WO2017094980A1 - Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치 - Google Patents

Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치 Download PDF

Info

Publication number
WO2017094980A1
WO2017094980A1 PCT/KR2016/004354 KR2016004354W WO2017094980A1 WO 2017094980 A1 WO2017094980 A1 WO 2017094980A1 KR 2016004354 W KR2016004354 W KR 2016004354W WO 2017094980 A1 WO2017094980 A1 WO 2017094980A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
predetermined threshold
reference signals
power amplifier
digital
Prior art date
Application number
PCT/KR2016/004354
Other languages
English (en)
French (fr)
Inventor
노광석
채찬병
심민수
김동규
정민근
김나래
Original Assignee
엘지전자 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 연세대학교 산학협력단 filed Critical 엘지전자 주식회사
Priority to KR1020187018867A priority Critical patent/KR102512290B1/ko
Publication of WO2017094980A1 publication Critical patent/WO2017094980A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for correcting a nonlinear digital self-interference signal in an FDR environment.
  • Full-duplex communication (Full-duplex communication or Full-Duplex Radio (FDR)) is a technology that allows a node to transmit and receive simultaneously on the same resource.
  • the existing half-duplex communication is a method of dividing the time resource or the frequency resource into orthogonal directions, and the FDR method can theoretically double the capacity of the system compared to the conventional half-duplex communication method. It is a skill.
  • FIG. 1 is a conceptual diagram of a terminal and a base station supporting FDR.
  • Intra-device self-interference Since the transmission and reception are performed at the same time and frequency resources, not only a desired signal but also a signal transmitted by itself is simultaneously received. At this time, since the signal transmitted by the self is received by its reception antenna with little attenuation, it means that the signal is received with a much larger power than the desired signal to act as interference.
  • UE to UE inter-link interference means that an uplink signal transmitted by a UE is received by an adjacent UE and acts as an interference.
  • BS to BS inter-link interference means that signals transmitted between heterogeneous base stations (Picocell, femtocell, relay node) between base stations or HetNet are received by receiving antennas of other base stations and act as interference.
  • heterogeneous base stations Picocell, femtocell, relay node
  • Intra-device self-interference is an interference that occurs only in the FDR system, which greatly degrades the performance of the FDR system and is the first problem to be solved in order to operate the FDR system. to be.
  • An object of the present invention is to provide an apparatus for correcting a nonlinear digital self-interference signal in an FDR environment.
  • Another object of the present invention is to provide a method for correcting a nonlinear digital self-interference signal in an FDR environment.
  • an apparatus for correcting a nonlinear digital self-interference signal in a full duplex radio (FDR) environment the baseband unit; Power amplifiers; A channel estimator estimating a radio channel coefficient between a transmitting end and a receiving end of the apparatus using reference signals having a transmission power lower than a predetermined threshold transmitted from the base band unit; The power amplifier is equalized to the estimated radio channel for the received signal after passing through the power amplifier using a reference signal having a transmission power higher than the predetermined threshold transmitted by the base band unit and being nonlinearly distorted at the receiving end.
  • FDR full duplex radio
  • a digital precorrection function generator for reconstructing the passed nonlinear distortion output signal and generating a digital precorrection function based on the reconstructed nonlinear distortion output signal and the linear gain of the power amplifier; And a digital predistorter for performing digital predistortion by applying the generated digital prediction correction function to an output signal in a baseband of the transmitter.
  • the baseband unit may transmit reference signals having a transmission power lower than the predetermined threshold and reference signals having a transmission power higher than the predetermined threshold on different symbols in the time domain.
  • the baseband unit may transmit reference signals having a transmission power lower than the predetermined threshold or reference signals having a transmission power higher than the predetermined threshold on all subcarriers of the subframe in the frequency domain.
  • the transmit power lower than the predetermined threshold may be power that maintains a linear characteristic between the input signal and the output signal of the power amplifier.
  • the transmit power higher than the predetermined threshold may correspond to power causing nonlinear distortion between the input signal and the output signal of the power amplifier.
  • the reconstruction of the nonlinear distortion output signal may be reconstructed using a reconstruction function corresponding to the reference signals having the high transmission power divided by the estimated radio channel coefficients of the signal input to the receiver through the radio channel.
  • the digital precorrection function may correspond to a function obtained by dividing the linear gain of the power amplifier by the restoration function.
  • a quadrature phase shift keying (QPSK) modulation scheme may be applied to a symbol to which reference signals having a transmission power lower than the predetermined threshold are transmitted.
  • QPSK quadrature phase shift keying
  • a 64QAM (Quadrature Amplitude Modulation) modulation scheme may be applied to a symbol to which reference signals having a transmission power higher than the predetermined threshold are transmitted.
  • Reference signals having a transmission power lower than the predetermined threshold or reference signals having a transmission power higher than the predetermined threshold may be periodically transmitted in subframe units.
  • a method for correcting a nonlinear digital self-interference signal in a full duplex radio (FDR) environment uses reference signals having a transmission power lower than a predetermined threshold transmitted from the base band unit. Estimating a radio channel coefficient between a transmitting end and a receiving end of the apparatus; The power amplifier is equalized to the estimated radio channel for the received signal after passing through the power amplifier using a reference signal having a transmission power higher than the predetermined threshold transmitted by the base band unit and being nonlinearly distorted at the receiving end.
  • FDR full duplex radio
  • Restoring the passed nonlinear distortion output signal Generating a digital precorrection function based on the reconstructed nonlinear distortion output signal and the linear gain of the power amplifier; And applying the generated digital precorrection function to an output signal in a baseband of the transmitter to perform digital precorrection.
  • FIG. 1 is a conceptual diagram of a terminal and a base station supporting FDR.
  • FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • FIG. 3 is a diagram illustrating a position at which three interference techniques are applied at an RF transmitter / receiver of an apparatus.
  • FIG. 4 is a diagram illustrating a structure of a reference signal or a reference signal for measuring the nonlinearity coefficient.
  • FIG. 5 is a diagram exemplarily illustrating an RF transmitter / receiver structure of an apparatus for removing nonlinear self-interference in an FDR environment.
  • FIG. 6 is a diagram illustrating a structure of a special reference signal for obtaining an output signal of a power amplifier proposed in the present invention.
  • FIG. 7 is a diagram illustrating a structure of a reference signal for self-interference cancellation.
  • FIG. 8 is a diagram exemplarily illustrating an RF transmitter / receiver structure of an apparatus for removing nonlinear self-interference in an FDR environment.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a block diagram showing the configuration of the base station 105 and the terminal 110 in the wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • the present invention relates to the elimination of self-interference in the FDR communication, and proposes a technique for eliminating the interference after minimizing the nonlinearity of the power amplifier by using a digital pre-correction algorithm.
  • a structure of reference signal and an operation method of pre-correction algorithm we propose a structure of reference signal and an operation method of pre-correction algorithm.
  • FIG. 3 is a diagram illustrating a position at which three interference techniques are applied at an RF transmitter / receiver of an apparatus.
  • FIG. 3 application locations of three self-interference cancellation techniques (Self-IC technique) are shown. The following three self-IC techniques are briefly described.
  • the self-interference cancellation technique that should be implemented first is the antenna self-interference cancellation technique.
  • Self-interference cancellation is performed at the antenna stage.
  • the simplest is to physically block the transmission of the self-interfering signal by installing an object that can block the signal between the transmitting and receiving antennas, artificially adjusting the distance between the antennas by using multiple antennas, or by applying a phase to a specific transmitting signal. Inverting can remove some of the interference signal.
  • a part of the self-interfering signal may be removed by using a multi-polarized antenna or a directional antenna.
  • Analog Self-IC technique A technique that removes interference at the analog stage before the received signal passes through the ADC (Analog-to-Digital Convertor). It is a technique to remove. This may be performed in the RF domain or the IF domain. The method of removing the self-interference signal is described in detail as follows. First, it delays the transmitted analog signal and adjusts its magnitude and phase to make a duplicate signal of the actual interference signal, and then subtracts it from the signal received by the receiving antenna. However, since the analog signal is processed, additional distortion may occur due to implementation complexity and circuit characteristics, and thus, interference cancellation performance may be greatly changed.
  • Digital Self-Interference Cancellation A technique that removes interference after the received signal passes through the ADC and includes all interference cancellation techniques performed in the baseband part. In the simplest case, it is possible to create a self-interference duplicated signal using the transmitted digital signal and subtract it from the received digital signal. Alternatively, techniques for preventing a transmission signal to a terminal or a base station from being received by a reception antenna by performing precoding / postcoding in a baseband using multiple antennas may also be classified as digital self-interference cancellation techniques.
  • the PH model is a representative model for modeling nonlinear systems, and most existing self-interference cancellation techniques use the PH model.
  • the PH model is a polynomial function model having a memory effect and can be expressed by Equation 1 below.
  • Equation 1 x (n) is a power amplifier (PA) input, y (n) is a power amplifier output, b 2k + 1, l is a coefficient to be estimated, L + 1 is the number of taps in the system, K + 1 Is the number of nonlinear components that need to be estimated.
  • FIG. 4 is a diagram illustrating a structure of a reference signal or a reference signal for measuring the nonlinearity coefficient.
  • the device may measure the nonlinearity coefficients using the reference signals R0 and R1.
  • the positions of the reference signals R0 and R1 in FIG. 4 are only examples. Since nonlinear systems, including the PH model, are modeled on the time axis, the reference signal (reference signal) also takes the form of using all subcarriers. Nonlinearity coefficients are estimated using the least square method with reference signals and received signals.
  • the third estimated nonlinear system is used to reconstruct the self-interference signal.
  • the self-interference signal is reconstructed by applying the data signal transmitted to the estimated nonlinear self-interference model. Self-interference is eliminated by subtracting this from the received signal.
  • FIG. 5 is a diagram exemplarily illustrating an RF transmitter / receiver structure of an apparatus for removing nonlinear self-interference in an FDR environment.
  • Self-interference cancellation consists of estimating the nonlinear system at the RF transmitter / receiver of the device and reconstructing the interference.
  • the transmission signal X 101 at the transmitting end is received at the receiving end through the power amplifier PA and the FDR analog self-interference cancellation and the radio channel.
  • the received signal is Y 102
  • the distortion 103 of the power amplifier is denoted by D (X)
  • the integrated model 104 of the analog self-interference cancellation and radio channel is denoted by H.
  • the nonlinear system consists of the distortion 103 of the power amplifier and the analog self-interference cancellation and integrated model 104 of the wireless channel, which uses a nonlinear channel coefficient estimator 105 to estimate this.
