WO2017094885A1 - Ligand fluorescent sensor protein and use thereof - Google Patents

Ligand fluorescent sensor protein and use thereof Download PDF

Info

Publication number
WO2017094885A1
WO2017094885A1 PCT/JP2016/085902 JP2016085902W WO2017094885A1 WO 2017094885 A1 WO2017094885 A1 WO 2017094885A1 JP 2016085902 W JP2016085902 W JP 2016085902W WO 2017094885 A1 WO2017094885 A1 WO 2017094885A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
fluorescent
ligand
protein
seq
Prior art date
Application number
PCT/JP2016/085902
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 坪井
哲也 北口
敏 新井
上田 宏
Original Assignee
国立大学法人東京大学
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 学校法人早稲田大学 filed Critical 国立大学法人東京大学
Priority to JP2017554202A priority Critical patent/JP6885595B2/en
Publication of WO2017094885A1 publication Critical patent/WO2017094885A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to ligand fluorescent sensor proteins and uses thereof.
  • the present application is filed in Japanese Patent Application No. 2015-237524 filed in Japan on December 4, 2015 and US Patent No. 62 / 340,533 filed provisionally in the United States on May 24, 2016. Claims priority and incorporates the contents here.
  • Fluorescent bioimaging is a new research technique that observes the inside of living tissues or organs and analyzes the dynamics of living cells and molecules in real time. Recent technological innovations in optical instruments and fluorescence imaging have made it possible to visualize the movement of living cells and molecules by applying fluorescent bioimaging to a wide variety of life phenomena in various tissues or organs. It was.
  • the movement of a ligand in a living tissue or organ can be detected by using a receptor to which a molecule (ligand) present in a cell specifically binds.
  • a receptor for example, an antibody that specifically binds to a molecule in a living body, an antigen for an antibody present in the living body, a substrate for a specific enzyme, an enzyme for a specific substrate, or ATP, cAMP, or cGMP
  • a fluorescent sensor protein having a binding domain of a molecule in a living body, etc. it is possible to visualize and analyze the concentration distribution and temporal change (spatiotemporal dynamics) of a ligand in a cell.
  • Fluorescent sensor proteins are broadly classified into monochromatic types, ratio types, and FRET (fluorescence resonance energy transfer) types.
  • the monochromatic type is a type in which the fluorescence intensity at a single wavelength specified for each fluorescent sensor protein changes according to the ligand concentration.
  • the ratio type is a type in which the relative ratio of fluorescence intensities at two wavelengths specified for each fluorescent sensor protein changes according to the ligand concentration.
  • a fluorescence sensor based on a monochromatic fluorescent protein that excites at one wavelength and observes fluorescence at one wavelength may overcome these problems.
  • the monochromatic sensor reported so far (see, for example, Non-Patent Document 1) has a dynamic range, that is, a change in fluorescence intensity by the presence or absence of ATP is only a little less than 8%, and an intracellular ATP sensor. As a practical use level was not reached. Thereafter, there is no report on a monochromatic ATP fluorescent protein sensor having a higher dynamic range than the report. In addition, there is no report of a monochromatic fluorescent protein sensor with a high dynamic range capable of detecting a desired ligand without being limited to ATP.
  • the present invention has been made in view of the above circumstances, and provides a highly sensitive ligand fluorescent sensor protein regardless of the type of ligand to be detected.
  • a ligand fluorescence sensor protein whose fluorescence characteristics change in response to a ligand specifically, wherein the ligand fluorescence sensor protein comprises a first fluorescence protein domain, an N-terminal linker, a ligand binding domain, A fluorescent protein comprising a C-terminal linker and a second fluorescent protein domain, wherein the fluorescent protein used in the ligand fluorescent sensor protein has a ⁇ -barrel structure, and the first fluorescent protein domain is the N-terminal of the fluorescent protein To ⁇ 1 to ⁇ 3 ⁇ sheet region followed by ⁇ helix region and ⁇ 4 to ⁇ 6 ⁇ sheet region, wherein the second fluorescent protein domain is the same as the first fluorescent protein domain.
  • the ligand fluorescent sensor protein includes a first fluorescent protein domain, an N-terminal linker, a ligand binding domain, a C-terminal linker, and a second fluorescent protein domain from the N-terminus toward the C-terminus.
  • a ligand fluorescent sensor protein according to [1] or [2], wherein the ligand fluorescent sensor protein comprises a polypeptide formed by directly connecting peptide bonds in this order.
  • the ligand fluorescent sensor protein includes two ligand binding domains, and from the N-terminus toward the C-terminus, the first ligand-binding domain, the N-terminal linker, the second fluorescent protein domain,
  • the ligand fluorescence according to [1] or [2] comprising a polypeptide in which one fluorescent protein domain, a C-terminal linker, and a second ligand-binding domain are directly linked by a peptide bond in this order Sensor protein.
  • the first fluorescent protein domain includes any of the following polypeptides (B1) to (B3), and the second fluorescent protein domain includes any of the following (C1) to (C3):
  • (B1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, (B2) the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the second fluorescence A polypeptide that forms a ⁇ -barrel structure with a protein domain and fluoresces, (B3) including an amino acid sequence having an identity of 80% or more with the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, and forming a ⁇ barrel structure with the second fluorescent protein domain, A fluorescent polypeptide, (C1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, (C2) the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the first fluorescence A polypeptide that forms a ⁇ -barrel structure with a protein domain and fluoresces
  • Fluorescent sensor protein [7] The ligand fluorescent sensor protein according to [6], wherein the nucleotide or derivative thereof is ATP, cAMP, or cGMP. [8] The ligand fluorescent sensor protein according to [6], wherein the protein is an antigen or an antibody. [9] The ligand fluorescent sensor protein according to any one of [1] to [8], which comprises any of the following polypeptides (D1) to (D3).
  • (D1) a polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 9 to 14, (D2) an amino acid sequence represented by any one of SEQ ID NOs: 9 to 14, including an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the polypeptide (D1) Polypeptides having the same ability to bind to a ligand and fluorescent properties; (D3) Ligand binding ability and fluorescence, which include the amino acid sequence of 80% or more identity with the amino acid sequence represented by any of SEQ ID NOs: 9 to 14, and are identical to the polypeptide (D1) Polypeptide having properties [10]
  • the ligand fluorescent sensor protein according to any one of [1] to [9], further comprising an organelle localization signal peptide.
  • An expression vector comprising the polynucleotide according to [14].
  • a cell comprising at least one ligand fluorescent sensor protein according to any one of [1] to [13].
  • a cell comprising a chromosome containing at least one polynucleotide encoding the ligand fluorescent sensor protein according to any one of [1] to [13].
  • a cell comprising at least one expression vector according to [15].
  • a non-human organism comprising the cell according to any one of [16] to [18].
  • ligand fluorescent sensor protein according to any one of [1] to [13], the polynucleotide according to [14], the expression vector according to [15], any of [16] to [18]
  • a kit for measuring a ligand concentration comprising at least one selected from the group consisting of the cell according to any one of the above and the non-human organism according to [19].
  • Line creation process A fluorescence measurement step of measuring fluorescence intensity by contacting the ligand fluorescence sensor protein with a solution containing a ligand of unknown concentration;
  • a concentration determining step for determining a ligand concentration with respect to the fluorescence intensity measured in the fluorescence measuring step;
  • a method for determining a ligand concentration in a test sample [22] A method for detecting a change in ligand concentration over time in a living cell, comprising the step of measuring fluorescence intensity over time using the cell according to any one of [16] to [18] .
  • a method for detecting a change in ligand concentration over time in a living non-human organism comprising the step of measuring fluorescence intensity over time using the non-human organism according to [19].
  • An ATP fluorescent sensor protein whose fluorescence characteristics change in response to ATP concentration specifically, wherein the ATP fluorescent sensor protein includes a first fluorescent protein domain and an NTP from the N-terminus toward the C-terminus.
  • a polypeptide comprising a terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescent protein domain directly linked by a peptide bond in this order the polypeptide comprising: A ⁇ -sheet region of ⁇ 1- ⁇ 3, followed by an ⁇ -helical region, and a ⁇ -sheet region of ⁇ 4- ⁇ 6, from the N-terminus of the fluorescent protein BFP, Citriline or mA Apple
  • the second fluorescent protein domain is A ⁇ -sheet region of ⁇ 7 to ⁇ 11 of the same fluorescent protein as that of one fluorescent protein domain, Inn consists ⁇ subunit of F 0 F 1 -ATP synthase, ATP fluorescent N-terminal linker and C-terminal linker, respectively, which is a one or a polypeptide consisting of a few amino acids Sensor protein.
  • the ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, and the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively,
  • the linker is a MaLion B polypeptide that is the amino acid sequence of SEQ ID NOs: 16 and 17, respectively;
  • the ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker, and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 16, and 17 amino acid sequence, or an amino acid sequence in which one or several amino acids are deleted, substituted, or added to the amino acid sequences of SEQ ID NOs: 15, 1, 2, 16, and 17, and MaLion B poly
  • MaLion B poly A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the peptide (A11);
  • the ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid
  • (A21) a MaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 9, (A22) The amino acid sequence of SEQ ID NO: 9 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NOS: 16 and 17, and MaLion B A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the polypeptide (A21); (B21) a MaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 10, (B22) one of amino acid sequences excluding the amino acid sequence of WRG (Trp-Arg-Gly) at positions 146 to 148 of SEQ ID NO: 10 and the amino acid sequence of SEQ ID NO: 18 among the amino acid sequences of SEQ ID NO: 10 or MaLion G polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same
  • a fluorescent composition comprising the ATP fluorescent sensor protein according to any one of [24] to [26].
  • a highly sensitive ligand fluorescent sensor protein can be provided regardless of the type of ligand to be detected.
  • the ratio of the fluorescence intensity in the presence of 10 mM ATP and the fluorescence intensity in the absence of ATP of the 19 candidate proteins of the MaLion B series ATP fluorescence sensor in Example 1 (hereinafter sometimes referred to as “dynamic range”) .) Histogram.
  • the graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion G in Example 4 was expressed.
  • the graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion R in Example 4 was expressed.
  • the graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion B in Example 4 was expressed.
  • the graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which negMaLion G was expressed in Example 4.
  • FIG. The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to HeLa cell in which negMaLion B was expressed in Example 4.
  • the graph which shows the simultaneous measurement result of the time-dependent change of the cytoplasm of the nematode pharyngeal muscle in Example 4, and the ATP density
  • the arrow indicates that M9 buffer of the control experiment was administered 5 minutes after the start of observation.
  • FIG. Changes in fluorescence from the start of fluorescence microscopy imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or SNP (300 ⁇ M) of nitric oxide donor to HeLa cells expressing cGull in Example 5 An image showing.
  • FIG. 6 is an excitation / fluorescence spectrum diagram of gBGP in the presence and absence of 100 ⁇ M BGP7C in Example 7.
  • protein As used herein, “protein”, “peptide”, “oligopeptide” or “polypeptide” is a compound in which two or more amino acids are linked by peptide bonds. “Protein”, “peptide”, “oligopeptide” or “polypeptide” includes amido groups, alkyl groups including methyl groups, phosphate groups, sugar chains, and / or ester bonds and other covalent modifications. There is a case.
  • protein is a metal ion, coenzyme, allosteric ligand or other atom, ion, atomic group, or other “protein”, “peptide”, “ When ⁇ oligopeptides '' or ⁇ polypeptides '', biopolymers such as sugars, lipids, nucleic acids, etc., polystyrene, polyethylene, polyvinyl, polyester or other synthetic polymers are bound or associated by covalent or non-covalent bonds There is.
  • an amino acid sequence in which one or several amino acids are deleted, substituted or added” to a specific amino acid sequence is an amino acid sequence in which n or less amino acids have been deleted, substituted or added.
  • n is an integer not exceeding 10% of the total number of amino acids in the specific amino acid sequence. That is, an amino acid sequence in which one or more and n or less amino acids are deleted, substituted or added to a specific amino acid sequence.
  • the N-terminus or C-terminus of any domain of the present invention is linked to the N-terminus or C-terminus of a particular protein or protein domain by “adding one to several additional amino acids via peptide bonds.
  • the N-terminus or C-terminus of any domain of the present invention is defined by adding one or more amino acids to the N-terminus or C-terminus of the specific protein or protein domain by peptide bonds. It is connected.
  • the N-terminal or C-terminal of any domain of the present invention is “the first to several amino acid residues” from the N-terminal or C-terminal of a specific protein or protein domain.
  • the N-terminus or C-terminus of any of the domains refers to the first to n-th amino acid residues from the N-terminus or C-terminus of the specific protein or protein domain.
  • the present invention relates to a ligand fluorescent sensor protein whose fluorescence characteristics change in response to a ligand specifically, wherein the ligand fluorescent sensor protein includes a first fluorescent protein domain, an N-terminal linker, , A ligand binding domain, a C-terminal linker, and a second fluorescent protein domain, wherein the fluorescent protein used in the ligand fluorescent sensor protein has a ⁇ barrel structure, and the first fluorescent protein domain is A ⁇ -sheet region of ⁇ 1 to ⁇ 3, an ⁇ -helix region following this, and a ⁇ -sheet region of ⁇ 4 to ⁇ 6 from the N-terminus of the fluorescent protein, wherein the second fluorescent protein domain is the first fluorescent protein A ⁇ -sheet region of ⁇ 7 to ⁇ 11 of the fluorescent protein identical to the domain, and the N-terminal
  • the side linker and the C-terminal side linker each independently provide a ligand fluorescent sensor protein which is a polypeptide consisting of one or several
  • the ligand fluorescent sensor protein of this embodiment the ligand can be detected with high sensitivity regardless of the type of ligand to be detected.
  • the ligand fluorescence sensor protein of this embodiment changes its fluorescence characteristics in response to the ligand concentration specifically.
  • the fluorescence characteristics include, but are not limited to, fluorescence intensity.
  • the fluorescence intensity is limited by using a fluorescence optical instrument such as a fluorescence microscope or a fluorescence microspectrophotometer, and the spectrum of light from a predetermined excitation light source is limited to a certain wavelength band by an excitation light filter.
  • a biological sample containing a protein or ligand fluorescent sensor negative control protein is irradiated, and the fluorescence is limited by a fluorescent filter and captured by a cooled CCD camera.
  • a specific visual field or a part of the obtained image is captured. It is expressed quantitatively based on the luminance value of the pixels in the area.
  • the “ligand” in the present specification means a substance that specifically binds to a specific receptor (receptor).
  • specific examples of the ligand include, but are not limited to, nucleotides or derivatives thereof, nucleic acids, sugar chains, proteins, lipid complexes, low molecular compounds, and the like.
  • the ligand fluorescent sensor protein of the present embodiment includes a receptor for the specific ligand described above, and can easily detect the distribution of the ligand concentration and the change with time in the living body with high sensitivity.
  • nucleotide or derivative thereof examples include adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP (cAMP), guanosine triphosphate (GTP), and guanosine diphosphate.
  • ATP adenosine triphosphate
  • ADP adenosine diphosphate
  • AMP adenosine monophosphate
  • cAMP cyclic AMP
  • GTP guanosine triphosphate
  • GTP guanosine triphosphate
  • guanosine diphosphate examples thereof include phosphoric acid (GDP), guanosine monophosphate (GMP), cyclic GMP (cGMP), and the like, but are not limited thereto.
  • ATP, cAMP, and cGMP are preferable as nucleotides or derivatives thereof.
  • ATP is an energy source for chemical reactions, transport and muscle contraction, plays a role in signal transmission, and is widely involved in the maintenance of life systems. When ATP production is reduced or ATP is consumed without being consumed, the cell loses its energy balance and disease occurs. Moreover, cAMP is known to act as a second messenger in intracellular signal transduction during hormone transmission such as glucagon and adrenaline. CGMP regulates ion channel conductivity, glycogen degradation, cell apoptosis, and the like. It is also involved in smooth muscle relaxation. In addition, it plays the role of a second messenger in optical transmission of eyes.
  • a ligand fluorescent sensor protein whose ligand is ATP, cAMP, or cGMP (that is, ATP fluorescent sensor protein, cAMP fluorescent sensor protein, or cGMP fluorescent sensor protein), various ligands in the cell Concentration analysis and temporal changes (spatio-temporal dynamics) can be visualized and analyzed to elucidate various life phenomena and disease onset mechanisms.
  • the protein examples include, but are not limited to, antigens, antibodies, enzymes, and the like.
  • the protein is preferably an antigen or an antibody.
  • the ligand is various biomolecules, by using an antibody against a specific biomolecule as a receptor, the concentration distribution and temporal change of the biomolecule in the living body can be detected easily and accurately regardless of the type of biomolecule. Can do.
  • the ligand is an antibody present in the living body, for example, by using various allergic substances as receptors, the presence of antibodies against allergic substances in humans or non-human animals can be detected easily and accurately.
  • Antibody includes antibody fragments.
  • Antibody fragments include Fab, Fab ′, F (ab ′) 2, variable region fragment (Fv), disulfide bond Fv, single chain Fv (scFv), sc (Fv) 2, diabody, multispecific antibody, And polymers thereof.
  • lipid complex examples include, but are not limited to, lipoprotein and DNA-lipid complex.
  • low molecular weight compound examples include, but are not limited to, hydrogen ions, calcium, chlorine, oxygen and other ions, glucose, redox substances, and the like.
  • Polypeptide domains and linkers included in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are as follows. First, a domain that specifically binds to a ligand is referred to as a “ligand binding domain”.
  • a domain that specifically binds to a ligand is referred to as a “ligand binding domain”.
  • the invertebrate-derived fluorescent protein disrupted by insertion or circular permutation and the amino-terminal domain and carboxyl-terminal domain of the fluorescent protein variant are hereinafter referred to as “first fluorescent protein domain” and “second fluorescent protein”.
  • the fluorescent protein domain is referred to as “first fluorescent protein domain”.
  • N-terminal linker A polypeptide linker linked to the amino terminus of the ligand binding domain or the first fluorescent protein domain is referred to as “N-terminal linker”, and a polypeptide linker linked to the carboxyl terminus of the ligand binding domain or the second fluorescent protein domain is referred to as “C-terminal”.
  • Side linker ".
  • the ligand fluorescent sensor protein of this embodiment may contain one or two ligand binding domains.
  • the first fluorescent protein domain, the N-terminal linker, the ligand binding domain, and the C-terminal side from the N-terminus toward the C-terminus It is preferable to include a polypeptide in which the linker and the second fluorescent protein domain are directly linked by a peptide bond in this order.
  • the first fluorescent protein domain, the C-terminal linker, and the second fluorescent protein domain include a polypeptide formed by directly connecting them in this order with peptide bonds. Further, a polypeptide linker may be further provided between the second fluorescent protein domain and the first fluorescent protein domain.
  • the ligand binding domain is an antibody
  • the heavy chain (first ligand binding domain) and the light chain (second ligand binding domain) of the antibody are combined as shown in the Examples below.
  • Fluorescent protein The ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are artificially modified proteins based on a fluorescent protein variant derived from an invertebrate and a ligand binding domain of the ligand binding protein.
  • Fluorescent proteins derived from invertebrates include green fluorescent protein isolated from Aequorea victoria belonging to the hydrozoa discovered by Dr. Atsushi Shimomura and others, and reef-building coral Discosoma sp. Red fluorescent protein DsRed isolated from but not limited to.
  • the invertebrate-derived fluorescent protein used for the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment and the polypeptide contained in the modified fluorescent protein typically have 11 ⁇ sheet structure regions. And one ⁇ helix structure region, and the ⁇ helix structure region may be referred to as the third and fourth ⁇ sheet regions from the N-terminus (hereinafter, referred to as “ ⁇ 3” and “ ⁇ 4”, respectively). Other ⁇ sheets are also expressed according to these).
  • ⁇ 3 third and fourth ⁇ sheet regions from the N-terminus
  • the 11 ⁇ -sheet structure regions are oriented antiparallel to form a side surface of the barrel, and the ⁇ helix structure region is formed from one end of the barrel where the ⁇ -sheet structure region forming the side surface of the barrel ends.
  • a chromophore of an invertebrate-derived fluorescent protein and a variant of the fluorescent protein comprises two amino acid residues of the ⁇ helix region and two ⁇ sheet regions ( ⁇ 4 and ⁇ 11 opposite to each other across the ⁇ helix). ), Each of which is formed with one amino acid residue.
  • the four amino acid residues react spontaneously between the side chains to form a multi-membered ring.
  • Forming a chromophore that emits fluorescence Since the invertebrate-derived fluorescent protein and the chromophore of the modified fluorescent protein are protected from water molecules and other external environments of the fluorescent protein by the barrel-like three-dimensional structure, they can emit fluorescence at any time. .
  • the chromophore is protected from the external environment of water molecules and other proteins by the barrel-like three-dimensional structure, and thus is less susceptible to changes in pH and other external environments.
  • the first fluorescent protein domain and the second fluorescent protein domain of the polypeptide included in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are either a specific fluorescent protein derived from any invertebrate or its It includes N-terminal and C-terminal polypeptides of the variant.
  • Examples of the fluorescent protein used in the present embodiment include, but are not limited to, BFP, GFP, Citrine, mAapple, and the like.
  • BFP, GFP, Citrine, and mA Apple are Wachter, R. (Biochemistry 2960, 9759-9765 (1997)), Chalfie, M. et al. (Science 263 (5148), 802-805 (1994)), Griesbeck, O. et al. (J. Biol.
  • the first fluorescent protein domain included in the ligand fluorescent sensor protein of this embodiment and the ligand fluorescent sensor negative control protein is a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP). And ⁇ -sheet region of ⁇ 1 to ⁇ 3, followed by ⁇ -helical region, and ⁇ -sheet region of ⁇ 4- ⁇ 6. However, in some cases, one to several amino acids may be additionally linked by peptide bonds to the N-terminus or C-terminus of the first fluorescent protein domain.
  • the N-terminus of the first fluorescent protein domain may be the N-terminus of a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP, Citriline, or mAapple).
  • one to several amino acids may be additionally connected to the N-terminus by a peptide bond.
  • the N-terminal of the first fluorescent protein domain is the first to several amino acids from the N-terminal of a specific fluorescent protein derived from invertebrates or a variant thereof (eg, BFP, GFP, Citriline, or mAapple). May be a residue.
  • the C-terminus of the first fluorescent protein domain may be any amino acid residue between ⁇ 6 and ⁇ 7. Alternatively, there may be a case where one to several amino acids are further linked by a peptide bond.
  • the second fluorescent protein domain contained in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment is the ⁇ sheet region of ⁇ 7 to ⁇ 11 of the same fluorescent protein as the first fluorescent protein domain.
  • the N-terminus of the second fluorescent protein domain may be the N-terminus of ⁇ 7. Further, in some cases, one to several amino acids are additionally linked to the N-terminus of ⁇ 7 by a peptide bond. Alternatively, the N-terminus of the second fluorescent protein domain may be the first to several amino acid residues from the N-terminus of ⁇ 7.
  • the C-terminus of the second fluorescent protein domain may be the C-terminus of a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP, Citriline, or mAple).
  • a specific fluorescent protein derived from invertebrates for example, BFP, GFP, Citriline, or mAple.
  • one to several additional amino acids may be linked to this by a peptide bond.
  • first fluorescent protein domain and the second fluorescent protein domain include polypeptides shown in the following (B1) and (C1).
  • B1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7,
  • C1 A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8.
  • amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 in (B1) above is the ⁇ sheet region of ⁇ 1- ⁇ 3 of BFP, GFP, Ciline, or mAple, followed by the ⁇ helix region, It is an amino acid sequence composed of ⁇ 4 to ⁇ 6 ⁇ -sheet regions.
  • amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8 in (C1) above is an amino acid sequence consisting of a ⁇ sheet region of ⁇ 7 to ⁇ 11 of BFP, GFP, Citriline, or mApple, respectively.
  • the first fluorescent protein domain and the second fluorescent protein domain are the same as the polypeptides of (B1) and (C1) described above as functionally equivalent polypeptides of (B2) and (C2) below.
  • C2 the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the first fluorescence A polypeptide that forms a ⁇ -barrel structure with a protein domain and emits fluorescence.
  • the number of amino acids that may be deleted, substituted, or added is preferably 1 to 15, more preferably 1 to 10, and particularly preferably 1 to 5.
  • the first fluorescent protein domain and the second fluorescent protein domain are the same as the polypeptides of (B1) and (C1) described above as functionally equivalent polypeptides of the following (B3) and (C3).
  • a fluorescent polypeptide, (C3) comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, and forming a ⁇ barrel structure with the first fluorescent protein domain, A fluorescent polypeptide.
  • polypeptides (B1) and (C1) In order to be functionally equivalent to the polypeptides (B1) and (C1), they have 80% or more identity. Such identity is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • the first fluorescent protein domain and the second fluorescent protein domain are “BFP-N domain”, “BFP-C domain”, “GFP-”, respectively. It may be referred to as “N domain” and “GFP-C domain”, “Citrine-N domain” and “Citrine-C domain”, or “mAapple-N domain” and “mAapple-C domain”.
  • the amino acid sequences of the BFP-N domain and the BFP-C domain are listed in the sequence listing as SEQ ID NOs: 1 and 2.
  • the amino acid sequences of the GFP-N domain and the GFP-C domain are listed in the sequence listing as SEQ ID NOs: 3 and 4.
  • the amino acid sequences of the Citrine-N domain and the Citrine-C domain are listed as SEQ ID NOs: 5 and 6.
  • the amino acid sequences of the mApple-N domain and the mApple-C domain are listed as SEQ ID NOs: 7 and 8.
  • a fluorescent protein derived from an invertebrate and a modified version of the fluorescent protein in order to create a fluorescent sensor protein whose fluorescence characteristics change in response to changes in the concentration of the ligand, An attempt is made to insert a part of a polypeptide of another protein (that is, a ligand binding domain) that binds to the ligand into the polypeptide linking the ⁇ sheet structural region. This is because it is expected that the fluorescence characteristics change because the barrel-like three-dimensional structure of the fluorescent protein is disturbed by the influence of the substance.
  • the ligand binding domain is not particularly limited as long as a specific ligand can bind specifically.
  • the ligand is a nucleotide such as ATP, cAMP, or cGMP or a derivative thereof
  • a known binding domain of a nucleotide such as ATP, cAMP, or cGMP or a derivative thereof may be used as the ligand binding domain.
  • an antibody against the biomolecule may be used as the ligand binding domain.
  • the antigen may be used as the ligand binding domain.
  • the ligand is a low molecular compound such as hydrogen ion, calcium, chlorine, oxygen or other ions, glucose, redox substance, etc.
  • the low molecular compound receptor specifically, When the ligand is glucose, a glucose binding site or the like in the glucose transporter may be used as the ligand binding domain.
  • examples of the ATP binding domain include the ⁇ subunit of F 0 F 1 -ATP synthase.
  • the ⁇ subunit may be the ⁇ subunit of bacterial F 0 F 1 -ATP synthase, or the ⁇ subunit of Bacillus subtilis F 0 F 1 -ATP synthase.
  • the N-terminus of the ATP binding domain may be the N-terminus of the ⁇ subunit of F 0 F 1 -ATP synthase.
  • the N-terminus of the ATP-binding domain may be the first or several amino acid residues from the N-terminus of the ⁇ subunit of F 0 F 1 -ATP synthase.
  • the C-terminus of the ATP binding domain may be the C-terminus of the ⁇ subunit of F 0 F 1 -ATP synthase.
  • the C terminus of the ATP binding domain may be the first or several amino acid residues from the C terminus of the ⁇ subunit of F 0 F 1 -ATP synthase.
  • the ATP binding domain may be the amino acid sequence of SEQ ID NO: 15.
  • examples of the cAMP binding domain include exchange factor activated by cAMP 1 (EPAC1).
  • the EPAC1 may be derived from a human or a non-human animal.
  • the N-terminus of the cAMP binding domain may be the N-terminus of EPAC1.
  • the N-terminus of the cAMP-binding domain may be the first or several amino acid residues from the N-terminus of EPAC1.
  • the C terminus of the cAMP binding domain may be the C terminus of EPAC1.
  • the C-terminus of the cAMP binding domain may be the first or several amino acid residues from the C-terminus of EPAC1.
  • the cAMP binding domain may be the amino acid sequence of SEQ ID NO: 20.
  • examples of the cGMP binding domain include phosphodiesterase 5 ⁇ (PDE5 ⁇ ).
  • the PDE5 ⁇ may be derived from a human or a non-human animal.
  • the N-terminus of the cGMP binding domain may be the N-terminus of PDE5 ⁇ .
  • the N-terminus of the cGMP binding domain may be the first or several amino acid residues from the N-terminus of PDE5 ⁇ .
  • the C-terminus of the cGMP binding domain may be the C-terminus of PDE5 ⁇ .
  • the C-terminus of the cGMP binding domain may be the first or several amino acid residues from the C-terminus of PDE5 ⁇ .
  • the cGMP binding domain may be the amino acid sequence of SEQ ID NO: 21.
  • examples of the BGP binding domain include an anti-BGP antibody.
  • the anti-BGP antibody may be derived from a human or a non-human animal.
  • the N-terminus of the first BGP binding domain may be the N-terminus of the heavy chain of the anti-BGP antibody
  • the N-terminus of the second BGP binding domain may be the anti-BGP antibody's N-terminus. It may be the N-terminus of the light chain.
  • the N-terminus of the first BGP binding domain may be the first or several amino acid residues from the N-terminus of the heavy chain of the anti-BGP antibody
  • the N-terminus of the second BGP binding domain May be the first or several amino acid residues from the N-terminus of the light chain of the anti-BGP antibody
  • the C-terminus of the first BGP binding domain may be the C-terminus of the heavy chain of the anti-BGP antibody
  • the N-terminus of the second BGP binding domain may be the C-terminus of the light chain of the anti-BGP antibody. Good.
  • the C-terminus of the first BGP binding domain may be the first or several amino acid residues from the C-terminus of the heavy chain of the anti-BGP antibody
  • the C-terminus of the second BGP binding domain May be the first or several amino acid residues from the C-terminus of the light chain of the anti-BGP antibody.
  • the first BGP binding domain may be the amino acid sequence of SEQ ID NO: 22
  • the second BGP binding domain may be the amino acid sequence of SEQ ID NO: 23.
  • the polypeptide binding domain is a polypeptide linker consisting of one to several amino acids on the N-terminal side and C-terminal side, respectively. (Hereinafter, they may be referred to as “N-terminal side linker” and “C-terminal side linker”, respectively.) Are inserted between the first and second fluorescent protein domains. Alternatively, the second and first fluorescent protein domains are inserted between the first and second ligand binding domains via their N-terminal linker and C-terminal linker. The amino acid sequences of the N-terminal linker and the C-terminal linker are different for each ligand fluorescent sensor protein and ligand fluorescent sensor negative control protein of this embodiment. However, amino acids may allow conservative substitutions.
  • “conservative amino acid substitution” means that a certain amino acid residue is substituted with an amino acid residue having a side chain of similar properties.
  • a basic side chain eg, lysine, arginine, histidine
  • an acidic side chain eg, aspartic acid, glutamic acid
  • an uncharged polar side chain eg, asparagine, glutamine, serine, threonine
  • Tyrosine, cysteine eg, nonpolar side chains
  • nonpolar side chains eg glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, tryptophan
  • a conservative amino acid substitution is preferably a substitution between amino acid residues within the same family. Therefore, the amino acid sequence of the C-terminal linker of the ligand fluorescent sensor protein of this embodiment has the same ligand binding ability and fluorescence characteristics even if one or more amino acids differ from the amino acid sequence specified in the following examples. Such an amino acid sequence is also included in the amino acid sequence of the C-terminal linker of the ligand fluorescent sensor protein of the present embodiment.
  • Suitable ligand fluorescent sensor protein Among the ATP fluorescent sensor protein and the ATP fluorescent sensor negative control protein in the present embodiment, those using the BFP-N domain and the BFP-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “MaLion B series”. " Among the ATP fluorescent sensor protein and the ATP fluorescent sensor negative control protein in the present embodiment, those using the Citrine-N domain and the Citrine-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “MaLion G series.
  • the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment have a BFP-N domain and a BFP-C domain as the first and second fluorescent protein domains
  • GFP- ⁇ of Bacillus subtilis F 0 F 1 -ATP synthase is used as an ATP-binding domain using N domain and GFP-C domain, Citrine-N domain and Citrine-C domain, mAple-N domain and mApple-C domain
  • PDE5 ⁇ as cGMP binding domain
  • EPAC1 as cAMP binding domain
  • anti-BGP antibody as BGP binding domain
  • Polynucleotides encoding candidate molecules of MaLion B, G and R series protein, cGull series protein, Pink Flamindo series protein, and gBGP series protein are synthesized, incorporated into an E.
  • the candidate molecules with the highest dynamic range are determined as MaLion B, G and R series, cGull series,
  • the turn-on ligand fluorescent sensor protein of the Pink Flamingo series and the BGP fluorescent sensor series (hereinafter referred to as “MaLion B”, “MaLion G”, “MaLion R”, “c”, respectively) ull ", was selected as the" Pink Flamindo ", and is sometimes referred to as” gBGP ".).
  • candidate molecules having the dynamic range closest to 1 were selected as MaLion B, G and R series ATP fluorescent sensor negative control proteins (referred to as “negMaLion B”, “negMaLion G” and “negMaLion R”, respectively).
  • examples of the ligand fluorescent sensor protein of the present embodiment include the following polypeptide (D1).
  • D1 A polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 9 to 14.
  • the amino acid sequence represented by SEQ ID NO: 9 in the above (D1) is [BFP-N domain]-[N-terminal side linker]-[ATP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[BFP-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
  • the amino acid sequence represented by SEQ ID NO: 10 in the above (D1) is [Citrine-N domain]-[N-terminal side linker]-[ATP-binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are linked.
  • the amino acid sequence represented by SEQ ID NO: 11 in the above (D1) has a [mAapple-N domain]-[N-terminal side linker]-[ATP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are linked.
  • the amino acid sequence represented by SEQ ID NO: 12 in the above (D1) is [Citrine-N domain]-[N-terminal side linker]-[cGMP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[Citrine-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
  • the amino acid sequence represented by SEQ ID NO: 13 in the above (D1) is [mapple-N domain]-[N terminal linker]-[cAMP binding domain]-[C terminal linker in the direction from the amino terminus to the carboxyl terminus.
  • polypeptide domain and a polypeptide linker are linked.
  • the amino acid sequence represented by SEQ ID NO: 14 in the above (D1) is [anti-BGP antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[peptide in the direction from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are linked in the order of linker]-[GFP-N domain]-[C-terminal side linker]-[light chain of anti-BGP antibody].
  • the ligand fluorescent sensor protein in the present embodiment contains the following polypeptide (D2) as a polypeptide functionally equivalent to the polypeptide (D1).
  • D2 an amino acid sequence represented by any one of SEQ ID NOs: 9 to 14, including an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the polypeptide (D1) Polypeptides having the same ability to bind to a ligand and fluorescent properties.
  • the number of amino acids that may be deleted, substituted, or added is preferably 1 to 15, more preferably 1 to 10, and particularly preferably 1 to 5.
  • the ligand fluorescent sensor protein in the present embodiment contains the following polypeptide (D3) as a polypeptide functionally equivalent to the polypeptide (D1).
  • D3 Ligand binding ability and fluorescence that include the amino acid sequence that is 80% or more identical to the amino acid sequence represented by any of SEQ ID NOs: 9 to 14 and that are the same as the polypeptide (D1) A polypeptide having properties.
  • polypeptide (D1) In order to be functionally equivalent to the polypeptide (D1), it has 80% or more identity. Such identity is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • Cell membrane permeable peptide The ligand fluorescent sensor protein of the present embodiment or the ligand fluorescent sensor negative control protein of the present embodiment penetrates the cell membrane and reaches the inside of the cell.
  • Examples of the cell membrane-penetrating peptide include, but are not limited to, peptides consisting of amino acid sequences represented by SEQ ID NOs: 38 to 41, and the like.
  • the amino acid sequence represented by SEQ ID NO: 38 is the amino acid sequence from the 48th to the 60th amino acid sequence of the HIV-1 virus tat protein.
  • the amino acid sequence represented by SEQ ID NO: 39 is the amino acid sequence from the 339th to the 354th amino acid sequence (the amino acid sequence from the 43rd to the 58th amino acid of penetratin) of the Drosophila Antennapedia protein.
  • the peptide in which the C-terminal of the peptide having the amino acid sequence represented by SEQ ID NO: 40 is amidated can permeate the cell membrane and localize in the cell.
  • This amino acid sequence is the amino acid sequence from the 616th to the 633th of the mouse VE cadherin precursor protein.
  • the amino acid sequence represented by SEQ ID NO: 41 is a 7-mer homooligomer of arginine.
  • the ligand fluorescence sensor protein of this embodiment or the ligand fluorescence sensor negative control protein of this embodiment contains a cell membrane localization peptide well known in the art for localization on the cell membrane. You can go out.
  • Examples of the cell membrane localized peptide include, but are not limited to, a peptide consisting of the amino acid sequence represented by SEQ ID NO: 42.
  • the amino acid sequence represented by SEQ ID NO: 42 is disclosed in Zuber, M .; X. (Nature, vol. 341, p345-348, 1989.) is the amino acid sequence from the first to the 21st amino acid sequence of the cell membrane localization peptide derived from human neuroprotein GAP-43 (Neuromodulin).
  • Organelle localization signal peptide The ligand fluorescence sensor protein of this embodiment or the ligand fluorescence sensor negative control protein of this embodiment is an organelle localization signal that is well known in the art for localizing to a specific organelle. It may contain a peptide.
  • organelle include, but are not limited to, mitochondria, nucleus, nucleolus, endoplasmic reticulum, chloroplast, peroxisome, and bacterial periplasm.
  • nuclear localization signal peptide examples include, but are not limited to, a peptide consisting of the amino acid sequence represented by SEQ ID NO: 43.
  • the amino acid sequence represented by SEQ ID NO: 43 is the amino acid sequence from the 126th to the 132nd amino acid sequence of the SV40 virus T antigen (Lanford, RE, et al., Cell, vol. 46, p575-582). 1986.).
  • mitochondrial localization signal peptide examples include, but are not limited to, peptides consisting of the amino acid sequences represented by SEQ ID NOs: 44 and 45, and the like.
  • the amino acid sequence represented by SEQ ID NO: 44 is the amino acid sequence from the 2nd to the 29th amino acid sequence of the human cytochrome c oxidase subunit VIII-liver / heart type (8A subunit or 8-2 subunit). It is.
  • the amino acid sequence represented by SEQ ID NO: 45 is the 2nd to 24th amino acid sequences of chicken trispartate aminotransferase (Jausi, R. et al., J. Biol Chem., Vol. 260, p16060). -16063, 1985.).
  • Examples of the endoplasmic reticulum localization signal peptide include, but are not limited to, peptides consisting of the amino acid sequences represented by SEQ ID NOs: 46 and 47, and the like.
  • the amino acid sequence represented by SEQ ID NO: 46 is the first to 17th amino acid sequence of the human skeletal muscle sarcoplasmic reticulum high affinity calcium binding protein calreticulin (Fliegel, L. et al). , J Biol Chem., Vol. 264, no. 36, p21522-21528, 1989.).
  • the amino acid sequence represented by SEQ ID NO: 47 is the amino acid sequence from the 651st to the 654th (C-terminal) of the endoplasmic reticulum membrane localization signal peptide of rat grp78 protein (Munro, S. and Pelham HR). , Cell, vol. 48, no. 5, p899-907, 1987.).
  • the ligand fluorescent sensor protein of the present embodiment or the ligand fluorescent sensor negative control protein of the present embodiment preferably includes a nuclear localization signal peptide or a mitochondrial localization signal peptide.
  • the present invention provides an ATP fluorescent sensor protein that changes its fluorescence characteristics in response to ATP concentration, wherein the ATP fluorescent sensor protein is a first protein from the N-terminus toward the C-terminus.
  • a polypeptide comprising a fluorescent protein domain, an N-terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescent protein domain directly linked by a peptide bond in this order.
  • One fluorescent protein domain includes a ⁇ sheet region of ⁇ 1 to ⁇ 3, an ⁇ helix region following this, and a ⁇ sheet region of ⁇ 4 to ⁇ 6, from the N-terminus of the fluorescent protein BFP, Citriline or mAapple,
  • the fluorescent protein domain is a ⁇ sheet region of ⁇ 7 to ⁇ 11 of the same fluorescent protein as the first fluorescent protein domain
  • ATP fluorescence ATP-binding domain consists of ⁇ -subunit of F 0 F 1 -ATP synthase
  • N-terminal linker and C-terminal linkers are each polypeptide consisting of one or several amino acids Provide a sensor protein.
  • the ratio of the fluorescence intensity in the presence of high concentration of ATP to the fluorescence intensity in the absence of ATP is sufficiently high under physiological conditions, Alternatively, pathological changes in ATP concentration can be detected.
  • a plurality of types of ATP fluorescent sensor proteins of the present embodiment having different excitation wavelengths and emission wavelengths, each of them is localized in different organelles of the same cell, or is localized in different cells in the organism, and fluorescence microscope Detect optically the temporal and / or spatial change (spatio-temporal dynamics) of ATP concentration associated with physiological and / or pathological changes of the cells or organisms simultaneously or almost simultaneously in the same visual field Technology can be provided.
  • the polypeptide is (A11)
  • the ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively, and the N-terminal and C-terminal linkers are MaLion B polypeptides, which are the amino acid sequences of SEQ ID NOs: 16 and 17, respectively;
  • the ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker, and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 16, and 17 amino acid sequences or amino acid sequences in which one or several amino acids are deleted, substituted or added to the amino acid sequences of SEQ ID NOs: 13, 1, 2, 14, and 15, and MaLion B poly A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the peptide (A11); (B11) The ATP-binding domain is
  • the polypeptide is (A21) a MaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 9, (A22)
  • the amino acid sequence of SEQ ID NO: 9 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NOS: 16 and 17, and MaLion B A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the polypeptide (A21);
  • the ATP fluorescent sensor protein of this embodiment may further contain an organelle localization signal peptide.
  • organelle localization signal peptide examples include the same as those exemplified above (other configurations). Among them, the organelle localization signal peptide is preferably a nuclear localization signal peptide or a mitochondrial localization signal peptide.
  • the ATP fluorescent sensor protein of this embodiment may further contain a cell membrane permeable peptide.
  • the present invention provides ATP fluorescence sensor negative control proteins negMaLion B, G and R.
  • the ATP fluorescence sensor negative control protein of the present embodiment includes a first fluorescent protein domain, an N-terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescence from the N-terminus toward the C-terminus.
  • a polypeptide comprising a protein domain directly linked by a peptide bond in this order comprising: (A31)
  • the ATP binding domain is the amino acid sequence of SEQ ID NO: 15
  • the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively
  • the N-terminal and C-terminal linkers are A negMaLion B polypeptide, which is the amino acid sequence of SEQ ID NOs: 27 and 28, respectively
  • the ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 27, and 28.
  • the ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 5 and 6, respectively, and the N-terminal and C-terminal linkers are Respectively, PRG (Pro-Arg-Gly) and the negMaLion G polypeptide which is the amino acid sequence of SEQ ID NO: 29;
  • the ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 5, 6, PRG (Pro- Arg-Gly) and the amino acid sequence of SEQ ID NO:
  • the ATP fluorescence sensor negative control protein of this embodiment is (A41) a negMaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 24; (A42)
  • the amino acid sequence of SEQ ID NO: 24 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NO: 27 and 28, and negMaLion B A polypeptide having the same ATP binding ability and fluorescence characteristics as the polypeptide (A41); (B41) a negMaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 25; (B42)
  • the amino acid sequences of SEQ ID NO: 25 one or several amino acids are included in the amino acid sequence excluding SEQ ID NO: 29 and the amino acid sequence of PRG (Pro-Arg-Gly) at positions 146-148 of SEQ ID NO: 25
  • the ATP fluorescent sensor negative control protein of this embodiment may further contain an organelle localization signal peptide.
  • organelle localization signal peptide examples include the same as those exemplified above (other configurations). Among them, the organelle localization signal peptide is preferably a nuclear localization signal peptide or a mitochondrial localization signal peptide.
  • the ATP fluorescent sensor negative control protein of the present embodiment may further contain a cell membrane permeable peptide.
  • the present invention provides a fluorescent composition comprising the ATP fluorescent sensor protein described above.
  • the ATP fluorescent sensor protein described above may be immobilized on a solid support.
  • the shape of the solid support is not particularly limited, and examples thereof include a flat plate shape and a spherical shape.
  • Examples of the material of the solid support include silica, alumina, glass, metal and the like as inorganic substances. Moreover, a thermoplastic resin etc. are mentioned as an organic polymer substance.
  • examples of the solid support include carriers (for example, magnetic carriers, affinity column purification carriers, etc.), cell culture substrates, preparations, microdevices, membranes, and the like.
  • examples of the substrate for cell culture include a multiwell plate, a petri dish and the like in which an arbitrary number of wells are arranged. Examples of the number of wells include 6, 12, 24, 96, 384, 1,536, etc., per plate.
  • the ATP fluorescent sensor protein described above may be an ATP fluorescent sensor protein having at least two different excitation wavelengths and fluorescent wavelengths of the first and second fluorescent protein domain pairs.
  • the ATP fluorescence sensor proteins are localized in different organelles, or are localized in different cells in the organism, Optical detection of temporal and / or spatial change (spatiotemporal dynamics) of ATP concentration associated with physiological and / or pathological changes of the cells or organisms detected simultaneously or nearly simultaneously in the same field of view of a fluorescence microscope Can be analyzed.
  • a solution containing ATP or a non-hydrolyzable ATP analog such as ATP ⁇ S
  • a solution containing ATP or a non-hydrolyzable ATP analog such as ATP ⁇ S
  • a solid support such as beads immobilizing the ATP fluorescent sensor protein can be suspended in a solution containing ATP or a non-hydrolyzable ATP analog and flowed through the container or flow path.
  • the container is shaped like a champagne glass, the containers are stacked in multiple layers, and the solution overflowing from the uppermost container is poured into the container in the layer immediately below by pouring the solution into the container on the top.
  • the so-called champagne tower or trickle-down state in which the solution overflowing from the container of the layer immediately below is poured into the container of the layer below has a high visual effect by irradiating excitation light sources of various angles and timings. Fluorescent illumination can be performed.
  • the present invention provides a polynucleotide encoding the above-described ligand fluorescent sensor protein.
  • Examples of the polynucleotide encoding the ligand fluorescent sensor protein include, for example, a polynucleotide comprising the base sequence represented by SEQ ID NO: 48 or 49, or 80% or more of the base sequence represented by SEQ ID NO: 48 or 49, for example, Examples thereof include a polynucleotide comprising a base sequence encoding a polypeptide having 85% or more, for example, 90% or more, for example, 95% or more, and having a ligand binding ability and fluorescence characteristics.
  • the base sequence represented by SEQ ID NO: 48 or 49 is the base sequence of a polynucleotide encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 12 or 13.
  • codon selection may be optimized for expression in mammals, plants, and / or nematodes.
  • the codon selection is optimized for expression in mammals, plants, and / or nematodes means the frequency of codon usage in mammals, plants, and / or nematodes and / or Corresponding to the difference in the intracellular concentration of the aminoacyl-t-RNA molecular species, the nucleotide sequence of the polynucleotide encoding the desired protein whose codon was selected so as to have the highest translation efficiency in each biological species Means to design. Optimization of codon selection is described in, for example, Gustafsson, C.I. (Trends in biotechnology 22.7 (2004): 346-353) and the like.
  • the present invention provides an expression vector comprising the polynucleotide described above.
  • the “expression vector” in the present specification refers to a polynucleotide encoding the protein, transcription of the polynucleotide, RNA splicing, RNA processing, RNA maturation, so that a desired protein can be expressed in a host cell. It means a vector containing a nucleic acid including, but not limited to, a promoter, enhancer, terminator and ribosome binding site necessary for translation, post-translational processing and other functions.
  • the expression vector for expression in mammals is not particularly limited.
  • plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13
  • plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194
  • yeasts such as pSH19 and pSH15 Origin plasmids
  • bacteriophages such as ⁇ phage
  • viruses such as adenoviruses, adeno-associated viruses, lentiviruses, vaccinia viruses, baculoviruses; and modified vectors thereof can be used.
  • the expression vector for expression in C can be used.
  • elegans is not particularly limited, and examples thereof include Okema, P. et al. G. And Andrew F. A pOK vector reported by (Development 120, 2175-2186 (1994)) can be used.
  • the expression vector for expression in plants is not particularly limited, and for example, viruses such as tobacco mosaic virus and cucumber mosaic virus, vectors obtained by modifying these viruses, and the like can be used.
  • An expression vector for expression in mammals may contain, for example, a promoter operably linked to a polynucleotide encoding the ligand fluorescent sensor protein.
  • operably linked refers to a gene expression control sequence (for example, a promoter or a series of transcription factor binding sites) and a gene to be expressed (in this embodiment, the ligand fluorescent sensor protein). Functional linkage between the polynucleotide and the polynucleotide.
  • expression control sequence means a sequence that directs transcription of a gene to be expressed (in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein).
  • the promoter is not particularly limited and can be appropriately determined according to, for example, the type of cell.
  • Specific examples of the promoter include, for example, viral promoters, expression inducible promoters, tissue-specific promoters, promoters in which enhancer sequences and promoter sequences are fused, and the like.
  • the promoter is preferably linked upstream (5 ′ side) of the polynucleotide encoding the ligand fluorescent sensor protein.
  • the “viral promoter” means a promoter derived from a virus.
  • the virus to be derived include cytomegalovirus, moloney leukemia virus, JC virus, breast cancer virus, simian virus, retrovirus and the like.
  • expression-inducible promoter means a gene that is to be expressed when a specific stimulus such as a chemical agent or physical stress is applied (in the present embodiment, a gene encoding the ligand fluorescent sensor protein).
  • Examples of the expression-inducible promoter include TetO (tetracycline operator) promoter, metallothionein promoter, IPTG / lacI promoter system, ecdysone promoter system, and an inhibitory sequence for irreversibly deleting translation or transcription.
  • lox stop lox "system and the like, but not limited to.
  • tissue-specific promoter means a promoter having activity only in a specific tissue.
  • promoters in which enhancer sequences and promoter sequences are fused include, for example, the SR ⁇ promoter consisting of the promoter of the early gene of simian virus 40 (SV40) and the partial sequence of the long terminal repeat of human T cell leukemia virus 1, Examples thereof include a CAG promoter composed of a megalovirus immediate early (IE) gene enhancer and a chicken ⁇ -actin promoter.
  • the CAG promoter is expressed by having a polyA signal site of the rabbit ⁇ -globin gene at the 3 ′ end of the gene to be expressed (in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein).
  • the gene in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein
  • a polyadenylation signal necessary for polyadenylation of the 3 ′ end of mRNA can be operated downstream (3 ′ side) of the polynucleotide encoding the ligand fluorescent sensor protein. It may be connected to.
  • the polyadenylation signal include polyadenylation signals contained in the above genes derived from viruses, various human or non-human animals, such as SV40 late gene or early gene, rabbit ⁇ globin gene, bovine growth hormone gene, human A3 Examples thereof include polyadenylation signals such as an adenosine receptor gene.
  • Expression vectors for expression in plant include, for example, promoter / enhancer derived from cauliflower mosaic virus, 5 'untranslated region (translation enhancer region) derived from alcohol dehydrogenase gene, and Alternatively, a heat shock protein gene-derived terminator or the like may be included.
  • the expression vector for expression in nematode may contain, for example, a promoter derived from the Myo2 gene.
  • the plasmid vector may contain, for example, a pBluescript vector or other modified E. coli host vectors, or a CMV promoter with high expression efficiency in mammals such as pcDNA3 vector. .
  • the above-described expression vector may further have, for example, a multicloning site, a splicing signal, a selection marker, an origin of replication, and the like.
  • the selection marker include a drug selection marker gene.
  • Specific examples of the drug selection marker gene include a neomycin resistance gene and a puromycin resistance gene.
  • the cell membrane permeation peptide contained in the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein can be used.
  • a reagent for delivering the protein into a cell can provide a cell in which the protein is temporarily or permanently present.
  • the biological species from which the cells are derived in this embodiment is not particularly limited, and examples thereof include Escherichia coli, Bacillus subtilis, yeast, insect cells, plant cells, animal cells (particularly mammalian cells), and the like. It is not limited to.
  • Examples of the mammal include, but are not limited to, human, mouse, rat, hamster, guinea pig, rabbit, dog, cat, horse, cow, sheep, pig, goat, marmoset, monkey and the like.
  • animal cells include, for example, germ cells (sperm, ova, etc.), somatic cells constituting the living body, stem cells, progenitor cells, cancer cells separated from the living body, separated from the living body, and acquired immortalizing ability. And cells that are stably maintained outside the body (cell lines), cells that have been isolated from the living body and artificially modified, and cells that have been isolated from the living body and have been artificially exchanged nuclei, etc. .
  • the present invention provides a cell comprising at least one ligand fluorescent sensor protein as described above.
  • the cell of this embodiment it is possible to detect a change in the concentration of the ligand in the living cell.
  • each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope.
  • Examples of the method for introducing the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein into cells include a method using a reagent for delivering the protein into cells.
  • the reagent include N- [1- (2,3-dioleoxy) propyl] -N, N, N- (DOTMA), which is a cationic lipid, and dioleylphosphatidylethanolamine, which is a neutral lipid.
  • DOPE 1,2-dioleoyl-3-trimethyl-ammonium-propane
  • DODAP 1,2-dioleoyl-3-dimethylammonium-propane
  • reagents include commercially available products such as Lipofectin (registered trademark), Lipofectamine (registered trademark), and Pierce (registered trademark) protein transfection reagent (both Thermo Fisher Scientific Inc.).
  • Examples of other reagents for delivering the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein into cells include, for example, lipid-free X-fect TM transfection reagent (Clontech Laboratories, Inc.) or the like may be used. This reagent can be delivered intracellularly when the ligand fluorescent sensor protein described above or the ligand fluorescent sensor negative control protein described above comprises a cell membrane permeable peptide.
  • the above-mentioned ligand fluorescent sensor protein contained in a cell may be one type or two or more types. When two or more types are included, it is preferable that each ligand fluorescent sensor protein has a different excitation wavelength and emission wavelength in order to easily detect in the same cell.
  • the present invention provides a cell having a chromosome comprising at least one polynucleotide encoding the above-described ligand fluorescent sensor protein.
  • the cell of this embodiment it is possible to detect a change in the concentration of the ligand in the living cell.
  • each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope.
  • the cell of this embodiment can be produced using, for example, a known genome editing technique in which the above-described expression vector is introduced into a cell as a donor vector to induce homologous recombination repair (HDR).
  • HDR homologous recombination repair
  • a known gene transfer method can be used. Specifically, for example, a calcium phosphate method, an electroporation method, a lipofection method, an aggregation method, a microinjection method , Particle gun method, DEAE-dextran method and the like can be used.
  • CRISPR-Cas9 system CRISPR-Cas9 system
  • TALEN system Zn finger nuclease system
  • the like can be used.
  • a method for inducing homologous recombination repair can be used.
  • by providing a drug selection marker to the polynucleotide encoding the ligand fluorescent sensor protein cells in which the polynucleotide encoding the ligand fluorescent sensor protein has been introduced by drug selection can be efficiently selected.
  • a polynucleotide encoding a ligand fluorescent sensor protein is introduced into the plant cell using the Agrobacterium method, a DNA introduction method into an isolated protoplast, etc., and homologous recombination repair (HDR) ) Can be induced.
  • HDR homologous recombination repair
  • the polynucleotide encoding the above-described ligand fluorescent sensor protein introduced into the chromosome may have, for example, a promoter upstream and a polyadenylation signal downstream.
  • Examples of the promoter and polyadenylation signal include those exemplified in the above-mentioned ⁇ expression vector >>.
  • a splicing signal, an enhancer region, and a part of an intron of each gene are placed 5 ′ upstream of the promoter region, between the promoter region and the translation region, or between the translation region. You may connect 3 'downstream.
  • a selection marker for example, a drug selection marker gene
  • a selection marker is placed 5 ′ upstream of the promoter region, between the promoter region and the translation region.
  • it may be linked 3 ′ downstream of the translation region.
  • the polynucleotide encoding the ligand fluorescent sensor protein introduced into the chromosome may be one type or two or more types. When two or more types are included, it is preferable that each ligand fluorescent sensor protein has a different excitation wavelength and emission wavelength in order to easily detect in the same cell.
  • a polynucleotide encoding two or more types of ligand fluorescent sensor proteins when included, it may be on the same chromosome or on different chromosomes.
  • the gene locus into which the polynucleotide encoding the ligand fluorescent sensor protein is introduced is preferably a safe harbor locus.
  • the “safe harbor locus” in the present specification is a gene region that is constantly and stably expressed and a gene originally encoded in the region is deleted or altered. But it means an area where life can be maintained.
  • a foreign DNA in this embodiment, a polynucleotide encoding a ligand fluorescent sensor protein
  • the safe harbor locus include the Rosa26 locus and the AAVS1 locus.
  • the present invention provides a cell comprising at least one expression vector as described above.
  • the cell of this embodiment it is possible to detect a change in the concentration of the ligand in the living cell.
  • each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope.
  • Cell production method As a method for introducing the above-described expression vector into a cell, a known gene introduction method can be used, and examples thereof include the same methods as those exemplified in ⁇ Second Embodiment> above.
  • the introduced expression vector may be one type or two or more types. When two or more types are included, it is preferable that the excitation wavelength and emission wavelength of the ligand fluorescent sensor protein expressed from each expression vector are different in order to easily detect in the same cell.
  • Non-human organism In one embodiment, the present invention provides a non-human organism comprising the cell described above.
  • the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of ligand under physiological conditions is sufficiently high, Variations in the concentration of pathological ligands can be detected.
  • each is localized in different organelles of the same cell, Alternatively, it can be localized in different cells in the organism and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope, and the ligand concentration over time and / or associated with physiological and / or pathological changes in the non-human organism
  • a technique for optically analyzing a spatial change can be provided.
  • non-human organism in the present specification may be any species other than human, and specifically includes those other than humans among those exemplified in the above “cells”.
  • the non-human organism of the present embodiment may be a non-human organism in which the above-described cells are transplanted, and a gene encoding a ligand fluorescent sensor protein is introduced into the germ cell line, and is inherited to the next generation. It may be a modified non-human organism.
  • ⁇ Method for producing non-human organism for example, a method of introducing the above-mentioned cell surgically or non-surgically into the body of the non-human organism, a method of introducing the above-mentioned vector directly into the cell of the non-human organism. Etc.
  • the non-human organism is a non-human mammal
  • a fertilized egg, embryonic stem cell, sperm or unfertilized egg of the non-human mammal is used as the cell.
  • the polynucleotide encoding the ligand fluorescent sensor protein is derived from all cells, including germ cells. It can also be produced by a method of selecting an individual integrated on a chromosome.
  • the presence of a polynucleotide encoding a ligand fluorescent sensor protein in the obtained non-human mammalian germ cells is confirmed by the fact that the resulting animal progeny have the transgene in all of the germ cells and somatic cells. can do.
  • the selection of an individual can be performed by using a ligand fluorescence sensor for genomic DNA prepared from a part of the tissue constituting the individual, for example, blood tissue, epithelial tissue, connective tissue, cartilage tissue, bone tissue, muscle tissue, oral tissue or skeletal tissue. This is done by confirming the presence of a polynucleotide encoding the protein at the DNA level.
  • the individual thus selected is usually a heterozygote having a polynucleotide encoding a ligand fluorescent sensor protein on one side of the homologous chromosome, so by crossing heterozygous individuals, A homozygous animal having a polynucleotide encoding a ligand fluorescent sensor protein in both homologous chromosomes can be obtained. By mating the homozygous male and female animals, all offspring become homozygotes that stably hold the polynucleotide encoding the ligand fluorescent sensor protein, so that non-human mammals can be used in normal breeding environments. Breeding can be passaged.
  • the non-human organism is a plant
  • the plant cell produced by the Agrobacterium method or the DNA introduction method into an isolated protoplast in ⁇ Second Embodiment> of the above ⁇ Cell> It can be produced by redifferentiating the whole genetically modified plant by a tissue culture method.
  • the non-human organism is a plant, for example, an immature embryo is partially degraded with an enzyme, and an expression vector containing a polynucleotide encoding a ligand fluorescent sensor protein is introduced by electroporation or the like, It can be produced by redifferentiating an embryo cell in which a polynucleotide is inserted into a chromosome by a plant tissue culture method.
  • the present invention provides a ligand concentration measurement comprising at least one selected from the group consisting of the above-described ligand fluorescent sensor protein, the above-described polynucleotide, the above-described expression vector, the above-described cell, and the above-mentioned non-human organism. Provide kit.
  • the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of the ligand is sufficiently high under physiological conditions, Variations in the concentration of physiological and / or pathological ligands can be detected.
  • the ligand when the ligand is ATP, by using the ligand concentration measurement kit of this embodiment, there is ATP or glucose or other bioenergy sources that produce ATP when metabolized by the cells or organisms. Only when it can generate and detect fluorescence.
  • the ligand when the ligand is ATP, the conventional living cell detection technique using the luminescence reaction by luciferase has required to dissolve the cell membrane and to contact intracellular ATP with the enzyme luciferase and the substrate luciferin.
  • the living cell can be detected without destroying the cell and diffusing ATP by using the ligand concentration measurement kit of this embodiment, the living cell can be located anywhere in the spatial structure like the microbial flora. Can be detected.
  • the ligand concentration measurement kit of this embodiment may contain one type of ligand fluorescence sensor protein, and a plurality of types of ligand fluorescence sensor proteins having different excitation wavelengths and emission wavelengths. May be included. Further, when the ligand concentration measurement kit of the present embodiment includes the above-described ligand fluorescence sensor protein, the ligand fluorescence sensor protein may be immobilized on a solid support. Examples of the solid support include those similar to those described in the above ⁇ Ligand fluorescence sensor protein >>.
  • the ligand concentration measurement kit of this embodiment may contain one type of polynucleotide encoding the ligand fluorescence sensor protein, and the ligand fluorescence sensor protein having different excitation wavelength and emission wavelength.
  • a plurality of kinds of encoding polynucleotides may be included.
  • the ligand concentration measurement kit of this embodiment may include an expression vector containing a polynucleotide encoding one type of ligand fluorescent sensor protein, and the excitation wavelength and emission wavelength are different.
  • a plurality of expression vectors containing a ligand fluorescent sensor protein may be included.
  • the ligand concentration measurement kit of the present embodiment may include one type of cell or may include a plurality of types of cells.
  • the ligand concentration measurement kit of this embodiment may include one type of cell in which the ligand fluorescent sensor protein is expressed or introduced, and the ligand fluorescent sensor protein having different excitation wavelength and emission wavelength is expressed or introduced. Multiple types of cells may be included.
  • one type of ligand fluorescent sensor protein may be expressed or introduced in the cell, and a plurality of types of ligand fluorescent sensor proteins having different excitation wavelengths and emission wavelengths may be expressed or introduced.
  • the ligand concentration measurement kit of the present embodiment may include one type of non-human organism or may include a plurality of types of non-human organisms. Further, the ligand concentration measurement kit of this embodiment may include one type of non-human organism in which the ligand fluorescent sensor protein is expressed or introduced, and the ligand fluorescent sensor protein having different excitation wavelength and emission wavelength is expressed or introduced. It may contain multiple types of non-human organisms. In addition, one type of ligand fluorescent sensor protein may be expressed or introduced in the same cell of the non-human organism included in the ligand concentration measurement kit of this embodiment, and a plurality of types of ligands having different excitation wavelengths and emission wavelengths. A fluorescent sensor protein may be expressed or introduced.
  • one type of ligand fluorescent sensor protein may be expressed or introduced in different cells of the non-human organism included in the ligand concentration measurement kit of the present embodiment, and a plurality of types of ligands having different excitation wavelengths and emission wavelengths.
  • a fluorescent sensor protein may be expressed or introduced.
  • the ligand concentration measurement kit of the present embodiment may further include the reagent exemplified in ⁇ First Embodiment> of the above ⁇ Cell>. .
  • the ligand concentration measurement kit of the present embodiment may further include a transfection reagent for vector introduction.
  • the transfection reagent for vector introduction is selected from the group consisting of, for example, cationic polymers, cationic lipids, polyamine reagents, polyimine reagents, and calcium phosphate.
  • Such transfection reagents include, for example, Effectene Transfection Reagent (cat. Transfection Reagent (301305, Qiagen, CA), PolyFect Transfection Reagent (301105, Qiagen, CA), LipofectAMINE 2000 Reagent (11668-019, Invitrogen Corporation, CA), JetPEI ( ⁇ ) Conc. (101-30, Polyplus-translation, France), ExGen 500 (R0511, Fermentas Inc., MD), and the like, but are not limited thereto.
  • the ligand concentration measurement kit of the present embodiment may further include a cell culture medium.
  • the cell culture medium may be a basic medium containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) necessary for viable cell growth, and should be selected appropriately depending on the cell type. Can do.
  • Specific examples of the cell culture medium include, for example, LB medium, E.
  • Bacillus subtilis minimal medium Bacillus subtilis culture medium, Bacillus subtilis transformation medium I, Bacillus subtilis transformation medium II, etc .
  • yeast minimal medium yeast complete medium (YPAD medium), etc.
  • Yeast culture medium Yeast culture medium; Murashige and Skoog medium (MS medium), B5 medium, Hyponex medium and other plant culture mediums; Grace insect medium, Schneider insect medium and other insect cell culture mediums; DMEM, Minimum Essential Medium (MEM) , RPMI-1640, Basal Medium Eagle (BME), Dulbecco's odified Eagle's Medium: Nutrient Mixture F-12 (DMEM / F-12), Glasgow Minimum Essential Medium (Glasgow MEM) for animal cell culture media, etc., and the like, but are not limited to.
  • MEM Minimum Essential Medium
  • BME Basal Medium Eagle
  • Dulbecco's odified Eagle's Medium Nutrient Mixture F-12 (DMEM / F-12), Glasgow Minimum Essential Medium (Glasgow MEM) for animal cell culture media, etc., and the like, but are not limited to.
  • the ligand concentration measurement kit of this embodiment may further include an excitation light source.
  • the excitation light source may be appropriately selected according to the excitation wavelength of the fluorescent sensor protein.
  • the present invention comprises a calibration curve creating step of contacting the above-described ligand fluorescence sensor protein with a standard solution containing a known concentration of a ligand, measuring fluorescence intensity, and creating a calibration curve; Measured in the fluorescence measurement step based on the calibration curve created in the fluorescence measurement step of measuring fluorescence intensity by bringing the sensor into contact with a solution containing a fluorescent sensor protein and a ligand of unknown concentration, and the calibration curve creation step And a concentration determining step for determining a ligand concentration with respect to the fluorescence intensity, and a method for determining a ligand concentration in a test sample.
  • the ligand concentration in the test sample can be determined easily and accurately.
  • Each step of the method for determining the ligand concentration in the test sample of the present embodiment will be described in detail below.
  • the above-described ligand fluorescence sensor protein is brought into contact with a standard solution containing a ligand having a known concentration, and the fluorescence intensity is measured.
  • the ligand is not particularly limited and includes the same ligands as those exemplified in the above-mentioned “ligand fluorescence sensor protein”.
  • As the standard solution a solution containing one type of ligand may be used, or a solution containing a plurality of types of ligands may be used. Among them, in order to accurately create a calibration curve, it is preferable to use a solution containing a plurality of types of ligands as the standard solution.
  • the ligand fluorescent sensor protein may be suspended in a solvent or immobilized on a solid support.
  • the solvent for suspending the ligand fluorescent sensor protein may be any solvent that does not affect the ligand binding ability and fluorescence characteristics of the ligand fluorescent sensor protein.
  • the solvent include water, sodium chloride solution (for example, 0.9% (w / v) NaCl), glucose solution (for example, 5% glucose), surfactant-containing solution (for example, 0.01 % Polysorbate 20), pH buffer solution (as buffering agents, for example, HEPES-KOH, Tris-HCl, acetic acid-sodium acetate, citric acid-sodium citrate, phosphoric acid, boric acid, MES, PIPESHEPES-KOH, Tris-HCl , Acetic acid-sodium acetate, citric acid-sodium citrate, phosphoric acid, boric acid, MES, PIPES, and the like), and the like.
  • the solid support include those similar to those described in the above ⁇ Ligand fluorescence sensor protein >>.
  • Fluorescence intensity may be measured using a known stationary fluorescence measuring device. Next, a calibration curve is created from the obtained fluorescence intensity and a known ligand concentration.
  • the fluorescence intensity is measured by bringing the ligand fluorescence sensor protein into contact with a solution containing an unknown concentration of the ligand.
  • the fluorescence intensity may be measured using a known stationary fluorescence measuring device.
  • the solution containing an unknown concentration of the ligand is not particularly limited.
  • a body fluid sample collected from a human or non-human organism, a cell extract collected from a human or non-human organism, a human or non-human organism examples include, but are not limited to, culture supernatants of cells collected from, extracts of cultured cells derived from human or non-human organisms, culture supernatants of cultured cells derived from humans or non-human organisms, and the like.
  • the body fluid sample for example, blood, serum, plasma, urine, puffy coat, saliva, semen, chest exudate, cerebrospinal fluid, tear fluid, sputum, mucus, lymph fluid, ascites, pleural effusion, amniotic fluid , Bladder lavage fluid, bronchoalveolar lavage fluid and the like, but are not limited thereto.
  • a ligand concentration with respect to the fluorescence intensity measured in the fluorescence measurement step is determined based on the created calibration curve.
  • the preparation of the calibration curve and the determination of the ligand concentration relative to the fluorescence intensity may be performed using commercially available data analysis software or the like.
  • the present invention provides a method for detecting a change in ligand concentration over time in a living cell, comprising the step of measuring fluorescence intensity over time using the above-described cells.
  • the detection method of the present embodiment it is possible to easily detect a change with time in the concentration of a ligand in a living cell.
  • each of them is localized in different organelles of the same cell, and in the same field of view of the fluorescence microscope.
  • the fluorescence intensity can be measured using a fluorescence microscope having a stationary fluorescence measurement device while the cells are alive. Furthermore, by measuring the fluorescence intensity continuously, it is possible to measure a change in fluorescence intensity over time.
  • the present invention provides a method for detecting a change in ligand concentration over time in a living non-human organism, comprising the step of measuring fluorescence intensity over time using the non-human organism described above.
  • the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of the ligand is sufficiently high under physiological conditions, Alternatively, variations in pathological ligand concentration can be detected.
  • each is localized in different organelles of the same cell, Alternatively, it can be localized in different cells in the organism and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope, and the ligand concentration over time and / or associated with physiological and / or pathological changes in the non-human organism
  • a technique for optically analyzing a spatial change can be provided.
  • the fluorescence intensity can be measured using a fluorescence microscope or the like having a stationary fluorescence measurement device while the non-human organism is still alive. Furthermore, by measuring the fluorescence intensity continuously, it is possible to measure a change in fluorescence intensity over time.
  • ATP-specific fluorescent sensor protein Reagents etc.
  • ATP, ADP, and AMP were purchased from Wako Pure Chemical Industries, Ltd., and GTP was purchased from Sigma-Aldridge.
  • Other reagents such as sodium fluoride (NaF), oligomycin, isoproterenol and 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) were purchased from Sigma-Aldridge.
  • dATP was purchased from Thermo Scientific. All polynucleotides for primers were purchased from Sigma-Aldridge. Ligation was performed using T4 DNA ligase in each optimum buffer (Takara).
  • PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for PCR.
  • the PCR reaction product or restriction enzyme digestion product was purified by electrophoresis (agarose gel) as a routine, and then gel extraction (QIAquick, Qiagen) was performed.
  • an Axy Prep TM miniprep kit (Axygenbio, Corning Japan Co., Ltd.) was used.
  • the ATP fluorescence sensor protein of the present invention uses the epsilon ( ⁇ ) subunit of Bacillus subtilis F 0 F 1 -ATP synthase as the ATP binding domain, BFP (Wachter, R. et al., Biochemistry 2960, 9759-9765 (1997)), Citrine (Griesbeck, O. et al., J. Biol. Chem. 276, 29188-29194 (2001)), and mAple (Shaner, N). C. et al., Nature Methods 5: 545-551 (2008)). BFP and mApple are described in Zhao, Y. et al. (Science.
  • the excitation wavelengths of the fluorescent proteins BFP, Citrine, and mA Apple are 380, 490, and 550 nm, respectively, and the emission wavelength ranges are 410 to 600, 505 to 650, and 575 to 700 nm, respectively.
  • Various polypeptide linkers were ligated to the amino terminus and carboxyl terminus of the ⁇ subunit, and fusion proteins inserted into the fluorescent proteins BFP, Citriline, and mApple were prepared as candidate proteins for the ATP fluorescent sensor protein (MaLion B, respectively). Sometimes referred to as G and R series).
  • the structure of the domain and linker of the candidate protein of the ATP fluorescence sensor is as follows. First, a domain that specifically binds to ATP may be referred to as an “ATP binding domain”.
  • the ATP binding domain is derived from the ⁇ subunit of Bacillus subtilis F 0 F 1 -ATP synthase, and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 15.
  • the polypeptide linker linked to the amino terminus of the ATP binding domain may be referred to as “N-terminal linker”, and the polypeptide linker linked to the carboxyl terminus of the ATP binding domain may be referred to as “C-terminal linker”. .
  • BFP-N domain The amino-terminal domain and the carboxyl-terminal domain of each fluorescent protein BFP, Ciline, and mAapple cleaved by insertion are hereinafter referred to as “BFP-N domain”, “BFP-C domain”, “Citrine-N domain”, It may be referred to as “Citrine-C domain”, “mApple-N domain”, and “mApple-C domain”.
  • the amino acid sequences of the BFP-N domain and the BFP-C domain are listed as SEQ ID NOs: 1 and 2.
  • the amino acid sequences of the Citrine-N domain and the Citrine-C domain are listed as SEQ ID NOs: 5 and 6.
  • SEQ ID NOs of the mApple-N domain and the mApple-C domain are listed as SEQ ID NOs: 7 and 8.
  • the candidate proteins of the MaLion B series ATP fluorescent sensor are [BFP-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker]-from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are arranged in the order of [BFP-C domain].
  • candidate proteins for the MaLion G series ATP fluorescent sensor are [Citrine-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker] in the direction from the amino terminus to the carboxyl terminus.
  • -A polypeptide domain and a polypeptide linker are arranged in the order of [Citrine-C domain].
  • candidate proteins for the MaLion R series ATP fluorescent sensor are [mAapple-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker]-in the direction from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are arranged in the order of [mAapple-C domain].
  • the procedure for constructing a candidate protein for the ATP fluorescence sensor protein is as follows. First, a polynucleotide encoding the ⁇ subunit of Bacillus subtilis F 0 F 1 -ATP synthase was synthesized as an ATP binding domain (Integrated DNA Technologies, Institute of Medical Biology). Next, polynucleotides encoding N-terminal linkers and C-terminal linkers of various amino acid sequences were linked to both ends of the ATP binding domain.
  • a fused chimeric protein in which the polynucleotide encoding the N-terminal linker, ATP-binding domain, and C-terminal linker is inserted on the carboxyl terminal side from the chromophore of each fluorescent protein so that the reading frame of the amino acid sequence is not shifted. was prepared by PCR.
  • the polynucleotide encoding the candidate protein of the ATP fluorescence sensor into the pRSET A vector (Invitrogen, Life Technologies Corporation), the MaLion G series has the XhoI / BstbI site, the MaLion B and R series have the BamHI / HindIII sites. Using.
  • the pRSET A vector construct containing the ATP fluorescent sensor candidate protein was transformed into E. coli JM109 (DE3), and an expression vector clone containing each ATP fluorescent sensor candidate protein was isolated.
  • Each clone of E. coli was cultured in 2.5 mL of LB medium at 20 ° C. for 3-4 days. Thereafter, the Escherichia coli suspension was centrifuged at 15,300 g for 5 minutes, pelleted, resuspended in PBS buffer solution, and sonicated for 30 seconds (130 W, 20 kHz, intensity 30%, Vibra cell TM, (SONICS & Materials, Inc.) was applied to obtain a cell lysate.
  • a buffer solution 50 mM Mops-KOH (pH 7.4), 50 mM KCl, 0.5 mM MgCl 2 , and 0.05% triton X-100
  • a buffer solution 50 mM Mops-KOH (pH 7.4), 50 mM KCl, 0.5 mM MgCl 2 , and 0.05% triton X-100
  • the fluorescence characteristics of the ATP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
  • FIG. 1A is a ratio of the fluorescence intensity in the presence of 19 types of ATP and the fluorescence intensity in the absence of ATP (hereinafter, referred to as ATP fluorescence sensor)
  • 1B is a histogram of the dynamic range of 27 candidate proteins of the MaLion G series ATP fluorescence sensor
  • FIG. 1C is a histogram of the 47 candidate proteins of the MaLion R series ATP fluorescence sensor. which is a histogram of the F / F 0.
  • the ATP concentration in the presence of ATP is all 10 mM.
  • the horizontal axis represents the dynamic range
  • the scale number represents the end of each section
  • the vertical axis represents the number of candidate proteins that include the dynamic range within the dynamic range section.
  • the candidate proteins with the largest dynamic range in the MaLion B, G, and R series were named MaLion B, G, and R, respectively.
  • the amino acid sequences of the N-terminal linker and the C-terminal linker of MaLion B are listed in SEQ ID NOs: 16 and 17, respectively.
  • the amino acid sequence of the N-terminal linker of MaLion G is WRG (Trp-Arg-Gly), and the amino acid sequence of the C-terminal linker of MaLion G is listed in SEQ ID NO: 18.
  • the amino acid sequence of the N-terminal linker of MaLion R is listed in SEQ ID NO: 19.
  • the amino acid sequence of the C-terminal linker of MaLion R is PEE (Pro-Glu-Glu).
  • the full-length amino acid sequences of MaLion B, G, and R are listed in SEQ ID NOs: 9, 10, and 11, respectively.
  • negMaLion B In the MaLion B, G, and R series, one of the candidate proteins with a dynamic range close to 1 was named negMaLion B, G, and R, respectively.
  • the amino acid sequences of the N-terminal linker and the C-terminal linker of negMaLion B are listed in SEQ ID NOs: 27 and 28, respectively.
  • the amino acid sequence of the N-terminal linker of SEQ ID NO: negMaLion G is PRG (Pro-Arg-Gly), and the amino acid sequence of the C-terminal linker of negMaLion G is listed in SEQ ID NO: 29.
  • the amino acid sequence of the N-terminal linker of negMaLion R is listed in SEQ ID NO: 30.
  • the amino acid sequence of the C-terminal linker of negMaLion R is PEG (Pro-Glu-Gly).
  • the full length amino acid sequences of negMaLion B, G, and R are listed in SEQ ID NOs: 24, 25, and 26, respectively.
  • ATP fluorescence sensor protein etc. MaLion B, G, and R and negMaLion B, G, and R may be hereinafter referred to as “ATP fluorescence sensor protein etc.”.
  • ATP fluorescence sensor protein etc. is linked to pRSET A vector, and fusion protein containing translation start codon, histidine hexamer polypeptide etc. is introduced into E. coli JM109 (DE3) as a construct driven by T7 promoter did.
  • E. coli containing an expression vector such as an ATP fluorescence sensor protein was cultured in 100 mL of LB medium at 20 ° C.
  • a purified fusion protein such as ATP fluorescence sensor protein was used in a measurement experiment with a fluorescence spectrophotometer (Hitachi F-2700).
  • a Mops buffer 50 mM Mops-KOH (pH 7.4), 50 mM KCl, 0.5 mM MgCl 2 , and 0.05% Triton X-100 was used except for the experiment for changing the pH.
  • various final concentrations of ATP of 0-8 mM were used.
  • ADP, AMP, GTP, or dATP among the ATP analog compounds was used at a final concentration of 10 mM.
  • concentration of the fusion protein was adjusted to 20 ⁇ M and an ultraviolet-visible light spectrophotometer (JASCO Corporation) was used.
  • a fluorescence spectrophotometer (RX2000, Applied photophysics Limited) equipped with a stopped-flow apparatus was used for the reaction kinetic analysis of the purified fusion protein such as the ATP fluorescence sensor protein.
  • the protein is rapidly mixed 1: 1 with solutions of different ATP concentrations, and the change in fluorescence at a given wavelength (440 nm, 520 nm and 585 nm) is recorded, and the apparent rate constant (k app at each ATP concentration).
  • k app at each ATP concentration was calculated by fitting an exponential curve, and then k app at each ATP concentration was plotted to determine the association constant (k on ) and dissociation constant (k off ), respectively.
  • the relationship is expressed by the following formula (1).
  • FIG. 2A is an excitation spectrum diagram of MaLion B, G, and R in the presence and absence of 10 mM ATP
  • FIG. 2B is the presence and absence of 10 mM ATP
  • FIG. 4 is an excitation spectrum and fluorescence spectrum diagram of MaLion B, G, and R below.
  • 2A and 2B represent the excitation wavelength and the fluorescence wavelength, respectively, and the vertical axis represents the relative value of the fluorescence intensity.
  • the solid line and the dotted line in the graph represent the spectrum curves in the presence and absence of ATP, respectively.
  • FIG. 2C is a fluorescence spectrum diagram of negMaLion B, G, and R in the presence and absence of 10 mM ATP. From FIG. 2C, negMaLion B, G, and R all increased their fluorescence in the presence of 10 mM ATP by 104%, 95%, and 106%, respectively, compared to the absence of ATP.
  • FIG. 3A is a graph showing an ATP concentration-dependent change in the fluorescence intensity of MaLion B, G, and R.
  • K D dissociation equilibrium constant
  • FIG. 3B is a graph showing the molecular specificity of the fluorescence intensities of MaLion B, G, and R.
  • the ATP analog compound may affect the fluorescence intensity only by 10% or less of the normalized dynamic range. It was revealed. Therefore, the present ATP fluorescent sensor is very specific for ATP.
  • the fluorescence characteristics of the individual fluorescence sensors are determined by the sequences of the N-terminal linker and the C-terminal linker linked to both ends of the ATP binding domain.
  • 4A, 4B, and 4C are graphs showing pH-dependent changes in fluorescence intensity and dynamic range of MaLion B, G, and R in the presence or absence of ATP, respectively.
  • the horizontal axis represents pH
  • the left vertical axis represents fluorescence intensity
  • the right vertical axis represents dynamic range. From FIG. 4A, FIG. 4B, and FIG. 4C, even if MaLion B, G, and R have the same ATP concentration, the fluorescence characteristics change when the pH changes, and the influence of the pH on the fluorescence characteristics is different for each variant. Different. This is the same as the influence on the fluorescence characteristics of the ATP analog compound shown in FIG. 3B.
  • the change pattern of the fluorescence characteristics depending on the pH of the ATP fluorescence sensor negative control proteins negMaLion B, G, and R was the same as the change pattern of the fluorescence characteristics due to the pH of MaLion B, G, and R. Therefore, in an experimental system in which pH may change at the same time as the change in ATP concentration, fluorescence measurement with MaLion B, G, and R and fluorescence measurement with negMaLion B, G, and R are performed in parallel.
  • the ATP concentration can be determined by excluding the influence of pH change.
  • Example 3 Construction of vector for intracellular expression of ATP fluorescence sensor protein, etc. Construction of Vector for Expression in Mammalian Cells
  • a polynucleotide encoding MaLion G or negMaLion G was inserted into the XhoI / HindIII site of pcDNA3.1 ( ⁇ ) vector.
  • a polynucleotide encoding MaLion B and R or negMaLion B and R was inserted into the BamHI / HindIII site of pcDNA3.1 (-) vector.
  • a fusion protein obtained by linking a cytochrome c oxidase subunit VIII-derived localization signal sequence (SVLTPLLLRGTGSARRLVPVPKIHSL, SEQ ID NO: 44) to the amino terminus of the ATP fluorescence sensor protein was expressed in a mitochondria-specific expression vector. That is, a polynucleotide encoding MaLion R or negMaLion R was inserted into the BamHI / NotI site of the pEYFP-Mito vector (Clontech Laboratories, Inc.).
  • the fusion protein in which the localization signal sequence derived from the subunit VIII of cytochrome c oxidase was linked to the amino terminus of MaLion R or negMaLion R was named “mito-MaLion R” or “mito-negMaLion R”.
  • each of MaLion G, negMaLion G, Cemito-MaLion R, or Cemito-negMaLion R is encoded in a vector derived from pBueScript with the myo2p promoter introduced.
  • the polynucleotide was inserted into the XhoI / SacI site.
  • a pGreen — 0281 vector in which 35S promoter is double-linked is added to MaLion G, negMaLion G, Cemito-MaLion R, or a codon optimized for translation in a plant (Arabidopsis thaliana), or A polynucleotide encoding each of Chemito-negMaLion R was inserted into the XhoI / SacI site.
  • Example 4 Intracellular ATP concentration measurement using ATP fluorescent sensor protein, etc. Fluorescence sensor measurement of intracellular ATP in HeLa cells HeLa cells were obtained from ATCC (American Type Culture Collection, VA, USA) and modified by Dulbecco with 10% fetal bovine serum, 100 IU / mL penicillin and 100 ⁇ g / mL streptomycin. The cells were cultured in an Eagle medium (glucose 4.5 g / L, hereinafter sometimes referred to as “growth medium”) at 37 ° C. in a 5% CO 2 atmosphere.
  • Eagle medium glucose 4.5 g / L
  • a 3.5 cm glass bottom dish in which HeLa cells were seeded to become 50% confluent was prepared. 10 ⁇ L of Opti-MEM medium (Life Technologies Corporation, Thermo Fisher Scientific Inc.) supplemented with 0.2 ⁇ g of expression vector containing ATP fluorescence sensor protein and 0.2 ⁇ L of FuGENE HD transfection reagent (Promega Corporation) in advance. Added to the HeLa cells on the 3.5 cm glass bottom dish. After culturing for 8 hours, the culture medium was replaced with fresh growth medium, and further cultured for 2-3 days. Immediately before the fluorescence measurement, the medium was replaced with a phenol red-free growth medium.
  • Fluorescent microscope images of the cells were taken every 10 seconds. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording.
  • MetaFluor software Molecular Devices, LLC
  • FF01-500 / 24 was used as an excitation filter
  • Di02-FF520 was used as a dichroic mirror
  • FF01-542 / 27 was used as a light emission filter (all are Semrock, Optline Inc.).
  • BP535-555HQ was used as the excitation filter
  • DM565HQ was used as the dichroic mirror
  • BA570-625HQ was used as the emission filter (all from Olympus Corporation).
  • BP460-480HQ and BP535-555HQ are used as excitation filters
  • Di01-FF493 / 574 (Semrock, Opt Corporation) is used as a dichroic mirror. Line) and BA495-540HQ and BA570-625HQ were used as the light emission filters (Olympus Corporation).
  • FF01-377 was used as an excitation filter
  • Di03-FF409 was used as a dichroic mirror
  • FF02-447 was used as a light emission filter (all are Semrock, Optline Inc.). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
  • 5A, 5B, and 5C are graphs showing changes in fluorescence after administration of NaF that inhibits glycolytic ATP production to HeLa cells in which MaLion G, R, and B are expressed, respectively.
  • the vertical axis represents normalized fluorescence intensity
  • the horizontal axis represents time (minutes).
  • NaF was added to a final concentration of 10 mM.
  • the light gray three waveforms in each figure show the measured values in three different dishes, and the dark gray single waveform shows the average value of these three waveforms.
  • the turn-on type ATP fluorescence sensors MaLion G, R, and B, the fluorescence intensity decreased until 15 minutes after the addition of NaF. This means that the intracellular ATP concentration has decreased.
  • FIG. 5D, FIG. 5E, and FIG. 5F are graphs showing changes in fluorescence after administration of NaF that inhibits glycolytic ATP production to HeLa cells in which negMaLion G, R, and B are expressed.
  • FIG. 5G shows the start of fluorescence measurement of each fluorescent protein expressed in HeLa cells for MaLion G, R, and B and negMaLion G, R, and B based on the experimental results of the graphs of FIGS. 5A to 5F. It is a bar graph which shows the average value and standard deviation of the normalized fluorescence intensity 25 minutes after.
  • the fluorescence intensity after NaF administration also caused a change in fluorescence intensity even in negMaLion G, R, and B, which hardly responded to the change in ATP concentration. This may be due to changes in the cytoplasmic pH (Berg, J. et al., Nat. Methods 6, 161-166 (2009)).
  • FIG. 5G when the measurement results of MaLion G, R, and B and the measurement results of negMaLion G, R, and B were combined, the former fluorescence intensity was significantly lower than the latter fluorescence intensity. .
  • the change in ATP concentration is pH like the cytoplasm of the cell in which the glycolysis is inhibited. It was possible to measure the ATP concentration excluding the influence of the pH change even under conditions that occur simultaneously with the change of.
  • ATP fluorescence sensor proteins with different fluorescence wavelengths are localized in the cytoplasm, one in the mitochondria, and inhibits ATP production in the mitochondria, but glycolytic ATP production in the cytoplasm Changes in ATP concentration in both cytoplasm and mitochondria after administration of uninhibited oligomycin were measured simultaneously.
  • 0.2 ⁇ g of expression vector containing ATP fluorescence sensor protein localized in the cytoplasm and expression vector 0. 10 ⁇ L of Opti-MEM medium (Life Technologies Corporation, Thermo Fisher Scientific Inc.) supplemented with 2 ⁇ g and 0.2 ⁇ L of FuGENE HD transfection reagent (Promega Corporation) in advance was used.
  • Figure 6 shows fluorescence at two wavelengths corresponding to two different ATP fluorescence sensor proteins in the same field after simultaneously transfecting HeLa cells with MaLion G expression vector and mito-MaLion R expression vector. It is the graph which showed the change of fluorescence after administering oligomycin 3 minutes after the microscope imaging start.
  • WT-1 cells differentiated into brown adipocytes on glass bottom dishes by induction of differentiation with BMP (bone morphogenetic protein) -7 (Tseng et al. (Nature, 454: 1000-1004 (2008)). After reaching a confluent state, 3.3 nM BMP-7 (354-BP, R & D Systems, Inc.), 20 nM insulin (Sigma-Aldrich Co. LLC.), And 1 nM T3 (Sigma-Aldrich Co.).
  • BMP-7 bone morphogenetic protein
  • the medium was changed to a basic medium supplemented with 20 nM insulin and 1 nM T3, and transfection of the expression vector of the ATP fluorescence sensor protein was performed.
  • a basic medium supplemented with 20 nM insulin and 1 nM T3, and transfection of the expression vector of the ATP fluorescence sensor protein was performed.
  • concentrations of calcium ions, cAMP and mitochondrial ATP in differentiated WT-1 cells were measured, 1.0 ⁇ g of B-Geco (Zhao, Y. et al., Science.
  • Three-wavelength fluorescence observation was performed with a confocal microscope (FV1000, Olympus Corporation) equipped with an oil immersion objective lens (PLAPO, 60 ⁇ 1.45NA).
  • B-Geco, Flamindo2 and mito-MaLion R were excited with 405 nm, 488 nm and 543 nm laser lights, respectively, and fluorescence was imaged at wavelengths above 405-475 nm, 500-530 nm and 560 nm, respectively. Imaging was performed every 10 seconds.
  • 200 ⁇ L of isoproterenol and phenylephrine stock solutions were added to 1.8 mL cultures to a final concentration of 1 ⁇ M and 10 ⁇ M, respectively. All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
  • FIG. 7A is a fluorescence microscopic image of B-Geco (Ca 2+ ions, blue), Flamindo 2 (cAMP, green) and mito-MaLion R (ATP, red) of differentiated WT-1 cells in the same visual field.
  • the number on the upper left of each frame represents the time (minutes) after the observation starts.
  • FIG. 7B is a graph showing changes in normalized fluorescence intensity of each probe over time. The arrow indicates that 1 ⁇ M isopreterenol was added 5 minutes after the start of observation (between the first and second frames in FIG. 7A).
  • Isoproterenol is a ⁇ -adrenergic receptor agonist
  • B-Geco is a Ca 2+ ion turn-on fluorescent probe (excitation wavelength 378 nm, fluorescence wavelength 446 nm)
  • Flamindo 2 is a cAMP turn-off fluorescent probe (excitation). Wavelength 504 nm, fluorescence wavelength 523 nm).
  • FIG. 7A and FIG. 7B it was found that with the activation of ⁇ -adrenergic receptor by isoproterenol, cAMP first increases and ATP decreases after a little delay.
  • adenylate cyclase on the cell membrane activated by receptor stimulation synthesizes cAMP, which becomes signal transduction and activates cAMP-dependent PKA.
  • the fatty acid is released and acts on the uncoupling protein UCP1 on the mitochondrial membrane to eliminate the proton gradient that causes the membrane potential on the mitochondrial membrane (thermal production of brown adipocytes).
  • the results of FIGS. 7A and 7B are consistent with this proposed mechanism.
  • Fluorescence sensor measurement of intracellular ATP in nematode pharyngeal muscles An adult C. elegans expressing ATP fluorescence sensor protein and the like uses a small amount of cyanoacrylate glue (Aron Alpha A, Daiichi-Sankyo). Then, it was fixed on a 3.5 cm glass bottom dish and covered with a 1.7% agar gel pad having a thickness of 0.5 cm. Fixed nematodes were immersed in M9 buffer (22 mM KH 2 PO 4 , 86 mM NaCl, 42 mM Na 2 HPO 4 and 1 mM MgSO 4 ) and subjected to microscopic imaging. Room temperature was kept at 25 ° C. and sample preparation was completed within 30 minutes.
  • M9 buffer 22 mM KH 2 PO 4 , 86 mM NaCl, 42 mM Na 2 HPO 4 and 1 mM MgSO 4
  • Nematodes are imaged with a 20x dry objective lens, a Nippon Kok disk confocal scanner (CSU-10, Yokogawa), an electron multiplying charge coupled device (EM-CCD) camera (C9100-02, Hamamatsu Photonics) An inverted epifluorescence microscope (Observer D1, Zeiss) equipped with For imaging with MaKion G and MaLion R Nipkow-disc confocal illumination, optically pumped semiconductor 488 nm laser (Sapphire 488LP, 50 mW, Coherent) and 568 nm laser (Sapphire 568LP, 50 mW, Coherent), dichroic mirror and emission filter, respectively.
  • An electromagnetically driven shutter (SSH-C4RA, Sigmakoki CO., LTD.) Is disposed in the optical path of the laser beam, and the opening and closing of the shutter is synchronized with the EM-CCD camera and is controlled by MetaMorph software (Molecular Devices, LLC). .
  • the exposure time was 100 milliseconds. Imaging was performed every 10 seconds for 30 minutes. Nematode anesthesia was performed 5 minutes after the start of imaging by applying M9 physiological saline containing 0.5% 1-phenoxy-2-propanol.
  • FIG. 8A and FIG. 8B are graphs showing the results of simultaneous measurement of changes in the ATP concentration in the nematode pharyngeal muscle cytoplasm and mitochondria, and the arrow indicates 0.5% 1-phenoxy-2-propanol as an anesthetic. This shows that M9 saline containing (FIG. 8A) or not (FIG. 8B) was administered 5 minutes after the start of observation.
  • the cytoplasmic ATP concentration of the nematode pharyngeal muscle rapidly decreased immediately after the administration of the anesthetic agent, and the normalized fluorescence intensity decreased to 20% at the time of the anesthetic agent administration 30 seconds after the administration of the anesthetic agent.
  • the mitochondrial ATP concentration decreased slowly, and the normalized fluorescence intensity decreased to 20% at the time of anesthetic administration 3 minutes after the administration of the anesthetic. From this result, it is considered that the anesthetic agent first inhibited ATP production in the mitochondria, and accordingly, cytoplasmic ATP decreased. From FIG.
  • the ATP concentration of the nematode pharyngeal muscle did not change significantly immediately after administration of the control M9 saline in both cytoplasm and mitochondria.
  • the normalized fluorescence intensity decreased to 80% in the mitochondria and 60% in the cytoplasm in 5 minutes from the start of observation. This is probably because ATP production in mitochondria was reduced due to fatigue of nematodes by ultraviolet laser irradiation, and the ATP concentration in the cytoplasm was also reduced accordingly.
  • This is the first example in the world in which ATP dynamics in the same cell in a single animal individual is observed simultaneously with different organelles, and could not be achieved without the present invention.
  • a nematode that constantly expresses an ATP sensor there is a possibility that it can be used as a drug screening tool that inhibits ATP synthesis, that is, a useful tool for anticancer agents and toxicity screening.
  • Example 5 Construction of cGMP-specific fluorescent sensor protein cGMP Fluorescent Sensor Protein Design
  • the cGMP fluorescent sensor protein uses Phosphoesterase 5 ⁇ (PDE5 ⁇ ) as the cGMP binding domain, and Citrine (Griesbeck, O. et al., J. Biol. Chem. 276, 29188-29194 (2001)) as the fluorescent protein.
  • PDE5 ⁇ Phosphoesterase 5 ⁇
  • Citrine Griesbeck, O. et al., J. Biol. Chem. 276, 29188-29194 (2001)
  • the excitation wavelength of the fluorescent protein Citrine is 490 nm, and the emission wavelength region is 505 to 650 nm.
  • the structure of the domain and linker of the candidate protein of the cGMP fluorescence sensor is as follows. First, a domain that specifically binds to cGMP may be referred to as a “cGMP binding domain”.
  • the cGMP binding domain is derived from PDE5 ⁇ and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 21.
  • the polypeptide linker linked to the amino terminus of the cGMP binding domain may be referred to as “N-terminal linker”, and the polypeptide linker linked to the carboxyl terminus of the cGMP binding domain may be referred to as “C-terminal linker”.
  • cGull series cGMP fluorescent sensor candidate proteins are [Citrine-N domain]-[N-terminal linker]-[cGMP binding domain]-[C-terminal linker]-[ The polypeptide domain and the polypeptide linker are arranged in the order of [Citrine-C domain].
  • ATP As a procedure for constructing a candidate protein for the cGMP fluorescent sensor protein, “ATP” of Example 1 was used except that a polynucleotide encoding PDE5 ⁇ was synthesized as a cGMP binding domain (Integrated DNA Technologies, Medical and Biological Laboratories, Inc.). This was carried out using the same method as “construction of candidate protein for fluorescent sensor protein”. In the presence or absence of cGMP at a final concentration of 100 ⁇ M, the fluorescence characteristics of the cGMP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
  • FIG. 9A is a fluorescence spectrum diagram of cGull in the presence and absence of 100 ⁇ M cGMP.
  • the horizontal axis of FIG. 9A represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity.
  • the solid and dotted lines in the graph represent the spectral curves in the presence and absence of cGMP.
  • cGull increased its fluorescence in the presence of 100 ⁇ M cGMP by 550%, respectively, compared to the absence of cGMP.
  • Intracellular cGMP fluorescence sensor measurement of HeLa cells Using the same method as in Example 4, an expression vector containing a cGMP fluorescence sensor protein was introduced into HeLa cells. Next, the medium was replaced with a phenol red-free growth medium (containing 1 mM 8-Br-cGMP) immediately before the fluorescence measurement.
  • a phenol red-free growth medium containing 1 mM 8-Br-cGMP
  • an inverted microscope IX81, Olympus Corporation
  • a cooled CCD camera Cool SNAP HQ2, Photometrics
  • an oil immersion objective lens Plant Apo 60 ⁇ 1.42 NA
  • SNAP S-Nitroso-N-Acetyl-D, L-Penicillamine
  • SNAP was added to a dish in which HeLa cells were cultured in 1.5 mL of growth medium to make the final concentration of SNAP 300 ⁇ M. Fluorescence microscope images of the cells were taken every 5 minutes. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording.
  • FF01-500 / 24 was used as the excitation filter
  • Di02-FF520 was used as the dichroic mirror
  • FF01-542 / 27 was used as the emission filter (all are Semrock, Optline Co., Ltd.). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
  • FIG. 9B shows changes in fluorescence from the start of fluorescence microscopic imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or SNP (300 ⁇ M) of nitric oxide donor to HeLa cells expressing cGull. It is an image which shows.
  • FIG. 9C shows the fluorescence from the start of fluorescence microscopic imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or nitric oxide donor SNAP (300 ⁇ M) to HeLa cells expressing cGull. It is a graph which shows the change of.
  • the vertical axis represents normalized fluorescence intensity
  • the horizontal axis represents time (minutes).
  • the light gray 2 or 3 waveforms in each figure show the measured values in 2 or 3 different dishes, and the dark gray 1 waveform shows the average value of these 3 waveforms.
  • cAMP fluorescence sensor protein uses exchange factor direct by cAMP 1 (EPAC1) as the cAMP binding domain, and mapple (Shaner, NC et al., Nature Methods 54: 5). (2008)) was used.
  • mA Apple is Zhao, Y. et al. (Science. 333, 1888-1891 (2011)), amino acid substitution mutations were introduced in several places (SEQ ID NOs: 7 and 8).
  • the excitation wavelength of the fluorescent protein mA Apple is 550 nm, and the emission wavelength region is 575 to 700 nm.
  • a domain that specifically binds to cAMP may be referred to as a “cAMP binding domain”.
  • the cAMP binding domain is derived from EPAC1, and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 20.
  • a polypeptide linker linked to the amino terminus of the cAMP binding domain may be referred to as “N-terminal linker”, and a polypeptide linker linked to the carboxyl terminus of the cAMP binding domain may be referred to as “C-terminal linker”.
  • the candidate protein for the Pink Flamindo series cAMP fluorescent sensor is [mApplee-N domain]-[N-terminal side linker]-[cAMP-binding domain]-[C-terminal side linker]- A polypeptide domain and a polypeptide linker are arranged in the order of [mAapple-C domain].
  • ATP As a procedure for constructing a candidate protein for the cAMP fluorescent sensor protein, “ATP” of Example 1 was used except that a polynucleotide encoding EPAC1 was synthesized as a cAMP binding domain (Integrated DNA Technologies, Institute of Medical Biology). This was carried out using the same method as “construction of candidate protein for fluorescent sensor protein”. In the presence or absence of cAMP at a final concentration of 100 ⁇ M, the fluorescence characteristics of the cAMP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
  • FIG. 10A is a fluorescence spectrum diagram of Pink Flamindo in the presence and absence of 100 ⁇ M cAMP.
  • the horizontal axis of FIG. 10A represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity.
  • the solid and dotted lines in the graph represent the spectral curve in the presence and absence of cAMP.
  • the fluorescence in the presence of 100 ⁇ M cAMP was increased by 350% in the case of Pin Flamendo as compared with the absence of cAMP.
  • Fluorescence sensor measurement of intracellular cGMP in HeLa cells Using the same method as in Example 4, an expression vector containing a cAMP fluorescence sensor protein was introduced into HeLa cells. Then, immediately before the fluorescence measurement, the medium was replaced with a phenol red-free growth medium (containing 100 ⁇ M Forskolin, an adenylate cyclase activator).
  • a phenol red-free growth medium containing 100 ⁇ M Forskolin, an adenylate cyclase activator.
  • an inverted microscope IX81, Olympus Corporation
  • a cooled CCD camera Cool SNAP HQ2, Photometrics
  • an oil immersion objective lens Plant Apo 60 ⁇ 1.42 NA
  • IBMX 3-isobutyl-1-methylxanthine
  • IBMX was added to a dish in which HeLa cells were cultured in 1.5 mL of growth medium to bring the final concentration of IBMX to 500 ⁇ M. Fluorescence microscope images of the cells were taken every 5 minutes. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording. For monochromatic fluorescence imaging, BP535-555HQ was used as the excitation filter, DM565HQ was used as the dichroic mirror, and BA570-625HQ was used as the emission filter (all from Olympus Corporation). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
  • FIG. 10B is an image showing changes in fluorescence from the start of fluorescence microscopic image capturing to 20 minutes after administration of Forskolin (100 ⁇ M) or IBMX (500 ⁇ M) to HeLa cells in which Pink Flamindo was expressed.
  • FIG. 10C is a graph showing changes in fluorescence from the start of fluorescence microscopic image capturing to 20 minutes after administration of Forskolin (100 ⁇ M) or IBMX (500 ⁇ M) to HeLa cells in which Pin Flamindo was expressed.
  • the vertical axis represents normalized fluorescence intensity
  • the horizontal axis represents time (minutes).
  • the light gray three waveforms in each figure show the measured values in three different dishes, and the dark gray single waveform shows the average value of these three waveforms.
  • Example 7 Construction of a fluorescence sensor protein specific for BGP Design of BGP Fluorescent Sensor Protein A BGP fluorescent sensor protein was designed to observe the intracellular localization of osteocalcin (bone Gla protein (BGP)).
  • BGP fluorescence sensor protein an anti-BGP antibody was used as a BGP binding domain, and GFP (Griesbeck, O. et al. (J. Biol. Chem. 276, 29188-29194 (2001)) was used as a fluorescence protein.
  • the excitation wavelength of the fluorescent protein GFP is 480 nm, and the emission wavelength region is 500 to 520 nm.
  • GFP-N domain a domain consisting of amino acid residues from the 1st to 144th N-terminal side of GFP
  • GFP-C domain a domain consisting of amino acid residues from 145th to 238th from the N-terminal side of GFP
  • SEQ ID NO: 3 The amino acid sequence of the GFP-N domain is listed in the sequence listing as SEQ ID NO: 3, and the amino acid sequence of the GFP-C domain is listed as SEQ ID NO: 4, respectively.
  • a fusion protein inserted between the heavy chain and the light chain of an anti-BGP antibody by linking various polypeptide linkers to the amino terminus of the GFP-C domain and the carboxyl terminus of the GFP-N domain is used as a candidate for a BGP fluorescence sensor protein.
  • Produced as a protein (sometimes referred to as gBGP series).
  • the configuration of the domain and linker of the candidate protein of the BGP fluorescence sensor is as follows. First, a domain that specifically binds to BGP may be referred to as a “BGP binding domain”.
  • the BGP binding domain is derived from an anti-BGP antibody and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 22 (heavy chain) and 23 (light chain).
  • a polypeptide linker that links to the amino terminus of the GFP-C domain is an “N-terminal linker”, a polypeptide linker that binds to the carboxyl terminus of the GFP-C domain and the amino terminus of the GFP-N domain is an “intermediate linker”, and the GFP-N domain A polypeptide linker linked to the carboxyl terminus of is sometimes referred to as a “C-terminal linker”.
  • the candidate proteins for the BGP fluorescent sensor of the gBGP series are [anti-BGP antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[intermediate linker]-in the direction from the amino terminus to the carboxyl terminus.
  • the polypeptide domain and the polypeptide linker are arranged in the order of [GFP-N domain]-[C-terminal side linker]-[light chain of anti-BGP antibody].
  • polynucleotides encoding heavy and light chains of anti-BGP antibody were respectively synthesized as BGP binding domains (Integrated DNA Technologies, Institute of Medical Biology) Except for the above, the same method as in “Construction of ATP fluorescent sensor protein candidate protein” in Example 1 was used.
  • the fluorescence characteristics of the candidate protein of the BGP fluorescence sensor of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
  • FIG. 11A is an excitation / fluorescence spectrum diagram of gBGP in the presence and absence of 100 ⁇ M BGP7C.
  • the horizontal axis in FIG. 11A represents the excitation wavelength and the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity.
  • the solid and dotted lines in the graph represent the spectral curves in the presence and absence of BGP7C.
  • gBGP increased the fluorescence in the presence of 100 ⁇ M BGP7C by 300%, respectively, compared to the absence of BGP7C.
  • FIG. 11B is a graph showing the ligand-specific and BGP7C concentration-dependent changes in the fluorescence intensity of gBGP.
  • the horizontal axis of FIG. 11B represents the concentration of BGP7C or Myc as a control, and the vertical axis represents the relative value of fluorescence intensity. As is clear from FIG. 11B, it was shown that the fluorescence intensity of gBGP changes only depending on the concentration of BGP7C.
  • an expression vector containing a BGP fluorescent sensor protein or an expression vector containing only GFP, and an expression vector containing PMmCherry-BGP7C or NLSmCherry-BGP7C were introduced into HeLa cells. Subsequently, the medium was replaced with a phenol red-free growth medium immediately before the fluorescence measurement. A confocal laser microscope (FV1000, Olympus Corporation) was used for the measurement. The laser wavelengths were 488 nm and 543 nm and were imaged at wavelengths greater than 500-530 nm and 560 nm.
  • FIG. 11C is an image showing fluorescence in HeLa cells expressing gBGP or GFP, and cell membrane-localized mCherry-BGP7C or cell membrane-localized mCherry.
  • FIG. 11D is an image showing fluorescence in HeLa cells in which gBGP or GFP and nuclear localized mCherry-BGP7C or cell membrane localized mCherry are expressed.
  • HSA-specific fluorescent sensor protein Design of HSA Fluorescent Sensor Protein A human serum albumin (HSA) fluorescent sensor protein was designed.
  • HSA fluorescence sensor protein an anti-HSA antibody was used as the HSA binding domain, and GFP (Griesbeck, O., et al. (J. Biol. Chem. 276, 29188-29194 (2001)) was used as the fluorescence protein.
  • the excitation wavelength of the fluorescent protein GFP is 480 nm, and the emission wavelength region is 500 to 520 nm.
  • GFP-N domain a domain consisting of amino acid residues from the 1st to 144th N-terminal side of GFP
  • GFP-C domain a domain consisting of amino acid residues from 145th to 238th from the N-terminal side of GFP
  • SEQ ID NO: 3 The amino acid sequence of the GFP-N domain is listed in the sequence listing as SEQ ID NO: 3, and the amino acid sequence of the GFP-C domain is listed as SEQ ID NO: 4, respectively.
  • a fusion protein inserted between the heavy chain and the light chain of an anti-HSA antibody by linking various polypeptide linkers to the amino terminus of the GFP-C domain and the carboxyl terminus of the GFP-N domain is used as a candidate for an HSA fluorescence sensor protein.
  • Produced as a protein (sometimes referred to as gHSA series).
  • the structure of the candidate protein domain and linker of the HSA fluorescence sensor is as follows. First, a domain that specifically binds to HSA may be referred to as an “HSA binding domain”.
  • the HSA binding domain is derived from an anti-HSA antibody.
  • a polypeptide linker that links to the amino terminus of the GFP-C domain is an “N-terminal linker”
  • a polypeptide linker that binds to the carboxyl terminus of the GFP-C domain and the amino terminus of the GFP-N domain is an “intermediate linker”
  • the GFP-N domain A polypeptide linker linked to the carboxyl terminus of is sometimes referred to as a “C-terminal linker”.
  • the candidate proteins of the gHSA series HSA fluorescence sensor are [anti-HSA antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[intermediate linker]-in the direction from the amino terminus to the carboxyl terminus.
  • a polypeptide domain and a polypeptide linker are arranged in the order of [GFP-N domain]-[C-terminal side linker]-[anti-HSA antibody light chain].
  • HSA fluorescence sensor protein As a procedure for constructing a candidate protein for the HSA fluorescence sensor protein, polynucleotides encoding the heavy chain and the light chain of the anti-HSA antibody were respectively synthesized as HSA binding domains (Integrated DNA Technologies, Institute of Medical Biology) Except for the above, the same method as in “Construction of ATP fluorescent sensor protein candidate protein” in Example 1 was used. In the presence or absence of HSA at a final concentration of 2 ⁇ M, the fluorescence characteristics of candidate proteins of the HSA fluorescence sensor of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
  • the amino acid sequences of the N-terminal linker, intermediate linker, and C-terminal linker are “LE” (Leu-Glu), “GGTGGS” (SEQ ID NO: 53), and “TR” (Thr— Arg), the dynamic range was 1.2 times, and an HSA fluorescence sensor protein having the highest fluorescence intensity in the presence of HSA was obtained.
  • This candidate protein with the largest dynamic range was named gHSA.
  • the full-length amino acid sequence of gHSA is shown in SEQ ID NO: 51, and the base sequence is shown in SEQ ID NO: 52.
  • FIG. 12 is a fluorescence spectrum diagram of gHSA in the presence and absence of 2 ⁇ M HSA.
  • the horizontal axis in FIG. 12 represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity.
  • the solid and dotted lines in the graph represent the spectral curves in the presence and absence of HSA.
  • gHSA increased fluorescence by 20% in the presence of 2 ⁇ M HSA as compared to the absence of HSA.
  • a highly sensitive ligand fluorescent sensor protein can be provided regardless of the type of ligand to be detected.
  • the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of ligand under physiological conditions is sufficiently high, and the physiological and / or disease of a cell or non-human organism. Variations in the concentration of the physical ligand can be detected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention involves a ligand fluorescent sensor protein that specifically responds to ligands, leading to a change in fluorescence properties. The ligand fluorescent sensor protein includes a first fluorescent protein domain, an N terminal-side linker, a ligand-bonding domain, a C terminal-side linker, and a second fluorescent protein domain. The fluorescent protein used in the ligand fluorescent sensor protein has a β-barrel structure. The first fluorescent protein domain includes a β1–β3 β-sheet region from the N-terminal of the fluorescent protein, an α-helix region continuing therefrom, and a β4–β6 β-sheet region. The second fluorescent protein domain includes a β7–β11 β-sheet region of the same fluorescent protein as the first fluorescent protein domain. The N-terminal-side linker and the C-terminal-side linker are each independently a polypeptide comprising one or a plurality of amino acids.

