WO2017096608A1 - Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris - Google Patents

Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris Download PDF

Info

Publication number
WO2017096608A1
WO2017096608A1 PCT/CN2015/097118 CN2015097118W WO2017096608A1 WO 2017096608 A1 WO2017096608 A1 WO 2017096608A1 CN 2015097118 W CN2015097118 W CN 2015097118W WO 2017096608 A1 WO2017096608 A1 WO 2017096608A1
Authority
WO
WIPO (PCT)
Prior art keywords
pichia pastoris
expression vector
vhb
gene
cellulase protein
Prior art date
Application number
PCT/CN2015/097118
Other languages
French (fr)
Chinese (zh)
Inventor
孙付保
白仁惠
张震宇
许银彪
王春迪
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to PCT/CN2015/097118 priority Critical patent/WO2017096608A1/en
Publication of WO2017096608A1 publication Critical patent/WO2017096608A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Definitions

  • the present invention relates to the construction of a recombinant Pichia pastoris system which co-expresses the Vitreoscilla hemoglobin gene (vgb) and cellulase proteins, and belongs to the field of bioengineering technology.
  • Cellulase is a general term for a class of multi-component enzymes, which is capable of hydrolyzing cellulose which is difficult to be bio-utilized into glucose which is beneficial for bio-use, and is therefore considered to be one of the enzyme preparations having great potential.
  • Cellulase is a glycoside hydrolase.
  • Cellulase capable of degrading cellulose includes at least three components, namely exonuclease (CBH), endoglucanase (EG) and ⁇ -glucoside.
  • Enzyme (BG) is a general term for a class of multi-component enzymes, which is capable of hydrolyzing cellulose which is difficult to be bio-utilized into glucose which is beneficial for bio-use, and is therefore considered to be one of the enzyme preparations having great potential.
  • Cellulase is a glycoside hydrolase.
  • Cellulase capable of degrading cellulose includes at least three components, namely exonuclease (CBH), endoglucana
  • EG acts on the non-crystalline region of cellulose, hydrolyzes the ⁇ -1,4 glycosidic bond, and can cut off the linear cellulose polymer to form a large amount of small cellulose molecules;
  • CBH hydrolyzes the 1,4- ⁇ - ⁇ -glucosidic bond, acting on The ends of the linear cellulose polymer form a cellobiose molecule;
  • BG hydrolyzes cellobiose to glucose.
  • Pichia pastoris can achieve post-translational modification, such as glycosylation, disulfide bond formation, allowing proteins to fold correctly and obtain active target proteins.
  • Pichia does not produce endogenous lignocellulase groups.
  • the extracellular protein component is not complicated, and the recombinant Pichia pastoris fermentation supernatant can be directly used as a single enzyme preparation without purification. Therefore, Pichia pastoris is the preferred host bacteria to achieve cellulase composition. Source expression to obtain high concentration and high purity cellulase protein components has become a research hotspot.
  • VHb Vitreoscilla hemoglobin
  • VHb is an automatic first aid protein in the hypoxic state of Vitreoscilla.
  • the hypothesis about its function suggests that VHb can capture oxygen in a hypoxic environment, supplying oxidases associated with respiration, thereby increasing respiratory efficiency and promoting ATP production.
  • Heterologous expression of cellulase protein components by Pichia pastoris as a host strain, industrialization The premise is that high-density culture with insufficient oxygen supply must have high potential. By realizing the co-expression of VHb and cellulase protein in Pichia pastoris, the enzyme production level and industrial application potential of recombinant Pichia pastoris can be improved.
  • Cellulases are widely available, and cellulase-producing organisms include insects, mollusks, protozoa, bacteria, and fungi. However, these self-produced enzymes inherently have a certain proportion of defects. For the most widely used cellulase-producing fungus, Trichoderma reesei, the cellulase system lacks the exonuclease CBH II and The ⁇ -glucosidase BG results in inefficient enzymatic hydrolysis of its cellulase system.
  • the object of the present invention is to construct a Pichia pastoris which co-expresses the Vitreoscilla hemoglobin gene and the cellulase protein gene.
  • the present invention achieves EG II codon bias optimization, the original codon sequence of which is as follows:
  • the present invention utilizes Gene Designer (DNA2.0, Menlo Park, CA, USA) to optimize the codon bias of the EG II nucleotide sequence shown in SEQ ID NO. 1, and the optimized nucleotide sequence is SEQ. ID NO. 3 .
  • the EG II amino acid sequence is identical to SEQ ID NO.
  • the optimized EG II gene was inserted into the promoter AOX1 downstream, the 5'-end cleavage site was EcoR I, and the 3'-end cleavage site was Not I, and the pPIC9K-eg2 expression vector was constructed. .
  • Sac l was used as a P PIC9K-eg2 expression vector linearization site, and the expression vector was linearized and transformed into Pichia pastoris by electroporation.
  • Sac l was used as a pPICZotA-vgb expression vector linearization site to realize linearization of the expression vector, and electrotransformation was carried out into recombinant Pichia pastoris which already contained the eg2 gene.
  • the invention realizes the optimization of the codon bias of the Trichoderma reesei endoglucanase II (EG II) gene, and the biased object is Pichia pastoris, and the GC content is reduced during the optimization process, from 55.9 %. The decrease was 46.2%, and the expression efficiency of recombinant Pichia pastoris was improved.
  • the optimized nucleotide sequence of the RNA secondary structure folding software RNAstmcture is used in the present invention.
  • the secondary structure is folded, and the base sequence is adjusted, so that the base of the initiation codon has an anthracene ring structure, which is favorable for ribosome binding and improves the expression efficiency of the recombinant Pichia pastoris.
  • the invention realizes co-expression of cellulase protein and Vitreoscilla hemoglobin (VHb) in Pichia pastoris
  • the enzyme production efficiency of the recombinant Pichia pastoris in the low-oxygen high-density fermentation process is improved, and the industrial production potential of the recombinant Pichia pastoris is enhanced.
  • FIG. 1 Experimental ideas and solutions
  • Figure 2 Comparison of the eg2 nucleotide sequence before and after optimization
  • Figure 3 Comparison of the eg2 amino acid sequence before and after optimization
  • Figure 4 P PIC9K-eg2 expression vector map
  • Figure 6 Screening of high-yield recombinant EG II protein strains
  • Figure 7 Map of the pPICZaA-vgb expression vector
  • VE1, VE25, VE31, etc. EG II and VHb co-expressing strains
  • Figure 11 Full-wavelength scanning of the fermentation supernatant of EG II and VHb co-expressing strains after CO gas treatment;
  • Figure 12 Comparison of growth and enzyme production abilities of EG II recombinant strains with EG II and VHb co-expressing strains:
  • the present invention constructs a Pichia pastoris which coexpresses the Vitreoscilla hemoglobin gene and the T. reesei endoglucanase II gene, thereby improving the oxygen utilization efficiency of the recombinant strain, thereby increasing the concentration of the bacteria and producing the enzyme.
  • the ability to build ideas is shown in Figure 1.
  • Example 1 Codon optimization of the T. reesei endoglucanase II (EG II) gene and construction of an expression vector.
  • the present invention utilizes Gene Designer (DNA2.0, Menlo Park, CA, USA) to implement SEQ ID NO:
  • nucleotide sequence codon biasing of EG II shown in NO. 1 is optimized, and the optimized nucleotide sequence is shown in SEQ ID NO. Codon-optimized amino acid sequence and The original amino acid sequence is identical as shown in SEQ ID NO. Using 13 ⁇ 41 ⁇ &&810]"18 08115 as the host, the nucleotide sequence is optimized by codon bias and the original nucleotide sequence is shown in Figure 2. The amino acid sequence is compared with the original amino acid sequence by codon bias optimization. 3.
  • Example 2 Linearization of expression vectors and electroporation and screening of high-yielding strains.
  • [0110] 1. Using Sac l as a linearization site of P PIC9K-eg2 expression vector, linearize the expression vector, and verify the linearized plasmid by nucleic acid electrophoresis, as shown in FIG. 5 . By electrotransformation, Pichia pastori S GS115 was transferred to obtain a recombinant strain, and multi-copy transformants were screened by using a geneticin G-418 concentration gradient, and high-yield strains were obtained by shake flask fermentation of colonies capable of normal growth on high-concentration resistant plates. The CMC enzyme activity of the fermentation supernatant was determined by the DNS method at 120 h, as shown in Fig. 6. One unit of enzyme activity unit was defined as the amount of enzyme capable of converting 1 ⁇ substrate in 1 minute under a water bath condition of 50 °C.
  • Example 3 Acquisition of the Vitreoscilla hemoglobin (VHb) gene and construction of an expression vector.
  • VHb Vitreoscilla hemoglobin
  • the Vitreoscilla hemoglobin gene (GenBank Accession No. M30794.1) was obtained from NCBI, the EcoR I restriction site was added at the 5' end, and the Not I restriction site was added at the 3' end, and artificial synthesis was performed. Obtain the gene of interest.
  • the 5' end cleavage site is EcoR I, and the 3' end cleavage site is Not
  • Example 4 The expression vector pPICZotA-vgb was linearized and electrotransformed and screened for co-expressing high-yielding strains.
  • the Sac l is used as a linearization site of the pPICZotA-vgb expression vector to realize linearization of the expression vector, and the linearized plasmid is verified by nucleic acid electrophoresis, as shown in FIG. 8 .
  • the recombinant Pichia pastoris GS115 containing the eg2 gene was transformed by electroporation to obtain a co-expressing recombinant strain, and the multi-copy transformants were screened by the antibiotic Zeocin concentration gradient, and the colonies which can grow normally on the high-concentration resistant plate were fermented by shake flask to obtain high yield.
  • the strain was sampled at 72 h and the CMC enzyme activity of the fermentation supernatant was determined by DNS method, as shown in Fig. 9.
  • colony PCR was carried out on these strains to verify that the vgb gene and the eg2 gene coexist in the Pichia host chromosome, and the results are shown in FIG.
  • Example 5 Detection of recombinant VHb protein activity.
  • the CO and VHb proteins are capable of irreversible binding to form a stable porphyrin ring structure which has an absorption peak at a specific wavelength, and thus the recombinant VHb protein can be detected by this method.
  • the EG II recombinant strain and the EG II and VHb co-expressing strains were respectively introduced into the fermentation medium, and after fermentation for 120 h, the supernatant of the fermentation broth was taken, and the fermentation broth was treated with excess Na2S204 (safety powder) as a reducing agent for 10 min. After that, CO was introduced into the fermentation broth for 3 min.
  • the fermentation supernatant of the EG II recombinant strain was used as a blank control, and the full-wavelength scanning was performed using a Hitachi U3900 spectrophotometer with a wavelength range of 300 to 500 nm. The result is shown in Figure 11.
  • Example 6 Comparison of enzyme production levels of EG II recombinant strains with EG II and VHb co-expressing strains.
  • the II and VHb co-expressing strains were compared in terms of biomass and enzyme activity, and the results are shown in Fig. 12.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A construction method for co-expressing VHb hemogloblin and a cellulase protein in Pichia pastoris comprises performing codon optimization on a gene of endoglucanase II (EG II) of Trichoderma reesei, and co-expressing the optimized gene of endoglucanase II (EG II) of Trichoderma reesei and Vitreoscilla hemogloblin (VHb) in Pichia pastoris.