  • the nonlinear channel coefficient estimator 105 receives the reference signal X RS 106 and the received reference signal Y RS 107 received after the reference signal X RS 106 has passed through the wireless channel with the power amplifier and the analog self-interference cancellation.
  • the least square method mentioned above is widely used as a method for estimating the nonlinearity coefficient b 2k + 1, l (108).
  • the self-interfering reconstructor 109 reconstructs or reconstructs the self-interfering signal.
  • the self-interfering reconstructor 109 reconstructs or reconstructs the self-interfering signal passing through the nonlinear system based on the estimated nonlinearity coefficient b 2k + 1, l 108 and the transmission signal X101.
  • Reconstructed self-interference signal 110 is removed from the magnetic interference canceller 111. Received signal with self-interference removed through this process (112) can be obtained.
  • the power amplifier and the radio channel are considered together.
  • the wireless channel has a larger memory effect than the power amplifier. That is, compared to modeling only the power amplifier, including the radio channel modeling increases the number of taps of the system (that is, the larger the L) , the greater the number of b 2k + 1, l . As the number of b 2k + 1, l increases, the complexity of estimating this and the complexity of reconstructing the self-interfering signal become large. Is particularly b 2k + 1, the process of estimating l using a least square method by increasing the complexity increases the matrix size as the number of inversion b 2k + 1, where l is more increased.
  • Reference signals or reference signals for nonlinear estimation should use all subcarriers. This is because both the construction of the PH model and the estimation of b 2k + 1, l are made on the time axis. That is, all subcarriers should be used as reference signals to obtain an intact reference signal on the time axis. However, when all subcarriers are used as reference signals, overhead caused by the reference signals increases. Furthermore, since the radio channel is included in the nonlinear system to be estimated, the reference signal should be placed whenever the characteristics of the radio channel change. In general, the overhead of the reference signal becomes very large considering the coherence time of the radio channel.
  • the digital pre-correction algorithm is applied to minimize the nonlinearity of the power amplifier of the transmitter, and then, the linear self-interference cancellation technique is used to efficiently remove the magnetic interference.
  • the present invention proposes a transceiver structure for self-interference cancellation through pre-correction.
  • the present invention proposes a configuration of a reference signal for making a digital precorrection function without an additional receiver or a circuit.
  • the pre-correction function is calculated, the pre-correction is performed to minimize the nonlinearity, and the linear self-interference cancellation technique is used to remove the self-interference.
  • the precorrection function we need to measure the nonlinearity of the power amplifier. In other words, the characteristics of the amplifier are measured using the input signal of the power amplifier and the output signal of the power amplifier before the analog magnetic interference cancellation or the wireless channel.
  • the precorrection function can be found as the inverse of the function representing the characteristics of the power amplifier.
  • One example of calculating the precorrection function is to use a PH model. However, the inverse function of the amplifier can be obtained by converting the input signal and the output signal in the existing PH model.
  • FIG. 6 is a diagram illustrating a structure of a special reference signal for obtaining an output signal of a power amplifier proposed in the present invention.
  • reference signals in downlink and uplink are shown for a subframe including two slots (slot 0 and slot 1), respectively.
  • the nonlinearity of the self-interference signal is mostly generated in the power amplifier of the transmitter, the analogue interference cancellation and the radio channel can be assumed to be linear.
  • the reference signal consists of reference signals LO and L1 having a transmission power lower than a predetermined threshold and reference signals HO and H1 having a transmission power higher than a predetermined threshold.
  • transmission power lower than a predetermined threshold is shown as 13 dBm as an example, and transmission power higher than the predetermined threshold is shown as 23 dBm as an example.
  • the reference signals R0 and R1 are used to measure the nonlinearity coefficient of the self-interference component as described in FIG. 4.
  • the reference signals LO and L1 having low transmit power are used to measure the radio channel without the influence of the power amplifier. If the transmit power is low, it can be assumed that the power amplifier operates linearly. Therefore, in the present invention, reference signals LO and L1 are disposed on all subcarriers in order to increase the accuracy of measuring a radio channel.
  • Reference signals HO and H1 with high transmit power measure the nonlinearity of the power amplifier. The previously measured radio channel can be used to calculate the output signal of the power amplifier before passing through the radio channel.
  • the pre-correction function is obtained, it is applied to the input signal of the power amplifier so that the signal before the pre-correction and the output signal of the power amplifier have a linear relationship. Then, the signal actually sent and pre-compensation, power amplifier, analog self-interference cancellation, and the signal coming in through the wireless channel have a linear relationship. Self-interference cancellation is achieved through linear self-interference cancellation technology.
  • FIG. 7 is a diagram illustrating a structure of a reference signal for self-interference cancellation.
  • the structure of the reference signal for self-interference cancellation may have any structure.
  • the LTE-based scattered reference signal is selected.
  • the reference signals R0 and R1 may be used to measure the nonlinearity coefficient of the self-interference component as described in FIG. 4.
  • one radio frame includes 10 subframes in an LTE / LTE-A system. If a subframe having the reference signal pattern shown in FIG. 6 is transmitted once within one frame, subframes having the reference signal pattern shown in FIG. 7 are transmitted in the remaining 9 subframes periodically for each radio frame. Can be sent.
  • FIG. 8 is a diagram exemplarily illustrating an RF transmitter / receiver structure of an apparatus for removing nonlinear self-interference in an FDR environment.
  • the present invention estimates the model of the power amplifier with low complexity by separately estimating the power amplifier and the self-interfering channel.
  • the transmission signal X 201 at the transmitting end passes through the precorrector 202, the power amplifier (PA) 203, and the wireless channel 204 to enter the receiving signal Y 205 at the receiving end. do.
  • the basic operation of the radio channel estimator 208 is the same as the conventional radio channel estimation operation. Since the power amplifier does not show nonlinearity at low transmit power, it is possible to estimate the linear radio channel H 204 without the nonlinearity of the power amplifier.
  • the channel is estimated using the least square method and the estimated channel coefficient 209 is to be. For each subcarrier Calculated by the formula (209).
  • X RS, low denotes a reference signal having a low power at the transmitting end
  • Y RS low denotes a received signal that the reference signal having a low transmit power enters the receiving end through the radio channel.
  • a non-linear distorted signal passing through a power amplifier is input to a receiving end through a wireless channel using a signal X P2 210 having a transmission power higher than a predetermined threshold to measure a reception signal Y RS 206.
  • This is the channel estimated in the first step Restore the output signal D (P (X)) 212 of the power amplifier with equalization to the value (209) to produce a nonlinear distortion that does not pass through the channel.
  • the precorrection function generator 213 calculates the digital precorrection function 214 using the input signal P (X) 211 and the reconstructed distorted output signal D (P (X)) 212 of the power amplifier thus obtained. . If the input signal 211 of the power amplifier is represented by p (x) and 212 as d (p (x)) on the time axis, then the digital precorrection function 214 has the input signal d (p (x)) / a. And model the PH with the output signal p (x). Where a is the linear gain of the amplifier. Modeling with a PH model may select a method of finding a pseudo-inverse based PH model coefficient. Therefore, the digital precorrection function is Y RS, high / ( Xa). Here, as described above It can be seen that.
  • Digital precorrection function Y RS, high / ( (A) 214 is applied to the digital predistorter 202 to correct the signal in advance.
  • the digital precorrection generator 213 and the precorrector 202 are illustrated as separate units in FIG. 8, the digital precorrection generator 202 may generate a precorrection function and perform precorrection.
  • the transmitted signal linearized through the digital precorrector 202 is removed through the linear self-interfering signal reconstructor 215 and canceller 217.
  • Reconstructed Self-Interfering Signal 216 is It can be expressed as.
  • Reconstructed self-interference signal from received signal Y 205 coming from the receiving end Subtracting (216) removes self-interference 218 can be obtained. It uses existing linear magnetic interference cancellation technology. As an example, LTE-based scattered reference signals and self-interference cancellation techniques in the frequency domain are applied. It can be expressed as.
  • the reference signals X P1 207 and X P2 210 may have any structure.
  • the QPSK signal is disposed on all subcarriers in the X P1 207 and the 64QAM signal is placed on all subcarriers in the X P2 210.
  • the X P1 207 uses the QPSK modulation method to have the lowest Peak-to-average-power ratio (PAPR), and the X P2 210 chooses the modulation method of 64QAM to have a high PAPR.
  • PAPR Peak-to-average-power ratio
  • the digital precorrection function generator 213 does not precompensate since it did not initially calculate the digital precorrection function 214.
  • the digital precorrection function 214 calculates and updates for every period or condition.
  • nonlinear models including power amplifiers and wireless channels
  • the present invention simplifies the nonlinear model to be considered because of the characteristics of the power amplifier excluding the influence of the wireless channel.
  • the number of nonlinear coefficients in the nonlinear model decreased. It is not exactly modeling the nonlinearity of the power amplifier but calculating the precorrection function, but since the precorrection function is the inverse of the nonlinearity of the power amplifier, the less the coefficient of the nonlinearity model, the less the coefficient of the precorrection function. This reduces complexity and makes nonlinear models simple enough to be calculated in real time.
  • the present invention is basically based on a linear self-interference cancellation technique. Therefore, the complexity or overhead of the reference signal is very low compared to the prior art. Only the reference signal for generating the predistortion function is added, rather than the linear self-interference cancellation alone. In addition, since the reference signal does not enter every time but only once every arbitrary time, it is less burdensome in terms of overhead. How often you generate a precorrection function depends on how often the characteristics of the amplifier change, depending on the period or condition.
  • a change over time of a power amplifier function, or an inverse function, a precorrection function may be measured in advance, and if the change is not large, the value may be stored in advance and then applied without real-time measurement. This has the advantage of reducing implementation and computational complexity at the same time.
  • the present invention can be applied as a technique for removing nonlinear components of magnetic interference in a full duplex communication system requiring magnetic interference cancellation.
  • Examples of the full-duplex communication system as a promising technology to be applied to the next generation wireless communication system include the next generation wireless communication system including the next generation WiFi and the next generation LTE-A.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Apparatus for correcting nonlinear digital self-interference signals in FDR environments is industrially applicable in next generation communication systems such as 5G communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법은, 상기 베이스 밴드 부에서 송신된 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들을 이용하여 상기 장치의 송신단과 수신단 간의 무선채널 계수를 추정하는 단계; 상기 베이스 밴드 부에서 송신된 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 이용하여 상기 전력 증폭기를 통과하여 수신단에 비선형 왜곡되어 수신된 신호에 대해 상기 추정된 무선채널로 등화함으로써 상기 전력 증폭기를 통과한 비선형 왜곡 출력 신호를 복원하는 단계; 상기 복원된 비선형 왜곡 출력 신호 및 상기 전력 증폭기의 선형 이득에 기초하여 디지털 전치 보정 함수를 생성하는 단계; 및 상기 생성된 디지털 전치 보정 함수를 상기 송신단의 베이스밴드(baseband)에서의 출력 신호에 적용하여 디지털 전치 보정을 수행하는 단계를 포함할 수 있다.