Description

リガンド蛍光センサータンパク質とその使用Ligand fluorescent sensor protein and its use
 本発明は、リガンド蛍光センサータンパク質とその使用に関する。
 本願は、2015年12月4日に、日本に出願された特願2015-237524号、及び2016年5月24日に、米国に仮出願された米国特許第62/340,533号明細書に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to ligand fluorescent sensor proteins and uses thereof.
The present application is filed in Japanese Patent Application No. 2015-237524 filed in Japan on December 4, 2015 and US Patent No. 62 / 340,533 filed provisionally in the United States on May 24, 2016. Claims priority and incorporates the contents here.
 蛍光生体イメージングとは、生きた組織又は臓器の内部を観察し、そこで生きた細胞及び分子の動態をリアルタイムで解析する新しい研究手法である。近年の光学機器及び蛍光イメージングの技術革新により、様々な組織又は臓器における、多種多様な生命現象に蛍光生体イメージングを適用することで、生きた細胞及び分子の動きを描出することが可能となってきた。 Fluorescent bioimaging is a new research technique that observes the inside of living tissues or organs and analyzes the dynamics of living cells and molecules in real time. Recent technological innovations in optical instruments and fluorescence imaging have made it possible to visualize the movement of living cells and molecules by applying fluorescent bioimaging to a wide variety of life phenomena in various tissues or organs. It was.
 蛍光生体イメージングにおいて、細胞内に存在する分子(リガンド)が特異的に結合するレセプターを用いることで、生きた組織又は臓器内のリガンドの動きを検出することができる。
 具体的には、レセプターとして、例えば、生体内の分子に特異的に結合する抗体若しくは生体内に存在する抗体に対する抗原、特定の酵素に対する基質若しくは特定の基質に対する酵素、又はATP、cAMP、若しくはcGMP等の生体内の分子の結合ドメイン等を備える蛍光センサータンパク質を用いることで、細胞内のリガンドの濃度分布や時間変化(時空間ダイナミクス)を可視化解析できる。
In fluorescence bioimaging, the movement of a ligand in a living tissue or organ can be detected by using a receptor to which a molecule (ligand) present in a cell specifically binds.
Specifically, as a receptor, for example, an antibody that specifically binds to a molecule in a living body, an antigen for an antibody present in the living body, a substrate for a specific enzyme, an enzyme for a specific substrate, or ATP, cAMP, or cGMP By using a fluorescent sensor protein having a binding domain of a molecule in a living body, etc., it is possible to visualize and analyze the concentration distribution and temporal change (spatiotemporal dynamics) of a ligand in a cell.
 蛍光センサータンパク質は、単色型、レシオ型、及びFRET(蛍光共鳴エネルギー移動)型に大きく分類される。単色型は、各蛍光センサータンパク質について特定される単一波長での蛍光強度がリガンド濃度に応じて変化するタイプである。レシオ型は、各蛍光センサータンパク質ごとに特定される2つの波長での蛍光強度の相対比がリガンド濃度に応じて変化するタイプである。FRET型は、異なる2個の蛍光タンパク質断片を含む融合タンパク質のうち一方の断片が励起状態にあるとき、リガンド濃度に応じて他方の断片との距離が近接すると、励起状態の断片からエネルギーが他方の断片に無放射遷移するフェルスター共鳴エネルギー移動(Forster resonance energy transfer)現象を利用して、リガンド濃度に応じて前者の断片の蛍光強度と後者の断片の蛍光強度との相対比が変化するタイプである。
 例えば、現在まで、単色型(例えば、非特許文献1参照)、FRET型(例えば、非特許文献2参照)、及びレシオ型(例えば、非特許文献3、4参照)のATP蛍光センサータンパク質が報告されている。
Fluorescent sensor proteins are broadly classified into monochromatic types, ratio types, and FRET (fluorescence resonance energy transfer) types. The monochromatic type is a type in which the fluorescence intensity at a single wavelength specified for each fluorescent sensor protein changes according to the ligand concentration. The ratio type is a type in which the relative ratio of fluorescence intensities at two wavelengths specified for each fluorescent sensor protein changes according to the ligand concentration. In the FRET type, when one fragment of the fusion protein containing two different fluorescent protein fragments is in an excited state, if the distance from the other fragment is close according to the ligand concentration, the energy from the excited fragment becomes the other A type in which the relative ratio between the fluorescence intensity of the former fragment and the fluorescence intensity of the latter fragment changes depending on the ligand concentration by using the Forster resonance energy transfer phenomenon that causes non-radiative transition to the fragment. It is.
For example, to date, monochromatic (for example, see Non-Patent Document 1), FRET (for example, Non-Patent Document 2), and ratio-type (for example, Non-Patent Documents 3 and 4) ATP fluorescent sensor proteins have been reported. Has been.
 しかしながら、従来の蛍光センサータンパク質には、いくつかの問題点がある。まず、FRETやレシオ型のセンサーによる解析には、高価な専用の顕微鏡が必要である。また、蛍光検出に広範囲の蛍光波長域を使用するため、多色解析に適さない。つまり、多種のリガンドの動態を同時に解析できない。さらに、異なる細胞小器官のリガンドの動態を同時に可視化して解析することは不可能である。 However, conventional fluorescent sensor proteins have several problems. First, an expensive dedicated microscope is required for analysis using a FRET or ratio type sensor. Further, since a wide range of fluorescence wavelengths is used for fluorescence detection, it is not suitable for multicolor analysis. In other words, the dynamics of various ligands cannot be analyzed simultaneously. Furthermore, it is impossible to visualize and analyze the dynamics of ligands of different organelles simultaneously.
 これに対し、1波長で励起して1波長の蛍光を観察する単色型の蛍光タンパク質を基にした蛍光センサーはこれらの問題点を克服できる可能性がある。しかし、これまでに報告された単色型センサー(例えば、非特許文献1参照。)は、ダイナミックレンジ、すなわち、ATPの有無による蛍光強度の変化が最大で8%弱しかなく、細胞内のATPセンサーとして実用的に使うレベルには到底達していなかった。その後、当該報告よりダイナミックレンジの高い単色型のATP蛍光タンパク質センサーは報告がない。
 また、ATPに限定されず、所望のリガンドを検出可能なダイナミックレンジの高い単色型の蛍光タンパク質センサーは報告がない。
On the other hand, a fluorescence sensor based on a monochromatic fluorescent protein that excites at one wavelength and observes fluorescence at one wavelength may overcome these problems. However, the monochromatic sensor reported so far (see, for example, Non-Patent Document 1) has a dynamic range, that is, a change in fluorescence intensity by the presence or absence of ATP is only a little less than 8%, and an intracellular ATP sensor. As a practical use level was not reached. Thereafter, there is no report on a monochromatic ATP fluorescent protein sensor having a higher dynamic range than the report.
In addition, there is no report of a monochromatic fluorescent protein sensor with a high dynamic range capable of detecting a desired ligand without being limited to ATP.
 本発明は、上記事情に鑑みてなされたものであって、検出するリガンドの種類を選ばず、高感度なリガンド蛍光センサータンパク質を提供する。 The present invention has been made in view of the above circumstances, and provides a highly sensitive ligand fluorescent sensor protein regardless of the type of ligand to be detected.
 すなわち、本発明は、以下の態様を含む。
[1]リガンドに特異的に応答して蛍光特性が変化するリガンド蛍光センサータンパク質であって、前記リガンド蛍光センサータンパク質は、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとを含み、前記リガンド蛍光センサータンパク質に用いられる蛍光タンパク質がβバレル構造を有するものであり、前記第1の蛍光タンパク質ドメインが前記蛍光タンパク質のN末端からβ1~β3のβシート領域と、これに続くαへリックス領域と、β4~β6のβシート領域とを含み、前記第2の蛍光タンパク質ドメインが前記第1の蛍光タンパク質ドメインと同一の前記蛍光タンパク質のβ7~β11のβシート領域を含み、前記N末端側リンカー及び前記C末端側リンカーは、それぞれ独立して1個又は数個のアミノ酸からなるポリペプチドであることを特徴とするリガンド蛍光センサータンパク質。
[2]前記蛍光タンパク質がBFP、GFP、Citrine、又はmAppleである[1]に記載のリガンド蛍光センサータンパク質。
[3]前記リガンド蛍光センサータンパク質は、N末端からC末端に向かって、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順番にペプチド結合で連結してなるポリペプチドを含む[1]又は[2]に記載のリガンド蛍光センサータンパク質。
[4]前記リガンド蛍光センサータンパク質は、2つのリガンド結合ドメインを含み、N末端からC末端に向かって、第1のリガンド結合ドメインと、N末端側リンカーと、第2の蛍光タンパク質ドメインと、第1の蛍光タンパク質ドメインと、C末端側リンカーと、第2のリガンド結合ドメインと、が、直接この順番にペプチド結合で連結してなるポリペプチドを含む[1]又は[2]に記載のリガンド蛍光センサータンパク質。
[5]前記第1の蛍光タンパク質ドメインは、以下の(B1)~(B3)のいずれかのポリペプチドを含み、前記第2の蛍光タンパク質ドメインは、以下の(C1)~(C3)のいずれかのポリペプチドを含み、前記第1の蛍光タンパク質ドメインと第2の蛍光タンパク質ドメインとが同一の蛍光タンパク質に由来する[1]又は[2]に記載のリガンド蛍光センサータンパク質。
 (B1)配列番号1、3、5、又は7で表されるアミノ酸配列を含むポリペプチド、
 (B2)配列番号1、3、5、又は7で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
 (B3)配列番号1、3、5、又は7で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
 (C1)配列番号2、4、6、又は8で表されるアミノ酸配列を含むポリペプチド、
 (C2)配列番号2、4、6、又は8で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
 (C3)配列番号2、4、6、又は8で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド
[6]前記リガンドが、ヌクレオチド若しくはその誘導体、核酸、糖鎖、タンパク質、脂質複合体、又は低分子化合物である[1]~[5]のいずれか一つに記載のリガンド蛍光センサータンパク質。
[7]前記ヌクレオチド若しくはその誘導体が、ATP、cAMP、又はcGMPである[6]に記載のリガンド蛍光センサータンパク質。
[8]前記タンパク質が抗原又は抗体である[6]に記載のリガンド蛍光センサータンパク質。
[9]以下の(D1)~(D3)のいずれかのポリペプチドを含む[1]~[8]のいずれか一つに記載のリガンド蛍光センサータンパク質。
(D1)配列番号9~14のいずれかで表されるアミノ酸配列を含むポリペプチド、
(D2)配列番号9~14のいずれかで表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド、
(D3)配列番号9~14のいずれかで表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド
[10]さらに、オルガネラ局在化シグナルペプチドを含む[1]~[9]のいずれか一つに記載のリガンド蛍光センサータンパク質。
[11]前記オルガネラ局在化シグナルペプチドがミトコンドリア局在化シグナルペプチドである[10]に記載のリガンド蛍光センサータンパク質。
[12]前記オルガネラ局在化シグナルペプチドが核局在化シグナルペプチドである[10]に記載のリガンド蛍光センサータンパク質。
[13]さらに、細胞膜透過性ペプチドを含む[1]~[12]のいずれか一つに記載のリガンド蛍光センサータンパク質。
[14][1]~[13]のいずれか一つに記載のリガンド蛍光センサータンパク質をコードすることを特徴とするポリヌクレオチド。
[15][14]に記載のポリヌクレオチドを含むことを特徴とする発現ベクター。
[16][1]~[13]のいずれか一つに記載のリガンド蛍光センサータンパク質を少なくとも1種類含むことを特徴とする細胞。
[17][1]~[13]のいずれか一つに記載のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを少なくとも1種類含む染色体を有することを特徴とする細胞。
[18][15]に記載の発現ベクターを少なくとも1種類含むことを特徴とする細胞。
[19][16]~[18]のいずれか一つに記載の細胞を含むことを特徴とする非ヒト生物。
[20][1]~[13]のいずれか一つに記載のリガンド蛍光センサータンパク質、[14]に記載のポリヌクレオチド、[15]に記載の発現ベクター、[16]~[18]のいずれか一つに記載の細胞、及び[19]に記載の非ヒト生物からなる群から選ばれる少なくとも一つを含むことを特徴とするリガンド濃度測定用キット。
[21][1]~[13]のいずれか一つに記載のリガンド蛍光センサータンパク質と、既知の濃度のリガンドを含む標準溶液と接触させて、蛍光強度を測定し、検量線を作成する検量線作成工程と、
 前記リガンド蛍光センサータンパク質と、未知の濃度のリガンドを含む溶液と接触させて、蛍光強度を測定する蛍光測定工程と、
 前記検量線作成工程において、作成された検量線に基づいて、前記蛍光測定工程において測定された蛍光強度に対するリガンド濃度を決定する濃度決定工程と、
を備えることを特徴とする被検試料中のリガンド濃度の決定方法。
[22][16]~[18]のいずれか一つに記載の細胞を用いて、経時的な蛍光強度を測定する工程を備えることを特徴とする生細胞におけるリガンド濃度の経時変化の検知方法。
[23][19]に記載の非ヒト生物を用いて、経時的な蛍光強度を測定する工程を備えることを特徴とする生きた非ヒト生物におけるリガンド濃度の経時変化の検知方法。
[24]ATP濃度に特異的に応答して蛍光特性が変化するATP蛍光センサータンパク質であって、該ATP蛍光センサータンパク質は、N末端からC末端に向けて、第1の蛍光タンパク質ドメインと、N末端側リンカーと、ATP結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順にペプチド結合で連結したポリペプチドを含み、該ポリペプチドは、第1の蛍光タンパク質ドメインは、蛍光タンパク質BFP、Citrine又はmAppleのN末端から、β1~β3のβシート領域と、これに続くαヘリックス領域と、β4~β6のβシート領域とを含み、第2の蛍光タンパク質ドメインは、第1の蛍光タンパク質ドメインと同一の蛍光タンパク質のβ7~β11のβシート領域を含み、ATP結合ドメインはF-ATP合成酵素のεサブユニットからなり、N末端側リンカー及びC末端側リンカーは、それぞれ、1個又は数個のアミノ酸からなるポリペプチドであることを特徴とするATP蛍光センサータンパク質。
[25](A11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号1及び2のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号16及び17のアミノ酸配列である、MaLion Bポリペプチドと、
(A12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー、及びC末端側のリンカーは、それぞれ独立に、配列番号15、1、2、16、及び17のアミノ酸配列か、配列番号15、1、2、16、及び17のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列かであり、かつ、MaLion Bポリペプチド(A11)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
(B11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号5及び6のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、WRG(Trp-Arg-Gly)及び配列番号18のアミノ酸配列である、MaLion Gポリペプチドと、
(B12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列か、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Gポリペプチド(B11)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
(C11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号7及び8のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号19及びPEE(Pro-Glu-Glu)のアミノ酸配列である、MaLion Rポリペプチドと、
(C12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列か、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Rポリペプチド(C11)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含む[24]に記載のATP蛍光センサータンパク質。
[26](A21)配列番号9のアミノ酸配列からなる、MaLion Bポリペプチドと、
(A22)配列番号9のアミノ酸配列のうち、配列番号16及び17のアミノ酸配列を除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Bポリペプチド(A21)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
(B21)配列番号10のアミノ酸配列からなる、MaLion Gポリペプチドと、
(B22)配列番号10のアミノ酸配列のうち、配列番号10の第146-148位のWRG(Trp-Arg-Gly)のアミノ酸配列と、配列番号18のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Gポリペプチド(B21)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
(C21)配列番号11のアミノ酸配列からなる、MaLion Rポリペプチドと、
(C22)配列番号11のアミノ酸配列のうち、配列番号11の第288-290位のPEE(Pro-Glu-Glu)のアミノ酸配列と、配列番号19のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Rポリペプチド(C21)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含む[24]又は[25]に記載のATP蛍光センサータンパク質。
[27][24]~[26]のいずれか一つに記載のATP蛍光センサータンパク質を含むことを特徴とする蛍光組成物。
[28]前記ATP蛍光センサータンパク質は固体支持体に不動化される、[27]に記載の蛍光組成物。
[29]前記ATP蛍光センサータンパク質は、第1及び第2の蛍光タンパク質ドメインの対の異なる少なくとも2種類のATP蛍光センサータンパク質である[28]に記載の蛍光組成物。
That is, the present invention includes the following aspects.
[1] A ligand fluorescence sensor protein whose fluorescence characteristics change in response to a ligand specifically, wherein the ligand fluorescence sensor protein comprises a first fluorescence protein domain, an N-terminal linker, a ligand binding domain, A fluorescent protein comprising a C-terminal linker and a second fluorescent protein domain, wherein the fluorescent protein used in the ligand fluorescent sensor protein has a β-barrel structure, and the first fluorescent protein domain is the N-terminal of the fluorescent protein To β1 to β3 β sheet region followed by α helix region and β4 to β6 β sheet region, wherein the second fluorescent protein domain is the same as the first fluorescent protein domain. A β-sheet region of β7 to β11 of the protein, the N-terminal linker and the C-terminal The ligand fluorescent sensor protein, wherein each side linker is a polypeptide consisting of one or several amino acids independently.
[2] The ligand fluorescent sensor protein according to [1], wherein the fluorescent protein is BFP, GFP, Ciline, or mA Apple.
[3] The ligand fluorescent sensor protein includes a first fluorescent protein domain, an N-terminal linker, a ligand binding domain, a C-terminal linker, and a second fluorescent protein domain from the N-terminus toward the C-terminus. And a ligand fluorescent sensor protein according to [1] or [2], wherein the ligand fluorescent sensor protein comprises a polypeptide formed by directly connecting peptide bonds in this order.
[4] The ligand fluorescent sensor protein includes two ligand binding domains, and from the N-terminus toward the C-terminus, the first ligand-binding domain, the N-terminal linker, the second fluorescent protein domain, The ligand fluorescence according to [1] or [2], comprising a polypeptide in which one fluorescent protein domain, a C-terminal linker, and a second ligand-binding domain are directly linked by a peptide bond in this order Sensor protein.
[5] The first fluorescent protein domain includes any of the following polypeptides (B1) to (B3), and the second fluorescent protein domain includes any of the following (C1) to (C3): The ligand fluorescent sensor protein according to [1] or [2], wherein the first fluorescent protein domain and the second fluorescent protein domain are derived from the same fluorescent protein.
(B1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7,
(B2) the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the second fluorescence A polypeptide that forms a β-barrel structure with a protein domain and fluoresces,
(B3) including an amino acid sequence having an identity of 80% or more with the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, and forming a β barrel structure with the second fluorescent protein domain, A fluorescent polypeptide,
(C1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8,
(C2) the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the first fluorescence A polypeptide that forms a β-barrel structure with a protein domain and fluoresces,
(C3) comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, and forming a β barrel structure with the first fluorescent protein domain, Fluorescent polypeptide [6] The ligand according to any one of [1] to [5], wherein the ligand is a nucleotide or a derivative thereof, a nucleic acid, a sugar chain, a protein, a lipid complex, or a low molecular compound. Fluorescent sensor protein.
[7] The ligand fluorescent sensor protein according to [6], wherein the nucleotide or derivative thereof is ATP, cAMP, or cGMP.
[8] The ligand fluorescent sensor protein according to [6], wherein the protein is an antigen or an antibody.
[9] The ligand fluorescent sensor protein according to any one of [1] to [8], which comprises any of the following polypeptides (D1) to (D3).
(D1) a polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 9 to 14,
(D2) an amino acid sequence represented by any one of SEQ ID NOs: 9 to 14, including an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the polypeptide (D1) Polypeptides having the same ability to bind to a ligand and fluorescent properties;
(D3) Ligand binding ability and fluorescence, which include the amino acid sequence of 80% or more identity with the amino acid sequence represented by any of SEQ ID NOs: 9 to 14, and are identical to the polypeptide (D1) Polypeptide having properties [10] The ligand fluorescent sensor protein according to any one of [1] to [9], further comprising an organelle localization signal peptide.
[11] The ligand fluorescent sensor protein according to [10], wherein the organelle localization signal peptide is a mitochondrial localization signal peptide.
[12] The ligand fluorescent sensor protein according to [10], wherein the organelle localization signal peptide is a nuclear localization signal peptide.
[13] The ligand fluorescent sensor protein according to any one of [1] to [12], further comprising a cell membrane permeable peptide.
[14] A polynucleotide encoding the ligand fluorescent sensor protein according to any one of [1] to [13].
[15] An expression vector comprising the polynucleotide according to [14].
[16] A cell comprising at least one ligand fluorescent sensor protein according to any one of [1] to [13].
[17] A cell comprising a chromosome containing at least one polynucleotide encoding the ligand fluorescent sensor protein according to any one of [1] to [13].
[18] A cell comprising at least one expression vector according to [15].
[19] A non-human organism comprising the cell according to any one of [16] to [18].
[20] The ligand fluorescent sensor protein according to any one of [1] to [13], the polynucleotide according to [14], the expression vector according to [15], any of [16] to [18] A kit for measuring a ligand concentration, comprising at least one selected from the group consisting of the cell according to any one of the above and the non-human organism according to [19].
[21] Calibration for preparing a calibration curve by contacting a fluorescent fluorescence sensor protein according to any one of [1] to [13] with a standard solution containing a ligand of a known concentration to measure fluorescence intensity. Line creation process,
A fluorescence measurement step of measuring fluorescence intensity by contacting the ligand fluorescence sensor protein with a solution containing a ligand of unknown concentration;
In the calibration curve creating step, based on the created calibration curve, a concentration determining step for determining a ligand concentration with respect to the fluorescence intensity measured in the fluorescence measuring step;
A method for determining a ligand concentration in a test sample.
[22] A method for detecting a change in ligand concentration over time in a living cell, comprising the step of measuring fluorescence intensity over time using the cell according to any one of [16] to [18] .
[23] A method for detecting a change in ligand concentration over time in a living non-human organism, comprising the step of measuring fluorescence intensity over time using the non-human organism according to [19].
[24] An ATP fluorescent sensor protein whose fluorescence characteristics change in response to ATP concentration specifically, wherein the ATP fluorescent sensor protein includes a first fluorescent protein domain and an NTP from the N-terminus toward the C-terminus. A polypeptide comprising a terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescent protein domain directly linked by a peptide bond in this order, the polypeptide comprising: A β-sheet region of β1-β3, followed by an α-helical region, and a β-sheet region of β4-β6, from the N-terminus of the fluorescent protein BFP, Citriline or mA Apple, the second fluorescent protein domain is A β-sheet region of β7 to β11 of the same fluorescent protein as that of one fluorescent protein domain, Inn consists ε subunit of F 0 F 1 -ATP synthase, ATP fluorescent N-terminal linker and C-terminal linker, respectively, which is a one or a polypeptide consisting of a few amino acids Sensor protein.
[25] (A11) The ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, and the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively, The linker is a MaLion B polypeptide that is the amino acid sequence of SEQ ID NOs: 16 and 17, respectively;
(A12) The ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker, and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 16, and 17 amino acid sequence, or an amino acid sequence in which one or several amino acids are deleted, substituted, or added to the amino acid sequences of SEQ ID NOs: 15, 1, 2, 16, and 17, and MaLion B poly A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the peptide (A11);
(B11) The ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 5 and 6, respectively, and the N-terminal and C-terminal linkers are MaLion G polypeptide, which is the amino acid sequence of WRG (Trp-Arg-Gly) and SEQ ID NO: 18, respectively,
(B12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 5, 6, WRG (Trp- Arg-Gly) and the amino acid sequence of SEQ ID NO: 18, or SEQ ID NOs: 15, 5, 6, WRG (Trp-Arg-Gly) and the amino acid sequence of SEQ ID NO: 18 have one or several amino acids deleted, A MaLion G polypeptide that is a substituted or added amino acid sequence and has the same ATP binding ability and fluorescence characteristics as the MaLion G polypeptide (B11);
(C11) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 7 and 8, respectively, and the N-terminal and C-terminal linkers are MaLion R polypeptide, which is the amino acid sequence of SEQ ID NO: 19 and PEE (Pro-Glu-Glu), respectively
(C12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker and the C-terminal linker are SEQ ID NOs: 15, 7, 8, 19, and PEE (Pro -Glu-Glu) amino acid sequence or SEQ ID NOs: 15, 7, 8, 19 and amino acid sequence of PEE (Pro-Glu-Glu) with one or several amino acids deleted, substituted or added [24] comprising at least one polypeptide selected from the group consisting of MaLion R polypeptides that are sequences and have the same ATP binding ability and fluorescence properties as MaLion R polypeptides (C11) ATP fluorescence sensor protein.
[26] (A21) a MaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 9,
(A22) The amino acid sequence of SEQ ID NO: 9 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NOS: 16 and 17, and MaLion B A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the polypeptide (A21);
(B21) a MaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 10,
(B22) one of amino acid sequences excluding the amino acid sequence of WRG (Trp-Arg-Gly) at positions 146 to 148 of SEQ ID NO: 10 and the amino acid sequence of SEQ ID NO: 18 among the amino acid sequences of SEQ ID NO: 10 or MaLion G polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion G polypeptide (B21);
(C21) a MaLion R polypeptide consisting of the amino acid sequence of SEQ ID NO: 11,
(C22) One of the amino acid sequences of SEQ ID NO: 11 excluding the amino acid sequence of PEE (Pro-Glu-Glu) at positions 288 to 290 of SEQ ID NO: 11 and the amino acid sequence of SEQ ID NO: 19 or It is selected from the group consisting of an MaLion R polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion R polypeptide (C21). The ATP fluorescence sensor protein according to [24] or [25], comprising at least one polypeptide.
[27] A fluorescent composition comprising the ATP fluorescent sensor protein according to any one of [24] to [26].
[28] The fluorescent composition according to [27], wherein the ATP fluorescent sensor protein is immobilized on a solid support.
[29] The fluorescent composition according to [28], wherein the ATP fluorescent sensor protein is at least two types of ATP fluorescent sensor proteins having different pairs of first and second fluorescent protein domains.
 本発明によれば、検出するリガンドの種類を選ばず、高感度なリガンド蛍光センサータンパク質を提供することができる。 According to the present invention, a highly sensitive ligand fluorescent sensor protein can be provided regardless of the type of ligand to be detected.
実施例1におけるMaLion BシリーズのATP蛍光センサーの候補タンパク質19個の10mMのATPの存在下での蛍光強度とATP非存在下での蛍光強度の比(以下、「ダイナミックレンジ」と称する場合がある。)のヒストグラム。The ratio of the fluorescence intensity in the presence of 10 mM ATP and the fluorescence intensity in the absence of ATP of the 19 candidate proteins of the MaLion B series ATP fluorescence sensor in Example 1 (hereinafter sometimes referred to as “dynamic range”) .) Histogram. 実施例1におけるMaLion GシリーズのATP蛍光センサーの候補タンパク質27個のダイナミックレンジのヒストグラム。The histogram of the dynamic range of 27 candidate proteins of the AL fluorescence sensor of MaLion G series in Example 1. 実施例1におけるMaLion RシリーズのATP蛍光センサーの候補タンパク質47個のF/Fのヒストグラム。MaLion R Series ATP fluorescence sensor of the histogram of the candidate protein 47 amino F / F 0 in the first embodiment. 実施例2における10mMのATP存在下及び非存在下でのMaLion B、G及びRの励起スペクトル図。Excitation spectrum diagrams of MaLion B, G, and R in Example 2 in the presence and absence of 10 mM ATP. 実施例2における10mMのATP存在下及び非存在下でのMaLion B、G及びRの蛍光スペクトル図。The fluorescence spectrum figure of MaLion B, G, and R in the presence and absence of 10 mM ATP in Example 2. 実施例2における10mMのATP存在下及び非存在下でのnegMaLion B、G及びRの蛍光スペクトル図。The fluorescence spectrum figure of negMaLion B, G, and R in the presence and absence of 10 mM ATP in Example 2. 実施例2におけるMaLion B、G及びRの蛍光強度のATP濃度依存的変化を示すグラフ。The graph which shows the ATP density | concentration dependence change of the fluorescence intensity of MaLion B, G, and R in Example 2. FIG. 実施例2におけるMaLion B、G及びRの蛍光強度のリガンド特異性を示すグラフ。The graph which shows the ligand specificity of the fluorescence intensity of MaLion B, G, and R in Example 2. FIG. 実施例2におけるMaLion BのATP存在下又はATP非存在下での蛍光強度と、ダイナミックレンジとのpH依存的変化を示すグラフ。The graph which shows the pH dependence change of the fluorescence intensity in the presence of ATP of MaLion B in Example 2, or ATP absence, and a dynamic range. 実施例2におけるMaLion GのATP存在下又はATP非存在下での蛍光強度と、ダイナミックレンジとのpH依存的変化を示すグラフ。The graph which shows the pH dependence change of the fluorescence intensity in the presence of ATP of MaLion G in Example 2, or ATP absence, and a dynamic range. 実施例2におけるMaLion RのATP存在下又はATP非存在下での蛍光強度と、ダイナミックレンジとのpH依存的変化を示すグラフ。The graph which shows the pH dependence change of the fluorescence intensity in the presence of ATP of MaLion R in Example 2, or ATP absence, and a dynamic range. 実施例4におけるMaLion Gを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion G in Example 4 was expressed. 実施例4におけるMaLion Rを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion R in Example 4 was expressed. 実施例4におけるMaLion Bを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which MaLion B in Example 4 was expressed. 実施例4におけるnegMaLion Gを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which negMaLion G was expressed in Example 4. FIG. 実施例4におけるnegMaLion Rを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to the HeLa cell in which negMaLionR was expressed in Example 4. FIG. 実施例4におけるnegMaLion Bを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフ。The graph which shows the change of the fluorescence after administering NaF which inhibits glycolytic ATP production to HeLa cell in which negMaLion B was expressed in Example 4. 実施例4におけるMaLion G、R及びBと、negMaLion G、R及びBとについて、HeLa細胞で発現させた各蛍光タンパク質の蛍光測定開始から25分後の正規化した蛍光強度の平均値及び標準偏差を示す棒グラフ。For MaLion G, R and B and negMaLion G, R and B in Example 4, the average value and standard deviation of normalized fluorescence intensity 25 minutes after the start of fluorescence measurement of each fluorescent protein expressed in HeLa cells A bar graph showing 実施例4におけるMaLion Gの発現ベクターと、mito-MaLion Rの発現ベクターとをHeLa細胞に同時にトランスフェクションした後、2種類の異なるATP蛍光センサータンパク質に対応する2つの波長における同一視野での蛍光顕微鏡画像撮影開始から3分後にオリゴマイシンを投与し、その後の蛍光の変化を示したグラフ。After simultaneously transfecting HeLa cells with the MaLion G expression vector and the mito-MaLion R expression vector in Example 4, fluorescence microscopy in the same field at two wavelengths corresponding to two different ATP fluorescent sensor proteins The graph which showed the change of the fluorescence after administering oligomycin 3 minutes after the imaging start. 実施例4における同一視野の分化したWT-1細胞のB-GECO(Ca2+イオン、青色)、Flamindo2(cAMP、緑色)及びmito-MaLion R(ATP、赤色)の蛍光顕微鏡画像。各コマの左上の数字は観察開始後の時間(分)を表す。矢印は1μMのイソプレテレノールを添加したのが1コマ目と2コマ目との間(観察開始5分後)であることを表す。矢印は1μMのイソプレテレノールを添加したのが1コマ目と2コマ目との間(観察開始5分後)であることを表す。Fluorescence microscope images of B-GECO (Ca 2+ ions, blue), Flamindo 2 (cAMP, green) and mito-MaLion R (ATP, red) of differentiated WT-1 cells with the same visual field in Example 4. The number on the upper left of each frame represents the time (minutes) after the observation starts. The arrow indicates that 1 μM isopreterenol was added between the first frame and the second frame (5 minutes after the start of observation). The arrow indicates that 1 μM isopreterenol was added between the first frame and the second frame (5 minutes after the start of observation). 実施例4における同一視野の分化したWT-1細胞のB-GECO(Ca2+イオン、青色)、Flamindo2(cAMP、緑色)及びmito-MaLion R(ATP、赤色)の正規化された蛍光強度の経時的変化を示すグラフ。矢印は1μMのイソプレテレノールを添加したのが観察開始5分後であることを表す。Time course of normalized fluorescence intensity of B-GECO (Ca 2+ ions, blue), Flamindo 2 (cAMP, green) and mito-MaLion R (ATP, red) of differentiated WT-1 cells of the same visual field in Example 4 A graph showing the change. The arrow indicates that 1 μM isopreterenol was added 5 minutes after the start of observation. 実施例4における線虫咽頭筋の細胞質及びミトコンドリアのATP濃度の経時的変化の同時測定結果を示すグラフ。矢印は、麻酔剤として0.5%の1-フェノキシ-2-プロパノールを含むM9バッファーを観察開始5分後に投与したことを表す。The graph which shows the simultaneous measurement result of the time-dependent change of the cytoplasm of the nematode pharyngeal muscle in Example 4, and the ATP density | concentration of a mitochondria. The arrow indicates that M9 buffer containing 0.5% 1-phenoxy-2-propanol as an anesthetic was administered 5 minutes after the start of observation. 実施例4における線虫咽頭筋の細胞質及びミトコンドリアのATP濃度の経時的変化の同時測定結果を示すグラフ。矢印は、対照実験のM9バッファーを観察開始5分後に投与したことを表す。The graph which shows the simultaneous measurement result of the time-dependent change of the cytoplasm of the nematode pharyngeal muscle in Example 4, and the ATP density | concentration of a mitochondria. The arrow indicates that M9 buffer of the control experiment was administered 5 minutes after the start of observation. 実施例5における100μMのcGMP存在下及び非存在下でのcGullの蛍光スペクトル図。The fluorescence spectrum figure of cGull in 100 microM cGMP presence and absence in Example 5. FIG. 実施例5におけるcGullを発現させたHeLa細胞に8-Br-cGMP(1mM)又は一酸化窒素供与体であるSNAP(300μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示す画像。Changes in fluorescence from the start of fluorescence microscopy imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or SNP (300 μM) of nitric oxide donor to HeLa cells expressing cGull in Example 5 An image showing. 実施例5におけるcGullを発現させたHeLa細胞に8-Br-cGMP(1mM)又は一酸化窒素供与体であるSNAP(300μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示すグラフ。Changes in fluorescence from the start of fluorescence microscopy imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or SNP (300 μM) of nitric oxide donor to HeLa cells expressing cGull in Example 5 Graph showing. 実施例6における100μMのcAMP存在下及び非存在下でのPink Flamindoの蛍光スペクトル図。The fluorescence spectrum figure of Pink Flamindo in the presence and absence of 100 μM cAMP in Example 6. 実施例6におけるPink Flamindoを発現させたHeLa細胞にアデニル酸シクラーゼ活性化剤であるForskolin(100μM)又はホスホジエステラーゼ阻害剤であるIBMX(500μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示す画像。From HeLa cells expressing Pink Flamindo in Example 6 to Forskolin (100 μM) as an adenylate cyclase activator or IBMX (500 μM) as a phosphodiesterase inhibitor until 20 minutes after the start of fluorescence microscopic imaging. Image showing changes in fluorescence. 実施例6におけるPink Flamindoを発現させたHeLa細胞にアデニル酸シクラーゼ活性化剤であるForskolin(100μM)又はホスホジエステラーゼ阻害剤であるIBMX(500μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示すグラフ。From HeLa cells expressing Pink Flamindo in Example 6 to Forskolin (100 μM) as an adenylate cyclase activator or IBMX (500 μM) as a phosphodiesterase inhibitor until 20 minutes after the start of fluorescence microscopic imaging. The graph which shows the change of fluorescence. 実施例7における100μMのBGP7C存在下及び非存在下でのgBGPの励起/蛍光スペクトル図。FIG. 6 is an excitation / fluorescence spectrum diagram of gBGP in the presence and absence of 100 μM BGP7C in Example 7. 実施例7におけるgBGPの蛍光強度のリガンド特異性及びBGP7C濃度依存的変化を示すグラフ。The graph which shows the ligand specificity and the BGP7C density | concentration dependence change of the fluorescence intensity of gBGP in Example 7. FIG. 実施例7におけるgBGP又はGFP、及び細胞膜局在性PMmCherry-BGP7C又は細胞膜局在性PMmCherryを発現させたHeLa細胞での蛍光を示す画像。The image which shows the fluorescence in the HeLa cell which expressed gBGP or GFP in Example 7, and cell membrane localization PMmCherry-BGP7C or cell membrane localization PMmCherry. 実施例7におけるgBGP又はGFP、及び核局在性NLSmCherry-BGP7C又は核局在性NLSmCherryを発現させたHeLa細胞での蛍光を示す画像。The image which shows the fluorescence in the HeLa cell which expressed gBGP or GFP in Example 7, and nuclear localization NLSmCherry-BGP7C or nuclear localization NLSmCherry. 実施例8における2μMのHSA存在下及び非存在下でのgHSAの蛍光スペクトル図。The fluorescence spectrum figure of gHSA in the presence and absence of 2 μM HSA in Example 8.
 本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除および置換を行うことができる。 The technical scope of the present invention is limited only by the description of the scope of claims. Modifications of the present invention, for example, addition, deletion, and replacement of the configuration requirements of the present invention can be made on the condition that the gist of the present invention is not deviated.
 本明細書において「タンパク質」、「ペプチド」、「オリゴペプチド」又は「ポリペプチド」とは、2個以上のアミノ酸がペプチド結合で連結した化合物である。「タンパク質」、「ペプチド」、「オリゴペプチド」又は「ポリペプチド」は、アミド基、メチル基を含むアルキル基、リン酸基、糖鎖、及び/又は、エステル結合その他の共有結合による修飾を含む場合がある。また、「タンパク質」、「ペプチド」、「オリゴペプチド」又は「ポリペプチド」は、金属イオン、補酵素、アロステリックリガンドその他の原子、イオン、原子団か、他の「タンパク質」、「ペプチド」、「オリゴペプチド」又は「ポリペプチド」か、糖、脂質、核酸等の生体高分子か、ポリスチレン、ポリエチレン、ポリビニル、ポリエステルその他の合成高分子かを共有結合又は非共有結合により結合又は会合している場合がある。 As used herein, “protein”, “peptide”, “oligopeptide” or “polypeptide” is a compound in which two or more amino acids are linked by peptide bonds. “Protein”, “peptide”, “oligopeptide” or “polypeptide” includes amido groups, alkyl groups including methyl groups, phosphate groups, sugar chains, and / or ester bonds and other covalent modifications. There is a case. In addition, “protein”, “peptide”, “oligopeptide” or “polypeptide” is a metal ion, coenzyme, allosteric ligand or other atom, ion, atomic group, or other “protein”, “peptide”, “ When `` oligopeptides '' or `` polypeptides '', biopolymers such as sugars, lipids, nucleic acids, etc., polystyrene, polyethylene, polyvinyl, polyester or other synthetic polymers are bound or associated by covalent or non-covalent bonds There is.
 本発明において、ある特定のアミノ酸配列に「1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列」とは、n以下の個数のアミノ酸が欠失、置換又は付加されたアミノ酸配列をいう。ここでnは、当該特定のアミノ酸配列の全アミノ酸の数の10%を超えない整数である。すなわち、ある特定のアミノ酸配列に1個以上n個以下のアミノ酸が欠失、置換又は付加されたアミノ酸配列をいう。同様に、本発明のいずれかのドメインのN末端又はC末端が、ある特定のタンパク質又はタンパク質ドメインのN末端又はC末端に「さらに1個~数個のアミノ酸がペプチド結合で追加して連結される」とは、当該本発明のいずれかのドメインのN末端又はC末端は、当該特定のタンパク質又はタンパク質ドメインのN末端又はC末端に1個以上n個以下のアミノ酸がペプチド結合で追加して連結されることをいう。また本発明のいずれかのドメインのN末端又はC末端が、ある特定のタンパク質又はタンパク質ドメインのN末端又はC末端から「1個~数個目のアミノ酸残基」であるとは、当該本発明のいずれかのドメインのN末端又はC末端は、当該特定のタンパク質又はタンパク質ドメインのN末端又はC末端から1個目以上n個目以下のアミノ酸残基であることをいう。 In the present invention, “an amino acid sequence in which one or several amino acids are deleted, substituted or added” to a specific amino acid sequence is an amino acid sequence in which n or less amino acids have been deleted, substituted or added. Say. Here, n is an integer not exceeding 10% of the total number of amino acids in the specific amino acid sequence. That is, an amino acid sequence in which one or more and n or less amino acids are deleted, substituted or added to a specific amino acid sequence. Similarly, the N-terminus or C-terminus of any domain of the present invention is linked to the N-terminus or C-terminus of a particular protein or protein domain by “adding one to several additional amino acids via peptide bonds. "The N-terminus or C-terminus of any domain of the present invention is defined by adding one or more amino acids to the N-terminus or C-terminus of the specific protein or protein domain by peptide bonds. It is connected. The N-terminal or C-terminal of any domain of the present invention is “the first to several amino acid residues” from the N-terminal or C-terminal of a specific protein or protein domain. The N-terminus or C-terminus of any of the domains refers to the first to n-th amino acid residues from the N-terminus or C-terminus of the specific protein or protein domain.
≪リガンド蛍光センサータンパク質≫
 一実施形態において、本発明は、リガンドに特異的に応答して蛍光特性が変化するリガンド蛍光センサータンパク質であって、前記リガンド蛍光センサータンパク質は、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとを含み、前記リガンド蛍光センサータンパク質に用いられる蛍光タンパク質がβバレル構造を有するものであり、前記第1の蛍光タンパク質ドメインが前記蛍光タンパク質のN末端からβ1~β3のβシート領域と、これに続くαへリックス領域と、β4~β6のβシート領域とを含み、前記第2の蛍光タンパク質ドメインが前記第1の蛍光タンパク質ドメインと同一の前記蛍光タンパク質のβ7~β11のβシート領域を含み、前記N末端側リンカー及び前記C末端側リンカーは、それぞれ独立して1個又は数個のアミノ酸からなるポリペプチドであるリガンド蛍光センサータンパク質を提供する。
≪Ligand fluorescence sensor protein≫
In one embodiment, the present invention relates to a ligand fluorescent sensor protein whose fluorescence characteristics change in response to a ligand specifically, wherein the ligand fluorescent sensor protein includes a first fluorescent protein domain, an N-terminal linker, , A ligand binding domain, a C-terminal linker, and a second fluorescent protein domain, wherein the fluorescent protein used in the ligand fluorescent sensor protein has a β barrel structure, and the first fluorescent protein domain is A β-sheet region of β1 to β3, an α-helix region following this, and a β-sheet region of β4 to β6 from the N-terminus of the fluorescent protein, wherein the second fluorescent protein domain is the first fluorescent protein A β-sheet region of β7 to β11 of the fluorescent protein identical to the domain, and the N-terminal The side linker and the C-terminal side linker each independently provide a ligand fluorescent sensor protein which is a polypeptide consisting of one or several amino acids.
 本実施形態のリガンド蛍光センサータンパク質によれば、検出するリガンドの種類を選ばず、高感度にリガンドを検出することができる。 According to the ligand fluorescent sensor protein of this embodiment, the ligand can be detected with high sensitivity regardless of the type of ligand to be detected.
 本実施形態のリガンド蛍光センサータンパク質は、リガンドの濃度に特異的に応答して蛍光特性が変化する。該蛍光特性は、蛍光強度を含むが、これに限られない。蛍光強度は、蛍光顕微鏡、蛍光顕微分光光度計等の蛍光光学機器を用いて、所定の励起光源からの光のスペクトルを励起光フィルターにより一定の波長帯域に制限して、本発明のリガンド蛍光センサータンパク質又はリガンド蛍光センサー陰性対照タンパク質を含む生物試料に照射し、その蛍光を蛍光フィルターにより一定の波長帯域の制限して冷却CCDカメラで撮像し、得られた画像のうち特定の視野又はその一部の領域の画素の輝度値を基に定量的に表される。 The ligand fluorescence sensor protein of this embodiment changes its fluorescence characteristics in response to the ligand concentration specifically. The fluorescence characteristics include, but are not limited to, fluorescence intensity. The fluorescence intensity is limited by using a fluorescence optical instrument such as a fluorescence microscope or a fluorescence microspectrophotometer, and the spectrum of light from a predetermined excitation light source is limited to a certain wavelength band by an excitation light filter. A biological sample containing a protein or ligand fluorescent sensor negative control protein is irradiated, and the fluorescence is limited by a fluorescent filter and captured by a cooled CCD camera. A specific visual field or a part of the obtained image is captured. It is expressed quantitatively based on the luminance value of the pixels in the area.
(リガンド)
 なお、本明細書における「リガンド」とは、特定の受容体(レセプター)に特異的に結合する物質を意味する。リガンドとして具体的には、例えば、ヌクレオチド若しくはその誘導体、核酸、糖鎖、タンパク質、脂質複合体、低分子化合物等が挙げられ、これらに限定されない。
 本実施形態のリガンド蛍光センサータンパク質は、上述した特定のリガンドに対するレセプターを備えることで、高感度に生体内におけるリガンド濃度の分布や時間変化を簡便に検出することができる。
(Ligand)
The “ligand” in the present specification means a substance that specifically binds to a specific receptor (receptor). Specific examples of the ligand include, but are not limited to, nucleotides or derivatives thereof, nucleic acids, sugar chains, proteins, lipid complexes, low molecular compounds, and the like.
The ligand fluorescent sensor protein of the present embodiment includes a receptor for the specific ligand described above, and can easily detect the distribution of the ligand concentration and the change with time in the living body with high sensitivity.
 前記ヌクレオチド若しくはその誘導体としては、例えば、アデノシン三リン酸(ATP)、アデノシン二リン酸(ADP)、アデノシン一リン酸(AMP)、環状AMP(cAMP)、グアノシン三リン酸(GTP)、グアノシン二リン酸(GDP)、グアノシン一リン酸(GMP)、環状GMP(cGMP)等が挙げられ、これらに限定されない。中でも、ヌクレオチド若しくはその誘導体としては、ATP、cAMP、及びcGMPであることが好ましい。 Examples of the nucleotide or derivative thereof include adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP (cAMP), guanosine triphosphate (GTP), and guanosine diphosphate. Examples thereof include phosphoric acid (GDP), guanosine monophosphate (GMP), cyclic GMP (cGMP), and the like, but are not limited thereto. Among these, ATP, cAMP, and cGMP are preferable as nucleotides or derivatives thereof.
 ATPは、化学反応、輸送や筋収縮のエネルギー源になり、またシグナル伝達等の役割を担い、生命システムの維持に広範に関与している。ATP産生が低下する、又はATPが消費されずに過剰になると、細胞はそのエネルギーバランスを失い、疾患が起る。
 また、cAMPは、グルカゴンやアドレナリンといったホルモン伝達の際の細胞内シグナル伝達においてセカンドメッセンジャーとして働くことが知られている。
 また、cGMPは、イオンチャネルの伝導性、グリコーゲン分解、細胞のアポトーシスなどを調整している。また、平滑筋の弛緩にも関わっている。その他に目の光情報伝達においてセカンドメッセンジャーの役割を果たしている。
よって、本実施形態において、リガンドがATP、cAMP、又はcGMPであるリガンド蛍光センサータンパク質(すなわち、ATP蛍光センサータンパク質、cAMP蛍光センサータンパク質、又はcGMP蛍光センサータンパク質)を用いることで、細胞内の各種リガンドの濃度分布や時間変化(時空間ダイナミクス)を可視化解析でき、各種生命現象や疾患発症機構の解明に応用できる。
ATP is an energy source for chemical reactions, transport and muscle contraction, plays a role in signal transmission, and is widely involved in the maintenance of life systems. When ATP production is reduced or ATP is consumed without being consumed, the cell loses its energy balance and disease occurs.
Moreover, cAMP is known to act as a second messenger in intracellular signal transduction during hormone transmission such as glucagon and adrenaline.
CGMP regulates ion channel conductivity, glycogen degradation, cell apoptosis, and the like. It is also involved in smooth muscle relaxation. In addition, it plays the role of a second messenger in optical transmission of eyes.
Therefore, in this embodiment, by using a ligand fluorescent sensor protein whose ligand is ATP, cAMP, or cGMP (that is, ATP fluorescent sensor protein, cAMP fluorescent sensor protein, or cGMP fluorescent sensor protein), various ligands in the cell Concentration analysis and temporal changes (spatio-temporal dynamics) can be visualized and analyzed to elucidate various life phenomena and disease onset mechanisms.
 前記タンパク質としては、例えば、抗原、抗体、酵素等が挙げられ、これらに限定されない。中でも、タンパク質としては、抗原、又は抗体であることが好ましい。
 リガンドが各種生体分子である場合、レセプターとして特定の生体分子に対する抗体を用いることで、生体分子の種類を選ばず、生体内における当該生体分子の濃度分布や時間変化を簡便且つ正確に検出することができる。
 また、リガンドが生体内に存在する抗体である場合、例えば、レセプターとして各種アレルギー物質を用いることで、ヒト又は非ヒト動物におけるアレルギー物質に対する抗体の存在を簡便且つ正確に検出することができる。
Examples of the protein include, but are not limited to, antigens, antibodies, enzymes, and the like. Among them, the protein is preferably an antigen or an antibody.
When the ligand is various biomolecules, by using an antibody against a specific biomolecule as a receptor, the concentration distribution and temporal change of the biomolecule in the living body can be detected easily and accurately regardless of the type of biomolecule. Can do.
Further, when the ligand is an antibody present in the living body, for example, by using various allergic substances as receptors, the presence of antibodies against allergic substances in humans or non-human animals can be detected easily and accurately.
 抗体は抗体断片も含む。抗体断片としては、Fab、Fab’、F(ab’)2、可変領域断片(Fv)、ジスルフィド結合Fv、一本鎖Fv(scFv)、sc(Fv)2、ダイアボディー、多特異性抗体、およびこれらの重合体等が挙げられる。 Antibody includes antibody fragments. Antibody fragments include Fab, Fab ′, F (ab ′) 2, variable region fragment (Fv), disulfide bond Fv, single chain Fv (scFv), sc (Fv) 2, diabody, multispecific antibody, And polymers thereof.
 前記脂質複合体としては、例えば、リポタンパク質、DNA-脂質複合体等が挙げられ、これらに限定されない。 Examples of the lipid complex include, but are not limited to, lipoprotein and DNA-lipid complex.
 前記低分子化合物としては、例えば、水素イオン、カルシウム、塩素、酸素その他のイオン、グルコース、酸化還元物質等が挙げられ、これらに限定されない。 Examples of the low molecular weight compound include, but are not limited to, hydrogen ions, calcium, chlorine, oxygen and other ions, glucose, redox substances, and the like.
(構成)
 本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に含まれるポリペプチドのドメイン及びリンカーの構成は以下のとおりである。まず、リガンドと特異的に結合するドメインを「リガンド結合ドメイン」という。挿入又は円順列変異により分断された無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体のアミノ末端側ドメイン及びカルボキシル末端側ドメインを、以下では、「第1の蛍光タンパク質ドメイン」及び「第2の蛍光タンパク質ドメイン」という。リガンド結合ドメイン又は第1の蛍光タンパク質ドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」といい、リガンド結合ドメイン又は第2の蛍光タンパク質ドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」という。
(Constitution)
Polypeptide domains and linkers included in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are as follows. First, a domain that specifically binds to a ligand is referred to as a “ligand binding domain”. The invertebrate-derived fluorescent protein disrupted by insertion or circular permutation and the amino-terminal domain and carboxyl-terminal domain of the fluorescent protein variant are hereinafter referred to as “first fluorescent protein domain” and “second fluorescent protein”. The fluorescent protein domain. A polypeptide linker linked to the amino terminus of the ligand binding domain or the first fluorescent protein domain is referred to as “N-terminal linker”, and a polypeptide linker linked to the carboxyl terminus of the ligand binding domain or the second fluorescent protein domain is referred to as “C-terminal”. Side linker ".
 本実施形態のリガンド蛍光センサータンパク質において、リガンド結合ドメインを1つ含んでいてもよく、2つ含んでいてもよい。
本実施形態のリガンド蛍光センサータンパク質において、リガンド結合ドメインを1つ含む場合、N末端からC末端に向かって、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順番にペプチド結合で連結してなるポリペプチドを含むことが好ましい。
The ligand fluorescent sensor protein of this embodiment may contain one or two ligand binding domains.
In the ligand fluorescent sensor protein of the present embodiment, when one ligand binding domain is included, the first fluorescent protein domain, the N-terminal linker, the ligand binding domain, and the C-terminal side from the N-terminus toward the C-terminus It is preferable to include a polypeptide in which the linker and the second fluorescent protein domain are directly linked by a peptide bond in this order.
本実施形態のリガンド蛍光センサータンパク質において、リガンド結合ドメインを2つ含む場合、N末端からC末端に向かって、第1のリガンド結合ドメインと、N末端側リンカーと、第2の蛍光タンパク質ドメインと、第1の蛍光タンパク質ドメインと、C末端側リンカーと、第2のリガンド結合ドメインと、が、直接この順番にペプチド結合で連結してなるポリペプチドを含むことが好ましい。また、前記第2の蛍光タンパク質ドメインと前記第1の蛍光タンパク質ドメインとの間にさらにポリペプチドリンカーを有していてもよい。
例えば、リガンド結合ドメインが抗体である場合、分子構造が大きいことから、後述実施例に示すとおり、抗体の重鎖(第1のリガンド結合ドメイン)と軽鎖(第2のリガンド結合ドメイン)とを分けた構成とすることで、リガンド蛍光センサータンパク質内に置いて、当該抗体と蛍光タンパク質との間に立体障害が生じることを防ぐことができる。
In the ligand fluorescent sensor protein of the present embodiment, when two ligand binding domains are included, from the N terminus toward the C terminus, the first ligand binding domain, the N terminal linker, the second fluorescent protein domain, It is preferable that the first fluorescent protein domain, the C-terminal linker, and the second ligand-binding domain include a polypeptide formed by directly connecting them in this order with peptide bonds. Further, a polypeptide linker may be further provided between the second fluorescent protein domain and the first fluorescent protein domain.
For example, when the ligand binding domain is an antibody, since the molecular structure is large, the heavy chain (first ligand binding domain) and the light chain (second ligand binding domain) of the antibody are combined as shown in the Examples below. By adopting a separate configuration, it is possible to prevent steric hindrance between the antibody and the fluorescent protein from being placed in the ligand fluorescent sensor protein.
・蛍光タンパク質
 本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質は、無脊椎動物由来の蛍光タンパク質の改変体と、リガンド結合タンパク質のリガンド結合ドメインとに基づく人工改変体タンパク質である。無脊椎動物由来の蛍光タンパク質は、下村脩博士らによって発見されたヒドロ虫類に属するオワンクラゲ(Aequorea victoria)から単離された緑蛍光タンパク質や、造礁サンゴDiscosoma sp.から単離された赤蛍光タンパク質DsRedを含むが、これらに限られない。
Fluorescent protein The ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are artificially modified proteins based on a fluorescent protein variant derived from an invertebrate and a ligand binding domain of the ligand binding protein. Fluorescent proteins derived from invertebrates include green fluorescent protein isolated from Aequorea victoria belonging to the hydrozoa discovered by Dr. Atsushi Shimomura and others, and reef-building coral Discosoma sp. Red fluorescent protein DsRed isolated from but not limited to.
