WO2017098552A1 - Control device, air-conditioning system, and control method for air conditioners - Google Patents

Control device, air-conditioning system, and control method for air conditioners Download PDF

Info

Publication number
WO2017098552A1
WO2017098552A1 PCT/JP2015/084276 JP2015084276W WO2017098552A1 WO 2017098552 A1 WO2017098552 A1 WO 2017098552A1 JP 2015084276 W JP2015084276 W JP 2015084276W WO 2017098552 A1 WO2017098552 A1 WO 2017098552A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
air conditioning
information
conditioning load
air
Prior art date
Application number
PCT/JP2015/084276
Other languages
French (fr)
Japanese (ja)
Inventor
浩子 泉原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/084276 priority Critical patent/WO2017098552A1/en
Priority to JP2017554674A priority patent/JP6403906B2/en
Publication of WO2017098552A1 publication Critical patent/WO2017098552A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a control device that controls an air conditioner, an air conditioner system, and a method for controlling the air conditioner.
  • Patent Document 1 discloses a technique for accumulating data on past air conditioner settings and power consumption at that time, and predicting the power consumption in the current settings.
  • Patent Document 2 data related to an air conditioning load such as outside air temperature and data related to power consumption such as a compressor frequency are stored in association with each other, and annual consumption is based on the stored data.
  • a technique for predicting the amount of electric power is disclosed.
  • the air conditioning capability is predicted by linearly approximating the air conditioning capability with respect to the outside air temperature, and the power consumption is estimated using the predicted air conditioning capability.
  • the air conditioning capability does not always depend only on the outside air temperature, and the method described in Patent Document 2 has a problem that the power consumption may not be accurately predicted.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a control device that can accurately estimate the power consumption of an air conditioner.
  • a control device that controls an air conditioner including an indoor unit and an outdoor unit installed in a building, the indoor unit From the outdoor unit, setting information which is information set to the indoor unit and first operation information which is information indicating the operating state of the indoor unit are received and information indicating the operating state of the outdoor unit is received from the outdoor unit A communication unit that receives the second driving information, an environmental data acquisition unit that acquires and outputs environmental data outside the building, and the air conditioning load of the indoor unit based on the first driving information and the second driving information A first computing unit to be obtained.
  • the control device determines an air conditioning load factor that is at least one of the environmental data and the setting information based on the past air conditioning load, past environment data, and past setting information, and sets the past air conditioning load factor as the past air conditioning load factor.
  • the second calculation unit that calculates calculation information that is information used for prediction of the power consumption of the air conditioner, and predicts the power consumption of the air conditioner based on the calculation information and the current air conditioning load factor
  • a third computing unit is provided.
  • control device the air conditioner system, and the air conditioner control method according to the present invention have an effect that the power consumption of the air conditioner can be accurately estimated.
  • the figure which shows the structural example of the air conditioning system concerning embodiment of this invention The figure which shows the structural example of a control apparatus A diagram showing a configuration example of a computer system The figure which shows the hardware structural example of the control apparatus when implement
  • FIG. 1 is a diagram illustrating a configuration example of an air conditioning system according to an embodiment of the present invention.
  • the air conditioning system of the present embodiment includes an air conditioner 3 and a control device 1 that controls the air conditioner 3.
  • the air conditioner 3 includes an outdoor unit 11, indoor units 12-1 and 12-2, and remote controllers (hereinafter referred to as remote controllers) 13-1 and 13-2.
  • the control device 1 is connected to the outdoor unit 11, the indoor unit 12-1, and the indoor unit 12-2 through the air conditioning communication network 2.
  • the control device 1 transmits control commands to the outdoor unit 11 and the indoor units 12-1 and 12-2 constituting the air conditioner 3 via the air conditioning communication network 2, and the outdoor unit 11 and the indoor unit 12- From 1 and 12-2, collect operation information, power consumption, etc.
  • the power consumption is measured by each of the indoor units 12-1 and 12-2 and the outdoor unit 11.
  • a power consumption measuring device is provided separately from the air conditioner 3, and the control device 1 uses the air conditioning communication network 2 or another communication medium to calculate the measured power consumption of the air conditioner 3. It is good also as a structure which transmits to.
  • the power consumption may not be measured by the indoor units 12-1 and 12-2, the outdoor unit 11, and the measuring device.
  • Each of the remote controllers 13-1 and 13-2 accepts an input of a command such as a setting for the air conditioner 3 from a user who uses the air conditioner 3, and the received input content is changed to the corresponding indoor unit 12-1, 12 -2 is transmitted by wireless or wired communication. That is, the user can operate the air conditioner 3 with the remote controllers 13-1 and 13-2.
  • FIG. 1 shows a one-to-one correspondence between the remote controllers 13-1 and 13-2 and the indoor units 12-1 and 12-2, but a plurality of indoor units can be operated by one remote controller. It may be possible, or one indoor unit may be operable by a plurality of remote controllers.
  • FIG. 1 one indoor unit and two indoor units are shown.
  • the number of outdoor units and indoor units constituting the air conditioner 3 is not limited to the example of FIG. It is sufficient if it is more than a table.
  • various sensors such as a blower fan and a temperature sensor may be connected to the control device 1 via the air conditioning communication network 2 as auxiliary equipment.
  • FIG. 2 is a diagram illustrating a configuration example of the control device 1.
  • the control device 1 includes an air conditioning network communication unit 21, an operation data observation unit 22, an environmental data observation unit 23, a data collection operation execution unit 24, an unnecessary data discard unit 25, and an air conditioning load calculation formula construction unit 26.
  • An air conditioning load transmission type construction unit 27, a power consumption amount prediction unit 28, an air conditioning operation determination unit 29, and a power consumption information display unit 30 are provided.
  • the control device 1 also includes an air conditioning operation log database, an air conditioning load calculation coefficient database, and an air conditioning load transmission coefficient database.
  • the air conditioning network communication unit 21 is a communication unit that transmits and receives data to and from the air conditioner 3 via the air conditioning communication network 2.
  • the air-conditioning network communication unit 21 receives an instruction for the air conditioner 3 from another part, and generates an air-conditioning communication packet that is a packet of a predetermined format used in the air-conditioning communication network 2 based on the instruction. Send to network 2.
  • the air conditioning network communication unit 21 receives an air conditioning communication packet storing operation data transmitted from the air conditioner 3 via the air conditioning communication network 2, and controls the data stored in the air conditioning communication packet. It outputs to each corresponding part in the apparatus 1.
  • the outdoor unit 11 and the indoor units 12-1 and 12-2 that constitute the air conditioner 3 may automatically transmit data at regular intervals, or the control device 1 may operate data at regular intervals. May be transmitted, and the air conditioner 3 may transmit the operation data every time the instruction is received.
  • the operation data in the present embodiment includes operation information indicating an operation state.
  • the operation data transmitted from the indoor units 12-1 and 12-2 includes setting information that is information set in the indoor units 12-1 and 12-2.
  • the operation information included in the operation data transmitted by the indoor units 12-1 and 12-2 is also referred to as first operation information, and the operation information included in the operation data transmitted from the outdoor unit 11 is the second operation information. Also called.
  • the operation data observation unit 22 determines predetermined operation data such as operation ON / OFF, indoor unit thermostat (hereinafter abbreviated as “thermo”) ON / OFF, compressor rotation frequency, discharge refrigerant temperature, and the like at regular intervals. Acquired from the air conditioning network communication unit 21 and stores the acquired data together with time information in the air conditioning operation log database.
  • the operation ON / OFF is information indicating whether each device is in an operation state, that is, on (ON) or in a stop state, that is, off (OFF).
  • the indoor unit thermo ON / OFF is information indicating whether the contact of the thermostat of the indoor unit is ON or OFF.
  • the time information may be an acquisition time of the data provided by the data transmission source, or may be a time when the operation data observation unit 22 acquires the data.
  • the environmental data observation unit 23 collects environmental data outside the building where the indoor units 12-1 and 12-2 of the air conditioner 3 are installed at regular intervals, and the collected environmental data is air-conditioned with time information. It is an environment data acquisition unit stored in the log database.
  • the environmental data includes outside air temperature, humidity, amount of solar radiation, and information indicating the weather.
  • the environmental data observation unit 23 may include a measurement unit that measures the environmental data, or may acquire the environmental data from an external measurement unit. Further, the information indicating the weather is acquired from, for example, a device that provides the information via a communication network.
  • the air conditioning operation log database is a database in which data collected by the operation data observation unit 22 and the environmental data observation unit 23 is stored. Various data collected by the operation data observation unit 22 and the environmental data observation unit 23 are continuously accumulated together with time information.
  • the air conditioning load calculation formula construction unit 26 constructs a calculation formula for predicting the air conditioning load for each indoor unit based on the data stored in the air conditioning operation log database. Specifically, here, the factor that determines the air conditioning load, that is, the sum of the first-order terms of the factor, is approximated, and the coefficient that gives the air conditioning load is the sum of the values multiplied by the factor for each factor. Calculate for each. In the following description, the air conditioning load is approximated by the sum of the first-order terms of each factor, but it may be approximated by a combination of terms of the second and subsequent polynomials or other types of terms. The calculation formula construction unit 26 calculates the coefficients of the assumed calculation formula based on the data stored in the air conditioning operation log database.
  • the air conditioning load calculation coefficient database is a database that stores the air conditioning load calculation coefficient calculated by the air conditioning load calculation formula construction unit 26.
  • the air conditioning load transmission formula construction unit 27 constructs a calculation formula for predicting fluctuations in the air conditioning load due to changes in the ON / OFF state of the operation of other air conditioners based on the data stored in the air conditioning operation log database. . Specifically, the air conditioning load transmission type construction unit 27 increases the air conditioning load of the other indoor units that are ON when the operation of a certain indoor unit is OFF. The share of the load to the indoor unit is calculated as a transmission coefficient.
  • the air-conditioning load transfer coefficient database is a database for storing a transfer coefficient that is calculated by the air-conditioning load transfer formula construction unit 27 and is a share of the air-conditioning load to other indoor units when the indoor unit is turned off. .
  • the power consumption amount predicting unit 28 includes a control pattern of the air conditioner 3 instructed by the air conditioning operation determining unit 29, information stored in the air conditioning load calculation coefficient database, and information stored in the air conditioning load transmission coefficient database. Based on this, the power consumption is predicted, and the predicted power consumption is output to the air conditioning operation determination unit 29.
  • the air-conditioning operation determination unit 29 creates a plurality of control patterns for the air conditioner 3, and inputs the plurality of control patterns to the power consumption amount prediction unit 28 to acquire the corresponding power consumption amount. Then, the air conditioning operation determination unit 29 selects a control pattern based on the power consumption, and inputs a command corresponding to the selected control pattern to the air conditioning network communication unit 21. For example, the air conditioning operation determination unit 29 selects a control pattern with the lowest power consumption among a plurality of control patterns. Although the control pattern with the lowest power consumption is selected here, the control pattern can be selected based on the power consumption and the evaluation index in consideration of the evaluation index other than the power consumption. Good. In addition, the air conditioning operation determination unit 29 outputs a plurality of control patterns and the power consumption amount corresponding to each control pattern to the power consumption information display unit 30.
  • the power consumption information display unit 30 is a display unit capable of presenting to the user the power consumption amount for each control pattern output from the air conditioning operation determination unit 29.
  • the data collection operation execution unit 24 is a data collection operation which is a predetermined air conditioning control for collecting data necessary for the air conditioning load calculation formula construction unit 26 and the air conditioning load transmission formula construction unit 27 to execute the respective functions. If it is determined whether or not to execute the data collection operation, the data collection operation is executed. The data collection operation will be described later.
  • the unnecessary data discarding unit 25 deletes unnecessary data from the data stored in the air conditioning operation log database when the air conditioning load calculation formula construction unit 26 and the air conditioning load transmission formula construction unit 27 execute the respective functions.
  • the operation data observation unit 22 calculates the air conditioning load that is the air conditioning load for each indoor unit based on the operation information received from the indoor units 12-1 and 12-2 and the operation information received from the outdoor unit 11. It is an operation part.
  • the air conditioning load calculation formula construction unit 26 determines an air conditioning load factor that is at least one of the environmental data and the setting information based on the past air conditioning load, the past environment data, and the past setting information. It is a 2nd calculating part which calculates
  • the air conditioning load factor will be described later.
  • the power consumption amount prediction unit 28 is a third calculation unit that predicts the power consumption amount of the air conditioner 3 for each indoor unit based on the calculation coefficient and the current air conditioning load factor.
  • the control device 1 is implemented as a computer system, that is, a device such as a computer.
  • the computer system functions as the control device 1 by executing an air conditioning control program that is a program for realizing the function as the control device 1 on the computer system.
  • FIG. 3 is a diagram illustrating a configuration example of a computer system according to this embodiment.
  • the computer system includes a processor 101, an input unit 102 that is a receiving unit, a memory (storage unit) 103, a display unit 104, a communication unit 105, and a sensor 106, which are connected to a system bus 107. Connected through.
  • a processor 101 is, for example, a CPU (Central Processing Unit) and the like, and executes the air conditioning control program of the present embodiment.
  • the input unit 102 includes, for example, a keyboard, a mouse, a touch screen, and the like, and is used by a computer system user to input various information.
  • the storage unit 103 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory) and storage devices such as a hard disk.
  • the storage unit 103 is a program to be executed by the processor 101 and necessary data obtained in the process. , Etc. are memorized.
  • the storage unit 103 is also used as a temporary storage area for programs.
  • the display unit 104 is configured by an LCD (liquid crystal display panel) or the like, and displays various screens for a computer system user.
  • the communication unit 105 performs communication processing.
  • FIG. 3 is an example, and the configuration of the computer system is not limited to the example of FIG.
  • an air conditioning control program is stored from a CD-ROM or DVD-ROM (not shown) set in a CD (Compact Disc) -ROM drive or DVD (Digital Versatile Disc) -ROM drive. Installed in the unit 103.
  • the air conditioning control program When the air conditioning control program is executed, the air conditioning control program read from the storage unit 103 is stored in a predetermined location in the storage unit 103. In this state, the processor 101 executes the air conditioning control process of the present embodiment according to the program stored in the storage unit 103.
  • a program describing air conditioning control processing is provided using a CD-ROM or DVD-ROM as a recording medium.
  • the present invention is not limited to this, and the configuration of the computer system and the capacity of the provided program are provided.
  • a program provided by a transmission medium such as the Internet via the communication unit 105 may be used.
  • the air conditioning operation determination unit 29 is included in the processor 101 of FIG.
  • the power consumption information display unit 30 is the display unit 104, and the air conditioning operation log database, the air conditioning load calculation coefficient database, and the air conditioning load transmission coefficient database in FIG. 2 are stored in a part of the storage unit 103 in FIG.
  • the air conditioning network communication unit 21 in FIG. 2 is part or all of the communication unit 105 in FIG.
  • the environmental data observation unit 23 in FIG. 2 is a sensor 106 that measures outside air temperature, humidity, solar radiation amount, and the like.
  • FIG. 4 is a diagram illustrating a hardware configuration example of the control device 1 when implemented using a dedicated processing circuit.
  • This apparatus includes an input unit 102, a display unit 104, a communication unit 105, a sensor 106, and a processing circuit 108, which are connected via a system bus 107.
  • the air conditioning operation determination unit 29 is realized by the processing circuit 108 of FIG.
  • the processing circuit 108 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • the environmental data observation unit 23 in FIG. 2 is a sensor 106 that measures outside air temperature, humidity, solar radiation amount, and the like.
  • FIG. 5 is a flowchart showing an example of an air conditioning control processing procedure in the control device 1 of the present embodiment.
  • the operation data observation unit 22 collects operation data of the air conditioner 3 (step S101).
  • the data to be collected is predetermined. In the present embodiment, it is assumed that the following data is collected from the outdoor unit 11 and the indoor units 12-1 and 1-2 constituting the air conditioner 3.
  • Indoor unit operation ON / OFF, mode, set temperature, thermo ON / OFF, suction air temperature, expansion valve opening
  • Outdoor unit compressor rotation frequency, evaporation temperature, condensation temperature, discharge refrigerant temperature, suction refrigerant temperature, High pressure and low pressure
  • Thermo-ON indicates a normal operation state
  • Thermo-OFF indicates a state where operation is stopped when the suction temperature ( ⁇ room temperature) is sufficiently close to the set temperature.
  • the mode indicates a mode such as cooling, heating, dehumidification, or the like.
  • the mode and set temperature of the indoor unit are setting information
  • the other data is operation information.
  • step S101 in order to accurately calculate the air conditioning load for each indoor unit, data is collected every minute, and the operation data observation unit 22 accumulates the collected data until step S102 and subsequent steps are executed.
  • ON / OFF for example, “ON” is set when it is always ON for 1 hour, “OFF” is set when it is always OFF for 1 hour, and the ON and OFF states are set for 1 hour. If both are present, it is considered “mixed”. Note that the accumulation period is not limited to one hour.
  • the operation data observation unit 22 calculates the air conditioning load for each indoor unit (step S102). Specifically, the operation data observation unit 22 calculates the integrated value of the data for one hour accumulated in step S101 for each indoor unit, and calculates the air conditioning load based on the integrated value.
  • the operation data observation unit 22 calculates the air conditioning load by the following procedure, for example. (1) The flow rate of the refrigerant is obtained from the opening degree of the expansion valve, the high pressure and the low pressure. (2) The enthalpy on the low pressure side is determined from the suction refrigerant temperature, low pressure and evaporation temperature of the outdoor unit. (3) The enthalpy on the high pressure side is obtained from the refrigerant discharge temperature, high pressure, and condensation temperature of the outdoor unit.
  • the product of the difference between the enthalpy on the high pressure side and the enthalpy on the low pressure side and the refrigerant flow rate is defined as the air conditioning load.
  • the calculation method of an air-conditioning load is not limited to this example, What kind of calculation method generally performed may be used.
  • the operation data observation unit 22 assigns time information to the calculated air conditioning load for each indoor unit and user setting information in the operation data, and stores it in the air conditioning operation log database (step S103).
  • the user setting information is operation data set by the user using the remote controllers 13-1 and 13-2 among the operation data.
  • the user setting information represents the following data among the operation data.
  • Indoor unit Operation ON / OFF, mode, set temperature
  • steps S101 to S103 are the air conditioning load calculation process (step S100) for collecting the operation data and calculating the air conditioning load.
  • the environmental data observation unit 23 collects environmental data, adds time information, and stores it in the air conditioning operation log database (step S200).
  • the air conditioning operation log database it is assumed that outside air temperature, outside air humidity, and amount of solar radiation are collected as environmental data.
  • the collection frequency of the environmental data may be different from the operation data, in the present embodiment, it is assumed that the collection is performed every minute as in the operation data collection.
  • the environmental data observation unit 23 collects the average values of the outside air temperature and the outside air humidity collected every minute for the outside air temperature and the outside air humidity, and the hourly amount collected every minute for the solar radiation amount. Is stored in the air conditioning operation log database.
