WO2017094878A1 - Method for identifying intracellular endogenous protein - Google Patents

Method for identifying intracellular endogenous protein Download PDF

Info

Publication number
WO2017094878A1
WO2017094878A1 PCT/JP2016/085879 JP2016085879W WO2017094878A1 WO 2017094878 A1 WO2017094878 A1 WO 2017094878A1 JP 2016085879 W JP2016085879 W JP 2016085879W WO 2017094878 A1 WO2017094878 A1 WO 2017094878A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
aptamer
mrna
protein
Prior art date
Application number
PCT/JP2016/085879
Other languages
French (fr)
Japanese (ja)
Inventor
博英 齊藤
俊輔 川▲崎▼
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2017554197A priority Critical patent/JP6877752B2/en
Publication of WO2017094878A1 publication Critical patent/WO2017094878A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for identifying a cell endogenous protein, a stabilized aptamer that can be used for the method, and a method for identifying a differentiation and reprogramming state of a cell.
  • An artificial gene expression control system that functions only in target cells can be a useful tool in biotechnology and medical applications.
  • Cell types and states are mainly determined by proteins. Therefore, it is important to develop a mechanism that can detect protein in human cells and control gene expression.
  • the mRNA switch is a gene switch having an RNA (aptamer) region that binds to a specific protein in the 5′UTR of mRNA. This switch suppresses its own translation by binding a protein to an aptamer on mRNA.
  • RNA aptamer
  • an mRNA switch that detects the desired protein and suppresses translation can be produced.
  • direct introduction of mRNA into cells has higher introduction efficiency and lower risk of genome damage than conventional gene introduction using plasmids. Accordingly, the mRNA switch is ideal as an artificial gene expression control system that functions only in target cells.
  • Non-Patent Document 1 The following two examples are known as gene switches that are produced by incorporating aptamers into mRNA cells and that target proteins expressed in human cells.
  • One is a switch in which a part of ribozyme incorporated into 3′UTR is changed to an aptamer of human U1A protein (see Non-Patent Document 1).
  • U1A was overexpressed by introducing a plasmid, and a response to a protein endogenous to human cells has not been realized.
  • the other is a switch that incorporates an aptamer into an intron to control splicing in the presence of the target protein and to produce different mature mRNAs (see Non-Patent Document 2).
  • This switch can control the expression of fluorescent proteins and prodrug activating enzymes in response to NF-kB and CTNNB1 ( ⁇ -catenin).
  • NF-kB and CTNNB1 ⁇ -catenin
  • the protein that binds to the aptamer needs to be present in the nucleus, so the target protein is limited to the nuclear localization protein.
  • splicing control it is difficult to introduce a system other than DNA such as a plasmid or a viral vector.
  • a switch that is not limited to a target protein, can introduce mRNA, and can detect the expression of an underlying protein. Since mRNA controls gene expression by controlling translation, the function of the switch can be realized by direct introduction of mRNA, and mRNA that detects microRNA and controls translation must be developed (Non-patent Document 3). However, the development of an mRNA switch that can detect human endogenous proteins and control translation has not been realized yet.
  • the present inventors have discovered that a human cell endogenous protein can be specifically and quantitatively detected in a living cell by introducing an mRNA having an aptamer sequence specific to the cell endogenous protein into the cell. Furthermore, the present inventors designed an mRNA having an aptamer sequence for an endogenous protein specific to an induced pluripotent stem (iPS) cell and an aptamer sequence that has stabilized the aptamer sequence, and introduced this into the cell. Thus, it was discovered that the differentiation state and reprogramming state of cells can be detected, and the present invention has been completed.
  • iPS induced pluripotent stem
  • a method for identifying an endogenous protein comprising the following steps: (1) a step of introducing into a desired cell a cell endogenous protein-responsive mRNA or aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto, or a vector encoding the mRNA; 2) A step of identifying a cellular endogenous protein based on the translation amount of the marker gene.
  • a cell identification method comprising the following steps: (1) A step of introducing a cell endogenous protein-responsive mRNA containing an aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto or a vector encoding the mRNA into a desired cell; (2) A step of identifying cells expressing the protein based on the translation amount of the marker gene.
  • a structure-stabilized LIN28A aptamer obtained by adding one or more of the following modifications based on the RNA secondary structure formed by the natural LIN28A aptamer sequence represented by SEQ ID NO: 1: (1) AU base pairs constituting a stem including a 5 ′ terminal base and a 3 ′ terminal base are replaced with GC base pairs; (2) Replace the AU base pair constituting the stem located between the two loops with a GC base pair; or (3) Add 1 to 5 base pairs to the stem located between the two loops. [4] A structure-stabilized LIN28A aptamer represented by any one of SEQ ID NOs: 2 to 4.
  • the structure-stabilized U1A aptamer is modified as follows: (1) 1 to 15 AU base pairs or GC base pairs are added to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base, or 1 to 15 AU base pairs are added to a stem existing between two boxes.
  • a GC base pair is added; or a structure-stabilized U1A aptamer obtained by adding the following modifications based on the RNA secondary structure formed by the U1A aptamer sequence represented by SEQ ID NO: 8: (2) Add 1 to 15 AU base pairs or GC base pairs to the stem containing the 5 ′ terminal base and the 3 ′ terminal base.
  • [7] A structure-stabilized U1A aptamer represented by any one of SEQ ID NOs: 7, 9, 10, and 84.
  • An mRNA comprising the structure-stabilized aptamer sequence according to any one of [3] to [7] and a marker gene sequence operably linked thereto.
  • a method for identifying the differentiation state of a cell comprising the following steps: (1) Introduction of an mRNA containing an aptamer sequence specific to a protein expressed by undifferentiated cells and a marker gene sequence operably linked thereto, or a vector encoding the mRNA into a cell group that can contain pluripotent stem cells And (2) identifying the differentiation state of the cell based on the translation amount of the marker gene.
  • the method according to [9] wherein the aptamer sequence is a natural LIN28A aptamer sequence or the structure-stabilized aptamer sequence according to [3] or [4].
  • the present invention it is possible to detect an endogenous protein of a living cell, which has been impossible until now, with high sensitivity and quantitatively.
  • endogenous proteins in living cells it can identify induced pluripotent stem (iPS) cells and detect their differentiation and reprogramming states to classify, isolate or selectively eliminate them. Became possible.
  • iPS induced pluripotent stem
  • a stabilized aptamer particularly useful for these detections could be obtained.
  • These stabilized aptamers can be used as protein-specific sequences in the mRNA used in the method described above, and optionally bind to other molecules to strongly bind to the target protein in the cell and function. Can be useful as an anticancer agent or antagonist, or as a sensor outside the cell.
  • FIG. 1 is a diagram for explaining the mechanism of action of a protein-responsive mRNA switch.
  • a protein-responsive switch has a sequence (aftermer) that binds to a specific protein in the 5 'untranslated region (5'-UTR) of mRNA, and the target protein is linked to the target protein.
  • This molecular device has been artificially created by inserting an aftermer into the 5'-UTR of mRNA.
  • FIG. 2 is a diagram showing an outline of the plasmid used in the experiment.
  • Map information of the plasmids used as empty vectors for the switch plasmid (top) and trigger plasmid (bottom) was delineated using ApE (http://www.biology.utah.edu/jorgensen/wayned/ape/). All plasmids are transcribed from the CMV promoter.
  • an aptamer sequence was inserted into a restriction enzyme site 14 bases downstream from the transcription start point.
  • the transcription product of the trigger plasmid is bicistronically translated tagRFP with the translation of the trigger protein.
  • the trigger protein and tagRFP are translated as two independent proteins by ribosome skipping that occurs at the T2A site.
  • FIG. 3 is a secondary structure prediction diagram of the LIN28A aptamer used in the experiment.
  • FIG. 4 is a graph showing that each switch plasmid responds to LIN28A in HEK293 FT cells and is repressed in translation.
  • FIG. 5 is a graph showing that the switch plasmid into which stbC is inserted responds to LIN28A in HeLa cells and translation is suppressed.
  • FIG. 6 is a graph showing that translation is suppressed when the switch plasmid into which stbC is inserted specifically binds to LIN28A.
  • FIG. 4 is a graph showing that each switch plasmid responds to LIN28A in HEK293 FT cells and is repressed in translation.
  • FIG. 5 is a graph showing that the switch plasmid into which stbC is inserted responds to LIN28A in HeLa cells and translation is suppressed.
  • FIG. 6 is a graph showing that translation is suppress
  • FIG. 7 is a series of diagrams showing that the translation efficiency of the prepared switch changes according to the amount of LIN28A in the cell.
  • FIG. 7A is a graph showing that the translation efficiency of the switch decreases according to the amount of Lin28A expressed depending on the concentration of doxycycline.
  • FIG. 7B shows the results of confirming the expression levels of Lin28A and GAPDH at each doxycycline concentration by Western blotting.
  • FIG. 7C is a graph showing the relationship between doxycycline concentration by quantifying the relative expression level of LIN28A from the band concentration of FIG. 7B.
  • FIG. 7D is a graph showing the relationship between the relative expression level of LIN28A and the fluorescence ratio of each switch.
  • FIG. 7A is a graph showing that the translation efficiency of the switch decreases according to the amount of Lin28A expressed depending on the concentration of doxycycline.
  • FIG. 7B shows the results of confirming the expression levels of Lin28A and GAPDH at each doxycycl
  • FIG. 8 is a series of diagrams showing that the prepared LIN28A switch responds to LIN28A even during mRNA transfection.
  • FIG. 8A is a dot plot showing a cell population at each LIN28A mRNA introduction amount for a LIN28A switch into which stbC is inserted.
  • FIG. 8B is a dot plot showing that the population is separated according to the amount of LIN28A mRNA introduced in the LIN28A switch with stbC inserted.
  • the dot plot of stbC is an overlay of the dot plots shown in FIG. 8A.
  • FIG. 8C is a graph showing that translation of a LIN28A switch with stbC inserted is suppressed depending on the amount of LIN28A.
  • FIG. 8A is a dot plot showing a cell population at each LIN28A mRNA introduction amount for a LIN28A switch into which stbC is inserted.
  • FIG. 8B is
  • FIG. 9 is a series of diagrams illustrating a mechanism for separating iPS cells and differentiated cells using the LIN28A switch.
  • FIG. 9A is a diagram schematically illustrating that translation of the LIN28A switch is suppressed in iPS cells.
  • FIG. 9B is a diagram for explaining that cells into which a LIN28A switch has been introduced can be divided into iPS cells and differentiated cells by flow cytometry.
  • FIG. 10 is a series of diagrams showing that the LIN28A switch inserted with stbC undergoes translational suppression in iPS cells.
  • FIG. 10A is a diagram showing that iPS cells and differentiated cells can be distinguished on the dot plot plane of flow cytometry using the LIN28A switch.
  • FIG. 9A is a diagram schematically illustrating that translation of the LIN28A switch is suppressed in iPS cells.