Description

说明书  Instruction manual
发明名称:一种毕赤酵母中共表达血红蛋白 VHb和纤维素酶蛋白的 构建方法  Title: Construction method for co-expression of hemoglobin VHb and cellulase protein in Pichia pastoris
技术领域  Technical field
[0001] 本发明涉及一种共表达透明颤菌血红蛋白基因 (vgb)和纤维素酶蛋白的重组毕赤 酵母系统的构建, 属于生物工程技术领域。  [0001] The present invention relates to the construction of a recombinant Pichia pastoris system which co-expresses the Vitreoscilla hemoglobin gene (vgb) and cellulase proteins, and belongs to the field of bioengineering technology.
背景技术  Background technique
[0002] 纤维素酶是一类多组分酶的总称, 能够将难以被生物利用的纤维素水解为利于 被生物利用的葡萄糖, 因此被认为是潜力巨大的酶制剂之一。 纤维素酶属于糖 苷水解酶, 能够降解纤维素的纤维素酶系至少包括三类组分, 分别为葡聚糖外 切酶 (CBH), 葡聚糖内切酶 (EG)以及 β-葡萄糖苷酶 (BG)。 其中 EG作用于纤维素非 结晶区, 水解 β-1,4糖苷键, 可将线性纤维素多聚物截断生成大量纤维素小分子 ; CBH水解 1,4-β-ϋ-糖苷键, 作用于线性纤维素多聚物末端, 生成纤维二糖分子 ; BG则将纤维二糖水解成为葡萄糖。 通过纤维素酶复合酶组分相互协同作用, 可以将地球上最丰富的生物高聚物 _纤维素, 转化为微生物可以轻易利用的葡 萄糖, 通过发酵产生生物燃料, 用以缓解目前能源短缺问题。  [0002] Cellulase is a general term for a class of multi-component enzymes, which is capable of hydrolyzing cellulose which is difficult to be bio-utilized into glucose which is beneficial for bio-use, and is therefore considered to be one of the enzyme preparations having great potential. Cellulase is a glycoside hydrolase. Cellulase capable of degrading cellulose includes at least three components, namely exonuclease (CBH), endoglucanase (EG) and β-glucoside. Enzyme (BG). EG acts on the non-crystalline region of cellulose, hydrolyzes the β-1,4 glycosidic bond, and can cut off the linear cellulose polymer to form a large amount of small cellulose molecules; CBH hydrolyzes the 1,4-β-ϋ-glucosidic bond, acting on The ends of the linear cellulose polymer form a cellobiose molecule; BG hydrolyzes cellobiose to glucose. Through the synergy of the cellulase complex enzyme components, the most abundant biopolymer _cellulose on the earth can be converted into glucose that can be easily utilized by microorganisms, and biofuels can be produced by fermentation to alleviate the current energy shortage problem.
[0003] 近些年来, 异源表达纤维素酶基因获得单酶组分是研究热点。 Pichia pastoris可 以实现翻译后修饰作用, 如糖基化、 二硫键形成, 使蛋白可以进行正确折叠, 并获得有活性的目标蛋白, 另外, 毕赤酵母并不产生内源性木质纤维素酶组分 , 且胞外蛋白成分并不复杂, 重组毕赤酵母菌发酵上清液甚至可以不经过纯化 直接作为单酶制剂进行使用, 因此, 以 Pichia pastoris作为首选宿主菌, 实现纤维 素酶组分异源表达以获得高浓度和高纯度的纤维素酶蛋白组分, 已成为研究热 点。  [0003] In recent years, heterologous expression of cellulase genes to obtain single enzyme components is a research hotspot. Pichia pastoris can achieve post-translational modification, such as glycosylation, disulfide bond formation, allowing proteins to fold correctly and obtain active target proteins. In addition, Pichia does not produce endogenous lignocellulase groups. The extracellular protein component is not complicated, and the recombinant Pichia pastoris fermentation supernatant can be directly used as a single enzyme preparation without purification. Therefore, Pichia pastoris is the preferred host bacteria to achieve cellulase composition. Source expression to obtain high concentration and high purity cellulase protein components has become a research hotspot.
[0004] 资料表明, 透明颤菌血红蛋白 (VHb)产自严格好氧细菌透明颤菌, VHb是在透 明颤菌处于缺氧状态吋的一种自动急救蛋白。 关于其功能的假说表明 VHb能在低 氧环境中捕获氧气, 供给与呼吸作用相关的氧化酶, 从而提高呼吸效率并促进 A TP的生成。 以毕赤酵母作为宿主菌实现纤维素酶蛋白组分异源表达, 其工业化 的前提是必须在氧气供应不足的高密度培养方面具有优质潜力, 通过在毕赤酵 母中实现 VHb与纤维素酶蛋白的共表达, 可以提高重组毕赤酵母的产酶水平以及 工业化应用潜力。 [0004] The data indicate that Vitreoscilla hemoglobin (VHb) is produced from the strict aerobic bacteria Vitreoscilla, and VHb is an automatic first aid protein in the hypoxic state of Vitreoscilla. The hypothesis about its function suggests that VHb can capture oxygen in a hypoxic environment, supplying oxidases associated with respiration, thereby increasing respiratory efficiency and promoting ATP production. Heterologous expression of cellulase protein components by Pichia pastoris as a host strain, industrialization The premise is that high-density culture with insufficient oxygen supply must have high potential. By realizing the co-expression of VHb and cellulase protein in Pichia pastoris, the enzyme production level and industrial application potential of recombinant Pichia pastoris can be improved.
技术问题  technical problem
[0005] 纤维素酶来源广泛, 产生纤维素酶的生物包括昆虫、 软体动物、 原生动物、 细 菌和真菌。 然而, 这些自产酶天生具有一定的配比缺陷, 就目前工业应用最为 广泛的产纤维素酶真菌里氏木霉 (Trichoderma reesei)而言, 其纤维素酶系中缺乏 外切酶 CBH II和 β-葡萄糖苷酶 BG, 导致其纤维素酶系酶解效率低下。 另外, 无 论是来源于生物的自产酶系还是人工制成的商业纤维素酶系, 其中所含蛋白多 达八十余种, 甚至更多, 导致核心酶组分比酶活降低, 这同样也是纤维素酶系 酶解效率低下的原因。 更为重要的是, 不同木质纤维素材料中纤维素、 半纤维 素以及木质素的比例有显著差异, 导致同一类商业纤维素酶制剂或自产酶并不 能发挥最佳的酶解效果。 所以, 优化定制纤维素酶, 使各组分达到最佳配比, 才能在最少酶用量吋获得最优的水解效果。 因此, 为了优化定制纤维素酶, 获 得纤维素酶单酶组分十分关键。  [0005] Cellulases are widely available, and cellulase-producing organisms include insects, mollusks, protozoa, bacteria, and fungi. However, these self-produced enzymes inherently have a certain proportion of defects. For the most widely used cellulase-producing fungus, Trichoderma reesei, the cellulase system lacks the exonuclease CBH II and The β-glucosidase BG results in inefficient enzymatic hydrolysis of its cellulase system. In addition, whether it is derived from the organism's self-produced enzyme system or artificially produced commercial cellulase system, it contains more than 80 kinds of proteins, and even more, resulting in lower core enzyme components than enzyme activity, the same It is also the reason for the low efficiency of cellulase enzymatic hydrolysis. More importantly, the ratios of cellulose, hemicellulose, and lignin in different lignocellulosic materials are significantly different, resulting in the same type of commercial cellulase preparation or self-produced enzyme that does not exert optimal enzymatic hydrolysis. Therefore, optimizing the custom cellulase to achieve the best ratio of each component, in order to obtain the optimal hydrolysis effect with the minimum amount of enzyme. Therefore, in order to optimize the custom cellulase, it is critical to obtain a cellulase single enzyme component.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0006] 本发明的目的在于构建一种共表达透明颤菌血红蛋白基因和纤维素酶蛋白基因 的毕赤酵母。  [0006] The object of the present invention is to construct a Pichia pastoris which co-expresses the Vitreoscilla hemoglobin gene and the cellulase protein gene.