本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に用いる、無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体に含まれるポリペプチドは、典型的には11個のβシート構造領域と1個のαヘリックス構造領域とを含み、該αヘリックス構造領域はN末端から3個目と4個目のβシート領域(以下、それぞれ、「β3」及び「β4」と称する場合がある。他のβシートもこれらに準じて表記する。)の間に存在する。前記ポリペプチドがフォールディングすると、樽状の立体構造を形成する。すなわち、前記11個のβシート構造領域はアンチパラレルに配向して樽の側面を形成し、前記αヘリックス構造領域は、樽の側面をなすβシート構造領域が終わった前記樽の一方の端から樽の内部を貫いて反対側の端に伸びるポリペプチド部分であって、次のβシート構造領域につながる。無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体の発色団は、前記αヘリックス領域の2個のアミノ酸残基と、前記αヘリックスを挟んで相対する2本のβシート領域(β4及びβ11)に含まれるそれぞれ1個のアミノ酸残基とで形成される。無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体がフォールディングして樽状の立体構造を形成するとき、前記の4個のアミノ酸残基は側鎖間で自発的に反応して多員環を形成し、蛍光を発生する発色団となる。無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体の発色団は、水分子その他の該蛍光タンパク質の外部環境から前記樽状の立体構造によって保護されるため、いつでも蛍光を発生することができる。また前記発色団は、水分子その他のタンパク質の外部環境から前記樽状の立体構造によって保護されるため、pHその他の外部環境の変化の影響を受けにくい。 The invertebrate-derived fluorescent protein used for the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment and the polypeptide contained in the modified fluorescent protein typically have 11 β sheet structure regions. And one α helix structure region, and the α helix structure region may be referred to as the third and fourth β sheet regions from the N-terminus (hereinafter, referred to as “β3” and “β4”, respectively). Other β sheets are also expressed according to these). When the polypeptide folds, a barrel-shaped three-dimensional structure is formed. That is, the 11 β-sheet structure regions are oriented antiparallel to form a side surface of the barrel, and the α helix structure region is formed from one end of the barrel where the β-sheet structure region forming the side surface of the barrel ends. A polypeptide portion that extends through the interior of the barrel to the opposite end and leads to the next β-sheet structure region. A chromophore of an invertebrate-derived fluorescent protein and a variant of the fluorescent protein comprises two amino acid residues of the α helix region and two β sheet regions (β4 and β11 opposite to each other across the α helix). ), Each of which is formed with one amino acid residue. When an invertebrate-derived fluorescent protein and a variant of the fluorescent protein are folded to form a barrel-shaped three-dimensional structure, the four amino acid residues react spontaneously between the side chains to form a multi-membered ring. Forming a chromophore that emits fluorescence. Since the invertebrate-derived fluorescent protein and the chromophore of the modified fluorescent protein are protected from water molecules and other external environments of the fluorescent protein by the barrel-like three-dimensional structure, they can emit fluorescence at any time. . In addition, the chromophore is protected from the external environment of water molecules and other proteins by the barrel-like three-dimensional structure, and thus is less susceptible to changes in pH and other external environments.
 本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に含まれるポリペプチドの第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインは、いずれかの無脊椎動物由来の特定の蛍光タンパク質又はその改変体のN末端側及びC末端側のポリペプチドを含む。本実施形態に用いられる蛍光タンパク質としては、例えば、BFP、GFP、Citrine、mApple等があげられ、これらに限定されない。BFP、GFP、Citrine、mAppleは、それぞれ、Wachter, R.ら(Biochemistry 2960, 9759-9765 (1997))、Chalfie,M.ら(Science 263(5148), 802-805 (1994))、Griesbeck, O.ら、(J. Biol. Chem. 276, 29188-29194 (2001))、及びShaner, N. Cら(Nat. Methods 5, 545-551 (2008))に報告されている。なお、BFP及びmAppleは、Zhao, Y.ら(Science. 333, 1888-1891 (2011))を参照して数カ所にアミノ酸置換変異を導入した(配列番号1、2、7及び8)。 The first fluorescent protein domain and the second fluorescent protein domain of the polypeptide included in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment are either a specific fluorescent protein derived from any invertebrate or its It includes N-terminal and C-terminal polypeptides of the variant. Examples of the fluorescent protein used in the present embodiment include, but are not limited to, BFP, GFP, Citrine, mAapple, and the like. BFP, GFP, Citrine, and mA Apple are Wachter, R. (Biochemistry 2960, 9759-9765 (1997)), Chalfie, M. et al. (Science 263 (5148), 802-805 (1994)), Griesbeck, O. et al. (J. Biol. Chem. 276, 29188-29194 (2001)), and Shaner, N., et al. It has been reported to C et al. (Nat. Methods 5, 545-551 (2008)). In addition, BFP and mA Apple are Zhao, Y. et al. (Science. 333, 1888-1891 (2011)), amino acid substitution mutations were introduced in several places (SEQ ID NOs: 1, 2, 7 and 8).
 典型的には、本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に含まれる第1の蛍光タンパク質ドメインは、無脊椎動物由来の特定の蛍光タンパク質又はその改変体(例えば、BFP、GFP、Citrine又はmApple等)のN末端から、β1~β3のβシート領域と、これに続くαヘリックス領域と、β4~β6のβシート領域とを含む。しかし、第1の蛍光タンパク質ドメインのN末端又はC末端にさらに1個~数個のアミノ酸がペプチド結合で追加して連結される場合もある。すなわち、第1の蛍光タンパク質ドメインのN末端は、無脊椎動物由来の特定の蛍光タンパク質又はその改変体(例えば、BFP、GFP、Citrine又はmApple等)のN末端の場合がある。また、該N末端にさらに1個~数個のアミノ酸がペプチド結合で追加して連結される場合がある。あるいは、第1の蛍光タンパク質ドメインのN末端は、無脊椎動物由来の特定の蛍光タンパク質又はその改変体(例えば、BFP、GFP、Citrine又はmApple等)のN末端から1個~数個目のアミノ酸残基の場合がある。
また、第1の蛍光タンパク質ドメインのC末端は、β6とβ7との間のいずれかのアミノ酸残基の場合がある。あるいは、これにさらに1個~数個のアミノ酸がペプチド結合で追加して連結される場合もある。
Typically, the first fluorescent protein domain included in the ligand fluorescent sensor protein of this embodiment and the ligand fluorescent sensor negative control protein is a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP). And β-sheet region of β1 to β3, followed by α-helical region, and β-sheet region of β4-β6. However, in some cases, one to several amino acids may be additionally linked by peptide bonds to the N-terminus or C-terminus of the first fluorescent protein domain. That is, the N-terminus of the first fluorescent protein domain may be the N-terminus of a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP, Citriline, or mAapple). In addition, one to several amino acids may be additionally connected to the N-terminus by a peptide bond. Alternatively, the N-terminal of the first fluorescent protein domain is the first to several amino acids from the N-terminal of a specific fluorescent protein derived from invertebrates or a variant thereof (eg, BFP, GFP, Citriline, or mAapple). May be a residue.
In addition, the C-terminus of the first fluorescent protein domain may be any amino acid residue between β6 and β7. Alternatively, there may be a case where one to several amino acids are further linked by a peptide bond.
 典型的には、本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に含まれる第2の蛍光タンパク質ドメインは、第1の蛍光タンパク質ドメインと同一の蛍光タンパク質のβ7~β11のβシート領域を含む。第2の蛍光タンパク質ドメインのN末端は前記β7のN末端の場合がある。また、前記β7のN末端にさらに1個~数個のアミノ酸がペプチド結合で追加して連結される場合もある。あるいは、第2の蛍光タンパク質ドメインのN末端は、前記β7のN末端から1個~数個目のアミノ酸残基の場合がある。
また、第2の蛍光タンパク質ドメインのC末端は、無脊椎動物由来の特定の蛍光タンパク質又はその改変体(例えば、BFP、GFP、Citrine又はmApple等)のC末端の場合がある。あるいは、これにさらに1個~数個の追加のアミノ酸がペプチド結合で連結される場合もある。
Typically, the second fluorescent protein domain contained in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment is the β sheet region of β7 to β11 of the same fluorescent protein as the first fluorescent protein domain. including. The N-terminus of the second fluorescent protein domain may be the N-terminus of β7. Further, in some cases, one to several amino acids are additionally linked to the N-terminus of β7 by a peptide bond. Alternatively, the N-terminus of the second fluorescent protein domain may be the first to several amino acid residues from the N-terminus of β7.
In addition, the C-terminus of the second fluorescent protein domain may be the C-terminus of a specific fluorescent protein derived from invertebrates or a variant thereof (for example, BFP, GFP, Citriline, or mAple). Alternatively, one to several additional amino acids may be linked to this by a peptide bond.
 第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして具体的には、例えば、以下の(B1)及び(C1)に示すポリペプチド等が挙げられる。
 (B1)配列番号1、3、5、又は7で表されるアミノ酸配列を含むポリペプチド、
 (C1)配列番号2、4、6、又は8で表されるアミノ酸配列を含むポリペプチド。
Specific examples of the first fluorescent protein domain and the second fluorescent protein domain include polypeptides shown in the following (B1) and (C1).
(B1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7,
(C1) A polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8.
 上記(B1)における配列番号1、3、5、又は7で表されるアミノ酸配列は、それぞれBFP、GFP、Citrine、又はmAppleのβ1~β3のβシート領域と、これに続くαヘリックス領域と、β4~β6のβシート領域とからなるアミノ酸配列である。
 また、上記(C1)における配列番号2、4、6、又は8で表されるアミノ酸配列は、それぞれBFP、GFP、Citrine、又はmAppleのβ7~β11のβシート領域からなるアミノ酸配列である。
The amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 in (B1) above is the β sheet region of β1-β3 of BFP, GFP, Ciline, or mAple, followed by the α helix region, It is an amino acid sequence composed of β4 to β6 β-sheet regions.
In addition, the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8 in (C1) above is an amino acid sequence consisting of a β sheet region of β7 to β11 of BFP, GFP, Citriline, or mApple, respectively.
 本実施形態における第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインは、前記(B1)及び(C1)のポリペプチドと、機能的に同等なポリペプチドとして、下記(B2)及び(C2)のポリペプチドを含有する。
(B2)配列番号1、3、5、又は7で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
(C2)配列番号2、4、6、又は8で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド。
In the present embodiment, the first fluorescent protein domain and the second fluorescent protein domain are the same as the polypeptides of (B1) and (C1) described above as functionally equivalent polypeptides of (B2) and (C2) below. Contains the polypeptide.
(B2) the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the second fluorescence A polypeptide that forms a β-barrel structure with a protein domain and fluoresces,
(C2) the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the first fluorescence A polypeptide that forms a β-barrel structure with a protein domain and emits fluorescence.
ここで、欠失、置換、若しくは付加されてもよいアミノ酸の数としては、1~15個が好ましく、1~10個がより好ましく、1~5個が特に好ましい。 Here, the number of amino acids that may be deleted, substituted, or added is preferably 1 to 15, more preferably 1 to 10, and particularly preferably 1 to 5.
本実施形態における第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインは、前記(B1)及び(C1)のポリペプチドと、機能的に同等なポリペプチドとして、下記(B3)及び(C3)のポリペプチドを含有する。
 (B3)配列番号1、3、5、又は7で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
 (C3)配列番号2、4、6、又は8で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド。
In the present embodiment, the first fluorescent protein domain and the second fluorescent protein domain are the same as the polypeptides of (B1) and (C1) described above as functionally equivalent polypeptides of the following (B3) and (C3). Contains the polypeptide.
(B3) including an amino acid sequence having an identity of 80% or more with the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, and forming a β barrel structure with the second fluorescent protein domain, A fluorescent polypeptide,
(C3) comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, and forming a β barrel structure with the first fluorescent protein domain, A fluorescent polypeptide.
 前記(B1)及び(C1)のポリペプチドと機能的に同等であるためには80%以上の同一性を有する。係る同一性としては、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、98%以上が特に好ましく、99%以上が最も好ましい。 In order to be functionally equivalent to the polypeptides (B1) and (C1), they have 80% or more identity. Such identity is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
 蛍光タンパク質として、BFP、GFP、Citrine、又はmAppleを用いるとき、第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインは、それぞれ、「BFP-Nドメイン」及び「BFP-Cドメイン」、「GFP-Nドメイン」及び「GFP-Cドメイン」、「Citrine-Nドメイン」及び「Citrine-Cドメイン」、又は「mApple-Nドメイン」及び「mApple-Cドメイン」と称する場合がある。BFP-Nドメイン及びBFP-Cドメインのアミノ酸配列は配列番号1及び2として配列表に列挙する。GFP-Nドメイン及びGFP-Cドメインのアミノ酸配列は配列番号3及び4として配列表に列挙する。Citrine-Nドメイン及びCitrine-Cドメインのアミノ酸配列は配列番号5及び6として列挙する。mApple-Nドメイン及びmApple-Cドメインのアミノ酸配列は配列番号7及び8として列挙する。 When BFP, GFP, Citrine, or mAapple is used as the fluorescent protein, the first fluorescent protein domain and the second fluorescent protein domain are “BFP-N domain”, “BFP-C domain”, “GFP-”, respectively. It may be referred to as “N domain” and “GFP-C domain”, “Citrine-N domain” and “Citrine-C domain”, or “mAapple-N domain” and “mAapple-C domain”. The amino acid sequences of the BFP-N domain and the BFP-C domain are listed in the sequence listing as SEQ ID NOs: 1 and 2. The amino acid sequences of the GFP-N domain and the GFP-C domain are listed in the sequence listing as SEQ ID NOs: 3 and 4. The amino acid sequences of the Citrine-N domain and the Citrine-C domain are listed as SEQ ID NOs: 5 and 6. The amino acid sequences of the mApple-N domain and the mApple-C domain are listed as SEQ ID NOs: 7 and 8.
・リガンド結合ドメイン
 無脊椎動物由来の蛍光タンパク質及び該蛍光タンパク質の改変体を用いて、リガンドの濃度変化に応答して蛍光特性が変化する蛍光センサータンパク質を作成するためには、隣接する2個のβシート構造領域を連結するポリペプチドに当該リガンドと結合する別のタンパク質のポリペプチドの一部(すなわち、リガンド結合ドメイン)を挿入することが試みられる。これにより、前記物質の影響で蛍光タンパク質の樽状の立体構造が乱れるために蛍光特性が変化することが期待されるからである。
-Ligand binding domain Using a fluorescent protein derived from an invertebrate and a modified version of the fluorescent protein, in order to create a fluorescent sensor protein whose fluorescence characteristics change in response to changes in the concentration of the ligand, An attempt is made to insert a part of a polypeptide of another protein (that is, a ligand binding domain) that binds to the ligand into the polypeptide linking the β sheet structural region. This is because it is expected that the fluorescence characteristics change because the barrel-like three-dimensional structure of the fluorescent protein is disturbed by the influence of the substance.
 リガンド結合ドメインとしては、特定のリガンドが特異的に結合可能なものであればよく、特別な限定はない。例えば、リガンドがATP、cAMP、又はcGMP等のヌクレオチド若しくはその誘導体である場合には、ATP、cAMP、又はcGMP等のヌクレオチド若しくはその誘導体の公知の結合ドメインをリガンド結合ドメインとして用いればよい。また、例えば、リガンドが任意の生体分子である場合には、該生体分子に対する抗体をリガンド結合ドメインとして用いればよい。また、例えば、リガンドが抗体である場合には、抗原をリガンド結合ドメインとして用いればよい。また、例えば、リガンドが水素イオン、カルシウム、塩素、酸素その他のイオン、グルコース、酸化還元物質等の低分子化合物である場合には、前記低分子化合物のレセプター(受容体)(具体的には、リガンドがグルコースである場合、グルコース輸送体内のグルコース結合部位等)をリガンド結合ドメインとして用いればよい。 The ligand binding domain is not particularly limited as long as a specific ligand can bind specifically. For example, when the ligand is a nucleotide such as ATP, cAMP, or cGMP or a derivative thereof, a known binding domain of a nucleotide such as ATP, cAMP, or cGMP or a derivative thereof may be used as the ligand binding domain. For example, when the ligand is an arbitrary biomolecule, an antibody against the biomolecule may be used as the ligand binding domain. For example, when the ligand is an antibody, the antigen may be used as the ligand binding domain. Further, for example, when the ligand is a low molecular compound such as hydrogen ion, calcium, chlorine, oxygen or other ions, glucose, redox substance, etc., the low molecular compound receptor (specifically, When the ligand is glucose, a glucose binding site or the like in the glucose transporter may be used as the ligand binding domain.
 リガンド結合ドメインとしてより具体的には、例えば、リガンドがATPである場合、ATP結合ドメインとしては、F-ATP合成酵素のεサブユニット等が挙げられる。前記εサブユニットは細菌のF-ATP合成酵素のεサブユニットであってもよく、枯草菌のF-ATP合成酵素のεサブユニットであってもよい。ATP結合ドメインのN末端は、F-ATP合成酵素のεサブユニットのN末端であってもよい。あるいは、前記ATP結合ドメインのN末端は、F-ATP合成酵素のεサブユニットのN末端から1個又は数個目のアミノ酸残基であってもよい。ATP結合ドメインのC末端は、F-ATP合成酵素のεサブユニットのC末端であってもよい。あるいは、前記ATP結合ドメインのC末端は、F-ATP合成酵素のεサブユニットのC末端から1個又は数個目のアミノ酸残基であってもよい。ATP結合ドメインは、配列番号15のアミノ酸配列であってもよい。 More specifically, as the ligand binding domain, for example, when the ligand is ATP, examples of the ATP binding domain include the ε subunit of F 0 F 1 -ATP synthase. The ε subunit may be the ε subunit of bacterial F 0 F 1 -ATP synthase, or the ε subunit of Bacillus subtilis F 0 F 1 -ATP synthase. The N-terminus of the ATP binding domain may be the N-terminus of the ε subunit of F 0 F 1 -ATP synthase. Alternatively, the N-terminus of the ATP-binding domain may be the first or several amino acid residues from the N-terminus of the ε subunit of F 0 F 1 -ATP synthase. The C-terminus of the ATP binding domain may be the C-terminus of the ε subunit of F 0 F 1 -ATP synthase. Alternatively, the C terminus of the ATP binding domain may be the first or several amino acid residues from the C terminus of the ε subunit of F 0 F 1 -ATP synthase. The ATP binding domain may be the amino acid sequence of SEQ ID NO: 15.
 また、例えば、リガンドがcAMPである場合、cAMP結合ドメインとしては、exchange factor directly activated by cAMP 1(EPAC1)等が挙げられる。前記EPAC1はヒト由来のものであってもよく、非ヒト動物由来のものであってもよい。cAMP結合ドメインのN末端は、EPAC1のN末端であってもよい。あるいは、前記cAMP結合ドメインのN末端は、EPAC1のN末端から1個又は数個目のアミノ酸残基であってもよい。cAMP結合ドメインのC末端は、EPAC1のC末端であってもよい。あるいは、前記cAMP結合ドメインのC末端は、EPAC1のC末端から1個又は数個目のアミノ酸残基であってもよい。cAMP結合ドメインは、配列番号20のアミノ酸配列であってもよい。 In addition, for example, when the ligand is cAMP, examples of the cAMP binding domain include exchange factor activated by cAMP 1 (EPAC1). The EPAC1 may be derived from a human or a non-human animal. The N-terminus of the cAMP binding domain may be the N-terminus of EPAC1. Alternatively, the N-terminus of the cAMP-binding domain may be the first or several amino acid residues from the N-terminus of EPAC1. The C terminus of the cAMP binding domain may be the C terminus of EPAC1. Alternatively, the C-terminus of the cAMP binding domain may be the first or several amino acid residues from the C-terminus of EPAC1. The cAMP binding domain may be the amino acid sequence of SEQ ID NO: 20.
 また、例えば、リガンドがcGMPである場合、cGMP結合ドメインとしては、Phosphodiesterase5α(PDE5α)等が挙げられる。前記PDE5αはヒト由来のものであってもよく、非ヒト動物由来のものであってもよい。cGMP結合ドメインのN末端は、PDE5αのN末端であってもよい。あるいは、前記cGMP結合ドメインのN末端は、PDE5αのN末端から1個又は数個目のアミノ酸残基であってもよい。cGMP結合ドメインのC末端は、PDE5αのC末端であってもよい。あるいは、前記cGMP結合ドメインのC末端は、PDE5αのC末端から1個又は数個目のアミノ酸残基であってもよい。cGMP結合ドメインは、配列番号21のアミノ酸配列であってもよい。 Also, for example, when the ligand is cGMP, examples of the cGMP binding domain include phosphodiesterase 5α (PDE5α). The PDE5α may be derived from a human or a non-human animal. The N-terminus of the cGMP binding domain may be the N-terminus of PDE5α. Alternatively, the N-terminus of the cGMP binding domain may be the first or several amino acid residues from the N-terminus of PDE5α. The C-terminus of the cGMP binding domain may be the C-terminus of PDE5α. Alternatively, the C-terminus of the cGMP binding domain may be the first or several amino acid residues from the C-terminus of PDE5α. The cGMP binding domain may be the amino acid sequence of SEQ ID NO: 21.
 また、例えば、リガンドがオステオカルシン(osteocalcin、bone Gla protein(BGP))である場合、BGP結合ドメインとしては、抗BGP抗体等が挙げられる。前記抗BGP抗体はヒト由来のものであってもよく、非ヒト動物由来のものであってもよい。BGP結合ドメインを2つ含む場合、第1のBGP結合ドメインのN末端は、抗BGP抗体の重鎖のN末端であってもよく、第2のBGP結合ドメインのN末端は、抗BGP抗体の軽鎖のN末端であってもよい。あるいは、前記第1のBGP結合ドメインのN末端は、抗BGP抗体の重鎖のN末端から1個又は数個目のアミノ酸残基であってもよく、前記第2のBGP結合ドメインのN末端は、抗BGP抗体の軽鎖のN末端から1個又は数個目のアミノ酸残基であってもよい。第1のBGP結合ドメインのC末端は、抗BGP抗体の重鎖のC末端であってもよく、第2のBGP結合ドメインのN末端は、抗BGP抗体の軽鎖のC末端であってもよい。あるいは、前記第1のBGP結合ドメインのC末端は、抗BGP抗体の重鎖のC末端から1個又は数個目のアミノ酸残基であってもよく、前記第2のBGP結合ドメインのC末端は、抗BGP抗体の軽鎖のC末端から1個又は数個目のアミノ酸残基であってもよい。第1のBGP結合ドメインは、配列番号22のアミノ酸配列であってもよく、第2のBGP結合ドメインは、配列番号23のアミノ酸配列であってもよい。 Also, for example, when the ligand is osteocalcin (bonecalcine (BGP)), examples of the BGP binding domain include an anti-BGP antibody. The anti-BGP antibody may be derived from a human or a non-human animal. When two BGP binding domains are included, the N-terminus of the first BGP binding domain may be the N-terminus of the heavy chain of the anti-BGP antibody, and the N-terminus of the second BGP binding domain may be the anti-BGP antibody's N-terminus. It may be the N-terminus of the light chain. Alternatively, the N-terminus of the first BGP binding domain may be the first or several amino acid residues from the N-terminus of the heavy chain of the anti-BGP antibody, and the N-terminus of the second BGP binding domain May be the first or several amino acid residues from the N-terminus of the light chain of the anti-BGP antibody. The C-terminus of the first BGP binding domain may be the C-terminus of the heavy chain of the anti-BGP antibody, and the N-terminus of the second BGP binding domain may be the C-terminus of the light chain of the anti-BGP antibody. Good. Alternatively, the C-terminus of the first BGP binding domain may be the first or several amino acid residues from the C-terminus of the heavy chain of the anti-BGP antibody, and the C-terminus of the second BGP binding domain May be the first or several amino acid residues from the C-terminus of the light chain of the anti-BGP antibody. The first BGP binding domain may be the amino acid sequence of SEQ ID NO: 22, and the second BGP binding domain may be the amino acid sequence of SEQ ID NO: 23.
・リンカー
 本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質に含まれるポリペプチドでは、リガンド結合ドメインが、そのN末端側及びC末端側にそれぞれ1個~数個のアミノ酸からなるポリペプチドリンカー(以下、それぞれ、「N末端側リンカー」及び「C末端側リンカー」と称する場合がある。)を介して第1及び第2の蛍光タンパク質ドメインの間に挿入される。あるいは、第2及び第1の蛍光タンパク質ドメインが、そのN末端側リンカー及びC末端側リンカーを介して第1及び第2のリガンド結合ドメインの間に挿入される。
 N末端側リンカー及びC末端側リンカーのアミノ酸配列は、それぞれの本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質ごとに異なる。しかし、アミノ酸には、保存的置換が可能な場合がある。
Linker In the polypeptide included in the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment, the polypeptide binding domain is a polypeptide linker consisting of one to several amino acids on the N-terminal side and C-terminal side, respectively. (Hereinafter, they may be referred to as “N-terminal side linker” and “C-terminal side linker”, respectively.) Are inserted between the first and second fluorescent protein domains. Alternatively, the second and first fluorescent protein domains are inserted between the first and second ligand binding domains via their N-terminal linker and C-terminal linker.
The amino acid sequences of the N-terminal linker and the C-terminal linker are different for each ligand fluorescent sensor protein and ligand fluorescent sensor negative control protein of this embodiment. However, amino acids may allow conservative substitutions.
 なお、本明細書において、「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することを意味する。アミノ酸残基はその側鎖によって、塩基性側鎖(例えば、リシン、アルギニン、ヒスチジン)、酸性側鎖(例えば、アスパルギン酸、グルタミン酸)、非荷電極性側鎖(例えば、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えば、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えば、スレオニン、バリン、イソロイシン)、芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は、好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
したがって、本実施形態のリガンド蛍光センサータンパク質のC末端側リンカーのアミノ酸配列は、以下の実施例で特定されたアミノ酸配列と1個以上のアミノ酸が異なっていても、同じリガンド結合能及び蛍光特性を示す場合があり、かかるアミノ酸配列も本実施形態のリガンド蛍光センサータンパク質のC末端側リンカーのアミノ酸配列に含まれる。
In the present specification, “conservative amino acid substitution” means that a certain amino acid residue is substituted with an amino acid residue having a side chain of similar properties. Depending on the side chain of the amino acid residue, a basic side chain (eg, lysine, arginine, histidine), an acidic side chain (eg, aspartic acid, glutamic acid), an uncharged polar side chain (eg, asparagine, glutamine, serine, threonine) , Tyrosine, cysteine), nonpolar side chains (eg glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (eg threonine, valine, isoleucine), aromatic side chains (For example, tyrosine, phenylalanine, tryptophan) and the like. A conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
Therefore, the amino acid sequence of the C-terminal linker of the ligand fluorescent sensor protein of this embodiment has the same ligand binding ability and fluorescence characteristics even if one or more amino acids differ from the amino acid sequence specified in the following examples. Such an amino acid sequence is also included in the amino acid sequence of the C-terminal linker of the ligand fluorescent sensor protein of the present embodiment.
(好適なリガンド蛍光センサータンパク質)
 本実施形態におけるATP蛍光センサータンパク質及びATP蛍光センサー陰性対照タンパク質のうち、BFP-Nドメイン及びBFP-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「MaLion Bシリーズ」という。
本実施形態におけるATP蛍光センサータンパク質及びATP蛍光センサー陰性対照タンパク質のうち、Citrine-Nドメイン及びCitrine-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「MaLion Gシリーズ」という。
本実施形態におけるATP蛍光センサータンパク質及びATP蛍光センサー陰性対照タンパク質のうち、mApple-Nドメイン及びmApple-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「MaLion Rシリーズ」という。
 本実施形態におけるcGMP蛍光センサータンパク質のうち、Citrine-Nドメイン及びCitrine-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「cGullシリーズ」という。
 本実施形態におけるcAMP蛍光センサータンパク質のうち、mApple-Nドメイン及びmApple-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「Pink Flamindoシリーズ」という。
 本実施形態におけるBGP蛍光センサータンパク質のうち、GFP-Nドメイン及びGFP-Cドメインを第1の蛍光タンパク質ドメイン及び第2の蛍光タンパク質ドメインとして用いるものを、「gBGPシリーズ」という。
(Suitable ligand fluorescent sensor protein)
Among the ATP fluorescent sensor protein and the ATP fluorescent sensor negative control protein in the present embodiment, those using the BFP-N domain and the BFP-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “MaLion B series”. "
Among the ATP fluorescent sensor protein and the ATP fluorescent sensor negative control protein in the present embodiment, those using the Citrine-N domain and the Citrine-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “MaLion G series. "
Among the ATP fluorescent sensor protein and the ATP fluorescent sensor negative control protein in the present embodiment, those using the mApple-N domain and the mApple-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “MaLion R series”. "
Among the cGMP fluorescent sensor proteins in this embodiment, those using the Citrine-N domain and the Citrine-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “cGull series”.
Among the cAMP fluorescent sensor proteins in the present embodiment, those using the mApple-N domain and the mApple-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “Pink Flamen series”.
Among the BGP fluorescent sensor proteins in this embodiment, those using the GFP-N domain and the GFP-C domain as the first fluorescent protein domain and the second fluorescent protein domain are referred to as “gBGP series”.
 以下の実施例で説明するとおり、本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質は、第1及び第2の蛍光タンパク質ドメインとして、BFP-Nドメイン及びBFP-Cドメインか、GFP-Nドメイン及びGFP-Cドメインか、Citrine-Nドメイン及びCitrine-Cドメインか、mApple-Nドメイン及びmApple-Cドメインかを用い、ATP結合ドメインとして枯草菌のF-ATP合成酵素のεサブユニットか、cGMP結合ドメインとしてPDE5αか、cAMP結合ドメインとしてEPAC1か、BGP結合ドメインとして抗BGP抗体かを用い、N末端側リンカー及びC末端側リンカーとしてさまざまなポリペプチドの組み合わせを用いて、それぞれ、MaLion B、G及びRシリーズタンパク質、cGullシリーズタンパク質、Pink Flamindoシリーズタンパク質、並びにgBGPシリーズタンパク質の候補分子をエンコードするポリヌクレオチドを合成し、大腸菌発現ベクターに組み込んで、大腸菌で発現させ、それぞれの蛍光特性を解析して、リガンド存在下と、リガンド非存在下とでの蛍光強度の比(ダイナミックレンジ)に基づいて、最もダイナミックレンジの高い候補分子をMaLion B、G及びRシリーズ、cGullシリーズ、Pink Flamindoシリーズ、並びにBGP蛍光センサーシリーズのターン・オン型リガンド蛍光センサータンパク質(以下、それぞれ、「MaLion B」、「MaLion G」及び「MaLion R」、「cGull」、「Pink Flamindo」、並びに「gBGP」と称する場合がある。)として選択した。また、最もダイナミックレンジが1に近い候補分子をMaLion B、G及びRシリーズのATP蛍光センサー陰性対照タンパク質(それぞれ、「negMaLion B」、「negMaLion G」及び「negMaLion R」という。)として選択した。 As will be described in the following examples, the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment have a BFP-N domain and a BFP-C domain as the first and second fluorescent protein domains, GFP- Ε of Bacillus subtilis F 0 F 1 -ATP synthase is used as an ATP-binding domain using N domain and GFP-C domain, Citrine-N domain and Citrine-C domain, mAple-N domain and mApple-C domain Using subunits, PDE5α as cGMP binding domain, EPAC1 as cAMP binding domain, or anti-BGP antibody as BGP binding domain, using various polypeptide combinations as N-terminal linker and C-terminal linker, Polynucleotides encoding candidate molecules of MaLion B, G and R series protein, cGull series protein, Pink Flamindo series protein, and gBGP series protein are synthesized, incorporated into an E. coli expression vector, and expressed in E. coli. By analyzing the fluorescence characteristics, based on the ratio of the fluorescence intensity in the presence of the ligand and in the absence of the ligand (dynamic range), the candidate molecules with the highest dynamic range are determined as MaLion B, G and R series, cGull series, The turn-on ligand fluorescent sensor protein of the Pink Flamingo series and the BGP fluorescent sensor series (hereinafter referred to as “MaLion B”, “MaLion G”, “MaLion R”, “c”, respectively) ull ", was selected as the" Pink Flamindo ", and is sometimes referred to as" gBGP ".). Further, candidate molecules having the dynamic range closest to 1 were selected as MaLion B, G and R series ATP fluorescent sensor negative control proteins (referred to as “negMaLion B”, “negMaLion G” and “negMaLion R”, respectively).
本明細書及び特許請求の範囲において参照する配列表の配列番号で特定されるアミノ酸配列と、本実施形態のリガンド蛍光センサータンパク質及びリガンド蛍光センサー陰性対照タンパク質、あるいは、これらのドメイン及びリンカーとの関係は以下の表に示すとおりである。 Relationship between the amino acid sequence identified by SEQ ID No. in the sequence listing referred to in the present specification and claims, and the ligand fluorescent sensor protein and the ligand fluorescent sensor negative control protein of the present embodiment, or these domains and linkers Is as shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施形態のリガンド蛍光センサータンパク質として、より具体的には、例えば、以下の(D1)のポリペプチド等が挙げられる。
(D1)配列番号9~14のいずれかで表されるアミノ酸配列を含むポリペプチド。
More specifically, examples of the ligand fluorescent sensor protein of the present embodiment include the following polypeptide (D1).
(D1) A polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 9 to 14.
上記(D1)における配列番号9で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[BFP-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[BFP-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
 上記(D1)における配列番号10で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[Citrine-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[Citrine-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
 上記(D1)における配列番号11で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[mApple-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[mApple-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
 上記(D1)における配列番号12で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[Citrine-Nドメイン]-[N末端側リンカー]-[cGMP結合ドメイン]-[C末端側リンカー]-[Citrine-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
 上記(D1)における配列番号13で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[mApple-Nドメイン]-[N末端側リンカー]-[cAMP結合ドメイン]-[C末端側リンカー]-[mApple-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
 上記(D1)における配列番号14で表されるアミノ酸配列は、アミノ末端からカルボキシル末端の向きに、[抗BGP抗体の重鎖]-[N末端側リンカー]-[GFP-Cドメイン]-[ペプチドリンカー]-[GFP-Nドメイン]-[C末端側リンカー]-[抗BGP抗体の軽鎖]の順にポリペプチドドメイン及びポリペプチドリンカーが連結された構造である。
The amino acid sequence represented by SEQ ID NO: 9 in the above (D1) is [BFP-N domain]-[N-terminal side linker]-[ATP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[BFP-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
The amino acid sequence represented by SEQ ID NO: 10 in the above (D1) is [Citrine-N domain]-[N-terminal side linker]-[ATP-binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[Citrine-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
The amino acid sequence represented by SEQ ID NO: 11 in the above (D1) has a [mAapple-N domain]-[N-terminal side linker]-[ATP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[MApple-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
The amino acid sequence represented by SEQ ID NO: 12 in the above (D1) is [Citrine-N domain]-[N-terminal side linker]-[cGMP binding domain]-[C-terminal side linker in the direction from the amino terminus to the carboxyl terminus. ]-[Citrine-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
The amino acid sequence represented by SEQ ID NO: 13 in the above (D1) is [mapple-N domain]-[N terminal linker]-[cAMP binding domain]-[C terminal linker in the direction from the amino terminus to the carboxyl terminus. ]-[MApple-C domain] in this order, a polypeptide domain and a polypeptide linker are linked.
The amino acid sequence represented by SEQ ID NO: 14 in the above (D1) is [anti-BGP antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[peptide in the direction from the amino terminus to the carboxyl terminus. In this structure, a polypeptide domain and a polypeptide linker are linked in the order of linker]-[GFP-N domain]-[C-terminal side linker]-[light chain of anti-BGP antibody].
 本実施形態におけるリガンド蛍光センサータンパク質は、前記(D1)のポリペプチドと、機能的に同等なポリペプチドとして、下記(D2)のポリペプチドを含有する。
(D2)配列番号9~14のいずれかで表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド。
The ligand fluorescent sensor protein in the present embodiment contains the following polypeptide (D2) as a polypeptide functionally equivalent to the polypeptide (D1).
(D2) an amino acid sequence represented by any one of SEQ ID NOs: 9 to 14, including an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the polypeptide (D1) Polypeptides having the same ability to bind to a ligand and fluorescent properties.
ここで、欠失、置換、若しくは付加されてもよいアミノ酸の数としては、1~15個が好ましく、1~10個がより好ましく、1~5個が特に好ましい。 Here, the number of amino acids that may be deleted, substituted, or added is preferably 1 to 15, more preferably 1 to 10, and particularly preferably 1 to 5.
本実施形態におけるリガンド蛍光センサータンパク質は、前記(D1)のポリペプチドと、機能的に同等なポリペプチドとして、下記(D3)のポリペプチドを含有する。
 (D3)配列番号9~14のいずれかで表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド。
The ligand fluorescent sensor protein in the present embodiment contains the following polypeptide (D3) as a polypeptide functionally equivalent to the polypeptide (D1).
(D3) Ligand binding ability and fluorescence that include the amino acid sequence that is 80% or more identical to the amino acid sequence represented by any of SEQ ID NOs: 9 to 14 and that are the same as the polypeptide (D1) A polypeptide having properties.
 前記(D1)のポリペプチドと機能的に同等であるためには80%以上の同一性を有する。係る同一性としては、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、98%以上が特に好ましく、99%以上が最も好ましい。 In order to be functionally equivalent to the polypeptide (D1), it has 80% or more identity. Such identity is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, and most preferably 99% or more.
(その他の構成)
・細胞膜透過性ペプチド
 本実施形態のリガンド蛍光センサータンパク質又は本実施形態のリガンド蛍光センサー陰性対照タンパク質は、細胞膜を透過して細胞内に到達するために、従来技術において周知である細胞膜透過ペプチド(参考文献:Zorko, M.及びLangel, U., Adv. Drug Deliv. Rev. 57, p529-545,2005.)を含んでいていもよい。細胞膜透過ペプチドとしては、例えば、配列番号38~41で表されるアミノ酸配列からなるペプチド等が挙げられ、これらに限定されない。
配列番号38で表されるアミノ酸配列は、HIV-1ウイルスtatタンパク質の第48番目から第60番目までのアミノ酸配列である。
配列番号39で表されるアミノ酸配列は、ショウジョウバエAntennapediaタンパク質の第339番目から第354番目までのアミノ酸配列(penetratinの第43番目から第58番目までのアミノ酸配列)である。
配列番号40で表されるアミノ酸配列のペプチドのC末端がアミド化されたペプチドは、細胞膜を透過して細胞内に局在化できる。このアミノ酸配列はマウスVEカドヘリン前駆体タンパク質の第616番目から第633番目までのアミノ酸配列である。
また、配列番号41で表されるアミノ酸配列は、アルギニンの7量体ホモオリゴマーである。
(Other configurations)
Cell membrane permeable peptide The ligand fluorescent sensor protein of the present embodiment or the ligand fluorescent sensor negative control protein of the present embodiment penetrates the cell membrane and reaches the inside of the cell. Literature: Zorko, M. and Langel, U., Adv. Drug Deliv. Rev. 57, p529-545, 2005.). Examples of the cell membrane-penetrating peptide include, but are not limited to, peptides consisting of amino acid sequences represented by SEQ ID NOs: 38 to 41, and the like.
The amino acid sequence represented by SEQ ID NO: 38 is the amino acid sequence from the 48th to the 60th amino acid sequence of the HIV-1 virus tat protein.
The amino acid sequence represented by SEQ ID NO: 39 is the amino acid sequence from the 339th to the 354th amino acid sequence (the amino acid sequence from the 43rd to the 58th amino acid of penetratin) of the Drosophila Antennapedia protein.
The peptide in which the C-terminal of the peptide having the amino acid sequence represented by SEQ ID NO: 40 is amidated can permeate the cell membrane and localize in the cell. This amino acid sequence is the amino acid sequence from the 616th to the 633th of the mouse VE cadherin precursor protein.
The amino acid sequence represented by SEQ ID NO: 41 is a 7-mer homooligomer of arginine.
・細胞膜局在化ペプチド
 本実施形態のリガンド蛍光センサータンパク質又は本実施形態のリガンド蛍光センサー陰性対照タンパク質は、細胞膜上に局在化させるために、従来技術において周知である細胞膜局在化ペプチドを含んでいていもよい。
 細胞膜局在化ペプチドとしては、例えば、配列番号42で表されるアミノ酸配列からなるペプチド等が挙げられ、これらに限定されない。
 配列番号42で表されるアミノ酸配列は、Zuber, M.X.ら(Nature,vol.341,p345-348,1989.)に報告されるヒト神経タンパク質GAP-43(Neuromodulin)由来の細胞膜局在化ペプチドの第1番目から第21番目までのアミノ酸配列である。
Cell membrane localization peptide The ligand fluorescence sensor protein of this embodiment or the ligand fluorescence sensor negative control protein of this embodiment contains a cell membrane localization peptide well known in the art for localization on the cell membrane. You can go out.
Examples of the cell membrane localized peptide include, but are not limited to, a peptide consisting of the amino acid sequence represented by SEQ ID NO: 42.
The amino acid sequence represented by SEQ ID NO: 42 is disclosed in Zuber, M .; X. (Nature, vol. 341, p345-348, 1989.) is the amino acid sequence from the first to the 21st amino acid sequence of the cell membrane localization peptide derived from human neuroprotein GAP-43 (Neuromodulin).
・オルガネラ局在化シグナルペプチド
 本実施形態のリガンド蛍光センサータンパク質又は本実施形態のリガンド蛍光センサー陰性対照タンパク質は、特定のオルガネラに局在化させるために、従来技術において周知であるオルガネラ局在化シグナルペプチドを含んでいていもよい。前記オルガネラとしては、例えば、ミトコンドリア、核、核小体、小胞体、クロロプラスト、ペロキシゾーム、細菌ペリプラズム等が挙げられ、これらに限定されない。
Organelle localization signal peptide The ligand fluorescence sensor protein of this embodiment or the ligand fluorescence sensor negative control protein of this embodiment is an organelle localization signal that is well known in the art for localizing to a specific organelle. It may contain a peptide. Examples of the organelle include, but are not limited to, mitochondria, nucleus, nucleolus, endoplasmic reticulum, chloroplast, peroxisome, and bacterial periplasm.
 核局在化シグナルペプチドとしては、例えば、配列番号43で表されるアミノ酸配列からなるペプチド等が挙げられ、これらに限定されない。
 配列番号43で表されるアミノ酸配列は、SV40ウイルスT抗原の第126番目から第132番目までのアミノ酸配列である(Lanford, R.E., et al., Cell, vol.46,p575-582,1986.)。
Examples of the nuclear localization signal peptide include, but are not limited to, a peptide consisting of the amino acid sequence represented by SEQ ID NO: 43.
The amino acid sequence represented by SEQ ID NO: 43 is the amino acid sequence from the 126th to the 132nd amino acid sequence of the SV40 virus T antigen (Lanford, RE, et al., Cell, vol. 46, p575-582). 1986.).
 ミトコンドリア局在化シグナルペプチドとしては、例えば、配列番号44、45で表されるアミノ酸配列からなるペプチド等が挙げられ、これらに限定されない。
配列番号44で表されるアミノ酸配列は、ヒトシトクロムcオキシダーゼのサブユニットVIII-肝臓/心臓型(8Aサブユニット又は8-2サブユニット)のアミノ酸配列の第2番目から第29番目までのアミノ酸配列である。
 配列番号45で表されるアミノ酸配列は、ニワトリアスパラギン酸アミノ転移酵素の第2番目から24番目までのアミノ酸配列である(Jaussi, R. et al., J. Biol Chem., vol.260, p16060-16063, 1985.)。
Examples of the mitochondrial localization signal peptide include, but are not limited to, peptides consisting of the amino acid sequences represented by SEQ ID NOs: 44 and 45, and the like.
The amino acid sequence represented by SEQ ID NO: 44 is the amino acid sequence from the 2nd to the 29th amino acid sequence of the human cytochrome c oxidase subunit VIII-liver / heart type (8A subunit or 8-2 subunit). It is.
The amino acid sequence represented by SEQ ID NO: 45 is the 2nd to 24th amino acid sequences of chicken trispartate aminotransferase (Jausi, R. et al., J. Biol Chem., Vol. 260, p16060). -16063, 1985.).
 小胞体(endoplasmic reticulum)局在化シグナルペプチドとしては、例えば、配列番号46、47で表されるアミノ酸配列からなるペプチド等が挙げられ、これらに限定されない。
 配列番号46で表されるアミノ酸配列は、ヒト骨格筋筋小胞体高親和性カルシウム結合タンパク質カルレティキュリンのアミノ酸配列の第1番目から17番目までのアミノ酸配列である(Fliegel, L. et al., J Biol Chem., vol.264, no.36, p21522-21528, 1989.)。
 配列番号47で表されるアミノ酸配列は、ラットgrp78タンパク質の小胞体膜局在化シグナルペプチドの第651番目から第654番目(C末端)のアミノ酸配列である(Munro, S.及びPelham H.R., Cell, vol.48, no.5, p899-907, 1987.)。
Examples of the endoplasmic reticulum localization signal peptide include, but are not limited to, peptides consisting of the amino acid sequences represented by SEQ ID NOs: 46 and 47, and the like.
The amino acid sequence represented by SEQ ID NO: 46 is the first to 17th amino acid sequence of the human skeletal muscle sarcoplasmic reticulum high affinity calcium binding protein calreticulin (Fliegel, L. et al). , J Biol Chem., Vol. 264, no. 36, p21522-21528, 1989.).
The amino acid sequence represented by SEQ ID NO: 47 is the amino acid sequence from the 651st to the 654th (C-terminal) of the endoplasmic reticulum membrane localization signal peptide of rat grp78 protein (Munro, S. and Pelham HR). , Cell, vol. 48, no. 5, p899-907, 1987.).
 中でも、本実施形態のリガンド蛍光センサータンパク質又は本実施形態のリガンド蛍光センサー陰性対照タンパク質は、核局在化シグナルペプチド又はミトコンドリア局在化シグナルペプチドを含むことが好ましい。 Among them, the ligand fluorescent sensor protein of the present embodiment or the ligand fluorescent sensor negative control protein of the present embodiment preferably includes a nuclear localization signal peptide or a mitochondrial localization signal peptide.
<ATP蛍光センサータンパク質>
 一実施形態において、本発明は、ATP濃度に特異的に応答して蛍光特性が変化するATP蛍光センサータンパク質であって、該ATP蛍光センサータンパク質は、N末端からC末端に向けて、第1の蛍光タンパク質ドメインと、N末端側リンカーと、ATP結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順にペプチド結合で連結したポリペプチドを含み、該ポリペプチドは、第1の蛍光タンパク質ドメインは、蛍光タンパク質BFP、Citrine又はmAppleのN末端から、β1~β3のβシート領域と、これに続くαヘリックス領域と、β4~β6のβシート領域とを含み、第2の蛍光タンパク質ドメインは、第1の蛍光タンパク質ドメインと同一の蛍光タンパク質のβ7~β11のβシート領域を含み、ATP結合ドメインはF-ATP合成酵素のεサブユニットからなり、N末端側リンカー及びC末端側リンカーは、それぞれ、1個又は数個のアミノ酸からなるポリペプチドであるATP蛍光センサータンパク質を提供する。
<ATP fluorescence sensor protein>
In one embodiment, the present invention provides an ATP fluorescent sensor protein that changes its fluorescence characteristics in response to ATP concentration, wherein the ATP fluorescent sensor protein is a first protein from the N-terminus toward the C-terminus. A polypeptide comprising a fluorescent protein domain, an N-terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescent protein domain directly linked by a peptide bond in this order. One fluorescent protein domain includes a β sheet region of β1 to β3, an α helix region following this, and a β sheet region of β4 to β6, from the N-terminus of the fluorescent protein BFP, Citriline or mAapple, The fluorescent protein domain is a β sheet region of β7 to β11 of the same fluorescent protein as the first fluorescent protein domain Includes, ATP fluorescence ATP-binding domain consists of ε-subunit of F 0 F 1 -ATP synthase, N-terminal linker and C-terminal linkers are each polypeptide consisting of one or several amino acids Provide a sensor protein.
 本実施形態のATP蛍光センサータンパク質によれば、生理学的条件下で高濃度のATPの存在下での蛍光強度とATP非存在下での蛍光強度の比が十分に高く、細胞の生理学的及び/又は病理学的なATP濃度の変動を検出することができる。また、励起波長及び発光波長が異なる本実施形態のATP蛍光センサータンパク質を複数種類用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、あるいは、生物体内の異なる細胞に局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞又は生物の生理的及び/又は病理的変化に伴うATP濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the ATP fluorescence sensor protein of the present embodiment, the ratio of the fluorescence intensity in the presence of high concentration of ATP to the fluorescence intensity in the absence of ATP is sufficiently high under physiological conditions, Alternatively, pathological changes in ATP concentration can be detected. In addition, by using a plurality of types of ATP fluorescent sensor proteins of the present embodiment having different excitation wavelengths and emission wavelengths, each of them is localized in different organelles of the same cell, or is localized in different cells in the organism, and fluorescence microscope Detect optically the temporal and / or spatial change (spatio-temporal dynamics) of ATP concentration associated with physiological and / or pathological changes of the cells or organisms simultaneously or almost simultaneously in the same visual field Technology can be provided.
 本実施形態のATP蛍光センサータンパク質において、ポリペプチドは、
(A11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号1及び2のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号16及び17のアミノ酸配列である、MaLion Bポリペプチドと、
(A12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー、及びC末端側のリンカーは、それぞれ独立に、配列番号15、1、2、16、及び17のアミノ酸配列か、配列番号13、1、2、14、及び15のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列かであり、かつ、MaLion Bポリペプチド(A11)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
(B11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号5及び6のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、WRG(Trp-Arg-Gly)及び配列番号18のアミノ酸配列である、MaLion Gポリペプチドと、
(B12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列か、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Gポリペプチド(B11)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
(C11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号7及び8のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号19及びPEE(Pro-Glu-Glu)のアミノ酸配列である、MaLion Rポリペプチドと、
(C12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列か、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Rポリペプチド(C11)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含むことが好ましい。
In the ATP fluorescence sensor protein of the present embodiment, the polypeptide is
(A11) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively, and the N-terminal and C-terminal linkers are MaLion B polypeptides, which are the amino acid sequences of SEQ ID NOs: 16 and 17, respectively;
(A12) The ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker, and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 16, and 17 amino acid sequences or amino acid sequences in which one or several amino acids are deleted, substituted or added to the amino acid sequences of SEQ ID NOs: 13, 1, 2, 14, and 15, and MaLion B poly A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the peptide (A11);
(B11) The ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 5 and 6, respectively, and the N-terminal and C-terminal linkers are MaLion G polypeptide, which is the amino acid sequence of WRG (Trp-Arg-Gly) and SEQ ID NO: 18, respectively,
(B12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 5, 6, WRG (Trp- Arg-Gly) and the amino acid sequence of SEQ ID NO: 18, or SEQ ID NOs: 15, 5, 6, WRG (Trp-Arg-Gly) and the amino acid sequence of SEQ ID NO: 18 have one or several amino acids deleted, A MaLion G polypeptide that is a substituted or added amino acid sequence and has the same ATP binding ability and fluorescence characteristics as the MaLion G polypeptide (B11);
(C11) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 7 and 8, respectively, and the N-terminal and C-terminal linkers are MaLion R polypeptide, which is the amino acid sequence of SEQ ID NO: 19 and PEE (Pro-Glu-Glu), respectively
(C12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker and the C-terminal linker are SEQ ID NOs: 15, 7, 8, 19, and PEE (Pro -Glu-Glu) amino acid sequence or SEQ ID NOs: 15, 7, 8, 19 and amino acid sequence of PEE (Pro-Glu-Glu) with one or several amino acids deleted, substituted or added It is preferably a sequence and includes at least one polypeptide selected from the group consisting of MaLion R polypeptides having the same ATP binding ability and fluorescence characteristics as MaLion R polypeptides (C11).
本実施形態のATP蛍光センサータンパク質において、ポリペプチドは、
(A21)配列番号9のアミノ酸配列からなる、MaLion Bポリペプチドと、
(A22)配列番号9のアミノ酸配列のうち、配列番号16及び17のアミノ酸配列を除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Bポリペプチド(A21)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
(B21)配列番号10のアミノ酸配列からなる、MaLion Gポリペプチドと、
(B22)配列番号10のアミノ酸配列のうち、配列番号10の第146-148位のWRG(Trp-Arg-Gly)のアミノ酸配列と、配列番号18のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Gポリペプチド(B21)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
(C21)配列番号11のアミノ酸配列からなる、MaLion Rポリペプチドと、
(C22)配列番号11のアミノ酸配列のうち、配列番号11の第288-290位のPEE(Pro-Glu-Glu)のアミノ酸配列と、配列番号19のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Rポリペプチド(C21)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含むことがより好ましい。
In the ATP fluorescence sensor protein of the present embodiment, the polypeptide is
(A21) a MaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 9,
(A22) The amino acid sequence of SEQ ID NO: 9 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NOS: 16 and 17, and MaLion B A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the polypeptide (A21);
(B21) a MaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 10,
(B22) one of amino acid sequences excluding the amino acid sequence of WRG (Trp-Arg-Gly) at positions 146 to 148 of SEQ ID NO: 10 and the amino acid sequence of SEQ ID NO: 18 among the amino acid sequences of SEQ ID NO: 10 or MaLion G polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion G polypeptide (B21);
(C21) a MaLion R polypeptide consisting of the amino acid sequence of SEQ ID NO: 11,
(C22) One of the amino acid sequences of SEQ ID NO: 11 excluding the amino acid sequence of PEE (Pro-Glu-Glu) at positions 288 to 290 of SEQ ID NO: 11 and the amino acid sequence of SEQ ID NO: 19 or It is selected from the group consisting of an MaLion R polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion R polypeptide (C21). More preferably, it comprises at least one polypeptide.
 本実施形態のATP蛍光センサータンパク質は、さらにオルガネラ局在化シグナルペプチドを含んでいてもよい。前記オルガネラ局在化シグナルペプチドとしては、上述の(その他の構成)において例示されたものと同様のものが挙げられる。中でも、オルガネラ局在化シグナルペプチドとしては、核局在化シグナルペプチド又はミトコンドリア局在化シグナルペプチドであることが好ましい。
 本実施形態のATP蛍光センサータンパク質は、さらに細胞膜透過ペプチドを含んでいてもよい。
The ATP fluorescent sensor protein of this embodiment may further contain an organelle localization signal peptide. Examples of the organelle localization signal peptide include the same as those exemplified above (other configurations). Among them, the organelle localization signal peptide is preferably a nuclear localization signal peptide or a mitochondrial localization signal peptide.
The ATP fluorescent sensor protein of this embodiment may further contain a cell membrane permeable peptide.
<ATP蛍光センサー陰性対照タンパク質>
一実施形態において、本発明は、ATP蛍光センサー陰性対照タンパク質negMaLion B、G及びRを提供する。
<ATP fluorescence sensor negative control protein>
In one embodiment, the present invention provides ATP fluorescence sensor negative control proteins negMaLion B, G and R.
 本実施形態のATP蛍光センサー陰性対照タンパク質は、N末端からC末端に向けて、第1の蛍光タンパク質ドメインと、N末端側リンカーと、ATP結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順にペプチド結合で連結したポリペプチドを含み、該ポリペプチドは、
(A31)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号1及び2のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号27及び28のアミノ酸配列である、negMaLion Bポリペプチドと、
(A32)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、1、2、27、及び28のアミノ酸配列か、配列番号15、1、2、27、及び28のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、negMaLion Bポリペプチド(A31)と同一のATP結合能及び蛍光特性を有する、negMaLion Bポリペプチドと、
(B31)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号5及び6のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、PRG(Pro-Arg-Gly)及び配列番号29のアミノ酸配列である、negMaLion Gポリペプチドと、
(B32)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、5、6、PRG(Pro-Arg-Gly)、及び配列番号29のアミノ酸配列か、配列番号15、5、6、PRG(Pro-Arg-Gly)、及び配列番号29のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、negMaLion Gポリペプチド(B31)と同一のATP結合能及び蛍光特性を有する、ポリペプチドと、
(C31)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号7及び8のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号30及びPEG(Pro-Glu-Gly)のアミノ酸配列である、negMaLion Rポリペプチドと、
(C32)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、7、8、30、及びPEG(Pro-Glu-Gly)のアミノ酸配列か、配列番号15、7、8、30、及びPEG(Pro-Glu-Gly)のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、negMaLion Rポリペプチド(C31)と同一のATP結合能及び蛍光特性を有する、ポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含むことが好ましい。
The ATP fluorescence sensor negative control protein of the present embodiment includes a first fluorescent protein domain, an N-terminal linker, an ATP-binding domain, a C-terminal linker, and a second fluorescence from the N-terminus toward the C-terminus. A polypeptide comprising a protein domain directly linked by a peptide bond in this order, the polypeptide comprising:
(A31) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively, and the N-terminal and C-terminal linkers are A negMaLion B polypeptide, which is the amino acid sequence of SEQ ID NOs: 27 and 28, respectively;
(A32) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 27, and 28. Or an amino acid sequence in which one or several amino acids are deleted, substituted, or added to the amino acid sequences of SEQ ID NOs: 15, 1, 2, 27, and 28, and the negMaLion B polypeptide ( A negMaLion B polypeptide having the same ATP binding ability and fluorescence properties as A31);
(B31) The ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 5 and 6, respectively, and the N-terminal and C-terminal linkers are Respectively, PRG (Pro-Arg-Gly) and the negMaLion G polypeptide which is the amino acid sequence of SEQ ID NO: 29;
(B32) The ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 5, 6, PRG (Pro- Arg-Gly) and the amino acid sequence of SEQ ID NO: 29, or SEQ ID NOs: 15, 5, 6, PRG (Pro-Arg-Gly) and the amino acid sequence of SEQ ID NO: 29 have one or several amino acids deleted, A polypeptide having a substituted or added amino acid sequence and having the same ATP binding ability and fluorescence characteristics as the negMaLion G polypeptide (B31);
(C31) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 7 and 8, respectively, and the N-terminal and C-terminal linkers are A negMaLion R polypeptide that is the amino acid sequence of SEQ ID NO: 30 and PEG (Pro-Glu-Gly), respectively;
(C32) The ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 7, 8, 30 and PEG One or several amino acids are deleted, substituted or added to the amino acid sequence of (Pro-Glu-Gly) or the amino acid sequences of SEQ ID NOs: 15, 7, 8, 30 and PEG (Pro-Glu-Gly). And at least one polypeptide selected from the group consisting of polypeptides having the same ATP binding ability and fluorescence characteristics as the negMaLion R polypeptide (C31).
 本実施形態のATP蛍光センサー陰性対照タンパク質は、
 (A41)配列番号24のアミノ酸配列からなる、negMaLion Bポリペプチドと、
(A42)配列番号24のアミノ酸配列のうち、配列番号27及び28のアミノ酸配列を除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、negMaLion Bポリペプチド(A41)と同一のATP結合能及び蛍光特性を有するポリペプチドと、
(B41)配列番号25のアミノ酸配列からなるnegMaLion Gポリペプチドと、
(B42)配列番号25のアミノ酸配列のうち、配列番号25の第146-148位のPRG(Pro-Arg-Gly)のアミノ酸配列と、配列番号29とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、negMaLion Gポリペプチド(B41)と同一のATP結合能及び蛍光特性を有するnegMaLion Gポリペプチドと、
(C41)配列番号26のアミノ酸配列からなるnegMaLion Rポリペプチドと、
(C42)配列番号26のアミノ酸配列のうち、配列番号30のアミノ酸配列と、配列番号26の第288-290位のPEG(Pro-Glu-Gly)のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、negMaLion Rポリペプチド(C41)と同一のATP結合能及び蛍光特性を有するポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含むことがより好ましい。
The ATP fluorescence sensor negative control protein of this embodiment is
(A41) a negMaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 24;
(A42) The amino acid sequence of SEQ ID NO: 24 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NO: 27 and 28, and negMaLion B A polypeptide having the same ATP binding ability and fluorescence characteristics as the polypeptide (A41);
(B41) a negMaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 25;
(B42) Among the amino acid sequences of SEQ ID NO: 25, one or several amino acids are included in the amino acid sequence excluding SEQ ID NO: 29 and the amino acid sequence of PRG (Pro-Arg-Gly) at positions 146-148 of SEQ ID NO: 25 A negMaLion G polypeptide consisting of an amino acid sequence in which an amino acid is deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as the negMaLion G polypeptide (B41);
(C41) a negMaLion R polypeptide consisting of the amino acid sequence of SEQ ID NO: 26;
(C42) Of the amino acid sequence of SEQ ID NO: 26, one amino acid sequence excluding the amino acid sequence of SEQ ID NO: 30 and the amino acid sequence of PEG (Pro-Glu-Gly) at positions 288-290 of SEQ ID NO: 26, or At least one selected from the group consisting of an amino acid sequence in which several amino acids have been deleted, substituted or added, and a polypeptide having the same ATP binding ability and fluorescence characteristics as the negMaLion R polypeptide (C41) More preferably, it comprises two polypeptides.
 本実施形態のATP蛍光センサー陰性対照タンパク質は、さらにオルガネラ局在化シグナルペプチドを含んでいてもよい。前記オルガネラ局在化シグナルペプチドとしては、上述の(その他の構成)において例示されたものと同様のものが挙げられる。中でも、オルガネラ局在化シグナルペプチドとしては、核局在化シグナルペプチド又はミトコンドリア局在化シグナルペプチドであることが好ましい。
 本実施形態のATP蛍光センサー陰性対照タンパク質は、さらに細胞膜透過ペプチドを含んでいてもよい。
The ATP fluorescent sensor negative control protein of this embodiment may further contain an organelle localization signal peptide. Examples of the organelle localization signal peptide include the same as those exemplified above (other configurations). Among them, the organelle localization signal peptide is preferably a nuclear localization signal peptide or a mitochondrial localization signal peptide.
The ATP fluorescent sensor negative control protein of the present embodiment may further contain a cell membrane permeable peptide.
(用途)
・蛍光組成物
 一実施形態において、本発明は、上述のATP蛍光センサータンパク質を含む蛍光組成物を提供する。
(Use)
-Fluorescent composition In one embodiment, the present invention provides a fluorescent composition comprising the ATP fluorescent sensor protein described above.
 本実施形態の蛍光組成物において、上述のATP蛍光センサータンパク質は固体支持体に不動化されていてもよい。 In the fluorescent composition of the present embodiment, the ATP fluorescent sensor protein described above may be immobilized on a solid support.
 前記固体支持体の形状としては、特別な限定はなく、例えば、平板状、球状等が挙げられる。 The shape of the solid support is not particularly limited, and examples thereof include a flat plate shape and a spherical shape.
 固体支持体の材質としては、たとえば無機物質としてシリカ、アルミナ、ガラス、金属等が挙げられる。また、有機高分子物質として熱可塑性樹脂等が挙げられる。 Examples of the material of the solid support include silica, alumina, glass, metal and the like as inorganic substances. Moreover, a thermoplastic resin etc. are mentioned as an organic polymer substance.
 固体支持体として、より具体的には、担体(例えば、磁気担体、アフィニティーカラム精製用担体等)、細胞培養用基材、プレパラート、マイクロデバイス、膜等が挙げられる。細胞培養用基材としては、任意の数のウェルが配置されたマルチウェルプレート、シャーレ等が挙げられる。ウェルの数としては、プレート1枚当たり、たとえば、6、12、24、96、384、1,536個等が挙げられる。 More specifically, examples of the solid support include carriers (for example, magnetic carriers, affinity column purification carriers, etc.), cell culture substrates, preparations, microdevices, membranes, and the like. Examples of the substrate for cell culture include a multiwell plate, a petri dish and the like in which an arbitrary number of wells are arranged. Examples of the number of wells include 6, 12, 24, 96, 384, 1,536, etc., per plate.
 本実施形態の蛍光組成物において、上述のATP蛍光センサータンパク質は、第1及び第2の蛍光タンパク質ドメインの対の異なる少なくとも2種類の励起波長及び蛍光波長のATP蛍光センサータンパク質であってもよい。
 後述の実施例に示すとおり、蛍光波長の異なる複数種類のATP蛍光センサータンパク質を用いることにより、該ATP蛍光センサータンパク質をそれぞれ異なるオルガネラに局在させ、あるいは、生物体内の異なる細胞に局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞又は生物の生理的及び/又は病理的変化に伴うATP濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析することができる。
In the fluorescent composition of the present embodiment, the ATP fluorescent sensor protein described above may be an ATP fluorescent sensor protein having at least two different excitation wavelengths and fluorescent wavelengths of the first and second fluorescent protein domain pairs.
As shown in the examples below, by using a plurality of types of ATP fluorescence sensor proteins having different fluorescence wavelengths, the ATP fluorescence sensor proteins are localized in different organelles, or are localized in different cells in the organism, Optical detection of temporal and / or spatial change (spatiotemporal dynamics) of ATP concentration associated with physiological and / or pathological changes of the cells or organisms detected simultaneously or nearly simultaneously in the same field of view of a fluorescence microscope Can be analyzed.
また、本実施形態の蛍光組成物の使用方法として、ATP蛍光センサータンパク質が容器の壁面に不動化されている場合に、ATPか、ATPγSのような非加水分解性のATP類縁体かを含む溶液を注ぎ、これをブラックライトのようなわずかに眼で見える長波長の紫外線光源を励起光源として照射することができる。あるいは、ATP蛍光センサータンパク質を不動化したビーズのような固体支持体を、ATP又は非加水分解性のATP類縁体を含む溶液に懸濁して、容器又は流路を流すことができる。例えば、容器をシャンパングラスの形状とし、該容器を複数層に積み上げておき、その頂上の容器に前記溶液を注ぐことにより、最上層の容器からあふれた溶液が直下の層の容器に注がれ、該直下の層の容器からあふれた溶液がさらに下の層の容器に注がれる、いわゆるシャンパンタワー又はトリクルダウン状態を、さまざまな角度及びタイミングの励起光源を照射することにより視覚的効果の高い蛍光照明を行うことができる。 In addition, as a method of using the fluorescent composition of this embodiment, when the ATP fluorescent sensor protein is immobilized on the wall surface of the container, a solution containing ATP or a non-hydrolyzable ATP analog such as ATPγS Can be irradiated as an excitation light source with a long-wavelength ultraviolet light source that is slightly visible, such as black light. Alternatively, a solid support such as beads immobilizing the ATP fluorescent sensor protein can be suspended in a solution containing ATP or a non-hydrolyzable ATP analog and flowed through the container or flow path. For example, the container is shaped like a champagne glass, the containers are stacked in multiple layers, and the solution overflowing from the uppermost container is poured into the container in the layer immediately below by pouring the solution into the container on the top. The so-called champagne tower or trickle-down state in which the solution overflowing from the container of the layer immediately below is poured into the container of the layer below has a high visual effect by irradiating excitation light sources of various angles and timings. Fluorescent illumination can be performed.
≪ポリヌクレオチド≫
 一実施形態において、本発明は、上述のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを提供する。
≪Polynucleotide≫
In one embodiment, the present invention provides a polynucleotide encoding the above-described ligand fluorescent sensor protein.
 前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドとしては、例えば、配列番号48又は49で表される塩基配列からなるポリヌクレオチド、又は、配列番号48又は49で表される塩基配列と80%以上、例えば85%以上、例えば90%以上、例えば95%以上の同一性を有し、リガンドへの結合能及び蛍光特性を有するポリペプチドをコードする塩基配列からなるポリヌクレオチド等が挙げられる。なお、配列番号48又は49で表される塩基配列は、配列番号12又は13で表されるアミノ酸配列からなるポリペプチドをコードするポリヌクレオチドの塩基配列である。 Examples of the polynucleotide encoding the ligand fluorescent sensor protein include, for example, a polynucleotide comprising the base sequence represented by SEQ ID NO: 48 or 49, or 80% or more of the base sequence represented by SEQ ID NO: 48 or 49, for example, Examples thereof include a polynucleotide comprising a base sequence encoding a polypeptide having 85% or more, for example, 90% or more, for example, 95% or more, and having a ligand binding ability and fluorescence characteristics. The base sequence represented by SEQ ID NO: 48 or 49 is the base sequence of a polynucleotide encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 12 or 13.
 本実施形態のポリヌクレオチドは、哺乳類、植物、及び/又は線虫における発現のためにコドン選択が最適化されていてもよい。 In the polynucleotide of this embodiment, codon selection may be optimized for expression in mammals, plants, and / or nematodes.
 なお、本明細書において、「哺乳類、植物、及び/又は線虫における発現のためにコドン選択が最適化され」るとは、哺乳類、植物、及び/又は線虫でのコドン使用頻度及び/又はアミノアシルt-RNA分子種の細胞内濃度の生物種間相違に対応して、それぞれの生物種で最も翻訳効率が高いようにコドンが選択された、所望のタンパク質をエンコードするポリヌクレオチドの塩基配列を設計することを意味する。コドン選択の最適化は、例えば、Gustafsson, C.ら(Trends in biotechnology 22.7 (2004): 346-353)等を参照して実行することができる。 In the present specification, “the codon selection is optimized for expression in mammals, plants, and / or nematodes” means the frequency of codon usage in mammals, plants, and / or nematodes and / or Corresponding to the difference in the intracellular concentration of the aminoacyl-t-RNA molecular species, the nucleotide sequence of the polynucleotide encoding the desired protein whose codon was selected so as to have the highest translation efficiency in each biological species Means to design. Optimization of codon selection is described in, for example, Gustafsson, C.I. (Trends in biotechnology 22.7 (2004): 346-353) and the like.
≪発現ベクター≫
 一実施形態において、本発明は、上述のポリヌクレオチドを含む発現ベクターを提供する。
≪Expression vector≫
In one embodiment, the present invention provides an expression vector comprising the polynucleotide described above.
 なお、本明細書における「発現ベクター」とは、所望のタンパク質を宿主細胞内で発現できるように、該タンパク質をエンコードするポリヌクレオチドと、該ポリヌクレオチドの転写、RNAスプライシング、RNAプロセッシング、RNA成熟、翻訳、翻訳後プロセッシングその他の機能に必要な、プロモーター、エンハンサー、ターミネーター及びリボソーム結合部位を含むが、これらに限られない、核酸を含むベクターを意味する。 The “expression vector” in the present specification refers to a polynucleotide encoding the protein, transcription of the polynucleotide, RNA splicing, RNA processing, RNA maturation, so that a desired protein can be expressed in a host cell. It means a vector containing a nucleic acid including, but not limited to, a promoter, enhancer, terminator and ribosome binding site necessary for translation, post-translational processing and other functions.
(発現ベクターの種類)
 哺乳類における発現のための発現ベクターとしては特に制限されず、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のプラスミド;pUB110、pTP5、pC194等の枯草菌由来のプラスミド;pSH19、pSH15等の酵母由来プラスミド;λファージ等のバクテリオファージ;アデノウイルス、アデノ随伴ウイルス、レンチウイルス、ワクシニアウイルス、バキュロウイルス等のウイルス;及びこれらを改変したベクター等を用いることができる。
 線虫(C. elegans)における発現のための発現ベクターとしては特に制限されず、例えば、Okkema, P.G.及びAndrew F.(Development 120, 2175-2186 (1994))が報告するpOKベクター等を用いることができる。
 植物における発現のための発現ベクターとしては特に制限されず、例えば、タバコモザイクウイルス、キュウリモザイクウイルス等のウイルス及びこれらを改変したベクター等を用いることができる。
(Type of expression vector)
The expression vector for expression in mammals is not particularly limited. For example, plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13; plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194; yeasts such as pSH19 and pSH15 Origin plasmids; bacteriophages such as λ phage; viruses such as adenoviruses, adeno-associated viruses, lentiviruses, vaccinia viruses, baculoviruses; and modified vectors thereof can be used.
The expression vector for expression in C. elegans is not particularly limited, and examples thereof include Okema, P. et al. G. And Andrew F. A pOK vector reported by (Development 120, 2175-2186 (1994)) can be used.
The expression vector for expression in plants is not particularly limited, and for example, viruses such as tobacco mosaic virus and cucumber mosaic virus, vectors obtained by modifying these viruses, and the like can be used.
(発現ベクターの構成)
・哺乳類における発現のための発現ベクターの構成
 哺乳類における発現のための発現ベクターは、例えば、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドに作動可能に連結されたプロモーターを含んでいていもよい。
(Structure of expression vector)
-Construction of an expression vector for expression in mammals An expression vector for expression in mammals may contain, for example, a promoter operably linked to a polynucleotide encoding the ligand fluorescent sensor protein.
 本明細書において、「作動可能に連結」とは、遺伝子発現制御配列(例えば、プロモーター又は一連の転写因子結合部位)と発現させたい遺伝子(本実施形態においては、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチド)との間の機能的連結を意味する。ここで、「発現制御配列」とは、その発現させたい遺伝子(本実施形態においては、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチド)の転写を指向するものを意味する。 As used herein, “operably linked” refers to a gene expression control sequence (for example, a promoter or a series of transcription factor binding sites) and a gene to be expressed (in this embodiment, the ligand fluorescent sensor protein). Functional linkage between the polynucleotide and the polynucleotide. Here, the “expression control sequence” means a sequence that directs transcription of a gene to be expressed (in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein).
 前記プロモーターとしては、特別な限定はなく、例えば、細胞の種類等に応じて適宜決定できる。プロモーターの具体例としては、例えば、ウイルス性プロモーター、発現誘導性プロモーター、組織特異的プロモーター、又はエンハンサー配列やプロモーター配列を融合させたプロモーター等が挙げられる。上記プロモーターは、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドの上流(5’側)に連結されていることが好ましい。 The promoter is not particularly limited and can be appropriately determined according to, for example, the type of cell. Specific examples of the promoter include, for example, viral promoters, expression inducible promoters, tissue-specific promoters, promoters in which enhancer sequences and promoter sequences are fused, and the like. The promoter is preferably linked upstream (5 ′ side) of the polynucleotide encoding the ligand fluorescent sensor protein.
本明細書において、「ウイルス性プロモーター」とは、ウイルス由来のプロモーターを意味する。由来となるウイルスとしては、例えば、サイトメガロウイルス、モロニー白血病ウイルス、JCウイルス、乳癌ウイルス、シミアンウイルス、レトロウイルス等が挙げられる。 In the present specification, the “viral promoter” means a promoter derived from a virus. Examples of the virus to be derived include cytomegalovirus, moloney leukemia virus, JC virus, breast cancer virus, simian virus, retrovirus and the like.
 本明細書において、「発現誘導性プロモーター」とは、化学薬剤、物理的ストレス等の特定の刺激を与えたときに発現させたい遺伝子(本実施形態においては、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチド)を発現することができ、刺激の非存在下では発現活性を示さないプロモーターを意味する。発現誘導性プロモーターとしては、例えば、TetO(テトラサイクリンオペレーター)プロモーター、メタロチオネイン(metallothionine)プロモーター、IPTG/lacIプロモーター系、エクジソンプロモーター系、及び翻訳又は転写についての阻害配列を不可逆的に欠失させるための「lox  stop  lox」系等が挙げられ、これらに限定されない。 In the present specification, “expression-inducible promoter” means a gene that is to be expressed when a specific stimulus such as a chemical agent or physical stress is applied (in the present embodiment, a gene encoding the ligand fluorescent sensor protein). A promoter capable of expressing nucleotides) and exhibiting no expression activity in the absence of stimulation. Examples of the expression-inducible promoter include TetO (tetracycline operator) promoter, metallothionein promoter, IPTG / lacI promoter system, ecdysone promoter system, and an inhibitory sequence for irreversibly deleting translation or transcription. lox stop lox "system and the like, but not limited to.
本明細書において、「組織特異的プロモーター」とは、特定の組織においてのみ活性を有するプロモーターを意味する。 As used herein, “tissue-specific promoter” means a promoter having activity only in a specific tissue.
 エンハンサー配列やプロモーター配列を融合させたプロモーターとしては、例えば、シミアンウイルス40(SV40)の初期遺伝子のプロモーターとヒトT細胞白血病ウイルス1のロング・ターミナル・リピートの一部の配列からなるSRαプロモーター、サイトメガロウイルスの前初期(IE)遺伝子エンハンサーとニワトリβ-アクチンプロモーターからなるCAGプロモーター等が挙げられる。特に、CAGプロモーターは、発現させたい遺伝子(本実施形態においては、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチド)の3’末端にウサギのβ-グロビン遺伝子のpolyA signalサイトを有することにより、発現させたい遺伝子(本実施形態においては、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチド)をほぼ全身で過剰発現させることができる。 Examples of promoters in which enhancer sequences and promoter sequences are fused include, for example, the SRα promoter consisting of the promoter of the early gene of simian virus 40 (SV40) and the partial sequence of the long terminal repeat of human T cell leukemia virus 1, Examples thereof include a CAG promoter composed of a megalovirus immediate early (IE) gene enhancer and a chicken β-actin promoter. In particular, the CAG promoter is expressed by having a polyA signal site of the rabbit β-globin gene at the 3 ′ end of the gene to be expressed (in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein). The gene (in this embodiment, the polynucleotide encoding the ligand fluorescent sensor protein) can be overexpressed almost systemically.
 哺乳類における発現のための発現ベクターにおいて、さらに、例えば、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドの下流(3’側)に、mRNAの3’末端のポリアデニル化に必要なポリアデニル化シグナルが作動可能に連結されていてもよい。ポリアデニル化シグナルとしては、上記のウイルス由来、各種ヒト又は非ヒト動物由来の各遺伝子に含まれるポリアデニル化シグナル、例えば、SV40の後期遺伝子又は初期遺伝子、ウサギβグロビン遺伝子、ウシ成長ホルモン遺伝子、ヒトA3アデノシン受容体遺伝子等のポリアデニル化シグナル等を挙げることができる。 In the expression vector for expression in mammals, for example, a polyadenylation signal necessary for polyadenylation of the 3 ′ end of mRNA can be operated downstream (3 ′ side) of the polynucleotide encoding the ligand fluorescent sensor protein. It may be connected to. Examples of the polyadenylation signal include polyadenylation signals contained in the above genes derived from viruses, various human or non-human animals, such as SV40 late gene or early gene, rabbit β globin gene, bovine growth hormone gene, human A3 Examples thereof include polyadenylation signals such as an adenosine receptor gene.
・植物における発現のための発現ベクターの構成
植物における発現のための発現ベクターには、例えば、カリフラワーモザイクウイルス由来のプロモーター/エンハンサー、アルコールデヒドロゲナーゼ遺伝子由来の5’非翻訳領域(翻訳エンハンサー領域)、及び/又は、熱ショックタンパク質遺伝子由来ターミネーター等を含んでいていもよい。
-Construction of expression vector for expression in plant Expression vectors for expression in plant include, for example, promoter / enhancer derived from cauliflower mosaic virus, 5 'untranslated region (translation enhancer region) derived from alcohol dehydrogenase gene, and Alternatively, a heat shock protein gene-derived terminator or the like may be included.
・線虫における発現のための発現ベクターの構成
線虫における発現のための発現ベクターには、例えば、Myo2遺伝子由来のプロモーター等を含んでいていもよい。
-Construction of expression vector for expression in nematode The expression vector for expression in nematode may contain, for example, a promoter derived from the Myo2 gene.
・その他発現ベクターの構成
プラスミドベクターには、例えば、pBluescriptベクターその他の大腸菌を宿主とするベクターを改変したものや、pcDNA3ベクターのように哺乳類で発現効率が高いCMVプロモーター等を含んでいていもよい。
-Construction of other expression vectors The plasmid vector may contain, for example, a pBluescript vector or other modified E. coli host vectors, or a CMV promoter with high expression efficiency in mammals such as pcDNA3 vector. .
 上述の発現ベクターは、さらに、例えば、マルチクローニングサイト、スプライシングシグナル、選択マーカー、複製起点等を有していてもよい。
 前記選択マーカーとしては、例えば、薬剤選択マーカー遺伝子等が挙げられる。
 薬剤選択マーカー遺伝子として、具体的には、例えば、ネオマイシン耐性遺伝子、ピューロマイシン耐性遺伝子等が挙げられる。薬剤選択マーカー遺伝子を挿入することにより、後述に示す本実施形態の発現ベクターが導入された細胞において、該薬物を含む培地を用いて細胞を培養することで、発現ベクターが導入された細胞を選択することができる。
The above-described expression vector may further have, for example, a multicloning site, a splicing signal, a selection marker, an origin of replication, and the like.
Examples of the selection marker include a drug selection marker gene.
Specific examples of the drug selection marker gene include a neomycin resistance gene and a puromycin resistance gene. By inserting a drug selection marker gene, cells that have been introduced with the expression vector of the present embodiment described later are cultured using a medium containing the drug, and the cells into which the expression vector has been introduced are selected. can do.
≪細胞≫
 上述のリガンド蛍光センサータンパク質又は上述のリガンド蛍光センサー陰性対照タンパク質の発現ベクターを細胞に導入することにより、上述のリガンド蛍光センサータンパク質又は上述のリガンド蛍光センサー陰性対照タンパク質に含まれる細胞膜透過ペプチドの作用で、あるいは、前記タンパク質を細胞内に送達するための試薬により、前記タンパク質が一時的又は恒久的に存在する細胞を提供することができる。
≪Cells≫
By introducing the expression vector of the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein into cells, the cell membrane permeation peptide contained in the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein can be used. Alternatively, a reagent for delivering the protein into a cell can provide a cell in which the protein is temporarily or permanently present.
 本実施形態における細胞の由来となる生物種としては、特別な限定はなく、例えば、大腸菌、枯草菌、酵母、昆虫細胞、植物細胞、動物細胞(特に、哺乳動物細胞)等が挙げられ、これらに限定されない。
 前記哺乳動物としては、例えば、ヒト、マウス、ラット、ハムスター、モルモット、ウサギ、イヌ、ネコ、ウマ、ウシ、ヒツジ、ブタ、ヤギ、マーモセット、サル等が挙げられ、これらに限定されない。
The biological species from which the cells are derived in this embodiment is not particularly limited, and examples thereof include Escherichia coli, Bacillus subtilis, yeast, insect cells, plant cells, animal cells (particularly mammalian cells), and the like. It is not limited to.
Examples of the mammal include, but are not limited to, human, mouse, rat, hamster, guinea pig, rabbit, dog, cat, horse, cow, sheep, pig, goat, marmoset, monkey and the like.
 動物細胞として具体的には、例えば、生殖細胞(精子、卵子等)、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離されたがん細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変された細胞、生体から分離され人為的に核が交換された細胞等が挙げられ、これらに限定されない。 Specific examples of animal cells include, for example, germ cells (sperm, ova, etc.), somatic cells constituting the living body, stem cells, progenitor cells, cancer cells separated from the living body, separated from the living body, and acquired immortalizing ability. And cells that are stably maintained outside the body (cell lines), cells that have been isolated from the living body and artificially modified, and cells that have been isolated from the living body and have been artificially exchanged nuclei, etc. .
<第一実施形態>
 一実施形態において、本発明は、上述のリガンド蛍光センサータンパク質を少なくとも1種類含む細胞を提供する。
<First embodiment>
In one embodiment, the present invention provides a cell comprising at least one ligand fluorescent sensor protein as described above.
 本実施形態の細胞によれば、生細胞におけるリガンドの濃度の変動を検出することができる。また、励起波長及び発光波長が異なる上述のリガンド蛍光センサータンパク質を複数種類含む細胞を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞の生理的及び/又は病理的変化に伴う各種リガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the cell of this embodiment, it is possible to detect a change in the concentration of the ligand in the living cell. In addition, by using cells containing multiple types of the above-mentioned ligand fluorescent sensor proteins with different excitation wavelengths and emission wavelengths, each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope. Thus, it is possible to provide a technique for optically analyzing temporal and / or spatial changes (spatiotemporal dynamics) of various ligand concentrations associated with physiological and / or pathological changes of the cells.
(細胞の作製方法)
 上述のリガンド蛍光センサータンパク質又は上述のリガンド蛍光センサー陰性対照タンパク質を細胞内に導入するための方法としては、例えば、前記タンパク質を細胞内に送達するための試薬を用いる方法等が挙げられる。
前記試薬としては、例えば、陽イオン性脂質である塩化N-[1-(2,3-ジオレイロキシ)プロピル]-N,N,N-(DOTMA)と、中性脂質であるジオレイルホスファチジルエタノールアミン(DOPE)との混合物、1,2-ジオレオイル-3-トリメチル-アンモニウム-プロパン(DOTAP)1,2-ジオレオイル-3-ジメチルアンモニウム-プロパン(DODAP)その他の陽イオン性脂質を含む脂質混合物等が挙げられ、これらに限定されない。
これらの試薬には、Lipofectin(登録商標)、Lipofectamine(登録商標)、Pierce(登録商標)タンパク質トランスフェクション試薬(いずれもThermo Fisher Scientific Inc.)等の市販品が含まれる。
また、その他の上述のリガンド蛍光センサータンパク質又は上述のリガンド蛍光センサー陰性対照タンパク質を細胞内に送達するための試薬としては、例えば、脂質を含まないX-fect(商標)トランスフェクション試薬(Clontech Laboratories, Inc.)等を用いてもよい。この試薬は上述のリガンド蛍光センサータンパク質又は上述のリガンド蛍光センサー陰性対照タンパク質が細胞膜透過性ペプチドを含む場合に細胞内に送達することができる。
(Cell production method)
Examples of the method for introducing the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein into cells include a method using a reagent for delivering the protein into cells.
Examples of the reagent include N- [1- (2,3-dioleoxy) propyl] -N, N, N- (DOTMA), which is a cationic lipid, and dioleylphosphatidylethanolamine, which is a neutral lipid. (DOPE), 1,2-dioleoyl-3-trimethyl-ammonium-propane (DOTAP) 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) and other lipid mixtures containing cationic lipids, etc. But are not limited to these.
These reagents include commercially available products such as Lipofectin (registered trademark), Lipofectamine (registered trademark), and Pierce (registered trademark) protein transfection reagent (both Thermo Fisher Scientific Inc.).
Examples of other reagents for delivering the above-described ligand fluorescent sensor protein or the above-described ligand fluorescent sensor negative control protein into cells include, for example, lipid-free X-fect ™ transfection reagent (Clontech Laboratories, Inc.) or the like may be used. This reagent can be delivered intracellularly when the ligand fluorescent sensor protein described above or the ligand fluorescent sensor negative control protein described above comprises a cell membrane permeable peptide.
 細胞に含まれる上述のリガンド蛍光センサータンパク質は1種類であってもよく、2種類以上であってもよい。2種類以上含む場合、同一細胞内において容易に検出するために、各リガンド蛍光センサータンパク質は励起波長及び発光波長が異なることが好ましい。 The above-mentioned ligand fluorescent sensor protein contained in a cell may be one type or two or more types. When two or more types are included, it is preferable that each ligand fluorescent sensor protein has a different excitation wavelength and emission wavelength in order to easily detect in the same cell.
<第二実施形態>
 一実施形態において、本発明は、上述のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを少なくとも1種類含む染色体を有する細胞を提供する。
<Second embodiment>
In one embodiment, the present invention provides a cell having a chromosome comprising at least one polynucleotide encoding the above-described ligand fluorescent sensor protein.
 本実施形態の細胞によれば、生細胞におけるリガンドの濃度の変動を検出することができる。また、励起波長及び発光波長が異なる上述のリガンド蛍光センサータンパク質を複数種類含む細胞を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞の生理的及び/又は病理的変化に伴う各種リガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the cell of this embodiment, it is possible to detect a change in the concentration of the ligand in the living cell. In addition, by using cells containing multiple types of the above-mentioned ligand fluorescent sensor proteins with different excitation wavelengths and emission wavelengths, each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope. Thus, it is possible to provide a technique for optically analyzing temporal and / or spatial changes (spatiotemporal dynamics) of various ligand concentrations associated with physiological and / or pathological changes of the cells.
(細胞の作製方法)
 本実施形態の細胞は、例えば、上述の発現ベクターをドナーベクターとして細胞内に導入し、相同組換え修復(HDR)を誘発する公知のゲノム編集技術を用いて作製することができる。
(Cell production method)
The cell of this embodiment can be produced using, for example, a known genome editing technique in which the above-described expression vector is introduced into a cell as a donor vector to induce homologous recombination repair (HDR).
 上述の発現ベクターを細胞内に導入する方法としては、公知の遺伝子導入の手法を用いることができ、具体的には、例えば、リン酸カルシウム法、エレクトロポレーション法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAE-デキストラン法等を用いることができる。 As a method for introducing the above-described expression vector into a cell, a known gene transfer method can be used. Specifically, for example, a calcium phosphate method, an electroporation method, a lipofection method, an aggregation method, a microinjection method , Particle gun method, DEAE-dextran method and the like can be used.
 公知のゲノム編集技術としては、例えば、CRISPR-Cas9システム、TALENシステム、Znフィンガーヌクレアーゼシステム等が使用できる。または、例えば、染色体における前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドを挿入したい部位と相同な配列を、上述の発現ベクターの前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドの上流及び下流に付加することにより、相同組換え修復を誘発させる方法等が使用できる。
また、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドに薬剤選択マーカーを持たせておくことにより、薬剤選択により前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドの導入が起きた細胞を効率よく選択できる。
As a known genome editing technique, for example, CRISPR-Cas9 system, TALEN system, Zn finger nuclease system and the like can be used. Alternatively, for example, by adding a sequence homologous to the site into which the polynucleotide encoding the ligand fluorescent sensor protein in the chromosome is to be inserted upstream and downstream of the polynucleotide encoding the ligand fluorescent sensor protein of the above-described expression vector. A method for inducing homologous recombination repair can be used.
In addition, by providing a drug selection marker to the polynucleotide encoding the ligand fluorescent sensor protein, cells in which the polynucleotide encoding the ligand fluorescent sensor protein has been introduced by drug selection can be efficiently selected.
細胞が植物細胞である場合、例えば、アグロバクテリウム法、単離プロトプラストへのDNA導入法等を用いて、リガンド蛍光センサータンパク質をコードするポリヌクレオチドを植物細胞に導入し、相同組換え修復(HDR)を誘発させて作製することができる。
また、前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドに薬剤選択マーカーを持たせておくことにより、薬剤選択により前記リガンド蛍光センサータンパク質をコードするポリヌクレオチドの導入が起きた細胞を効率よく選択できる。
When the cell is a plant cell, for example, a polynucleotide encoding a ligand fluorescent sensor protein is introduced into the plant cell using the Agrobacterium method, a DNA introduction method into an isolated protoplast, etc., and homologous recombination repair (HDR) ) Can be induced.
In addition, by providing a drug selection marker to the polynucleotide encoding the ligand fluorescent sensor protein, cells in which the polynucleotide encoding the ligand fluorescent sensor protein has been introduced by drug selection can be efficiently selected.
(染色体上の構成)
 染色体に導入された上述のリガンド蛍光センサータンパク質をコードするポリヌクレオチドは、例えば、上流にプロモーター、下流にポリアデニル化シグナル等を備えていてもよい。
 プロモーター及びポリアデニル化シグナルとしては、上述の≪発現ベクター≫において例示されたものと同様のものが挙げられる。
 その他リガンド蛍光センサータンパク質をコードするポリヌクレオチドをさらに高発現させるために、各遺伝子のスプライシングシグナル、エンハンサー領域、イントロンの一部を、プロモーター領域の5’上流、プロモーター領域と翻訳領域間或いは翻訳領域の3’下流に連結してもよい。
 また、リガンド蛍光センサータンパク質をコードするポリヌクレオチドの導入が起きた細胞を効率よく選択するために、選択マーカー(例えば、薬剤選択マーカー遺伝子)を、プロモーター領域の5’上流、プロモーター領域と翻訳領域間或いは翻訳領域の3’下流に連結してもよい。
(Structure on chromosome)
The polynucleotide encoding the above-described ligand fluorescent sensor protein introduced into the chromosome may have, for example, a promoter upstream and a polyadenylation signal downstream.
Examples of the promoter and polyadenylation signal include those exemplified in the above-mentioned << expression vector >>.
In order to further increase the expression of a polynucleotide encoding a ligand fluorescent sensor protein, a splicing signal, an enhancer region, and a part of an intron of each gene are placed 5 ′ upstream of the promoter region, between the promoter region and the translation region, or between the translation region. You may connect 3 'downstream.
In addition, in order to efficiently select cells in which the polynucleotide encoding the ligand fluorescent sensor protein has been introduced, a selection marker (for example, a drug selection marker gene) is placed 5 ′ upstream of the promoter region, between the promoter region and the translation region. Alternatively, it may be linked 3 ′ downstream of the translation region.
 染色体に導入されたリガンド蛍光センサータンパク質をコードするポリヌクレオチドは1種類であってもよく、2種類以上であってもよい。2種類以上含む場合、同一細胞内において容易に検出するために、各リガンド蛍光センサータンパク質は励起波長及び発光波長が異なることが好ましい。 The polynucleotide encoding the ligand fluorescent sensor protein introduced into the chromosome may be one type or two or more types. When two or more types are included, it is preferable that each ligand fluorescent sensor protein has a different excitation wavelength and emission wavelength in order to easily detect in the same cell.
 また、2種類以上のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを含む場合、同一染色体上であってもよく、異なる染色体上であってもよい。
 リガンド蛍光センサータンパク質をコードするポリヌクレオチドが導入される遺伝子座としては、セーフハーバー座位であることが好ましい。
In addition, when a polynucleotide encoding two or more types of ligand fluorescent sensor proteins is included, it may be on the same chromosome or on different chromosomes.
The gene locus into which the polynucleotide encoding the ligand fluorescent sensor protein is introduced is preferably a safe harbor locus.
 なお、本明細書における「セーフハーバー座位」とは、恒常的且つ安定的に発現が行われている遺伝子領域であり、かつ当該領域に本来コードされている遺伝子が欠損又は改変された場合であっても、生命の維持が可能な領域を意味する。
CRISPRシステムを用いて、外来DNA(本実施形態においては、リガンド蛍光センサータンパク質をコードするポリヌクレオチド)をセーフハーバー座位に挿入する場合には、近傍にPAM配列を有することが好ましい。
セーフハーバー座位としては、例えば、Rosa26遺伝子座、AAVS1遺伝子座等が挙げられる。
The “safe harbor locus” in the present specification is a gene region that is constantly and stably expressed and a gene originally encoded in the region is deleted or altered. But it means an area where life can be maintained.
When a foreign DNA (in this embodiment, a polynucleotide encoding a ligand fluorescent sensor protein) is inserted into the safe harbor locus using the CRISPR system, it preferably has a PAM sequence in the vicinity.
Examples of the safe harbor locus include the Rosa26 locus and the AAVS1 locus.
<第三実施形態>
 一実施形態において、本発明は、上述の発現ベクターを少なくとも1種類含む細胞を提供する。
<Third embodiment>
In one embodiment, the present invention provides a cell comprising at least one expression vector as described above.
 本実施形態の細胞によれば、生細胞におけるリガンドの濃度の変動を検出することができる。また、励起波長及び発光波長が異なる上述のリガンド蛍光センサータンパク質を複数種類含む細胞を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞の生理的及び/又は病理的変化に伴う各種リガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the cell of this embodiment, it is possible to detect a change in the concentration of the ligand in the living cell. In addition, by using cells containing multiple types of the above-mentioned ligand fluorescent sensor proteins with different excitation wavelengths and emission wavelengths, each cell can be localized in different organelles of the same cell and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope. Thus, it is possible to provide a technique for optically analyzing temporal and / or spatial changes (spatiotemporal dynamics) of various ligand concentrations associated with physiological and / or pathological changes of the cells.
(細胞の作製方法)
 上述の発現ベクターを細胞内に導入する方法としては、公知の遺伝子導入の手法を用いることができ、上述の<第二実施形態>において例示されたものと同様の方法が挙げられる。
(Cell production method)
As a method for introducing the above-described expression vector into a cell, a known gene introduction method can be used, and examples thereof include the same methods as those exemplified in <Second Embodiment> above.
 導入された上述の発現ベクターは1種類であってもよく、2種類以上であってもよい。2種類以上含む場合、同一細胞内において容易に検出するために、各発現ベクターから発現されるリガンド蛍光センサータンパク質は励起波長及び発光波長が異なることが好ましい。 The introduced expression vector may be one type or two or more types. When two or more types are included, it is preferable that the excitation wavelength and emission wavelength of the ligand fluorescent sensor protein expressed from each expression vector are different in order to easily detect in the same cell.
≪非ヒト生物≫
 一実施形態において、本発明は、上述の細胞を含む非ヒト生物を提供する。
≪Non-human organism≫
In one embodiment, the present invention provides a non-human organism comprising the cell described above.
 本実施形態の非ヒト生物によれば、生理学的条件下で高濃度のリガンドの存在下での蛍光強度とリガンド非存在下での蛍光強度の比が十分に高く、非ヒト生物の生理学的及び/又は病理学的なリガンドの濃度の変動を検出することができる。また、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質を複数種類発現する細胞を生物体内の1箇所若しくは複数箇所に含む非ヒト生物を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、あるいは、生物体内の異なる細胞に局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、非ヒト生物の生理的及び/又は病理的変化に伴うリガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the non-human organism of this embodiment, the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of ligand under physiological conditions is sufficiently high, Variations in the concentration of pathological ligands can be detected. In addition, by using a non-human organism containing cells expressing a plurality of types of ligand fluorescent sensor proteins having different excitation wavelengths and emission wavelengths in one or more locations in the organism, each is localized in different organelles of the same cell, Alternatively, it can be localized in different cells in the organism and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope, and the ligand concentration over time and / or associated with physiological and / or pathological changes in the non-human organism A technique for optically analyzing a spatial change (spatiotemporal dynamics) can be provided.
 なお、本明細書における「非ヒト生物」とは、ヒト以外の生物種であればよく、具体的には、上述の≪細胞≫において例示されたもののうちヒト以外のものが挙げられる。
 本実施形態の非ヒト生物は、上述の細胞が移植された非ヒト生物であってもよく、リガンド蛍光センサータンパク質をコードするポリヌクレオチドが生殖細胞系にも導入され、次世代に受け継がれた遺伝子改変非ヒト生物であってもよい。
In addition, the “non-human organism” in the present specification may be any species other than human, and specifically includes those other than humans among those exemplified in the above “cells”.
The non-human organism of the present embodiment may be a non-human organism in which the above-described cells are transplanted, and a gene encoding a ligand fluorescent sensor protein is introduced into the germ cell line, and is inherited to the next generation. It may be a modified non-human organism.
<非ヒト生物の作製方法>
 本実施形態の非ヒト生物の作製方法としては、例えば、上述の細胞を非ヒト生物の体内に外科的又は非外科的に導入する方法、上述のベクターを直接非ヒト生物の細胞に導入する方法等が挙げられる。
<Method for producing non-human organism>
As a method for producing the non-human organism of this embodiment, for example, a method of introducing the above-mentioned cell surgically or non-surgically into the body of the non-human organism, a method of introducing the above-mentioned vector directly into the cell of the non-human organism. Etc.
又は、非ヒト生物が非ヒト哺乳動物である場合、例えば、上述の≪細胞≫の<第二実施形態>において、細胞として非ヒト哺乳動物の受精卵、胚性幹細胞、精子又は未受精卵を用いて、リガンド蛍光センサータンパク質をコードするポリヌクレオチドを含む発現ベクターを導入し、これらの細胞を用いて発生させた個体から、リガンド蛍光センサータンパク質をコードするポリヌクレオチドが胚芽細胞を含むすべての細胞の染色体上に組み込まれた個体を選択する方法によっても作製することができる。 Alternatively, when the non-human organism is a non-human mammal, for example, in <Second Embodiment> of the above <Cell>, a fertilized egg, embryonic stem cell, sperm or unfertilized egg of the non-human mammal is used as the cell. Introducing an expression vector comprising a polynucleotide encoding a ligand fluorescent sensor protein, and from an individual generated using these cells, the polynucleotide encoding the ligand fluorescent sensor protein is derived from all cells, including germ cells. It can also be produced by a method of selecting an individual integrated on a chromosome.
得られた非ヒト哺乳動物の胚芽細胞においてリガンド蛍光センサータンパク質をコードするポリヌクレオチドが存在することは、得られた動物の子孫がその胚芽細胞及び体細胞の全てに該導入遺伝子を有することで確認することができる。個体の選択は、個体を構成する組織、例えば、血液組織、上皮組織、結合組織、軟骨組織、骨組織、筋組織、口腔内組織又は骨格系組織の一部から調製したゲノムDNAにリガンド蛍光センサータンパク質をコードするポリヌクレオチドが存在することをDNAレベルで確認することによって行われる。このようにして選択された個体は通常、相同染色体の片方にリガンド蛍光センサータンパク質をコードするポリヌクレオチドを有するヘテロ接合体であるため、ヘテロ接合体の個体同士を交配することにより、子孫の中からリガンド蛍光センサータンパク質をコードするポリヌクレオチドを相同染色体の両方に持つホモ接合体動物を取得することができる。このホモ接合体の雌雄の動物を交配することにより、すべての子孫がリガンド蛍光センサータンパク質をコードするポリヌクレオチドを安定に保持するホモ接合体となるので、通常の飼育環境で、非ヒト哺乳動物を繁殖継代することができる。 The presence of a polynucleotide encoding a ligand fluorescent sensor protein in the obtained non-human mammalian germ cells is confirmed by the fact that the resulting animal progeny have the transgene in all of the germ cells and somatic cells. can do. The selection of an individual can be performed by using a ligand fluorescence sensor for genomic DNA prepared from a part of the tissue constituting the individual, for example, blood tissue, epithelial tissue, connective tissue, cartilage tissue, bone tissue, muscle tissue, oral tissue or skeletal tissue. This is done by confirming the presence of a polynucleotide encoding the protein at the DNA level. The individual thus selected is usually a heterozygote having a polynucleotide encoding a ligand fluorescent sensor protein on one side of the homologous chromosome, so by crossing heterozygous individuals, A homozygous animal having a polynucleotide encoding a ligand fluorescent sensor protein in both homologous chromosomes can be obtained. By mating the homozygous male and female animals, all offspring become homozygotes that stably hold the polynucleotide encoding the ligand fluorescent sensor protein, so that non-human mammals can be used in normal breeding environments. Breeding can be passaged.
 又は、非ヒト生物が植物である場合、例えば、上述の≪細胞≫の<第二実施形態>においてアグロバクテリウム法、又は単離プロトプラストへのDNA導入法によって、作製された植物細胞を、植物組織培養法により遺伝子組換え植物全体を再分化させることで作製することができる。
又は、非ヒト生物が植物である場合、例えば、未成熟胚を酵素で部分的に分解し、エレクトロポレーション法等によって、リガンド蛍光センサータンパク質をコードするポリヌクレオチドを含む発現ベクターを導入し、前記ポリヌクレオチドが染色体に挿入された胚細胞を植物組織培養法により再分化させることによって作製することができる。
Alternatively, when the non-human organism is a plant, for example, the plant cell produced by the Agrobacterium method or the DNA introduction method into an isolated protoplast in <Second Embodiment> of the above <Cell> It can be produced by redifferentiating the whole genetically modified plant by a tissue culture method.
Alternatively, when the non-human organism is a plant, for example, an immature embryo is partially degraded with an enzyme, and an expression vector containing a polynucleotide encoding a ligand fluorescent sensor protein is introduced by electroporation or the like, It can be produced by redifferentiating an embryo cell in which a polynucleotide is inserted into a chromosome by a plant tissue culture method.
≪リガンド濃度測定キット≫
 一実施形態において、本発明は、上述のリガンド蛍光センサータンパク質、上述のポリヌクレオチド、上述の発現ベクター、上述の細胞、及び上述の非ヒト生物からなる群から選ばれる少なくとも一つを含むリガンド濃度測定キットを提供する。
≪Ligand concentration measurement kit≫
In one embodiment, the present invention provides a ligand concentration measurement comprising at least one selected from the group consisting of the above-described ligand fluorescent sensor protein, the above-described polynucleotide, the above-described expression vector, the above-described cell, and the above-mentioned non-human organism. Provide kit.
 本実施形態のリガンド濃度測定キットによれば、生理学的条件下で高濃度のリガンドの存在下での蛍光強度とリガンド非存在下での蛍光強度の比が十分に高く、細胞又は非ヒト生物の生理学的及び/又は病理学的なリガンドの濃度の変動を検出することができる。 According to the ligand concentration measurement kit of this embodiment, the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of the ligand is sufficiently high under physiological conditions, Variations in the concentration of physiological and / or pathological ligands can be detected.
 また、例えば、リガンドがATPである場合、本実施形態のリガンド濃度測定キットを用いることで、ATPか、前記細胞又は生物によって代謝されるとATPが産生されるグルコースその他の生体エネルギー源かが存在するときにのみ蛍光を発生し、検出することができる。
 また、リガンドがATPである場合、ルシフェラーゼによる発光反応を利用する従来の生細胞検出技術では、細胞膜を溶解して、酵素ルシフェラーゼ及び基質ルシフェリンに細胞内のATPを接触させる必要があった。しかし、本実施形態のリガンド濃度測定キットを用いれば、細胞を破壊してATPを拡散させることなく生細胞を検出することができるので、微生物フロラのように空間的な構造のどの場所に生細胞が分布するか検出することができる。
In addition, for example, when the ligand is ATP, by using the ligand concentration measurement kit of this embodiment, there is ATP or glucose or other bioenergy sources that produce ATP when metabolized by the cells or organisms. Only when it can generate and detect fluorescence.
In addition, when the ligand is ATP, the conventional living cell detection technique using the luminescence reaction by luciferase has required to dissolve the cell membrane and to contact intracellular ATP with the enzyme luciferase and the substrate luciferin. However, since the living cell can be detected without destroying the cell and diffusing ATP by using the ligand concentration measurement kit of this embodiment, the living cell can be located anywhere in the spatial structure like the microbial flora. Can be detected.
 本実施形態のリガンド濃度測定キットは、上述のリガンド蛍光センサータンパク質を含む場合に、1種類のリガンド蛍光センサータンパク質を含んでいてもよく、励起波長及び発光波長が異なる複数種類のリガンド蛍光センサータンパク質を含んでいてもよい。
 また、本実施形態のリガンド濃度測定キットは、上述のリガンド蛍光センサータンパク質を含む場合に、前記リガンド蛍光センサータンパク質は固体支持体に固定化されていてもよい。
 固体支持体としては、上述の≪リガンド蛍光センサータンパク質≫に記載されていたものと同様のもの等が挙げられる。
When the ligand concentration measurement kit of this embodiment includes the above-described ligand fluorescence sensor protein, it may contain one type of ligand fluorescence sensor protein, and a plurality of types of ligand fluorescence sensor proteins having different excitation wavelengths and emission wavelengths. May be included.
Further, when the ligand concentration measurement kit of the present embodiment includes the above-described ligand fluorescence sensor protein, the ligand fluorescence sensor protein may be immobilized on a solid support.
Examples of the solid support include those similar to those described in the above << Ligand fluorescence sensor protein >>.
 本実施形態のリガンド濃度測定キットは、上述のポリヌクレオチドを含む場合に、リガンド蛍光センサータンパク質をコードするポリヌクレオチドを1種類含んでいていもよく、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質をコードするポリヌクレオチドを複数種類含んでいてもよい。 When the ligand concentration measurement kit of this embodiment includes the above-mentioned polynucleotide, it may contain one type of polynucleotide encoding the ligand fluorescence sensor protein, and the ligand fluorescence sensor protein having different excitation wavelength and emission wavelength. A plurality of kinds of encoding polynucleotides may be included.
 本実施形態のリガンド濃度測定キットは、上述の発現ベクターを含む場合に、1種類のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを含む発現ベクターを含んでいていもよく、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質を含む発現ベクターを複数種類含んでいていもよい。 When the ligand concentration measurement kit of this embodiment includes the above-described expression vector, it may include an expression vector containing a polynucleotide encoding one type of ligand fluorescent sensor protein, and the excitation wavelength and emission wavelength are different. A plurality of expression vectors containing a ligand fluorescent sensor protein may be included.
本実施形態のリガンド濃度測定キットは、上述の細胞を含む場合に、1種類の細胞を含んでいていもよく、複数種類の細胞を含んでいてもよい。
また、本実施形態のリガンド濃度測定キットは、リガンド蛍光センサータンパク質が発現又は導入されている細胞を1種類含んでいてもよく、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質が発現又は導入されている細胞を複数種類含んでいてもよい。
また、細胞内において1種類のリガンド蛍光センサータンパク質が発現又は導入されていてもよく、複数種類の励起波長及び発光波長が異なるリガンド蛍光センサータンパク質が発現又は導入されていてもよい。
When the ligand concentration measurement kit of the present embodiment includes the above-described cells, it may include one type of cell or may include a plurality of types of cells.
In addition, the ligand concentration measurement kit of this embodiment may include one type of cell in which the ligand fluorescent sensor protein is expressed or introduced, and the ligand fluorescent sensor protein having different excitation wavelength and emission wavelength is expressed or introduced. Multiple types of cells may be included.
In addition, one type of ligand fluorescent sensor protein may be expressed or introduced in the cell, and a plurality of types of ligand fluorescent sensor proteins having different excitation wavelengths and emission wavelengths may be expressed or introduced.
本実施形態のリガンド濃度測定キットは、上述の非ヒト生物を含む場合に、1種類の非ヒト生物を含んでいていもよく、複数種類の非ヒト生物を含んでいてもよい。
また、本実施形態のリガンド濃度測定キットは、リガンド蛍光センサータンパク質が発現又は導入されている非ヒト生物を1種類含んでいてもよく、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質が発現又は導入されている非ヒト生物を複数種類含んでいてもよい。
また、本実施形態のリガンド濃度測定キットに含まれる非ヒト生物の同一細胞内において、1種類のリガンド蛍光センサータンパク質が発現又は導入されていてもよく、複数種類の励起波長及び発光波長が異なるリガンド蛍光センサータンパク質が発現又は導入されていてもよい。
また、本実施形態のリガンド濃度測定キットに含まれる非ヒト生物の異なる細胞内において、1種類のリガンド蛍光センサータンパク質が発現又は導入されていてもよく、複数種類の励起波長及び発光波長が異なるリガンド蛍光センサータンパク質が発現又は導入されていてもよい。
When the ligand concentration measurement kit of the present embodiment includes the above-described non-human organism, it may include one type of non-human organism or may include a plurality of types of non-human organisms.
Further, the ligand concentration measurement kit of this embodiment may include one type of non-human organism in which the ligand fluorescent sensor protein is expressed or introduced, and the ligand fluorescent sensor protein having different excitation wavelength and emission wavelength is expressed or introduced. It may contain multiple types of non-human organisms.
In addition, one type of ligand fluorescent sensor protein may be expressed or introduced in the same cell of the non-human organism included in the ligand concentration measurement kit of this embodiment, and a plurality of types of ligands having different excitation wavelengths and emission wavelengths. A fluorescent sensor protein may be expressed or introduced.
In addition, one type of ligand fluorescent sensor protein may be expressed or introduced in different cells of the non-human organism included in the ligand concentration measurement kit of the present embodiment, and a plurality of types of ligands having different excitation wavelengths and emission wavelengths. A fluorescent sensor protein may be expressed or introduced.
 本実施形態において、上述のリガンド蛍光センサータンパク質を含む場合、本実施形態のリガンド濃度測定キットは、さらに、上述の≪細胞≫の<第一実施形態>において例示された試薬を含んでいてもよい。 In the present embodiment, when the above-described ligand fluorescent sensor protein is included, the ligand concentration measurement kit of the present embodiment may further include the reagent exemplified in <First Embodiment> of the above <Cell>. .