Description

FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치에 관한 것이다.
전이중 통신 기술 (Full-duplex communication 혹은 Full-Duplex Radio (FDR)) 은 한 노드가 동일한 자원에서 송신과 수신을 동시에 수행하는 기술이다. 기존의 반이중 통신 (Half-duplex communication)은 시간 자원 또는 주파수 자원을 직교하도록 분할하여 사용하는 방법이어서, FDR 방식은 기존의 반이중 통신 방식에 비해서 시스템의 용량(capacity)를 이론적으로 2배 향상시킬 수 있는 기술이다.
도 1은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 1과 같은 FDR 상황에서는 다음과 같은 총 3종류의 간섭이 존재하게 된다.
Intra-device self-interference: 동일한 시간 및 주파수 자원으로 송수신을 수행하기 때문에, desired signal 뿐만 아니라 자신이 송신한 신호가 동시에 수신된다. 이때, 자신이 송신한 신호는 감쇄가 거의 없이 자신의 수신 안테나로 수신 되므로 desired signal 보다 매우 큰 파워로 수신되어 간섭으로 작용하는 것을 의미한다.
UE to UE inter-link interference: 단말이 송신한 상향링크 신호가 인접하게 위치한 단말에게 수신되어 간섭으로 작용하는 것을 의미한다.
BS to BS inter-link interference: 기지국간 혹은 HetNet 상황에서의 이종 기지국간(Picocell, femtocell, relay node) 송신하는 신호가 다른 기지국의 수신 안테나로 수신되어 간섭으로 작용하는 것을 의미한다.
이와 같은 3가지 간섭 중 Intra-device self-interference (이하 Self-interference (SI))는 FDR시스템에서만 발생 하는 간섭으로 FDR 시스템의 성능을 크게 열화 시키며, FDR 시스템을 운용하기 위해서 가장 먼저 해결해야 할 문제이다.
본 발명에서 이루고자 하는 기술적 과제는 FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 장치를 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, FDR (Full Duplex Radio) 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 장치는, 베이스밴드(baseband) 부; 전력 증폭기; 상기 베이스 밴드 부에서 송신된 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들을 이용하여 상기 장치의 송신단과 수신단 간의 무선채널 계수를 추정하는 채널 추정기; 상기 베이스 밴드 부에서 송신된 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 이용하여 상기 전력 증폭기를 통과하여 수신단에 비선형 왜곡되어 수신된 신호에 대해 상기 추정된 무선채널로 등화함으로써 상기 전력 증폭기를 통과한 비선형 왜곡 출력 신호를 복원하고, 상기 복원된 비선형 왜곡 출력 신호 및 상기 전력 증폭기의 선형 이득에 기초하여 디지털 전치 보정 함수를 생성하는 디지털 전치 보정 함수 생성기; 및 상기 생성된 디지털 전치 보정 함수를 상기 송신단의 베이스밴드(baseband)에서의 출력 신호에 적용하여 디지털 전치 보정을 수행하는 디지털 전치 보정기를 포함할 수 있다.
상기 베이스밴드 부는 송신된 상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들과 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들은 시간 도메인에서 서로 다른 심볼 상에서 송신할 수 있다.
상기 베이스밴드 부는 송신된 상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들 또는 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 주파수 도메인 상에서 서브프레임의 모든 부반송파 상에서 전송할 수 있다.
상기 소정의 임계치 보다 낮은 송신 전력은 상기 전력 증폭기의 입력 신호 및 출력 신호 간의 선형 특성을 유지시키는 전력일 수 있다. 상기 소정의 임계치 보다 높은 송신 전력은 상기 전력 증폭기의 입력 신호 및 출력 신호 간의 비선형 왜곡을 유발하는 전력에 해당할 수 있다.
상기 비선형 왜곡 출력 신호의 복원은 상기 높은 송신 전력을 가지는 참조 신호들이 상기 무선채널을 거쳐 상기 수신단으로 들어온 신호를 상기 추정된 무선채널 계수로 나눈 것에 해당하는 복원 함수를 이용하여 복원할 수 있다. 상기 디지털 전치 보정 함수는 상기 복원 함수에 상기 전력 증폭기의 선형 이득을 나눈 함수에 해당할 수 있다.
상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들이 전송되는 심볼에는 QPSK (Quadrature Phase Shift Keying) 변조 방식이 적용될 수 있다. 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들이 전송되는 심볼에는 64QAM (Quadrature Amplitude Modulation)변조 방식이 적용될 수 있다. 상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들 또는 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들은 서브프레임 단위로 주기적으로 전송될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, FDR (Full Duplex Radio) 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법은, 상기 베이스 밴드 부에서 송신된 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들을 이용하여 상기 장치의 송신단과 수신단 간의 무선채널 계수를 추정하는 단계; 상기 베이스 밴드 부에서 송신된 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 이용하여 상기 전력 증폭기를 통과하여 수신단에 비선형 왜곡되어 수신된 신호에 대해 상기 추정된 무선채널로 등화함으로써 상기 전력 증폭기를 통과한 비선형 왜곡 출력 신호를 복원하는 단계; 상기 복원된 비선형 왜곡 출력 신호 및 상기 전력 증폭기의 선형 이득에 기초하여 디지털 전치 보정 함수를 생성하는 단계; 및 상기 생성된 디지털 전치 보정 함수를 상기 송신단의 베이스밴드(baseband)에서의 출력 신호에 적용하여 디지털 전치 보정을 수행하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따라 FDR 환경에서 디지털 전치 보정 알고리즘을 이용하여 전력 증폭기의 비선형성을 최소화한 후에 자가간섭 신호를 제거함으로써 통신 성능을 현저히 향상시킬 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 FDR 을 지원하는 단말과 기지국의 개념도를 나타낸다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 3은 장치의 RF 송신단/수신단에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 4는 비선형성 계수를 측정하기 위한 기준 신호 혹은 참조 신호(Reference Signal)의 구조를 도시한 도면이다.
