virtual tools for suspension development
Pedersen Conceptual Dynamic Analysis of a Vehicle Body
Shah et al. A Comprehensive Analysis Process for Vehicle Impact-Harshness Performance Assessment
Van der Auweraer et al. Breakthrough technologies for virtual prototyping of automotive and aerospace structures
Callejo et al. Efficient response optimization of realistic vehicle models using an automatically-differentiated semi-recursive formulation
Alexandru Dynamic simulation of the motor vehicles using commercial software
Gabbiadini et al. On the use of a panel contribution analysis for the characterization of vehicle static and dynamic stiffness properties
Różyło Kinematic simulation and numerical analysis of the suspension system of light wheeled vehicle
ARDIGÒ Study on the influence of the car body flexibility on handling performance and forces distribution with CAE methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/006940

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872684

Country of ref document: EP

Kind code of ref document: A1