 本実施形態において、上述の発現ベクターを含む場合、本実施形態のリガンド濃度測定キットは、さらに、ベクター導入用のトランスフェクション試薬を含んでいてもよい。
 ベクター導入用のトランスフェクション試薬としては、例えば、カチオン性高分子、カチオン性脂質、ポリアミン系試薬、ポリイミン系試薬及びリン酸カルシウムからなる群より選択される。このようなトランスフェクション試薬としては、例えば、Effectene  Transfection  Reagent(cat.no.301425,Qiagen,CA)、TransFastTM  Transfection  Reagent(E2431,Promega,WI)、TfxTM-20  Reagent(E2391,Promega,WI)、SuperFect  Transfection  Reagent(301305,Qiagen,CA)、PolyFect  Transfection  Reagent(301105,Qiagen,CA)、LipofectAMINE  2000  Reagent(11668-019,Invitrogen  corporation,CA)、JetPEI(×4)conc.(101-30,Polyplus-transfection,France)、ExGen  500(R0511,Fermentas  Inc.,MD)等が挙げられ、それらに限定されない。
In the present embodiment, when the above-described expression vector is included, the ligand concentration measurement kit of the present embodiment may further include a transfection reagent for vector introduction.
The transfection reagent for vector introduction is selected from the group consisting of, for example, cationic polymers, cationic lipids, polyamine reagents, polyimine reagents, and calcium phosphate. Such transfection reagents include, for example, Effectene Transfection Reagent (cat. Transfection Reagent (301305, Qiagen, CA), PolyFect Transfection Reagent (301105, Qiagen, CA), LipofectAMINE 2000 Reagent (11668-019, Invitrogen Corporation, CA), JetPEI (× ) Conc. (101-30, Polyplus-translation, France), ExGen 500 (R0511, Fermentas Inc., MD), and the like, but are not limited thereto.
 本実施形態において、上述の細胞を含む場合、本実施形態のリガンド濃度測定キットは、さらに、細胞培養用培地を備えていてもよい。
 細胞培養用培地としては、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン)等を含む基本培地であればよく、細胞の種類により適宜選択することができる。
前記細胞培養用培地として具体的には、例えば、LB培地、大腸菌用最少培地(Davis培地)、大腸菌用最少塩培地(MS)等の大腸菌培養用培地;枯草菌用最少培地(Spizizen最少培地)、枯草菌用最少塩培地、枯草菌形質転換用培地I、枯草菌形質転換用培地II等の枯草菌培養用培地;酵母用最少培地(YPD培地)、酵母用完全培地(YPAD培地)等の酵母培養用培地;MurashigeとSkoogの培地(MS培地)、B5培地、ハイポネックス培地等の植物培養用培地;グレース昆虫培地、シュナイダー昆虫培地等の昆虫細胞培養用培地;DMEM、Minimum Essential Medium(MEM)、RPMI-1640、Basal Medium Eagle(BME)、Dulbecco’s Modified Eagle’s Medium:Nutrient Mixture F-12(DMEM/F-12)、Glasgow Minimum Essential Medium(Glasgow MEM)等の動物細胞培養用培地等が挙げられ、これらに限定されない。
In the present embodiment, when the above-described cells are included, the ligand concentration measurement kit of the present embodiment may further include a cell culture medium.
The cell culture medium may be a basic medium containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) necessary for viable cell growth, and should be selected appropriately depending on the cell type. Can do.
Specific examples of the cell culture medium include, for example, LB medium, E. coli minimal medium (Davis medium), Escherichia coli minimal salt medium (MS), and the like; Bacillus subtilis minimal medium (Spizzen minimal medium) Bacillus subtilis culture medium, Bacillus subtilis transformation medium I, Bacillus subtilis transformation medium II, etc .; yeast minimal medium (YPD medium), yeast complete medium (YPAD medium), etc. Yeast culture medium; Murashige and Skoog medium (MS medium), B5 medium, Hyponex medium and other plant culture mediums; Grace insect medium, Schneider insect medium and other insect cell culture mediums; DMEM, Minimum Essential Medium (MEM) , RPMI-1640, Basal Medium Eagle (BME), Dulbecco's odified Eagle's Medium: Nutrient Mixture F-12 (DMEM / F-12), Glasgow Minimum Essential Medium (Glasgow MEM) for animal cell culture media, etc., and the like, but are not limited to.
 本実施形態のリガンド濃度測定キットは、さらに、励起用光源を含んでいていもよい。励起用光源は、蛍光センサータンパク質の励起波長に応じて、適宜選択すればよい。 The ligand concentration measurement kit of this embodiment may further include an excitation light source. The excitation light source may be appropriately selected according to the excitation wavelength of the fluorescent sensor protein.
≪被検試料中のリガンド濃度の決定方法≫
 一実施形態において、本発明は、上述のリガンド蛍光センサータンパク質と、既知の濃度のリガンドを含む標準溶液と接触させて、蛍光強度を測定し、検量線を作成する検量線作成工程と、前記リガンド蛍光センサータンパク質と、未知の濃度のリガンドを含む溶液と接触させて、蛍光強度を測定する蛍光測定工程と、前記検量線作成工程において、作成された検量線に基づいて、前記蛍光測定工程において測定された蛍光強度に対するリガンド濃度を決定する濃度決定工程と、を備える被検試料中のリガンド濃度の決定方法を提供する。
≪Method for determining ligand concentration in test sample≫
In one embodiment, the present invention comprises a calibration curve creating step of contacting the above-described ligand fluorescence sensor protein with a standard solution containing a known concentration of a ligand, measuring fluorescence intensity, and creating a calibration curve; Measured in the fluorescence measurement step based on the calibration curve created in the fluorescence measurement step of measuring fluorescence intensity by bringing the sensor into contact with a solution containing a fluorescent sensor protein and a ligand of unknown concentration, and the calibration curve creation step And a concentration determining step for determining a ligand concentration with respect to the fluorescence intensity, and a method for determining a ligand concentration in a test sample.
 本実施形態の被検試料中のリガンド濃度の決定方法によれば、被検試料中のリガンド濃度を簡便且つ正確に決定することができる。
 本実施形態の被検試料中のリガンド濃度の決定方法の各工程について、以下に詳細に説明する。
According to the determination method of the ligand concentration in the test sample of the present embodiment, the ligand concentration in the test sample can be determined easily and accurately.
Each step of the method for determining the ligand concentration in the test sample of the present embodiment will be described in detail below.
[検量線作成工程]
 まず、上述のリガンド蛍光センサータンパク質と、既知の濃度のリガンドを含む標準溶液とを接触させ、蛍光強度を測定する。
 リガンドとしては、特別な限定はなく、上述の≪リガンド蛍光センサータンパク質≫において例示されたものと同様のものが挙げられる。
 標準溶液は、1種類の濃度のリガンドを含む溶液を用いてもよく、複数種類の濃度のリガンドを含む溶液を用いてもよい。中でも、検量線を正確に作成するために、標準溶液は、複数種類の濃度のリガンドを含む溶液を用いることが好ましい。
[Calibration curve creation process]
First, the above-described ligand fluorescence sensor protein is brought into contact with a standard solution containing a ligand having a known concentration, and the fluorescence intensity is measured.
The ligand is not particularly limited and includes the same ligands as those exemplified in the above-mentioned “ligand fluorescence sensor protein”.
As the standard solution, a solution containing one type of ligand may be used, or a solution containing a plurality of types of ligands may be used. Among them, in order to accurately create a calibration curve, it is preferable to use a solution containing a plurality of types of ligands as the standard solution.
 前記リガンド蛍光センサータンパク質は、溶媒中に懸濁された状態であってもよく、固体支持体に固定化された状態であってもよい。
 前記リガンド蛍光センサータンパク質を懸濁する溶媒としては、リガンド蛍光センサータンパク質のリガンド結合能及び蛍光特性に影響を与えないものであればよい。溶媒として具体的には、例えば、水、塩化ナトリウム溶液(例えば、0.9%(w/v)NaCl)、グルコース溶液(例えば、5%グルコース)、界面活性剤含有溶液(例えば、0.01%ポリソルベート20)、pH緩衝溶液(緩衝剤として、例えば、HEPES-KOH、Tris-HCl、酢酸-酢酸ナトリウム、クエン酸-クエン酸ナトリウム、リン酸、ホウ酸、MES、PIPESHEPES-KOH、Tris-HCl、酢酸-酢酸ナトリウム、クエン酸-クエン酸ナトリウム、リン酸、ホウ酸、MES、PIPES等を含む溶液)等が挙げられ、これらに限定されない。
 固体支持体としては、上述の≪リガンド蛍光センサータンパク質≫に記載されていたものと同様のもの等が挙げられる。
The ligand fluorescent sensor protein may be suspended in a solvent or immobilized on a solid support.
The solvent for suspending the ligand fluorescent sensor protein may be any solvent that does not affect the ligand binding ability and fluorescence characteristics of the ligand fluorescent sensor protein. Specific examples of the solvent include water, sodium chloride solution (for example, 0.9% (w / v) NaCl), glucose solution (for example, 5% glucose), surfactant-containing solution (for example, 0.01 % Polysorbate 20), pH buffer solution (as buffering agents, for example, HEPES-KOH, Tris-HCl, acetic acid-sodium acetate, citric acid-sodium citrate, phosphoric acid, boric acid, MES, PIPESHEPES-KOH, Tris-HCl , Acetic acid-sodium acetate, citric acid-sodium citrate, phosphoric acid, boric acid, MES, PIPES, and the like), and the like.
Examples of the solid support include those similar to those described in the above << Ligand fluorescence sensor protein >>.
 蛍光強度の測定は、公知の定常蛍光測定装置を用いればよい。次いで、得られた蛍光強度と既知のリガンド濃度から、検量線を作成する。 Fluorescence intensity may be measured using a known stationary fluorescence measuring device. Next, a calibration curve is created from the obtained fluorescence intensity and a known ligand concentration.
[蛍光測定工程]
 次いで、前記リガンド蛍光センサータンパク質と、未知の濃度のリガンドを含む溶液と接触させて、蛍光強度を測定する。蛍光強度の測定は、公知の定常蛍光測定装置を用いればよい。
 未知の濃度のリガンドを含む溶液としては、特別な限定はなく、例えば、ヒト又は非ヒト生物から採取された体液試料、ヒト又は非ヒト生物から採取された細胞の抽出液、ヒト又は非ヒト生物から採取された細胞の培養上清、ヒト又は非ヒト生物由来の培養細胞の抽出液、ヒト又は非ヒト生物由来の培養細胞の培養上清等が挙げられ、これらに限定されない。
[Fluorescence measurement process]
Subsequently, the fluorescence intensity is measured by bringing the ligand fluorescence sensor protein into contact with a solution containing an unknown concentration of the ligand. The fluorescence intensity may be measured using a known stationary fluorescence measuring device.
The solution containing an unknown concentration of the ligand is not particularly limited. For example, a body fluid sample collected from a human or non-human organism, a cell extract collected from a human or non-human organism, a human or non-human organism Examples include, but are not limited to, culture supernatants of cells collected from, extracts of cultured cells derived from human or non-human organisms, culture supernatants of cultured cells derived from humans or non-human organisms, and the like.
 前記体液試料として、より具体的には、例えば、血液、血清、血漿、尿、パフィーコート、唾液、精液、胸部滲出液、脳脊髄液、涙液、痰、粘液、リンパ液、腹水、胸水、羊水、膀胱洗浄液、気管支肺胞洗浄液等が挙げられ、これらに限定されない。 More specifically, as the body fluid sample, for example, blood, serum, plasma, urine, puffy coat, saliva, semen, chest exudate, cerebrospinal fluid, tear fluid, sputum, mucus, lymph fluid, ascites, pleural effusion, amniotic fluid , Bladder lavage fluid, bronchoalveolar lavage fluid and the like, but are not limited thereto.
[濃度決定工程]
 次いで、前記検量線作成工程において、作成された検量線に基づいて、前記蛍光測定工程において測定された蛍光強度に対するリガンド濃度を決定する。
 前記検量線の作成及び蛍光強度に対するリガンド濃度の決定については、市販のデータ解析ソフトウェア等を用いて実施していもよい。
[Density determination process]
Next, in the calibration curve creation step, a ligand concentration with respect to the fluorescence intensity measured in the fluorescence measurement step is determined based on the created calibration curve.
The preparation of the calibration curve and the determination of the ligand concentration relative to the fluorescence intensity may be performed using commercially available data analysis software or the like.
≪リガンド濃度の経時変化の検知方法≫
 上述の細胞又は上述の非ヒト生物を用いることで、生理学的条件下で高濃度のリガンドの存在下での蛍光強度とリガンド非存在下での蛍光強度の比が十分に高く、生きた細胞又は生きた非ヒト生物の生理学的及び/又は病理学的なリガンドの濃度の変動を簡便に検出することができる。
≪Method for detecting change in ligand concentration over time≫
By using the above-mentioned cells or the above-mentioned non-human organisms, the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of the ligand under physiological conditions is sufficiently high. Variations in the concentration of physiological and / or pathological ligands in living non-human organisms can be conveniently detected.
<第一実施形態>
 一実施形態において、本発明は、上述の細胞を用いて、経時的な蛍光強度を測定する工程を備える生細胞におけるリガンド濃度の経時変化の検知方法を提供する。
<First embodiment>
In one embodiment, the present invention provides a method for detecting a change in ligand concentration over time in a living cell, comprising the step of measuring fluorescence intensity over time using the above-described cells.
 本実施形態の検知方法によれば、生細胞におけるリガンドの濃度の経時的な変化を簡便に検出することができる。また、励起波長及び発光波長が異なる上述のリガンド蛍光センサータンパク質が複数種類導入された又は発現している細胞を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、該細胞の生理的及び/又は病理的変化に伴う各種リガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the detection method of the present embodiment, it is possible to easily detect a change with time in the concentration of a ligand in a living cell. In addition, by using cells in which multiple types of the above-described ligand fluorescent sensor proteins having different excitation wavelengths and emission wavelengths are introduced or expressed, each of them is localized in different organelles of the same cell, and in the same field of view of the fluorescence microscope. Provided is a technique for optically analyzing temporal and / or spatial changes (spatiotemporal dynamics) of various ligand concentrations accompanying detection of physiological and / or pathological changes of the cells simultaneously or almost simultaneously. be able to.
 本実施形態の検知方法において、細胞を生きたままの状態で、定常蛍光測定装置を有する蛍光顕微鏡等を用いて、蛍光強度を測定することができる。さらに、継続的に蛍光強度を測定することにより、蛍光強度の経時的な変化を測定することができる。 In the detection method of the present embodiment, the fluorescence intensity can be measured using a fluorescence microscope having a stationary fluorescence measurement device while the cells are alive. Furthermore, by measuring the fluorescence intensity continuously, it is possible to measure a change in fluorescence intensity over time.
<第二実施形態>
 一実施形態において、本発明は、上述の非ヒト生物を用いて、経時的な蛍光強度を測定する工程を備える生きた非ヒト生物におけるリガンド濃度の経時変化の検知方法を提供する。
<Second embodiment>
In one embodiment, the present invention provides a method for detecting a change in ligand concentration over time in a living non-human organism, comprising the step of measuring fluorescence intensity over time using the non-human organism described above.
 本実施形態の検知方法によれば、生理学的条件下で高濃度のリガンドの存在下での蛍光強度とリガンド非存在下での蛍光強度の比が十分に高く、非ヒト生物の生理学的及び/又は病理学的なリガンドの濃度の変動を検出することができる。また、励起波長及び発光波長が異なるリガンド蛍光センサータンパク質を複数種類発現する細胞を生物体内の1箇所若しくは複数箇所に含む非ヒト生物を用いることで、それぞれを同一細胞の異なるオルガネラに局在させ、あるいは、生物体内の異なる細胞に局在させ、蛍光顕微鏡の同一視野で同時に、あるいは、ほぼ同時に検出して、非ヒト生物の生理的及び/又は病理的変化に伴うリガンド濃度の経時的及び/又は空間的変化(時空間ダイナミクス)を光学的に解析する技術を提供することができる。 According to the detection method of this embodiment, the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of the ligand is sufficiently high under physiological conditions, Alternatively, variations in pathological ligand concentration can be detected. In addition, by using a non-human organism containing cells expressing a plurality of types of ligand fluorescent sensor proteins having different excitation wavelengths and emission wavelengths in one or more locations in the organism, each is localized in different organelles of the same cell, Alternatively, it can be localized in different cells in the organism and detected simultaneously or nearly simultaneously in the same field of view of the fluorescence microscope, and the ligand concentration over time and / or associated with physiological and / or pathological changes in the non-human organism A technique for optically analyzing a spatial change (spatiotemporal dynamics) can be provided.
 本実施形態の検知方法において、非ヒト生物を生きたままの状態で、定常蛍光測定装置を有する蛍光顕微鏡等を用いて、蛍光強度を測定することができる。さらに、継続的に蛍光強度を測定することにより、蛍光強度の経時的な変化を測定することができる。 In the detection method of this embodiment, the fluorescence intensity can be measured using a fluorescence microscope or the like having a stationary fluorescence measurement device while the non-human organism is still alive. Furthermore, by measuring the fluorescence intensity continuously, it is possible to measure a change in fluorescence intensity over time.
 以下、実施例及び比較例等を挙げて本発明をさらに詳述するが、本発明はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.
[実施例1]ATP特異的蛍光センサータンパク質の構築
1.試薬等
 ATP、ADP、及びAMPは和光純薬工業株式会社から購入し、GTPはシグマ-アルドリッジから購入した。フッ化ナトリウム(NaF)、オリゴマイシン、イソプロテレノール及び3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(DCMU)のようなその他の試薬はシグマ-アルドリッジから購入した。dATPはサーモサイエンティフィックから購入した。プライマー用の全てのポリヌクレオチドはシグマ-アルドリッジから購入した。ライゲーションはそれぞれの最適バッファー(タカラ)中でT4DNAリガーゼを用いて反応を行った。PCRには、PrimeSTAR HS DNAポリメラーゼ(タカラバイオ株式会社)を用いた。PCR反応産物又は制限酵素消化産物は、ルーティンとして、電気泳動(アガロースゲル)により精製し、その後ゲル抽出(QIAquick、株式会社キアゲン)を行った。大腸菌からのプラスミドDNA単離には、Axy Prep(商標)ミニプレップキット(Axygenbio、コーニングジャパン株式会社)を用いた。
[Example 1] Construction of ATP-specific fluorescent sensor protein Reagents, etc. ATP, ADP, and AMP were purchased from Wako Pure Chemical Industries, Ltd., and GTP was purchased from Sigma-Aldridge. Other reagents such as sodium fluoride (NaF), oligomycin, isoproterenol and 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) were purchased from Sigma-Aldridge. dATP was purchased from Thermo Scientific. All polynucleotides for primers were purchased from Sigma-Aldridge. Ligation was performed using T4 DNA ligase in each optimum buffer (Takara). PrimeSTAR HS DNA polymerase (Takara Bio Inc.) was used for PCR. The PCR reaction product or restriction enzyme digestion product was purified by electrophoresis (agarose gel) as a routine, and then gel extraction (QIAquick, Qiagen) was performed. For the isolation of plasmid DNA from E. coli, an Axy Prep ™ miniprep kit (Axygenbio, Corning Japan Co., Ltd.) was used.
2.ATP蛍光センサータンパク質及びこれに対応する陰性対照タンパク質の設計
 本発明のATP蛍光センサータンパク質は、ATP結合ドメインとして枯草菌F-ATP合成酵素のイプシロン(ε)サブユニットを用い、蛍光タンパク質として、BFP(Wachter, R.ら、Biochemistry 2960, 9759-9765 (1997))、Citrine(Griesbeck, O.ら、J. Biol. Chem. 276, 29188-29194 (2001))、及びmApple(Shaner,N.C.ら、Nature Methods 5:545-551(2008))を用いた。
 なお、BFP及びmAppleは、Zhao, Y.ら(Science. 333, 1888-1891 (2011))を参照して数カ所にアミノ酸置換変異を導入した(配列番号1、2、7、及び8)。蛍光タンパク質BFP、Citrine、及びmAppleの励起波長は、それぞれ、380、490、及び550nmで、発光波長域は、それぞれ、410~600、505~650及び575~700nmである。εサブユニットのアミノ末端及びカルボキシル末端にさまざまなポリペプチドリンカーを連結して、蛍光タンパク質BFP、Citrine及びmAppleの内部に挿入した融合タンパク質を、ATP蛍光センサータンパク質の候補タンパク質として作製した(それぞれMaLion B、G、及びRシリーズと称する場合がある。)。
2. Design of ATP Fluorescence Sensor Protein and Corresponding Negative Control Protein The ATP fluorescence sensor protein of the present invention uses the epsilon (ε) subunit of Bacillus subtilis F 0 F 1 -ATP synthase as the ATP binding domain, BFP (Wachter, R. et al., Biochemistry 2960, 9759-9765 (1997)), Citrine (Griesbeck, O. et al., J. Biol. Chem. 276, 29188-29194 (2001)), and mAple (Shaner, N). C. et al., Nature Methods 5: 545-551 (2008)).
BFP and mApple are described in Zhao, Y. et al. (Science. 333, 1888-1891 (2011)), amino acid substitution mutations were introduced in several places (SEQ ID NOs: 1, 2, 7, and 8). The excitation wavelengths of the fluorescent proteins BFP, Citrine, and mA Apple are 380, 490, and 550 nm, respectively, and the emission wavelength ranges are 410 to 600, 505 to 650, and 575 to 700 nm, respectively. Various polypeptide linkers were ligated to the amino terminus and carboxyl terminus of the ε subunit, and fusion proteins inserted into the fluorescent proteins BFP, Citriline, and mApple were prepared as candidate proteins for the ATP fluorescent sensor protein (MaLion B, respectively). Sometimes referred to as G and R series).
 ATP蛍光センサーの候補タンパク質のドメイン及びリンカーの構成は以下のとおりである。まず、ATPと特異的に結合するドメインを「ATP結合ドメイン」と称する場合がある。ATP結合ドメインは、枯草菌F-ATP合成酵素のεサブユニットに由来し、そのアミノ酸配列は配列番号15として配列表に列挙する。ATP結合ドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」、ATP結合ドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」と称する場合がある。。挿入により分断された各蛍光タンパク質BFP、Citrine、及びmAppleのアミノ末端側ドメイン及びカルボキシル末端側ドメインを、以下では、「BFP-Nドメイン」、「BFP-Cドメイン」、「Citrine-Nドメイン」、「Citrine-Cドメイン」、「mApple-Nドメイン」、及び「mApple-Cドメイン」と称する場合がある。BFP-Nドメイン及びBFP-Cドメインのアミノ酸配列は配列番号1及び2として列挙する。Citrine-Nドメイン及びCitrine-Cドメインのアミノ酸配列は配列番号5及び6として列挙する。mApple-Nドメイン及びmApple-Cドメインのアミノ酸配列は配列番号7及び8として列挙する。 The structure of the domain and linker of the candidate protein of the ATP fluorescence sensor is as follows. First, a domain that specifically binds to ATP may be referred to as an “ATP binding domain”. The ATP binding domain is derived from the ε subunit of Bacillus subtilis F 0 F 1 -ATP synthase, and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 15. The polypeptide linker linked to the amino terminus of the ATP binding domain may be referred to as “N-terminal linker”, and the polypeptide linker linked to the carboxyl terminus of the ATP binding domain may be referred to as “C-terminal linker”. . The amino-terminal domain and the carboxyl-terminal domain of each fluorescent protein BFP, Ciline, and mAapple cleaved by insertion are hereinafter referred to as “BFP-N domain”, “BFP-C domain”, “Citrine-N domain”, It may be referred to as “Citrine-C domain”, “mApple-N domain”, and “mApple-C domain”. The amino acid sequences of the BFP-N domain and the BFP-C domain are listed as SEQ ID NOs: 1 and 2. The amino acid sequences of the Citrine-N domain and the Citrine-C domain are listed as SEQ ID NOs: 5 and 6. The amino acid sequences of the mApple-N domain and the mApple-C domain are listed as SEQ ID NOs: 7 and 8.
 したがって、MaLion BシリーズのATP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[BFP-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[BFP-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。
同様に、MaLion GシリーズのATP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[Citrine-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[Citrine-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。
また、MaLion RシリーズのATP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[mApple-Nドメイン]-[N末端側リンカー]-[ATP結合ドメイン]-[C末端側リンカー]-[mApple-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。
Therefore, the candidate proteins of the MaLion B series ATP fluorescent sensor are [BFP-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker]-from the amino terminus to the carboxyl terminus. A polypeptide domain and a polypeptide linker are arranged in the order of [BFP-C domain].
Similarly, candidate proteins for the MaLion G series ATP fluorescent sensor are [Citrine-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker] in the direction from the amino terminus to the carboxyl terminus. -A polypeptide domain and a polypeptide linker are arranged in the order of [Citrine-C domain].
In addition, candidate proteins for the MaLion R series ATP fluorescent sensor are [mAapple-N domain]-[N-terminal linker]-[ATP-binding domain]-[C-terminal linker]-in the direction from the amino terminus to the carboxyl terminus. A polypeptide domain and a polypeptide linker are arranged in the order of [mAapple-C domain].
 ATP蛍光センサータンパク質の候補タンパク質の構築の手順は概略以下のとおりである。まず、ATP結合ドメインとして、枯草菌F-ATP合成酵素のεサブユニットをコードするポリヌクレオチドを合成した(Integrated DNA Technologies、株式会社医学生物学研究所)。つぎに、ATP結合ドメインの両端にさまざまなアミノ酸配列のN末端側リンカー及びC末端側リンカーをコードするポリヌクレオチドを連結した。前記N末端側リンカー、ATP結合ドメイン及びC末端側リンカーをエンコードするポリヌクレオチドが、アミノ酸配列の読み枠がずれないように、各蛍光タンパク質の発色団よりカルボキシル末端側で挿入された融合したキメラタンパク質をコードするポリヌクレオチドをPCR法により作製した。前記ATP蛍光センサーの候補タンパク質をコードするポリヌクレオチドをpRSETベクター(Invitrogen、Life Technologies Corporation)に挿入するために、MaLion GシリーズはXhoI/BstbI部位を、MaLion B及びRシリーズはBamHI/HindIII部位を用いた。ATP蛍光センサーの候補タンパク質を含むpRSETベクターコンストラクトは大腸菌JM109(DE3)に形質転換され、ATP蛍光センサーの各候補タンパク質を含む発現ベクターのクローンが単離された。各クローンの大腸菌は2.5mLのLB培地中で20℃で3~4日間培養された。その後、該大腸菌の懸濁液を15,300gで5分間遠心して、ペレットにし、PBSバッファー液で再懸濁して、30秒間超音波処理(130W、20kHz、強度30%、Vibra cell(商標)、SONICS & Materials, Inc.)を施して菌体溶解液を得た。該菌体溶解液の遠心上清40μLに、460μLのバッファー液(50mM Mops-KOH(pH 7.4)、50mM KCl、0.5mM MgCl、及び0.05% triton X-100)を添加した。最終濃度10mMのATPの存在下又は非存在下で、各クローンのATP蛍光センサーの候補タンパク質の蛍光特性を蛍光分光光度計(日立F-2700、株式会社日立ハイテクサイエンス)を用いて測定した。 The procedure for constructing a candidate protein for the ATP fluorescence sensor protein is as follows. First, a polynucleotide encoding the ε subunit of Bacillus subtilis F 0 F 1 -ATP synthase was synthesized as an ATP binding domain (Integrated DNA Technologies, Institute of Medical Biology). Next, polynucleotides encoding N-terminal linkers and C-terminal linkers of various amino acid sequences were linked to both ends of the ATP binding domain. A fused chimeric protein in which the polynucleotide encoding the N-terminal linker, ATP-binding domain, and C-terminal linker is inserted on the carboxyl terminal side from the chromophore of each fluorescent protein so that the reading frame of the amino acid sequence is not shifted. Was prepared by PCR. In order to insert the polynucleotide encoding the candidate protein of the ATP fluorescence sensor into the pRSET A vector (Invitrogen, Life Technologies Corporation), the MaLion G series has the XhoI / BstbI site, the MaLion B and R series have the BamHI / HindIII sites. Using. The pRSET A vector construct containing the ATP fluorescent sensor candidate protein was transformed into E. coli JM109 (DE3), and an expression vector clone containing each ATP fluorescent sensor candidate protein was isolated. Each clone of E. coli was cultured in 2.5 mL of LB medium at 20 ° C. for 3-4 days. Thereafter, the Escherichia coli suspension was centrifuged at 15,300 g for 5 minutes, pelleted, resuspended in PBS buffer solution, and sonicated for 30 seconds (130 W, 20 kHz, intensity 30%, Vibra cell ™, (SONICS & Materials, Inc.) was applied to obtain a cell lysate. 460 μL of a buffer solution (50 mM Mops-KOH (pH 7.4), 50 mM KCl, 0.5 mM MgCl 2 , and 0.05% triton X-100) was added to 40 μL of the supernatant of the cell lysate. . In the presence or absence of ATP at a final concentration of 10 mM, the fluorescence characteristics of the ATP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
3.ATP蛍光センサーの候補タンパク質の蛍光特性の測定結果
 図1AはMaLion BシリーズのATP蛍光センサーの候補タンパク質19種類のATPの存在下での蛍光強度とATP非存在下での蛍光強度の比(以下、「ダイナミックレンジ」という。)のヒストグラムであり、図1BはMaLion GシリーズのATP蛍光センサーの候補タンパク質27種類のダイナミックレンジのヒストグラムであり、図1CはMaLion RシリーズのATP蛍光センサーの候補タンパク質47種類のF/Fのヒストグラムである。ここでATP存在下のATP濃度はすべて10mMである。図1A、図1B、及び図1Cの横軸はダイナミックレンジで、目盛の数字は各区間の端を表し、縦軸は、ダイナミックレンジの区間内にダイナミックレンジが含まれる候補タンパク質の個数を表す。図1A、図1B、及び図1Cにおいて、ダイナミックレンジが1であれば、ATPの有無で蛍光特性に変化がないことを意味し、ダイナミックレンジが1を超える場合はATP存在下で蛍光が強くなり(以下、「ターン・オン型」(turn-on type)と称する場合がある。)、ダイナミックレンジが1未満の場合はATP存在下で蛍光が弱くなる(以下、「ターン・オフ型」(turn-off type)と称する場合がある。)。
3. Results of Measurement of Fluorescence Characteristics of Candidate Proteins of ATP Fluorescent Sensor FIG. 1A is a ratio of the fluorescence intensity in the presence of 19 types of ATP and the fluorescence intensity in the absence of ATP (hereinafter, referred to as ATP fluorescence sensor) 1B is a histogram of the dynamic range of 27 candidate proteins of the MaLion G series ATP fluorescence sensor, and FIG. 1C is a histogram of the 47 candidate proteins of the MaLion R series ATP fluorescence sensor. which is a histogram of the F / F 0. Here, the ATP concentration in the presence of ATP is all 10 mM. In FIG. 1A, FIG. 1B, and FIG. 1C, the horizontal axis represents the dynamic range, the scale number represents the end of each section, and the vertical axis represents the number of candidate proteins that include the dynamic range within the dynamic range section. In FIG. 1A, FIG. 1B, and FIG. 1C, if the dynamic range is 1, it means that there is no change in fluorescence characteristics with or without ATP, and if the dynamic range exceeds 1, the fluorescence becomes strong in the presence of ATP. (Hereinafter, sometimes referred to as “turn-on type”.) When the dynamic range is less than 1, the fluorescence becomes weak in the presence of ATP (hereinafter referred to as “turn-off type”). -May be referred to as -off type)).
 MaLion B、G、及びRシリーズで最もダイナミックレンジが大きい候補タンパク質をそれぞれMaLion B、G及びRと命名した。MaLion BのN末端側リンカー及びC末端側リンカーのアミノ酸配列をそれぞれ配列番号16及び17に列挙する。MaLion GのN末端側リンカーのアミノ酸配列はWRG(Trp-Arg-Gly)で、MaLion GのC末端側リンカーのアミノ酸配列を配列番号18に列挙する。MaLion RのN末端側リンカーのアミノ酸配列を配列番号19に列挙する。MaLion RのC末端側リンカーのアミノ酸配列はPEE(Pro-Glu-Glu)である。MaLion B、G、及びRの全長アミノ酸配列を、それぞれ、配列番号9、10、及び11に列挙する。 The candidate proteins with the largest dynamic range in the MaLion B, G, and R series were named MaLion B, G, and R, respectively. The amino acid sequences of the N-terminal linker and the C-terminal linker of MaLion B are listed in SEQ ID NOs: 16 and 17, respectively. The amino acid sequence of the N-terminal linker of MaLion G is WRG (Trp-Arg-Gly), and the amino acid sequence of the C-terminal linker of MaLion G is listed in SEQ ID NO: 18. The amino acid sequence of the N-terminal linker of MaLion R is listed in SEQ ID NO: 19. The amino acid sequence of the C-terminal linker of MaLion R is PEE (Pro-Glu-Glu). The full-length amino acid sequences of MaLion B, G, and R are listed in SEQ ID NOs: 9, 10, and 11, respectively.
 MaLion B、G、及びRシリーズでダイナミックレンジが1に近い候補タンパク質の1つをそれぞれnegMaLion B、G、及びRと命名した。negMaLion BのN末端側リンカー及びC末端側リンカーのアミノ酸配列をそれぞれ配列番号27及び28に列挙する。配列番号negMaLion GのN末端側リンカーのアミノ酸配列はPRG(Pro-Arg-Gly)で、negMaLion GのC末端側リンカーのアミノ酸配列を配列番号29に列挙する。negMaLion RのN末端側リンカーのアミノ酸配列を配列番号30に列挙する。negMaLion RのC末端側リンカーのアミノ酸配列はPEG(Pro-Glu-Gly)である。negMaLion B、G、及びRの全長アミノ酸配列を、それぞれ、配列番号24、25、及び26に列挙する。 In the MaLion B, G, and R series, one of the candidate proteins with a dynamic range close to 1 was named negMaLion B, G, and R, respectively. The amino acid sequences of the N-terminal linker and the C-terminal linker of negMaLion B are listed in SEQ ID NOs: 27 and 28, respectively. The amino acid sequence of the N-terminal linker of SEQ ID NO: negMaLion G is PRG (Pro-Arg-Gly), and the amino acid sequence of the C-terminal linker of negMaLion G is listed in SEQ ID NO: 29. The amino acid sequence of the N-terminal linker of negMaLion R is listed in SEQ ID NO: 30. The amino acid sequence of the C-terminal linker of negMaLion R is PEG (Pro-Glu-Gly). The full length amino acid sequences of negMaLion B, G, and R are listed in SEQ ID NOs: 24, 25, and 26, respectively.
[実施例2]ATP蛍光センサータンパク質等の蛍光特性の解析
1.ATP蛍光センサータンパク質等の精製
 MaLion B、G、及びRと、negMaLion B、G、及びRとを以下では「ATP蛍光センサータンパク質等」と称する場合がある。タンパク質精製の目的には、ATP蛍光センサータンパク質等をpRSETベクターに連結して、翻訳開始コドン、ヒスチジンヘキサマーポリペプチド等を含む融合タンパク質をT7プロモーターで駆動するコンストラクトとして大腸菌JM109(DE3)に導入した。ATP蛍光センサータンパク質等の発現ベクターを含む大腸菌は、100mLのLB培地中で20℃4日間培養した。その後、大腸菌の懸濁液は15,300g、20分間、4℃で遠心して上清を除去し、ペレットの凍結及び溶解を3回繰り返し、氷上で3分間超音波処理(30W、20kHz、強度70%、Vibra cell(商標))を施して菌体溶解液を得た。該菌体溶解液の遠心上清をNi-NTAアガロース(株式会社キアゲン)を充填したPD-10カラム(GE ヘルスケア・ジャパン株式会社)に吸着させ、常法に従い、カラムを洗浄し、ATP蛍光センサータンパク質等の融合タンパク質を前記カラムから溶出した。ATP蛍光センサータンパク質等の融合タンパクはBradford法タンパク質アッセイ(バイオラッドタンパク質アッセイ、バイオラッド ラボラトリーズ株式会社)を用いて、ウシ血清アルブミンを標準タンパク質とする較正曲線により定量した。
[Example 2] Analysis of fluorescence characteristics of ATP fluorescence sensor protein, etc. Purification of ATP Fluorescence Sensor Protein etc. MaLion B, G, and R and negMaLion B, G, and R may be hereinafter referred to as “ATP fluorescence sensor protein etc.”. For the purpose of protein purification, ATP fluorescence sensor protein etc. is linked to pRSET A vector, and fusion protein containing translation start codon, histidine hexamer polypeptide etc. is introduced into E. coli JM109 (DE3) as a construct driven by T7 promoter did. E. coli containing an expression vector such as an ATP fluorescence sensor protein was cultured in 100 mL of LB medium at 20 ° C. for 4 days. Thereafter, the suspension of Escherichia coli was centrifuged at 15,300 g for 20 minutes at 4 ° C. to remove the supernatant, and the pellet was frozen and thawed three times, and sonicated on ice for 3 minutes (30 W, 20 kHz, strength 70). %, Vibra cell (trademark)) was applied to obtain a cell lysate. The centrifuged supernatant of the cell lysate is adsorbed on a PD-10 column (GE Healthcare Japan Co., Ltd.) packed with Ni-NTA agarose (Qiagen Co., Ltd.). Fusion proteins such as sensor proteins were eluted from the column. Fusion proteins such as ATP fluorescence sensor protein were quantified using a Bradford method protein assay (Bio-Rad Protein Assay, Bio-Rad Laboratories) with a calibration curve using bovine serum albumin as a standard protein.
2.精製ATP蛍光センサータンパク質等の蛍光特性の測定
 精製されたATP蛍光センサータンパク質等の融合タンパクを蛍光分光光度計(日立F-2700)による測定実験に用いた。以下の実験では、pHを変化させる実験を除いて、Mopsバッファー(50mM Mops-KOH(pH7.4)、50mM KCl、0.5mM MgCl、及び0.05% トリトン X-100)を用いた。ATP濃度による蛍光特性の変化を調べる実験では、0-8mMのさまざまな最終濃度のATPを用いた。分子特異性を調べる実験では、ATPの類縁体化合物のうち、ADP、AMP、GTP、又はdATPを最終濃度10mMで用いた。精製されたATP蛍光センサータンパク質等の融合タンパクの吸光スペクトルの測定には該融合タンパク質の濃度を20μMに調整し、紫外線-可視光分光光度計(日本分光株式会社)を用いた。精製されたATP蛍光センサータンパク質等の融合タンパクの反応速度論的解析には、ストップトフロー装置を備えた蛍光分光光度計(RX2000、Applied photophysics Limited)を用いた。該タンパク質は、異なるATP濃度の溶液と1:1で迅速に混合され、所定の波長(440nm、520nm及び585nm)での蛍光変化を記録して、各ATP濃度での見かけの速度定数(kappを指数曲線の当てはめにより算出した。その後、各ATP濃度でのkappをプロットして、結合定数(kon)及び解離定数(koff)をそれぞれ決定した。ここで、これら3種類の定数の関係は以下の式(1)で表される。
2. Measurement of fluorescence characteristics of purified ATP fluorescence sensor protein, etc. A purified fusion protein such as ATP fluorescence sensor protein was used in a measurement experiment with a fluorescence spectrophotometer (Hitachi F-2700). In the following experiment, a Mops buffer (50 mM Mops-KOH (pH 7.4), 50 mM KCl, 0.5 mM MgCl 2 , and 0.05% Triton X-100) was used except for the experiment for changing the pH. In experiments examining changes in fluorescence properties with ATP concentration, various final concentrations of ATP of 0-8 mM were used. In the experiment for examining the molecular specificity, ADP, AMP, GTP, or dATP among the ATP analog compounds was used at a final concentration of 10 mM. For measuring the absorption spectrum of the purified fusion protein such as the ATP fluorescence sensor protein, the concentration of the fusion protein was adjusted to 20 μM and an ultraviolet-visible light spectrophotometer (JASCO Corporation) was used. A fluorescence spectrophotometer (RX2000, Applied photophysics Limited) equipped with a stopped-flow apparatus was used for the reaction kinetic analysis of the purified fusion protein such as the ATP fluorescence sensor protein. The protein is rapidly mixed 1: 1 with solutions of different ATP concentrations, and the change in fluorescence at a given wavelength (440 nm, 520 nm and 585 nm) is recorded, and the apparent rate constant (k app at each ATP concentration). Was calculated by fitting an exponential curve, and then k app at each ATP concentration was plotted to determine the association constant (k on ) and dissociation constant (k off ), respectively. The relationship is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
3.ATP蛍光センサータンパク質等の蛍光特性の測定結果
 図2Aは10mMのATP存在下及び非存在下でのMaLion B、G、及びRの励起スペクトル図であり、図2Bは10mMのATP存在下及び非存在下でのMaLion B、G、及びRの励起スペクトル及び蛍光スペクトル図である。図2A及び図2Bの横軸は、それぞれ、励起波長及び蛍光波長を表し、縦軸は蛍光強度の相対値を表す。グラフの実線及び点線は、それぞれ、ATP存在下及び非存在下でのスペクトル曲線を表す。図2A及び図2Bから明らかなとおり、MaLion B、G、及びRはいずれもATP非存在下と比較して10mMのATP存在下での蛍光が、それぞれ、80%、390%及び350%も増大した。図2Cは10mMのATP存在下及び非存在下でのnegMaLion B、G、及びRの蛍光スペクトル図である。図2Cから、negMaLion B、G、及びRはいずれもATP非存在下と比較して10mMのATP存在下での蛍光が、それぞれ、104%、95%、及び106%増大した。
3. FIG. 2A is an excitation spectrum diagram of MaLion B, G, and R in the presence and absence of 10 mM ATP, and FIG. 2B is the presence and absence of 10 mM ATP. FIG. 4 is an excitation spectrum and fluorescence spectrum diagram of MaLion B, G, and R below. 2A and 2B represent the excitation wavelength and the fluorescence wavelength, respectively, and the vertical axis represents the relative value of the fluorescence intensity. The solid line and the dotted line in the graph represent the spectrum curves in the presence and absence of ATP, respectively. As is clear from FIGS. 2A and 2B, MaLion B, G, and R all increase in fluorescence in the presence of 10 mM ATP by 80%, 390%, and 350%, respectively, in the absence of ATP. did. FIG. 2C is a fluorescence spectrum diagram of negMaLion B, G, and R in the presence and absence of 10 mM ATP. From FIG. 2C, negMaLion B, G, and R all increased their fluorescence in the presence of 10 mM ATP by 104%, 95%, and 106%, respectively, compared to the absence of ATP.
 図3AはMaLion B、G、及びRの蛍光強度のATP濃度依存的変化を示すグラフである。図3Aの異なるATP濃度と蛍光強度変化のプロットから解離平衡定数(K)を算出した結果は以下の表5のとおりであった。 FIG. 3A is a graph showing an ATP concentration-dependent change in the fluorescence intensity of MaLion B, G, and R. The results of calculating the dissociation equilibrium constant (K D ) from the plots of different ATP concentrations and fluorescence intensity changes in FIG. 3A are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 細胞内のATP濃度は、従来の知見より、諸説あるが、ほとんどの場合、5mM以下であることが知られている(Rangarajuら、Cell. 156, 825-35 (2014)、Traut,T. W.、Mol. Cell. Biochem. 140, 1-22 (1994))。したがって、MaLion B、G、及びRの解離平衡定数を考慮すると、それぞれ、生理的な条件下で、十分に機能するものと期待できる。 Although there are various theories based on conventional knowledge, the intracellular ATP concentration is known to be 5 mM or less in most cases (Rangaraju et al., Cell. 156, 825-35 (2014), Traut, T. W. Mol. Cell. Biochem. 140, 1-22 (1994)). Therefore, when considering the dissociation equilibrium constants of MaLion B, G, and R, it can be expected to function satisfactorily under physiological conditions.
 図3BはMaLion B、G、及びRの蛍光強度の分子特異性を示すグラフである。ATP非存在下と比較した10mMのATP存在下での蛍光強度の相対値を正規化ダイナミックレンジとすると、ATP類縁体化合物は正規化ダイナミックレンジの10%以下しか蛍光強度に影響を与えないことが明らかになった。したがって、今回のATP蛍光センサーは非常にATPに特異性が高い。またこの結果から、同じ枯草菌F-ATP合成酵素のεサブユニットをATP結合ドメインとして利用するATPセンサータンパク質であっても、改変体ごとにATP類縁体化合物の影響が異なり、MaLion B、及びGでは、ADP、AMP、及びdATP存在下では蛍光が減少するが、MaLion Rでは蛍光が増大した。したがって、個々の蛍光センサーの蛍光特性は、ATP結合ドメインの両端に連結されたN末端側リンカー及びC末端側リンカーの配列が決定しているといえる。 FIG. 3B is a graph showing the molecular specificity of the fluorescence intensities of MaLion B, G, and R. When the relative value of the fluorescence intensity in the presence of 10 mM ATP compared to the absence of ATP is defined as a normalized dynamic range, the ATP analog compound may affect the fluorescence intensity only by 10% or less of the normalized dynamic range. It was revealed. Therefore, the present ATP fluorescent sensor is very specific for ATP. Further, from this result, even if the ATP sensor protein uses the ε subunit of the same Bacillus subtilis F 0 F 1 -ATP synthase as the ATP binding domain, the influence of the ATP analog compound differs for each variant, and MaLion B , And G, fluorescence decreased in the presence of ADP, AMP, and dATP, but MaLion R increased fluorescence. Therefore, it can be said that the fluorescence characteristics of the individual fluorescence sensors are determined by the sequences of the N-terminal linker and the C-terminal linker linked to both ends of the ATP binding domain.
図4A、図4B、及び図4Cは、それぞれ、MaLion B、G、及びRのATP存在下又はATP非存在下での蛍光強度と、ダイナミックレンジとのpH依存的変化を示すグラフである。図4A、図4B、及び図4Cの横軸はpH、左側の縦軸は蛍光強度、右側の縦軸はダイナミックレンジを表す。図4A、図4B、及び図4Cから、MaLion B、G、及びRは、ATP濃度が同じでも、pHが変化すると蛍光特性が変化し、そのpHによる蛍光特性への影響は、改変体ごとに異なる。これは、図3Bに示すATP類縁体化合物の蛍光特性への影響と同様である。実際、ATP蛍光センサー陰性対照タンパク質negMaLion B、G、及びRのpHによる蛍光特性の変化パターンは、MaLion B、G、及びRのpHによる蛍光特性の変化パターンと同じであった。そこで、ATP濃度の変化と同時にpHも変化する可能性のある実験系では、MaLion B、G、及びRによる蛍光測定と、negMaLion B、G、及びRの蛍光測定とを並行して行うことによって、pH変化による影響を除外してATP濃度を決定することができる。 4A, 4B, and 4C are graphs showing pH-dependent changes in fluorescence intensity and dynamic range of MaLion B, G, and R in the presence or absence of ATP, respectively. 4A, 4B, and 4C, the horizontal axis represents pH, the left vertical axis represents fluorescence intensity, and the right vertical axis represents dynamic range. From FIG. 4A, FIG. 4B, and FIG. 4C, even if MaLion B, G, and R have the same ATP concentration, the fluorescence characteristics change when the pH changes, and the influence of the pH on the fluorescence characteristics is different for each variant. Different. This is the same as the influence on the fluorescence characteristics of the ATP analog compound shown in FIG. 3B. In fact, the change pattern of the fluorescence characteristics depending on the pH of the ATP fluorescence sensor negative control proteins negMaLion B, G, and R was the same as the change pattern of the fluorescence characteristics due to the pH of MaLion B, G, and R. Therefore, in an experimental system in which pH may change at the same time as the change in ATP concentration, fluorescence measurement with MaLion B, G, and R and fluorescence measurement with negMaLion B, G, and R are performed in parallel. The ATP concentration can be determined by excluding the influence of pH change.
[実施例3]ATP蛍光センサータンパク質等の細胞内発現用ベクターの構築
1.哺乳類細胞内発現用ベクターの構築
 哺乳類細胞内で発現させるために、MaLion G又はnegMaLion GをコードするポリヌクレオチドをpcDNA3.1(-)ベクターのXhoI/HindIII部位に挿入した。MaLion B及びR、あるいは、negMaLion B及びRをコードするポリヌクレオチドをpcDNA3.1(-)ベクターのBamHI/HindIII部位に挿入した。ATP蛍光センサータンパク質等を哺乳類細胞ミトコンドリアに局在化させるために、ATP蛍光センサータンパク質のアミノ末端にシトクロムcオキシダーゼのサブユニットVIII由来局在化シグナル配列(SVLTPLLLRGLTGSARRLPVPRAKIHSL、配列番号44)を連結した融合タンパク質をミトコンドリア特異的発現ベクターで発現させた。すなわち、MaLion R又はnegMaLion RをコードするポリヌクレオチドをpEYFP-Mitoベクター(Clontech Laboratories, Inc.)のBamHI/NotI部位に挿入した。MaLion R又はnegMaLion Rのアミノ末端にシトクロムcオキシダーゼのサブユニットVIII由来局在化シグナル配列が連結した融合タンパク質を、「mito-MaLion R」又は「mito-negMaLion R」と命名した。
[Example 3] Construction of vector for intracellular expression of ATP fluorescence sensor protein, etc. Construction of Vector for Expression in Mammalian Cells For expression in mammalian cells, a polynucleotide encoding MaLion G or negMaLion G was inserted into the XhoI / HindIII site of pcDNA3.1 (−) vector. A polynucleotide encoding MaLion B and R or negMaLion B and R was inserted into the BamHI / HindIII site of pcDNA3.1 (-) vector. In order to localize ATP fluorescence sensor protein and the like to mammalian cell mitochondria, a fusion protein obtained by linking a cytochrome c oxidase subunit VIII-derived localization signal sequence (SVLTPLLLRGTGSARRLVPVPKIHSL, SEQ ID NO: 44) to the amino terminus of the ATP fluorescence sensor protein Was expressed in a mitochondria-specific expression vector. That is, a polynucleotide encoding MaLion R or negMaLion R was inserted into the BamHI / NotI site of the pEYFP-Mito vector (Clontech Laboratories, Inc.). The fusion protein in which the localization signal sequence derived from the subunit VIII of cytochrome c oxidase was linked to the amino terminus of MaLion R or negMaLion R was named “mito-MaLion R” or “mito-negMaLion R”.
2.線虫細胞内発現用ベクターの構築
 線虫のミトコンドリアでMaLion R又はnegMaLion Rを局在化させるために、MaLion R又はnegMaLion Rのアミノ末端に、ニワトリアスパラギン酸アミノ転移酵素由来のミトコンドリア局在化シグナル(ALLQSRLLLSAPRRAAATARASS、配列番号45)が連結した融合タンパク質を「Cemito-MaLion R」又は「Cemito-negMaLion R」と命名した。線虫の咽頭筋でATP蛍光センサータンパク質等を発現させるためには、myo2pプロモーターを導入したpBueScript由来のベクターに、MaLion G、negMaLion G、Cemito-MaLion R、又はCemito-negMaLion RのそれぞれをコードするポリヌクレオチドをXhoI/SacI部位に挿入した。
2. Construction of vector for nematode cell expression To localize MaLion R or negMaLion R in nematode mitochondria, mitochondrial localization signal derived from chick triaspartate aminotransferase at the amino terminus of MaLion R or negMaLion R The fusion protein to which (ALLQSRRLLSAPPRRAAATARAS, SEQ ID NO: 45) was linked was named “Cemito-MaLion R” or “Cemito-negMaLion R”. In order to express ATP fluorescence sensor protein in the pharyngeal muscle of C. elegans, each of MaLion G, negMaLion G, Cemito-MaLion R, or Cemito-negMaLion R is encoded in a vector derived from pBueScript with the myo2p promoter introduced. The polynucleotide was inserted into the XhoI / SacI site.
3.植物細胞内発現用ベクターの構築
 植物のミトコンドリアでMaLion R又はnegMaLion Rを局在化させるために、MaLion R又はnegMaLion Rのアミノ末端に、AR791(AT1G52080、NM_104089.3)が連結した融合タンパク質を、「Plmito-MaLion R」又は「Plmito-negMaLion R」と命名した。植物でATP蛍光センサータンパク質等を発現させるためには、35Sプロモーター2重連結したpGreen_0281ベクターに、植物(シロイヌナズナ)での翻訳にコドンが最適化されたMaLion G、negMaLion G、Cemito-MaLion R、又はCemito-negMaLion RのそれぞれをコードするポリヌクレオチドをXhoI/SacI部位に挿入した。
3. Construction of a plant cell expression vector In order to localize MaLion R or negMaLion R in the mitochondria of plants, a fusion protein in which AR791 (AT1G52080, NM_104089.3) is linked to the amino terminus of MaLion R or negMaLion R, It was named “Plmito-MaLion R” or “Plmito-negMaLion R”. In order to express an ATP fluorescence sensor protein or the like in a plant, a pGreen — 0281 vector in which 35S promoter is double-linked is added to MaLion G, negMaLion G, Cemito-MaLion R, or a codon optimized for translation in a plant (Arabidopsis thaliana), or A polynucleotide encoding each of Chemito-negMaLion R was inserted into the XhoI / SacI site.
[実施例4]ATP蛍光センサータンパク質等を用いる細胞内ATP濃度測定
1.HeLa細胞の細胞内ATPの蛍光センサー測定
 HeLa細胞は、ATCC(American Type Culture Collection、米国バージニア州)から入手し、ウシ胎仔血清10%、ペニシリン100IU/mL及びストレプトマイシン100μg/mLを添加したダルベッコ変法イーグル培地(グルコース4.5g/L、以下、「増殖培地」と称する場合がある。)中37℃、5%CO雰囲気下で培養した。HeLa細胞内で発現したATP蛍光センサータンパク質等の蛍光顕微鏡測定には、HeLa細胞を播種して50%コンフルエントになった3.5cmのガラス底ディッシュを用意した。ATP蛍光センサータンパク質等を含む発現ベクター0.2μgと0.2μLのFuGENE HDトランスフェクション試薬(プロメガ株式会社)とを予め添加した10μLのOpti-MEM培地(Life Technologies Corporation、Thermo Fisher Scientific Inc.)を前記3.5cmのガラス底ディッシュ上のHeLa細胞に添加した。8時間培養後、新鮮な増殖培地に交換して、さらに2-3日培養した。蛍光測定の直前に培地をフェノールレッド不含増殖培地に交換した。
[Example 4] Intracellular ATP concentration measurement using ATP fluorescent sensor protein, etc. Fluorescence sensor measurement of intracellular ATP in HeLa cells HeLa cells were obtained from ATCC (American Type Culture Collection, VA, USA) and modified by Dulbecco with 10% fetal bovine serum, 100 IU / mL penicillin and 100 μg / mL streptomycin. The cells were cultured in an Eagle medium (glucose 4.5 g / L, hereinafter sometimes referred to as “growth medium”) at 37 ° C. in a 5% CO 2 atmosphere. For fluorescence microscope measurement of ATP fluorescence sensor protein and the like expressed in HeLa cells, a 3.5 cm glass bottom dish in which HeLa cells were seeded to become 50% confluent was prepared. 10 μL of Opti-MEM medium (Life Technologies Corporation, Thermo Fisher Scientific Inc.) supplemented with 0.2 μg of expression vector containing ATP fluorescence sensor protein and 0.2 μL of FuGENE HD transfection reagent (Promega Corporation) in advance. Added to the HeLa cells on the 3.5 cm glass bottom dish. After culturing for 8 hours, the culture medium was replaced with fresh growth medium, and further cultured for 2-3 days. Immediately before the fluorescence measurement, the medium was replaced with a phenol red-free growth medium.
蛍光顕微鏡測定には、冷却CCDカメラ(Cool SNAP HQ2、Photometrics)及び油浸対物レンズ(Plan Apo 60×1.42 NA)を備えた倒立顕微鏡(IX81、オリンパス株式会社)を用いた。細胞質ATP産生阻害実験にはNaFを用いた。 For the fluorescence microscope measurement, an inverted microscope (IX81, Olympus Corporation) equipped with a cooled CCD camera (Cool SNAP HQ2, Photometrics) and an oil immersion objective lens (Plan Apo 60 × 1.42 NA) was used. NaF was used for the cytoplasmic ATP production inhibition experiment.
1.5mLの増殖培地中でHeLa細胞を培養しているディッシュにNaF40mMを含む増殖培地0.5mLを添加してNaFの最終濃度を10mMにした。ミトコンドリアATP産生阻害実験にはオリゴマイシンを用いた。900μLの増殖培地中でHeLa細胞を培養しているディッシュにオリゴマイシン100μg/mLを含む増殖培地100μLを添加して、オリゴマイシンの最終濃度を20μg/mLにした。 To a dish in which HeLa cells were cultured in 1.5 mL of growth medium, 0.5 mL of growth medium containing 40 mM NaF was added to make the final concentration of NaF 10 mM. Oligomycin was used for the mitochondrial ATP production inhibition experiment. To a dish in which HeLa cells were cultured in 900 μL of growth medium, 100 μL of growth medium containing 100 μg / mL of oligomycin was added to make the final concentration of oligomycin 20 μg / mL.
細胞の蛍光顕微鏡画像は10秒ごとに撮影した。カメラ及びフィルターの制御と、データ記録には、MetaFluorソフトウェア(Molecular Devices, LLC)を用いた。MaLion Gの単色蛍光撮像には、励起フィルターにFF01-500/24を、ダイクロイックミラーにDi02-FF520を、発光フィルターにFF01-542/27を用いた(全てSemrock、株式会社オプトライン)。MaLion Rの単色蛍光撮像には、励起フィルターにBP535-555HQを、ダイクロイックミラーにDM565HQを、発光フィルターにBA570-625HQを用いた(全てオリンパス株式会社)。MaLion G及びRの細胞質又はミトコンドリア局在化融合タンパク質の同時撮像には、励起フィルターにBP460-480HQ及びBP535-555HQ(オリンパス株式会社)を、ダイクロイックミラーにDi01-FF493/574(Semrock、株式会社オプトライン)を、発光フィルターにBA495-540HQ及びBA570-625HQを用いた(オリンパス株式会社)。MaLion Bの単色蛍光撮像には、励起フィルターにFF01-377を、ダイクロイックミラーにDi03-FF409を、発光フィルターにFF02-447を用いた(全てSemrock、株式会社オプトライン)。全ての実験は、COインキュベーター付きの温度制御循環チャンバーを用いて実行した。 Fluorescent microscope images of the cells were taken every 10 seconds. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording. For MaLion G monochromatic fluorescence imaging, FF01-500 / 24 was used as an excitation filter, Di02-FF520 was used as a dichroic mirror, and FF01-542 / 27 was used as a light emission filter (all are Semrock, Optline Inc.). For MaLion R monochromatic fluorescence imaging, BP535-555HQ was used as the excitation filter, DM565HQ was used as the dichroic mirror, and BA570-625HQ was used as the emission filter (all from Olympus Corporation). For simultaneous imaging of MaLion G and R cytoplasm or mitochondrial localization fusion protein, BP460-480HQ and BP535-555HQ (Olympus Corporation) are used as excitation filters, and Di01-FF493 / 574 (Semrock, Opt Corporation) is used as a dichroic mirror. Line) and BA495-540HQ and BA570-625HQ were used as the light emission filters (Olympus Corporation). For MaLion B monochromatic fluorescence imaging, FF01-377 was used as an excitation filter, Di03-FF409 was used as a dichroic mirror, and FF02-447 was used as a light emission filter (all are Semrock, Optline Inc.). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
 図5A、図5B、及び図5Cは、それぞれ、MaLion G、R、及びBを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフである。図5A、図5B、及び図5Cでは、縦軸は正規化した蛍光強度を表し、横軸は時間(分)を表す。測定開始3分後にNaFを最終濃度10mMとなるように添加した。各図の薄い灰色の3本の波形は、異なる3個のディッシュでの測定値を示し、濃い灰色の1本の波形はこれら3本の波形の平均値を示す。ターン・オン型のATP蛍光センサーMaLion G、R、及びBではNaF添加から15分後まで蛍光強度が減少した。これは細胞内のATP濃度が低下したことを意味する。 5A, 5B, and 5C are graphs showing changes in fluorescence after administration of NaF that inhibits glycolytic ATP production to HeLa cells in which MaLion G, R, and B are expressed, respectively. In FIGS. 5A, 5B, and 5C, the vertical axis represents normalized fluorescence intensity, and the horizontal axis represents time (minutes). Three minutes after the start of measurement, NaF was added to a final concentration of 10 mM. The light gray three waveforms in each figure show the measured values in three different dishes, and the dark gray single waveform shows the average value of these three waveforms. In the turn-on type ATP fluorescence sensors MaLion G, R, and B, the fluorescence intensity decreased until 15 minutes after the addition of NaF. This means that the intracellular ATP concentration has decreased.
 図5D、図5E、及び図5Fは、negMaLion G、R、及びBを発現させたHeLa細胞に解糖系ATP産生を阻害するNaFを投与後の蛍光の変化を示すグラフである。図5Gは、図5A~図5Fのグラフの実験結果に基づいて、MaLion G、R、及びBと、negMaLion G、R、及びBとについて、HeLa細胞で発現させた各蛍光タンパク質の蛍光測定開始から25分後の正規化した蛍光強度の平均値及び標準偏差を示す棒グラフである。 FIG. 5D, FIG. 5E, and FIG. 5F are graphs showing changes in fluorescence after administration of NaF that inhibits glycolytic ATP production to HeLa cells in which negMaLion G, R, and B are expressed. FIG. 5G shows the start of fluorescence measurement of each fluorescent protein expressed in HeLa cells for MaLion G, R, and B and negMaLion G, R, and B based on the experimental results of the graphs of FIGS. 5A to 5F. It is a bar graph which shows the average value and standard deviation of the normalized fluorescence intensity 25 minutes after.