  • FIG. 6 is a diagram showing a configuration example of an air conditioning operation log database.
  • the air conditioning operation log database stores the time, air conditioning load, operation, that is, operation ON / OFF, mode, set temperature, etc. for each indoor unit, and the ambient temperature, humidity as environmental data at the corresponding time. And the amount of solar radiation is stored.
  • Step S300 which is a process performed by the air conditioning load calculation formula construction unit 26, and step S400, which is a process performed by the air conditioning load transmission formula construction unit 27, are periodically executed during a time period during which normal air conditioning control processing is not performed. .
  • Step S300 includes the following steps S301 to S303.
  • the air conditioning load calculation formula construction unit 26 selects a data type that is strongly correlated with the air conditioning load among user settings and environmental data, that is, factor data, for each indoor unit.
  • a data type having a strong correlation with the air conditioning load is also referred to as an air conditioning load factor.
  • the air conditioning load calculation formula construction unit 26 sets each data constituting the operation data of one indoor unit and each data constituting the environmental data from the data accumulated in the air conditioning operation log database for each indoor unit. One of them is selected, and a correlation coefficient with the air conditioning load is calculated.
  • the air conditioning load calculation formula construction unit 26 calculates a correlation coefficient with the air conditioning load for all data constituting the operation data and all data constituting the environmental data. When the calculated correlation coefficient exceeds the threshold, the air conditioning load calculation formula construction unit 26 selects the data as the air conditioning load factor. In the present embodiment, this threshold value is set to 0.2.
  • the air conditioning load calculation formula construction unit 26 obtains a calculation formula for calculating the air conditioning load from the air conditioning load factor for each indoor unit (step S302). Specifically, the following formula (1) is assumed as the calculation formula Q x of the air conditioning load of the x-th indoor unit, and the air conditioning load calculation formula construction unit 26 is a weighting coefficient for each air conditioning load factor. An air conditioning load calculation coefficient is calculated.
  • k is the number of selected air conditioning load factors
  • w i is a weighting coefficient corresponding to the i th air conditioning load factor
  • a i is a data value of the i th air conditioning load factor
  • C It is a constant.
  • the air conditioning load calculation formula construction unit 26 calculates an air conditioning load calculation coefficient for each indoor unit.
  • the air conditioning load calculation formula construction unit 26 calculates the air conditioning load calculation coefficient by, for example, the least square method.
  • Q x w 1 ⁇ a 1 + w 2 ⁇ a 2 +... + w k ⁇ a k + C (1)
  • the air-conditioning load calculation formula construction unit 26 selects data of air-conditioning load factors and constructs a calculation formula for data at the time when the operating state of all indoor units is “ON” and the set temperatures of all indoor units are equal. Use only. This is because when some of the indoor units are OFF, the air conditioning load of other indoor units increases, so that the correlation with the environmental data and the user setting data cannot be obtained correctly.
  • the air conditioning load calculation formula construction unit 26 stores the air conditioning load calculation coefficient in the air conditioning load calculation coefficient database (step S303). Since the air conditioning load calculation coefficient is calculated for each indoor unit, the air conditioning load calculation coefficient is stored for each indoor unit.
  • FIG. 7 is a diagram illustrating a configuration example of an air conditioning load calculation coefficient database. In the example of FIG. 7, it is assumed that the set temperature, the outside air temperature, the humidity, and the solar radiation amount are selected as the air conditioning load factor as the air conditioning load factor, and each indoor unit corresponds to the set temperature, the outside air temperature, the humidity, and the solar radiation amount. The air conditioning load calculation coefficient is stored. In addition, the data calculated as an air-conditioning load factor may differ for every indoor unit.
  • the air conditioning load transmission formula construction unit 27 calculates the air conditioning load transmission coefficient and stores it in the air conditioning load transmission coefficient database (step S400). Specifically, the air conditioning load transmission coefficient is calculated as follows.
  • the air conditioning load transmission type construction unit 27 uses data at a time satisfying the following conditions among the data stored in the air conditioning operation log database in the calculation of the air conditioning load transmission coefficient. ⁇ The operation status of one indoor unit is “OFF” and the other indoor units are “ON”. ⁇ The set temperatures of all indoor units whose operation status is “ON” are all equal.
  • the air conditioning load transmission type construction unit 27 performs air conditioning on the indoor unit whose operation state is “ON” based on the operation data based on the data at the time satisfying the above conditions among the data stored in the air conditioning operation log database. Calculate the load.
  • the indoor unit whose operation state is “OFF” is the nth indoor unit
  • the calculated value of the air conditioning load of the mth indoor unit when the nth air conditioner is “OFF” is Q mn .
  • the air-conditioning load transmission formula construction unit 27 uses the data at the time satisfying the above conditions among the data stored in the air-conditioning operation log database and the air-conditioning load calculation coefficient stored in the air-conditioning load calculation coefficient database.
  • the air conditioning load of the indoor unit whose operation state is “ON” is obtained.
  • the air conditioning load obtained based on Expression (1) is a predicted value of the air conditioning load of each indoor unit when it is assumed that all the indoor units are “ON”.
  • the predicted value of the air conditioning load of the m-th indoor unit when it is assumed that all the indoor units are “ON” is Q m .
  • the air conditioning load transmission type construction unit 27 obtains a difference ⁇ Q mn between the predicted value Q m and the calculated value Q mn of the air conditioning load of the m-th indoor unit when the n-th indoor unit is “OFF”. This difference represents the air conditioning load that has changed due to the operation state of one indoor unit being “OFF”.
  • the air conditioning load transmission type construction unit 27 uses the ⁇ th mn and the predicted value Q n of the air conditioning load of the n th indoor unit when it is assumed that all the indoor units are “ON”.
  • the air conditioning transmission coefficient T mn for the m-th indoor unit is calculated by the following equation (2).
  • the indoor temperature is “ON” for all indoor units.
  • the remaining air conditioning load that is, the heat in the room that cannot be processed by the indoor unit that is “ON” exists when one unit is “OFF” when it is less than 1, It is thought that there is an influence such as an increase in room temperature in some areas.
  • FIG. 8 is a diagram illustrating a configuration example of an air conditioning load transmission coefficient database. As shown in FIG. 8, the calculated air conditioning load transmission coefficient is stored in the air conditioning load transmission coefficient database. In the example of FIG. 8, taking the number n indicating the indoor unit becomes "OFF" in the vertical direction, for "OFF" to become the indoor unit affected laterally number m indicating the indoor unit, the above-mentioned T mn, respectively Storing.
  • FIG. 9 is a diagram showing how air conditioning loads are transmitted.
  • FIG. 9 it is assumed that six indoor units from indoor units 12-1 to 12-6 are installed in one room. Assume that the interior of this room is divided into areas 20-1 to 20-6 corresponding to the indoor units 12-1 to 12-6.
  • the left side of FIG. 9 shows an example in which all of the indoor units 12-1 to 12-6 are turned on, and the right side turns off the indoor unit 12-1 and the indoor unit 12-3 at the same outside air temperature as the left side. Other indoor units are turned on.
  • the air conditioning loads of the indoor units 12-1 and 12-3 are 0.7 kWh and 1.0 kWh, respectively, in the left side state.
  • the indoor unit 12-1 since the indoor unit 12-1 is OFF, the total amount of heat transferred to the area 20-2 and the amount of heat transferred to the area 20-6 is 0.6 kWh, and the indoor unit 12- The air conditioning load corresponding to 1 is less than 1.0 kWh. For this reason, 0.4 kWh of heat remains in the area 20-1.
  • the data collection operation execution unit 24 determines whether or not to execute the data collection operation every hour (step S450). .
  • the start of the period during which the normal air-conditioning operation is automatically performed is 8:00 am and the end time is 8:00 pm.
  • the data collection operation execution unit 24 determines to execute the data collection operation when the following two conditions are satisfied. When at least one of the following two conditions is not satisfied, it is determined that the data collection operation is not performed.
  • the interval for making this determination is not limited to one hour.
  • Condition 1 Among the data stored in the air conditioning operation log database, the environmental data is similar to the current environmental data, and the number of data satisfying the conditions to be used in step S302 and step S400 is less than or equal to the threshold.
  • Condition 2 In the previous determination in step S450, it is not determined that the data collection operation is executed, that is, the data collection operation is not executed during the past one hour.
  • the air conditioner 3 has the contents set by the remote controls 13-1 and 13-2, or as described later.
  • the air-conditioning operation determining unit 29 operates according to the settings determined.
  • the data collection operation determination unit 29 instructs the air conditioning operation determination unit 29 to start the operation.
  • a plurality of candidates of the user setting set (abbreviated as air conditioner in FIG. 5) is notified to the power consumption prediction unit 28 (step S500).
  • the air-conditioning operation determination unit 29 holds a plurality of control patterns, and generates user setting set candidates based on the respective control patterns.
  • the user setting set is configured with setting information for each indoor unit and outdoor unit.
  • the control pattern is, for example, a first pattern in which all indoor units are turned on and all indoor units are in the same mode, all indoor units that are turned on when one indoor unit is turned off and other indoor units are turned on.
  • a second pattern for setting the same mode a third pattern for setting all indoor units to ON, and setting some indoor units to a mode different from other indoor units.
  • setting information for turning on the operating states of all indoor units is included as setting information.
  • setting information for setting the operation state of one indoor unit to OFF and setting the operation state of other indoor units to OFF is included as setting information.
  • the power consumption amount prediction unit 28 performs Step S600.
  • Step S600 is composed of step S601 and step S602.
  • the power consumption prediction unit 28 calculates the air conditioning load for each indoor unit based on the user setting set candidate acquired from the air conditioning operation determination unit 29 and the current environment data acquired from the environment data observation unit 23. calculate. Specifically, based on the user setting set, the power consumption amount prediction unit 28 first extracts setting information with the highest air conditioning capability among the setting information corresponding to each indoor unit. In the present embodiment, for example, when setting information indicating the cooling mode and the dehumidifying mode is included in a plurality of candidates of the user setting set, it is determined whether the air conditioning capability is high in the following order.
  • an indoor unit whose operation state is set to ON is selected based on the user setting set according to the condition (A). If there are a plurality of selected indoor units, dehumidification is performed based on the condition (B). Select the indoor unit to be set.
  • the setting information corresponding to the indoor unit having the lowest set temperature is extracted by comparing the set temperatures according to the condition (C).
  • the setting information indicating the heating mode is included in the plurality of candidates of the user setting set, for example, the condition (A) and (D) when the set temperature is high, the air conditioning capacity is higher than when the temperature is low.
  • the setting information with the highest air conditioning capacity is extracted based on the condition that the air conditioning is high.
  • the air conditioning load when setting information corresponding to the selected indoor unit is set for all indoor units is calculated.
  • the power consumption prediction unit 28 uses the current value as the environmental data, uses the selected setting information as the setting information, and uses the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database. Then, the air conditioning load is calculated by the equation (1). This calculated value is called the maximum predicted value.
  • the power consumption amount prediction unit 28 obtains the air conditioning load for each indoor unit for each user setting set candidate.
  • the power consumption amount predicting unit 28 sets the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database for candidates in which the operation state of all the indoor units is ON among the user setting set candidates, Based on the current environmental data and the user setting set candidates, the air conditioning load is calculated by Equation (1).
  • the power consumption amount prediction unit 28 first sets the OFF state of each of the indoor units whose operation state is ON for each of the indoor units whose operation state is ON. Based on the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database, the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database, the current environment data, and the user setting set candidates.
  • the air conditioning load is calculated according to (1).
  • the power consumption prediction unit 28 is configured to turn off the other indoor units of the air conditioning load of the indoor unit based on the air conditioning load transfer factor and the maximum predicted value stored in the air conditioning load transfer factor database. Calculate the difference. And the power consumption prediction part 28 calculates the air-conditioning load for every indoor unit by adding a difference to the air-conditioning load calculated by said Formula (1).
  • the power consumption prediction unit 28 predicts the power consumption of the air conditioner from the air conditioning load for each indoor unit, and notifies the air conditioning operation determination unit 29 (step S602). Specifically, the power consumption prediction unit 28 determines the output of the outdoor unit by adding the air conditioning load for the indoor units set to ON. The power consumption amount prediction unit 28 calculates the compressor frequency, refrigerant flow rate, target evaporation temperature, and the like based on the output of the outdoor unit according to the performance of the model, and predicts the power consumption amount of the compressor. For example, the power consumption prediction unit 28 predicts the power consumption of the compressor by the following procedure. (1) Data of power consumption with respect to frequency is stored in advance for each compressor model. (2) The power consumption is predicted from the frequency of the compressor and the above data.
  • the power consumption prediction unit 28 calculates a predicted value of the power consumption of the entire air conditioner 3 by adding the power consumption of each indoor unit and the fan motor of the outdoor unit to the power consumption of the compressor. For example, a predetermined value is used for the power consumption of each indoor unit and the fan motor of the outdoor unit.
  • the power consumption amount prediction unit 28 calculates a predicted value of the power consumption amount of the entire air conditioner 3 as a user setting set candidate as described above.
  • the air-conditioning operation determination unit 29 acquires a predicted value of power consumption for each user setting set candidate from the power consumption prediction unit 28, and selects a user setting set candidate with the smallest predicted power consumption value. It selects as a user setting set, and notifies the selected user setting set to the air-conditioning network communication part 21 (step S700). Specifically, the air conditioning operation determination unit 29 generates a command for instructing setting information to each indoor unit based on the selected user setting set, and notifies the air conditioning network communication unit 21 of the command. Thereby, the air conditioning network communication unit 21 transmits the notified command to each indoor unit as an air conditioning communication packet, and each indoor unit executes air conditioning control according to the received air conditioning communication packet.
  • the air conditioning operation determination unit 29 notifies the power consumption information display unit 30 of the determined user setting set and the predicted value of the corresponding power consumption (step S1001).
  • the power consumption information display unit 30 presents the determined user setting set and the predicted value of the corresponding power consumption amount to the user by displaying them on the display screen (step S1002), and returns to step S100.
  • the air-conditioning operation determination unit 29 notifies the power consumption information display unit 30 of predicted values of power consumption corresponding to all user setting set candidates, and the power consumption information display unit 30 displays all user setting set candidates. And the predicted value of the corresponding power consumption may be displayed, and the determined user setting set may be indicated.
  • Step S200 to Step S400 are not performed and the process proceeds to Step S450 in the normal air conditioning control time zone.
  • Step S800 includes step S801 and step S802.
  • step S801 the data collection operation execution unit 24 analyzes data stored in the air conditioning operation log database and creates a user setting set to be collected in the current environment. To do. Specifically, the data collection operation execution unit 24 selects the data stored in the air conditioning operation log database that has the smaller number of data among the data used in the process of step S302 and the data used in the process of step S400. Create a corresponding user settings set.
  • the number of data used in the process of step S302, that is, the number of data in which all the indoor units are ON and the set temperature is equal is the number of data used in the process of step S400, that is, one indoor unit is OFF and other indoor units.
  • the set temperature of the indoor unit with ON is less than the number of equal data
  • the user setting set is created so that all the indoor units are ON and the set temperature is equal.
  • the number of data stored in the air conditioning operation log database is obtained for each indoor unit to be turned off.
  • the number of data stored in the air conditioning operation log database is obtained for each indoor unit to be turned off, and the data with the smallest number is obtained. Create a data setting set.
  • the data collection operation execution unit 24 notifies the created user setting set to the air conditioning network communication unit 21 (step S802). Specifically, the data collection operation execution unit 24 generates a command for instructing setting information for each indoor unit based on the created user setting set, and notifies the air conditioning network communication unit 21 of the command. Thereby, the air conditioning network communication unit 21 transmits the notified command to each indoor unit as an air conditioning communication packet, and each indoor unit executes air conditioning control according to the received air conditioning communication packet.
  • the unnecessary data discarding unit 25 discards data unnecessary for air conditioning load calculation from the air conditioning operation log database (step S900). Then, it returns to step S100.
  • the unnecessary data discarding unit 25 discards data by the following method. (1) Discard data for which there is no air conditioning load calculation coefficient (not related to air conditioning load) (2) Discard all data that is similar to environmental data, user setting data, air conditioning load, etc. (3) Air conditioning operation If the amount of data stored in the log database exceeds the predetermined data capacity, the oldest data is discarded in order.
  • a boundary time at which the air conditioning load calculation coefficient or the like greatly changes for example, a time when there is a change more than a threshold value during a certain period.
  • a condition of discarding the previous data may be added. If an event occurs that significantly changes the air conditioning load in the room, such as renovation of a building's outer wall or window, tenant change, or the introduction of a large number of new electronic devices, the accuracy can be improved by using the predicted value calculated from the previous data. This is because it falls.
  • setting information and environmental data are used as candidates for the air conditioning load factor, and the air conditioning load factor is selected from the candidates based on the correlation coefficient.
  • at least one of the previous day's setting information, the previous day's setting information environment data, date, time zone, and day of the week is added as a candidate for the air conditioning load factor, and the air conditioning load factor is based on the correlation coefficient. May be selected. For example, when the amount of solar radiation on the previous day is large, heat is stored in the building frame, which may increase the air conditioning load.
  • the air conditioner 3 is installed in a commercial facility, an office building, etc., a difference occurs in the air conditioning load between business days and closed days.
  • the air conditioning load can be predicted more accurately, and the power consumption Prediction accuracy can be improved.
  • the control device 1 acquires the operation data from the air conditioner 3, calculates the air conditioning load based on the operation data, and the air conditioning load in the past certain period and the past certain period.
  • a calculation coefficient that is calculation information for predicting the air conditioning load is calculated based on at least one of the environmental data and the setting information.
  • the air conditioning load is predicted for each indoor unit using at least one of the calculation coefficient, current environmental data, and setting information candidates, and the power consumption of the air conditioner 3 is predicted based on the predicted air conditioning load. I did it. For this reason, even when the data at the time of driving
  • the air conditioning load is calculated for each indoor unit, it can reflect the difference in air conditioning load depending on the indoor unit installation location, for example, whether it is near the window or near the center of the room, and is consumed accurately. The amount of power can be predicted.
  • a transfer coefficient indicating the degree of influence from the other indoor unit is calculated, and the transfer coefficient is used to calculate the indoor coefficient.
  • the air conditioning load was predicted for each machine. Thereby, the power consumption amount of the air conditioner can be estimated with higher accuracy.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 control device 2 air conditioning communication network, 3 air conditioner, 11 outdoor unit, 12-1 to 12-6 indoor unit, 21 air conditioning network communication unit, 22 operation data observation unit, 23 environmental data observation unit, 24 data collection operation Execution unit, 25 unnecessary data discarding unit, 26 air conditioning load calculation formula construction unit, 27 air conditioning load transmission formula construction unit, 28 power consumption prediction unit, 29 air conditioning operation determination unit, 30 power consumption information display unit.