도 5는 FDR 환경에서 비선형 자기간섭 제거를 위한 장치의 RF 송신단/수신단구조를 예시적으로 나타낸 도면이다.
도 6은 본 발명에서 제안하는 전력 증폭기의 출력 신호를 얻기 위한 특별한 기준 신호의 구조를 예시한 도면이다.
도 7은 자기간섭 제거를 위한 기준 신호의 구조를 예시한 도면이다.
도 8은 FDR 환경에서 비선형 자기간섭 제거를 위한 장치의 RF 송신단/수신단구조를 예시적으로 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 2는 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 2를 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명은 FDR 통신에서 자기간섭 제거에 관한 것으로 디지털 전치 보정 알고리즘을 이용하여 전력 증폭기의 비선형성을 최소화한 후에 자기간섭 제거를 하는 기술을 제안한다. 이를 위한 기준 신호의 구조와 전치 보정 알고리즘의 동작 방법을 제안한다.
자기간섭 제거(Self-IC) 기법의 종류 및 적용 방법
도 3은 장치의 RF 송신단/수신단에서의 세 가지 간섭 기법을 적용하는 위치를 도시한 도면이다.
도 3에서는 3가지 자기간섭 제거 기법(Self-IC 기법)의 적용 위치를 도시하고 있다. 이하 3가지 Self-IC 기법에 대해 간략히 설명한다.
안테나 자기간섭 제거 기법(Antenna Self-IC 기법): 모든 자기간섭 제거 기법 기법 중 가장 우선적으로 실행되어야 할 자기간섭 제거 기법이 안테나 자기간섭 제거 기법이다. 안테나 단에서 자기간섭 제거가 수행된다. 가장 간단하게는 송신 안테나 및 수신 안테나 사이에 신호를 차단할 수 있는 물체를 설치하여 자기간섭 신호의 전달을 물리적으로 차단하거나, 다중 안테나를 활용하여 안테나 간의 거리를 인위적으로 조절하거나, 특정 송신 신호에 위상 반전을 주어 자기간섭 신호를 일부 제거할 수 있다. 또한, 다중 편파 안테나 또는 지향성 안테나를 활용하여 자기간섭 신호의 일부를 제거할 수 있다.
아날로그 자기간섭 제거 기법(Analog Self-IC 기법): 수신 신호가 ADC (Analog-to-Digital Convertor) 를 통과하기 이전에 Analog 단에서 간섭을 제거하는 기법으로 복제된 Analog 신호를 이용하여 자기간섭 신호를 제거하는 기법이다. 이는 RF 영역 혹은 IF 영역에서 수행될 수 있다. 자기간섭 신호를 제거하는 방법은 구체적으로 기술하면 다음과 같다. 우선 송신되는 Analog 신호를 시간지연 시킨 후 크기와 위상을 조절하여 실제로 수신되는 자기간섭 신호의 복제 신호를 만들어 수신 안테나로 수신되는 신호에서 차감하는 방식으로 이루어진다. 그러나, Analog 신호를 이용하여 처리하기 때문에 구현 복잡도와 회로특성으로 인하여 추가적인 왜곡이 발생할 수도 있으며 이로 인하여 간섭제거 성능이 크게 달라질 수 있다는 단점이 있다.
디지털 자기간섭 제거 기법(Digital Self-IC 기법): 수신 신호가 ADC를 통과한 이후에 간섭을 제거하는 기법으로 베이스 밴드(Baseband) 부에서 이루어지는 모든 간섭제거 기법들을 포함한다. 가장 간단하게는 송신되는 Digital 신호를 활용하여 자기간섭 복제 신호를 만들어 수신된 Digital 신호에서 차감하는 방법으로 구현 가능하다. 혹은 다중 안테나를 이용하여 베이스 밴드(Baseband)에서의 Precoding/Postcoding을 수행 함으로써 단말 혹은 기지국에의 송신 신호가 수신안테나로 수신되지 않게끔 하기 위한 기법들 또한 디지털 자기간섭 제거 기법으로 분류 할 수 있다. 그러나 디지털 자기간섭 제거는 디지털로 변조된 신호가 원하는 신호에 대한 정보를 복원 할 수 있을 정도로 양자화가 이루어져가 가능하기 때문에 디지털 자기간섭 제거를 수행하기 위해서는 상기의 기법들 중 하나 이상의 기법을 활용하여 간섭을 제거하고 난 이후의 남아있는 간섭 신호와 원하는 신호간의 신호 파워의 크기 차가 ADC range안에 들어와야 하는 전제조건이 필요하다.
기존에 Parallel Hammerstein(PH) 모델을 사용해 FDR 통신에서 발생하는 비선형적 자기간섭을 추정하고 복원한 후 비선형적 자기간섭 성분을 빼줌으로써 자기간섭을 제거하는 기술이 있다. 이러한 비선형적 자기간섭 제거 기술은 크게 3가지로 이뤄진다.
첫번째로 자기간섭을 모델링하는 모델을 설정한다. 이 경우에는 증폭기(Power Amplifier, PA)와 아날로그 자기간섭 제거와 무선채널을 포함하는 시스템을 모델링하게 된다. PH 모델은 비선형성을 갖는 시스템을 모델링하는 대표적인 모델이고 기존 대부분의 자기간섭제거 기술이 PH 모델을 사용하고 있다. PH 모델은 메모리 효과를 갖는 다항 함수 모델이며 다음 수학식 1과 같이 나타낼 수 있다.
수학식 1
Figure PCTKR2016004354-appb-M000001
상기 수학식 1에서 x(n)은 전력 증폭기(PA) 입력, y(n)는 전력 증폭기 출력, b2k+1,l는 추정해야 하는 계수, L+1은 시스템의 탭 수, K+1은 추정해야 하는 비선형 성분의 개수이다.
두 번째로 전력 증폭기와 무선채널을 포함하는 비선형 시스템을 추정한다. 즉, PH 모델을 사용하는 경우 비선형성 계수인 b2k+1,l를 추정한다. 이를 추정하는 방법으로는 여러 가지 예가 있지만 그 중 하나의 방법을 소개한다.
도 4는 비선형성 계수를 측정하기 위한 기준 신호 혹은 참조 신호(Reference Signal)의 구조를 도시한 도면이다.
도 4에는 두 개의 슬롯(slot 1, slot 2)으로 구성된 하나의 서브프레임에 대해 하향링크 및 상향링크로 도시하고 있다. 하향링크 및 상향링크 서브프레임 각각에서 장치는 기준 신호 R0 및 R1를 이용하여 비선형성 계수를 측정할 수 있다. 도 4에서의 기준 신호 R0 및 R1의 위치는 일 예일 뿐이다. PH 모델을 비롯한 비선형 시스템이 시간 축에서 모델링 되었기 때문에 기준 신호(참조 신호) 또한 모든 부반송파(subcarrier)를 사용하는 형태가 된다. 비선형성 계수는 기준 신호와 수신된 신호를 갖고 least square 방법을 통해 추정한다.
세 번째로 추정한 비선형 시스템을 통해 자기간섭신호를 재구성하여 제거한다. 추정한 비선형 자기간섭 모델에 송신하는 데이터 신호를 적용하여 자기간섭 신호를 재구성한다. 이를 수신 신호에서 빼주는 방법으로 자기간섭 제거를 하게 된다.
도 5는 FDR 환경에서 비선형 자기간섭 제거를 위한 장치의 RF 송신단/수신단구조를 예시적으로 나타낸 도면이다.
자기간섭 제거는 장치의 RF 송신단/수신단에서 비선형 시스템을 추정하는 것과 자기간섭 신호를 재구성하여 제거하는 것으로 이루어져있다.
먼저, 송신단에서의 송신 신호 X(101)는 전력 증폭기(PA)와 FDR 아날로그 자기간섭 제거 및 무선채널을 통과하여 수신단으로 수신된다. 여기서 수신 신호는 Y(102)이고, 전력 증폭기의 왜곡(103)은 D(X)로, 아날로그 자기간섭 제거와 무선채널의 통합 모델(104)은 H로 나타낸다.