[0007] 本发明提供的共表达 VHb蛋白和葡聚糖内切酶 II的毕赤酵母系统具体步骤如下 [0008] 1、 EG II密码子偏向性优化:  The specific steps of the Pichia cell system for co-expressing VHb protein and endoglucanase II provided by the present invention are as follows [0008] 1. Optimization of EG II codon bias:
[0009] 本发明实现了 EG II密码子偏向性优化, 其原始密码子序列如下:  The present invention achieves EG II codon bias optimization, the original codon sequence of which is as follows:
[0010] SEQ ID NO. 1 SEQ ID NO. 1
[0011] 1 ATGAACAAGT CCGTGGCTCC ATTGCTGCTT GCAGCGTCCA  1 ATGAACAAGT CCGTGGCTCC ATTGCTGCTT GCAGCGTCCA
TACTATATGG CGGCGCCGTC  TACTATATGG CGGCGCCGTC
[0012] 61 GCACAGCAGA CTGTCTGGGG CCAGTGTGGA GGTATTGGTT [0012] 61 GCACAGCAGA CTGTCTGGGG CCAGTGTGGA GGTATTGGTT
GGAGCGGACC TACGAATTGT DVDIDVIOOD DIDVVDVOVD GGAGCGGACC TACGAATTGT DVDIDVIOOD DIDVVDVOVD
IDVOOIIDVI VVVDVDOIOD VOimiVOl DIVVODVVDV 106 [9 00]  IDVOOIIDVI VVVDVDOIOD VOimiVOl DIVVODVVDV 106 [9 00]
VDIOOOIVOO DDDVVODVDI OVVDIDIOID DDODDOYDOL OVDOOIVODD rVlV llIDO 11/8 ξΖΟθ]  VDIOOOIVOO DDDVVODVDI OVVDIDIOID DDODDOYDOL OVDOOIVODD rVlV llIDO 11/8 ξΖΟθ]
OOOIDOIDIV VDOOIIVOIV VVOOIDDOII IDIDIVDIIV VDODIODVID OIOOIDODVV Ϊ 8Δ [ 0]  OOOIDOIDIV VDOOIIVOIV VVOOIDDOII IDIDIVDIIV VDODIODVID OIOOIDODVV Ϊ 8Δ [ 0]
DODDIVVDOD DVVIOIIOOV O VOl WO IVDIVDOODI  DODDIVVDOD DVVIOIIOOV O VOl WO IVDIVDOODI
IOOIOIOOOV ODIOVDIDIV DODVIOVVVD IVDOOIIOVD 199 [ 00]  IOOIOIOOOV ODIOVDIDIV DODVIOVVVD IVDOOIIOVD 199 [ 00]
ODIOOIIIDD OVODVDIIVV DIDOIVVIDV IDDDOODOOO VDIOOIIVDI VOOOIOODVV 109 [I ZOO]  ODIOOIIIDD OVODVDIIVV DIDOIVVIDV IDDDOODOOO VDIOOIIVDI VOOOIOODVV 109 [I ZOO]
OOIVODIDOI VIIVVDVDDI VDVODIODIV DOIDVIVDOD OOOIDIDIOI OIOOOO V I S [OZOO]  OOIVODIDOI VIIVVDVDDI VDVODIODIV DOIDVIVDOD OOOIDIDIOI OIOOOO V I S [OZOO]
IIOIIDOVDI VOIVIOVVDD IIIVDOVODV DDIIVOIIDI VVDOODOOOI IIVVDVVDVV 181/ [6100]  IIOIIDOVDI VOIVIOVVDD IIIVDOVODV DDIIVOIIDI VVDOODOOOI IIVVDVVDVV 181/ [6100]
DIODIDDVIO VDOOIVOODI OIDDVIIDOD miVIDVO IVOOODVOOV ODVVDIODII 1 17 [8100]  DIODIDDVIO VDOOIVOODI OIDDVIIDOD miVIDVO IVOOODVOOV ODVVDIODII 1 17 [8100]
DVDOVDOIVO VDDOODIVDO  DVDOVDOIVO VDDOODIVDO
ODOIIDVDOO IVOVDVDDVI OIDOOIIIDV OIIIIOOODO 10£ [9100] ODOIIDVDOO IVOVDVDDVI OIDOOIIIDV OIIIIOOODO 10£ [9100]
DIVDVVIIOD OODDOIIIVO DIVDVVIIOD OODDOIIIVO
I Z [SI 00] DDVIDOOOVD DYDDYDDYDD I Z [SI 00] DDVIDOOOVD DYDDYDDYDD
DDOVOOODDI IVIOIVVDOD DDOVOOODDI IVIOIVVDOD
OrVirVlID IVVDIDDDVO DIIOIIDOVD IDOOIDDIDO IZl [£100] ll .60/ST0ZN3/X3d 809960/ .Ϊ0Ζ OAV CGCTTGCCAC TTGGCTCCGA GCAACGTTCA GTCCTGCATA OrVirVlID IVVDIDDDVO DIIOIIDOVD IDOOIDDIDO IZl [£100] ll .60/ST0ZN3/X3d 809960/ .Ϊ0Ζ OAV CGCTTGCCAC TTGGCTCCGA GCAACGTTCA GTCCTGCATA
CAGATGTCTA TCTTGGCTAT CAGATGTCTA TCTTGGCTAT
[0030] 1141 GTTGGTTGGG GTGCCGGATC ATTTGATAGC ACGTATGTCC 1141 GTTGGTTGGG GTGCCGGATC ATTTGATAGC ACGTATGTCC
TGACGGAAAC ACCGACTGGC  TGACGGAAAC ACCGACTGGC
[0031] 1201 AGTGGTAACT CATGGACGGA CACATCCTTG GTCAGCTCGT 1201 AGTGGTAACT CATGGACGGA CACATCCTTG GTCAGCTCGT
GTCTCGCAAG AAAGTAG  GTCTCGCAAG AAAGTAG
[0032] 密码子优化前 EG II氨基酸序列如 SEQ ID NO. 2所示。 [0032] The EG II amino acid sequence before codon optimization is shown in SEQ ID NO.
[0033] SEQ ID NO. 2 SEQ ID NO. 2
[0034] 1 MNKSVAPLLL AASILYGGAV AQQTVWGQCG GIGWSGPTNC  1 MNKSVAPLLL AASILYGGAV AQQTVWGQCG GIGWSGPTNC
APGSACSTLN PYYAQCIPGA  APGSACSTLN PYYAQCIPGA
[0035] 61 TTITTSTRPP SGPTTTTRAT STSSSTPPTS SGVRFAGVNI AGFDFGCTTD[0035] 61 TTITTSTRPP SGPTTTTRAT STSSSTPPTS SGVRFAGVNI AGFDFGCTTD
GTCVTSKVYP GTCVTSKVYP
[0036] 121 PLKNFTGSNN YPDGIGQMQH FVNEDGMTIF RLPVGWQYLV  [0036] 121 PLKNFTGSNN YPDGIGQMQH FVNEDGMTIF RLPVGWQYLV
NNNLGGNLDS TSISKYDQLV  NNNLGGNLDS TSISKYDQLV
[0037] 181 QGCLSLGAYC IVDIHNYARW NGGIIGQGGP TNAQFTSLWS [0037] 181 QGCLSLGAYC IVDIHNYARW NGGIIGQGGP TNAQFTSLWS
QLASKYASQS RVWFGIMNEP  QLASKYASQS RVWFGIMNEP
[0038] 241 HDVNINTWAA TVQEVVTAIR NAGATSQFIS LPGNDWQSAG 241 HDVNINTWAA TVQEVVTAIR NAGATSQFIS LPGNDWQSAG
AFISDGSAAA LSQVTNPDGS  AFISDGSAAA LSQVTNPDGS
[0039] 301 TTNLIFDVHK YLDSDNSGTH AECTTNNIDG AFSPLATWLR [0039] 301 TTNLIFDVHK YLDSDNSGTH AECTTNNIDG AFSPLATWLR
QNNRQAILTE TGGGNVQSCI  QNNRQAILTE TGGGNVQSCI
[0040] 361 QDMCQQIQYL NQNSDVYLGY VGWGAGSFDS TYVLTETPTG [0040] 361 QDMCQQIQYL NQNSDVYLGY VGWGAGSFDS TYVLTETPTG
SGNSWTDTSL VSSCLARK  SGNSWTDTSL VSSCLARK
[0041] 本发明利用 Gene Designer (DNA2.0, Menlo Park, CA, USA)实现对 SEQ ID NO. 1 所示的 EG II核苷酸序列密码子偏向性优化, 优化后核苷酸序列如 SEQ ID NO. 3 。 [0041] The present invention utilizes Gene Designer (DNA2.0, Menlo Park, CA, USA) to optimize the codon bias of the EG II nucleotide sequence shown in SEQ ID NO. 1, and the optimized nucleotide sequence is SEQ. ID NO. 3 .
£ O 0S ¾寸00N。3】 £ O 0S 3⁄4 inch 00N. 3]
UUUOUO OOO UUUOOUUvwvvov ΐ£寸00HHHHHHHHHHHHH hrr【】 UUUOUO OOO UUUOOUUvwvvov ΐ£ inch00HHHHHHHHHHHHH hrr[]
ϋϋυϋϋϋϋϋ«υ ϋϋϋϋϋυυ«υϋυυϋ ΐ9寸寸00 ΗΗΗΗ ΗΗΗΗΗΗΗΗ〖】  Ϋϋυϋϋϋϋϋ«υ ϋϋϋϋϋυυ«υϋυυϋ ΐ9 inch inch 00 ΗΗΗΗ ΗΗΗΗΗΗΗΗ 〖]