Abstract

A control device (1) which controls an air conditioner equipped with indoor units installed within a building and an outdoor unit, and is equipped with: an air-conditioning network communication unit (21) which receives setting information, which is the information set in the indoor units, and operating information from the indoor units, and receives operating information from the outdoor unit; an environmental data observation unit (23) which obtains and outputs environmental data showing the external environment; an operating data observation unit (22) which determines the air-conditioning load of each of the indoor units on the basis of the operating information, and stores the operating information and the air-conditioning load in an air-conditioning operation log database; a construction unit (26) for air-conditioning load calculation formulas, which selects an air-conditioning load factor on the basis of the data stored in the air-conditioning operation log database, and determines a calculation coefficient, which is the information used for predicting the air-conditioning load, for each of the indoor units; and a power consumption prediction unit (28) which predicts the power consumption of the air conditioner on the basis of the calculation coefficient and the air-conditioning load factor.

Description

制御装置、空気調和システムおよび空気調和機の制御方法Control device, air conditioning system, and control method for air conditioner
 本発明は、空気調和機を制御する制御装置、空気調和システムおよび空気調和機の制御方法に関する。 The present invention relates to a control device that controls an air conditioner, an air conditioner system, and a method for controlling the air conditioner.
 近年、省エネルギー化への関心の高まりに伴い、空気調和機の消費電力量を予測する方法が検討されている。特許文献1には、過去の空気調和機の設定とそのときの消費電力量のデータを蓄積し、今回の設定における消費電力量を予測する技術が開示されている。また、特許文献2には、外気温などの空調負荷に関連するデータと、圧縮機周波数などの消費電力量に関連するデータとを対応付けて記憶し、記憶されているデータに基づいて年間消費電力量を予測する技術が開示されている。 In recent years, with increasing interest in energy saving, methods for predicting the power consumption of air conditioners are being studied. Patent Document 1 discloses a technique for accumulating data on past air conditioner settings and power consumption at that time, and predicting the power consumption in the current settings. In Patent Document 2, data related to an air conditioning load such as outside air temperature and data related to power consumption such as a compressor frequency are stored in association with each other, and annual consumption is based on the stored data. A technique for predicting the amount of electric power is disclosed.
特開2010-071505号公報JP 2010-071505 A 特開2004-301505号公報JP 2004-301505 A
 しかしながら、上記特許文献1に記載の技術によれば、設定温度などの過去の設定内容と消費電力量とを対応付けて記憶し、記憶されている情報に基づいて消費電力量を予測している。このため、過去に類似した設定内容での運転が実施されていない場合、消費電力量を正確に予測できないという課題が存在した。特に、複数の室内機を有し、室内機ごとに設定を変更可能な空気調和システムにおいては、設定内容の組み合わせが多くなり、過去に類似した設定内容での運転が実施されていない確率が高くなるため、精度よく空気調和システムの消費電力量を算出できない場合がある。 However, according to the technique described in Patent Document 1, the past setting contents such as the set temperature and the power consumption are stored in association with each other, and the power consumption is predicted based on the stored information. . For this reason, when the driving | operation with the setting content similar to the past is not implemented, the subject that power consumption amount cannot be estimated correctly existed. In particular, in an air conditioning system that has a plurality of indoor units and whose settings can be changed for each indoor unit, there are many combinations of the setting contents, and there is a high probability that the operation with the setting contents similar to the past is not performed. Therefore, there are cases where the power consumption of the air conditioning system cannot be calculated with high accuracy.
 また、上記特許文献2に記載の技術によれば、外気温度に対する空調能力を直線近似することにより空調能力を予測して、予測した空調能力を用いて消費電力量を推定している。しかしながら、空調能力は外気温度だけに依存するとは限らず、上記特許文献2に記載の方法では、消費電力量を正確に予測できない可能性があるという課題が存在した。 Further, according to the technique described in Patent Document 2, the air conditioning capability is predicted by linearly approximating the air conditioning capability with respect to the outside air temperature, and the power consumption is estimated using the predicted air conditioning capability. However, the air conditioning capability does not always depend only on the outside air temperature, and the method described in Patent Document 2 has a problem that the power consumption may not be accurately predicted.
 本発明は、上記に鑑みてなされたものであって、精度良く空気調和機の消費電力量を推定することができる制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a control device that can accurately estimate the power consumption of an air conditioner.
 上述した課題を解決し、目的を達成するために、本発明にかかる制御装置は、建物内に設置される室内機と室外機とを備える空気調和機を制御する制御装置であって、室内機から、室内機に設定された情報である設定情報と室内機の運転の状態を示す情報である第1の運転情報とを受信し、室外機から、室外機の運転の状態を示す情報である第2の運転情報を受信する通信部と、建物の外部の環境データを取得して出力する環境データ取得部と、第1の運転情報および第2の運転情報に基づいて室内機の空調負荷を求める第1の演算部と、を備える。また、制御装置は、過去の空調負荷、過去の環境データおよび過去の設定情報に基づいて、環境データおよび設定情報のうちの少なくとも1つである空調負荷因子を決定し、過去の空調負荷因子に基づいて、前記空気調和機の消費電力量の予測に用いられる情報である算出情報を求める第2の演算部と、算出情報および現在の空調負荷因子に基づいて空気調和機の消費電力量を予測する第3の演算部を備える。 In order to solve the above-described problems and achieve the object, a control device according to the present invention is a control device that controls an air conditioner including an indoor unit and an outdoor unit installed in a building, the indoor unit From the outdoor unit, setting information which is information set to the indoor unit and first operation information which is information indicating the operating state of the indoor unit are received and information indicating the operating state of the outdoor unit is received from the outdoor unit A communication unit that receives the second driving information, an environmental data acquisition unit that acquires and outputs environmental data outside the building, and the air conditioning load of the indoor unit based on the first driving information and the second driving information A first computing unit to be obtained. The control device determines an air conditioning load factor that is at least one of the environmental data and the setting information based on the past air conditioning load, past environment data, and past setting information, and sets the past air conditioning load factor as the past air conditioning load factor. Based on the second calculation unit that calculates calculation information that is information used for prediction of the power consumption of the air conditioner, and predicts the power consumption of the air conditioner based on the calculation information and the current air conditioning load factor A third computing unit is provided.
 本発明にかかる制御装置、空気調和システムおよび空気調和機の制御方法は、精度良く空気調和機の消費電力量を推定することができるという効果を奏する。 The control device, the air conditioner system, and the air conditioner control method according to the present invention have an effect that the power consumption of the air conditioner can be accurately estimated.
本発明の実施の形態にかかる空気調和システムの構成例を示す図The figure which shows the structural example of the air conditioning system concerning embodiment of this invention. 制御装置の構成例を示す図The figure which shows the structural example of a control apparatus 計算機システムの構成例を示す図A diagram showing a configuration example of a computer system 専用の処理回路を用いて実現される場合の制御装置のハードウェア構成例を示す図The figure which shows the hardware structural example of the control apparatus when implement | achieving using a dedicated processing circuit 空調制御処理手順の一例を示すフローチャートFlow chart showing an example of air conditioning control processing procedure 空調運転ログデータベースの構成例を示す図The figure which shows the structural example of the air-conditioning operation log database 空調負荷算出係数データベースの構成例を示す図The figure which shows the structural example of an air-conditioning load calculation coefficient database 空調負荷伝達係数データベースの構成例を示す図The figure which shows the structural example of an air-conditioning load transmission coefficient database 空調負荷の伝達の様子を示す図Diagram showing how air conditioning load is transmitted
 以下に、本発明の実施の形態にかかる制御装置、空気調和システムおよび空気調和機の制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a control device, an air conditioning system, and a control method for an air conditioner according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる空気調和システムの構成例を示す図である。本実施の形態の空気調和システムは、空気調和機3と空気調和機3を制御する制御装置1とを備える。空気調和機3は、室外機11と、室内機12-1,12-2と、リモートコントローラ(以下、リモコンという)13-1,13-2とを備える。制御装置1は、室外機11、室内機12-1、室内機12-2と空調通信ネットワーク2により接続されている。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of an air conditioning system according to an embodiment of the present invention. The air conditioning system of the present embodiment includes an air conditioner 3 and a control device 1 that controls the air conditioner 3. The air conditioner 3 includes an outdoor unit 11, indoor units 12-1 and 12-2, and remote controllers (hereinafter referred to as remote controllers) 13-1 and 13-2. The control device 1 is connected to the outdoor unit 11, the indoor unit 12-1, and the indoor unit 12-2 through the air conditioning communication network 2.
 制御装置1は、空調通信ネットワーク2を介して、空気調和機3を構成する室外機11および室内機12-1,12-2に対して制御命令を送信し、室外機11および室内機12-1,12-2から運転情報、消費電力量などの収集を行う。本実施の形態では、消費電力量は各室内機12-1,12-2、室外機11で計測しているとする。なお、消費電力量の計測装置を空気調和機3とは別に設けて、該計測装置が、計測した空気調和機3の消費電力量を空調通信ネットワーク2または別の通信媒体などにより、制御装置1に送信する構成としてもよい。また、各室内機12-1,12-2、室外機11、および計測装置による消費電力量の計測を実施していなくてもよい。 The control device 1 transmits control commands to the outdoor unit 11 and the indoor units 12-1 and 12-2 constituting the air conditioner 3 via the air conditioning communication network 2, and the outdoor unit 11 and the indoor unit 12- From 1 and 12-2, collect operation information, power consumption, etc. In the present embodiment, it is assumed that the power consumption is measured by each of the indoor units 12-1 and 12-2 and the outdoor unit 11. Note that a power consumption measuring device is provided separately from the air conditioner 3, and the control device 1 uses the air conditioning communication network 2 or another communication medium to calculate the measured power consumption of the air conditioner 3. It is good also as a structure which transmits to. In addition, the power consumption may not be measured by the indoor units 12-1 and 12-2, the outdoor unit 11, and the measuring device.
 各リモコン13-1,13-2は、空気調和機3を利用するユーザからの空気調和機3に対する設定などの命令の入力を受け付け、受け付けた入力内容を、対応する室内機12-1,12-2に無線または有線通信により送信する。すなわち、ユーザはリモコン13-1,13-2により空気調和機3を操作可能である。なお、図1では、リモコン13-1,13-2と室内機12-1,12-2とが1対1に対応する図を示しているが、1台のリモコンにより複数の室内機を操作可能としてもよいし、1台の室内機を複数のリモコンにより操作可能としてもよい。 Each of the remote controllers 13-1 and 13-2 accepts an input of a command such as a setting for the air conditioner 3 from a user who uses the air conditioner 3, and the received input content is changed to the corresponding indoor unit 12-1, 12 -2 is transmitted by wireless or wired communication. That is, the user can operate the air conditioner 3 with the remote controllers 13-1 and 13-2. Note that FIG. 1 shows a one-to-one correspondence between the remote controllers 13-1 and 13-2 and the indoor units 12-1 and 12-2, but a plurality of indoor units can be operated by one remote controller. It may be possible, or one indoor unit may be operable by a plurality of remote controllers.
 また、図1では、室内機を1台、室内機を2台図示しているが、空気調和機3を構成する室外機および室内機の数はそれぞれ図1の例に限定されず、それぞれ1台以上であればよい。また、補機として送風ファン、温度センサなどの各種センサが空調通信ネットワーク2を介して制御装置1に接続していてもよい。 In FIG. 1, one indoor unit and two indoor units are shown. However, the number of outdoor units and indoor units constituting the air conditioner 3 is not limited to the example of FIG. It is sufficient if it is more than a table. Further, various sensors such as a blower fan and a temperature sensor may be connected to the control device 1 via the air conditioning communication network 2 as auxiliary equipment.
 図2は、制御装置1の構成例を示す図である。図2に示すように、制御装置1は、空調ネットワーク通信部21、運転データ観測部22、環境データ観測部23、データ収集運転実行部24、不要データ破棄部25、空調負荷算出式構築部26、空調負荷伝達式構築部27、消費電力量予測部28、空調運転決定部29および消費電力情報表示部30を備える。また、制御装置1は、空調運転ログデータベース、空調負荷算出係数データベース、空調負荷伝達係数データベースを備える。 FIG. 2 is a diagram illustrating a configuration example of the control device 1. As shown in FIG. 2, the control device 1 includes an air conditioning network communication unit 21, an operation data observation unit 22, an environmental data observation unit 23, a data collection operation execution unit 24, an unnecessary data discard unit 25, and an air conditioning load calculation formula construction unit 26. , An air conditioning load transmission type construction unit 27, a power consumption amount prediction unit 28, an air conditioning operation determination unit 29, and a power consumption information display unit 30 are provided. The control device 1 also includes an air conditioning operation log database, an air conditioning load calculation coefficient database, and an air conditioning load transmission coefficient database.
 空調ネットワーク通信部21は、空調通信ネットワーク2を介して空気調和機3とデータの送受信を行う通信部である。空調ネットワーク通信部21は、他部からの空気調和機3に対する命令を受けとり、該命令に基づいて、空調通信ネットワーク2で用いる予め定められた形式のパケットである空調通信パケットを生成して空調通信ネットワーク2に送信する。また、空調ネットワーク通信部21は、空気調和機3から空調通信ネットワーク2を介して送信された運転データなどが格納された空調通信パケットを受信し、該空調通信パケットに格納されたデータを、制御装置1内の対応する各部へ出力する。なお、一定期間ごとに自動で空気調和機3を構成する室外機11および室内機12-1,12-2がデータを送信するようにしてもよいし、制御装置1が一定期間ごとに運転データの収集を指示する命令を送信し、空気調和機3が、該指示を受信するごとに運転データを送信してもよい。 The air conditioning network communication unit 21 is a communication unit that transmits and receives data to and from the air conditioner 3 via the air conditioning communication network 2. The air-conditioning network communication unit 21 receives an instruction for the air conditioner 3 from another part, and generates an air-conditioning communication packet that is a packet of a predetermined format used in the air-conditioning communication network 2 based on the instruction. Send to network 2. In addition, the air conditioning network communication unit 21 receives an air conditioning communication packet storing operation data transmitted from the air conditioner 3 via the air conditioning communication network 2, and controls the data stored in the air conditioning communication packet. It outputs to each corresponding part in the apparatus 1. The outdoor unit 11 and the indoor units 12-1 and 12-2 that constitute the air conditioner 3 may automatically transmit data at regular intervals, or the control device 1 may operate data at regular intervals. May be transmitted, and the air conditioner 3 may transmit the operation data every time the instruction is received.
 本実施の形態における運転データは、運転状態を示す運転情報を含む。また、室内機12-1,12-2から送信される運転データには、室内機12-1,12-2に設定された情報である設定情報が含まれる。また、室内機12-1,12-2が送信する運転データに含まれる運転情報を第1の運転情報ともいい、室外機11から送信される運転データに含まれる運転情報を第2の運転情報ともいう。 The operation data in the present embodiment includes operation information indicating an operation state. The operation data transmitted from the indoor units 12-1 and 12-2 includes setting information that is information set in the indoor units 12-1 and 12-2. The operation information included in the operation data transmitted by the indoor units 12-1 and 12-2 is also referred to as first operation information, and the operation information included in the operation data transmitted from the outdoor unit 11 is the second operation information. Also called.
 運転データ観測部22は、あらかじめ定めた運転データ、例えば、運転ON/OFF、室内機のサーモスタット(以下、サーモと略す)ON/OFF、圧縮機の回転周波数、吐出冷媒温度などを一定期間ごとに空調ネットワーク通信部21から取得し、取得したデータを、時刻情報とともに空調運転ログデータベースに格納する。なお、運転ON/OFFとは、各装置が運転状態すなわちオン(ON)であるか停止状態すなわちオフ(OFF)であるかを示す情報である。室内機サーモON/OFFは、室内機のサーモスタットの接点がONであるかOFFであるかを示す情報である。時刻情報は、該データの送信元が付与した該データの取得時刻でもよいし、運転データ観測部22が該データを取得した時刻でもよい。 The operation data observation unit 22 determines predetermined operation data such as operation ON / OFF, indoor unit thermostat (hereinafter abbreviated as “thermo”) ON / OFF, compressor rotation frequency, discharge refrigerant temperature, and the like at regular intervals. Acquired from the air conditioning network communication unit 21 and stores the acquired data together with time information in the air conditioning operation log database. The operation ON / OFF is information indicating whether each device is in an operation state, that is, on (ON) or in a stop state, that is, off (OFF). The indoor unit thermo ON / OFF is information indicating whether the contact of the thermostat of the indoor unit is ON or OFF. The time information may be an acquisition time of the data provided by the data transmission source, or may be a time when the operation data observation unit 22 acquires the data.
 環境データ観測部23は、空気調和機3の室内機12-1,12-2が設置される建物の外部の環境データを一定期間ごとに収集し、収集した環境データを、時刻情報とともに空調運転ログデータベースに格納する環境データ取得部である。環境データは、外気温、湿度、日射量、天候を示す情報などである。環境データ観測部23は、これらの環境データを計測する計測手段を備えてもよいし、外部の計測手段からこれらの環境データを取得してもよい。また、天候を示す情報については、例えば、これらの情報を提供する装置から通信ネットワーク経由などで取得する。 The environmental data observation unit 23 collects environmental data outside the building where the indoor units 12-1 and 12-2 of the air conditioner 3 are installed at regular intervals, and the collected environmental data is air-conditioned with time information. It is an environment data acquisition unit stored in the log database. The environmental data includes outside air temperature, humidity, amount of solar radiation, and information indicating the weather. The environmental data observation unit 23 may include a measurement unit that measures the environmental data, or may acquire the environmental data from an external measurement unit. Further, the information indicating the weather is acquired from, for example, a device that provides the information via a communication network.
 空調運転ログデータベースは、運転データ観測部22および環境データ観測部23が収集したデータが格納されるデータベースである。運転データ観測部22および環境データ観測部23が収集した各種データは、時刻情報とともに継続的に蓄積される。 The air conditioning operation log database is a database in which data collected by the operation data observation unit 22 and the environmental data observation unit 23 is stored. Various data collected by the operation data observation unit 22 and the environmental data observation unit 23 are continuously accumulated together with time information.
 空調負荷算出式構築部26は、空調運転ログデータベースに記憶されたデータをもとに、室内機ごとの空調負荷を予測する算出式を構築する。具体的には、ここでは、空調負荷を決定する要因、すなわち因子の一次の項の和で近似することとし、因子ごとに係数を乗算した値の和が空調負荷となるような係数を室内機ごとに算出する。以下の説明では、空調負荷を各因子の一次の項の和で近似したが、二次以降の多項式の各項またはその他の形式の項の組み合わせで近似してもよく、いずれの場合も空調負荷算出式構築部26は、仮定した計算式の係数を空調運転ログデータベースに記憶されたデータをもとに算出する。 The air conditioning load calculation formula construction unit 26 constructs a calculation formula for predicting the air conditioning load for each indoor unit based on the data stored in the air conditioning operation log database. Specifically, here, the factor that determines the air conditioning load, that is, the sum of the first-order terms of the factor, is approximated, and the coefficient that gives the air conditioning load is the sum of the values multiplied by the factor for each factor. Calculate for each. In the following description, the air conditioning load is approximated by the sum of the first-order terms of each factor, but it may be approximated by a combination of terms of the second and subsequent polynomials or other types of terms. The calculation formula construction unit 26 calculates the coefficients of the assumed calculation formula based on the data stored in the air conditioning operation log database.
 空調負荷算出係数データベースは、空調負荷算出式構築部26が算出した空調負荷の算出係数を記憶するデータベースである。 The air conditioning load calculation coefficient database is a database that stores the air conditioning load calculation coefficient calculated by the air conditioning load calculation formula construction unit 26.