  • FIG. 9B is a diagram for explaining that cells into which a LIN28A switch has been introduced can be
  • FIG. 10B is a histogram showing that the LIN28A switch inserted with stbC undergoes translational suppression in iPS cells rather than in differentiated cells.
  • FIG. 10C is a graph showing how much translation of the mRNA into which each aptamer is inserted is suppressed in iPS cells compared to differentiated cells.
  • FIG. 11 is a series of diagrams showing that the translation efficiency of the LIN28A switch changes with the progress of differentiation induction.
  • FIG. 11A is a graph comparing the translation efficiency of iPS cells and cells of each differentiation induction day.
  • FIG. 11B is a dot plot showing the result of flow cytometry of each cell and its overlay.
  • FIG. 12 is a secondary structure prediction diagram of the U1A aptamer used in the experiment.
  • FIG. 13 is a graph showing that each switch plasmid responds to U1A in HEK293 FT cells and is translationally suppressed.
  • FIG. 14 is a series of diagrams showing that the produced U1A switch undergoes translational suppression in response to U1A inherent in human cells.
  • FIG. 14A is a fluorescent photograph of the U1A switch and its mutants introduced into cells.
  • FIG. 14B is a histogram showing the amount of fluorescence of the U1A switch and its mutants.
  • FIG. 14C is a graph showing the fluorescence ratio of each U1A switch.
  • FIG. 15 is a graph showing the relative translation efficiency at the time of shRNA introduction in the U1A switch.
  • FIG. 16 is a graph showing the expression level of endogenous miRNA upon introduction of the LIN28A switch.
  • FIG. 17 is a predicted secondary structure diagram of the p50 aptamer used in the experiment.
  • FIG. 18 is a graph showing that each switch plasmid responds to p50 in HEK293 FT cells and is repressed in translation.
  • the present invention relates to a method for identifying a cellular endogenous protein.
  • the detection method includes the following steps. (1) a step of introducing into a desired cell a cell endogenous protein-responsive mRNA or aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto, or a vector encoding the mRNA; 2) A step of identifying a cellular endogenous protein based on the translation amount of the marker gene.
  • the desired cell is not particularly limited, and the cell may be arbitrary.
  • the cell may be a cell contained in a cell group collected from a multicellular species, or may be a cell contained in a cell group obtained by culturing isolated cells.
  • the cells are particularly cells collected from mammals (eg, humans, mice, monkeys, pigs, rats, etc.) or cells obtained by culturing cells isolated from mammals or mammalian cell lines. It may be.
  • somatic cells include keratinized epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue surface), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, , Adrenal medullary cells), metabolism / storage cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain (eg, blood vessels) Endothelial cells), ciliated cells with transport ability (eg, airway epithelial cells), cells for extracellular matrix secretion (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system Cells (eg, T lymphocytes), sensory cells (eg, sputum cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organs and peripheral neuron support cells
  • undifferentiated progenitor cells including somatic stem cells
  • terminally differentiated mature cells It can be used as the source of somatic cells in the invention.
  • undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • the mammal individual from which somatic cells are collected is not particularly limited, but is preferably a human.
  • the cells may be cells obtained by artificial manipulation after collecting the somatic cells.
  • identifying a cell endogenous protein refers to detecting, identifying, classifying, and selecting a cell endogenous protein using a cell alive.
  • the present invention can also be referred to as a method of identifying a cell, and in this case, it can be referred to as a method of identifying a target cell using a specific cell endogenous protein as an index.
  • the cell type that expresses the protein is identified, classified, isolated, removed, determined to be alive or dead, and a specific biological signal of the cell type is detected. Alternatively, it may include quantification and fractionation based on a specific physical or chemical signal of the cell type.
  • intracellular endogenous protein-responsive mRNA is used.
  • intracellular endogenous protein-responsive mRNA is sometimes referred to as protein-responsive mRNA or mRNA switch.
  • the protein-responsive mRNA comprises (i) an aptamer sequence specific for a cellular endogenous protein and (ii) a marker gene sequence operably linked thereto. .
  • the aptamer sequence specific to the cell endogenous protein may be any RNA aptamer sequence that specifically binds to the endogenous protein in the desired cell. Therefore, it may be a natural aptamer sequence already known in literature or the like, an artificial aptamer sequence obtained by modifying it, or other artificially produced aptamer sequences.
  • the natural aptamer sequence can be appropriately selected from, for example, a database available on the website: (Apta-Index (trademark): http://www.aptagen.com/aptamer-index/aptamer-list.aspx).
  • Artificial aptamer sequences can be obtained by a technique for selecting RNA that binds to a target protein from an RNA population containing random sequences (reference document [3]). This method is known as an evolutionary engineering method known as in vitro selection method or SELEX method. Thus, aptamers that bind to the desired protein can be obtained from artificial RNA sequences. By incorporating these aptamers into mRNA, an mRNA switch that responds to a desired protein can be created. Specific aptamers and stabilized aptamers suitable for the method of the present invention will be described in detail in the second and third embodiments.
  • the “marker gene” of (ii) used in the present invention is any marker gene that is translated in a cell and functions as a marker and enables identification of the cell. It is a gene that encodes a protein. Examples of proteins that can be translated into cells and function as markers include, for example, visualization, quantification by assisting fluorescence, luminescence, coloration, or fluorescence, luminescence, or coloration of fluorescence, fluorescent proteins, etc. Including, but not limited to, a gene that encodes a protein that can be activated, a membrane protein, or a gene that encodes a protein that kills a cell when expressed, such as an apoptosis-inducing gene or a suicide gene.
  • an apoptosis-inhibiting gene can also be used as a marker gene.
  • a protein translated from mRNA containing a nucleic acid corresponding to the coding region of the marker gene is referred to as a marker protein.
  • fluorescent proteins include blue fluorescent proteins such as Sirius, BFP, and EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, and CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (for example, hmAG1 ), Green fluorescent proteins such as ZsGreen, EmGFP, EGFP, GFP2, HyPer; yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, mBanana; KusabiraOrange (eg, hmKO2), mOrange Orange fluorescent proteins such as: TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry and other red fluorescent proteins; TurboFP602, mRFP1, JRed, KillerRed, mCh
  • the photoprotein can be exemplified by aequorin, but is not limited thereto.
  • proteins that assist fluorescence, luminescence, or coloration include, but are not limited to, enzymes that degrade fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • a substance that assists fluorescence, luminescence, or color is used as a marker gene, in selection of a cell that contains or does not contain a specific protein, the corresponding precursor is brought into contact with the cell. Alternatively, it can be done by introducing the corresponding precursor into the cell.
  • the apoptosis-inducing gene means a gene encoding a protein having apoptosis-inducing activity for cells.
  • Bim is preferably used as an apoptosis-inducing gene. .
  • the suicide gene means a gene whose expression in a cell is lethal to the cell.
  • the suicide gene may be one that causes cell death by itself (eg, diphtheria A toxin) or the expression of this gene sensitizes the cell to a specific drug (eg, Or sensitize cells to antiviral compounds by expression of the herpes simplex thymidine kinase gene.
  • suicide genes include diphtheria A toxin, herpes simplex thymidine kinase gene (HSV-TK), carboxypeptidase G2 (CPG2), carboxylesterase (CA), cytosine deaminase (CD), cytochrome P450 (cyt-450), deoxycytidine Genes encoding kinase (dCK), nitroreductase (NR), purine nucleoside phosphorylase (PNP), thymidine phosphorylase (TP), varicella-zoster virus thymidine kinase (VZV-TK), xanthine-guanine phosphoribosyltransferase (XGPRT), etc.
  • HSV-TK is preferably used as a suicide gene.
  • the marker gene may include a gene encoding a localization signal.
  • the localization signal include a nuclear localization signal, a cell membrane localization signal, a mitochondrial localization signal, a protein secretion signal, and the like.
  • a classical nuclear translocation sequence (NLS), M9 Examples include, but are not limited to, sequences, mitochondrial target sequences (MTS), and endoplasmic reticulum translocation sequences.
  • Such a localization signal is obtained when, for example, imaging cytometry described later, a cell that contains or does not contain a specific protein is detected, and further, a step of separating and sorting such cells is performed on the image. Particularly advantageous.
  • an aptamer sequence and a marker gene sequence are operatively linked to each other within the 5′UTR, 3′UTR, and / or the open reading frame (including the start codon) encoding the marker gene. It means that an aptamer sequence is provided in the open reading frame.
  • the protein-responsive mRNA preferably comprises a Cap structure (7 methylguanosine 5 ′ phosphate), an open reading frame encoding a marker gene, and a poly A tail in the 5 ′ to 3 ′ direction from the 5 ′ end.
  • the position of the aptamer sequence in mRNA may be 5′UTR, 3′UTR, or may be within the open reading frame (3 ′ side of the start codon).
  • the nucleic acid sequences (i) and (ii) are linked in this order in the 5 ′ to 3 ′ direction.
  • the number of bases and the kind of base between the cap structure and the aptamer sequence may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure.
  • the number of bases between the cap structure and the aptamer sequence can be designed to be 0 to 50 bases, preferably 0 to 20 bases.
  • the number of bases and the type of base between the aptamer sequence and the start codon may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure, and the number of bases between the aptamer sequence and the start codon is 0-50.
  • the base can be designed so that the base is preferably 10 to 30 bases.
  • an AUG serving as a start codon does not exist in the aptamer sequence.
  • the aptamer sequence is present in the 5 'UTR and AUG is included in the aptamer sequence, it should be designed to be in-frame in relation to the marker gene linked to the 3' side. Is preferred.
  • the aptamer sequence contains an AUG, it can be converted to another triplet sequence if it is not important for target binding.
  • the location of the aptamer sequence in the 5 ′ UTR can be changed as appropriate.
  • the number of bases between the cap structure and the AUG sequence in the aptamer sequence is 0 to 60 bases, for example, 0 to 15 bases, 10 to 20 bases, 20 to 30 bases, 30 to 40 bases, 40 to 50 bases , Can be designed in an arrangement of 50-60 bases.
  • it is desirable that the aptamer insertion position is close to the cap structure.
  • Such mRNA can be prepared by genetic engineering if the nucleic acid sequence is designed. For example, it can be prepared by a PCR method based on a predetermined primer and template DNA, but is not limited to a specific adjustment method. Also, a vector encoding such mRNA can be appropriately prepared using a commercially available DNA vector system once a predetermined mRNA sequence is designed and determined.
  • Step (1) is a step of introducing a protein-responsive mRNA or a vector encoding the mRNA into a desired cell (hereinafter sometimes referred to as an introduction step).
  • the protein-responsive mRNA can be introduced using a lipofection method, a liposome method, an electroporation method, a calcium phosphate coprecipitation method, a DEAE dextran method, a microinjection method, a gene gun method, or the like.
  • a lipofection method a liposome method
  • an electroporation method a calcium phosphate coprecipitation method
  • a DEAE dextran method a microinjection method
  • a gene gun method or the like.