OVDVsWObv UOUOUUϋϋυυυϋ ΪΠ 500IrIlHHHH ΗΗΗ】 ϋϋϋυυUU«UU UUUUUUUUUUU ΐ寸 Z§0ΗΗΗΗ HHHHHH HHHH〖】  OVDVsWObv UOUOUUϋϋυυυϋ ΪΠ 500IrIlHHHH ΗΗΗ] ϋϋϋυυUU«UU UUUUUUUUUUU ΐ inch Z§0ΗΗΗΗ HHHHHH HHHH 〖
OOUUOO Οϋϋυ Οϋϋυϋ ΐ0£8寸00HHHΗΗΗΗΗΗΗΗΗΗ【】 V3 wovvUOOOhHHHH
Figure imgf000006_0001
OOUUOO Οϋϋυ Οϋϋυϋ ΐ0£8 inch 00HHHΗΗΗΗΗΗΗΗΗΗ[] V3 wovvUOOOhHHHH
Figure imgf000006_0001
OO«uu V8VO wo HHHHH  OO«uu V8VO wo HHHHH
C68VVDVυυϋϋϋϋϋUOOU VO8w ΐ09£§IΗΗHHHHII【】>> C68VVDVυυϋϋϋϋϋUOOU VO8w ΐ09£§IΗΗHHHHII【】>>
V30V8WOυϋϋυ ΗΗΗΗ [0056] 781 AACGCTGGTG CTACTTCTCA ATTCATTTCC TTGCCAGGTA V30V8WOυϋϋυ ΗΗΗΗ 781 AACGCTGGTG CTACTTCTCA ATTCATTTCC TTGCCAGGTA
ACGACTGGCA GTCTGCTGGT  ACGACTGGCA GTCTGCTGGT
[0057] 841 GCTTTCATTT CTGATGGTTC CGCTGCTGCT TTGTCCCAAG 841 GCTTTCATTT CTGATGGTTC CGCTGCTGCT TTGTCCCAAG
TTACTAACCC AGACGGTTCC  TTACTAACCC AGACGGTTCC
CTGACAACTC CGGTACTCAC CTTTGGCTAC TTGGTTGAGA GTAACGTTCA GTCCTGTATC CTGACAACTC CGGTACTCAC CTTTGGCTAC TTGGTTGAGA GTAACGTTCA GTCCTGTATC
CCGACGTTTA CTTGGGTTAC CCGACGTTTA CTTGGGTTAC
[0062] 1141 GTTGGTTGGG GTGCTGGTTC TTTCGACTCT ACTTACGTTT 1141 GTTGGTTGGG GTGCTGGTTC TTTCGACTCT ACTTACGTTT
TGACTGAAAC TCCAACTGGT  TGACTGAAAC TCCAACTGGT
[0063] 1201 TCCGGTAACT CCTGGACTGA CACTTCCTTG GTTTCTTCCT 1201 TCCGGTAACT CCTGGACTGA CACTTCCTTG GTTTCTTCCT
GTTTGGCTAG AAAGTAA  GTTTGGCTAG AAAGTAA
[0064] 经过密码子优化后, EG II氨基酸序列与 SEQ ID NO. 2相同。 [0064] After codon optimization, the EG II amino acid sequence is identical to SEQ ID NO.
[0065] 2、 构建表达载体 pPIC9K-eg2: [0065] 2. Constructing the expression vector pPIC9K-eg2 :
[0066] 以质粒 pPIC9K作为载体, 将优化后的 EG II基因插入启动子 AOX1下游, 5'端酶 切位点为 EcoR I, 3'端酶切位点为 Not I, 构建 pPIC9K-eg2表达载体。  [0066] Using the plasmid pPIC9K as a vector, the optimized EG II gene was inserted into the promoter AOX1 downstream, the 5'-end cleavage site was EcoR I, and the 3'-end cleavage site was Not I, and the pPIC9K-eg2 expression vector was constructed. .
[0067] 3、 获取重组菌株: [0067] 3. Obtaining a recombinant strain:
[0068] 以 Sac l作为 PPIC9K-eg2表达载体线性化位点, 实现表达载体线性化, 通过电转 化转入毕赤酵母。 [0068] Sac l was used as a P PIC9K-eg2 expression vector linearization site, and the expression vector was linearized and transformed into Pichia pastoris by electroporation.
[0069] 4、 获得 vgb基因: [0069] 4. Obtaining the vgb gene:
[0070] 从 NCBI中获取透明颤菌血红蛋白核苷酸序列 (GenBank Accession No.  [0070] Obtaining the Vitreoscilla hemoglobin nucleotide sequence from NCBI (GenBank Accession No.)
M30794.1) , 在 5'端添加 EcoR I酶切位点, 3'端添加 Not I酶切位点, 通过人工合 成获得目的基因。  M30794.1), the EcoR I restriction site was added at the 5' end, and the Not I restriction site was added at the 3' end to obtain the target gene by artificial synthesis.
[0071] 5、 构建表达载体 pPICZaA-vgb: [0072] 以质粒 pPICZotA作为载体, 将 vgb基因插入启动子 AOX1下游, 5'端酶切位点为[0071] 5. Constructing the expression vector pPICZaA-vgb: [0072] Using the plasmid pPICZotA as a vector, the vgb gene was inserted downstream of the promoter AOX1, and the 5' end cleavage site was
EcoR I, 3'端酶切位点为 Not I, 构建 pPICZaA-vgb表达载体。 EcoR I, the 3' end cleavage site was Not I, and the pPICZaA-vgb expression vector was constructed.
[0073] 6、 获取共表达重组菌株: [0073] 6. Obtaining a co-expressing recombinant strain:
[0074] 以 Sac l作为 pPICZotA-vgb表达载体线性化位点, 实现表达载体线性化, 通过电 转化转入已含有 eg2基因的重组毕赤酵母。  [0074] Sac l was used as a pPICZotA-vgb expression vector linearization site to realize linearization of the expression vector, and electrotransformation was carried out into recombinant Pichia pastoris which already contained the eg2 gene.
[0075] 7、 重组 VHb蛋白活性检测: [0075] 7, recombinant VHb protein activity detection:
[0076] 利用 CO差光谱检测方法检测重组毕赤酵母是否分泌有活性的 VHb蛋白。  [0076] Whether the recombinant Pichia pastoris secretes an active VHb protein is detected by a CO difference spectrum detection method.
[0077] 8、 发酵产酶以及产酶水平比较: [0077] 8, fermentation enzyme production and enzyme production levels:
[0078] 通过摇瓶发酵产酶, 比较 EG II重组菌株与 EG II和 VHb共表达菌株的产酶水 平。  [0078] The enzyme production levels of the EG II recombinant strain and the EG II and VHb co-expressing strains were compared by enzyme production by shake flask fermentation.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0079] 本发明有益效果: [0079] Advantageous Effects of the Invention:
[0080] 1、 本发明实现了里氏木霉葡聚糖内切酶 II (EG II)基因密码子偏向性优化, 偏 向对象为毕赤酵母菌, 优化过程中降低了 GC含量, 由 55.9 %降低为 46.2 %, 提 高重组毕赤酵母菌表达效率。  [0080] 1. The invention realizes the optimization of the codon bias of the Trichoderma reesei endoglucanase II (EG II) gene, and the biased object is Pichia pastoris, and the GC content is reduced during the optimization process, from 55.9 %. The decrease was 46.2%, and the expression efficiency of recombinant Pichia pastoris was improved.
[0081] 2、 本发明对里氏木霉葡聚糖内切酶 II (EG II)基因密码子偏向性优化过程中, 禾 1J用 RNA二级结构折叠软件 RNAstmcture对优化后的核苷酸序列实现二级结构折 叠, 并调整碱基序列, 使起始密码子端碱基呈幵环结构, 利于核糖体结合, 提 高重组毕赤酵母菌表达效率。 2. In the process of optimizing the codon bias of the Trichoderma reesei endoglucanase II (EG II) gene, the optimized nucleotide sequence of the RNA secondary structure folding software RNAstmcture is used in the present invention. The secondary structure is folded, and the base sequence is adjusted, so that the base of the initiation codon has an anthracene ring structure, which is favorable for ribosome binding and improves the expression efficiency of the recombinant Pichia pastoris.
[0082] 3、 本发明实现了纤维素酶蛋白与透明颤菌血红蛋白 (VHb)在毕赤酵母中共表达[0082] 3. The invention realizes co-expression of cellulase protein and Vitreoscilla hemoglobin (VHb) in Pichia pastoris