 空調負荷伝達式構築部27は、空調運転ログデータベースに記憶されたデータをもとに、他の空調機の運転のON/OFFの状態の変化による空調負荷の変動を予測する算出式を構築する。具体的には、空調負荷伝達式構築部27は、ある室内機の運転がOFFとなると、運転がONである他の室内機の空調負荷が増加するため、運転がOFFである室内機の空調負荷の他室内機への分担割合を伝達係数として算出する。 The air conditioning load transmission formula construction unit 27 constructs a calculation formula for predicting fluctuations in the air conditioning load due to changes in the ON / OFF state of the operation of other air conditioners based on the data stored in the air conditioning operation log database. . Specifically, the air conditioning load transmission type construction unit 27 increases the air conditioning load of the other indoor units that are ON when the operation of a certain indoor unit is OFF. The share of the load to the indoor unit is calculated as a transmission coefficient.
 空調負荷伝達係数データベースは、空調負荷伝達式構築部27が算出した、室内機が運転OFFとなった場合の空調負荷の他室内機への分担割合である伝達係数を記憶するためのデータベースである。 The air-conditioning load transfer coefficient database is a database for storing a transfer coefficient that is calculated by the air-conditioning load transfer formula construction unit 27 and is a share of the air-conditioning load to other indoor units when the indoor unit is turned off. .
 消費電力量予測部28は、空調運転決定部29により指示された空気調和機3の制御パターンと、空調負荷算出係数データベースに格納されている情報と空調負荷伝達係数データベースに格納されている情報とに基づいて、消費電力量を予測し、予測した消費電力量を空調運転決定部29へ出力する。 The power consumption amount predicting unit 28 includes a control pattern of the air conditioner 3 instructed by the air conditioning operation determining unit 29, information stored in the air conditioning load calculation coefficient database, and information stored in the air conditioning load transmission coefficient database. Based on this, the power consumption is predicted, and the predicted power consumption is output to the air conditioning operation determination unit 29.
 空調運転決定部29は、空気調和機3に対する複数の制御パターンを作成し、複数の制御パターンをそれぞれ消費電力量予測部28へ入力して対応する消費電力量を取得する。そして、空調運転決定部29は、消費電力量に基づいて制御パターンを選択し、選択した制御パターンに対応する命令を空調ネットワーク通信部21へ入力する。例えば、空調運転決定部29は、複数の制御パターンのうち消費電力量の最も低い制御パターンを選択する。ここでは、消費電力量の最も低い制御パターンを選択するようにしたが、さらに消費電力量以外の評価指標を考慮して、消費電力量と該評価指標とに基づいて制御パターンを選択してもよい。また、空調運転決定部29は、複数の制御パターンと各制御パターンに対応する消費電力量とを消費電力情報表示部30へ出力する。 The air-conditioning operation determination unit 29 creates a plurality of control patterns for the air conditioner 3, and inputs the plurality of control patterns to the power consumption amount prediction unit 28 to acquire the corresponding power consumption amount. Then, the air conditioning operation determination unit 29 selects a control pattern based on the power consumption, and inputs a command corresponding to the selected control pattern to the air conditioning network communication unit 21. For example, the air conditioning operation determination unit 29 selects a control pattern with the lowest power consumption among a plurality of control patterns. Although the control pattern with the lowest power consumption is selected here, the control pattern can be selected based on the power consumption and the evaluation index in consideration of the evaluation index other than the power consumption. Good. In addition, the air conditioning operation determination unit 29 outputs a plurality of control patterns and the power consumption amount corresponding to each control pattern to the power consumption information display unit 30.
 消費電力情報表示部30は、空調運転決定部29から出力された制御パターンごとの消費電力量をユーザに提示することが可能な表示手段である。 The power consumption information display unit 30 is a display unit capable of presenting to the user the power consumption amount for each control pattern output from the air conditioning operation determination unit 29.
 データ収集運転実行部24は、空調負荷算出式構築部26と空調負荷伝達式構築部27がそれぞれの機能を実行するにあたり必要なデータを収集するためのあらかじめ定められた空調制御であるデータ収集運転を実行するか否かを判断し、データ収集運転を実行すると判断した場合、データ収集運転を実行する。データ収集運転については、後述する。 The data collection operation execution unit 24 is a data collection operation which is a predetermined air conditioning control for collecting data necessary for the air conditioning load calculation formula construction unit 26 and the air conditioning load transmission formula construction unit 27 to execute the respective functions. If it is determined whether or not to execute the data collection operation, the data collection operation is executed. The data collection operation will be described later.
 不要データ破棄部25は、空調運転ログデータベースに記憶されたデータのうち、空調負荷算出式構築部26と空調負荷伝達式構築部27がそれぞれの機能を実行するにあたり、不要なデータを削除する。 The unnecessary data discarding unit 25 deletes unnecessary data from the data stored in the air conditioning operation log database when the air conditioning load calculation formula construction unit 26 and the air conditioning load transmission formula construction unit 27 execute the respective functions.
 また、運転データ観測部22は、室内機12-1,12-2から受信した運転情報および室外機11から受信した運転情報に基づいて室内機ごとの空調負荷である空調負荷を算出する第1の演算部である。空調負荷算出式構築部26は、過去の空調負荷、過去の環境データおよび過去の設定情報に基づいて、環境データおよび設定情報のうちの少なくとも1つである空調負荷因子を決定し、過去の空調負荷因子に基づいて、前記空気調和機の消費電力量の予測に用いられる情報である算出情報を求める第2の演算部である。空調負荷因子については後述する。また、消費電力量予測部28は、算出係数および現在の空調負荷因子に基づいて室内機ごとに空気調和機3の消費電力量を予測する第3の演算部である。 The operation data observation unit 22 calculates the air conditioning load that is the air conditioning load for each indoor unit based on the operation information received from the indoor units 12-1 and 12-2 and the operation information received from the outdoor unit 11. It is an operation part. The air conditioning load calculation formula construction unit 26 determines an air conditioning load factor that is at least one of the environmental data and the setting information based on the past air conditioning load, the past environment data, and the past setting information. It is a 2nd calculating part which calculates | requires the calculation information which is the information used for prediction of the power consumption of the said air conditioner based on a load factor. The air conditioning load factor will be described later. The power consumption amount prediction unit 28 is a third calculation unit that predicts the power consumption amount of the air conditioner 3 for each indoor unit based on the calculation coefficient and the current air conditioning load factor.
 制御装置1は、具体的には、計算機システム、すなわちコンピュータなどの装置として実装される。この計算機システム上で制御装置1としての機能を実現するためのプログラムである空調制御プログラムが実行されることにより、計算機システムが制御装置1として機能する。図3は、本実施の形態の計算機システムの構成例を示す図である。図3に示すように、この計算機システムは、プロセッサ101と受信部である入力部102とメモリ(記憶部)103と表示部104と通信部105とセンサ106とを備え、これらはシステムバス107を介して接続されている。 Specifically, the control device 1 is implemented as a computer system, that is, a device such as a computer. The computer system functions as the control device 1 by executing an air conditioning control program that is a program for realizing the function as the control device 1 on the computer system. FIG. 3 is a diagram illustrating a configuration example of a computer system according to this embodiment. As shown in FIG. 3, the computer system includes a processor 101, an input unit 102 that is a receiving unit, a memory (storage unit) 103, a display unit 104, a communication unit 105, and a sensor 106, which are connected to a system bus 107. Connected through.
 図3において、プロセッサ101は、例えば、CPU(Central Processing Unit)等であり、本実施の形態の空調制御プログラムを実行する。入力部102は、たとえばキーボード、マウス、タッチスクリーンなどで構成され、計算機システムのユーザが、各種情報の入力を行うために使用する。記憶部103は、RAM(Random Access Memory),ROM(Read Only Memory)などの各種メモリおよびハードディスクなどのストレージデバイスを含み、上記プロセッサ101が実行すべきプログラム,処理の過程で得られた必要なデータ,などを記憶する。また、記憶部103は、プログラムの一時的な記憶領域としても使用される。表示部104は、LCD(液晶表示パネル)などで構成され、計算機システムのユーザに対して各種画面を表示する。通信部105は、通信処理を実施する。なお、図3は、一例であり、計算機システムの構成は図3の例に限定されない。 In FIG. 3, a processor 101 is, for example, a CPU (Central Processing Unit) and the like, and executes the air conditioning control program of the present embodiment. The input unit 102 includes, for example, a keyboard, a mouse, a touch screen, and the like, and is used by a computer system user to input various information. The storage unit 103 includes various memories such as RAM (Random Access Memory) and ROM (Read Only Memory) and storage devices such as a hard disk. The storage unit 103 is a program to be executed by the processor 101 and necessary data obtained in the process. , Etc. are memorized. The storage unit 103 is also used as a temporary storage area for programs. The display unit 104 is configured by an LCD (liquid crystal display panel) or the like, and displays various screens for a computer system user. The communication unit 105 performs communication processing. FIG. 3 is an example, and the configuration of the computer system is not limited to the example of FIG.
 ここで、本実施の形態の空調制御プログラムが実行可能な状態になるまでの計算機システムの動作例について説明する。上述した構成をとる計算機システムには、たとえば、図示しないCD(Compact Disc)-ROMドライブまたはDVD(Digital Versatile Disc)-ROMドライブにセットされたCD-ROMまたはDVD-ROMから、空調制御プログラムが記憶部103にインストールされる。そして、空調制御プログラムの実行時に、記憶部103から読み出された空調制御プログラムが記憶部103の所定の場所に格納される。この状態で、プロセッサ101は、記憶部103に格納されたプログラムに従って、本実施の形態の空調制御処理を実行する。 Here, an operation example of the computer system until the air conditioning control program according to the present embodiment becomes executable will be described. In the computer system having the above-described configuration, for example, an air conditioning control program is stored from a CD-ROM or DVD-ROM (not shown) set in a CD (Compact Disc) -ROM drive or DVD (Digital Versatile Disc) -ROM drive. Installed in the unit 103. When the air conditioning control program is executed, the air conditioning control program read from the storage unit 103 is stored in a predetermined location in the storage unit 103. In this state, the processor 101 executes the air conditioning control process of the present embodiment according to the program stored in the storage unit 103.
 なお、本実施の形態においては、CD-ROMまたはDVD-ROMを記録媒体として、空調制御処理を記述したプログラムを提供しているが、これに限らず、計算機システムの構成、提供するプログラムの容量などに応じて、たとえば、通信部105を経由してインターネットなどの伝送媒体により提供されたプログラムを用いることとしてもよい。 In the present embodiment, a program describing air conditioning control processing is provided using a CD-ROM or DVD-ROM as a recording medium. However, the present invention is not limited to this, and the configuration of the computer system and the capacity of the provided program are provided. For example, a program provided by a transmission medium such as the Internet via the communication unit 105 may be used.
 図2の空調ネットワーク通信部21、運転データ観測部22、データ収集運転実行部24、不要データ破棄部25、空調負荷算出式構築部26、空調負荷伝達式構築部27、消費電力量予測部28、空調運転決定部29は、図3のプロセッサ101に含まれる。消費電力情報表示部30は、表示部104であり、図2の空調運転ログデータベース、空調負荷算出係数データベース、空調負荷伝達係数データベースは、図2の記憶部103の一部に記憶される。図2の空調ネットワーク通信部21は、図3の通信部105の一部または全部である。図2の環境データ観測部23は、外気温、湿度、日射量などを計測するセンサ106である。 The air conditioning network communication unit 21, the operation data observation unit 22, the data collection operation execution unit 24, the unnecessary data discarding unit 25, the air conditioning load calculation formula construction unit 26, the air conditioning load transmission formula construction unit 27, and the power consumption amount prediction unit 28 of FIG. The air conditioning operation determination unit 29 is included in the processor 101 of FIG. The power consumption information display unit 30 is the display unit 104, and the air conditioning operation log database, the air conditioning load calculation coefficient database, and the air conditioning load transmission coefficient database in FIG. 2 are stored in a part of the storage unit 103 in FIG. The air conditioning network communication unit 21 in FIG. 2 is part or all of the communication unit 105 in FIG. The environmental data observation unit 23 in FIG. 2 is a sensor 106 that measures outside air temperature, humidity, solar radiation amount, and the like.
 また、上記は制御装置1がプロセッサ101によりソフトウェアを用いて実現される例を示したが、制御装置1が専用の処理回路を用いた装置として実現されてもよい。図4は、専用の処理回路を用いて実現される場合の制御装置1のハードウェア構成例を示す図である。この装置は、入力部102と表示部104と通信部105とセンサ106と処理回路108とを備え、これらはシステムバス107を介して接続されている。図2の空調ネットワーク通信部21、運転データ観測部22、データ収集運転実行部24、不要データ破棄部25、空調負荷算出式構築部26、空調負荷伝達式構築部27、消費電力量予測部28、空調運転決定部29は、図4の処理回路108により実現される。処理回路108は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。図2の環境データ観測部23は、外気温、湿度、日射量などを計測するセンサ106である。 Further, the above shows an example in which the control device 1 is realized by software by the processor 101, but the control device 1 may be realized as a device using a dedicated processing circuit. FIG. 4 is a diagram illustrating a hardware configuration example of the control device 1 when implemented using a dedicated processing circuit. This apparatus includes an input unit 102, a display unit 104, a communication unit 105, a sensor 106, and a processing circuit 108, which are connected via a system bus 107. The air conditioning network communication unit 21, the operation data observation unit 22, the data collection operation execution unit 24, the unnecessary data discarding unit 25, the air conditioning load calculation formula construction unit 26, the air conditioning load transmission formula construction unit 27, and the power consumption amount prediction unit 28 of FIG. The air conditioning operation determination unit 29 is realized by the processing circuit 108 of FIG. The processing circuit 108 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. . The environmental data observation unit 23 in FIG. 2 is a sensor 106 that measures outside air temperature, humidity, solar radiation amount, and the like.
 次に、本実施の形態の制御装置1の動作について説明する。図5は、本実施の形態の制御装置1における空調制御処理手順の一例を示すフローチャートである。図5に示すように、まず、運転データ観測部22が、空気調和機3の運転データを収集する(ステップS101)。収集するデータはあらかじめ定めておくものとする。本実施の形態では空気調和機3を構成する室外機11および室内機12-1,1-2から以下のデータを収集するものとする。
 室内機:運転ON/OFF、モード、設定温度、サーモON/OFF、吸込み空気温度、膨張弁の開度
 室外機:圧縮機の回転周波数、蒸発温度、凝縮温度、吐出冷媒温度、吸込み冷媒温度、高圧圧力、低圧圧力
 なおサーモONは通常の運転状態を示し、サーモOFFは吸込み温度(≒室温)が設定温度まで十分に近づいた場合に運転休止している状態を表す。また、モードとは、冷房、暖房、除湿などのモードを示す。上記の例では、室内機のモードおよび設定温度は設定情報であり、その他のデータは運転情報である。
Next, operation | movement of the control apparatus 1 of this Embodiment is demonstrated. FIG. 5 is a flowchart showing an example of an air conditioning control processing procedure in the control device 1 of the present embodiment. As shown in FIG. 5, first, the operation data observation unit 22 collects operation data of the air conditioner 3 (step S101). The data to be collected is predetermined. In the present embodiment, it is assumed that the following data is collected from the outdoor unit 11 and the indoor units 12-1 and 1-2 constituting the air conditioner 3.
Indoor unit: operation ON / OFF, mode, set temperature, thermo ON / OFF, suction air temperature, expansion valve opening Outdoor unit: compressor rotation frequency, evaporation temperature, condensation temperature, discharge refrigerant temperature, suction refrigerant temperature, High pressure and low pressure Thermo-ON indicates a normal operation state, and Thermo-OFF indicates a state where operation is stopped when the suction temperature (≈room temperature) is sufficiently close to the set temperature. The mode indicates a mode such as cooling, heating, dehumidification, or the like. In the above example, the mode and set temperature of the indoor unit are setting information, and the other data is operation information.
 ステップS101では、室内機ごとの空調負荷を正確に算出するため、データの収集は1分おきに行い、ステップS102以降を実行するまでの間は、収集したデータを運転データ観測部22が蓄積する。なお運転ON/OFFについては、例えば、1時間の間常時ONであった場合に「ON」とし、1時間常時OFFであった場合は「OFF」とし、1時間の間ONとOFFの状態が両方存在する場合は「混在」とする。なお、蓄積する期間は1時間に限定されない。 In step S101, in order to accurately calculate the air conditioning load for each indoor unit, data is collected every minute, and the operation data observation unit 22 accumulates the collected data until step S102 and subsequent steps are executed. . For operation ON / OFF, for example, “ON” is set when it is always ON for 1 hour, “OFF” is set when it is always OFF for 1 hour, and the ON and OFF states are set for 1 hour. If both are present, it is considered “mixed”. Note that the accumulation period is not limited to one hour.
 次に、運転データ観測部22が、室内機ごとの空調負荷を算出する(ステップS102)。具体的には、運転データ観測部22が、室内機ごとに、ステップS101で蓄積した1時間分のデータの積算値を算出し、積算値に基づいて空調負荷を算出する。運転データ観測部22は、例えば、以下の手順により空調負荷を算出する。
 (1)膨張弁の開度、高圧圧力および低圧圧力から冷媒の流量を求める。
 (2)室外機の吸込み冷媒温度、低圧圧力、蒸発温度から低圧側のエンタルピーを求める。
 (3)室外機の吐出冷媒温度、高圧圧力、凝縮温度から高圧側のエンタルピーを求める。
 (4)高圧側のエンタルピーと、低圧側のエンタルピーとの差と、冷媒流量との積を空調負荷とする。なお、空調負荷の算出方法は、この例に限定されず、一般的に行われているどのような算出方法を用いてもよい。
Next, the operation data observation unit 22 calculates the air conditioning load for each indoor unit (step S102). Specifically, the operation data observation unit 22 calculates the integrated value of the data for one hour accumulated in step S101 for each indoor unit, and calculates the air conditioning load based on the integrated value. The operation data observation unit 22 calculates the air conditioning load by the following procedure, for example.
(1) The flow rate of the refrigerant is obtained from the opening degree of the expansion valve, the high pressure and the low pressure.
(2) The enthalpy on the low pressure side is determined from the suction refrigerant temperature, low pressure and evaporation temperature of the outdoor unit.
(3) The enthalpy on the high pressure side is obtained from the refrigerant discharge temperature, high pressure, and condensation temperature of the outdoor unit.
(4) The product of the difference between the enthalpy on the high pressure side and the enthalpy on the low pressure side and the refrigerant flow rate is defined as the air conditioning load. In addition, the calculation method of an air-conditioning load is not limited to this example, What kind of calculation method generally performed may be used.
 次に、運転データ観測部22が、算出した室内機ごとの空調負荷と、運転データのうちのユーザ設定情報とに時刻情報を付与して空調運転ログデータベースに格納する(ステップS103)。なお、ユーザ設定情報とは、運転データのうちリモコン13-1,13-2などによってユーザにより設定された運転データである。本実施の形態では、ユーザ設定情報とは、運転データのうち以下のデータを表す。
 室内機:運転ON/OFF、モード、設定温度
Next, the operation data observation unit 22 assigns time information to the calculated air conditioning load for each indoor unit and user setting information in the operation data, and stores it in the air conditioning operation log database (step S103). Note that the user setting information is operation data set by the user using the remote controllers 13-1 and 13-2 among the operation data. In the present embodiment, the user setting information represents the following data among the operation data.
Indoor unit: Operation ON / OFF, mode, set temperature
 以上のステップS101~ステップS103は、運転データを収集して空調負荷を算出する空調負荷算出処理(ステップS100)である。 The above steps S101 to S103 are the air conditioning load calculation process (step S100) for collecting the operation data and calculating the air conditioning load.
 次に、環境データ観測部23が、環境データを収集し、時刻情報を付与して空調運転ログデータベースに格納する(ステップS200)。本実施の形態では環境データとして、外気温、外気の湿度、日射量を収集するものとする。環境データの収集頻度は運転データと異なっても良いが、本実施の形態では運転データの収集と同様に1分ごとに収集するとする。環境データ観測部23は、ステップS200では、外気温、外気湿度については、1分ごとに収集した外気温、外気湿度のそれぞれの平均値を、日射量については、1分ごとに収集した1時間の積算量を空調運転ログデータベースに格納する。 Next, the environmental data observation unit 23 collects environmental data, adds time information, and stores it in the air conditioning operation log database (step S200). In this embodiment, it is assumed that outside air temperature, outside air humidity, and amount of solar radiation are collected as environmental data. Although the collection frequency of the environmental data may be different from the operation data, in the present embodiment, it is assumed that the collection is performed every minute as in the operation data collection. In step S200, the environmental data observation unit 23 collects the average values of the outside air temperature and the outside air humidity collected every minute for the outside air temperature and the outside air humidity, and the hourly amount collected every minute for the solar radiation amount. Is stored in the air conditioning operation log database.
 図6は、空調運転ログデータベースの構成例を示す図である。図6の例では、空調運転ログデータベースには室内機ごとに時刻、空調負荷、運転すなわち運転ON/OFF、モード、設定温度などが格納されるとともに、対応する時刻の環境データとして外気温、湿度および日射量が格納される。 FIG. 6 is a diagram showing a configuration example of an air conditioning operation log database. In the example of FIG. 6, the air conditioning operation log database stores the time, air conditioning load, operation, that is, operation ON / OFF, mode, set temperature, etc. for each indoor unit, and the ambient temperature, humidity as environmental data at the corresponding time. And the amount of solar radiation is stored.