  • two, three or four or more protein-responsive mRNAs having different aptamer sequences and marker gene sequences can be co-introduced.
  • control mRNA can be co-introduced into the target cells.
  • Control mRNA refers to mRNA that does not have an aptamer sequence and encodes a marker gene different from the marker gene encoded by protein-responsive mRNA.
  • the activity ratio of marker proteins expressed from two or more co-introduced mRNAs is constant within the cell population.
  • the introduction amount at this time varies depending on the cell group to be introduced, the mRNA to be introduced, the introduction method and the kind of the introduction reagent, and those skilled in the art can appropriately select these in order to obtain a desired translation amount.
  • the amount of control mRNA introduced can also be appropriately selected by those skilled in the art to obtain a desired translation amount.
  • the introduction of protein-responsive mRNA can also be carried out by introducing a vector encoding the mRNA.
  • Introduction with a more stable DNA vector is particularly useful when the introduced cell is not used for subsequent transplantation, for example, when used for screening or testing.
  • Introduction of a vector into a cell can be performed by the same means as introduction of mRNA. The same method can be used when introducing a vector encoding two or more kinds of protein-responsive mRNAs having different aptamer sequences and marker gene sequences, or when introducing a vector encoding a control mRNA.
  • the amount of translation of the marker gene encoded by the protein-responsive mRNA is controlled by binding the protein to the aptamer. For example, the translation amount is suppressed. The amount of translation is controlled quantitatively according to the amount of protein present in the cell.
  • the translation amount of the marker gene encoded by the protein-responsive mRNA is not suppressed. Therefore, the translation amount of the marker gene differs between a cell in which the protein is present or expressed and a cell in which the protein is not present or not expressed.
  • control mRNA expresses the marker protein regardless of the presence of the protein. This is because even when the control mRNA is introduced into the cell, the aptamer sequence does not exist in the control mRNA, so that the translation is not controlled according to the presence and / or amount of the predetermined protein.
  • the subsequent step (2) is a step of identifying a cellular endogenous protein based on the translation amount of the marker gene (hereinafter sometimes referred to as an identification step).
  • the cellular endogenous protein is identified based on the translation amount of the marker gene as described above. That is, when a cell endogenous protein specific to the aptamer sequence provided in the protein-responsive mRNA is present in the cell, the cell endogenous protein is identified based on the phenomenon that the translation amount of the marker gene is suppressed.
  • the “discriminating” mode the presence or absence of suppression of marker gene translation is detected, the presence or absence of a predetermined cellular endogenous protein is determined, and the endogenous protein is quantified by measuring the translational suppression efficiency of the marker gene
  • the marker gene is a drug resistance gene or the like
  • Other identification modes include control of target cell fate by a marker gene by an apoptosis-inducing gene, cell differentiation by a differentiation-inducing gene or a reprogramming-inducing gene, and detection of a reprogramming cell.
  • the identification step can be performed by detecting a signal from the marker protein using a predetermined detection device.
  • the detection device include, but are not limited to, a flow cytometer, an imaging cytometer, a fluorescence microscope, a light emission microscope, and a CCD camera.
  • a detection apparatus those suitable for those skilled in the art can be used depending on the marker protein and the detection mode.
  • the marker protein when the marker protein is a fluorescent protein or a luminescent protein, the marker protein can be quantified using a detection device such as a flow cytometer, an imaging cytometer, a fluorescence microscope, or a CCD camera.
  • a marker protein quantification method using a detection device such as a luminescence microscope, a CCD camera, or a luminometer is possible.
  • a detection device such as a luminescence microscope, a CCD camera, or a luminometer
  • the marker protein is a membrane-localized protein
  • a marker protein quantification method using a detection reagent specific to a cell surface protein such as an antibody and the above-described detection apparatus is possible.
  • it is an identification method such as a magnetic cell separator (MACS) that does not go through the quantification process of the marker protein, and can be performed by substantially isolating the cells.
  • a discrimination method by isolating a living cell based on expression of a marker gene by drug administration is possible. .
  • An example of a preferable identification (detection) method when the marker protein is a fluorescent protein is flow cytometry.
  • Flow cytometry can provide the intensity of light emitted by fluorescent proteins and luminescent enzymes, which are marker proteins translated in individual cells, as identification information, especially the fluorescence intensity ratio measured with a flow cytometer.
  • identification information can be obtained.
  • a fluorescent protein when used, cells with different amounts of translation of the marker gene are observed as separate bands on a flow cytometry dot plot. In other words, since cells are separated based on the amount of endogenous protein detected on a flow cytometry dot plot, it is also possible to physically separate these cells after detection. It may be an aspect. Alternatively, it is also effective to obtain identification information by measuring the fluorescence intensity ratio by cell image analysis using an imaging cytometer or the like.
  • the method for measuring the translation amount of protein-responsive mRNA is not limited to the specific method described above, and can be carried out by any other method.
  • the amount of translation can be measured by a method such as quantification of the protein expression level by Western blot, and the present invention also constitutes the case where measurement is performed using such a method.
  • the cells after measuring the amount of translation are separated, sorted, and sorted based on the presence or absence of a protein that specifically binds to the aptamer or the difference in the expression level, and further artificial processing or transplantation into the cell. Can be used for applications. Such separation, separation, and sorting are described as one aspect of the identification.
  • the mRNA when protein-responsive mRNA is directly introduced into a cell, the mRNA can be metabolized in the cell with a half-life of about 10 hours to 1 day, which is advantageous from the viewpoint of safety. It is.
  • the expression of a specific protein in the cell can be identified alive using a living cell, and This is very useful in that cells expressing a specific protein can be selectively isolated while alive. .
  • the protein-responsive mRNA according to the present embodiment and the microRNA-responsive mRNA are used in combination to detect and / or identify cells expressing a specific protein and a specific microRNA.
  • a method is mentioned.
  • the microRNA-responsive mRNA is an mRNA having a microRNA response element instead of the aptamer described above.
  • Such a microRNA response element and a method for selecting a living cell using the same are described in detail in International Publication WO2015 / 105172 by the present inventors.
  • mRNA switch protein-responsive mRNA
  • An advantage of an mRNA switch is that a protein expressed as an output can function as an input for another mRNA switch. Therefore, by combining a plurality of mRNA switches, it is possible to construct an artificial genetic circuit based on translation control and having a low risk of genome damage. In addition, by using such an artificial gene circuit, safe and highly efficient cell reprogramming (including initialization and differentiation) can be expected. Furthermore, by designing a circuit that takes a specific gene expression pattern, it can also be applied to maintain the cell state. For example, to prevent spontaneous differentiation of cultured iPS cells. Can be used.
  • the translation efficiency of the invented switch correlates with the amount of intracellular protein expression, it is considered that the amount of protein in living cells can be quantified using a protein-responsive mRNA switch.
  • This method does not require disruption of cells as in Western blotting, and it is not necessary to prepare a fusion protein with a detection tag, so it can be used to observe the amount of protein in living cells in a more natural state. .
  • the protein expression level at the level of one cell can be expected.
  • FACS it becomes possible to isolate cells expressing a specific amount of protein. .
  • the present invention is a structure-stabilized LIN28A aptamer.
  • the LIN28 aptamer is a stabilized LIN28A aptamer obtained by adding one or more of the following modifications based on the RNA secondary structure formed by the natural LIN28A aptamer sequence represented by SEQ ID NO: 1.
  • the natural LIN28A aptamer represented by SEQ ID NO: 1 has been reported to have the secondary structure represented by Original in FIG. 3 (Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080-91 (2011), on the other hand, by modifying (1), the 5 'end
  • the stem including the base and the 3 ′ terminal base can be further stabilized, and it is not necessary to replace all AU base pairs present in the natural LIN28A aptamer with GC base pairs, and at least one AU base pair can be replaced with GC.
  • Stabilization can be achieved by substituting base pairs, but from the standpoint of further stabilization, preferably more, more preferably all AU base pairs are replaced with GC base pairs.
  • modification (3) is performed on the secondary structure represented by Original in FIG. 3, the stabilized LIN28A aptamer modified (1), or the stabilized LIN28A aptamer modified (2).
  • the stem located between the two loops can be further stabilized. .
  • the base sequence important for binding to LIN28A (except the base at the root of the stem, which forms the AU base pair or GC base pair) is changed, or the loop It is not preferable to change the structure.
  • the loop structure is known as a structure that specifically recognizes the LIN28A protein.
  • base sequences important for binding to LIN28A are GNGAY (N is an arbitrary base, Y is C or U) and GGAG.
  • GGGAU and GGAG shown underlined in the table).
  • Further optional modifications include (4) adding 1 to 15 base pairs to the stem containing the 5 'terminal base and the 3' terminal base.
  • the stabilized LIN28A aptamer stbA (SEQ ID NO: 2, stbA in FIG. 3) modified by (1) above, and stabilized by modifying (1) and (2) above.
  • stbB SEQ ID NO: 3, stbB in FIG. 3
  • stbC SEQ ID NO: 4, stbC in FIG. 3 which are LIN28A aptamers.
  • Table 1 below shows the sequences of natural and stabilized three aptamers. Bases modified from the original aptamer are shown in lower case.
  • the aptamers represented by SEQ ID NOs: 1 to 4 can be used as aptamer sequences for protein-responsive mRNA according to the first embodiment.
  • the design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment.
  • the translational repression efficiency of the LIN28A-responsive mRNA used with these aptamer sequences is, in descending order, the LIN28A-responsive mRNA having the stbC sequence, the LIN28A-responsive mRNA having the stbB sequence, the LIN28A-responsive mRNA having the stbA sequence, It is a LIN28A-responsive mRNA having a natural LIN28A aptamer sequence.
  • the stabilized LIN28A aptamer according to the second embodiment is useful for detecting specific expression of LIN28A protein, and particularly useful for detecting pluripotent stem cells such as iPS cells and ES cells.
  • LIN28A-responsive mRNA also referred to as LIN28A switch
  • LIN28A switch can be expected to be used as a stem cell sorting technique. Since LIN28A is a protein present in the cytoplasm, as long as RNA enters the cytoplasm, there is an advantage that intracellular proteins can be easily detected with an mRNA switch such as LIN28A-responsive mRNA. By changing the protein expressed by the switch from a reporter protein to an apoptosis-inducing protein, cell death is induced specifically in non-stem cells.
  • the use of a protein-responsive mRNA switch has a low risk of genome damage, and can be expected to be applied to the field of regenerative medicine as a safe stem cell / differentiated cell selection technique. Therefore, development of a new nucleic acid drug with few side effects can be expected. .
  • the present invention is a structure-stabilized U1A aptamer.
  • the U1A aptamer is a structure-stabilized U1A aptamer based on the RNA secondary structure formed by the natural U1A aptamer sequence represented by SEQ ID NO: 6, with the following modifications.
  • (1) Add 1 to 15 AU base pairs or GC base pairs to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base.
  • 1 to 15 AU base pairs or GC base pairs are added to the stem between the two boxes.