, 提高了重组毕赤酵母菌在低氧高密度发酵过程中的产酶效率, 提升重组毕赤 酵母菌的工业生产潜力。 The enzyme production efficiency of the recombinant Pichia pastoris in the low-oxygen high-density fermentation process is improved, and the industrial production potential of the recombinant Pichia pastoris is enhanced.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0083] 图 1 : 实验思路与方案; [0083] FIG. 1 : Experimental ideas and solutions;
[0084] 图 2: eg2核苷酸序列优化前后对比; Figure 2: Comparison of the eg2 nucleotide sequence before and after optimization;
[0085] 图 3: eg2氨基酸序列优化前后对比; [0086] 图 4: PPIC9K-eg2表达载体图谱; Figure 3: Comparison of the eg2 amino acid sequence before and after optimization; Figure 4: P PIC9K-eg2 expression vector map;
[0087] 图 5: 1%核酸胶电泳:  Figure 5: 1% nucleic acid gel electrophoresis:
[0088] 1: Sac l单酶切表达载体 pPIC9K-eg2,  [0088] 1: Sac l single digestion expression vector pPIC9K-eg2,
[0089] 2: EcoR I与 Not l双酶切表达载体 pPIC9K-eg2;  [0089] 2: EcoR I and Not l double digestion expression vector pPIC9K-eg2;
[0090] 图 6: 高产重组 EG II蛋白菌株筛选;  Figure 6: Screening of high-yield recombinant EG II protein strains;
[0091] 图 7: pPICZaA-vgb表达载体图谱;  Figure 7: Map of the pPICZaA-vgb expression vector;
[0092] 图 8: 1%核酸胶电泳:  Figure 8: 1% nucleic acid gel electrophoresis:
[0093] 1: Sac l单酶切表达载体 pPICZaA-vgb,  [0093] 1: Sac l single digestion expression vector pPICZaA-vgb,
[0094] 2: EcoR I与 Not l双酶切表达载体 pPICZaA-vgb;  2: EcoR I and Not l double digestion expression vector pPICZaA-vgb;
[0095] pPICZaA-vgb构建成功, 酶切后核酸电泳图  [0095] pPICZaA-vgb was successfully constructed, and the nucleic acid electrophoresis pattern after digestion
[0096] 图 9: 高产重组 EG II蛋白共表达菌株筛选  Figure 9: Screening of high-yield recombinant EG II protein co-expression strains
[0097] 图 10: 菌落 PCR验证共表达菌株:  Figure 10: Colony PCR validation of co-expressing strains:
[0098] P: 毕赤酵母原菌,  P: Pichia pastoris,
[0099] E: EG II重组毕赤酵母菌,  E: EG II recombinant Pichia,
[0100] VE1, VE25, VE31等: EG II和 VHb共表达菌株;  VE1, VE25, VE31, etc.: EG II and VHb co-expressing strains;
[0101] 图 11 : 全波长扫描 CO气体处理后的 EG II和 VHb共表达菌株发酵上清液;  Figure 11: Full-wavelength scanning of the fermentation supernatant of EG II and VHb co-expressing strains after CO gas treatment;
[0102] 图 12: EG II重组菌株与 EG II和 VHb共表达菌株生长与产酶能力比较:  Figure 12: Comparison of growth and enzyme production abilities of EG II recombinant strains with EG II and VHb co-expressing strains:
[0103] A: 菌株产酶能力比较, A: Comparison of the ability of the strain to produce enzymes,
[0104] B: 菌株生长能力比较。 B: Comparison of strain growth ability.
本发明的实施方式 Embodiments of the invention
[0105] 本发明构建了一种共表达透明颤菌血红蛋白基因和里氏木霉葡聚糖内切酶 II基 因的毕赤酵母, 以提高重组菌株氧气利用效率, 从而提高其菌浓以及产酶能力 , 构建思路如图 1所示。  The present invention constructs a Pichia pastoris which coexpresses the Vitreoscilla hemoglobin gene and the T. reesei endoglucanase II gene, thereby improving the oxygen utilization efficiency of the recombinant strain, thereby increasing the concentration of the bacteria and producing the enzyme. The ability to build ideas is shown in Figure 1.
[0106] 实施例 1 : 里氏木霉葡聚糖内切酶 II (EG II)基因密码子优化与表达载体构建。 Example 1 : Codon optimization of the T. reesei endoglucanase II (EG II) gene and construction of an expression vector.
[0107] 1、 本发明利用 Gene Designer (DNA2.0, Menlo Park, CA, USA)实现如 SEQ ID[0107] 1. The present invention utilizes Gene Designer (DNA2.0, Menlo Park, CA, USA) to implement SEQ ID
NO. 1所示 EG II (GenBank Accession No. DQ178347.1)核苷酸序列密码子偏向性优 化, 优化后核苷酸序列如 SEQ ID NO. 3所示。 通过密码子优化后的氨基酸序列与 原始氨基酸序列一致, 如 SEQ ID NO. 2所示。 以1¾1^& &810]"18 08115作为宿主, 通过密码子偏向性优化后核苷酸序列与原始核苷酸序列对比见图 2, 通过密码子 偏向性优化后氨基酸序列与原始氨基酸序列对比见图 3。 The nucleotide sequence codon biasing of EG II (GenBank Accession No. DQ178347.1) shown in NO. 1 is optimized, and the optimized nucleotide sequence is shown in SEQ ID NO. Codon-optimized amino acid sequence and The original amino acid sequence is identical as shown in SEQ ID NO. Using 13⁄41^&&810]"18 08115 as the host, the nucleotide sequence is optimized by codon bias and the original nucleotide sequence is shown in Figure 2. The amino acid sequence is compared with the original amino acid sequence by codon bias optimization. 3.
[0108] 2、 以 5'端酶切位点为 EcoR I, 3'端酶切位点为 Not [0108] 2. The 5' end cleavage site is EcoR I, and the 3' end cleavage site is Not
I作为双酶切位点, 插入 pPIC9K质粒载体 AOX1启动子下游, 构建表达载体 pPIC9 K-eg2, 表达载体图谱见图 4。 并通过双酶切对表达载体进行验证, 以确定表达 载体 PPIC9K-eg2构建成功, 酶切后核酸电泳图见图 5。 As a double restriction site, I inserted into the downstream of the pOX9K plasmid vector AOX1 promoter to construct the expression vector pPIC9 K-eg2. The expression vector map is shown in Fig. 4. The expression vector was verified by double enzyme digestion to confirm the successful construction of the expression vector P PIC9K-eg2. The nucleic acid electrophoresis pattern after digestion was shown in Fig. 5.
[0109] 实施例 2: 线性化表达载体并进行电转化以及筛选高产菌株。 Example 2: Linearization of expression vectors and electroporation and screening of high-yielding strains.
[0110] 1、 以 Sac l作为 PPIC9K-eg2表达载体线性化位点, 实现表达载体线性化, 核酸 电泳对线性化后的质粒进行验证, 见图 5。 通过电转化转入 Pichia pastoriS GS115 , 获得重组菌株, 利用遗传霉素 G-418浓度梯度筛选多拷贝转化子, 将能在高浓 度抗性平板上正常生长的菌落通过摇瓶发酵获得高产菌株, 于 120 h处利用 DNS 法测定发酵上清液 CMC酶活, 见图 6, 其中, 1个单位酶活单位定义为在 50 oC水 浴条件下, 1分钟内能转化 1 μηιοΐ底物的酶量。 [0110] 1. Using Sac l as a linearization site of P PIC9K-eg2 expression vector, linearize the expression vector, and verify the linearized plasmid by nucleic acid electrophoresis, as shown in FIG. 5 . By electrotransformation, Pichia pastori S GS115 was transferred to obtain a recombinant strain, and multi-copy transformants were screened by using a geneticin G-418 concentration gradient, and high-yield strains were obtained by shake flask fermentation of colonies capable of normal growth on high-concentration resistant plates. The CMC enzyme activity of the fermentation supernatant was determined by the DNS method at 120 h, as shown in Fig. 6. One unit of enzyme activity unit was defined as the amount of enzyme capable of converting 1 μηιοΐ substrate in 1 minute under a water bath condition of 50 °C.