 以下に示す、空調負荷算出式構築部26による処理であるステップS300と空調負荷伝達式構築部27による処理であるステップS400は、通常の空調制御処理が行われない時間帯に定期的に実行する。例えば空気調和機3がオフィスビルに設置されている場合は、毎週日曜日の午前0時から、などに実施するとする。ステップS300は、以下に示すステップS301~ステップS303で構成される。 Step S300, which is a process performed by the air conditioning load calculation formula construction unit 26, and step S400, which is a process performed by the air conditioning load transmission formula construction unit 27, are periodically executed during a time period during which normal air conditioning control processing is not performed. . For example, when the air conditioner 3 is installed in an office building, it is assumed that the operation is performed every Sunday from midnight. Step S300 includes the following steps S301 to S303.
 ステップS301では、空調負荷算出式構築部26は、室内機ごとにユーザ設定、環境データのうち空調負荷と強い相関のあるデータ種別すなわち因子データを選定する。以下、空調負荷と強い相関のあるデータ種別を、空調負荷因子ともいう。具体的には、空調負荷算出式構築部26は、室内機ごとに、空調運転ログデータベースに蓄積したデータから、1台の室内機の運転データを構成する各データおよび環境データを構成する各データのうち1つを選択し、空調負荷との相関係数を算出する。空調負荷算出式構築部26は、運転データを構成する全データおよび環境データを構成する全データについてそれぞれ空調負荷との相関係数を算出する。空調負荷算出式構築部26は、算出した相関係数が閾値を上回る場合は、そのデータを空調負荷因子として選定する。本実施の形態では、この閾値を、0.2とする。 In step S301, the air conditioning load calculation formula construction unit 26 selects a data type that is strongly correlated with the air conditioning load among user settings and environmental data, that is, factor data, for each indoor unit. Hereinafter, a data type having a strong correlation with the air conditioning load is also referred to as an air conditioning load factor. Specifically, the air conditioning load calculation formula construction unit 26 sets each data constituting the operation data of one indoor unit and each data constituting the environmental data from the data accumulated in the air conditioning operation log database for each indoor unit. One of them is selected, and a correlation coefficient with the air conditioning load is calculated. The air conditioning load calculation formula construction unit 26 calculates a correlation coefficient with the air conditioning load for all data constituting the operation data and all data constituting the environmental data. When the calculated correlation coefficient exceeds the threshold, the air conditioning load calculation formula construction unit 26 selects the data as the air conditioning load factor. In the present embodiment, this threshold value is set to 0.2.
 次に、空調負荷算出式構築部26が、室内機ごとに空調負荷因子から空調負荷を算出する算出式を求める(ステップS302)。具体的には、x番目の室内機の空調負荷の算出式Qxとして以下の式(1)の形式を仮定し、空調負荷算出式構築部26は、空調負荷因子ごとに重み付係数である空調負荷算出係数を算出する。なお、kは、選定された空調負荷因子の個数であり、wiは、i番目の空調負荷因子に対応する重み付け係数、aiは、i番目の空調負荷因子のデータ値であり、Cは定数である。空調負荷算出式構築部26が、室内機ごとに、空調負荷算出係数を算出する。具体的には、空調負荷算出式構築部26は、例えば、最小二乗法等により、空調負荷算出係数を算出する。
 Qx=w1×a1+w2×a2+…+wk×ak+C   …(1)
Next, the air conditioning load calculation formula construction unit 26 obtains a calculation formula for calculating the air conditioning load from the air conditioning load factor for each indoor unit (step S302). Specifically, the following formula (1) is assumed as the calculation formula Q x of the air conditioning load of the x-th indoor unit, and the air conditioning load calculation formula construction unit 26 is a weighting coefficient for each air conditioning load factor. An air conditioning load calculation coefficient is calculated. Here, k is the number of selected air conditioning load factors, w i is a weighting coefficient corresponding to the i th air conditioning load factor, a i is a data value of the i th air conditioning load factor, and C is It is a constant. The air conditioning load calculation formula construction unit 26 calculates an air conditioning load calculation coefficient for each indoor unit. Specifically, the air conditioning load calculation formula construction unit 26 calculates the air conditioning load calculation coefficient by, for example, the least square method.
Q x = w 1 × a 1 + w 2 × a 2 +… + w k × a k + C (1)
 なお、空調負荷算出式構築部26は、空調負荷因子の選定および算出式の構築には、全ての室内機の運転状態が「ON」であり、全ての室内機の設定温度が等しい時刻のデータのみ利用する。一部の室内機がOFFであった場合、他の室内機の空調負荷が増加するため環境データおよびユーザ設定データとの相関が正しく得られないためである。 The air-conditioning load calculation formula construction unit 26 selects data of air-conditioning load factors and constructs a calculation formula for data at the time when the operating state of all indoor units is “ON” and the set temperatures of all indoor units are equal. Use only. This is because when some of the indoor units are OFF, the air conditioning load of other indoor units increases, so that the correlation with the environmental data and the user setting data cannot be obtained correctly.
 次に、空調負荷算出式構築部26が、空調負荷算出係数を空調負荷算出係数データベースに格納する(ステップS303)。空調負荷算出係数は室内機ごとに算出されるため、空調負荷算出係数は室内機ごと格納される。図7は、空調負荷算出係数データベースの構成例を示す図である。図7の例では、空調負荷因子として、設定温度、外気温度、湿度、日射量が空調負荷因子として選定されたものとし、室内機ごとに、設定温度、外気温度、湿度、日射量に対応する空調負荷算出係数が格納される。なお、空調負荷因子として算出されるデータは、室内機ごとに異なっていてもよい。 Next, the air conditioning load calculation formula construction unit 26 stores the air conditioning load calculation coefficient in the air conditioning load calculation coefficient database (step S303). Since the air conditioning load calculation coefficient is calculated for each indoor unit, the air conditioning load calculation coefficient is stored for each indoor unit. FIG. 7 is a diagram illustrating a configuration example of an air conditioning load calculation coefficient database. In the example of FIG. 7, it is assumed that the set temperature, the outside air temperature, the humidity, and the solar radiation amount are selected as the air conditioning load factor as the air conditioning load factor, and each indoor unit corresponds to the set temperature, the outside air temperature, the humidity, and the solar radiation amount. The air conditioning load calculation coefficient is stored. In addition, the data calculated as an air-conditioning load factor may differ for every indoor unit.
 次に、空調負荷伝達式構築部27が、空調負荷伝達係数を算出し、空調負荷伝達係数データベースに格納する(ステップS400)。具体的には、次のように空調負荷伝達係数を算出する。空調負荷伝達式構築部27は、空調負荷伝達係数の算出において、空調運転ログデータベースに格納されたデータのうち下記条件を満たす時刻のデータを利用する。
 ・1台の室内機の運転状態が「OFF」であり、その他の室内機が「ON」である
 ・運転状態が「ON」の室内機の設定温度が全て等しい
Next, the air conditioning load transmission formula construction unit 27 calculates the air conditioning load transmission coefficient and stores it in the air conditioning load transmission coefficient database (step S400). Specifically, the air conditioning load transmission coefficient is calculated as follows. The air conditioning load transmission type construction unit 27 uses data at a time satisfying the following conditions among the data stored in the air conditioning operation log database in the calculation of the air conditioning load transmission coefficient.
・ The operation status of one indoor unit is “OFF” and the other indoor units are “ON”. ・ The set temperatures of all indoor units whose operation status is “ON” are all equal.
 空調負荷伝達式構築部27は、空調運転ログデータベースに格納されたデータのうち、以上の条件を満たす時刻のデータに基づいて、運転状態が「ON」の室内機について、運転データに基づいて空調負荷を算出する。運転状態が「OFF」である室内機をn番目の室内機とするとき、n番目の空調機が「OFF」であるときのm番目の室内機の空調負荷の計算値をQmnとする。次に、空調負荷伝達式構築部27は、空調運転ログデータベースに格納されたデータのうち、以上の条件を満たす時刻のデータと、空調負荷算出係数データベースに格納された空調負荷算出係数とを用いて、式(1)に従って、運転状態が「ON」の室内機の空調負荷を求める。式(1)に基づいて求めた空調負荷は、全ての室内機が「ON」であったと仮定した場合の各室内機の空調負荷の予測値である。このように、全ての室内機が「ON」であったと仮定した場合のm番目の室内機の空調負荷の予測値をQmとする。 The air conditioning load transmission type construction unit 27 performs air conditioning on the indoor unit whose operation state is “ON” based on the operation data based on the data at the time satisfying the above conditions among the data stored in the air conditioning operation log database. Calculate the load. When the indoor unit whose operation state is “OFF” is the nth indoor unit, the calculated value of the air conditioning load of the mth indoor unit when the nth air conditioner is “OFF” is Q mn . Next, the air-conditioning load transmission formula construction unit 27 uses the data at the time satisfying the above conditions among the data stored in the air-conditioning operation log database and the air-conditioning load calculation coefficient stored in the air-conditioning load calculation coefficient database. Then, according to the formula (1), the air conditioning load of the indoor unit whose operation state is “ON” is obtained. The air conditioning load obtained based on Expression (1) is a predicted value of the air conditioning load of each indoor unit when it is assumed that all the indoor units are “ON”. Thus, the predicted value of the air conditioning load of the m-th indoor unit when it is assumed that all the indoor units are “ON” is Q m .
 空調負荷伝達式構築部27は、この予測値Qと、n番目の室内機が「OFF」であるときのm番目の室内機の空調負荷の計算値Qmnとの差分ΔQmnを求める。この差分は、1台の室内機の運転状態が「OFF」になることにより変化した空調負荷を表す。空調負荷伝達式構築部27は、ΔQmnと全ての室内機が「ON」であったと仮定した場合のn番目の室内機の空調負荷の予測値Qnとを用いて、n番目の室内機のm番目の室内機に対する空調伝達係数Tmnを、以下の式(2)により算出する。空調負荷伝達式構築部27は、運転状態が「ON」の全ての室内機について、Tmnを算出する。
 Tmn=ΔQmn/Qn     …(2)
The air conditioning load transmission type construction unit 27 obtains a difference ΔQ mn between the predicted value Q m and the calculated value Q mn of the air conditioning load of the m-th indoor unit when the n-th indoor unit is “OFF”. This difference represents the air conditioning load that has changed due to the operation state of one indoor unit being “OFF”. The air conditioning load transmission type construction unit 27 uses the Δth mn and the predicted value Q n of the air conditioning load of the n th indoor unit when it is assumed that all the indoor units are “ON”. The air conditioning transmission coefficient T mn for the m-th indoor unit is calculated by the following equation (2). The air conditioning load transmission type construction unit 27 calculates T mn for all indoor units whose operation state is “ON”.
T mn = ΔQ mn / Q n (2)
 n番目の室内機が「OFF」となった場合に、運転状態が「ON」の室内機の空調伝達係数Tmnの総和が1となる場合は、室内の温度は全室内機が「ON」の時と同様に保たれており、1に満たない場合は1台が「OFF」になることにより「ON」である室内機によって処理しきれない残余の空調負荷すなわち室内の熱が存在し、一部領域の室温が上がるなどの影響があると考えられる。 If the sum of the air conditioning transmission coefficients T mn of the indoor units whose operation state is “ON” is 1 when the n-th indoor unit is “OFF”, the indoor temperature is “ON” for all indoor units. The remaining air conditioning load, that is, the heat in the room that cannot be processed by the indoor unit that is “ON” exists when one unit is “OFF” when it is less than 1, It is thought that there is an influence such as an increase in room temperature in some areas.
 図8は、空調負荷伝達係数データベースの構成例を示す図である。図8に示すように、算出した空調負荷伝達係数を、空調負荷伝達係数データベースに格納する。図8の例では、「OFF」となる室内機を示す番号nを縦方向にとり、「OFF」となる室内機によって影響をうける室内機を示す番号mを横方向にとって、上記のTmnをそれぞれ格納している。 FIG. 8 is a diagram illustrating a configuration example of an air conditioning load transmission coefficient database. As shown in FIG. 8, the calculated air conditioning load transmission coefficient is stored in the air conditioning load transmission coefficient database. In the example of FIG. 8, taking the number n indicating the indoor unit becomes "OFF" in the vertical direction, for "OFF" to become the indoor unit affected laterally number m indicating the indoor unit, the above-mentioned T mn, respectively Storing.
 図9は、空調負荷の伝達の様子を示す図である。図9では、室内機12-1~12-6までの6台の室内機が、1つの部屋に設置されているとしている。この部屋の内部を、室内機12-1~12-6の各室内機に対応するエリア20-1~20-6に分割したとする。図9の左側は、室内機12-1~12-6が全てONの例を示し、右側は、左側と同じ外気温の状態において、室内機12-1および室内機12-3をOFFとし、他の室内機をONとしている。室内機12-1,室内機12-3の空調負荷は、左側の状態では、それぞれ0.7kWh,1.0kWhであったとする。この場合、右側の図では、室内機12-3がOFFであることにより、室内機12-4に対応するエリア20-4に0.4kWh分の熱量すなわち空調負荷が流入し、室内機12-2に対応するエリア20-2に0.3kWh分の熱量すなわち空調負荷が流入する。エリア20-4に伝達された熱量とエリア20-2に伝達された熱量との合計は、左側の状態で室内機12-3に対応する空調負荷0.7kWhと一致している。このため、エリア20-3に残留する熱量は無い。 FIG. 9 is a diagram showing how air conditioning loads are transmitted. In FIG. 9, it is assumed that six indoor units from indoor units 12-1 to 12-6 are installed in one room. Assume that the interior of this room is divided into areas 20-1 to 20-6 corresponding to the indoor units 12-1 to 12-6. The left side of FIG. 9 shows an example in which all of the indoor units 12-1 to 12-6 are turned on, and the right side turns off the indoor unit 12-1 and the indoor unit 12-3 at the same outside air temperature as the left side. Other indoor units are turned on. It is assumed that the air conditioning loads of the indoor units 12-1 and 12-3 are 0.7 kWh and 1.0 kWh, respectively, in the left side state. In this case, in the figure on the right side, when the indoor unit 12-3 is OFF, a heat amount of 0.4 kWh, that is, an air conditioning load flows into the area 20-4 corresponding to the indoor unit 12-4, and the indoor unit 12- An amount of heat of 0.3 kWh, that is, an air conditioning load flows into an area 20-2 corresponding to 2. The sum of the amount of heat transferred to area 20-4 and the amount of heat transferred to area 20-2 matches the air conditioning load of 0.7 kWh corresponding to indoor unit 12-3 in the state on the left side. For this reason, there is no amount of heat remaining in the area 20-3.
 一方、室内機12-1がOFFであることにより、エリア20-2に伝達された熱量とエリア20-6に伝達された熱量との合計0.6kWhであり、左側の状態で室内機12-1に対応する空調負荷1.0kWhより少ない。このため、エリア20-1には、0.4kWhの熱量が残留する。 On the other hand, since the indoor unit 12-1 is OFF, the total amount of heat transferred to the area 20-2 and the amount of heat transferred to the area 20-6 is 0.6 kWh, and the indoor unit 12- The air conditioning load corresponding to 1 is less than 1.0 kWh. For this reason, 0.4 kWh of heat remains in the area 20-1.
 図5の説明に戻り、自動で通常の空調運転を実施している間に、データ収集運転実行部24は、1時間ごとに、データ収集運転を実行するか否かを判断する(ステップS450)。なお、本実施の形態では、自動で通常の空調運転を実施する期間の開始を午前8時、終了時刻を午後8時とする。ステップS450では、具体的には、データ収集運転実行部24は、以下の2つの条件を満たす場合はデータ収集運転を実行すると判断する。以下の2つの条件のうち少なくともいずれか一方を満たさない場合に、データ収集運転を実行しないと判断する。なお、この判断を行う間隔は、1時間に限定されない。
 条件1:空調運転ログデータベースに格納されているデータのうち、環境データが現在の環境データと類似しており、かつステップS302およびステップS400で用いるための条件を満たすデータ数が閾値以下
 条件2:前回のステップS450の判断で、データ収集運転を実行すると判断していない、すなわち過去1時間の間にデータ収集運転を実行していない
Returning to the description of FIG. 5, while the normal air conditioning operation is being performed automatically, the data collection operation execution unit 24 determines whether or not to execute the data collection operation every hour (step S450). . In this embodiment, it is assumed that the start of the period during which the normal air-conditioning operation is automatically performed is 8:00 am and the end time is 8:00 pm. In step S450, specifically, the data collection operation execution unit 24 determines to execute the data collection operation when the following two conditions are satisfied. When at least one of the following two conditions is not satisfied, it is determined that the data collection operation is not performed. The interval for making this determination is not limited to one hour.
Condition 1: Among the data stored in the air conditioning operation log database, the environmental data is similar to the current environmental data, and the number of data satisfying the conditions to be used in step S302 and step S400 is less than or equal to the threshold. Condition 2: In the previous determination in step S450, it is not determined that the data collection operation is executed, that is, the data collection operation is not executed during the past one hour.
 条件2の条件を設けることにより、連続してデータ収集運転を行うことにより室内の快適性が損なわれたり、消費電力量が管理者の想定を大きく上回ったりすることを防ぐ。なお、ステップS450の判断が実施されてから次のステップS450の判断が実施されるまでの間は、空気調和機3は、リモコン13-1,13-2により設定された内容、または後述のように空調運転決定部29により決定された設定に従って動作している。 By providing the condition of condition 2, it is possible to prevent the comfort in the room from being impaired by continuously performing data collection operation, and the power consumption greatly exceeds the administrator's assumption. It should be noted that during the period from the determination in step S450 to the determination in the next step S450, the air conditioner 3 has the contents set by the remote controls 13-1 and 13-2, or as described later. The air-conditioning operation determining unit 29 operates according to the settings determined.
 データ収集運転実行部24は、ステップS450で、データ収集運転を実行しないと判断した場合(ステップS450 No)、空調運転決定部29へ動作開始を指示し、空調運転決定部29は、空気調和機(図5では空調機と略す)のユーザ設定セットの複数の候補を消費電力量予測部28に通知する(ステップS500)。空調運転決定部29は複数の制御パターンを保持しており、それぞれの制御パターンに基づくユーザ設定セットの候補を生成する。なお、ユーザ設定セットは、室内機および室外機ごとの設定情報で構成される。制御パターンとは、例えば、全ての室内機をONとし全ての室内機を同一モードとする第1のパターン、1つの室内機をOFFとし他の室内機をONとしONとなる全ての室内機を同一モードとする第2のパターン、全ての室内機をONとし一部の室内機を他の室内機と異なるモードとする第3のパターンなどである。例えば、第1のパターンに対応するユーザ設定セットでは、設定情報として全ての室内機の運転状態をONとするための設定情報が含まれる。第2のパターンに対応するユーザ設定セットでは、設定情報として1つの室内機の運転状態をOFFとし、他の室内機の運転状態をOFFとするための設定情報が含まれる。 When the data collection operation execution unit 24 determines in step S450 that the data collection operation is not to be executed (No in step S450), the data collection operation determination unit 29 instructs the air conditioning operation determination unit 29 to start the operation. A plurality of candidates of the user setting set (abbreviated as air conditioner in FIG. 5) is notified to the power consumption prediction unit 28 (step S500). The air-conditioning operation determination unit 29 holds a plurality of control patterns, and generates user setting set candidates based on the respective control patterns. The user setting set is configured with setting information for each indoor unit and outdoor unit. The control pattern is, for example, a first pattern in which all indoor units are turned on and all indoor units are in the same mode, all indoor units that are turned on when one indoor unit is turned off and other indoor units are turned on. A second pattern for setting the same mode, a third pattern for setting all indoor units to ON, and setting some indoor units to a mode different from other indoor units. For example, in the user setting set corresponding to the first pattern, setting information for turning on the operating states of all indoor units is included as setting information. In the user setting set corresponding to the second pattern, setting information for setting the operation state of one indoor unit to OFF and setting the operation state of other indoor units to OFF is included as setting information.
 消費電力量予測部28は、ステップS600を実施する。ステップS600は、ステップS601およびステップS602で構成される。ステップS601では、消費電力量予測部28は、空調運転決定部29から取得したユーザ設定セットの候補と環境データ観測部23から取得した現在の環境データとに基づいて、室内機ごとの空調負荷を算出する。具体的には、消費電力量予測部28は、ユーザ設定セットに基づいて、まず各室内機に対応する設定情報のうち、最も空調能力が高くなる設定情報を抽出する。本実施の形態では、例えば、ユーザ設定セットの複数の候補に冷房時および除湿のモードを示す設定情報が含まれる場合には、以下の順で空調能力が高いか否かを判断する。
 (A)運転状態がONの場合は、運転状態がOFFの場合より空調能力が高い
 (B)モードが、除湿の場合は、冷房の場合より空調能力が高い
 (C)設定温度が低温の場合は高温の場合より空調能力が高い
The power consumption amount prediction unit 28 performs Step S600. Step S600 is composed of step S601 and step S602. In step S601, the power consumption prediction unit 28 calculates the air conditioning load for each indoor unit based on the user setting set candidate acquired from the air conditioning operation determination unit 29 and the current environment data acquired from the environment data observation unit 23. calculate. Specifically, based on the user setting set, the power consumption amount prediction unit 28 first extracts setting information with the highest air conditioning capability among the setting information corresponding to each indoor unit. In the present embodiment, for example, when setting information indicating the cooling mode and the dehumidifying mode is included in a plurality of candidates of the user setting set, it is determined whether the air conditioning capability is high in the following order.
(A) When the operating state is ON, the air conditioning capability is higher than when the operating state is OFF. (B) When the mode is dehumidifying, the air conditioning capability is higher than when cooling. (C) When the set temperature is low Has higher air conditioning capacity than high temperatures