図5D、図5E、及び図5Fから、NaF投与後の蛍光の変化には、ATPの濃度変化にはほとんど反応しないnegMaLion G、R、及びBでも蛍光強度の変化が起こった。これは、細胞質のpHが変化が原因である可能性がある(Berg, J.ら、Nat. Methods 6, 161-166 (2009))。しかし、図5Gに示されるとおり、MaLion G、R、及びBの測定結果と、negMaLion G、R、及びBの測定結果とを組み合わせると、前者の蛍光強度は後者の蛍光強度より有意に低かった。そこで、MaLion G、R、及びBの測定結果と、negMaLion G、R、及びBの測定結果とを組み合わせることにより、解糖系が阻害された細胞の細胞質のように、ATP濃度の変化がpHの変化と同時に起こる条件でも、ATP濃度をpH変化の影響を除外して測定することが可能になった。 From FIG. 5D, FIG. 5E, and FIG. 5F, the fluorescence intensity after NaF administration also caused a change in fluorescence intensity even in negMaLion G, R, and B, which hardly responded to the change in ATP concentration. This may be due to changes in the cytoplasmic pH (Berg, J. et al., Nat. Methods 6, 161-166 (2009)). However, as shown in FIG. 5G, when the measurement results of MaLion G, R, and B and the measurement results of negMaLion G, R, and B were combined, the former fluorescence intensity was significantly lower than the latter fluorescence intensity. . Therefore, by combining the measurement results of MaLion G, R, and B with the measurement results of negMaLion G, R, and B, the change in ATP concentration is pH like the cytoplasm of the cell in which the glycolysis is inhibited. It was possible to measure the ATP concentration excluding the influence of the pH change even under conditions that occur simultaneously with the change of.
 つぎに、蛍光波長の異なる2種類のATP蛍光センサータンパク質を一方は細胞質に局在させ、他方はミトコンドリアに局在させて、ミトコンドリアでのATP産生を阻害するが細胞質での解糖系ATP産生は阻害しないオリゴマイシンを投与後の細胞質及びミトコンドリア両方のATP濃度変化を同時に測定した。2種類のATP蛍光センサータンパク質の発現ベクターの同時トランスフェクションには、細胞質に局在するATP蛍光センサータンパク質を含む発現ベクター0.2μgと、ミトコンドリアに局在するATP蛍光センサータンパク質を含む発現ベクター0.2μgと、0.2μLのFuGENE HDトランスフェクション試薬(プロメガ株式会社)とを予め添加した10μLのOpti-MEM培地(Life Technologies Corporation、Thermo Fisher Scientific Inc.)を用いた。図6は、MaLion Gの発現ベクターと、mito-MaLion Rの発現ベクターとをHeLa細胞に同時にトランスフェクションした後、同一視野での2種類の異なるATP蛍光センサータンパク質に対応する2つの波長での蛍光顕微鏡撮像開始から3分後にオリゴマイシンを投与し、その後の蛍光の変化を示したグラフである。 Next, two types of ATP fluorescence sensor proteins with different fluorescence wavelengths are localized in the cytoplasm, one in the mitochondria, and inhibits ATP production in the mitochondria, but glycolytic ATP production in the cytoplasm Changes in ATP concentration in both cytoplasm and mitochondria after administration of uninhibited oligomycin were measured simultaneously. For co-transfection of two types of expression vectors of ATP fluorescence sensor protein, 0.2 μg of expression vector containing ATP fluorescence sensor protein localized in the cytoplasm, and expression vector 0. 10 μL of Opti-MEM medium (Life Technologies Corporation, Thermo Fisher Scientific Inc.) supplemented with 2 μg and 0.2 μL of FuGENE HD transfection reagent (Promega Corporation) in advance was used. Figure 6 shows fluorescence at two wavelengths corresponding to two different ATP fluorescence sensor proteins in the same field after simultaneously transfecting HeLa cells with MaLion G expression vector and mito-MaLion R expression vector. It is the graph which showed the change of fluorescence after administering oligomycin 3 minutes after the microscope imaging start.
図6から明らかなとおり、ミトコンドリアでのATP濃度は、ミトコンドリアのATP産生阻害に伴って低下した。細胞質のATP濃度は、オリゴマイシン投与直後は減少したが、その後15分間にわたって増大した。この細胞質及びミトコンドリアのATP動態は、ミトコンドリアのATP産生阻害により細胞内ATPが減少しはじめると、解糖系のATP産生が亢進したことを示唆する。本実施例は、同一細胞内の異なるオルガネラでのATP動態の同時観察に成功した世界最初の実験である。がん細胞では、ミトコンドリアのATP産生よりも解糖系のATP産生のほうが発達していることが知られている(Warburg効果)。抗がん剤の開発では、これら2つのATP産生系を阻止して細胞死に至らしめることをねらう戦略を採用することが多い。しかし、本実施例から、これら2つのATP産生系は相互作用することが具体的に示された。そこで、ATP産生系を作用点とする制がん剤等の今後の医薬開発では、ATP蛍光センサータンパク質を用いる細胞質及びミトコンドリアのATP動態の同時観察が薬物評価に利用されることが推察される。 As is clear from FIG. 6, the ATP concentration in mitochondria decreased with inhibition of mitochondrial ATP production. Cytoplasmic ATP concentration decreased immediately after administration of oligomycin but increased over 15 minutes thereafter. The cytoplasmic and mitochondrial ATP kinetics suggest that glycolytic ATP production was enhanced when intracellular ATP began to decrease due to inhibition of mitochondrial ATP production. This example is the world's first experiment that succeeded in simultaneously observing ATP dynamics in different organelles within the same cell. In cancer cells, it is known that glycolytic ATP production is more developed than mitochondrial ATP production (Warburg effect). In the development of anticancer drugs, strategies that aim to block these two ATP production systems and lead to cell death are often adopted. However, this example specifically shows that these two ATP production systems interact. Thus, it is speculated that in the future development of drugs such as anticancer agents using the ATP production system as an action point, simultaneous observation of cytoplasmic and mitochondrial ATP dynamics using an ATP fluorescent sensor protein is used for drug evaluation.
2.褐色脂肪細胞での細胞内ATPの蛍光センサー測定
 不死化褐色脂肪細胞(前脂肪細胞)株のマウスWT-1細胞は、ウシ胎仔血清10%、GlutaMax(商標)、並びにペニシリン100IU/mL及びストレプトマイシン100μg/mLを添加したダルベッコ変法イーグル培地(低グルコース、Thermo Fisher Scientific Inc.)中37℃、5%CO雰囲気下で培養した。WT-1細胞はDr.Yu-Hua Tseng(Joslin Diabetes Center、Harvard Medical School、Boston、アメリカ合衆国)から恵与された。WT-1細胞は、BMP(骨形成タンパク質)-7による分化誘導によりガラス底ディッシュ上で褐色脂肪細胞に分化した(Tsengら(Nature、454:1000-1004(2008))。簡潔には、細胞がコンフルエント状態に達した後、3.3nMのBMP-7(354-BP、R&D Systems, Inc.)、20nMのインシュリン(Sigma-Aldrich Co. LLC.)、及び1nMのT3(Sigma-Aldrich Co. LLC.)を添加した基本培地を用いて3日間前処理することで細胞分化を開始させた。コンフルエント状態の細胞は誘導カクテル(0.5mMの3-イソブチル-1-メチルキサンチン(IBMX)、0.125mMのインドメタシン、5μMのデキサメタゾン、20nMのインシュリン(全てSigma-Aldrich Co. LLC.))を添加した基本培地で2日間処理された。
2. Fluorescence Sensor Measurement of Intracellular ATP in Brown Adipocytes Mouse WT-1 cells of immortalized brown adipocyte (preadipocyte) line were 10% fetal bovine serum, GlutaMax ™, penicillin 100 IU / mL and streptomycin 100 μg / ML in Dulbecco's modified Eagle medium (low glucose, Thermo Fisher Scientific Inc.) at 37 ° C. in a 5% CO 2 atmosphere. WT-1 cells are dr. Contributed by Yu-Hua Tseng (Joslin Diabetes Center, Harvard Medical School, Boston, USA). WT-1 cells differentiated into brown adipocytes on glass bottom dishes by induction of differentiation with BMP (bone morphogenetic protein) -7 (Tseng et al. (Nature, 454: 1000-1004 (2008)). After reaching a confluent state, 3.3 nM BMP-7 (354-BP, R & D Systems, Inc.), 20 nM insulin (Sigma-Aldrich Co. LLC.), And 1 nM T3 (Sigma-Aldrich Co.). Cell differentiation was initiated by pretreatment for 3 days with basal medium supplemented with LLC.) Confluent cells were induced cocktail (0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 0 125 mM indomethacin, 5 μM dexamethasone, 20 n Insulin (all Sigma-Aldrich Co. LLC.)) Were treated for two days with basal medium was added.
その後、培地を20nMのインシュリン及び1nMのT3を添加した基本培地に交換して、ATP蛍光センサータンパク質の発現ベクターのトランスフェクションを行った。分化したWT-1細胞の細胞質及びミトコンドリアのATP濃度を測定する実験には、0.4μgのMaLion Gの発現ベクターと、0.4μgのmito-MaLion Rの発現ベクターと、2μLのLipofectamine2000(Invitrogen)とを用いてトランスフェクションを行った。分化したWT-1細胞のカルシウムイオン、cAMP及びミトコンドリア内ATPの濃度を測定する実験には、1.0μgのB-Geco(Zhao, Y.ら、Science. 333, 1888-91 (2011))の発現ベクター、0.3μgのFlamindo2(Odaka, H.ら、PLoS One 9, e100252 (2014))の発現ベクターと、0.2μgのmito-MaLion R発現ベクターと、2μLのLipofectamine2000(Invitrogen)とを用いてトランスフェクションを行った。ここで、これらの蛍光タンパク質の発現ベクターは、すべてpcDNA3.1(-)ベクターを用いた。トランスフェクション後、細胞を37℃、5%CO雰囲気下で12時間培養し、その後、培地を20nMのインシュリン及び1nMのT3を添加した基本培地に交換して、28℃で2日間培養した。蛍光観察実験の前に、ウシ胎仔血清やホルモンを含まない、4.5g/Lのグルコースを添加したDMEM培養で1日細胞を培養した。MaLion G及びmito-MaLion Rを用いる2波長蛍光観察は前節1.HeLa細胞の細胞内ATPの蛍光センサー測定と同じプロトコールで行った。 Thereafter, the medium was changed to a basic medium supplemented with 20 nM insulin and 1 nM T3, and transfection of the expression vector of the ATP fluorescence sensor protein was performed. For experiments to measure the cytoplasmic and mitochondrial ATP concentrations of differentiated WT-1 cells, 0.4 μg of MaLion G expression vector, 0.4 μg of mito-MaLion R expression vector, and 2 μL of Lipofectamine 2000 (Invitrogen) And were used for transfection. For experiments in which the concentrations of calcium ions, cAMP and mitochondrial ATP in differentiated WT-1 cells were measured, 1.0 μg of B-Geco (Zhao, Y. et al., Science. 333, 1888-91 (2011)) Using an expression vector, 0.3 μg of Flamindo2 (Odaka, H., et al., PLoS One 9, e100252 (2014)), 0.2 μg of mito-MaLion R expression vector, and 2 μL of Lipofectamine 2000 (Invitrogen) The transfection was performed. Here, pcDNA3.1 (−) vector was used as the expression vector for these fluorescent proteins. After transfection, the cells were cultured at 37 ° C. under 5% CO 2 atmosphere for 12 hours, after which the medium was replaced with a basic medium supplemented with 20 nM insulin and 1 nM T3, and cultured at 28 ° C. for 2 days. Prior to the fluorescence observation experiment, cells were cultured for 1 day in DMEM culture supplemented with 4.5 g / L glucose without fetal calf serum or hormones. The two-wavelength fluorescence observation using MaLion G and mito-MaLion R is described in 1. The same protocol as the fluorescence sensor measurement of intracellular ATP of HeLa cells was performed.
3波長蛍光観察は、油浸対物レンズ(PLAPO、60×1.45NA)を備えた共焦点顕微鏡(FV1000、オリンパス株式会社)で行った。B-Geco、Flamindo2及びmito-MaLion Rは、それぞれ、405nm、488nm、及び543nmのレーザー光で励起され、蛍光は、それぞれ、405-475nm、500-530nm、及び560nmを超える波長で撮像された。撮像は10秒ごとに行った。薬物刺激実験には、イソプロテレノール及びフェニレフリンの原液200μLを1.8mLの培養に添加して、それぞれ、最終濃度1μM及び10μMとした。全ての実験は、COインキュベーター付きの温度制御循環チャンバーを用いて実行された。 Three-wavelength fluorescence observation was performed with a confocal microscope (FV1000, Olympus Corporation) equipped with an oil immersion objective lens (PLAPO, 60 × 1.45NA). B-Geco, Flamindo2 and mito-MaLion R were excited with 405 nm, 488 nm and 543 nm laser lights, respectively, and fluorescence was imaged at wavelengths above 405-475 nm, 500-530 nm and 560 nm, respectively. Imaging was performed every 10 seconds. For drug stimulation experiments, 200 μL of isoproterenol and phenylephrine stock solutions were added to 1.8 mL cultures to a final concentration of 1 μM and 10 μM, respectively. All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
 図7Aは、同一視野の分化したWT-1細胞のB-Geco(Ca2+イオン、青色)、Flamindo2(cAMP、緑色)及びmito-MaLion R(ATP、赤色)の蛍光顕微鏡画像である。各コマの左上の数字は観察開始後の時間(分)を表す。図7Bは、各プローブの正規化された蛍光強度の経時的変化を示すグラフである。矢印は1μMのイソプレテレノールを添加したのが観察開始5分後(図7Aでは1コマ目と2コマ目との間)であることを表す。イソプロテレノールはβアドレナリン受容体のアゴニストであり、B-GecoはCa2+イオンのターン・オン型蛍光プローブ(励起波長378nm、蛍光波長446nm)で、Flamindo2はcAMPのターン・オフ型蛍光プローブ(励起波長504nm、蛍光波長523nm)である。 FIG. 7A is a fluorescence microscopic image of B-Geco (Ca 2+ ions, blue), Flamindo 2 (cAMP, green) and mito-MaLion R (ATP, red) of differentiated WT-1 cells in the same visual field. The number on the upper left of each frame represents the time (minutes) after the observation starts. FIG. 7B is a graph showing changes in normalized fluorescence intensity of each probe over time. The arrow indicates that 1 μM isopreterenol was added 5 minutes after the start of observation (between the first and second frames in FIG. 7A). Isoproterenol is a β-adrenergic receptor agonist, B-Geco is a Ca 2+ ion turn-on fluorescent probe (excitation wavelength 378 nm, fluorescence wavelength 446 nm), and Flamindo 2 is a cAMP turn-off fluorescent probe (excitation). Wavelength 504 nm, fluorescence wavelength 523 nm).
したがって、図7A及び図7Bから、イソプロテレノールによるβアドレナリン受容体の活性化にともなって、まずcAMPが増大し、少し遅れてATPが減少することがわかった。褐色脂肪細胞は、受容体の刺激によって活性化された細胞膜上のアデニル酸シクラーゼがcAMPを合成し、これがシグナル伝達となって、cAMP依存性のPKAを活性化する。その後、脂肪酸を遊離、ミトコンドリア膜上の脱共役タンパク質UCP1と作用して、ミトコンドリア膜上の膜電位のもととなるプロトン勾配を解消させることが知られている(褐色脂肪細胞の熱産生)。図7A及び図7Bの結果は、この提唱されているメカニズムに合致する。本実施例では、cAMP及びATPの蛍光プローブに加えてCa2+イオンの蛍光プローブも同時に細胞内に発現させ、cAMP、ATP及びCa2+イオンの同一細胞内での局在をほぼ同時に経時的に定量測定することが可能であることを実証した。そこで、褐色脂肪細胞における熱産生におけるカルシウムイオンの役割の解明には、ATP蛍光センサータンパク質が利用することができると推察された。 Therefore, from FIG. 7A and FIG. 7B, it was found that with the activation of β-adrenergic receptor by isoproterenol, cAMP first increases and ATP decreases after a little delay. In brown adipocytes, adenylate cyclase on the cell membrane activated by receptor stimulation synthesizes cAMP, which becomes signal transduction and activates cAMP-dependent PKA. Thereafter, it is known that the fatty acid is released and acts on the uncoupling protein UCP1 on the mitochondrial membrane to eliminate the proton gradient that causes the membrane potential on the mitochondrial membrane (thermal production of brown adipocytes). The results of FIGS. 7A and 7B are consistent with this proposed mechanism. In this example, in addition to cAMP and ATP fluorescent probes, Ca 2+ ion fluorescent probes are also expressed in the cells at the same time, and the localization of cAMP, ATP and Ca 2+ ions in the same cells is quantified almost simultaneously over time. It was demonstrated that it was possible to measure. Therefore, it was speculated that the ATP fluorescent sensor protein can be used to elucidate the role of calcium ions in heat production in brown adipocytes.
3.線虫咽頭筋の細胞内ATPの蛍光センサー測定
 ATP蛍光センサータンパク質等を発現するトランスジェニック線虫(C. elegans)の成虫は、少量のシアノアクリル酸糊(Aron Alpha A、Daiichi-Sankyo)を用いて、3.5cmガラス底ディッシュ上に固定し、その上を厚さ0.5cmの1.7%寒天ゲルパッドで覆った。固定された線虫はM9バッファー(22mM KHPO、86mM NaCl、42mM NaHPO及び1mM MgSO)中に浸漬され、顕微鏡撮像に供された。室温は25°Cに保たれ、試料調製は30分以内に完了した。
3. Fluorescence sensor measurement of intracellular ATP in nematode pharyngeal muscles An adult C. elegans expressing ATP fluorescence sensor protein and the like uses a small amount of cyanoacrylate glue (Aron Alpha A, Daiichi-Sankyo). Then, it was fixed on a 3.5 cm glass bottom dish and covered with a 1.7% agar gel pad having a thickness of 0.5 cm. Fixed nematodes were immersed in M9 buffer (22 mM KH 2 PO 4 , 86 mM NaCl, 42 mM Na 2 HPO 4 and 1 mM MgSO 4 ) and subjected to microscopic imaging. Room temperature was kept at 25 ° C. and sample preparation was completed within 30 minutes.
線虫の撮像は、20倍乾燥系対物レンズと、Nipkow-ディスク共焦点スキャナ(CSU-10、Yokogawa)と、電子増倍電荷結合素子(EM-CCD)カメラ(C9100-02、Hamamatsu Photonics)とを備えた倒立落射蛍光顕微鏡(Observer D1、Zeiss)を用いて行った。MaLion G及びMaLion RのNipkow-ディスク共焦点照明による撮像には、それぞれ、光励起半導体488nmレーザ(Sapphire 488LP、50mW、Coherent)及び568nmレーザ(Sapphire 568LP、50mW、Coherent)を、ダイクロイックミラー及び発光フィルターのセット(Di01-T 405/488/568/647ビームスプリッター及びFF01-524/628デュアルバンド帯域通過フィルター、Semrock)とともに用いた。レーザ光束の光路に電磁駆動シャッター(SSH-C4RA、Sigmakoki CO.,LTD.)を配置して、該シャッターの開閉は前記EM-CCDカメラと同期し、MetaMorphソフトウェア(Molecular Devices, LLC)が制御した。露出時間は100ミリ秒であった。撮像は10秒ごとに30分間行った。線虫の麻酔は、撮像開始5分後に0.5%の1-フェノキシ-2-プロパノールを含むM9生理食塩水を適用して行った。 Nematodes are imaged with a 20x dry objective lens, a Nippon Kok disk confocal scanner (CSU-10, Yokogawa), an electron multiplying charge coupled device (EM-CCD) camera (C9100-02, Hamamatsu Photonics) An inverted epifluorescence microscope (Observer D1, Zeiss) equipped with For imaging with MaKion G and MaLion R Nipkow-disc confocal illumination, optically pumped semiconductor 488 nm laser (Sapphire 488LP, 50 mW, Coherent) and 568 nm laser (Sapphire 568LP, 50 mW, Coherent), dichroic mirror and emission filter, respectively. Used with a set (Di01-T 405/488/568/647 beam splitter and FF01-524 / 628 dual band bandpass filter, Semirock). An electromagnetically driven shutter (SSH-C4RA, Sigmakoki CO., LTD.) Is disposed in the optical path of the laser beam, and the opening and closing of the shutter is synchronized with the EM-CCD camera and is controlled by MetaMorph software (Molecular Devices, LLC). . The exposure time was 100 milliseconds. Imaging was performed every 10 seconds for 30 minutes. Nematode anesthesia was performed 5 minutes after the start of imaging by applying M9 physiological saline containing 0.5% 1-phenoxy-2-propanol.
図8A及び図8Bは、線虫咽頭筋の細胞質及びミトコンドリアのATP濃度の経時的変化の同時測定結果を示すグラフで、矢印は、麻酔剤として0.5%の1-フェノキシ-2-プロパノールを含む(図8A)又は含まない(図8B)M9生理食塩水を観察開始5分後に投与したことを表す。 FIG. 8A and FIG. 8B are graphs showing the results of simultaneous measurement of changes in the ATP concentration in the nematode pharyngeal muscle cytoplasm and mitochondria, and the arrow indicates 0.5% 1-phenoxy-2-propanol as an anesthetic. This shows that M9 saline containing (FIG. 8A) or not (FIG. 8B) was administered 5 minutes after the start of observation.
図8Aから、線虫咽頭筋の細胞質ATP濃度は麻酔剤投与の直後から急激に低下し、麻酔剤投与の30秒後には正規化蛍光強度は麻酔剤投与時の20%まで低下した。これに対しミトコンドリアATP濃度は、ゆっくりと低下して、正規化蛍光強度が麻酔剤投与時の20%まで低下するのは麻酔剤投与の3分後であった。この結果から、麻酔剤はミトコンドリアでのATP産生をまず阻害し、これにともなって、細胞質のATPが低下したと考えられる。
図8Bから、線虫咽頭筋のATP濃度は、細胞質でもミトコンドリアでも、対照のM9生理食塩水投与直後に大きい変化は認められなかった。正規化蛍光強度は観測開始から5分間で、ミトコンドリアで80%に、細胞質で60%まで低下した。これは、紫外線レーザ照射による線虫の疲労のためミトコンドリアでのATP産生が低下し、これに伴って細胞質のATP濃度も低下したことが考えられる。本実施例は、単一動物個体内の同一細胞内のATP動態を異なるオルガネラで同時観察した世界で初めての例であり、本発明がなければ成し得なかったものである。ATPセンサーを恒常的に発現している線虫を用いることで、ATP合成を阻害する薬物スクリーニングツール、つまり、抗がん剤や毒性スクリーニングの有用なツールとして利用できる可能性がある。
From FIG. 8A, the cytoplasmic ATP concentration of the nematode pharyngeal muscle rapidly decreased immediately after the administration of the anesthetic agent, and the normalized fluorescence intensity decreased to 20% at the time of the anesthetic agent administration 30 seconds after the administration of the anesthetic agent. In contrast, the mitochondrial ATP concentration decreased slowly, and the normalized fluorescence intensity decreased to 20% at the time of anesthetic administration 3 minutes after the administration of the anesthetic. From this result, it is considered that the anesthetic agent first inhibited ATP production in the mitochondria, and accordingly, cytoplasmic ATP decreased.
From FIG. 8B, the ATP concentration of the nematode pharyngeal muscle did not change significantly immediately after administration of the control M9 saline in both cytoplasm and mitochondria. The normalized fluorescence intensity decreased to 80% in the mitochondria and 60% in the cytoplasm in 5 minutes from the start of observation. This is probably because ATP production in mitochondria was reduced due to fatigue of nematodes by ultraviolet laser irradiation, and the ATP concentration in the cytoplasm was also reduced accordingly. This is the first example in the world in which ATP dynamics in the same cell in a single animal individual is observed simultaneously with different organelles, and could not be achieved without the present invention. By using a nematode that constantly expresses an ATP sensor, there is a possibility that it can be used as a drug screening tool that inhibits ATP synthesis, that is, a useful tool for anticancer agents and toxicity screening.
[実施例5]cGMP特異的蛍光センサータンパク質の構築
1.cGMP蛍光センサータンパク質の設計
 cGMP蛍光センサータンパク質は、cGMP結合ドメインとしてPhosphodiesterase5α(PDE5α)を用い、蛍光タンパク質として、Citrine(Griesbeck, O.ら、J. Biol. Chem. 276, 29188-29194 (2001))を用いた。蛍光タンパク質Citrineの励起波長は、490nmで、発光波長域は、505~650nmである。PDE5αのアミノ末端及びカルボキシル末端にさまざまなポリペプチドリンカーを連結して、蛍光タンパク質Citrineの内部に挿入した融合タンパク質を、cGMP蛍光センサータンパク質の候補タンパク質として作製した(cGullシリーズと称する場合がある。)。
[Example 5] Construction of cGMP-specific fluorescent sensor protein cGMP Fluorescent Sensor Protein Design The cGMP fluorescent sensor protein uses Phosphoesterase 5α (PDE5α) as the cGMP binding domain, and Citrine (Griesbeck, O. et al., J. Biol. Chem. 276, 29188-29194 (2001)) as the fluorescent protein. Was used. The excitation wavelength of the fluorescent protein Citrine is 490 nm, and the emission wavelength region is 505 to 650 nm. Various polypeptide linkers were linked to the amino terminus and carboxyl terminus of PDE5α, and a fusion protein inserted into the fluorescent protein Citrine was prepared as a candidate protein for the cGMP fluorescent sensor protein (sometimes referred to as cGull series).
 cGMP蛍光センサーの候補タンパク質のドメイン及びリンカーの構成は以下のとおりである。まず、cGMPと特異的に結合するドメインを「cGMP結合ドメイン」と称する場合がある。cGMP結合ドメインは、PDE5αに由来し、そのアミノ酸配列は配列番号21として配列表に列挙する。cGMP結合ドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」、cGMP結合ドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」と称する場合がある。 The structure of the domain and linker of the candidate protein of the cGMP fluorescence sensor is as follows. First, a domain that specifically binds to cGMP may be referred to as a “cGMP binding domain”. The cGMP binding domain is derived from PDE5α and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 21. The polypeptide linker linked to the amino terminus of the cGMP binding domain may be referred to as “N-terminal linker”, and the polypeptide linker linked to the carboxyl terminus of the cGMP binding domain may be referred to as “C-terminal linker”.
 したがって、cGullシリーズのcGMP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[Citrine-Nドメイン]-[N末端側リンカー]-[cGMP結合ドメイン]-[C末端側リンカー]-[Citrine-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。 Therefore, cGull series cGMP fluorescent sensor candidate proteins are [Citrine-N domain]-[N-terminal linker]-[cGMP binding domain]-[C-terminal linker]-[ The polypeptide domain and the polypeptide linker are arranged in the order of [Citrine-C domain].
 cGMP蛍光センサータンパク質の候補タンパク質の構築の手順としては、cGMP結合ドメインとして、PDE5αをコードするポリヌクレオチドを合成した(Integrated DNA Technologies、株式会社医学生物学研究所)以外は、実施例1の「ATP蛍光センサータンパク質の候補タンパク質の構築」と同様の方法を用いて行った。最終濃度100μMのcGMPの存在下又は非存在下で、各クローンのcGMP蛍光センサーの候補タンパク質の蛍光特性を蛍光分光光度計(日立F-2700、株式会社日立ハイテクサイエンス)を用いて測定した。 As a procedure for constructing a candidate protein for the cGMP fluorescent sensor protein, “ATP” of Example 1 was used except that a polynucleotide encoding PDE5α was synthesized as a cGMP binding domain (Integrated DNA Technologies, Medical and Biological Laboratories, Inc.). This was carried out using the same method as “construction of candidate protein for fluorescent sensor protein”. In the presence or absence of cGMP at a final concentration of 100 μM, the fluorescence characteristics of the cGMP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
 詳細は省略するが、N末端側リンカー及びC末端側リンカーのアミノ酸配列がそれぞれ配列番号31及び32のとき、ダイナミックレンジが6.5倍となり、cGMP存在下での蛍光強度が最も大きいcGMP蛍光センサータンパク質が得られた。
 この最もダイナミックレンジが大きい候補タンパク質をcGullと命名した。cGullの全長アミノ酸配列を配列番号12に示す。
Although details are omitted, when the amino acid sequences of the N-terminal side linker and the C-terminal side linker are SEQ ID NOS: 31 and 32, respectively, the dynamic range is 6.5 times, and the cGMP fluorescence sensor has the largest fluorescence intensity in the presence of cGMP. A protein was obtained.
This candidate protein with the largest dynamic range was named cGull. The full-length amino acid sequence of cGull is shown in SEQ ID NO: 12.
図9Aは、100μMのcGMP存在下及び非存在下でのcGullの蛍光スペクトル図である。図9Aの横軸は、蛍光波長を表し、縦軸は蛍光強度の相対値を表す。グラフの実線及び点線は、cGMP存在下及び非存在下でのスペクトル曲線を表す。
 図9Aから明らかなとおり、cGullはcGMP非存在下と比較して100μMのcGMP存在下での蛍光が、それぞれ、550%も増大した。
FIG. 9A is a fluorescence spectrum diagram of cGull in the presence and absence of 100 μM cGMP. The horizontal axis of FIG. 9A represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity. The solid and dotted lines in the graph represent the spectral curves in the presence and absence of cGMP.
As is clear from FIG. 9A, cGull increased its fluorescence in the presence of 100 μM cGMP by 550%, respectively, compared to the absence of cGMP.
2.HeLa細胞の細胞内cGMPの蛍光センサー測定
 実施例4と同様の方法を用いて、HeLa細胞にcGMP蛍光センサータンパク質を含む発現ベクターを導入した。次いで、蛍光測定の直前に培地をフェノールレッド不含増殖培地(1mM 8-Br-cGMP含有)に交換した。蛍光顕微鏡測定には、冷却CCDカメラ(Cool SNAP HQ2、Photometrics)及び油浸対物レンズ(Plan Apo 60×1.42 NA)を備えた倒立顕微鏡(IX81、オリンパス株式会社)を用いた。
 細胞質cGMP産生阻害実験には一酸化窒素供与体であるSNAP(S-Nitroso-N-Acetyl-D,L-Penicillamine)を用いた。1.5mLの増殖培地中でHeLa細胞を培養しているディッシュにSNAPを添加してSNAPの最終濃度を300μMにした。細胞の蛍光顕微鏡画像は5分ごとに撮影した。カメラ及びフィルターの制御と、データ記録には、MetaFluorソフトウェア(Molecular Devices, LLC)を用いた。単色蛍光撮像には、励起フィルターにFF01-500/24を、ダイクロイックミラーにDi02-FF520を、発光フィルターにFF01-542/27を用いた(全てSemrock、株式会社オプトライン)。全ての実験は、COインキュベーター付きの温度制御循環チャンバーを用いて実行した。
2. Intracellular cGMP fluorescence sensor measurement of HeLa cells Using the same method as in Example 4, an expression vector containing a cGMP fluorescence sensor protein was introduced into HeLa cells. Next, the medium was replaced with a phenol red-free growth medium (containing 1 mM 8-Br-cGMP) immediately before the fluorescence measurement. For the fluorescence microscope measurement, an inverted microscope (IX81, Olympus Corporation) equipped with a cooled CCD camera (Cool SNAP HQ2, Photometrics) and an oil immersion objective lens (Plan Apo 60 × 1.42 NA) was used.
For the cytoplasmic cGMP production inhibition experiment, SNAP (S-Nitroso-N-Acetyl-D, L-Penicillamine), which is a nitric oxide donor, was used. SNAP was added to a dish in which HeLa cells were cultured in 1.5 mL of growth medium to make the final concentration of SNAP 300 μM. Fluorescence microscope images of the cells were taken every 5 minutes. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording. For monochromatic fluorescence imaging, FF01-500 / 24 was used as the excitation filter, Di02-FF520 was used as the dichroic mirror, and FF01-542 / 27 was used as the emission filter (all are Semrock, Optline Co., Ltd.). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
 図9Bは、cGullを発現させたHeLa細胞に8-Br-cGMP(1mM)又は一酸化窒素供与体であるSNAP(300μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示す画像である。
 また、図9Cは、cGullを発現させたHeLa細胞に8-Br-cGMP(1mM)又は一酸化窒素供与体であるSNAP(300μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示すグラフである。図9Cでは、縦軸は正規化した蛍光強度を表し、横軸は時間(分)を表す。各図の薄い灰色の2又は3本の波形は、異なる2又は3個のディッシュでの測定値を示し、濃い灰色の1本の波形はこれら3本の波形の平均値を示す。
FIG. 9B shows changes in fluorescence from the start of fluorescence microscopic imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or SNP (300 μM) of nitric oxide donor to HeLa cells expressing cGull. It is an image which shows.
FIG. 9C shows the fluorescence from the start of fluorescence microscopic imaging to 20 minutes after administration of 8-Br-cGMP (1 mM) or nitric oxide donor SNAP (300 μM) to HeLa cells expressing cGull. It is a graph which shows the change of. In FIG. 9C, the vertical axis represents normalized fluorescence intensity, and the horizontal axis represents time (minutes). The light gray 2 or 3 waveforms in each figure show the measured values in 2 or 3 different dishes, and the dark gray 1 waveform shows the average value of these 3 waveforms.
 ターン・オン型のcGMP蛍光センサーcGullでは、8-Br-cGMP添加から5分後まで蛍光強度が上昇し維持されたのに対し、SNAP添加から20分後まで蛍光強度が緩やかに上昇した。これは細胞内のcGMP産生が一部阻害されたことを意味する。 In the turn-on type cGMP fluorescence sensor cGull, the fluorescence intensity increased and maintained until 5 minutes after the addition of 8-Br-cGMP, whereas the fluorescence intensity gradually increased until 20 minutes after the addition of SNAP. This means that cGMP production in cells was partially inhibited.
[実施例6]cAMP特異的蛍光センサータンパク質の構築
1.cAMP蛍光センサータンパク質の設計
 cAMP蛍光センサータンパク質は、cAMP結合ドメインとしてexchange factor directly activated by cAMP 1(EPAC1)を用い、蛍光タンパク質として、mApple(Shaner,N.C.ら、Nature Methods 5:545-551(2008))を用いた。なお、mAppleは、Zhao, Y.ら(Science. 333, 1888-1891 (2011))を参照して数カ所にアミノ酸置換変異を導入した(配列番号7及び8)。蛍光タンパク質mAppleの励起波長は、550nmで、発光波長域は、575~700nmである。EPAC1のアミノ末端及びカルボキシル末端にさまざまなポリペプチドリンカーを連結して、蛍光タンパク質mAppleの内部に挿入した融合タンパク質を、cAMP蛍光センサータンパク質の候補タンパク質として作製した(Pink Flamindoシリーズと称する場合がある。)。
[Example 6] Construction of cAMP-specific fluorescent sensor protein cAMP Fluorescence Sensor Protein Design The cAMP fluorescence sensor protein uses exchange factor direct by cAMP 1 (EPAC1) as the cAMP binding domain, and mapple (Shaner, NC et al., Nature Methods 54: 5). (2008)) was used. In addition, mA Apple is Zhao, Y. et al. (Science. 333, 1888-1891 (2011)), amino acid substitution mutations were introduced in several places (SEQ ID NOs: 7 and 8). The excitation wavelength of the fluorescent protein mA Apple is 550 nm, and the emission wavelength region is 575 to 700 nm. Various polypeptide linkers were linked to the amino terminus and carboxyl terminus of EPAC1, and a fusion protein inserted into the fluorescent protein mA Apple was prepared as a candidate protein for the cAMP fluorescent sensor protein (sometimes referred to as the “Pink Flamen series”). .
 cAMP蛍光センサーの候補タンパク質のドメイン及びリンカーの構成は以下のとおりである。まず、cAMPと特異的に結合するドメインを「cAMP結合ドメイン」と称する場合がある。cAMP結合ドメインは、EPAC1に由来し、そのアミノ酸配列は配列番号20として配列表に列挙する。cAMP結合ドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」、cAMP結合ドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」と称する場合がある。 The structure of the domain and linker of the candidate protein of the cAMP fluorescence sensor is as follows. First, a domain that specifically binds to cAMP may be referred to as a “cAMP binding domain”. The cAMP binding domain is derived from EPAC1, and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 20. A polypeptide linker linked to the amino terminus of the cAMP binding domain may be referred to as “N-terminal linker”, and a polypeptide linker linked to the carboxyl terminus of the cAMP binding domain may be referred to as “C-terminal linker”.
 したがって、Pink FlamindoシリーズのcAMP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[mApplee-Nドメイン]-[N末端側リンカー]-[cAMP結合ドメイン]-[C末端側リンカー]-[mApple-Cドメイン]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。 Therefore, the candidate protein for the Pink Flamindo series cAMP fluorescent sensor is [mApplee-N domain]-[N-terminal side linker]-[cAMP-binding domain]-[C-terminal side linker]- A polypeptide domain and a polypeptide linker are arranged in the order of [mAapple-C domain].
 cAMP蛍光センサータンパク質の候補タンパク質の構築の手順としては、cAMP結合ドメインとして、EPAC1をコードするポリヌクレオチドを合成した(Integrated DNA Technologies、株式会社医学生物学研究所)以外は、実施例1の「ATP蛍光センサータンパク質の候補タンパク質の構築」と同様の方法を用いて行った。最終濃度100μMのcAMPの存在下又は非存在下で、各クローンのcAMP蛍光センサーの候補タンパク質の蛍光特性を蛍光分光光度計(日立F-2700、株式会社日立ハイテクサイエンス)を用いて測定した。 As a procedure for constructing a candidate protein for the cAMP fluorescent sensor protein, “ATP” of Example 1 was used except that a polynucleotide encoding EPAC1 was synthesized as a cAMP binding domain (Integrated DNA Technologies, Institute of Medical Biology). This was carried out using the same method as “construction of candidate protein for fluorescent sensor protein”. In the presence or absence of cAMP at a final concentration of 100 μM, the fluorescence characteristics of the cAMP fluorescence sensor candidate proteins of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
 詳細は省略するが、N末端側リンカー及びC末端側リンカーのアミノ酸配列がそれぞれ配列番号33及び34のとき、ダイナミックレンジが4.5倍となり、cAMP存在下での蛍光強度が最も大きいcAMP蛍光センサータンパク質が得られた。
 この最もダイナミックレンジが大きい候補タンパク質をPink Flamindoと命名した。Pink Flamindoの全長アミノ酸配列を配列番号13に示す。
Although details are omitted, when the amino acid sequences of the N-terminal side linker and the C-terminal side linker are SEQ ID NOS: 33 and 34, respectively, the dynamic range is 4.5 times, and the cAMP fluorescence sensor has the largest fluorescence intensity in the presence of cAMP. A protein was obtained.
This candidate protein with the largest dynamic range was named Pink Flamindo. The full-length amino acid sequence of Pink Flamindo is shown in SEQ ID NO: 13.
図10Aは、100μMのcAMP存在下及び非存在下でのPink Flamindoの蛍光スペクトル図である。図10Aの横軸は、蛍光波長を表し、縦軸は蛍光強度の相対値を表す。グラフの実線及び点線は、cAMP存在下及び非存在下でのスペクトル曲線を表す。
 図10Aから明らかなとおり、Pink FlamindoはcAMP非存在下と比較して100μMのcAMP存在下での蛍光が、それぞれ、350%も増大した。
FIG. 10A is a fluorescence spectrum diagram of Pink Flamindo in the presence and absence of 100 μM cAMP. The horizontal axis of FIG. 10A represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity. The solid and dotted lines in the graph represent the spectral curve in the presence and absence of cAMP.
As is clear from FIG. 10A, the fluorescence in the presence of 100 μM cAMP was increased by 350% in the case of Pin Flamendo as compared with the absence of cAMP.
2.HeLa細胞の細胞内cGMPの蛍光センサー測定
 実施例4と同様の方法を用いて、HeLa細胞にcAMP蛍光センサータンパク質を含む発現ベクターを導入した。次いで、蛍光測定の直前に培地をフェノールレッド不含増殖培地(アデニル酸シクラーゼ活性剤であるForskolin 100μM含有)に交換した。蛍光顕微鏡測定には、冷却CCDカメラ(Cool SNAP HQ2、Photometrics)及び油浸対物レンズ(Plan Apo 60×1.42 NA)を備えた倒立顕微鏡(IX81、オリンパス株式会社)を用いた。
 細胞質cAMP産生阻害実験にはホスホジエステラーゼ阻害剤であるIBMX(3-isobutyl-1-methylxanthine)を用いた。1.5mLの増殖培地中でHeLa細胞を培養しているディッシュにIBMXを添加してIBMXの最終濃度を500μMにした。細胞の蛍光顕微鏡画像は5分ごとに撮影した。カメラ及びフィルターの制御と、データ記録には、MetaFluorソフトウェア(Molecular Devices, LLC)を用いた。単色蛍光撮像には、励起フィルターにBP535-555HQを、ダイクロイックミラーにDM565HQを、発光フィルターにBA570-625HQを用いた(全てオリンパス株式会社)。全ての実験は、COインキュベーター付きの温度制御循環チャンバーを用いて実行した。
2. Fluorescence sensor measurement of intracellular cGMP in HeLa cells Using the same method as in Example 4, an expression vector containing a cAMP fluorescence sensor protein was introduced into HeLa cells. Then, immediately before the fluorescence measurement, the medium was replaced with a phenol red-free growth medium (containing 100 μM Forskolin, an adenylate cyclase activator). For the fluorescence microscope measurement, an inverted microscope (IX81, Olympus Corporation) equipped with a cooled CCD camera (Cool SNAP HQ2, Photometrics) and an oil immersion objective lens (Plan Apo 60 × 1.42 NA) was used.
In the cytosolic cAMP production inhibition experiment, IBMX (3-isobutyl-1-methylxanthine), which is a phosphodiesterase inhibitor, was used. IBMX was added to a dish in which HeLa cells were cultured in 1.5 mL of growth medium to bring the final concentration of IBMX to 500 μM. Fluorescence microscope images of the cells were taken every 5 minutes. MetaFluor software (Molecular Devices, LLC) was used for camera and filter control and data recording. For monochromatic fluorescence imaging, BP535-555HQ was used as the excitation filter, DM565HQ was used as the dichroic mirror, and BA570-625HQ was used as the emission filter (all from Olympus Corporation). All experiments were performed using a temperature controlled circulation chamber with a CO 2 incubator.
 図10Bは、Pink Flamindoを発現させたHeLa細胞にForskolin(100μM)又はIBMX(500μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示す画像である。
 また、図10Cは、Pink Flamindoを発現させたHeLa細胞にForskolin(100μM)又はIBMX(500μM)を投与での蛍光顕微鏡画像撮影開始から20分後までの蛍光の変化を示すグラフである。図9Cでは、縦軸は正規化した蛍光強度を表し、横軸は時間(分)を表す。各図の薄い灰色の3本の波形は、異なる3個のディッシュでの測定値を示し、濃い灰色の1本の波形はこれら3本の波形の平均値を示す。
FIG. 10B is an image showing changes in fluorescence from the start of fluorescence microscopic image capturing to 20 minutes after administration of Forskolin (100 μM) or IBMX (500 μM) to HeLa cells in which Pink Flamindo was expressed.
FIG. 10C is a graph showing changes in fluorescence from the start of fluorescence microscopic image capturing to 20 minutes after administration of Forskolin (100 μM) or IBMX (500 μM) to HeLa cells in which Pin Flamindo was expressed. In FIG. 9C, the vertical axis represents normalized fluorescence intensity, and the horizontal axis represents time (minutes). The light gray three waveforms in each figure show the measured values in three different dishes, and the dark gray single waveform shows the average value of these three waveforms.
 ターン・オン型のcAMP蛍光センサーPink Flamindoでは、Forskolin添加から3分後まで蛍光強度が急激に上昇し徐々に減少したのに対し、IBMX添加から20分後まで蛍光強度が緩やかに上昇した。これは細胞内のcAMP産生が一部阻害されたことを意味する。 In the turn-on type cAMP fluorescence sensor Pink Flamindo, the fluorescence intensity rapidly increased and gradually decreased until 3 minutes after the addition of Forskolin, whereas the fluorescence intensity gradually increased until 20 minutes after the addition of IBMX. This means that cAMP production in cells was partially inhibited.
[実施例7]BGP特異的蛍光センサータンパク質の構築
1.BGP蛍光センサータンパク質の設計
 オステオカルシン(osteocalcin、bone Gla protein(BGP))の細胞内での局在を観察するために、BGP蛍光センサータンパク質を設計した。
 BGP蛍光センサータンパク質は、BGP結合ドメインとして抗BGP抗体を用い、蛍光タンパク質として、GFP(Griesbeck, O.ら、(J. Biol. Chem. 276, 29188-29194 (2001)))を用いた。蛍光タンパク質GFPの励起波長は、480nmで、発光波長域は、500~520nmである。また、GFPのN末端側1番目から144番目までのアミノ酸残基からなるドメインを「GFP-Nドメイン」、GFPのN末端側から145番目から238番目までのアミノ酸残基からなるドメインを「GFP-Cドメイン」と称する場合がある。GFP-Nドメインのアミノ酸配列は配列番号3、GFP-Cドメインのアミノ酸配列は配列番号4としてそれぞれ配列表に列挙する。GFP-Cドメインのアミノ末端及びGFP-Nドメインのカルボキシル末端にさまざまなポリペプチドリンカーを連結して、抗BGP抗体の重鎖と軽鎖との間に挿入した融合タンパク質を、BGP蛍光センサータンパク質の候補タンパク質として作製した(gBGPシリーズと称する場合がある。)。
[Example 7] Construction of a fluorescence sensor protein specific for BGP Design of BGP Fluorescent Sensor Protein A BGP fluorescent sensor protein was designed to observe the intracellular localization of osteocalcin (bone Gla protein (BGP)).
As the BGP fluorescence sensor protein, an anti-BGP antibody was used as a BGP binding domain, and GFP (Griesbeck, O. et al. (J. Biol. Chem. 276, 29188-29194 (2001))) was used as a fluorescence protein. The excitation wavelength of the fluorescent protein GFP is 480 nm, and the emission wavelength region is 500 to 520 nm. Further, a domain consisting of amino acid residues from the 1st to 144th N-terminal side of GFP is referred to as “GFP-N domain”, and a domain consisting of amino acid residues from 145th to 238th from the N-terminal side of GFP is referred to as “GFP”. -C domain ". The amino acid sequence of the GFP-N domain is listed in the sequence listing as SEQ ID NO: 3, and the amino acid sequence of the GFP-C domain is listed as SEQ ID NO: 4, respectively. A fusion protein inserted between the heavy chain and the light chain of an anti-BGP antibody by linking various polypeptide linkers to the amino terminus of the GFP-C domain and the carboxyl terminus of the GFP-N domain is used as a candidate for a BGP fluorescence sensor protein. Produced as a protein (sometimes referred to as gBGP series).
 BGP蛍光センサーの候補タンパク質のドメイン及びリンカーの構成は以下のとおりである。まず、BGPと特異的に結合するドメインを「BGP結合ドメイン」と称する場合がある。BGP結合ドメインは、抗BGP抗体に由来し、そのアミノ酸配列は配列番号22(重鎖)及び23(軽鎖)として配列表に列挙する。GFP-Cドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」、GFP-Cドメインのカルボキシル末端及びGFP-Nドメインのアミノ末端に結合するポリペプチドリンカーを「中間リンカー」、GFP-Nドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」と称する場合がある。 The configuration of the domain and linker of the candidate protein of the BGP fluorescence sensor is as follows. First, a domain that specifically binds to BGP may be referred to as a “BGP binding domain”. The BGP binding domain is derived from an anti-BGP antibody and its amino acid sequence is listed in the sequence listing as SEQ ID NO: 22 (heavy chain) and 23 (light chain). A polypeptide linker that links to the amino terminus of the GFP-C domain is an “N-terminal linker”, a polypeptide linker that binds to the carboxyl terminus of the GFP-C domain and the amino terminus of the GFP-N domain is an “intermediate linker”, and the GFP-N domain A polypeptide linker linked to the carboxyl terminus of is sometimes referred to as a “C-terminal linker”.
 したがって、gBGPシリーズのBGP蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[抗BGP抗体の重鎖]-[N末端側リンカー]-[GFP-Cドメイン]-[中間リンカー]-[GFP-Nドメイン]-[C末端側リンカー]-[抗BGP抗体の軽鎖]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。 Therefore, the candidate proteins for the BGP fluorescent sensor of the gBGP series are [anti-BGP antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[intermediate linker]-in the direction from the amino terminus to the carboxyl terminus. The polypeptide domain and the polypeptide linker are arranged in the order of [GFP-N domain]-[C-terminal side linker]-[light chain of anti-BGP antibody].
 BGP蛍光センサータンパク質の候補タンパク質の構築の手順としては、BGP結合ドメインとして、抗BGP抗体の重鎖及び軽鎖をコードするポリヌクレオチドをそれぞれ合成した(Integrated DNA Technologies、株式会社医学生物学研究所)以外は、実施例1の「ATP蛍光センサータンパク質の候補タンパク質の構築」と同様の方法を用いて行った。最終濃度100μMのBGP7Cの存在下又は非存在下で、各クローンのBGP蛍光センサーの候補タンパク質の蛍光特性を蛍光分光光度計(日立F-2700、株式会社日立ハイテクサイエンス)を用いて測定した。 As a procedure for constructing a candidate protein for BGP fluorescence sensor protein, polynucleotides encoding heavy and light chains of anti-BGP antibody were respectively synthesized as BGP binding domains (Integrated DNA Technologies, Institute of Medical Biology) Except for the above, the same method as in “Construction of ATP fluorescent sensor protein candidate protein” in Example 1 was used. In the presence or absence of a final concentration of 100 μM BGP7C, the fluorescence characteristics of the candidate protein of the BGP fluorescence sensor of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
 詳細は省略するが、N末端側リンカー、中間リンカー、及びC末端側リンカーのアミノ酸配列がそれぞれ配列番号35、36、及び37のとき、ダイナミックレンジが4.0倍となり、BGP7C存在下での蛍光強度が最も大きいBGP蛍光センサータンパク質が得られた。
 この最もダイナミックレンジが大きい候補タンパク質をgBGPと命名した。gBGPの全長アミノ酸配列を配列番号14に、塩基配列を配列番号50に示す。
Although details are omitted, when the amino acid sequences of the N-terminal linker, intermediate linker, and C-terminal linker are SEQ ID NOS: 35, 36, and 37, the dynamic range is 4.0 times, and fluorescence in the presence of BGP7C A BGP fluorescence sensor protein with the highest intensity was obtained.
This candidate protein with the largest dynamic range was named gBGP. The full-length amino acid sequence of gBGP is shown in SEQ ID NO: 14, and the base sequence is shown in SEQ ID NO: 50.
図11Aは、100μMのBGP7C存在下及び非存在下でのgBGPの励起/蛍光スペクトル図である。図11Aの横軸は、励起波長及び蛍光波長を表し、縦軸は蛍光強度の相対値を表す。グラフの実線及び点線は、BGP7C存在下及び非存在下でのスペクトル曲線を表す。
 図11Aから明らかなとおり、gBGPはBGP7C非存在下と比較して100μMのBGP7C存在下での蛍光が、それぞれ、300%も増大した。
FIG. 11A is an excitation / fluorescence spectrum diagram of gBGP in the presence and absence of 100 μM BGP7C. The horizontal axis in FIG. 11A represents the excitation wavelength and the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity. The solid and dotted lines in the graph represent the spectral curves in the presence and absence of BGP7C.
As is clear from FIG. 11A, gBGP increased the fluorescence in the presence of 100 μM BGP7C by 300%, respectively, compared to the absence of BGP7C.
 図11Bは、gBGPの蛍光強度のリガンド特異性及びBGP7C濃度依存的変化を示すグラフである。図11Bの横軸は、BGP7C又は対照であるMycの濃度を表し、縦軸は蛍光強度の相対値を表す。
 図11Bから明らかなとおり、gBGPの蛍光強度はBGP7Cの濃度にのみ依存的に変化することが示された。
FIG. 11B is a graph showing the ligand-specific and BGP7C concentration-dependent changes in the fluorescence intensity of gBGP. The horizontal axis of FIG. 11B represents the concentration of BGP7C or Myc as a control, and the vertical axis represents the relative value of fluorescence intensity.
As is clear from FIG. 11B, it was shown that the fluorescence intensity of gBGP changes only depending on the concentration of BGP7C.
2.HeLa細胞の細胞内BGPの蛍光センサー測定
 まず、細胞膜局在性ペプチド(配列番号42)及びmCherryが結合したBGP7C(以下、「PMmCherry-BGP7C」と称する場合がある。)並びに、核局在性ペプチド(配列番号43)及びmCherryが結合したBGP7C(以下、「NLSmCherry-BGP7C」と称する場合がある。)を発現するベクターを調製した。
 次いで、実施例4と同様の方法を用いて、HeLa細胞にBGP蛍光センサータンパク質を含む発現ベクター又はGFPのみを含む発現ベクター、及びPMmCherry-BGP7C、又はNLSmCherry-BGP7Cを含む発現ベクターを導入した。次いで、蛍光測定の直前に培地をフェノールレッド不含増殖培地に交換した。測定には、共焦点レーザー顕微鏡(FV1000、オリンパス株式会社)を用いた。レーザーの波長は、488nm及び543nmであり、500~530nm、及び560nmを超える波長で撮像された。
2. Fluorescence sensor measurement of intracellular BGP in HeLa cells First, a cell membrane-localized peptide (SEQ ID NO: 42), BGP7C to which mCherry is bound (hereinafter sometimes referred to as “PMmCherry-BGP7C”), and a nuclear-localized peptide A vector expressing BGP7C to which (SEQ ID NO: 43) and mCherry were bound (hereinafter sometimes referred to as “NLSmCherry-BGP7C”) was prepared.
Next, using the same method as in Example 4, an expression vector containing a BGP fluorescent sensor protein or an expression vector containing only GFP, and an expression vector containing PMmCherry-BGP7C or NLSmCherry-BGP7C were introduced into HeLa cells. Subsequently, the medium was replaced with a phenol red-free growth medium immediately before the fluorescence measurement. A confocal laser microscope (FV1000, Olympus Corporation) was used for the measurement. The laser wavelengths were 488 nm and 543 nm and were imaged at wavelengths greater than 500-530 nm and 560 nm.
 図11Cは、gBGP又はGFP、及び細胞膜局在性mCherry-BGP7C又は細胞膜局在性mCherryを発現させたHeLa細胞での蛍光を示す画像である。
 また、図11Dは、gBGP又はGFP、及び核局在性mCherry-BGP7C又は細胞膜局在性mCherryを発現させたHeLa細胞での蛍光を示す画像である。
FIG. 11C is an image showing fluorescence in HeLa cells expressing gBGP or GFP, and cell membrane-localized mCherry-BGP7C or cell membrane-localized mCherry.
FIG. 11D is an image showing fluorescence in HeLa cells in which gBGP or GFP and nuclear localized mCherry-BGP7C or cell membrane localized mCherry are expressed.
 ターン・オン型のBGP蛍光センサーgBGPでは、PMmCherry-BGP7Cとともに導入した場合では、細胞膜上での局在が観察され、NLSmCherry-BGP7Cとともに導入した場合では、核内での局在が観察された。 When the turn-on type BGP fluorescence sensor gBGP was introduced with PMmCherry-BGP7C, localization on the cell membrane was observed, and when introduced with NLSmCherry-BGP7C, localization in the nucleus was observed.
[実施例8]HSA特異的蛍光センサータンパク質の構築
1.HSA蛍光センサータンパク質の設計
 ヒト血清アルブミン(Human Serum Albumin;HSA)蛍光センサータンパク質を設計した。
 HSA蛍光センサータンパク質は、HSA結合ドメインとして抗HSA抗体を用い、蛍光タンパク質として、GFP(Griesbeck, O.ら、(J. Biol. Chem. 276, 29188-29194 (2001)))を用いた。蛍光タンパク質GFPの励起波長は、480nmで、発光波長域は、500~520nmである。また、GFPのN末端側1番目から144番目までのアミノ酸残基からなるドメインを「GFP-Nドメイン」、GFPのN末端側から145番目から238番目までのアミノ酸残基からなるドメインを「GFP-Cドメイン」と称する場合がある。GFP-Nドメインのアミノ酸配列は配列番号3、GFP-Cドメインのアミノ酸配列は配列番号4としてそれぞれ配列表に列挙する。GFP-Cドメインのアミノ末端及びGFP-Nドメインのカルボキシル末端にさまざまなポリペプチドリンカーを連結して、抗HSA抗体の重鎖と軽鎖との間に挿入した融合タンパク質を、HSA蛍光センサータンパク質の候補タンパク質として作製した(gHSAシリーズと称する場合がある。)。
[Example 8] Construction of HSA-specific fluorescent sensor protein Design of HSA Fluorescent Sensor Protein A human serum albumin (HSA) fluorescent sensor protein was designed.
As the HSA fluorescence sensor protein, an anti-HSA antibody was used as the HSA binding domain, and GFP (Griesbeck, O., et al. (J. Biol. Chem. 276, 29188-29194 (2001))) was used as the fluorescence protein. The excitation wavelength of the fluorescent protein GFP is 480 nm, and the emission wavelength region is 500 to 520 nm. Further, a domain consisting of amino acid residues from the 1st to 144th N-terminal side of GFP is referred to as “GFP-N domain”, and a domain consisting of amino acid residues from 145th to 238th from the N-terminal side of GFP is referred to as “GFP”. -C domain ". The amino acid sequence of the GFP-N domain is listed in the sequence listing as SEQ ID NO: 3, and the amino acid sequence of the GFP-C domain is listed as SEQ ID NO: 4, respectively. A fusion protein inserted between the heavy chain and the light chain of an anti-HSA antibody by linking various polypeptide linkers to the amino terminus of the GFP-C domain and the carboxyl terminus of the GFP-N domain is used as a candidate for an HSA fluorescence sensor protein. Produced as a protein (sometimes referred to as gHSA series).
 HSA蛍光センサーの候補タンパク質のドメイン及びリンカーの構成は以下のとおりである。まず、HSAと特異的に結合するドメインを「HSA結合ドメイン」と称する場合がある。HSA結合ドメインは、抗HSA抗体に由来する。GFP-Cドメインのアミノ末端に連結するポリペプチドリンカーを「N末端側リンカー」、GFP-Cドメインのカルボキシル末端及びGFP-Nドメインのアミノ末端に結合するポリペプチドリンカーを「中間リンカー」、GFP-Nドメインのカルボキシル末端に連結するポリペプチドリンカーを「C末端側リンカー」と称する場合がある。 The structure of the candidate protein domain and linker of the HSA fluorescence sensor is as follows. First, a domain that specifically binds to HSA may be referred to as an “HSA binding domain”. The HSA binding domain is derived from an anti-HSA antibody. A polypeptide linker that links to the amino terminus of the GFP-C domain is an “N-terminal linker”, a polypeptide linker that binds to the carboxyl terminus of the GFP-C domain and the amino terminus of the GFP-N domain is an “intermediate linker”, and the GFP-N domain A polypeptide linker linked to the carboxyl terminus of is sometimes referred to as a “C-terminal linker”.
 したがって、gHSAシリーズのHSA蛍光センサーの候補タンパク質は、アミノ末端からカルボキシル末端の向きに、[抗HSA抗体の重鎖]-[N末端側リンカー]-[GFP-Cドメイン]-[中間リンカー]-[GFP-Nドメイン]-[C末端側リンカー]-[抗HSA抗体の軽鎖]の順にポリペプチドドメイン及びポリペプチドリンカーが配置される。 Therefore, the candidate proteins of the gHSA series HSA fluorescence sensor are [anti-HSA antibody heavy chain]-[N-terminal linker]-[GFP-C domain]-[intermediate linker]-in the direction from the amino terminus to the carboxyl terminus. A polypeptide domain and a polypeptide linker are arranged in the order of [GFP-N domain]-[C-terminal side linker]-[anti-HSA antibody light chain].
 HSA蛍光センサータンパク質の候補タンパク質の構築の手順としては、HSA結合ドメインとして、抗HSA抗体の重鎖及び軽鎖をコードするポリヌクレオチドをそれぞれ合成した(Integrated DNA Technologies、株式会社医学生物学研究所)以外は、実施例1の「ATP蛍光センサータンパク質の候補タンパク質の構築」と同様の方法を用いて行った。最終濃度2μMのHSAの存在下又は非存在下で、各クローンのHSA蛍光センサーの候補タンパク質の蛍光特性を蛍光分光光度計(日立F-2700、株式会社日立ハイテクサイエンス)を用いて測定した。 As a procedure for constructing a candidate protein for the HSA fluorescence sensor protein, polynucleotides encoding the heavy chain and the light chain of the anti-HSA antibody were respectively synthesized as HSA binding domains (Integrated DNA Technologies, Institute of Medical Biology) Except for the above, the same method as in “Construction of ATP fluorescent sensor protein candidate protein” in Example 1 was used. In the presence or absence of HSA at a final concentration of 2 μM, the fluorescence characteristics of candidate proteins of the HSA fluorescence sensor of each clone were measured using a fluorescence spectrophotometer (Hitachi F-2700, Hitachi High-Tech Science Co., Ltd.).
 詳細は省略するが、N末端側リンカー、中間リンカー、及びC末端側リンカーのアミノ酸配列がそれぞれ、「LE」(Leu-Glu)、「GGTGGS」(配列番号53)、及び「TR」(Thr-Arg)のとき、ダイナミックレンジが1.2倍となり、HSA存在下での蛍光強度が最も大きいHSA蛍光センサータンパク質が得られた。
 この最もダイナミックレンジが大きい候補タンパク質をgHSAと命名した。gHSAの全長アミノ酸配列を配列番号51に、塩基配列を配列番号52に示す。
Although details are omitted, the amino acid sequences of the N-terminal linker, intermediate linker, and C-terminal linker are “LE” (Leu-Glu), “GGTGGS” (SEQ ID NO: 53), and “TR” (Thr— Arg), the dynamic range was 1.2 times, and an HSA fluorescence sensor protein having the highest fluorescence intensity in the presence of HSA was obtained.
This candidate protein with the largest dynamic range was named gHSA. The full-length amino acid sequence of gHSA is shown in SEQ ID NO: 51, and the base sequence is shown in SEQ ID NO: 52.
図12は、2μMのHSA存在下及び非存在下でのgHSAの蛍光スペクトル図である。図12の横軸は、蛍光波長を表し、縦軸は蛍光強度の相対値を表す。グラフの実線及び点線は、HSA存在下及び非存在下でのスペクトル曲線を表す。
 図12から明らかなとおり、gHSAはHSA非存在下と比較して2μMのHSA存在下での蛍光が、20%も増大した。
FIG. 12 is a fluorescence spectrum diagram of gHSA in the presence and absence of 2 μM HSA. The horizontal axis in FIG. 12 represents the fluorescence wavelength, and the vertical axis represents the relative value of the fluorescence intensity. The solid and dotted lines in the graph represent the spectral curves in the presence and absence of HSA.
As is clear from FIG. 12, gHSA increased fluorescence by 20% in the presence of 2 μM HSA as compared to the absence of HSA.
 本発明によれば、検出するリガンドの種類を選ばず、高感度なリガンド蛍光センサータンパク質を提供することができる。本発明によれば、生理学的条件下で高濃度のリガンドの存在下での蛍光強度とリガンド非存在下での蛍光強度の比が十分に高く、細胞又は非ヒト生物の生理学的及び/又は病理学的なリガンドの濃度の変動を検出することができる。 According to the present invention, a highly sensitive ligand fluorescent sensor protein can be provided regardless of the type of ligand to be detected. According to the present invention, the ratio of the fluorescence intensity in the presence of a high concentration of ligand to the fluorescence intensity in the absence of ligand under physiological conditions is sufficiently high, and the physiological and / or disease of a cell or non-human organism. Variations in the concentration of the physical ligand can be detected.