[0111] 实施例 3: 透明颤菌血红蛋白 (VHb)基因的获取与表达载体构建。 Example 3: Acquisition of the Vitreoscilla hemoglobin (VHb) gene and construction of an expression vector.
[0112] 1、 从 NCBI中获取透明颤菌血红蛋白基因 (GenBank Accession No. M30794.1) , 在 5'端添加 EcoR I酶切位点, 3'端添加 Not I酶切位点, 通过人工合成获得目的基 因。 1. The Vitreoscilla hemoglobin gene (GenBank Accession No. M30794.1) was obtained from NCBI, the EcoR I restriction site was added at the 5' end, and the Not I restriction site was added at the 3' end, and artificial synthesis was performed. Obtain the gene of interest.
[0113] 2、 以 5'端酶切位点为 EcoR I, 3'端酶切位点为 Not  [0113] 2. The 5' end cleavage site is EcoR I, and the 3' end cleavage site is Not
I作为双酶切位点, 插入 pPICZotA质粒载体 AOX1启动子下游, 构建表达载体 pPI I as a double restriction site, inserted into the pPICZotA plasmid vector downstream of the AOX1 promoter to construct the expression vector pPI
CZaA-vgb, 表达载体图谱见图 7。 并通过双酶切对表达载体进行验证, 以确定表 达载体 pPICZotA-vgb构建成功, 酶切后核酸电泳图见图 8。 CZaA-vgb, the expression vector map is shown in Figure 7. The expression vector was verified by double enzyme digestion to confirm the successful construction of the expression vector pPICZotA-vgb, and the nucleic acid electrophoresis pattern after digestion was shown in Fig. 8.
[0114] 实施例 4: 线性化表达载体 pPICZotA-vgb并进行电转化以及筛选共表达高产菌 株。 Example 4: The expression vector pPICZotA-vgb was linearized and electrotransformed and screened for co-expressing high-yielding strains.
[0115] 1、 以 Sac l作为 pPICZotA-vgb表达载体线性化位点, 实现表达载体线性化, 核 酸电泳对线性化后的质粒进行验证, 见图 8。 通过电转化转入含有 eg2基因的重组 Pichia pastoris GS115 , 获得共表达重组菌株, 利用抗生素 Zeocin浓度梯度筛选多 拷贝转化子, 将能在高浓度抗性平板上正常生长的菌落通过摇瓶发酵获得高产 菌株, 于 72 h取样并利用 DNS法测定发酵上清液 CMC酶活, 见图 9。 另外, 对这 些菌株进行菌落 PCR, 用以验证 vgb基因与 eg2基因共同存在于毕赤酵母宿主染色 体中, 结果如图 10所示。 [0115] 1. The Sac l is used as a linearization site of the pPICZotA-vgb expression vector to realize linearization of the expression vector, and the linearized plasmid is verified by nucleic acid electrophoresis, as shown in FIG. 8 . The recombinant Pichia pastoris GS115 containing the eg2 gene was transformed by electroporation to obtain a co-expressing recombinant strain, and the multi-copy transformants were screened by the antibiotic Zeocin concentration gradient, and the colonies which can grow normally on the high-concentration resistant plate were fermented by shake flask to obtain high yield. The strain was sampled at 72 h and the CMC enzyme activity of the fermentation supernatant was determined by DNS method, as shown in Fig. 9. In addition, colony PCR was carried out on these strains to verify that the vgb gene and the eg2 gene coexist in the Pichia host chromosome, and the results are shown in FIG.
[0116] 实施例 5: 重组 VHb蛋白活性检测。 Example 5: Detection of recombinant VHb protein activity.
[0117] CO与 VHb蛋白能够发生不可逆的结合, 形成稳定的卟啉环结构, 这种结构在 特定波长下具有吸收峰, 因此可以利用此方法对重组 VHb蛋白进行检测。  The CO and VHb proteins are capable of irreversible binding to form a stable porphyrin ring structure which has an absorption peak at a specific wavelength, and thus the recombinant VHb protein can be detected by this method.
[0118] 将 EG II重组菌株与 EG II和 VHb共表达菌株分别接入发酵培养基, 发酵培养 120 h后, 取发酵液上清, 用过量 Na2S204 (保险粉) 作为还原剂处理发酵液 10 min 后, 将 CO通入发酵液中 3 min。 以 EG II重组菌株发酵上清液作为空白对照, 利用 日立 U3900分光光度计进行全波长扫描, 波长范围 300至 500 nm。 结果如图 11所 示。  [0118] The EG II recombinant strain and the EG II and VHb co-expressing strains were respectively introduced into the fermentation medium, and after fermentation for 120 h, the supernatant of the fermentation broth was taken, and the fermentation broth was treated with excess Na2S204 (safety powder) as a reducing agent for 10 min. After that, CO was introduced into the fermentation broth for 3 min. The fermentation supernatant of the EG II recombinant strain was used as a blank control, and the full-wavelength scanning was performed using a Hitachi U3900 spectrophotometer with a wavelength range of 300 to 500 nm. The result is shown in Figure 11.
[0119] 实施例 6: EG II重组菌株与 EG II和 VHb共表达菌株的产酶水平比较。  Example 6: Comparison of enzyme production levels of EG II recombinant strains with EG II and VHb co-expressing strains.
[0120] 1、 以 BMMY作为产酶培养基, 以甲醇作为诱导剂, 以甲醇添加量 1.5%实现产 酶, 取 72 h、 96 h与 120 h样品进行酶活测定以及菌浓测定, 对 EG  [0120] 1. BMMY was used as the enzyme-producing medium, methanol was used as the inducer, and the enzyme was produced by 1.5% methanol addition. The enzyme activity and the concentration determination were performed for 72 h, 96 h and 120 h samples.
II重组菌株与 EG  II recombinant strain and EG
II和 VHb共表达菌株从生物量和酶活力方面进行比较, 结果如图 12所示。  The II and VHb co-expressing strains were compared in terms of biomass and enzyme activity, and the results are shown in Fig. 12.
[0121]  [0121]
[0122] [0122]
[0123] <110>江南大学  <110>Jiangnan University
[0124] <120>—种毕赤酵母中共表达血红蛋白 VHb和纤维素酶蛋白的构建方法  <120> A method for constructing co-expressing hemoglobin VHb and cellulase protein in Pichia pastoris
[0125] <160>3  <160>3
[0126]  [0126]
[0127] <210>1  <210>1
[0128] <211>1257 <211>1257
[0129] <212>DNA <212>DNA
[0130] <213>里氏木霉 <213> Trichoderma reesei
[0131] [0131]
[0132] <400>1 i3/:/ 8n/-6osl£ 809960/-Ϊ0Ζ<400>1 I3/:/ 8n/-6osl£ 809960/-Ϊ0Ζ
υυϋυϋυϋυϋυϋ UUUOOOUUowvvov ΐsoΗ ΗΗΗΗΗHH hr Υυϋυϋυϋυϋυϋ UUUOOOUUowvvov ΐsoΗ ΗΗΗΗΗHH hr