비선형 시스템은 전력 증폭기의 왜곡(103)과 아날로그 자기간섭 제거 및 무선 채널의 통합 모델(104)로 이뤄져 있는데 이를 추정하기 위해 비선형성 채널 계수 추정기(105)를 사용한다. 비선형성 채널 계수 추정기(105)는 참조 신호 XRS(106)와, 참조 신호 XRS(106)가 전력 증폭기와 아날로그 자기간섭 제거와 무선채널을 통과한 후 수신한 수신된 참조 신호 YRS(107)를 통해 비선형성 계수 b2k+1,l(108)를 추정한다. 비선형성 계수 b2k+1,l(108)를 추정하는 방법으로는 앞서 언급한 least square 방법이 널리 사용된다.
자기간섭 재구성기(109)는 자기간섭 신호의 재구성 혹은 복원한다. 자기간섭 재구성기(109)는 추정된 비선형성 계수 b2k+1,l(108)과 송신 신호 X(101)에 기초하여 비선형 시스템을 통과한 자기간섭 신호를 재구성 혹은 복원한다. 재구성된 자기간섭신호
Figure PCTKR2016004354-appb-I000001
(110)는 자기간섭 제거기 (111)에서 제거된다. 이 과정을 통해 자기간섭 제거 된 수신 신호
Figure PCTKR2016004354-appb-I000002
(112)를 얻을 수 있다.
그러나 이러한 비선형성 모델에서의 비선형성 계수의 수의 증가하는 문제가 생긴다. PH 모델로 모델링한 비선형성 모델에 전력 증폭기와 무선채널을 함께 고려했다. 이 중에 무선채널은 전력 증폭기와 비교했을 때 메모리 효과가 크다. 즉, 전력 증폭기만 모델링 했을 때와 비교하여 무선채널까지 포함하여 모델링하면 시스템의 탭 수가 늘어나게 되어(즉, L이 커지게 되어) b2k+1,l의 개수가 많아진다. b2k+1,l의 개수가 많아지면 이를 추정하는 과정의 복잡도와 자기간섭신호를 재구성하는 과정의 복잡도가 커지게 된다. 특히 b2k+1,l를 추정하는 과정에서 least square 방법을 사용하면 b2k+1,l의 개수가 많아지는 만큼 matrix inversion 크기가 커지게 되어 복잡도가 크게 증가하게 된다.
비선형성 계수를 측정하기 위한 기준 신호 혹은 참조 신호 구조
비선형성 추정을 위한 기준 신호 혹은 참조 신호는 모든 부반송파를 이용해야 한다. 이는 PH 모델의 구성과 b2k+1,l의 추정이 모두 시간축에서 이뤄지기 때문이다. 즉, 모든 부반송파를 기준 신호로 이용하여 시간 축에서 온전한 기준 신호를 얻어야 한다. 그러나 모든 부반송파를 기준 신호로 이용하게 되면 기준 신호에 의한 오버헤드가 커지게 된다. 나아가 추정해야 하는 비선형 시스템에 무선채널이 포함되어 있어 무선채널의 특성이 변화할 때마다 기준 신호를 배치해야 한다. 보통 무선채널의 coherence time을 고려했을 때 기준 신호의 오버헤드가 굉장히 커지게 된다.
본 발명은 디지털 전치 보정 알고리즘을 적용하여 송신단의 전력 증폭기의 비선형성을 최소화한 후에 선형 자기간섭제거 기술을 활용하여 효율적인 자기 간섭 제거를 수행한다. 특히 본 발명에서는 전치 보정을 통해 자기간섭제거를 하는 송수신기 구조를 제안한다. 또한, 본 발명에서는 추가적인 수신기나 회로 없이 디지털 전치 보정 함수를 만들기 위한 기준 신호의 구성을 제안한다.
전치 보정을 통해 자기간섭 제거를 하기 위해서는 전치 보정 함수를 계산하는 과정과 전치 보정을 하여 비선형성을 최소화 하는 과정과 선형 자기간섭 제거 기술을 통해 자기간섭제거를 하는 과정을 거친다. 전치 보정 함수를 계산하기 위해서는 전력 증폭기의 비선형성 특성을 측정해야 한다. 즉, 전력 증폭기의 입력 신호와 아날로그 자기간섭 제거나 무선채널을 거치기 전인 전력 증폭기의 출력 신호를 사용해 증폭기의 특성을 측정한다. 전치 보정 함수는 전력 증폭기의 특성을 나타내는 함수의 역함수 꼴로 구할 수 있다. 전치 보정 함수를 계산하는 한가지 예로는 PH 모델을 이용하는 방법이 있다. 다만 기존 PH 모델에서 입력 신호와 출력 신호를 바꿔서 계산하면 증폭기의 역함수를 얻을 수 있다.
도 6은 본 발명에서 제안하는 전력 증폭기의 출력 신호를 얻기 위한 특별한 기준 신호의 구조를 예시한 도면이다.
도 6을 참조하면, 두 개의 슬롯(slot 0, slot 1)으로 구성된 서브프레임에 대해 각각 하향링크 및 상향링크에서의 기준 신호가 도시되어 있다.
본 발명에서는 자기간섭 신호의 비선형성이 대부분 송신단의 전력 증폭기에서 발생하고 이후의 아날로그 자기간섭 제거와 무선채널은 선형으로 가정할 수 있다는 것에 착안했다. 도 6에서 기준 신호는 소정의 임계치 보다 낮은 송신 전력을 갖는 기준 신호(LO, L1)와 소정의 임계치 보다 높은 송신 전력을 갖는 기준 신호(HO, H1)로 이뤄져 있다. 도 6에서는 소정의 임계치 보다 낮은 송신 전력을 일 예로서 13dBm으로 도시하였고, 소정의 임계치 보다 높은 송신 전력을 일 예로서 23dBm으로 도시하였다.
도 6에 도시된 하향링크 서브프레임 및 상향링크 서브프레임 각각에서 기준 신호 R0, R1는 도 4에서 설명한 바와 같이 자기간섭 성분의 비선형성 계수를 측정하는데 사용된다. 도 6에서 낮은 송신 전력을 갖는 기준 신호(LO, L1)는 전력 증폭기의 영향 없이 무선채널을 측정하는데 사용한다. 송신 전력이 낮으면 전력 증폭기가 선형으로 동작한다고 가정할 수 있다. 따라서 본 발명에서는 무선채널을 측정하는 정확도를 높이기 위해 모든 부반송파에 기준 신호(LO, L1)를 배치했다. 높은 송신 전력을 갖는 기준 신호(HO, H1)는 전력 증폭기의 비선형성을 측정한다. 앞서 측정한 무선 채널을 사용해 무선 채널을 거치기 전의 전력 증폭기의 출력 신호를 계산할 수 있다.
전치 보정 함수를 얻게 되면 이를 전력 증폭기의 입력신호에 적용하여 전치 보정하기 전 신호와 전력 증폭기의 출력 신호가 선형 관계를 갖도록 한다. 그러면 실제 보내고자 했던 신호와 전치 보정과 전력 증폭기, 아날로그 자기간섭 제거, 무선채널을 거치고 들어온 신호가 선형 관계를 갖는다고 볼 수 있다. 자기간섭 제거는 선형 자기간섭 제거 기술을 통해 한다.
도 7은 자기간섭 제거를 위한 기준 신호의 구조를 예시한 도면이다.
자기간섭 제거를 위한 기준 신호의 구조는 임의의 구조를 가져도 된다. 여기서는 일 예로 LTE 기반의 scattered 기준 신호를 선택했다. 도 7에 도시된 하향링크 서브프레임 및 상향링크 서브프레임 각각에서 기준 신호 R0, R1는 도 4에서 설명한 바와 같이 자기간섭 성분의 비선형성 계수를 측정하는데 사용될 수 있다.
일 예로서, LTE/LTE-A 시스템에서 1개의 무선 프레임에는 10개의 서브프레임을 포함하고 있다. 1 프레임 내에서 도 6에 도시한 참조신호 패턴을 가지는 서브프레임이 한 번 전송되면 나머지 9개 서브프레임에서는 도 7에 도시한 참조신호 패턴을 가지는 서브프레임이 전송되는 방식으로 1 무선 프레임 마다 주기적으로 전송될 수 있다.
도 6에 도시된 기준 신호들에 대한 패턴 정보, 위치 정보(심볼 및 부반송파 위치), 전력 증폭기의 비선형 특성 및/또는 무선 채널을 측정하기 위한 기준 신호들이 서브프레임에 설정되어 있는 지 여부에 대한 정보, 도 6에 도시한 참조신호 패턴의 서브프레임의 주기 정보, 도 6에 도시한 참조신호 패턴의 서브프레임이 위치한 위치(예를 들어, 서브프레임 인덱스) 등과 다양한 정보들을 기지국이 단말에게 물리 채널 또는 상위 계층 시그널링 등을 통해 알려줄 수 있다.