Claims (29)

  1.  リガンドに特異的に応答して蛍光特性が変化するリガンド蛍光センサータンパク質であって、
    前記リガンド蛍光センサータンパク質は、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとを含み、
    前記リガンド蛍光センサータンパク質に用いられる蛍光タンパク質がβバレル構造を有するものであり、
    前記第1の蛍光タンパク質ドメインが前記蛍光タンパク質のN末端からβ1~β3のβシート領域と、これに続くαへリックス領域と、β4~β6のβシート領域とを含み、
    前記第2の蛍光タンパク質ドメインが前記第1の蛍光タンパク質ドメインと同一の前記蛍光タンパク質のβ7~β11のβシート領域を含み、
    前記N末端側リンカー及び前記C末端側リンカーは、それぞれ独立して1個又は数個のアミノ酸からなるポリペプチドであることを特徴とするリガンド蛍光センサータンパク質。
    A ligand fluorescent sensor protein that changes its fluorescence characteristics in response to a specific ligand,
    The ligand fluorescent sensor protein includes a first fluorescent protein domain, an N-terminal linker, a ligand binding domain, a C-terminal linker, and a second fluorescent protein domain,
    The fluorescent protein used for the ligand fluorescent sensor protein has a β barrel structure,
    The first fluorescent protein domain includes a β sheet region of β1 to β3 from the N-terminus of the fluorescent protein, an α helix region following the β sheet region, and a β sheet region of β4 to β6;
    The second fluorescent protein domain comprises the same β7-β11 β-sheet region of the fluorescent protein as the first fluorescent protein domain;
    The ligand fluorescent sensor protein, wherein the N-terminal linker and the C-terminal linker are each independently a polypeptide consisting of one or several amino acids.
  2.  前記蛍光タンパク質がBFP、GFP、Citrine、又はmAppleである請求項1に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to claim 1, wherein the fluorescent protein is BFP, GFP, Citriline, or mAapple.
  3.  前記リガンド蛍光センサータンパク質は、N末端からC末端に向かって、第1の蛍光タンパク質ドメインと、N末端側リンカーと、リガンド結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順番にペプチド結合で連結してなるポリペプチドを含む請求項1又は2に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein has a first fluorescent protein domain, an N-terminal linker, a ligand binding domain, a C-terminal linker, and a second fluorescent protein domain from the N-terminus toward the C-terminus. The ligand fluorescent sensor protein according to claim 1 or 2, comprising a polypeptide formed by directly connecting peptide bonds in this order.
  4.  前記リガンド蛍光センサータンパク質は、2つのリガンド結合ドメインを含み、
     N末端からC末端に向かって、第1のリガンド結合ドメインと、N末端側リンカーと、第2の蛍光タンパク質ドメインと、第1の蛍光タンパク質ドメインと、C末端側リンカーと、第2のリガンド結合ドメインと、が、直接この順番にペプチド結合で連結してなるポリペプチドを含む請求項1又は2に記載のリガンド蛍光センサータンパク質。
    The ligand fluorescent sensor protein comprises two ligand binding domains;
    From the N-terminus toward the C-terminus, the first ligand binding domain, the N-terminal linker, the second fluorescent protein domain, the first fluorescent protein domain, the C-terminal linker, and the second ligand binding The ligand fluorescent sensor protein according to claim 1 or 2, wherein the domain includes a polypeptide directly linked by a peptide bond in this order.
  5.  前記第1の蛍光タンパク質ドメインは、以下の(B1)~(B3)のいずれかのポリペプチドを含み、
    前記第2の蛍光タンパク質ドメインは、以下の(C1)~(C3)のいずれかのポリペプチドを含み、
    前記第1の蛍光タンパク質ドメインと第2の蛍光タンパク質ドメインとが同一の蛍光タンパク質に由来する請求項1又は2に記載のリガンド蛍光センサータンパク質。
     (B1)配列番号1、3、5、又は7で表されるアミノ酸配列を含むポリペプチド、
     (B2)配列番号1、3、5、又は7で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
     (B3)配列番号1、3、5、又は7で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第2の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
     (C1)配列番号2、4、6、又は8で表されるアミノ酸配列を含むポリペプチド、
     (C2)配列番号2、4、6、又は8で表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド、
     (C3)配列番号2、4、6、又は8で表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記第1の蛍光タンパク質ドメインとβバレル構造を形成し、蛍光を発するポリペプチド
    The first fluorescent protein domain includes any of the following polypeptides (B1) to (B3):
    The second fluorescent protein domain includes any of the following polypeptides (C1) to (C3):
    The ligand fluorescent sensor protein according to claim 1 or 2, wherein the first fluorescent protein domain and the second fluorescent protein domain are derived from the same fluorescent protein.
    (B1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7,
    (B2) the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the second fluorescence A polypeptide that forms a β-barrel structure with a protein domain and fluoresces,
    (B3) including an amino acid sequence having an identity of 80% or more with the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7, and forming a β barrel structure with the second fluorescent protein domain, A fluorescent polypeptide,
    (C1) a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8,
    (C2) the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, comprising an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the first fluorescence A polypeptide that forms a β-barrel structure with a protein domain and fluoresces,
    (C3) comprising an amino acid sequence having 80% or more identity with the amino acid sequence represented by SEQ ID NO: 2, 4, 6, or 8, and forming a β barrel structure with the first fluorescent protein domain, Fluorescent polypeptide
  6.  前記リガンドが、ヌクレオチド若しくはその誘導体、核酸、糖鎖、タンパク質、脂質複合体、又は低分子化合物である請求項1~5のいずれか一項に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to any one of claims 1 to 5, wherein the ligand is a nucleotide or a derivative thereof, a nucleic acid, a sugar chain, a protein, a lipid complex, or a low molecular compound.
  7.  前記ヌクレオチド若しくはその誘導体が、ATP、cAMP、又はcGMPである請求項6に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to claim 6, wherein the nucleotide or a derivative thereof is ATP, cAMP, or cGMP.
  8.  前記タンパク質が抗原又は抗体である請求項6に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to claim 6, wherein the protein is an antigen or an antibody.
  9.  以下の(D1)~(D3)のいずれかのポリペプチドを含む請求項1~8のいずれか一項に記載のリガンド蛍光センサータンパク質。
    (D1)配列番号9~14のいずれかで表されるアミノ酸配列を含むポリペプチド、
    (D2)配列番号9~14のいずれかで表されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、挿入、置換若しくは付加されたアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド、
    (D3)配列番号9~14のいずれかで表されるアミノ酸配列と同一性が80%以上であるアミノ酸配列を含み、且つ、前記ポリペプチド(D1)と同一の、リガンドへの結合能及び蛍光特性を有するポリペプチド
    The ligand fluorescent sensor protein according to any one of claims 1 to 8, comprising a polypeptide of any one of the following (D1) to (D3).
    (D1) a polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 9 to 14,
    (D2) an amino acid sequence represented by any one of SEQ ID NOs: 9 to 14, including an amino acid sequence in which one or several amino acids are deleted, inserted, substituted or added, and the polypeptide (D1) Polypeptides having the same ability to bind to a ligand and fluorescent properties;
    (D3) Ligand binding ability and fluorescence, which include the amino acid sequence of 80% or more identity with the amino acid sequence represented by any of SEQ ID NOs: 9 to 14, and are identical to the polypeptide (D1) Polypeptide having properties
  10.  さらに、オルガネラ局在化シグナルペプチドを含む請求項1~9のいずれか一項に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to any one of claims 1 to 9, further comprising an organelle localization signal peptide.
  11.  前記オルガネラ局在化シグナルペプチドがミトコンドリア局在化シグナルペプチドである請求項10に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to claim 10, wherein the organelle localization signal peptide is a mitochondrial localization signal peptide.
  12.  前記オルガネラ局在化シグナルペプチドが核局在化シグナルペプチドである請求項10に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to claim 10, wherein the organelle localization signal peptide is a nuclear localization signal peptide.
  13.  さらに、細胞膜透過性ペプチドを含む請求項1~12のいずれか一項に記載のリガンド蛍光センサータンパク質。 The ligand fluorescent sensor protein according to any one of claims 1 to 12, further comprising a cell membrane-permeable peptide.
  14.  請求項1~13のいずれか一項に記載のリガンド蛍光センサータンパク質をコードすることを特徴とするポリヌクレオチド。 A polynucleotide encoding the ligand fluorescent sensor protein according to any one of claims 1 to 13.
  15.  請求項14に記載のポリヌクレオチドを含むことを特徴とする発現ベクター。 An expression vector comprising the polynucleotide according to claim 14.
  16.  請求項1~13のいずれか一項に記載のリガンド蛍光センサータンパク質を少なくとも1種類含むことを特徴とする細胞。 A cell comprising at least one type of ligand fluorescent sensor protein according to any one of claims 1 to 13.
  17.  請求項1~13のいずれか一項に記載のリガンド蛍光センサータンパク質をコードするポリヌクレオチドを少なくとも1種類含む染色体を有することを特徴とする細胞。 A cell having a chromosome containing at least one polynucleotide encoding the ligand fluorescent sensor protein according to any one of claims 1 to 13.
  18.  請求項15に記載の発現ベクターを少なくとも1種類含むことを特徴とする細胞。 A cell comprising at least one expression vector according to claim 15.
  19.  請求項16~18のいずれか一項に記載の細胞を含むことを特徴とする非ヒト生物。 A non-human organism comprising the cell according to any one of claims 16 to 18.
  20.  請求項1~13のいずれか一項に記載のリガンド蛍光センサータンパク質、請求項14に記載のポリヌクレオチド、請求項15に記載の発現ベクター、請求項16~18のいずれか一項に記載の細胞、及び請求項19に記載の非ヒト生物からなる群から選ばれる少なくとも一つを含むことを特徴とするリガンド濃度測定用キット。 The ligand fluorescent sensor protein according to any one of claims 1 to 13, the polynucleotide according to claim 14, the expression vector according to claim 15, and the cell according to any one of claims 16 to 18. And a ligand concentration measurement kit comprising at least one selected from the group consisting of non-human organisms according to claim 19.
  21.  請求項1~13のいずれか一項に記載のリガンド蛍光センサータンパク質と、既知の濃度のリガンドを含む標準溶液と接触させて、蛍光強度を測定し、検量線を作成する検量線作成工程と、
     前記リガンド蛍光センサータンパク質と、未知の濃度のリガンドを含む溶液と接触させて、蛍光強度を測定する蛍光測定工程と、
     前記検量線作成工程において、作成された検量線に基づいて、前記蛍光測定工程において測定された蛍光強度に対するリガンド濃度を決定する濃度決定工程と、
    を備えることを特徴とする被検試料中のリガンド濃度の決定方法。
    A calibration curve creating step of contacting the ligand fluorescence sensor protein according to any one of claims 1 to 13 with a standard solution containing a ligand of a known concentration, measuring fluorescence intensity, and creating a calibration curve;
    A fluorescence measurement step of measuring fluorescence intensity by contacting the ligand fluorescence sensor protein with a solution containing a ligand of unknown concentration;
    In the calibration curve creating step, based on the created calibration curve, a concentration determining step for determining a ligand concentration with respect to the fluorescence intensity measured in the fluorescence measuring step;
    A method for determining a ligand concentration in a test sample.
  22.  請求項16~18のいずれか一項に記載の細胞を用いて、経時的な蛍光強度を測定する工程を備えることを特徴とする生細胞におけるリガンド濃度の経時変化の検知方法。 A method for detecting a change in ligand concentration over time in a living cell, comprising the step of measuring fluorescence intensity over time using the cell according to any one of claims 16 to 18.
  23.  請求項19に記載の非ヒト生物を用いて、経時的な蛍光強度を測定する工程を備えることを特徴とする生きた非ヒト生物におけるリガンド濃度の経時変化の検知方法。 A method for detecting a change in a ligand concentration over time in a living non-human organism, comprising the step of measuring fluorescence intensity over time using the non-human organism according to claim 19.
  24.  ATP濃度に特異的に応答して蛍光特性が変化するATP蛍光センサータンパク質であって、該ATP蛍光センサータンパク質は、N末端からC末端に向けて、第1の蛍光タンパク質ドメインと、N末端側リンカーと、ATP結合ドメインと、C末端側リンカーと、第2の蛍光タンパク質ドメインとが、直接この順にペプチド結合で連結したポリペプチドを含み、該ポリペプチドは、
     第1の蛍光タンパク質ドメインは、蛍光タンパク質BFP、Citrine又はmAppleのN末端から、β1~β3のβシート領域と、これに続くαヘリックス領域と、β4~β6のβシート領域とを含み、
     第2の蛍光タンパク質ドメインは、第1の蛍光タンパク質ドメインと同一の蛍光タンパク質のβ7~β11のβシート領域を含み、
     ATP結合ドメインはF-ATP合成酵素のεサブユニットからなり、
     N末端側リンカー及びC末端側リンカーは、それぞれ、1個又は数個のアミノ酸からなるポリペプチドであることを特徴とするATP蛍光センサータンパク質。
    An ATP fluorescent sensor protein whose fluorescence characteristics change in response to an ATP concentration specifically, the ATP fluorescent sensor protein comprising a first fluorescent protein domain and an N-terminal linker from the N-terminus toward the C-terminus A polypeptide in which an ATP-binding domain, a C-terminal linker, and a second fluorescent protein domain are directly linked by a peptide bond in this order,
    The first fluorescent protein domain includes a β sheet region of β1 to β3, an α helix region following this, and a β sheet region of β4 to β6 from the N terminus of the fluorescent protein BFP, Citrine or mA Apple,
    The second fluorescent protein domain comprises a β-sheet region of β7-β11 of the same fluorescent protein as the first fluorescent protein domain;
    The ATP binding domain consists of the ε subunit of F 0 F 1 -ATP synthase,
    Each of the N-terminal side linker and the C-terminal side linker is a polypeptide consisting of one or several amino acids, and is an ATP fluorescent sensor protein.
  25.  (A11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号1及び2のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号16及び17のアミノ酸配列である、MaLion Bポリペプチドと、
    (A12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー、及びC末端側のリンカーは、それぞれ独立に、配列番号15、1、2、16、及び17のアミノ酸配列か、配列番号13、1、2、14、及び15のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換、又は付加されたアミノ酸配列かであり、かつ、MaLion Bポリペプチド(A11)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
    (B11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号5及び6のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、WRG(Trp-Arg-Gly)及び配列番号18のアミノ酸配列である、MaLion Gポリペプチドと、
    (B12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ独立に、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列か、配列番号15、5、6、WRG(Trp-Arg-Gly)、及び配列番号18のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Gポリペプチド(B11)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
    (C11)ATP結合ドメインは配列番号15のアミノ酸配列であり、第1及び第2の蛍光タンパク質ドメインは、それぞれ、配列番号7及び8のアミノ酸配列であり、N末端及びC末端側のリンカーは、それぞれ、配列番号19及びPEE(Pro-Glu-Glu)のアミノ酸配列である、MaLion Rポリペプチドと、
    (C12)ATP結合ドメイン、第1の蛍光タンパク質ドメイン、第2の蛍光タンパク質ドメイン、N末端側のリンカー及びC末端側のリンカーは、それぞれ、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列か、配列番号15、7、8、19、及びPEE(Pro-Glu-Glu)のアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列かであり、かつ、MaLion Rポリペプチド(C11)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含む請求項24に記載のATP蛍光センサータンパク質。
    (A11) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOS: 1 and 2, respectively, and the N-terminal and C-terminal linkers are MaLion B polypeptides, which are the amino acid sequences of SEQ ID NOs: 16 and 17, respectively;
    (A12) The ATP-binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker, and the C-terminal linker are each independently SEQ ID NOs: 15, 1, 2, 16, and 17 amino acid sequences or amino acid sequences in which one or several amino acids are deleted, substituted or added to the amino acid sequences of SEQ ID NOs: 13, 1, 2, 14, and 15, and MaLion B poly A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the peptide (A11);
    (B11) The ATP-binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 5 and 6, respectively, and the N-terminal and C-terminal linkers are MaLion G polypeptide, which is the amino acid sequence of WRG (Trp-Arg-Gly) and SEQ ID NO: 18, respectively,
    (B12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal side linker and the C-terminal side linker are each independently SEQ ID NO: 15, 5, 6, WRG (Trp- Arg-Gly) and the amino acid sequence of SEQ ID NO: 18, or SEQ ID NOs: 15, 5, 6, WRG (Trp-Arg-Gly) and the amino acid sequence of SEQ ID NO: 18 have one or several amino acids deleted, A MaLion G polypeptide that is a substituted or added amino acid sequence and has the same ATP binding ability and fluorescence characteristics as the MaLion G polypeptide (B11);
    (C11) The ATP binding domain is the amino acid sequence of SEQ ID NO: 15, the first and second fluorescent protein domains are the amino acid sequences of SEQ ID NOs: 7 and 8, respectively, and the N-terminal and C-terminal linkers are MaLion R polypeptide, which is the amino acid sequence of SEQ ID NO: 19 and PEE (Pro-Glu-Glu), respectively
    (C12) The ATP binding domain, the first fluorescent protein domain, the second fluorescent protein domain, the N-terminal linker and the C-terminal linker are SEQ ID NOs: 15, 7, 8, 19, and PEE (Pro -Glu-Glu) amino acid sequence or SEQ ID NOs: 15, 7, 8, 19 and amino acid sequence of PEE (Pro-Glu-Glu) with one or several amino acids deleted, substituted or added 25. At least one polypeptide selected from the group consisting of MaLion R polypeptides that are sequences and have the same ATP binding ability and fluorescence properties as MaLion R polypeptides (C11). ATP fluorescence sensor protein.
  26.  (A21)配列番号9のアミノ酸配列からなる、MaLion Bポリペプチドと、
    (A22)配列番号9のアミノ酸配列のうち、配列番号16及び17のアミノ酸配列を除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Bポリペプチド(A21)と同一のATP結合能及び蛍光特性を有する、MaLion Bポリペプチドと、
    (B21)配列番号10のアミノ酸配列からなる、MaLion Gポリペプチドと、
    (B22)配列番号10のアミノ酸配列のうち、配列番号10の第146-148位のWRG(Trp-Arg-Gly)のアミノ酸配列と、配列番号18のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Gポリペプチド(B21)と同一のATP結合能及び蛍光特性を有する、MaLion Gポリペプチドと、
    (C21)配列番号11のアミノ酸配列からなる、MaLion Rポリペプチドと、
    (C22)配列番号11のアミノ酸配列のうち、配列番号11の第288-290位のPEE(Pro-Glu-Glu)のアミノ酸配列と、配列番号19のアミノ酸配列とを除くアミノ酸配列に1個若しくは数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつ、MaLion Rポリペプチド(C21)と同一のATP結合能及び蛍光特性を有する、MaLion Rポリペプチドとからなる群から選択される少なくとも1つのポリペプチドを含む請求項24又は25に記載のATP蛍光センサータンパク質。
    (A21) a MaLion B polypeptide consisting of the amino acid sequence of SEQ ID NO: 9,
    (A22) The amino acid sequence of SEQ ID NO: 9 consists of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence excluding the amino acid sequences of SEQ ID NOS: 16 and 17, and MaLion B A MaLion B polypeptide having the same ATP binding ability and fluorescence properties as the polypeptide (A21);
    (B21) a MaLion G polypeptide consisting of the amino acid sequence of SEQ ID NO: 10,
    (B22) one of amino acid sequences excluding the amino acid sequence of WRG (Trp-Arg-Gly) at positions 146 to 148 of SEQ ID NO: 10 and the amino acid sequence of SEQ ID NO: 18 among the amino acid sequences of SEQ ID NO: 10 or MaLion G polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion G polypeptide (B21);
    (C21) a MaLion R polypeptide consisting of the amino acid sequence of SEQ ID NO: 11,
    (C22) One of the amino acid sequences of SEQ ID NO: 11 excluding the amino acid sequence of PEE (Pro-Glu-Glu) at positions 288 to 290 of SEQ ID NO: 11 and the amino acid sequence of SEQ ID NO: 19 or It is selected from the group consisting of an MaLion R polypeptide consisting of an amino acid sequence in which several amino acids are deleted, substituted or added, and having the same ATP binding ability and fluorescence characteristics as MaLion R polypeptide (C21). The ATP fluorescent sensor protein according to claim 24 or 25, comprising at least one polypeptide.
  27.  請求項24~26のいずれか一項に記載のATP蛍光センサータンパク質を含むことを特徴とする蛍光組成物。 A fluorescent composition comprising the ATP fluorescent sensor protein according to any one of claims 24 to 26.
  28.  前記ATP蛍光センサータンパク質は固体支持体に不動化される請求項27に記載の蛍光組成物。 The fluorescent composition according to claim 27, wherein the ATP fluorescent sensor protein is immobilized on a solid support.
  29.  前記ATP蛍光センサータンパク質は、第1及び第2の蛍光タンパク質ドメインの対の異なる少なくとも2種類のATP蛍光センサータンパク質である請求項28に記載の蛍光組成物。 29. The fluorescent composition according to claim 28, wherein the ATP fluorescent sensor protein is at least two types of ATP fluorescent sensor proteins having different pairs of first and second fluorescent protein domains.
PCT/JP2016/085902 2015-12-04 2016-12-02 Ligand fluorescent sensor protein and use thereof WO2017094885A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017554202A JP6885595B2 (en) 2015-12-04 2016-12-02 Ligand Fluorescence Sensor Protein and Its Use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015237524 2015-12-04
JP2015-237524 2015-12-04
US201662340533P 2016-05-24 2016-05-24
US62/340,533 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017094885A1 true WO2017094885A1 (en) 2017-06-08