feovooϋϋΟϋυυ οϋϋϋυΟυ VO νο ννο ΐ 9 ΐ 0 IhrhΗΗΗΗΗ  FeovooϋϋΟϋυυ οϋϋϋυΟυ VO νο ννο ΐ 9 ΐ 0 IhrhΗΗΗΗΗ
OUU«UUUU0 UOHHHHH HHHH OUU«UUUU0 UOHHHHH HHHH
OObvoosvcsv CBOObv Οϋϋϋυϋ ΐ0£8£ΐοI rylUΗΗΗΗ OObvoosvcsv CBOObv Οϋϋϋυϋ ΐ0£8£ΐοI rylUΗΗΗΗ
OUUUOU UU0soovoov ou«UOU §2ΐοHHHHHHHH rHHH7OUUUOU UU0soovoov ou«UOU §2ΐοHHHHHHHH rHHH7
S0V8Vasb W08000vvwwo UJ;l!lI hr  S0V8Vasb W08000vvwwo UJ;l!lI hr
ν〕ν8ΟνCBVso OOOUUO υυϋϋϋϋϋυ§0ΙΓ ν]ν8ΟνCBVso OOOUUO υυϋϋϋϋϋυ§0ΙΓ
Figure imgf000012_0001
srHHHHΗ
Figure imgf000012_0001
srHHHHΗ
UUO«UυυυϋϋυϋϋϋUOOU VOOO08WsoHHH ΗHHHHH UUO«UυυυϋϋυϋϋϋUOOU VOOO08WsoHHH ΗHHHHH
ϋυϋϋυυ OV8V3WΗΗΗΗU. Ϋυϋϋυυ OV8V3WΗΗΗΗU.
ϋϋϋϋϋϋ OUOUU υϋυϋ«υυϋϋϋυ30 ΗΗΗHHHΗ ΗΗΗ  Ϋϋϋϋϋϋ OUOUU υϋυϋ«υυϋϋϋυ30 ΗΗΗHHHΗ ΗΗΗ
«ΟΟυυϋUUUUOUOUU Οϋϋυϋυ«ΗΗΗ HHHHHHHΗΗ S ISId VNI dOO OIIOON丛 ¾V入應 ΐαΛΙ:)入 V£HS 00 ΐ 8 ΐ [1/9 ΐ 0] «ΟΟυυϋUUUUOUOUU Οϋϋυϋυ«ΗΗΗ HHHHHHHΗΗ S ISId VNI dOO OIIOON plex 3⁄4V into ΐαΛΙ:) into V£HS 00 ΐ 8 ΐ [1/9 ΐ 0]
ΛΊόα入: SaiNOOlNNN  ΛΊόα入: SaiNOOlNNN
ΛΊ入 0丛 OAcTra dllHOaaNAd H0IM00IOad入 NNS01 N31d IZl [£910] d入 A3SIA I ) ai!DOdadOV INAOVd¾AOS SlddlSSSlS IV¾IIIIdOS dd¾ISIIIII 19 [ 910]  Into 0 cluster OAcTra dllHOaaNAd H0IM00IOad into NNS01 N31d IZl [£910] d into A3SIA I ) ai!DOdadOV INAOVd3⁄4AOS SlddlSSSlS IV3⁄4IIIIdOS dd3⁄4ISIIIII 19 [ 910]
VOdD0V入入 d NlISDVSOdV  VOdD0V entry d NlISDVSOdV
DNIdOS OIO Οθ θ Λΐ Υ AVOO入 IIS W 1TWVAS3讓 ΐ [ ΐ 9 ΐ 0]
Figure imgf000013_0001
DNIdOS OIO Οθ θ Λΐ Υ AVOO into IIS W 1TWVAS3 let ΐ [ ΐ 9 ΐ 0]
Figure imgf000013_0001
[6SI0] 龔氺 面<£ > [8SI0] [6SI0] 龚氺面<£ > [8SI0]
I¾d< l > [L£10]
Figure imgf000013_0002
I3⁄4d< l > [L£10]
Figure imgf000013_0002
Z< \Z> [ζζ\ \  Z< \Z> [ζζ\ \
[νς\ο\ [νς\ο\
OVIOVVV OVVDODIDIOOVIOVVV OVVDODIDIO
IODIDOVDIO OIIDDIVDVD VOODVOOIVD IDVVIOOIOV Ϊ0Π [£S10] IODIDOVDIO OIIDDIVDVD VOODVOOIVD IDVVIOOIOV Ϊ0Π [£S10]
DOOIDVODDV DVVVOODVOI DOOIDVODDV DVVVOODVOI
DDIOIVIODV DOVIVOIIIV DIVOODDOIO OOOllOOllO ΐ1/ΐ ΐ [Ζζ\ \ DDIOIVIODV DOVIVOIIIV DIVOODDOIO OOOllOOllO ΐ1/ΐ ΐ [Ζζ\ \
IVIDOOIIDI VIDIOIVOVD  IVIDOOIIDI VIDIOIVOVD
1801 [1S10] VIVDOIDDIO VDIIODVVDO  1801 [1S10] VIVDOIDDIO VDIIODVVDO
ΐ Οΐ [osio] ΐ Οΐ [osio]
VODDIDOOII DYDDOLLDODVODDIDOOII DYDDOLLDOD
DLDLLLLDDO DOODVOIIVD VVIVVVDVID VIOIVVODDO 196 [6W0] DLDLLLLDDO DOODVOIIVD VVIVVVDVID VIOIVVODDO 196 [6W0]
DVDIDVIOOD DIDVVDVOVD DVDIDVIOOD DIDVVDVOVD
IDVOOIIDVI VVVDVDOIOD VOimiVOl DIVVODVVDV 106 [8W0] IDVOOIIDVI VVVDVDOIOD VOimiVOl DIVVODVVDV 106 [8W0]
VDIOOOIVOO DDDVVODVDI VDIOOOIVOO DDDVVODVDI
OVVDIDIOID DDODDOYDOL OVDOOIVODD rVlV llIDO 11/8 [Δ1/Ϊ0] OVVDIDIOID DDODDOYDOL OVDOOIVODD rVlV llIDO 11/8 [Δ1/Ϊ0]
8ll.60/ST0ZN3/X3d 809960/.Ϊ0Ζ OAV 8ll.60/ST0ZN3/X3d 809960/.Ϊ0Ζ OAV
Zl DVDVVDOIVV VDIOOIIVIO Zl DVDVVDOIVV VDIOOIIVIO
\9£ [mo \9£ [mo
YDDDYLLLOO YYDDLLDYLLYDDDYLLLOO YYDDLLDYLL
OIOIDDVIOO DVOIDVIDVI OIIOODIIIV OIIIIOOIDO 10£ [0810 OIOIDDVIOO DVOIDVIDVI OIIOODIIIV OIIIIOOIDO 10£ [0810
DIVDVVIIOI OOIDODIIVO DIVDVVIIOI OOIDODIIVO
VIIOIOODDI IDIIDVVDDV DDLDYDDLLD LDDLLDYDDL I Z [6 0 VIIOIOODDI IDIIDVVDDV DDLDYDDLLD LDDLLDYDDL I Z [6 0
IDVIDOVOVI DVIDVIDVID  IDVIDOVOVI DVIDVIDVID
ODVIDVIVDD DVVOIIDDVI DLLOLLDODD LLOOYDDLDO IZl LLIO ODVIDVIVDD DVVOIIDDVI DLLOLLDODD LLOOYDDLDO IZl LLIO
LOLDYYLDYL DDLOODDLOO LOLDYYLDYL DDLOODDLOO
IIOODIVIOO IOOIOIVVDI OOOOIIIODD VVVDOVDIDO 19 [9 0 IIOODIVIOO IOOIOIVVDI OOOOIIIODD VVVDOVDIDO 19 [9 0
VDDIIDOIDO OIIOIIOIII DDLDOLLODD IVVVIVVOIV ΐ ξίΙΟ VDDIIDOIDO OIIOIIOIII DDLDOLLODD IVVVIVVOIV ΐ ξίΙΟ
£<00 > [ LIO  £<00 > [ LIO
[£L\0 工丫 <ει〉 ZL\ Ω<Ζ\Ζ> [mo [£L\0 工丫 <ει> ZL\ Ω<Ζ\Ζ> [mo
Δ^ΐ<Π > [ L\Δ^ΐ<Π > [ L\
£<01Ζ> [6910 £<01Ζ> [6910
[8910  [8910
ΟΙίΙ^ΓΊΛ入 1 SHSOVO丛 ΟΛ入 ΟΊ入 AISN0N Ί入 0100 0 19£ [Δ9Ι0 ΟΙίΙ^ Input 1 SHSOVO plex ΟΊ Input AISN0N Input 0100 0 19£ [Δ9Ι0
IDS ANOOOI 3ΠΙΥ ¾ΝΝ  IDS ANOOOI 3ΠΙΥ 3⁄4ΝΝ
¾i ividSdv oaiNNiiDav HiosNascn入 ΉΗΛαίΠΊΝΐι ΐ οε [99 ΐ 0  3⁄4i ividSdv oaiNNiiDav HiosNascn into ΉΗΛαίΠΊΝΐι ΐ οε [99 ΐ 0
SOadNIA Sl vvvsoasidv SOadNIA Sl vvvsoasidv
OVS A\.aNOdl SH SIVOVN ΉΐνΐΛΛΗ ΛΙ VV ININAaH ΙΡΖ [£910 d3讓 IO 丛 Λ¾ S SVA3SV1 ll.60/ST0ZN3/X3d 809960/.Ϊ0Ζ OAV OVS A\.aNOdl SH SIVOVN ΉΐνΐΛΛΗ ΛΙ VV ININAaH ΙΡΖ [£910 d3 let IO plex Λ3⁄4 S SVA3SV1 ll.60/ST0ZN3/X3d 809960/.Ϊ0Ζ OAV
£1 [0182] 421 TTCGTTAACG AGGACGGTAT GACTATCTTT AGATTGCCAG TTGGTTGGCA ATACTTGGTT £1 421 TTCGTTAACG AGGACGGTAT GACTATCTTT AGATTGCCAG TTGGTTGGCA ATACTTGGTT
CCAAGTACGA CCAATTGGTT CCAAGTACGA CCAATTGGTT
[0184] 541 CAGGGTTGTT TGTCCTTGGG TGCTTACTGT ATCGTTGACA541 CAGGGTTGTT TGTCCTTGGG TGCTTACTGT ATCGTTGACA
TTCACAACTA CGCTAGATGG TTCACAACTA CGCTAGATGG
[0185] 601 AACGGTGGTA TCATTGGTCA GGGTGGTCCA ACTAACGCTC601 AACGGTGGTA TCATTGGTCA GGGTGGTCCA ACTAACGCTC
AATTCACTTC TTTGTGGTCT AATTCACTTC TTTGTGGTCT
[0186] 661 CAATTGGCTT CCAAGTACGC TTCTCAATCC AGAGTTTGGT661 CAATTGGCTT CCAAGTACGC TTCTCAATCC AGAGTTTGGT
TCGGTATCAT GAACGAGCCA TCGGTATCAT GAACGAGCCA
AGGTTGTTAC TGCTATCAGA AGGTTGTTAC TGCTATCAGA
[0188] 781 AACGCTGGTG CTACTTCTCA ATTCATTTCC TTGCCAGGTA781 AACGCTGGTG CTACTTCTCA ATTCATTTCC TTGCCAGGTA
ACGACTGGCA GTCTGCTGGT ACGACTGGCA GTCTGCTGGT
[0189] 841 GCTTTCATTT CTGATGGTTC CGCTGCTGCT TTGTCCCAAG841 GCTTTCATTT CTGATGGTTC CGCTGCTGCT TTGTCCCAAG
TTACTAACCC AGACGGTTCC TTACTAACCC AGACGGTTCC
CTGACAACTC CGGTACTCAC CTTTGGCTAC TTGGTTGAGA GTAACGTTCA GTCCTGTATC CTGACAACTC CGGTACTCAC CTTTGGCTAC TTGGTTGAGA GTAACGTTCA GTCCTGTATC
CCGACGTTTA CTTGGGTTAC CCGACGTTTA CTTGGGTTAC
[0194] 1141 GTTGGTTGGG GTGCTGGTTC TTTCGACTCT ACTTACGTTT1141 GTTGGTTGGG GTGCTGGTTC TTTCGACTCT ACTTACGTTT
TGACTGAAAC TCCAACTGGT TGACTGAAAC TCCAACTGGT
[0195] 1201 TCCGGTAACT CCTGGACTGA CACTTCCTTG GTTTCTTCCT1201 TCCGGTAACT CCTGGACTGA CACTTCCTTG GTTTCTTCCT
GTTTGGCTAG AAAGTAA。 GTTTGGCTAG AAAGTAA.