 まず、(A)の条件により、ユーザ設定セットに基づいて、運転状態がONに設定される室内機を選択し、選択した室内機が複数あれば、(B)の条件に基づいて、除湿が設定される室内機を選択する。運転状態がONで除湿が設定される室内機が複数存在する場合、(C)の条件により、設定温度を比較し設定温度が最も低い室内機に対応する設定情報を抽出する。なお、ユーザ設定セットの複数の候補に暖房のモードを示す設定情報が含まれる場合には、例えば、上記の(A)の条件と(D)設定温度が高温の場合は低温の場合より空調能力が高いという条件とに基づいて、最も空調能力が高くなる設定情報を抽出する。 First, an indoor unit whose operation state is set to ON is selected based on the user setting set according to the condition (A). If there are a plurality of selected indoor units, dehumidification is performed based on the condition (B). Select the indoor unit to be set. When there are a plurality of indoor units in which the operating state is ON and dehumidification is set, the setting information corresponding to the indoor unit having the lowest set temperature is extracted by comparing the set temperatures according to the condition (C). In addition, when the setting information indicating the heating mode is included in the plurality of candidates of the user setting set, for example, the condition (A) and (D) when the set temperature is high, the air conditioning capacity is higher than when the temperature is low. The setting information with the highest air conditioning capacity is extracted based on the condition that the air conditioning is high.
 そして、選択した室内機に対応する設定情報を全ての室内機に設定した場合の空調負荷を算出する。具体的には、消費電力量予測部28は、環境データは現在値を利用し、設定情報は上記の選択した設定情報を用い、空調負荷算出係数データベースに格納されている空調負荷算出係数を用いて、式(1)により空調負荷を算出する。この算出値を最大予測値とよぶ。次に、消費電力量予測部28は、ユーザ設定セットの候補ごとに、室内機ごとの空調負荷を求める。具体的には、消費電力量予測部28は、ユーザ設定セットの候補のうち全ての室内機の運転状態がONの候補については、空調負荷算出係数データベースに格納されている空調負荷算出係数と、現在の環境データと、ユーザ設定セットの候補とに基づいて、式(1)により空調負荷を算出する。消費電力量予測部28は、ユーザ設定セットの候補のうち一部の室内機の運転状態がOFFとなる候補については、運転状態がONとなる室内機について室内機ごとに、まず、該OFFとなる空調負荷算出係数データベースに格納されている空調負荷算出係数と、空調負荷算出係数データベースに格納されている空調負荷算出係数と、現在の環境データと、ユーザ設定セットの候補とに基づいて、式(1)により空調負荷を算出する。その後、消費電力量予測部28は、空調負荷伝達係数データベースに格納されている空調負荷伝達係数と最大予測値とに基づいて、該室内機の空調負荷の他の室内機がOFFとなることによる差分を算出する。そして、消費電力量予測部28は、差分を上記の式(1)により算出した空調負荷に加えることにより、室内機ごとの空調負荷を算出する。 Then, the air conditioning load when setting information corresponding to the selected indoor unit is set for all indoor units is calculated. Specifically, the power consumption prediction unit 28 uses the current value as the environmental data, uses the selected setting information as the setting information, and uses the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database. Then, the air conditioning load is calculated by the equation (1). This calculated value is called the maximum predicted value. Next, the power consumption amount prediction unit 28 obtains the air conditioning load for each indoor unit for each user setting set candidate. Specifically, the power consumption amount predicting unit 28 sets the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database for candidates in which the operation state of all the indoor units is ON among the user setting set candidates, Based on the current environmental data and the user setting set candidates, the air conditioning load is calculated by Equation (1). The power consumption amount prediction unit 28 first sets the OFF state of each of the indoor units whose operation state is ON for each of the indoor units whose operation state is ON. Based on the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database, the air conditioning load calculation coefficient stored in the air conditioning load calculation coefficient database, the current environment data, and the user setting set candidates. The air conditioning load is calculated according to (1). Thereafter, the power consumption prediction unit 28 is configured to turn off the other indoor units of the air conditioning load of the indoor unit based on the air conditioning load transfer factor and the maximum predicted value stored in the air conditioning load transfer factor database. Calculate the difference. And the power consumption prediction part 28 calculates the air-conditioning load for every indoor unit by adding a difference to the air-conditioning load calculated by said Formula (1).
 そして、消費電力量予測部28は、室内機ごとの空調負荷から空気調和機の消費電力量を予測し、空調運転決定部29に通知する(ステップS602)。具体的には、消費電力量予測部28は、空調負荷をONと設定される室内機分足し合わせることにより、室外機の出力を決定する。そして、消費電力量予測部28は、室外機の出力に基づいて圧縮機の周波数、冷媒流量、目標蒸発温度などを機種の性能に応じて算出し、圧縮機の消費電力量を予測する。例えば、消費電力量予測部28は、以下の手順で圧縮機の消費電力量を予測する。
 (1)あらかじめ圧縮機の機種ごとに、周波数に対する消費電力量のデータを保持しておく。
 (2)圧縮機の周波数と上記のデータとから消費電力量を予測する。
Then, the power consumption prediction unit 28 predicts the power consumption of the air conditioner from the air conditioning load for each indoor unit, and notifies the air conditioning operation determination unit 29 (step S602). Specifically, the power consumption prediction unit 28 determines the output of the outdoor unit by adding the air conditioning load for the indoor units set to ON. The power consumption amount prediction unit 28 calculates the compressor frequency, refrigerant flow rate, target evaporation temperature, and the like based on the output of the outdoor unit according to the performance of the model, and predicts the power consumption amount of the compressor. For example, the power consumption prediction unit 28 predicts the power consumption of the compressor by the following procedure.
(1) Data of power consumption with respect to frequency is stored in advance for each compressor model.
(2) The power consumption is predicted from the frequency of the compressor and the above data.
 消費電力量予測部28は、圧縮機の消費電力量に各室内機、室外機のファンモーターなどの消費電力量を足し合わせることで空気調和機3全体の消費電力量の予測値を算出する。なお、各室内機、室外機のファンモーターなどの消費電力量は、例えば、あらかじめ定めた値を用いる。消費電力量予測部28は、ユーザ設定セットの候補に上記のように空気調和機3全体の消費電力量の予測値を算出する。 The power consumption prediction unit 28 calculates a predicted value of the power consumption of the entire air conditioner 3 by adding the power consumption of each indoor unit and the fan motor of the outdoor unit to the power consumption of the compressor. For example, a predetermined value is used for the power consumption of each indoor unit and the fan motor of the outdoor unit. The power consumption amount prediction unit 28 calculates a predicted value of the power consumption amount of the entire air conditioner 3 as a user setting set candidate as described above.
 次に、空調運転決定部29が、消費電力量予測部28からユーザ設定セットの候補ごとの消費電力量の予測値を取得し、消費電力量の予測値が最も小さかったユーザ設定セットの候補をユーザ設定セットとして選択し、選択したユーザ設定セットを空調ネットワーク通信部21に通知する(ステップS700)。具体的には、空調運転決定部29は、選択したユーザ設定セットに基づいて、各室内機へ設定情報を指令するための命令を生成して、空調ネットワーク通信部21に通知する。これにより、空調ネットワーク通信部21は、通知された命令を空調通信パケットとして各室内機へ送信し、各室内機は受信した空調通信パケットに従って空調制御を実行する。 Next, the air-conditioning operation determination unit 29 acquires a predicted value of power consumption for each user setting set candidate from the power consumption prediction unit 28, and selects a user setting set candidate with the smallest predicted power consumption value. It selects as a user setting set, and notifies the selected user setting set to the air-conditioning network communication part 21 (step S700). Specifically, the air conditioning operation determination unit 29 generates a command for instructing setting information to each indoor unit based on the selected user setting set, and notifies the air conditioning network communication unit 21 of the command. Thereby, the air conditioning network communication unit 21 transmits the notified command to each indoor unit as an air conditioning communication packet, and each indoor unit executes air conditioning control according to the received air conditioning communication packet.
 また、空調運転決定部29が、消費電力情報表示部30に、決定されたユーザ設定セットと対応する消費電力量の予測値とを通知する(ステップS1001)。消費電力情報表示部30は、決定されたユーザ設定セットと対応する消費電力量の予測値とを表示画面に表示することによりユーザに提示し(ステップS1002)、ステップS100へ戻る。なお、空調運転決定部29が、全てのユーザ設定セットの候補と対応する消費電力量の予測値を消費電力情報表示部30へ通知し、消費電力情報表示部30が全てのユーザ設定セットの候補と対応する消費電力量の予測値とを表示した上で、決定されたユーザ設定セットを示すようにしてもよい。これにより、他のユーザ設定セットと比較して、決定されたユーザ設定セットの消費電力量が低減していることを提示することにより、ユーザが、消費電力量の低減の効果を明確に把握することができる。なお、上述したように、ステップS100へ戻った後、通常の空調制御の時間帯では、ステップS200~ステップS400は実施せずに、ステップS450へ進む。 In addition, the air conditioning operation determination unit 29 notifies the power consumption information display unit 30 of the determined user setting set and the predicted value of the corresponding power consumption (step S1001). The power consumption information display unit 30 presents the determined user setting set and the predicted value of the corresponding power consumption amount to the user by displaying them on the display screen (step S1002), and returns to step S100. The air-conditioning operation determination unit 29 notifies the power consumption information display unit 30 of predicted values of power consumption corresponding to all user setting set candidates, and the power consumption information display unit 30 displays all user setting set candidates. And the predicted value of the corresponding power consumption may be displayed, and the determined user setting set may be indicated. Thus, the user can clearly grasp the effect of reducing the power consumption amount by presenting that the power consumption amount of the determined user setting set is reduced as compared with other user setting sets. be able to. As described above, after returning to Step S100, Step S200 to Step S400 are not performed and the process proceeds to Step S450 in the normal air conditioning control time zone.
 データ収集運転実行部24は、ステップS450で、データ収集運転を実行すると判断した場合(ステップS450 Yes)、ステップS800を実施する。ステップS800は、ステップS801とステップS802を含む、ステップS801では、データ収集運転実行部24は、空調運転ログデータベースに格納しているデータを解析し、現在の環境で収集すべきユーザ設定セットを作成する。具体的には、データ収集運転実行部24は、空調運転ログデータベースに格納されているデータのうち、ステップS302の処理で用いるデータとステップS400の処理で用いるデータとのうちデータ数の少ない方に対応したユーザ設定セットを作成する。 If the data collection operation execution unit 24 determines in step S450 to execute the data collection operation (Yes in step S450), the data collection operation execution unit 24 performs step S800. Step S800 includes step S801 and step S802. In step S801, the data collection operation execution unit 24 analyzes data stored in the air conditioning operation log database and creates a user setting set to be collected in the current environment. To do. Specifically, the data collection operation execution unit 24 selects the data stored in the air conditioning operation log database that has the smaller number of data among the data used in the process of step S302 and the data used in the process of step S400. Create a corresponding user settings set.
 例えば、ステップS302の処理で用いるデータ、すなわち全ての室内機がONでありかつ設定温度が等しいデータの数が、ステップS400の処理で用いるデータ、すなわち1つの室内機がOFFであり他の室内機がONでありかつONである室内機の設定温度が等しいデータの数より少ない場合、全ての室内機がONでありかつ設定温度が等しくなるようにユーザ設定セットを作成する。なお、ステップS400の処理で用いるデータは、OFFする室内機が異なるデータを収集する必要があるため、OFFする室内機ごとに空調運転ログデータベースに格納されているデータの数を求める。ステップS400の処理で用いるデータに対応するデータ設定セットを作成する場合は、OFFする室内機ごとに空調運転ログデータベースに格納されているデータの数を求め、求めたデータ数が最も少ないものに対応するデータ設定セットを作成する。 For example, the number of data used in the process of step S302, that is, the number of data in which all the indoor units are ON and the set temperature is equal is the number of data used in the process of step S400, that is, one indoor unit is OFF and other indoor units. When the set temperature of the indoor unit with ON is less than the number of equal data, the user setting set is created so that all the indoor units are ON and the set temperature is equal. In addition, since the data used by the process of step S400 needs to collect the data from which the indoor unit to be turned off differs, the number of data stored in the air conditioning operation log database is obtained for each indoor unit to be turned off. When creating a data setting set corresponding to the data used in the process of step S400, the number of data stored in the air conditioning operation log database is obtained for each indoor unit to be turned off, and the data with the smallest number is obtained. Create a data setting set.
 データ収集運転実行部24は、作成されたユーザ設定セットを空調ネットワーク通信部21に通知する(ステップS802)。具体的には、データ収集運転実行部24は、作成されたユーザ設定セットに基づいて、各室内機への設定情報を指令するための命令を生成して、空調ネットワーク通信部21に通知する。これにより、空調ネットワーク通信部21は、通知された命令を空調通信パケットとして各室内機へ送信し、各室内機は受信した空調通信パケットに従って空調制御を実行する。 The data collection operation execution unit 24 notifies the created user setting set to the air conditioning network communication unit 21 (step S802). Specifically, the data collection operation execution unit 24 generates a command for instructing setting information for each indoor unit based on the created user setting set, and notifies the air conditioning network communication unit 21 of the command. Thereby, the air conditioning network communication unit 21 transmits the notified command to each indoor unit as an air conditioning communication packet, and each indoor unit executes air conditioning control according to the received air conditioning communication packet.
 次に、不要データ破棄部25が、空調運転ログデータベースから空調負荷算出に不要なデータを破棄する(ステップS900)。その後、ステップS100へ戻る。不要データ破棄部25は、以下の方法でデータを破棄していく。
 (1)空調負荷算出係数が存在しない(空調負荷との関連ない)データを破棄
 (2)環境データ、ユーザ設定データ、空調負荷などのデータが全て類似しているデータを破棄
 (3)空調運転ログデータベースに格納されているデータ量が、あらかじめ定めたデータ容量を超える場合、時刻が古いデータから順に破棄
Next, the unnecessary data discarding unit 25 discards data unnecessary for air conditioning load calculation from the air conditioning operation log database (step S900). Then, it returns to step S100. The unnecessary data discarding unit 25 discards data by the following method.
(1) Discard data for which there is no air conditioning load calculation coefficient (not related to air conditioning load) (2) Discard all data that is similar to environmental data, user setting data, air conditioning load, etc. (3) Air conditioning operation If the amount of data stored in the log database exceeds the predetermined data capacity, the oldest data is discarded in order.
 なお、類似しているデータとは、各データ種別の値ごとに、差分を求め、各差分に重み付けをして合計し、合計値が閾値より小さいものを全て類似していると判断する。 It should be noted that with similar data, a difference is obtained for each value of each data type, each difference is weighted and summed, and it is determined that all data whose total value is smaller than the threshold value are similar.
 また、不要データ破棄部25がデータを破棄する条件として、空調負荷算出係数などが大きく変化する境界時刻、例えば、一定期間の間に閾値以上の変化があった時刻を抽出し、その時刻よりも前のデータは破棄するという条件を追加してもよい。ビルの外壁または窓のリフォーム、テナントの変更、電子機器の新規大量導入など、室内の空調負荷が大きく変化するイベントが発生した場合、それよりも前のデータで算出した予測値を使うと精度が落ちてしまうためである。 Further, as a condition for the unnecessary data discarding unit 25 to discard the data, a boundary time at which the air conditioning load calculation coefficient or the like greatly changes, for example, a time when there is a change more than a threshold value during a certain period, is extracted. A condition of discarding the previous data may be added. If an event occurs that significantly changes the air conditioning load in the room, such as renovation of a building's outer wall or window, tenant change, or the introduction of a large number of new electronic devices, the accuracy can be improved by using the predicted value calculated from the previous data. This is because it falls.
 なお、伝達係数を算出する処理と伝達係数を用いて他の室内機がOFFとなったことにより生じる空調負荷の差分の加算とは、実施しなくてもよい。ただし、これらの処理を実施した方がより、消費電力量を精度良く求めることができる。 Note that the process of calculating the transfer coefficient and the addition of the difference in air conditioning load caused by the other indoor unit being turned off using the transfer coefficient may not be performed. However, the power consumption can be obtained with higher accuracy by performing these processes.
 なお、本実施の形態では、設定情報および環境データを空調負荷因子の候補として、候補のなかから相関係数に基づいて空調負荷因子を選定した。しかしながら、これら以外に、さらに、前日の設定情報、前日の設定情報環境データ、日付、時間帯、曜日のうち少なくとも1つを空調負荷因子の候補として加えて、相関係数に基づいて空調負荷因子を選定するようにしてもよい。例えば、前日の日射量が多かった場合建物の躯体に蓄熱しているため、これにより空調負荷が増加する可能性がある。また、商業施設、オフィスビルなどに空気調和機3が設置される場合、営業日と休業日とでは空調負荷に差が生じる。上記のように、前日の設定情報および環境データ、日付、時間帯、曜日のうち少なくとも1つを空調負荷因子の候補として加えることにより、より精度よく空調負荷を予測することができ、消費電力量の予測精度を向上させることができる。 In this embodiment, setting information and environmental data are used as candidates for the air conditioning load factor, and the air conditioning load factor is selected from the candidates based on the correlation coefficient. However, in addition to these, at least one of the previous day's setting information, the previous day's setting information environment data, date, time zone, and day of the week is added as a candidate for the air conditioning load factor, and the air conditioning load factor is based on the correlation coefficient. May be selected. For example, when the amount of solar radiation on the previous day is large, heat is stored in the building frame, which may increase the air conditioning load. In addition, when the air conditioner 3 is installed in a commercial facility, an office building, etc., a difference occurs in the air conditioning load between business days and closed days. As described above, by adding at least one of the setting information and environmental data of the previous day, date, time zone, and day of week as a candidate for the air conditioning load factor, the air conditioning load can be predicted more accurately, and the power consumption Prediction accuracy can be improved.
 以上のように、本実施の形態では、制御装置1が、空気調和機3から運転データを取得し、運転データに基づいて空調負荷を算出し、過去の一定期間の空調負荷と過去の一定期間の環境データおよび設定情報のうち少なくとも1つとに基づいて、空調負荷を予測するための算出情報である算出係数を算出する。そして、算出係数と現在の環境データおよび設定情報候補のうちの少なくとも1つを用いて室内機ごとに空調負荷を予測し、予測した空調負荷に基づいて空気調和機3の消費電力量を予測するようにした。このため、過去に類似した条件で運転した際のデータが蓄積されていない場合でも、精度良く空気調和機の消費電力量を推定することができる。また、室内機ごとに空調負荷を算出しているため、室内機の設置場所、例えば窓際であるか部屋の中央付近であるかに依存した空調負荷の差異を反映することができ、精度よく消費電力量を予測することができる。 As described above, in the present embodiment, the control device 1 acquires the operation data from the air conditioner 3, calculates the air conditioning load based on the operation data, and the air conditioning load in the past certain period and the past certain period. A calculation coefficient that is calculation information for predicting the air conditioning load is calculated based on at least one of the environmental data and the setting information. Then, the air conditioning load is predicted for each indoor unit using at least one of the calculation coefficient, current environmental data, and setting information candidates, and the power consumption of the air conditioner 3 is predicted based on the predicted air conditioning load. I did it. For this reason, even when the data at the time of driving | running on the conditions similar to the past are not accumulate | stored, the power consumption of an air conditioner can be estimated accurately. In addition, since the air conditioning load is calculated for each indoor unit, it can reflect the difference in air conditioning load depending on the indoor unit installation location, for example, whether it is near the window or near the center of the room, and is consumed accurately. The amount of power can be predicted.
 また、1つの室内機をOFFとし他の室内機をONとした条件で運転したデータを用いて、他の室内機からの影響の度合いを示す伝達係数を算出し、伝達係数を用いて、室内機ごとに空調負荷を予測するようにした。これにより、さらに精度良く空気調和機の消費電力量を推定することができる。 In addition, using the data operated under the condition that one indoor unit is turned off and the other indoor unit is turned on, a transfer coefficient indicating the degree of influence from the other indoor unit is calculated, and the transfer coefficient is used to calculate the indoor coefficient. The air conditioning load was predicted for each machine. Thereby, the power consumption amount of the air conditioner can be estimated with higher accuracy.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 制御装置、2 空調通信ネットワーク、3 空気調和機、11 室外機、12-1~12-6 室内機、21 空調ネットワーク通信部、22 運転データ観測部、23 環境データ観測部、24 データ収集運転実行部、25 不要データ破棄部、26 空調負荷算出式構築部、27 空調負荷伝達式構築部、28 消費電力量予測部、29 空調運転決定部、30 消費電力情報表示部。 1 control device, 2 air conditioning communication network, 3 air conditioner, 11 outdoor unit, 12-1 to 12-6 indoor unit, 21 air conditioning network communication unit, 22 operation data observation unit, 23 environmental data observation unit, 24 data collection operation Execution unit, 25 unnecessary data discarding unit, 26 air conditioning load calculation formula construction unit, 27 air conditioning load transmission formula construction unit, 28 power consumption prediction unit, 29 air conditioning operation determination unit, 30 power consumption information display unit.