도 8은 FDR 환경에서 비선형 자기간섭 제거를 위한 장치의 RF 송신단/수신단구조를 예시적으로 나타낸 도면이다.
본 발명은 전력 증폭기와 자기간섭 채널을 분리하여 추정함으로써 낮은 복잡도로 전력 증폭기의 모델을 추정한다. 도 8을 참조하면, 송신단에서의 송신 신호 X(201)가 전치보정기(202)와 전력 증폭기(PA)(203), 무선채널(204)를 통과하여 수신단의 수신 신호 Y(205)로 들어오게 된다.
먼저 소정의 임계치 보다 낮은 송신 전력을 가지는 기준 신호 XP1(207)를 이용하여 선형 무선채널 특성(즉, 무선채널 계수) H(204)를 추정한다. 무선채널 추정기(208)의 기본적인 동작은 기존의 무선채널 추정 동작과 같다. 낮은 송신 전력에서는 전력 증폭기가 비선형성을 보이지 않기 때문에 전력 증폭기의 비선형성이 없는 선형 무선채널 H(204)를 추정할 수 있다. 여기서는 일 예로서 최소 제곱법 방법을 통해 채널 추정하고 추정된 채널 계수(209)는
Figure PCTKR2016004354-appb-I000003
이다. 각 부반송파에 대해
Figure PCTKR2016004354-appb-I000004
(209)의 식으로 계산한다. 여기서, XRS,low는 송신단에서의 낮은 전력을 가지는 기준 신호를 나타내고, YRS,low는 낮은 송신 전력을 갖는 기준 신호가 무선채널을 거쳐 수신단으로 들어온 수신 신호를 나타낸다.
두 번째 단계로, 소정의 임계치 보다 높은 송신 전력을 가지는 신호 XP2(210)를 이용하여 전력 증폭기를 통과한 비선형 왜곡된 신호가 무선 채널을 거쳐 수신단으로 들어온 수신 신호 YRS(206)를 측정한다. 이를 첫 번째 단계에서 추정된 채널
Figure PCTKR2016004354-appb-I000005
(209)값으로 등화해 채널을 거치지 않은 비선형 왜곡이 생긴 전력 증폭기의 출력 신호 D(P(X))(212)를 복원한다. 복원하는 과정은 주파수 도메인에서
Figure PCTKR2016004354-appb-I000006
를 각 부반송파에 대해 계산한다.
전치 보정 함수 생성기(213)에서는 이렇게 얻은 전력 증폭기의 입력 신호P(X) (211)와 복원된 왜곡 출력신호 D(P(X))(212)을 이용해 디지털 전치 보정 함수(214)를 계산한다. 시간축에서 전력 증폭기의 입력 신호(211)을 p(x),(212)를 d(p(x))라고 표현한다면 디지털 전치 보정 함수(214)는 입력 신호가 d(p(x))/a이고 출력 신호가 p(x)인 PH 모델로 모델링한다. 여기서 a는 증폭기의 선형 이득(gain)이다. PH 모델로 모델링하는 방법은 기존에 사용한 pseudo-inverse 기반 PH 모델 계수를 찾는 방법을 선택할 수 있다. 따라서, 디지털 전치 보정 함수는 YRS,high /(
Figure PCTKR2016004354-appb-I000007
×a) 로 표시할 수 있다. 여기서, 상술한 바와 같이
Figure PCTKR2016004354-appb-I000008
임을 알 수 있다.
디지털 전치 보정 함수 YRS,high /(
Figure PCTKR2016004354-appb-I000009
×a)(214)를 디지털 전치 보정기(202)에 적용해 신호를 미리 보정한다. 도 8에서 디지털 전치보정 생성기(213) 및 전치 보정기(202)는 별도의 유닛으로 도시되었으나, 디지털 전치 보정기(202)에서 전치보정 함수를 생성하고 전치 보정을 수행할 수도 있다.
디지털 전치 보정기(202)를 통해 선형화된 송신 신호는 선형 자기간섭신호 재구성기(215)와 제거기(217)를 통해 제거된다.
재구성된 자기간섭 신호
Figure PCTKR2016004354-appb-I000010
(216)는
Figure PCTKR2016004354-appb-I000011
로 표현될 수 있다. 수신단에서으로 들어온 수신신호 Y(205)에서 재구성된 자기간섭 신호
Figure PCTKR2016004354-appb-I000012
(216)를 빼면 자기간섭이 제거된 신호
Figure PCTKR2016004354-appb-I000013
(218)를 얻을 수 있다. 이는 기존의 선형 자기간섭제거 기술을 사용한다. 여기서는 일 예로서 LTE 기반의 scattered 기준 신호와 주파수 영역에서의 자기간섭제거 기술을 적용했고,
Figure PCTKR2016004354-appb-I000014
로 표현될 수 있다.
기준신호 XP1(207)과 XP2(210)는 임의의 구조를 가져도 된다. 여기서는 일 예로 XP1(207)에는 모든 부반송파에 QPSK 신호를 배치하였고 XP2(210)에는 모든 부반송파에 64QAM 신호를 배치하였다. XP1(207)은 최대한 낮은 Peak-to-average-power ratio(PAPR)을 가지기 위해 QPSK 변조 방법을 사용하고, XP2(210)은 높은 PAPR을 가지도록 64QAM의 변조 방법을 택한다.
디지털 전치 보정 함수 생성기(213)는 처음에는 디지털 전치 보정 함수(214)를 계산하지 않았기 때문에 전치 보정을 하지 않는다. 디지털 전치 보정 함수(214)는 임의의 주기나 조건마다 계산하여 업데이트 한다.
기존에는 비선형성 모델이 전력 증폭기와 무선채널을 포함하여 메모리 특성이 커졌고 계수의 수가 많았다. 그러나 본 발명에서는 무선채널의 영향을 제외한 전력 증폭기의 특성을 보기 때문에 고려해야 할 비선형성 모델이 간단해졌다. 비선형성 모델에서의 비선형성 계수의 수가 감소하였다. 정확하게는 전력 증폭기의 비선형성을 모델링 하는 것은 아니고 전치 보정 함수를 계산하는 것이지만 전치 보정 함수가 전력 증폭기의 비선형성의 역함수 꼴이기 때문에 비선형성 모델의 계수가 적어진다면 전치 보정 함수의 계수도 적어진다. 이에 따라 복잡도도 줄어들게 되고 실시간으로 계산 가능한 정도로 비선형성 모델을 간단하게 만들 수 있다.
본 발명은 기본적으로 선형 자기간섭 제거 기술을 기반으로 한다. 따라서 이에 따른 복잡도나 기준 신호의 오버헤드가 종래 기술과 비교하여 굉장히 낮다. 선형 자기간섭 제거만 했을 때보다 전치 보정 함수 생성을 위한 기준 신호만 추가되었다. 또한 이 기준 신호는 매번 들어가는 것이 아니라 임의의 시간마다 한번씩 들어가면 되기 때문에 오버헤드적인 측면에서 부담이 적다. 전치 보정 함수를 얼마나 자주 생성할지는 증폭기의 특성이 얼마나 자주 변하는지에 따라 그에 맞는 주기나 조건을 적용한다.
본 발명은 구현시에는 전력 증폭기 함수, 또는 그 역함수인 전치 보정 함수의 시간에 따른 변화를 미리 측정해 그 변화가 크지 않다면 그 값을 미리 저장한 후 실시간 측정 없이 적용하는 것이 가능하다. 이는 구현 및 계산 복잡도를 동시에 낮출 수 있는 장점을 가진다.
본 발명은 자기 간섭 제거가 필요한 전이중 통신 시스템에서 자기 간섭의 비선형 성분을 제거하기 위한 기술로써 적용될 수 있다. 전이중 통신 시스템은 차세대 무선 통신 시스템에 적용될 유망한 기술로써 적용될 수 있는 예는 차세대 WiFi와 차세대 LTE-A를 포함한 차세대 무선 통신 시스템 전체를 포함한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
FDR 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 장치는 5G 통신 시스템 등과 같은 차세대 통신 시스템에서 산업상으로 적용가능하다.