  • the aptamer is designed to form a secondary structure necessary for binding to the target.
  • U1A aptamer based on the RNA secondary structure formed by the U1A aptamer sequence represented by SEQ ID NO: 8, with the following modifications.
  • (2) Add 1 to 15 AU base pairs or GC base pairs to the stem containing the 5 ′ terminal base and the 3 ′ terminal base.
  • the stem existing between Box1 and Box2 can be stabilized by modifying (1).
  • the 1 to 15 base pairs to be added may be AU base pairs, GC base pairs, or combinations thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs.
  • U1utr_stb SEQ ID NO: 7, U1utr_stb in FIG. 12
  • U1utr_stb a stabilized U1A aptamer modified in (1) above.
  • This sequence and the sequence of natural U1utr are shown in Table 2 below.
  • the U1A aptamer known in the literature represented by SEQ ID NO: 8 has been reported to have a secondary structure represented by U1LSL in FIG. 12 (reference document [5]).
  • the stem containing the 5 ′ terminal base and the 3 ′ terminal base can be stabilized by modifying (2).
  • the 1 to 15 base pairs to be added may be AU base pairs, GC base pairs, or combinations thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs.
  • U1LSL + 10 bp SEQ ID NO: 9, U1LSL + 10 bp in FIG. 12
  • U1LSL + 15 bp SEQ ID NO: 10, FIG. 12
  • the aptamers and stabilized aptamers represented by SEQ ID NOs: 5 to 10 can be used as aptamer sequences of protein-responsive mRNA according to the first embodiment.
  • the design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment. .
  • the stabilized U1A aptamer according to the third embodiment may be useful for detecting specific expression of U1A protein.
  • U1A protein has been reported to be highly expressed in certain types of cancer cells, and can be used to detect and separate cancer cells by applying the method for detecting cellular endogenous proteins based on the first embodiment. There is expected.
  • the present invention is a structure-stabilized p50 aptamer according to the fourth embodiment.
  • the p50 aptamer is an artificially obtained aptamer represented by SEQ ID NO: 83, and based on the RNA secondary structure formed by the artificial p50 aptamer reported by the literature [6], the following modifications: (1) A structure-stabilized p50 aptamer obtained by adding 1 to 20 AU base pairs or GC base pairs to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base.
  • the stem can be stabilized by modifying (1).
  • the 1 to 20 base pairs to be added may be AU base pairs, GC base pairs, or a combination thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs.
  • the added base pair is preferably 5 to 20 base pairs, more preferably 10 to 20 base pairs.
  • p50A-stb SEQ ID NO: 84, right diagram p50A-stb in FIG. 17
  • This sequence and the sequence of natural U1utr are shown in Table 3 below.
  • the aptamer and the stabilized aptamer represented by SEQ ID NO: 84 can be used as the aptamer sequence in the protein-responsive mRNA described in the first embodiment.
  • the design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment.
  • the stabilized p50 aptamer according to the fourth embodiment may be useful for detecting specific expression of cancer-associated protein p50.
  • p50 has been reported to be highly expressed in certain types of cancer cells, and can be used for detection and sorting of cancer cells by applying the method for detecting cellular endogenous proteins based on the first embodiment. Be expected.
  • the present invention is a method for identifying a differentiation state of a cell.
  • the method includes the following steps. (1) Introduction of an mRNA containing an aptamer sequence specific to a protein expressed by undifferentiated cells and a marker gene sequence operably linked thereto, or a vector encoding the mRNA into a cell group that can contain pluripotent stem cells And (2) identifying the differentiation state of the cell based on the translation amount of the marker gene.
  • identification of the differentiation state of a cell refers to identifying that a cell is differentiated or undifferentiated, its change, degree, and the like.
  • cells that have been contacted with the reprogramming factor are cultured for a predetermined method and for a period of time, and then reprogrammed to become induced pluripotent stem (iPS) cells.
  • iPS induced pluripotent stem
  • an aptamer sequence specific to a protein expressed by undifferentiated cells typically a LIN28A-responsive mRNA that specifically detects LIN28A, is used to detect cells that retain pluripotency, Can be detected and recognized, and in preferred embodiments can be separated and selectively removed.
  • the LIN28A switch can identify undifferentiated cells without significant side effects.
  • the differentiation state of cells is not limited to a specific mode, and undifferentiated cells are detected, identified, separated, and removed from a group of cells that may be a mixture of cells having different differentiation states. Make it possible.
  • the “cell group that can contain pluripotent stem cells” used in step (1) of the present embodiment is, for example, cells that have been brought into contact with an reprogramming factor and cultured after a predetermined method and period, It may be a cell that is programmed to be predicted to be in the state of an induced pluripotent stem (iPS) cell. Alternatively, it is a cell group obtained by performing a predetermined differentiation operation on pluripotent stem cells, and refers to a cell group in which undifferentiated cells can remain. However, the cell group may not contain undifferentiated cells. Alternatively, it may be a cell group that may contain any other pluripotent stem cells, and the purpose of detection and the origin of the cell group are not particularly limited. *
  • the cell brought into contact with the reprogramming factor typically refers to a cell that has been artificially manipulated for the purpose of preparing iPS cells.
  • iPS cells can be generated by introducing specific reprogramming factors into somatic cells in the form of DNA, RNA, or protein. Proliferation with almost the same characteristics as ES cells, such as differentiation pluripotency and self-renewal.
  • An artificial stem cell derived from a somatic cell having the ability K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al.
  • the reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, a gene that plays an important role in maintaining undifferentiation of ES cells, its gene product or non-coding RNA, or It may be constituted by a low molecular compound.
  • genes included in the reprogramming factor include Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination.
  • the reprogramming factors include histone deacetylase (HDAC) inhibitors [eg small molecule inhibitors such as valproic acid (VPA), trichostatin A, sodium butyrate, MC ⁇ 1293, M344, siRNA and shRNA against HDAC (eg Nucleic acid expression inhibitors such as HDAC1DACsiRNA Smartpool (registered trademark) (Millipore), HuSH 29mershRNA Constructs against HDAC1 (OriGene), etc.], MEK inhibitors (eg, PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthase kinase-3 inhibitors (eg, Bio and CHIR99021), DNA methyltransferase inhibitors (eg, 5-azacytidine), histone methyltransferase inhibitors (eg, small molecule inhibitors such as BIX-01294, Suv39hl, Suv39h2, SetDBl And nucleic acid
  • the reprogramming factor may be introduced into a somatic cell by a technique such as lipofection, fusion with a cell membrane-permeable peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
  • a cell membrane-permeable peptide for example, HIV-derived TAT and polyarginine
  • Virus vectors include retrovirus vectors, lentivirus vectors (cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (WO 2010/008054), and the like.
  • artificial chromosome vectors examples include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC).
  • HAC human artificial chromosomes
  • YAC yeast artificial chromosomes
  • BAC bacterial artificial chromosomes
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, enhancer, ribosome binding sequence, terminator, polyadenylation site, etc. so that a nuclear reprogramming substance can be expressed.
  • selectable marker sequences such as kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, thymidine kinase gene, diphtheria toxin gene, reporter gene sequences such as green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), FLAG, etc.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • FLAG FLAG
  • the above vector has a LoxP sequence before and after the introduction of the gene into a somatic cell in order to excise the gene or promoter encoding the reprogramming factor and the gene encoding the reprogramming factor that binds to it. May be.
  • RNA it may be introduced into somatic cells by techniques such as lipofection and microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine® (TriLink® Biotechnologies) is used. Yes (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • a culture solution for inducing iPS cells for example, DMEM, DMEM / F12 or DME culture solution containing 10-15% FBS (in addition to these culture solutions, LIF, penicillin / streptomycin, puromycin, L- Glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc. may be included as appropriate.
  • a commercially available culture medium for example, a culture medium for mouse ES cell culture (TX-WES culture medium, Thrombo X), primate ES Medium for cell culture (primate ES / iPS cell culture medium, Reprocell), serum-free medium (mTeSR, Stemcell Technology, Essential 8, Life Technologies, StemFit, Ajinomoto).
  • a somatic cell is brought into contact with a reprogramming factor on a DMEM or DMEM / F12 medium containing 10% FBS at 37 ° C. in the presence of 5% CO 2 for about 4 to 7 days. Then, re-spread the cells on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and use bFGF-containing primate ES cell culture medium about 10 days after contact between the somatic cells and the reprogramming factor. Culturing and generating iPS-like colonies about 30 to about 45 days or more after the contact.
  • feeder cells for example, mitomycin C-treated STO cells, SNL cells, etc.
  • 10% FBS-containing DMEM medium including LIF, penicillin / streptomycin, etc.
  • feeder cells eg, mitomycin C-treated STO cells, SNL cells, etc.
  • 5% CO 2 at 37 ° C. can be suitably included with puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc.
  • somatic cells to be reprogrammed themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin- 5 (WO2009 / 123349), Matrigel (BD) and iMatrix511 (Nippi)).
  • iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237 -241 or WO2010 / 013845). .
  • somatic cell refers to any animal cell (preferably, a mammalian cell including a human) except a germ line cell such as an egg, oocyte, ES cell, or totipotent cell.
  • Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines.
  • somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells such as dental pulp stem cells (somatic stem cells), (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells.
  • somatic cells having the same or substantially the same HLA genotype of the transplant destination individual from the viewpoint of preventing rejection.
  • substantially the same means that the HLA genotype matches the transplanted cells to such an extent that an immune response can be suppressed by an immunosuppressive agent.
  • HLA-A, HLA-B And somatic cells having an HLA type in which 3 loci of HLA-DR or 4 loci plus HLA-C are matched.
  • a pluripotent stem cell is a stem cell that has pluripotency that can be differentiated into many cells existing in a living body and also has proliferative ability, and can be arbitrarily induced into a desired differentiated cell. Cells are included.
  • pluripotent stem cells include, but are not limited to, embryonic stem (ES) cells, cloned embryo-derived embryonic stem (ntES) cells obtained by nuclear transfer, sperm stem cells (“GS cells”), embryonic Examples include germ cells (“EG cells”), induced pluripotent stem (iPS) cells, cultured fibroblasts and bone marrow stem cell-derived pluripotent cells (Muse cells).
  • ES embryonic stem
  • ntES cloned embryo-derived embryonic stem
  • GS cells sperm stem cells
  • EG cells germ cells
  • iPS induced pluripotent stem
  • Muse cells bone marrow stem cell-derived pluripotent cells
  • a preferred pluripotent stem cell is an iPS cell, more preferably a human iPS cell, from the viewpoint that it can be obtained without destroying an embryo, an egg or the like in the production process.
  • Other pluripotent stem cells other than the above iPS cells will be described below.
  • Embryonic stem cells Embryonic stem cells (ES cells) are established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice, and have the ability to proliferate through self-replication. It has stem cells.
  • ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, the embryo after the morula, in the 8-cell stage of a fertilized egg, and have the ability to differentiate into any cell that constitutes an adult, so-called differentiation. And ability to proliferate by self-replication.
  • ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (JA Thomson et al. (1998), Science 282: 1145-1147; JA Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; JA Thomson et al. (1996), Biol. Reprod 55: 254-259; JA JA Thomson and VS Marshall (1998), Curr. Top. Dev. Biol., 38: 133-165).
  • ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. In addition, maintenance of cells by subculture is performed using a culture solution to which substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (basic fibroblast growth factor (bFGF)) are added. It can be carried out.
  • LIF leukemia inhibitory factor
  • bFGF basic fibroblast growth factor
  • DMEM / F-12 culture medium supplemented with 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR and 4 ng / ml bFGF is used as the culture medium for ES cell production.
  • Human ES cells can be maintained in a humid atmosphere at 37 ° C., 5% CO 2 (H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345: 926-932).
  • ES cells also need to be passaged every 3-4 days, where passage is eg 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl 2 and 20% KSR. Can be used.
  • ES cells can be generally selected by Real-Time PCR using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog
  • OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443). -452).
  • Human ES cell lines for example, WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Institute of Regenerative Medicine (Kyoto, Japan), Kyoto University Is possible.
  • sperm stem cells are testis-derived pluripotent stem cells that are the origin of spermatogenesis. Like ES cells, these cells can be induced to differentiate into various types of cells, and have characteristics such as the ability to create chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. ( 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012).
  • GDNF glial cell line-derived neurotrophic factor
  • Embryonic germ cells are cells that are established from embryonic primordial germ cells and have the same pluripotency as ES cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of these substances (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550 -551).
  • a cloned embryo-derived ES cell obtained by nuclear transfer is a cloned embryo-derived ES cell produced by nuclear transfer technology, It has almost the same properties as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72 : 932-936; J. Byrne et al. (2007), Nature, 450: 497-502).
  • an ES cell established from an inner cell mass of a clonal embryo-derived blastocyst obtained by replacing the nucleus of an unfertilized egg with the nucleus of a somatic cell is an nt ES (nuclear transfer ES) cell.
  • nt ES nuclear transfer ES
  • nuclear transfer technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646)
  • ES cell production technology is used (Kiyaka Wakayama et al. ( 2008), Experimental Medicine, Vol.26, No.5 (extra number), 47-52).
  • Nuclear transfer can be initialized by injecting a somatic cell nucleus into a mammal's enucleated unfertilized egg and culturing for several hours.
  • Multilineage-differentiating Stress Enduring cells are pluripotent stem cells produced by the method described in WO2011 / 007900. Specifically, fibroblasts or bone marrow stromal cells are treated with trypsin for a long time. Preferably, it is a pluripotent cell obtained by trypsin treatment for 8 hours or 16 hours and then suspension culture, and is positive for SSEA-3 and CD105.
  • cardiomyocytes can be produced from pluripotent stem cells as a method for inducing differentiation into cardiomyocytes, for example, by a method reported by Laflamme MA et al. (Laflamme MA & Murry CE, Nature 2011, Review).
  • a method of producing cardiomyocytes by forming a cell mass (embryoid body) by suspension culture of induced pluripotent stem cells, myocardium in the presence of a substance that suppresses BMP signaling A method for producing cells (WO2005 / 033298), a method for producing cardiomyocytes by sequentially adding Activin A and BMP (WO2007 / 002136), and producing cardiomyocytes in the presence of a substance that promotes activation of the canonical Wnt signaling pathway
  • a method for isolating Flk / KDR positive cells from induced pluripotent stem cells and producing cardiomyocytes in the presence of cyclosporin A WO2009 / 118928.
  • tissue cells such as endothelial cells
  • hepatocytes or insulin-producing cells for example, Kajiwara M, et al, Proc Natl Acad Sci U S A. 109: 12538-12543, 2012, Kunisada Y, et al, Stem Cell Res. 8: 274-284, 2012, Nakagawa, M, et al, Sci Rep 4, 3594, 2014, etc.
  • nerve cells can be produced from pluripotent stem cells by the methods disclosed in WO2011 / 019092 and WO2011 / 158960.
  • Step (1) is a step of introducing a vector encoding an mRNA having an aptamer sequence specific to a protein expressed by an undifferentiated cell into a cell group that can contain pluripotent stem cells such as the cell group exemplified above. is there.
  • the step of introducing mRNA or vector into the cell may be the same as the method described in step (1) of the first embodiment. This step may be performed, for example, at any time during the initialization step or during the differentiation step for the embodiments (a) and (b). Differentiated state can be obtained.
  • Embodiment (a) can be performed in particular at the time when iPS-like colonies are formed and iPS cells are predicted to be generated, that is, when it is predicted that they have been reprogrammed.
  • the iPS cell culture medium contains a mixture of reprogrammed iPS cells and cells that have not been initialized at this point, and has an advantage of identifying the reprogrammed iPS cells.
  • the embodiment (b) can be carried out at a time when it is predicted that a predetermined differentiation-induced cell, for example, a cardiomyocyte or a nerve cell is obtained.
  • Step (2) is a step of identifying the differentiation state of the cell based on the translation amount of the marker gene.
  • the identification step can be performed by a method substantially similar to that described in the first embodiment. For example, by measuring the translational suppression efficiency of a marker gene, the expression level of a protein expressed by an undifferentiated cell, typically, LIN28A in the cell can be quantified. Thus, information about whether the cell is a reprogrammed iPS cell or another pluripotent stem cell (undifferentiated cell) can be obtained. IPS cells reprogrammed to a desired state and undesired undifferentiated cells remaining in differentiated cells can be selectively separated after identification or simultaneously with identification.
  • separations can be typically performed by using fluorescent proteins as marker genes and separating cells in a predetermined translation state by flow cytometry and imaging cytometry.
  • fluorescent proteins as marker genes
  • separating cells in a predetermined translation state by flow cytometry and imaging cytometry can be typically performed simultaneously with identification.
  • a drug resistance protein or a lethal gene is used as a marker protein, selective separation can be performed simultaneously with identification.
  • pluripotent stem cells such as iPS cells and ES cells can be selected according to the shape of the formed colonies.
  • cell surface proteins expressed when somatic cells are reprogrammed for example, SSEA-1, SSEA-3, SSEA-4, TRA-2-54, TRA-1-60 and TRA-1- 80
  • mRNA comprising an aptamer sequence specific to a protein expressed by an undifferentiated cell, particularly, a LIN28A-responsive mRNA is used.
  • pTAPmyc-T2A-tagRFP and pAptamerCassette-EGFP were prepared as empty vectors for the trigger plasmid and the switch plasmid, respectively.
  • pTAPmyc-T2A-tagRFP specifically, first, pIRES2-DsRed Express (Clontech) was cleaved with BamHI and NheI, and then double-stranded DNA annealed with synthetic oligos SKW003 and SKW004 was inserted, and pTAP- IRES2-DsRed Ex was produced.
  • this plasmid and pTAP-myc were cleaved with BamHI and XbaI and inserted into pTAP-IRES2-DsRed Ex to prepare pTAPmyc-IRES2-DsRed Ex.
  • the target portion was PCR amplified using pTAP-BS15-T2A-tagRFP as a template and synthetic oligos KWC0093 and KWC0094 as a primer set.
  • This PCR product and pTAPmyc-IRES2-DsRed Ex were cleaved with BglII and NotI, and the digested PCR product was inserted to obtain pTAPmyc-T2A-tagRFP.
  • PAptamerCassette-EGFP was prepared by cutting pBoxCDGC-kMet-EGFP (reference document [1]) with NheI and AgeI, and then inserting double-stranded DNA annealed with synthetic oligos SKC0041 and SKC0042.
  • a LIN28A expression plasmid pLIN28Amyc-T2A-tagRFP
  • the target portion was amplified using pTrg5H-hLin28 as a template and synthetic oligos SKC0052 and KWC0053 as a primer set.
  • This PCR product and pTAPmyc-T2A-tagRFP were cleaved with SalI and BamHI and then ligated to obtain pLIN28Amyc-T2A-tagRFP.
  • the target portion was amplified using pTrg5H-U1A as a template and synthetic oligos SKC0052 and KWC0053 as a primer set.
  • This PCR product and pTAPmyc-T2A-tagRFP were cleaved with SalI and BamHI and then ligated to obtain pU1Amyc-T2A-tagRFP.
  • the sequences of the synthetic oligo DNA used so far are shown in Table 4 below.
  • each switch plasmid In preparation of each switch plasmid, first, pAptamerCassette-EGFP was cut with AgeI and BamHI. Next, double-stranded DNAs obtained by annealing synthetic oligos with the combinations shown in Table 5 below were prepared and inserted into digested pAptamerCassette-EGFP to obtain each LIN28A switch plasmid.
  • Each U1A switch plasmid was prepared in the same manner as the LIN28A switch using oligos in the combinations shown in Table 6.
  • the 5 ′ UTR fragment, 3 ′ UTR fragment, and ORF were ligated by PCR amplification using the T7FwdA and Rev120A primer sets shown in Table 10.
  • the PCR product was purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions. When the PCR product was amplified from the plasmid before purification, it was digested with Dpn I (TOYOBO) at 37 ° C for 30 minutes.
  • the obtained mRNA was purified by FavorPrep Blood / Cultured Cell total RNA extraction clumn (Favorgen Biotech), and incubated at 37 ° C. for 30 minutes using Antarctic Phosphatase (New England Biolabs). Then, it further refine
  • HELa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) -F12 (Invitrogen) containing 10% Fetal Bovine Serum (FBS).
  • DMEM Dulbecco's Modified Eagle Medium
  • FBS Fetal Bovine Serum
  • HEK293FT cells were cultured in DMEM (Nacalai Tex) supplemented with 10% FBS, 2 mM L-Glutamine (Invitrogen), 0.1 mM Non-Essential Amino Acids (Invitrogen), and 1 mM Sodium Pyruvate (Sigma).
  • iPS cells were cultured on Laminin-coated 6-well plates using StemFit (Ajinomoto) under feeder-free conditions.
  • [MRNA transfection] The cultured cells were seeded in a 24-well plate, and the synthesized mRNA was introduced the next day. The introduction was performed using 1 ⁇ L of StmFect (Stemgent) according to the manufacturer's instructions. In experiments using HEK293FT cells, 100 ng of switch mRNA, 0 to 300 ng of trigger mRNA, and 50 ng of reference mRNA were co-introduced. In experiments using iPS cells, 100 ng of switch mRNA and 100 ng of reference mRNA were co-introduced. The medium was changed 4 to 6 hours after transfection. For transfection into iPS cells, the medium was further changed at least 1 hour before introduction.
  • EGFP and tagRFP were analyzed by a Blue laser equipped with a FITC filter (530/30 nm) and a Green laser equipped with a PE filter (585/42 nm), respectively. Dead cells and debris were excluded by forward and side light scatter signals.
  • tags and debris were excluded by forward and side light scatter signals.
  • For the calculation of the translation efficiency using a plasmid among the living cells, those with tagRFP fluorescence values above a certain level were analyzed.