Claims (11)

  1.  建物内に設置される室内機と室外機とを備える空気調和機を制御する制御装置であって、
     前記室内機から、前記室内機に設定された情報である設定情報と前記室内機の運転の状態を示す情報である第1の運転情報とを受信し、前記室外機から、前記室外機の運転の状態を示す情報である第2の運転情報を受信する通信部と、
     前記建物の外部の環境データを取得して出力する環境データ取得部と、
     前記第1の運転情報および前記第2の運転情報に基づいて前記室内機の空調負荷を求める第1の演算部と、
     過去の前記空調負荷、過去の前記環境データおよび過去の前記設定情報に基づいて、前記環境データおよび前記設定情報のうちの少なくとも1つである空調負荷因子を決定し、過去の前記空調負荷因子に基づいて、前記空気調和機の消費電力量の予測に用いられる情報である算出情報を求める第2の演算部と、
     前記算出情報および現在の空調負荷因子に基づいて前記空気調和機の消費電力量を予測する第3の演算部と、
     を備える制御装置。
    A control device for controlling an air conditioner including an indoor unit and an outdoor unit installed in a building,
    From the indoor unit, setting information that is information set in the indoor unit and first operation information that is information indicating an operation state of the indoor unit are received, and the operation of the outdoor unit is received from the outdoor unit. A communication unit that receives second driving information that is information indicating the state of
    An environmental data acquisition unit that acquires and outputs environmental data outside the building;
    A first calculation unit for obtaining an air conditioning load of the indoor unit based on the first operation information and the second operation information;
    Based on the past air conditioning load, the past environmental data, and the past setting information, an air conditioning load factor that is at least one of the environmental data and the setting information is determined, and the past air conditioning load factor is determined. A second computing unit that obtains calculation information that is information used to predict the power consumption of the air conditioner,
    A third computing unit that predicts the power consumption of the air conditioner based on the calculation information and the current air conditioning load factor;
    A control device comprising:
  2.  前記空気調和機を構成する前記室内機と前記室外機とに対応するそれぞれの設定情報で構成されるユーザ設定セットの候補を複数の生成し、前記第3の演算部へ入力する空調運転決定部、
     を備え、
     前記第3の演算部は、前記算出情報、現在の環境データおよび前記ユーザ設定セットの候補に基づいて、前記ユーザ設定セットの候補ごとの前記空気調和機の消費電力量を算出し、
     前記空調運転決定部は、前記ユーザ設定セットの候補ごとの前記空気調和機の消費電力量に基づいて、複数の前記ユーザ設定セットの候補のうちの1つを選択して、選択した前記候補に対応した命令を生成して前記通信部へ出力し、
     前記通信部は、前記命令を前記空気調和機へ送信する請求項1に記載の制御装置。
    An air-conditioning operation determination unit that generates a plurality of user setting set candidates configured by setting information corresponding to the indoor unit and the outdoor unit constituting the air conditioner and inputs the candidates to the third arithmetic unit ,
    With
    The third calculation unit calculates the power consumption of the air conditioner for each candidate of the user setting set based on the calculation information, current environment data, and the candidate of the user setting set,
    The air conditioning operation determination unit selects one of a plurality of user setting set candidates based on the power consumption of the air conditioner for each user setting set candidate, and sets the selected candidate as the selected candidate. Generate a corresponding command and output it to the communication unit,
    The control device according to claim 1, wherein the communication unit transmits the command to the air conditioner.
  3.  前記空気調和機は、前記室内機を複数備え、
     前記第3の演算部は、前記算出情報および現在の環境データに基づいて前記室内機ごとに空調負荷を予測し、予測した空調負荷を用いて前記空気調和機の消費電力量を予測する請求項1または2に記載の制御装置。
    The air conditioner includes a plurality of the indoor units,
    The third computing unit predicts an air conditioning load for each indoor unit based on the calculation information and current environmental data, and predicts the power consumption of the air conditioner using the predicted air conditioning load. 3. The control device according to 1 or 2.
  4.  前記第2の演算部は、前記環境データおよび前記設定情報を構成するデータ種別ごとに、前記環境データおよび前記設定情報を構成するデータ種別のそれぞれと前記空調負荷との相関係数を算出し、相関係数が閾値以上となるデータ種別を選定し、選定したデータ種別のデータに基づいて、前記算出情報を算出する請求項1、2または3に記載の制御装置。 The second computing unit calculates a correlation coefficient between each of the environmental data and the data type constituting the setting information and the air conditioning load for each data type constituting the environmental data and the setting information, The control apparatus according to claim 1, 2, or 3, wherein a data type having a correlation coefficient equal to or greater than a threshold value is selected, and the calculation information is calculated based on data of the selected data type.
  5.  前記第2の演算部は、さらに前日の前記環境データ、前日の前記設定情報、日付、曜日のうち少なくとも1つに基づいて前記算出情報を算出する請求項1から4のいずれか1つに記載の制御装置。 The said 2nd calculating part further calculates the said calculation information based on at least 1 among the said environmental data of the previous day, the said setting information of the previous day, a date, and a day of the week. Control device.
  6.  前記第2の演算部は、全ての前記室内機が運転状態にある場合の前記空調負荷と、前記少なくとも1つの室内機のうち1つの室内機が停止しかつ他の全ての前記少なくとも1つの室内機が運転状態にある場合の前記空調負荷と、に基づいて、他の室内機が停止することにより伝達する空調負荷を示す伝達係数を算出し、
     前記第3の演算部は、前記伝達係数を用いて他の室内機が停止することによる空調負荷の差分を考慮して空調負荷を予測する請求項1から5のいずれか1つに記載の制御装置。
    The second calculation unit includes the air conditioning load when all the indoor units are in an operating state, one indoor unit out of the at least one indoor unit, and all the other at least one indoor units. Based on the air conditioning load when the machine is in an operating state, a transfer coefficient indicating an air conditioning load to be transmitted by stopping other indoor units is calculated,
    The control according to any one of claims 1 to 5, wherein the third calculation unit predicts an air conditioning load in consideration of a difference in an air conditioning load caused when another indoor unit stops using the transmission coefficient. apparatus.
  7.  前記算出情報を算出するために用いる前記運転情報および前記環境データを取得するための運転であるデータ取得運転を実行するデータ取得運転実行部、
     を備える請求項1から5のいずれか1つに記載の制御装置。
    A data acquisition operation execution unit that executes a data acquisition operation that is an operation for acquiring the operation information and the environmental data used to calculate the calculation information;
    The control device according to claim 1, further comprising:
  8.  前記算出情報および前記伝達係数を算出するために用いる前記運転情報および前記環境データを取得するための運転であるデータ取得運転を実行するデータ取得運転実行部、
     を備える請求項6に記載の制御装置。
    A data acquisition operation execution unit that executes a data acquisition operation that is an operation for acquiring the operation information and the environmental data used to calculate the calculation information and the transmission coefficient;
    A control device according to claim 6.
  9.  前記環境データおよび前記設定情報を記憶するための記憶部、
     を備え、
     前記環境データおよび前記設定情報のうち前記算出情報の算出に用いないと判定されたものを前記記憶部から削除する不要データ破棄部、
     を備える請求項1から8のいずれか1つに記載の制御装置。
    A storage unit for storing the environmental data and the setting information;
    With
    An unnecessary data discarding unit that deletes the environmental data and the setting information that are determined not to be used for calculation of the calculation information from the storage unit,
    The control device according to claim 1, comprising:
  10.  建物内に設置される室内機と室外機と、前記空気調和機を制御する制御装置とを備える空気調和システムであって、
     前記制御装置は、
     前記室内機から、前記室内機に設定された情報である設定情報と前記室内機の運転の状態を示す情報である第1の運転情報とを受信し、前記室外機から、前記室外機の運転の状態を示す情報である第2の運転情報を受信する通信部と、
     前記建物の外部の環境データを取得して出力する環境データ取得部と、
     前記第1の運転情報および前記第2の運転情報に基づいて前記室内機の空調負荷を求める第1の演算部と、
     過去の前記空調負荷、過去の前記環境データおよび過去の前記設定情報に基づいて、前記環境データおよび前記設定情報のうちの少なくとも1つである空調負荷因子を決定し、過去の前記空調負荷因子に基づいて、前記空気調和機の消費電力量の予測に用いられる情報である算出情報を求める第2の演算部と、
     前記算出情報および現在の空調負荷因子に基づいて前記空気調和機の消費電力量を予測する第3の演算部と、
     を備える空気調和システム。
    An air conditioning system comprising an indoor unit and an outdoor unit installed in a building, and a control device for controlling the air conditioner,
    The control device includes:
    From the indoor unit, setting information that is information set in the indoor unit and first operation information that is information indicating an operation state of the indoor unit are received, and the operation of the outdoor unit is received from the outdoor unit. A communication unit that receives second driving information that is information indicating the state of
    An environmental data acquisition unit that acquires and outputs environmental data outside the building;
    A first calculation unit for obtaining an air conditioning load of the indoor unit based on the first operation information and the second operation information;
    Based on the past air conditioning load, the past environmental data, and the past setting information, an air conditioning load factor that is at least one of the environmental data and the setting information is determined, and the past air conditioning load factor is determined. A second computing unit that obtains calculation information that is information used to predict the power consumption of the air conditioner,
    A third computing unit that predicts the power consumption of the air conditioner based on the calculation information and the current air conditioning load factor;
    Air conditioning system with
  11.  建物内に設置される室内機と室外機とを備える空気調和機を制御する制御装置における前記空気調和機の制御方法であって、
     前記室内機から、前記室内機に設定された情報である設定情報と前記室内機の運転の状態を示す情報である第1の運転情報とを受信し、前記室外機から、前記室外機の運転の状態を示す情報である第2の運転情報を受信する第1のステップと、
     前記建物の外部の環境データを取得する第2のステップと、
     前記第1の運転情報および前記第2の運転情報に基づいて前記室内機の空調負荷を求める第3のステップと、
     過去の前記空調負荷、過去の前記環境データおよび過去の前記設定情報に基づいて、前記環境データおよび前記設定情報のうちの少なくとも1つである空調負荷因子を決定し、過去の前記空調負荷因子に基づいて、前記空気調和機の消費電力量の予測に用いられる情報である算出情報を求める第4のステップと、
     前記算出情報および現在の空調負荷因子に基づいて前記空気調和機の消費電力量を予測する第5のステップと、
     を含む空気調和機の制御方法。
    A control method of the air conditioner in a control device for controlling an air conditioner including an indoor unit and an outdoor unit installed in a building,
    From the indoor unit, setting information that is information set in the indoor unit and first operation information that is information indicating an operation state of the indoor unit are received, and the operation of the outdoor unit is received from the outdoor unit. A first step of receiving second driving information which is information indicating the state of
    A second step of acquiring environmental data outside the building;
    A third step of obtaining an air conditioning load of the indoor unit based on the first operation information and the second operation information;
    Based on the past air conditioning load, the past environmental data, and the past setting information, an air conditioning load factor that is at least one of the environmental data and the setting information is determined, and the past air conditioning load factor is determined. A fourth step for obtaining calculation information, which is information used for prediction of power consumption of the air conditioner,
    A fifth step of predicting the power consumption of the air conditioner based on the calculated information and the current air conditioning load factor;
    Control method of air conditioner including.
PCT/JP2015/084276 2015-12-07 2015-12-07 Control device, air-conditioning system, and control method for air conditioners WO2017098552A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/084276 WO2017098552A1 (en) 2015-12-07 2015-12-07 Control device, air-conditioning system, and control method for air conditioners
JP2017554674A JP6403906B2 (en) 2015-12-07 2015-12-07 Control device, air conditioning system, and control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084276 WO2017098552A1 (en) 2015-12-07 2015-12-07 Control device, air-conditioning system, and control method for air conditioners