Claims

权利要求书 Claim
[权利要求 1] 一种毕赤酵母中共表达血红蛋白 VHb和纤维素酶蛋白的构建方法, 其 特征在于如下步骤:  [Claim 1] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris, which is characterized by the following steps:
1)密码子偏向性优化: 本发明利用软件 Gene Designer实现对 SEQ ID NO.1所示的 EG  1) Codon bias optimization: The present invention implements the EG shown in SEQ ID NO. 1 using the software Gene Designer.
I〗  I〗
核苷酸序列密码子偏向性优化, 优化后核苷酸序列如 SEQ ID N0.3所 示。  The nucleotide sequence codon bias is optimized, and the optimized nucleotide sequence is shown in SEQ ID N0.3.
2) pPIC9K-eg2表达载体构建: 以质粒 pPIC9K为载体, 将优化后的 EG 基因插入启动子 AOX1下游, 5'端酶切位点为 EcoR 2) Construction of pPIC9K-eg2 expression vector: The plasmid pPIC9K was used as a vector, and the optimized EG gene was inserted into the promoter downstream of AOX1, and the 5' end restriction site was EcoR.
I I
, 3'端酶切位点为 NW  , 3' end cleavage site is NW
I  I
, 构建 pPIC9K-eg2表达载体。  , Construction of pPIC9K-eg2 expression vector.
3)获取重组菌株: 以《¾c  3) Obtain the recombinant strain: "3⁄4c
I  I
作为 PPIC9K-eg2表达载体线性化位点, 实现表达载体线性化, 通过电 转化转入毕赤酵母。 As a linearization site of the P PIC9K-eg2 expression vector, the expression vector was linearized and transferred to Pichia pastoris by electroporation.
4)获得 vgb基因: 从 NCBI中获取透明颤菌血红蛋白基因, 在 5'端添加 EcoR  4) Obtaining the vgb gene: Obtaining the Vitreoscilla hemoglobin gene from NCBI and adding EcoR at the 5' end
I  I
酶切位点, 3'端添加 Noi Ϊ  Enzyme cleavage site, add Noi 3 at the 3' end
酶切位点, 通过人工合成获得目的基因。  The target gene is obtained by artificial synthesis.
5) pPICZaA-vgb表达载体构建: 以质粒 pPICZaA作为载体, 将 vgb基 因插入启动子 AOX1下游, 5'端酶切位点为 EcoR Ϊ 5) Construction of pPICZaA-vgb expression vector: using plasmid pPICZaA as a vector, vgb-based Due to the insertion of the promoter downstream of AOX1, the 5' end cleavage site is EcoR Ϊ
, 3'端酶切位点为 NW , 3' end cleavage site is NW
I  I
, 构建 pPICZotA-vgb表达载体。  , Construction of pPICZotA-vgb expression vector.
6)通过高浓度遗传霉素 G-418与博来霉素双抗性筛选得到高拷贝共表 达菌株。  6) High-copy co-expressed strains were screened by high-concentration geneticin G-418 and bleomycin double resistance screening.
7)比较 EG重组菌株与 EG和 VHb共表达菌株的产酶水平。  7) Comparison of the enzyme production levels of the EG recombinant strain and the EG and VHb co-expressing strains.
[权利要求 2] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 1)密码子偏向性优化, 密码子主要是指编 码内切纤维素酶、 外切纤维素酶、 β-葡萄和糖苷酶, 以及木聚糖酶和 木糖苷酶, 另外也涉及半纤维素侧链水解相关的酶类。  [Claim 2] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein step 1) codon bias optimization, codon mainly refers to encoding endo-cellulosic Enzymes, exocellulases, beta-grains and glycosidases, as well as xylanases and xylosidase, are also involved in hemicellulose side chain hydrolysis-related enzymes.
[权利要求 3] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其描述的共表达重组菌株, 是指重组毕赤酵母菌  [Claim 3] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the co-expressing recombinant strain refers to recombinant Pichia pastoris
[权利要求 4] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其重组菌株能够稳定高效表达纤维素酶蛋白, 且 共表达毕赤酵母菌株在纤维素酶蛋白的同吋能够产有活性的 VHb蛋白 [Claim 4] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the recombinant strain stably and efficiently expresses cellulase protein, and co-expresses Pichia pastoris strain The homolog of the cellulase protein can produce active VHb protein
[权利要求 5] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 1)的 EG是由如 SEQ ID NO. l或 SEQ ID N0.3所示核苷酸序列所编码的里氏木霉葡聚糖外切酶基因。 [Claim 5] The method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the EG of step 1) is SEQ ID NO. 1 or SEQ ID N0.3 The T. reesei exonuclease gene encoded by the indicated nucleotide sequence.
[权利要求 6] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 1)中描述的 EG II基因密码子偏向性优化, 优化后 EG核苷酸序列如 SEQ ID N0.3所示。  [Claim 6] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the EG II gene codon bias is optimized in step 1), and the optimized EG core The nucleotide sequence is shown in SEQ ID N0.3.
[权利要求 7] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 1)中描述的 EG 基因, 其氨基酸序列如 SEQ ID N0.2所示。 [Claim 7] A method for constructing a co-expressed hemoglobin VHb and a cellulase protein in Pichia pastoris according to claim 1, wherein the EG described in the step 1) The gene has an amino acid sequence as shown in SEQ ID N0.2.
[权利要求 8] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 2)中描述的表达载体, 为 PPIC9K-eg2表达 载体。 [Claim 8] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the expression vector described in the step 2) is a P PIC9K-eg2 expression vector.
[权利要求 9] 根据权利要求 1所述的一种毕赤酵母中共表达血红蛋白 VHb和纤维素 酶蛋白的构建方法, 其步骤 5)中描述的表达载体, 为 pPIC9K-vgb表达 载体。  [Claim 9] A method for constructing co-expressed hemoglobin VHb and cellulase protein in Pichia pastoris according to claim 1, wherein the expression vector described in the step 5) is a pPIC9K-vgb expression vector.
PCT/CN2015/097118 2015-12-11 2015-12-11 Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris WO2017096608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097118 WO2017096608A1 (en) 2015-12-11 2015-12-11 Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/097118 WO2017096608A1 (en) 2015-12-11 2015-12-11 Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris

Publications (1)

Publication Number Publication Date
WO2017096608A1 true WO2017096608A1 (en) 2017-06-15

Family

ID=59013671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097118 WO2017096608A1 (en) 2015-12-11 2015-12-11 Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris

Country Status (1)

Country Link
WO (1) WO2017096608A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343624A (en) * 2018-04-03 2019-10-18 中国科学院微生物研究所 A kind of recombinant bacterium and its application in raising yield of cellulase
CN112195192A (en) * 2020-09-30 2021-01-08 贵州大学 Method for effectively expressing NaD1 protein by using yeast expression system
CN112831427A (en) * 2021-01-20 2021-05-25 山东大学 Yarrowia lipolytica for high yield of beta-carotene and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546646A (en) * 2003-12-15 2004-11-17 中国农业科学院生物技术研究所 New yeast Pichia strain suitable for high density fermentation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546646A (en) * 2003-12-15 2004-11-17 中国农业科学院生物技术研究所 New yeast Pichia strain suitable for high density fermentation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKBARZADEH ET AL.: "Characterization and High Level Expression of Acidic Endoglucanase in Pichia Pastoris", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 172, no. 4, 28 February 2014 (2014-02-28), ISSN: 1559-0291 *
WANG, XIAOFENG ET AL.: "Expression of Vitreoscilla Hemoglobin Improves Recombinant Lipase Production in Pichia Pastoris", CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 27, 31 December 2011 (2011-12-31), pages 1755 - 1764, ISSN: 1000-3061 *
WU, J.M. ET AL.: "Intracellular Co-expression of Vitreoscilla Hemoglobin Enhances Cell Performance and beta-galactosidase Production in Pichia Pastoris", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 113, 17 October 2011 (2011-10-17), pages 332 - 337, XP028463084, ISSN: 1389-1723 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343624A (en) * 2018-04-03 2019-10-18 中国科学院微生物研究所 A kind of recombinant bacterium and its application in raising yield of cellulase
CN110343624B (en) * 2018-04-03 2021-06-15 中国科学院微生物研究所 Recombinant strain and application thereof in improving yield of cellulase
CN112195192A (en) * 2020-09-30 2021-01-08 贵州大学 Method for effectively expressing NaD1 protein by using yeast expression system
CN112831427A (en) * 2021-01-20 2021-05-25 山东大学 Yarrowia lipolytica for high yield of beta-carotene and application thereof
CN112831427B (en) * 2021-01-20 2022-08-23 山东大学 Yarrowia lipolytica for high yield of beta-carotene and application thereof

Similar Documents

Publication Publication Date Title
US20200095592A1 (en) Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose
CN105420269A (en) Construction method for co-expression hemoglobin VHb and cellulase protein in pichia pastoris
CN108866025B (en) Cellulase preparation and application thereof
CN102112596B (en) Development of strains of thermotolerant yeast hansenula polymorpha capable of alcoholic fermentation of starch and xylan by expression of starch and xylan degrading enzymes
CN104755617B (en) Polypeptide with cellulolytic enhancing activity and the polynucleotides for encoding them
WO2017096608A1 (en) Construction method for co-expressing vhb hemogloblin and cellulase protein in pichia pastoris
CN105441464A (en) System for codon optimization and pichia pastoris expression of genes of cellobiohydrolase II
CN106434735A (en) Method of increasing yield of lignocellulose substrate hydrolase
CN104789556A (en) Method of carrying out rapid and efficient DNA combination and evolution based on synthesis of single-chain DNA library
WO2018226170A2 (en) Mutant strain clostridium thermocellum for producing cellulase and xylanase and preparation method thereof
CN104220600B (en) Promoter and application thereof
JP7135334B2 (en) Xylanase and its use
CN112921043A (en) Mutant nucleic acid, expression vector, laccase mutant with high specific activity and preparation method thereof
CN106190874B (en) Method for enhancing production of filamentous fungal protein
Xia et al. Combined strategy of transcription factor manipulation and β-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion
CN111770996B (en) Mutant beta-glucosidase
Wang et al. Co-expression of beta-glucosidase and laccase in Trichoderma reesei by random insertion with enhanced filter paper activity
CN111757939B (en) Mutant beta-glucosidase
CN105492612B (en) Recombinant cellulose saccharifying enzyme mixture, recombinant yeast composite strain and application thereof
CN114107360A (en) Method for improving cellulase expression of trichoderma reesei by interfering phosphatase gene
DK2844731T3 (en) MUSHROOM CELLS WHICH MAKE REDUCED QUANTITIES OF PEPTAIBOLS
KR101412468B1 (en) Mutant Beta-glucosidase with Advanced Activity and Process for Preparing Bio-ethanol Employing the Same
Lan et al. Coordinately express hemicellulolytic enzymes in Kluyveromyces marxianus to improve the saccharification and ethanol production from corncobs
Sharma et al. Genome and secretome insights: unravelling the lignocellulolytic potential of Myceliophthora verrucosa for enhanced hydrolysis of lignocellulosic biomass
KR101539535B1 (en) Fungal glycoside hydrolase 61 expressing microorganism and method for promoting cellulose degradation by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910083

Country of ref document: EP

Kind code of ref document: A1