Claims (11)

  1. FDR (Full Duplex Radio) 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 장치에 있어서,
    베이스밴드(baseband) 부;
    전력 증폭기;
    상기 베이스 밴드 부에서 송신된 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들을 이용하여 상기 장치의 송신단과 수신단 간의 무선채널 계수를 추정하는 채널 추정기;
    상기 베이스 밴드 부에서 송신된 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 이용하여 상기 전력 증폭기를 통과하여 수신단에 비선형 왜곡되어 수신된 신호에 대해 상기 추정된 무선채널로 등화함으로써 상기 전력 증폭기를 통과한 비선형 왜곡 출력 신호를 복원하고, 상기 복원된 비선형 왜곡 출력 신호 및 상기 전력 증폭기의 선형 이득에 기초하여 디지털 전치 보정 함수를 생성하는 디지털 전치 보정 함수 생성기; 및
    상기 생성된 디지털 전치 보정 함수를 상기 송신단의 베이스밴드(baseband)에서의 출력 신호에 적용하여 디지털 전치 보정을 수행하는 디지털 전치 보정기를 포함하는, 장치.
  2. 제 1항에 있어서,
    상기 베이스밴드 부는 송신된 상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들과 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들은 시간 도메인에서 서로 다른 심볼 상에서 송신하는, 장치.
  3. 제 1항에 있어서,
    상기 베이스밴드 부는 송신된 상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들 또는 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 주파수 도메인 상에서 서브프레임의 모든 부반송파 상에서 전송하는, 장치.
  4. 제 1항에 있어서,
    상기 소정의 임계치 보다 낮은 송신 전력은 상기 전력 증폭기의 입력 신호 및 출력 신호 간의 선형 특성을 유지시키는 전력인, 장치.
  5. 제 1항에 있어서,
    상기 소정의 임계치 보다 높은 송신 전력은 상기 전력 증폭기의 입력 신호 및 출력 신호 간의 비선형 왜곡을 유발하는 전력에 해당하는, 장치.
  6. 제 3항에 있어서,
    상기 비선형 왜곡 출력 신호의 복원은 상기 높은 송신 전력을 가지는 참조 신호들이 상기 무선채널을 거쳐 상기 수신단으로 들어온 신호를 상기 추정된 무선채널 계수로 나눈 것에 해당하는 복원 함수를 이용하여 복원하는, 장치.
  7. 제 6항에 있어서,
    상기 디지털 전치 보정 함수는 상기 복원 함수에 상기 전력 증폭기의 선형 이득을 나눈 함수에 해당하는, 장치.
  8. 제 1항에 있어서,
    상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들이 전송되는 심볼에는 QPSK (Quadrature Phase Shift Keying) 변조 방식이 적용된, 장치.
  9. 제 1항에 있어서,
    상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들이 전송되는 심볼에는 64QAM (Quadrature Amplitude Modulation)변조 방식이 적용된, 장치.
  10. 제 1항에 있어서,
    상기 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들 또는 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들은 서브프레임 단위로 주기적으로 전송되는, 장치.
  11. FDR (Full Duplex Radio) 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법에 있어서,
    상기 베이스 밴드 부에서 송신된 소정의 임계치 보다 낮은 송신 전력을 갖는 참조신호들을 이용하여 상기 장치의 송신단과 수신단 간의 무선채널 계수를 추정하는 단계;
    상기 베이스 밴드 부에서 송신된 상기 소정의 임계치 보다 높은 송신 전력을 갖는 참조신호들을 이용하여 상기 전력 증폭기를 통과하여 수신단에 비선형 왜곡되어 수신된 신호에 대해 상기 추정된 무선채널로 등화함으로써 상기 전력 증폭기를 통과한 비선형 왜곡 출력 신호를 복원하는 단계;
    상기 복원된 비선형 왜곡 출력 신호 및 상기 전력 증폭기의 선형 이득에 기초하여 디지털 전치 보정 함수를 생성하는 단계; 및
    상기 생성된 디지털 전치 보정 함수를 상기 송신단의 베이스밴드(baseband)에서의 출력 신호에 적용하여 디지털 전치 보정을 수행하는 단계를 포함하는, 비선형 디지털 자기간섭 신호의 보정 방법.
PCT/KR2016/004354 2015-12-04 2016-04-26 Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치 WO2017094980A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187018867A KR102512290B1 (ko) 2015-12-04 2016-04-26 Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562263579P 2015-12-04 2015-12-04
US62/263,579 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017094980A1 true WO2017094980A1 (ko) 2017-06-08