  • living cells with iRFP670 or mKO2 fluorescence values above a certain level were analyzed.
  • LIN28A expression induction and transfection by doxycycline Cell lines that can induce LIN28A expression by adding doxycycline are 10% FBS, 2 mM L-Glutamine (Invitrogen), 0.1 mM Non-Essential Amino Acids (Invitrogen), 1 mM Sodium The cells were cultured in DMEM (Nacalai Tex) supplemented with Pyruvate® (Sigma). Cells were seeded in a 12-well plate and replaced with a medium containing doxycycline (0 ng / mL to 10 ng / mL) before transfection. Transfection was performed the day after seeding, and the purified plasmid was introduced so that the total amount was 400 ng.
  • the introduction was performed using 4 ⁇ L of Lipofectamine 2000® (Invitrogen) according to the manufacturer's instructions.
  • the used plasmid was mixed in Opti-MEM (Invitrogen) so that the quantitative ratio of the switch plasmid and the trigger plasmid was 1: 1.
  • the medium was changed 4 hours after transfection.
  • LIN28A was detected using Anti-human LIN28A (Goat) (R and D Systems), Rabbit anti-Goat IgG (H + L) Secondary Antibody, and HRP conjugate (Life Technologies). After the antibody treatment, chemiluminescence was performed using ECL®Plus®Western®Blotting®Detection®System® (GE®Healthcare), and observed with LAS-4000® (FUJIFILM).
  • Example 1 [Modification of natural aptamer]
  • the aptamer used in the experiment was designed to modify the aptamer known as the LIN28A binding motif (Figure 3 left; Original aptamer) so that structure formation is likely to occur on mRNA.
  • the AU base pair present in the original sequence was gradually changed to a stronger GC base pair (FIG. 3, right; stbA, stbB, stbC). According to the modification, the probability of base pairing increases and the stabilization of the structure is expected.
  • CentroidFold http://www.ncrna.org/centroidfold
  • the aptamer containing the original shown in FIG. 3 was inserted into the plasmid of FIG. 2 to obtain a switch plasmid.
  • Aptamer sequences other than the stabilized aptamer sequences shown in Table 1 are shown in Table 12 below. Bases modified from the original aptamer are shown in lower case.
  • FIG. 6 is a graph showing the translation efficiency when the LIN28A switch or a mutant thereof is introduced into HEK293FT cells.
  • the mutant means a substance in which a base involved in binding to LIN28A existing in the aptamer sequence is substituted.
  • deletion means the thing which removed the base involved in the coupling
  • FIG. 7A is a graph showing the added doxycycline concentration and the translation efficiency of each switch. It was confirmed that the switch inserted with stbC was most sensitive to translational suppression depending on the doxycycline concentration.
  • FIG. 7B shows the result of confirming whether the expression level of LIN28A is increased depending on the doxycycline concentration by Western blotting.
  • the expression of GAPDH was also detected at the same time.
  • FIG. 7C is a graph quantifying the band concentration obtained in FIG. 7B and showing the relationship with doxycycline concentration. It was confirmed that the relative expression level of LIN28A reached the upper limit when the doxycycline concentration was 3 to 4 ng / mL. This concentration corresponds to the concentration at which the fluorescence ratio of the switch with the stbC inserted reaches the lower limit in FIG. 7A.
  • FIG. 7D is a graph showing the relationship between the relative expression level and the fluorescence ratio of each switch in the compartment until the relative expression level of LIN28A reaches the upper limit. It was shown that the fluorescence ratio of each LIN28A switch and the relative expression level of LIN28A are correlated, and that the switch inserted with stbC can detect the amount of LIN28A expressed in cells with high sensitivity.
  • 8A is a plot of the fluorescence of a switch into which stbC has been inserted at the time of introduction of each amount of trigger mRNA by flow cytometry. It was confirmed that the population moved downward (translation amount from the switch mRNA decreased) according to the amount of trigger mRNA introduced.
  • FIG. 8B is a dot plot in which the switch in which another aptamer is inserted and the measurement result of FIG. 8A are superimposed.
  • the switches into which each aptamer was inserted only in the switch into which stbC was inserted, the movement of the cell population with the amount of trigger mRNA was observed. Therefore, it was suggested that the cell population can be separated depending on the expression level of LIN28A in the cell by introducing the switch into which the stbC is inserted into the cell population.
  • FIG. 8C is a graph showing the translation efficiency of switch mRNA at each trigger mRNA introduction amount.
  • the translation efficiency was determined by first dividing the fluorescence intensity of hmAG1 by the fluorescence intensity of iRFP670, and then dividing the value when the trigger mRNA was introduced and the value when it was not introduced.
  • strong translational suppression was observed in the switch inserted with stbC.
  • a decrease in translation efficiency was confirmed with an increase in the amount of trigger mRNA introduced.
  • LIN28A is a protein that is highly expressed in stem cells including iPS cells and ES cells. Therefore, iPS cells and differentiated cells can be differentiated from living cells based on the difference in the expression level of LIN28A. This suggests that iPS cells and differentiated cells can be distinguished from each other in the translation efficiency of each cell of the LIN28A switch. In other words, when LIN28A switch is introduced into cells, LIN28A is highly expressed in iPS cells, so that suppression of translation should be observed, and translational suppression should not be observed in differentiated cells (FIG. 9A).
  • cells not transfected with the switch mRNA can be removed by measuring the expression of the reference mRNA. Furthermore, by performing flow cytometry, the iPS cell population and the differentiated cell population can be separated from the difference in the fluorescence value of the switch mRNA with respect to the fluorescence value of the reference mRNA (FIG. 9B).
  • FIG. 10A is a dot plot showing the measurement results when each LIN28A switch and reference mRNA (mKO2) are co-introduced.
  • mKO2 reference mRNA
  • FIG. 10B is a histogram showing the ratio of two fluorescent signals in the dot plot of FIG. 10A.
  • FIG. 10C is a graph comparing the translation efficiency of the LIN28A switch between iPS cells and differentiated cells. The translation efficiency was obtained by first dividing the fluorescence intensity of hmAG1 by the fluorescence intensity of mKO2, and then dividing the value in iPS cells and the value in differentiated cells. It was observed that the translation efficiency of the LIN28A switch in iPS cells was reduced by more than 50% compared to differentiated cells.
  • FIG. 11A is a comparison of the translation efficiency of the switches between iPS cells on differentiation induction days 14 and 34 and undifferentiated iPS cells.
  • the fluorescence intensity of EGFP was first divided by the fluorescence intensity of tagRFP, and then the value in iPS cells and the value in differentiated cells were divided. Furthermore, the values normalized with the value of the control (No aptamer) are shown in the graph. It was confirmed that the translation efficiency of iPS cells was reduced compared to differentiated cells.
  • FIG. 11B is a dot plot showing the result of flow cytometry of each cell and its overlay. It was observed that the cell population moved upward (translation amount increased) with differentiation induction.
  • Example 3 [Scalability of human endogenous protein detection using mRNA switch]
  • a highly sensitive mRNA switch was successfully developed by stabilizing the structure of the aptamer inserted into mRNA. Whether this design principle can be applied to detection of proteins other than LIN28A was verified by creating an mRNA switch that responds to U1A.
  • U1A exists in human cells as a splicing-related protein.
  • FIG. 12 is an aptamer that binds to U1A used in the experiment.
  • U1hp and U1utr are naturally occurring aptamers.
  • the lower secondary structure ((b) in FIG. 12) was reprinted from Reference [4].
  • U1utr_stb is an aptamer used in the reference [5]. By adding a long stem structure to this aptamer, it was made difficult to interact with other regions on the mRNA, and the aptamer structure was protected. Aptamer sequences other than the stabilized aptamer sequences shown in Table 2 are shown in Table 13 below. Bases modified from the original aptamer are shown in lower case.
  • FIG. 13 is a graph comparing the translation efficiency of each switch plasmid.
  • the prepared switch plasmid was co-introduced into HEK293FT cells together with a trigger plasmid expressing U1A.
  • the translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when U1A was introduced and the value when not introduced.
  • U1utr_stb stronger translational suppression was observed in U1utr_stb, which is considered to be more stable than U1utr.
  • stronger translational suppression was observed in aptamers that had a longer stem structure added to stabilize the structure.
  • FIG. 14A is a fluorescence micrograph when each switch plasmid is introduced into HEK293FT cells together with a control trigger plasmid. Stronger translational suppression was observed in the switch inserted with the wild type (WT) aptamer than in the switch inserted with the mutant (mut) aptamer.
  • FIG. 14B is a histogram obtained by flow cytometric analysis of the cells observed in FIG. 14A.
  • 14C is a graph showing the fluorescence ratio of the switch inserted with the wild type aptamer and the switch inserted with the mutant aptamer.
  • an mRNA switch that can detect a desired protein can be produced by stabilizing the secondary structure of an aptamer that binds to an arbitrary protein.
  • Example 4 [Knockdown analysis] The cultured cells were seeded in a 24-well plate, and the next day, a total amount of 500 ng of plasmid and 5 pmol of shRNA were co-introduced. The introduction was performed using 2 ⁇ L of Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. The used plasmid was mixed in Opti-MEM (Invitrogen) so that the quantitative ratio of the switch plasmid and the reference plasmid (pTAPmyc-T2A-tagRFP) was 1: 4. The medium was changed 4 to 6 hours after transfection. The day after transfection, cells were detached from the plate and analyzed by flow cytometry through a mesh.
  • Opti-MEM Invitrogen
  • EGFP was detected with a FL1 (530/30 nm) filters filter.
  • tagRFP was detected with the FL2 (585/40 nm) filters filter.
  • the shRNA used is as follows.
  • RNA recovery, reverse transcription, and quantitative PCR were performed using miRNA Cells-to-CT kit (Applied Biosystems).
  • the miRNA TaqMan probe (Applied Biosystems) was used for the expression level of mature miRNA. The values were normalized using RNU6B. Expression levels were calculated using the ⁇ Ct method.
  • the TaqMan probes used are as follows.
  • FIG. 15 is a graph showing the relative translation efficiency at the time of shRNA introduction in the U1A switch.
  • the prepared switch plasmid was co-introduced into HEK293FT cells together with a reference plasmid expressing TAGRFP and shRNA.
  • LIN28A is involved in the maturation of a series of miRNAs belonging to the let7 family in nature. Specifically, there is a LIN28A binding site at the loop site in the precursor of let7 miRNA, and binding of LIN28A here inhibits expression of mature miRNA. Therefore, introduction of an mRNA switch capable of binding to LIN28A may affect the process of miRNA expression control. In other words, binding of endogenous LIN28A to the mRNA switch may result in insufficient miRNA maturation suppression and increased let7 family expression. To investigate this, the expression levels of three typical mature let7 families were measured by quantitative RT-PCR.
  • FIG. 16 is a graph showing the expression level of mature let7 miRNA when the LIN28A switch is introduced.