Family

ID=58797423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085902 WO2017094885A1 (en) 2015-12-04 2016-12-02 Ligand fluorescent sensor protein and use thereof

Country Status (2)

Country Link
JP (2) JP6885595B2 (en)
WO (1) WO2017094885A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195525A1 (en) * 2018-04-04 2019-10-10 University Of Washington Beta barrel polypeptides and methods for their use
WO2020187270A1 (en) * 2019-03-19 2020-09-24 宁波鲲鹏生物科技有限公司 Fusion protein containing fluorescent protein fragments and uses thereof
CN112480271A (en) * 2020-12-15 2021-03-12 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof
JP2021514603A (en) * 2018-03-09 2021-06-17 エッセン インストゥルメンツ,インコーポレイテッド ディー/ビー/エー エッセン バイオサイエンス,インコーポレイテッド Methods and Compositions for Live Cell Analysis of Intracellular ATP
CN117187343A (en) * 2023-09-06 2023-12-08 青岛大学 High-throughput screening method of phosphodiesterase inhibitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060430A1 (en) * 2013-10-24 2015-04-30 地方独立行政法人東京都健康長寿医療センター Muscle stem cell or myoblast, method for screening substances that participate in metabolic conversion using same, and pharmaceutical composition comprising substance obtained from said screening method
WO2015108102A1 (en) * 2014-01-15 2015-07-23 国立大学法人 群馬大学 Atp-visualizing animal and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT652960E (en) * 1993-05-27 2001-08-30 Icos Corp MATERIALS FOR SPECIFIC AND CONNECTING PHOSPHODIESTERASES OF CYCLICAL MPG AND THEIR METHODS
EP1536020A1 (en) 2003-11-26 2005-06-01 Bayerische Julius-Maximilians-Universität Würzburg Means and methods for optical determination of cAMP in vitro and in vivo
JP6032862B2 (en) 2010-03-23 2016-11-30 オリンパス株式会社 Cyclic GMP analysis method
IN2014CN03968A (en) 2011-11-02 2015-10-23 Ushio Electric Inc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060430A1 (en) * 2013-10-24 2015-04-30 地方独立行政法人東京都健康長寿医療センター Muscle stem cell or myoblast, method for screening substances that participate in metabolic conversion using same, and pharmaceutical composition comprising substance obtained from said screening method
WO2015108102A1 (en) * 2014-01-15 2015-07-23 国立大学法人 群馬大学 Atp-visualizing animal and use thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BAIRD, GEOFFREY ET AL.: "Circular permutation and receptor insertion within green fluorescent proteins", PROC. NATL. ACAD. SCI. USA, vol. 96, September 1999 (1999-09-01), pages 11241 - 11246, XP002201852 *
BISWAS, KABIR ET AL.: "The GAF DOMAIN of the cGMP-Binding, cGMP-Specific Phosphodiesterase (PDE5) Is a Sensor and a Sink for cGMP", BIOCHEMISTRY, vol. 47, no. 11, 2008, pages 3534 - 3543, XP055599369, ISSN: 0006-2960, DOI: 10.1021/bi702025w *
GFP G-C A MP, vol. 19, no. 2, 2002, pages 135 - 145 *
KITAGUCHI, TETSUYA ET AL.: "Extracellular calucium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells", BIOCHEM. J., vol. 450, 2013, pages 365 - 373, XP055376360, DOI: doi:10.1042/BJ20121022 *
ODAKA, HARUKI ET AL.: "Genetically-Encoded Yellow Fluorescent cAMP Indicator with an Expanded Dynamic Range for Dual-Color Imaging", PLOS ONE, vol. 9, no. 6, June 2014 (2014-06-01), pages e100252, XP055599359, DOI: 10.1371/journal.pone.0100252 *
TANIMURA, AKIHIKO: "Development and application of fluorescent protein-based indicators for live cell imaging", JOURNAL OF ORAL BIOSCIENCES, vol. 57, no. 2, 7 April 2015 (2015-04-07), pages 54 - 60, XP055599366 *
WANG, JING, W. ET AL.: "Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain", CELL, vol. 112, no. 2, 24 January 2003 (2003-01-24), pages 271 - 282, XP055599364, ISSN: 0092-8674, DOI: 10.1016/S0092-8674(03)00004-7 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021514603A (en) * 2018-03-09 2021-06-17 エッセン インストゥルメンツ,インコーポレイテッド ディー/ビー/エー エッセン バイオサイエンス,インコーポレイテッド Methods and Compositions for Live Cell Analysis of Intracellular ATP
JP7316266B2 (en) 2018-03-09 2023-07-27 ザルトリウス バイオアナリティカル インストゥルメンツ, インコーポレイテッド Methods and compositions for live cell analysis of intracellular ATP
WO2019195525A1 (en) * 2018-04-04 2019-10-10 University Of Washington Beta barrel polypeptides and methods for their use
WO2020187270A1 (en) * 2019-03-19 2020-09-24 宁波鲲鹏生物科技有限公司 Fusion protein containing fluorescent protein fragments and uses thereof
CN112480271A (en) * 2020-12-15 2021-03-12 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof
CN112480271B (en) * 2020-12-15 2022-11-01 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof
CN117187343A (en) * 2023-09-06 2023-12-08 青岛大学 High-throughput screening method of phosphodiesterase inhibitor

Also Published As

Publication number Publication date
JP7098196B2 (en) 2022-07-11
JP2021141892A (en) 2021-09-24
JPWO2017094885A1 (en) 2018-09-20
JP6885595B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7098196B2 (en) Ligand Fluorescence Sensor Protein and Its Use
Tiede et al. Affimer proteins are versatile and renewable affinity reagents
Yue et al. The cell adhesion molecule echinoid functions as a tumor suppressor and upstream regulator of the Hippo signaling pathway
Hansen et al. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments
Janning et al. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons
Honnappa et al. An EB1-binding motif acts as a microtubule tip localization signal
Hejjaoui et al. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125
Dacheux et al. A MAP6-related protein is present in protozoa and is involved in flagellum motility
JP5802674B2 (en) Single molecule FRET biosensor linker based on the principle of fluorescence resonance energy transfer
Rybakin et al. Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi apparatus
Ma et al. A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis
Melero-Fernandez de Mera et al. A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs
Harrington et al. De novo design of a reversible phosphorylation-dependent switch for membrane targeting
Akhmetova et al. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila
Ramani et al. Plk1/Polo phosphorylates Sas-4 at the onset of mitosis for an efficient recruitment of pericentriolar material to centrosomes
JP7278634B2 (en) pH-responsive proteolytic probe
WO2022215532A1 (en) Novel polypeptide exhibiting fluorescent properties and use for same
Schenková et al. MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein
CN106715709A (en) Compositions and methods for modulating mtorc1
Magico et al. Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped
EP3037534B1 (en) Polypeptide exhibiting fluorescent properties, and utilization of same
Husberg et al. Cellular localisation and nuclear export of the human bZIP transcription factor TCF11
Sanfeliu-Cerdán et al. A MEC-2/stomatin condensate liquid-to-solid phase transition controls neuronal mechanotransduction during touch sensing
Alexander et al. Creation of a myosin Va‐TAP‐tagged mouse and identification of potential myosin Va‐interacting proteins in the cerebellum
JP4803976B2 (en) Molecular sensor for intracellular IP3 measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870820

Country of ref document: EP

Kind code of ref document: A1