Family

ID=58797090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004354 WO2017094980A1 (ko) 2015-12-04 2016-04-26 Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102512290B1 (ko)
WO (1) WO2017094980A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123788A (zh) * 2017-12-18 2018-06-05 中国电子科技集团公司第五十四研究所 适用于散射通信的基于盲分离迭代重构的快速同步装置
KR20190064449A (ko) * 2017-11-30 2019-06-10 연세대학교 산학협력단 자기간섭을 제거할 수 있는 전이중 통신 단말 및 이의 자기간섭 제거 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557050B1 (ko) * 2018-12-27 2023-07-19 한국전자통신연구원 전이중 통신 방식에 기초한 신호 송수신 방법 및 장치
US11695445B2 (en) 2020-08-06 2023-07-04 Samsung Electronics Co., Ltd. Equalizer assisted polynomial based linearity enhancement and self-interference canceler
WO2024101462A1 (ko) * 2022-11-07 2024-05-16 삼성전자 주식회사 자가 간섭 제거를 수행하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193087A1 (en) * 2001-06-07 2002-12-19 Jaehyeong Kim Method and apparatus for modeling and estimating the characteristics of a power amplifier
US20070153884A1 (en) * 2005-10-13 2007-07-05 Viasat, Inc. Closed-loop receiver feedback pre-distortion
US20130301688A1 (en) * 2012-05-13 2013-11-14 Amir Keyvan Khandani Full Duplex Wireless Transmission with Channel Phase-Based Encryption
US20150092877A1 (en) * 2013-10-02 2015-04-02 Terabit Radios, Inc. High throughput interference cancelling radio transceiver and antenna therefor
US20150311985A1 (en) * 2014-04-27 2015-10-29 Lg Electronics Inc. Method and apparatus for cancelling self-interference signal between transmission antenna and reception antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606289B2 (en) * 2008-11-10 2013-12-10 Qualcomm Incorporated Power headroom-sensitive scheduling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193087A1 (en) * 2001-06-07 2002-12-19 Jaehyeong Kim Method and apparatus for modeling and estimating the characteristics of a power amplifier
US20070153884A1 (en) * 2005-10-13 2007-07-05 Viasat, Inc. Closed-loop receiver feedback pre-distortion
US20130301688A1 (en) * 2012-05-13 2013-11-14 Amir Keyvan Khandani Full Duplex Wireless Transmission with Channel Phase-Based Encryption
US20150092877A1 (en) * 2013-10-02 2015-04-02 Terabit Radios, Inc. High throughput interference cancelling radio transceiver and antenna therefor
US20150311985A1 (en) * 2014-04-27 2015-10-29 Lg Electronics Inc. Method and apparatus for cancelling self-interference signal between transmission antenna and reception antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190064449A (ko) * 2017-11-30 2019-06-10 연세대학교 산학협력단 자기간섭을 제거할 수 있는 전이중 통신 단말 및 이의 자기간섭 제거 방법
KR102102059B1 (ko) 2017-11-30 2020-04-17 연세대학교 산학협력단 자기간섭을 제거할 수 있는 전이중 통신 단말 및 이의 자기간섭 제거 방법
CN108123788A (zh) * 2017-12-18 2018-06-05 中国电子科技集团公司第五十四研究所 适用于散射通信的基于盲分离迭代重构的快速同步装置
CN108123788B (zh) * 2017-12-18 2020-11-06 中国电子科技集团公司第五十四研究所 适用于散射通信的基于盲分离迭代重构的快速同步装置

Also Published As

Publication number Publication date
KR20180093971A (ko) 2018-08-22
KR102512290B1 (ko) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2018203706A1 (en) Method and apparatus for transmitting and receiving signal for low peak-to-average power ratio in wireless communication system
WO2017094980A1 (ko) Fdr 환경에서 비선형 디지털 자기간섭 신호를 보정하기 위한 방법 및 장치
WO2016117801A1 (ko) Fdr 방식을 사용하는 환경에서 자기간섭 신호 제거를 수행하는 방법 및 이를 위한 장치
WO2013070023A1 (en) Reference signal for time and/or frequency tracking in a wireless network
WO2011025278A2 (ko) 다중 사용자 mimo 전송을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2017043731A1 (ko) Fdr 방식을 사용하는 장치가 자기간섭 제거를 수행하기 위한 방법
WO2011102666A2 (ko) 상향링크 전송 전력을 제어하는 단말 장치 및 그 방법
WO2010050712A2 (ko) 무선 통신 시스템에서 신호 전송 모드 결정 기법 및 이를 위한 장치
WO2016143996A1 (en) Method and apparatus for performing network cooperative communication to distribute traffic in a wireless communication system
WO2016143966A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 hd 모드 또는 fd 모드를 선택하는 방법 및 이를 위한 장치
WO2016167434A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치
WO2018066924A1 (ko) 무선 통신 시스템에서 하향링크 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2017022961A1 (ko) Fdr 방식을 이용하는 통신 장치가 비선형 자기간섭 신호의 채널 추정을 위한 참조신호를 전송하는 방법
WO2017034106A1 (ko) Fdr 방식으로 동작하는 환경에서 rs 모드를 변경하는 방법 및 이를 위한 장치
WO2016171357A1 (ko) Fdr 방식으로 동작하는 환경에서 참조신호 할당을 변경하기 위한 방법 및 이를 위한 장치
WO2019139195A1 (ko) 분산 안테나 구조의 통신 장치가 자기간섭 제거를 수행하는 방법
WO2017222137A2 (en) Method and apparatus for allocating resources to fdr-mode ue in a wireless communication system
WO2022031132A1 (en) Equalizer assisted polynomial based linearity enhancement and self-interference canceler
WO2017188486A1 (ko) 2d 채널 기반의 전송 방식을 이용한 데이터 수신 방법 및 이를 위한 장치
WO2011037396A2 (ko) 무선 통신 시스템에서 소정의 프레임 구조를 이용하여 신호를 송수신하는 장치 및 방법
CN107852381B (zh) 用于在无线通信系统中估计非线性自干扰信道的方法及其装置
WO2017159930A1 (ko) Fdr 환경에서 자기간섭 신호를 제거하는 방법 및 이를 위한 통신 장치
WO2016167454A1 (ko) Fdr 방식을 이용하는 통신 장치가 자기간섭 제거를 수행하는 방법
WO2017082650A1 (ko) Fdr 시스템에서 tx/rx capability의 변경과 관련된 신호 송수신 방법 및 장치
WO2017039240A1 (ko) 무선 통신 시스템에서 mbms 신호를 송수신하는 방법 및 이를 수행하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018867

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018867

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16870877

Country of ref document: EP

Kind code of ref document: A1