  • stbC no aptamer
  • mRNA switch using artificial aptamer The aptamers used in the U1A switch and LIN28A switch were either created using naturally occurring ones as they were, or were created using a partially extracted motif. In principle, even aptamers acquired artificially, a highly sensitive mRNA switch can be produced by utilizing the technique used this time. In order to verify this, an mRNA switch was prepared using an aptamer (p50A: SEQ ID NO: 83) that binds to p50, which is one of cancer-related proteins (FIG. 17, left diagram, reference [6]).
  • p50A SEQ ID NO: 83
  • FIG. 17 is an aptamer that binds to p50 used in the experiment. In preparing the mutant, the substituted base is indicated by an arrow in FIG.
  • FIG. 18 is a graph comparing the translation efficiency of each switch plasmid.
  • the prepared switch plasmid was co-introduced into HEK293FT cells together with a trigger plasmid expressing p50. Translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when p50 was introduced and the value when not introduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for detecting an intracellular endogenous protein using living cells. A method for identifying an intracellular endogenous protein, said method comprising the steps of: (1) a step for introducing, into a desired cell, intracellular endogenous protein-responsive mRNA that contains an aptamer sequence unique to an intracellular endogenous protein and also contains a marker gene sequence functionally bonded thereto, or a vector that codes said mRNA; and (2) a step for identifying the intracellular endogenous protein on the basis of the amount of translation of the marker gene.

Description

細胞内在性タンパク質の識別方法Identification method of endogenous protein
 本発明は、細胞内在性タンパク質の識別方法、これに用い得る安定化アプタマー、並びに細胞の分化及びリプログラミング状態の識別方法に関する。 The present invention relates to a method for identifying a cell endogenous protein, a stabilized aptamer that can be used for the method, and a method for identifying a differentiation and reprogramming state of a cell.
 標的細胞でのみ機能する人工遺伝子発現制御システムは、生命工学、医療応用において有用なツールとなりうる。細胞の種類、状態は、主にタンパク質によって決定されている。従って、ヒト細胞内のタンパク質を検知して、遺伝子発現を制御できる仕組みを開発することが重要である。 An artificial gene expression control system that functions only in target cells can be a useful tool in biotechnology and medical applications. Cell types and states are mainly determined by proteins. Therefore, it is important to develop a mechanism that can detect protein in human cells and control gene expression.
 mRNA スイッチは、mRNA の5'UTR に特定のタンパク質と結合するRNA(アプタマー)領域を持つ遺伝子スイッチである。このスイッチはmRNA 上のアプタマーにタンパク質が結合することで、自身の翻訳を抑制する。原理的には、任意のタンパク質と結合するアプタマーを組み込むことで、望んだタンパク質を検知して翻訳を抑制するmRNA スイッチが作製できる。また、mRNA を細胞に直接導入することは、従来のプラスミドによる遺伝子導入に比べ、導入効率が高く、ゲノム損傷のリスクも低い。従って、mRNA スイッチは、標的細胞でのみ機能する人工遺伝子発現制御システムとして理想的である。 The mRNA switch is a gene switch having an RNA (aptamer) region that binds to a specific protein in the 5′UTR of mRNA. This switch suppresses its own translation by binding a protein to an aptamer on mRNA. In principle, by incorporating an aptamer that binds to any protein, an mRNA switch that detects the desired protein and suppresses translation can be produced. In addition, direct introduction of mRNA into cells has higher introduction efficiency and lower risk of genome damage than conventional gene introduction using plasmids. Accordingly, the mRNA switch is ideal as an artificial gene expression control system that functions only in target cells.
 mRNA 中にアプタマーを組み込むことで作製された、ヒト細胞内で発現するタンパク質を標的とする遺伝子スイッチとして、以下の2例が知られている。一つは、3'UTR に組み込んだリボザイムの一部をヒトU1A タンパク質のアプタマーに変えたスイッチである(非特許文献1を参照)。しかし、この研究では、プラスミド導入によってU1A を過剰発現させており、ヒト細胞に内在するタンパク質への応答は実現されていない。もう一つは、イントロンにアプタマーを組み込むことで、標的タンパク質存在下でスプライシングを制御し、異なる成熟mRNA を作らせるスイッチである(非特許文献2を参照)。このスイッチは、NF-kB やCTNNB1 (β-catenin) に応答し、蛍光タンパク質やプロドラッグ活性化酵素の発現を制御できる。しかし、この研究では、アプタマーに結合するタンパク質が核内に存在する必要があるため、標的タンパク質が核局在タンパク質に限定される。また、スプライシング制御を利用するため、プラスミドやウイルスベクターといったDNA以外でのシステム導入が困難である。 The following two examples are known as gene switches that are produced by incorporating aptamers into mRNA cells and that target proteins expressed in human cells. One is a switch in which a part of ribozyme incorporated into 3′UTR is changed to an aptamer of human U1A protein (see Non-Patent Document 1). However, in this study, U1A was overexpressed by introducing a plasmid, and a response to a protein endogenous to human cells has not been realized. The other is a switch that incorporates an aptamer into an intron to control splicing in the presence of the target protein and to produce different mature mRNAs (see Non-Patent Document 2). This switch can control the expression of fluorescent proteins and prodrug activating enzymes in response to NF-kB and CTNNB1 (β-catenin). However, in this study, the protein that binds to the aptamer needs to be present in the nucleus, so the target protein is limited to the nuclear localization protein. In addition, since splicing control is used, it is difficult to introduce a system other than DNA such as a plasmid or a viral vector.
 以上から、標的タンパク質が限定されず、mRNA 導入が可能で、内在のタンパク質発現を検知できるスイッチの開発が望まれる。mRNAは、翻訳制御によって遺伝子発現をコントロールするため、mRNAの直接導入によるスイッチの機能制御を実現でき、マイクロRNAを検知し、翻訳を制御するmRNAはすでに開発されている (非特許文献3)。しかし、ヒト内在性タンパク質を検知し、翻訳を制御できるmRNAスイッチの開発は、未だ実現できていない。 From the above, it is desired to develop a switch that is not limited to a target protein, can introduce mRNA, and can detect the expression of an underlying protein. Since mRNA controls gene expression by controlling translation, the function of the switch can be realized by direct introduction of mRNA, and mRNA that detects microRNA and controls translation must be developed (Non-patent Document 3). However, the development of an mRNA switch that can detect human endogenous proteins and control translation has not been realized yet.
 これまでに作製されたmRNA スイッチでは、ヒト内在性タンパク質を検知できていない。細胞を破壊することなく、生きた状態の細胞で、ヒト細胞内在性タンパク質を検出する方法が求められている。 】 Human endogenous proteins could not be detected with the mRNA ~ switches produced so far. There is a need for a method for detecting human cell endogenous proteins in living cells without destroying the cells.
 本発明者らは、細胞内在性タンパク質に特異的なアプタマー配列を有するmRNAを細胞に導入することで、生細胞においてヒト細胞内在性タンパク質を特異的かつ定量的に検出できることを発見した。さらには、本発明者らは、人工多能性幹(iPS)細胞に特異的な内在性タンパク質に対するアプタマー配列及びこれを安定化したアプタマー配列を有するmRNAを設計し、これを細胞に導入することで、細胞の分化状態及びリプログラミング状態を検出することができることを発見し、本発明を完成するに至った。 The present inventors have discovered that a human cell endogenous protein can be specifically and quantitatively detected in a living cell by introducing an mRNA having an aptamer sequence specific to the cell endogenous protein into the cell. Furthermore, the present inventors designed an mRNA having an aptamer sequence for an endogenous protein specific to an induced pluripotent stem (iPS) cell and an aptamer sequence that has stabilized the aptamer sequence, and introduced this into the cell. Thus, it was discovered that the differentiation state and reprogramming state of cells can be detected, and the present invention has been completed.
 したがって、本発明の課題は以下の手段により解決することができる。
 [1] 細胞内在性タンパク質の識別方法であって、以下の工程を含む方法:
 (1)細胞内在性タンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含む細胞内在性タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを所望の細胞に導入する工程;及び
 (2)前記マーカー遺伝子の翻訳量に基づいて、細胞内在性タンパク質を識別する工程。
 [2] 細胞の識別方法であって、以下の工程を含む方法:
 (1)細胞内在性タンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含む細胞内在性タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを所望の細胞に導入する工程; 
 (2)前記マーカー遺伝子の翻訳量に基づいて、前記タンパク質を発現する細胞を識別する工程。
  [3] 配列番号1で表される天然型LIN28Aアプタマー配列が形成するRNA二次構造に基づき、以下の1以上の改変を加えてなる構造安定化LIN28Aアプタマー:
 (1)5’末端塩基及び3’末端塩基を含むステムを構成するAU塩基対をGC塩基対に置換する;
 (2)2つのループ間に位置するステムを構成するAU塩基対をGC塩基対に置換する;または
 (3)2つのループ間に位置するステムに、1~5の塩基対を付加する。
  [4] 配列番号2~4のいずれかで表される構造安定化LIN28Aアプタマー。
  [5] 配列番号6で表される天然型U1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化U1Aアプタマー:
 (1)5’末端塩基及び3’末端塩基を含むステム構造に1~15のAU塩基対もしくはGC塩基対を付加する、あるいは2つのボックス間に存在するステムに、1~15のAU塩基対もしくはGC塩基対を付加する;または
 配列番号8で表されるU1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化U1Aアプタマー:
 (2)5’末端塩基及び3’末端塩基を含むステムに、1~15のAU塩基対もしくはGC塩基対を付加する。
  [6] 配列番号83で表されるp50Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化p50Aアプタマー:
 5’末端塩基及び3’末端塩基を含むステム構造に1~20のAU塩基対もしくはGC塩基対を付加する。
  [7] 配列番号7、9、10、84のいずれかで表される構造安定化U1Aアプタマー。
  [8] [3]~[7]のいずれかに記載の構造安定化アプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNA。
  [9] 細胞の分化状態の識別方法であって、以下の工程を含む方法:
 (1)多能性幹細胞を含みうる細胞群に、未分化細胞が発現するタンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNA、あるいは当該mRNAをコードするベクターを導入する工程;及び
 (2)前記マーカー遺伝子の翻訳量に基づいて細胞の分化状態を識別する工程。
  [10] 前記アプタマー配列が、天然型LIN28Aアプタマー配列、または[3]もしくは[4]に記載の構造安定化アプタマー配列である、[9]に記載の方法。
Therefore, the problems of the present invention can be solved by the following means.
[1] A method for identifying an endogenous protein, comprising the following steps:
(1) a step of introducing into a desired cell a cell endogenous protein-responsive mRNA or aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto, or a vector encoding the mRNA; 2) A step of identifying a cellular endogenous protein based on the translation amount of the marker gene.
[2] A cell identification method comprising the following steps:
(1) A step of introducing a cell endogenous protein-responsive mRNA containing an aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto or a vector encoding the mRNA into a desired cell;
(2) A step of identifying cells expressing the protein based on the translation amount of the marker gene.