Publications (1)

Publication Number Publication Date
WO2017098552A1 true WO2017098552A1 (en) 2017-06-15

Family

ID=59012821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084276 WO2017098552A1 (en) 2015-12-07 2015-12-07 Control device, air-conditioning system, and control method for air conditioners

Country Status (2)

Country Link
JP (1) JP6403906B2 (en)
WO (1) WO2017098552A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060337A (en) * 2018-10-11 2020-04-16 三菱重工サーマルシステムズ株式会社 Power consumption calculation device, air conditioning system, power consumption calculation method, and program
JP2021055968A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Information processing method, information processing device, and program
CN112682936A (en) * 2020-12-29 2021-04-20 华润智慧能源有限公司 Air conditioner cold station system control method, system and device and readable storage medium
CN112944601A (en) * 2021-02-01 2021-06-11 珠海格力电器股份有限公司 Power determination device and method for air conditioner internal unit and air conditioner
JPWO2021192279A1 (en) * 2020-03-27 2021-09-30
JPWO2021192280A1 (en) * 2020-03-27 2021-09-30
CN115854495A (en) * 2022-11-30 2023-03-28 深圳供电局有限公司 Air conditioner electric quantity determining method and device, computer equipment and storage medium
US11971186B2 (en) 2019-09-30 2024-04-30 Daikin Industries, Ltd. Information processing method, information processing apparatus, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109539483B (en) * 2018-10-29 2019-12-27 珠海格力电器股份有限公司 Electric quantity calculation method and device and air conditioning system
CN112665123B (en) * 2020-12-10 2022-04-29 珠海格力电器股份有限公司 Building load prediction method and device and central air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
JPH10170053A (en) * 1996-12-04 1998-06-26 Matsushita Electric Ind Co Ltd Load estimating device for air conditioner
JPH1114119A (en) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2001273475A (en) * 2000-03-24 2001-10-05 Denso Corp Method and device for selecting teacher data, controller with learning function and recording medium
JP2003216715A (en) * 2002-01-22 2003-07-31 Toshiba Corp Device for evaluating and monitoring building energy saving
JP2011214794A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Air conditioning system control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301505A (en) * 2004-07-30 2004-10-28 Matsushita Electric Ind Co Ltd Air-conditioning controller
JP4680287B2 (en) * 2008-09-17 2011-05-11 三菱電機株式会社 Air conditioner
JP5312286B2 (en) * 2009-10-21 2013-10-09 三菱電機株式会社 Air conditioner control device, refrigeration device control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210686A (en) * 1995-02-03 1996-08-20 Hitachi Plant Eng & Constr Co Ltd Air-conditioning system
JPH10170053A (en) * 1996-12-04 1998-06-26 Matsushita Electric Ind Co Ltd Load estimating device for air conditioner
JPH1114119A (en) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2001273475A (en) * 2000-03-24 2001-10-05 Denso Corp Method and device for selecting teacher data, controller with learning function and recording medium
JP2003216715A (en) * 2002-01-22 2003-07-31 Toshiba Corp Device for evaluating and monitoring building energy saving
JP2011214794A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Air conditioning system control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281265B2 (en) 2018-10-11 2023-05-25 三菱重工サーマルシステムズ株式会社 Power Consumption Calculation Device, Air Conditioning System, Power Consumption Calculation Method and Program
JP2020060337A (en) * 2018-10-11 2020-04-16 三菱重工サーマルシステムズ株式会社 Power consumption calculation device, air conditioning system, power consumption calculation method, and program
CN114450531A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Information processing method, information processing apparatus, and program
JP2021055968A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Information processing method, information processing device, and program
WO2021065093A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Information processing method, information processing device, and program
US11971186B2 (en) 2019-09-30 2024-04-30 Daikin Industries, Ltd. Information processing method, information processing apparatus, and program
CN114450531B (en) * 2019-09-30 2023-04-28 大金工业株式会社 Information processing method, information processing device, and program
JPWO2021192280A1 (en) * 2020-03-27 2021-09-30
JPWO2021192279A1 (en) * 2020-03-27 2021-09-30
JP7414964B2 (en) 2020-03-27 2024-01-16 三菱電機株式会社 Air conditioning control learning device and reasoning device
CN112682936B (en) * 2020-12-29 2022-04-26 华润智慧能源有限公司 Air conditioner cold station system control method, system and device and readable storage medium
CN112682936A (en) * 2020-12-29 2021-04-20 华润智慧能源有限公司 Air conditioner cold station system control method, system and device and readable storage medium
CN112944601B (en) * 2021-02-01 2022-03-15 珠海格力电器股份有限公司 Power determination device and method for air conditioner internal unit and air conditioner
CN112944601A (en) * 2021-02-01 2021-06-11 珠海格力电器股份有限公司 Power determination device and method for air conditioner internal unit and air conditioner
CN115854495A (en) * 2022-11-30 2023-03-28 深圳供电局有限公司 Air conditioner electric quantity determining method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP6403906B2 (en) 2018-10-10
JPWO2017098552A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6403906B2 (en) Control device, air conditioning system, and control method for air conditioner
JP6125104B2 (en) Air conditioning control device, air conditioning control method, and program
US10871756B2 (en) Temperature control system and methods for operating same
US10253996B2 (en) Air-conditioning system control device and air-conditioning system control method
US10082313B2 (en) Instruction device, and air conditioning system
AU2009332323B2 (en) Load processing balance setting apparatus
JP2010065960A (en) Air-conditioning energy saving controller
US20160103442A1 (en) Central control apparatus for controlling facilities, facility control system comprising the same, and facility control method
US20150045967A1 (en) Air-conditioning unit control device and air-conditioning unit control program
JP2013142494A (en) Air conditioner control system and method of controlling air conditioner
EP3007016A1 (en) Central control apparatus for controlling facilities, facility control system comprising the same, and facility control method
EP3007019A1 (en) Central control apparatus for controlling facilities, facility control system including the same, and method of controlling facilities
WO2017029755A1 (en) Air conditioning operation analysis device and program
JP2007255835A (en) Air-conditioning controller
JP2011242101A (en) Setting value controlling method and device
WO2020070794A1 (en) Information processing device and air-conditioning system provided with same
JP5404556B2 (en) Air conditioner control device and refrigeration device control device
JP2012026594A (en) Air conditioning control device
JP5473619B2 (en) Air conditioner control device
JP5936714B2 (en) System controller, facility management system, demand control method and program
WO2016158852A1 (en) Air conditioning control device, air conditioning control method, and program
US11215651B2 (en) Power consumption estimation device
EP2623879A2 (en) Power-consumption managementrol system for air conditioner, server device, client device, and power-consumption managementrol method for air conditioner
US9135592B2 (en) Device management system
JP4540333B2 (en) Air-conditioning automatic switching system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910169

Country of ref document: EP

Kind code of ref document: A1