[3] A structure-stabilized LIN28A aptamer obtained by adding one or more of the following modifications based on the RNA secondary structure formed by the natural LIN28A aptamer sequence represented by SEQ ID NO: 1:
(1) AU base pairs constituting a stem including a 5 ′ terminal base and a 3 ′ terminal base are replaced with GC base pairs;
(2) Replace the AU base pair constituting the stem located between the two loops with a GC base pair; or (3) Add 1 to 5 base pairs to the stem located between the two loops.
[4] A structure-stabilized LIN28A aptamer represented by any one of SEQ ID NOs: 2 to 4.
[5] Based on the RNA secondary structure formed by the natural U1A aptamer sequence represented by SEQ ID NO: 6, the structure-stabilized U1A aptamer is modified as follows:
(1) 1 to 15 AU base pairs or GC base pairs are added to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base, or 1 to 15 AU base pairs are added to a stem existing between two boxes. Alternatively, a GC base pair is added; or a structure-stabilized U1A aptamer obtained by adding the following modifications based on the RNA secondary structure formed by the U1A aptamer sequence represented by SEQ ID NO: 8:
(2) Add 1 to 15 AU base pairs or GC base pairs to the stem containing the 5 ′ terminal base and the 3 ′ terminal base.
[6] A structure-stabilized p50A aptamer based on the RNA secondary structure formed by the p50A aptamer sequence represented by SEQ ID NO: 83 with the following modifications:
1 to 20 AU base pairs or GC base pairs are added to the stem structure containing the 5 ′ terminal base and the 3 ′ terminal base.
[7] A structure-stabilized U1A aptamer represented by any one of SEQ ID NOs: 7, 9, 10, and 84.
[8] An mRNA comprising the structure-stabilized aptamer sequence according to any one of [3] to [7] and a marker gene sequence operably linked thereto.
[9] A method for identifying the differentiation state of a cell, comprising the following steps:
(1) Introduction of an mRNA containing an aptamer sequence specific to a protein expressed by undifferentiated cells and a marker gene sequence operably linked thereto, or a vector encoding the mRNA into a cell group that can contain pluripotent stem cells And (2) identifying the differentiation state of the cell based on the translation amount of the marker gene.
[10] The method according to [9], wherein the aptamer sequence is a natural LIN28A aptamer sequence or the structure-stabilized aptamer sequence according to [3] or [4].
 本発明によれば、これまで不可能だった、生細胞の内在性タンパク質を生きたまま、高感度でかつ定量的に検出することができる。また、生細胞の内在性タンパク質を検出することで、人工多能性幹(iPS)細胞を識別し、かつその分化状態及びリプログラミング状態を検出し、分類、単離または選択的に排除することが可能となった。さらにはこれらの検出に特に有用な安定化アプタマーを得ることができた。これらの安定化アプタマーは、前述の方法に用いるmRNA内に設けるタンパク質特異的な配列として使用可能なほか、任意選択的に他の分子と結合させて細胞内でターゲットタンパク質に強く結合してその機能を阻害する、抗がん剤やアンタゴニストとして、もしくは細胞外ではセンサーとして有用となりうる。 According to the present invention, it is possible to detect an endogenous protein of a living cell, which has been impossible until now, with high sensitivity and quantitatively. In addition, by detecting endogenous proteins in living cells, it can identify induced pluripotent stem (iPS) cells and detect their differentiation and reprogramming states to classify, isolate or selectively eliminate them. Became possible. Furthermore, a stabilized aptamer particularly useful for these detections could be obtained. These stabilized aptamers can be used as protein-specific sequences in the mRNA used in the method described above, and optionally bind to other molecules to strongly bind to the target protein in the cell and function. Can be useful as an anticancer agent or antagonist, or as a sensor outside the cell.
図1は、タンパク質応答性mRNAスイッチの作用機構を説明する図である。タンパク質応答性スイッチは、mRNAの5’ 非翻訳領域(5’-UTR)に特定のタンパク質と結合する配列(アフタマー)か存在し、ここにトリガーとなるタンハク質か結合することて、目的タンハク質の翻訳を抑制てきる。すなわち、トリガータンパク質の存在下では、mRNAスイッチの翻訳が抑制され(図1右上)、非存在下では、正常な翻訳が行われる(図1右下)。この分子装置は、mRNAの5’-UTRにアフタマーを挿入することて人工的に作製てきる。FIG. 1 is a diagram for explaining the mechanism of action of a protein-responsive mRNA switch. A protein-responsive switch has a sequence (aftermer) that binds to a specific protein in the 5 'untranslated region (5'-UTR) of mRNA, and the target protein is linked to the target protein. Has suppressed the translation of That is, translation of the mRNA switch is suppressed in the presence of the trigger protein (upper right in FIG. 1), and normal translation is performed in the absence (lower right in FIG. 1). This molecular device has been artificially created by inserting an aftermer into the 5'-UTR of mRNA. 図2は、実験で使用したプラスミドの概要を示した図である。スイッチプラスミド(上)およびトリガープラスミド(下)の空ベクターとして使用したプラスミドのマップ情報をApE(http://www.biology.utah.edu/jorgensen/wayned/ape/)を使って描写した。すべてのプラスミドはCMVプロモーターから転写される。スイッチプラスミドは、転写開始点から14塩基下流にある制限酵素サイトにアプタマー配列を挿入した。トリガープラスミドの転写産物は、トリガータンパク質の翻訳に伴って、バイシストロニックにtagRFPの翻訳も行われる。トリガータンパク質とtagRFPは、T2A部位で生じるリボソームスキッピングによって2つの独立したタンパク質として翻訳される。従って、トリガータンパク質の発現量とtagRFPの発現量は、同じであると考えられている。FIG. 2 is a diagram showing an outline of the plasmid used in the experiment. Map information of the plasmids used as empty vectors for the switch plasmid (top) and trigger plasmid (bottom) was delineated using ApE (http://www.biology.utah.edu/jorgensen/wayned/ape/). All plasmids are transcribed from the CMV promoter. In the switch plasmid, an aptamer sequence was inserted into a restriction enzyme site 14 bases downstream from the transcription start point. The transcription product of the trigger plasmid is bicistronically translated tagRFP with the translation of the trigger protein. The trigger protein and tagRFP are translated as two independent proteins by ribosome skipping that occurs at the T2A site. Therefore, the expression level of the trigger protein and the expression level of tagRFP are considered to be the same. 図3は、実験で使用したLIN28Aアプタマーの2次構造予測図である。FIG. 3 is a secondary structure prediction diagram of the LIN28A aptamer used in the experiment. 図4は、各スイッチプラスミドがHEK293 FT細胞中でLIN28Aに応答し、翻訳抑制されることを示すグラフである。FIG. 4 is a graph showing that each switch plasmid responds to LIN28A in HEK293 FT cells and is repressed in translation. 図5は、stbCを挿入したスイッチプラスミドがHeLa細胞中でもLIN28Aに応答し、翻訳抑制されることを示すグラフである。FIG. 5 is a graph showing that the switch plasmid into which stbC is inserted responds to LIN28A in HeLa cells and translation is suppressed. 図6は、stbCを挿入したスイッチプラスミドがLIN28Aと特異的に結合することで、翻訳が抑制されることを示すグラフである。FIG. 6 is a graph showing that translation is suppressed when the switch plasmid into which stbC is inserted specifically binds to LIN28A. 図7は、作製したスイッチの翻訳効率が、細胞内のLIN28A量に従って変化することを示す一連の図である。図7Aは、ドキシサイクリンの濃度依存的に発現するLin28A量に応じて、スイッチの翻訳効率が低下することを示すグラフである。FIG. 7 is a series of diagrams showing that the translation efficiency of the prepared switch changes according to the amount of LIN28A in the cell. FIG. 7A is a graph showing that the translation efficiency of the switch decreases according to the amount of Lin28A expressed depending on the concentration of doxycycline. 図7Bは、各ドキシサイクリン濃度でのLin28A及びGAPDHの発現量をウエスタンブロッティングによって確認された結果である。FIG. 7B shows the results of confirming the expression levels of Lin28A and GAPDH at each doxycycline concentration by Western blotting. 図7Cは、図7Bのバンド濃度からLIN28Aの相対発現量を定量し、ドキシサイクリン濃度との関係を表したグラフである。FIG. 7C is a graph showing the relationship between doxycycline concentration by quantifying the relative expression level of LIN28A from the band concentration of FIG. 7B. 図7Dは、LIN28Aの相対発現量と各スイッチの蛍光比の関係を示したグラフである。FIG. 7D is a graph showing the relationship between the relative expression level of LIN28A and the fluorescence ratio of each switch. 図8は、作製したLIN28Aスイッチが、mRNAトランスフェクションでもLIN28Aに応答することを示す一連の図である。図8Aは、stbC を挿入したLIN28Aスイッチについて、各LIN28A mRNA導入量における細胞集団を表したドットプロットである。FIG. 8 is a series of diagrams showing that the prepared LIN28A switch responds to LIN28A even during mRNA transfection. FIG. 8A is a dot plot showing a cell population at each LIN28A mRNA introduction amount for a LIN28A switch into which stbC is inserted. 図8Bは、stbC を挿入したLIN28Aスイッチにおいて、LIN28A mRNAの導入量に従って、集団が分離されることを示すドットプロットである。stbCのドットプロットは、図8Aで示したドットプロットの重ね合わせである。FIG. 8B is a dot plot showing that the population is separated according to the amount of LIN28A mRNA introduced in the LIN28A switch with stbC inserted. The dot plot of stbC is an overlay of the dot plots shown in FIG. 8A. 図8Cは、stbC を挿入したLIN28AスイッチがLIN28A量依存的に翻訳抑制されることを示すグラフである。FIG. 8C is a graph showing that translation of a LIN28A switch with stbC inserted is suppressed depending on the amount of LIN28A. 図9は、LIN28Aスイッチを用いてiPS細胞と分化細胞を分離する仕組みを説明する一連の図である。図9Aは、iPS細胞でLIN28Aスイッチの翻訳が抑制されることを模式的に説明する図である。FIG. 9 is a series of diagrams illustrating a mechanism for separating iPS cells and differentiated cells using the LIN28A switch. FIG. 9A is a diagram schematically illustrating that translation of the LIN28A switch is suppressed in iPS cells. 図9Bは、LIN28Aスイッチを導入した細胞をフローサイトメトリーによって、iPS細胞と分化細胞に分けられることを説明する図である。FIG. 9B is a diagram for explaining that cells into which a LIN28A switch has been introduced can be divided into iPS cells and differentiated cells by flow cytometry. 図10は、stbC を挿入したLIN28AスイッチがiPS細胞中で翻訳抑制を受けることを示す一連の図である。図10Aは、LIN28Aスイッチを用いてフローサイトメトリーのドットプロット平面上で、iPS細胞と分化細胞を区別できることを示す図である。FIG. 10 is a series of diagrams showing that the LIN28A switch inserted with stbC undergoes translational suppression in iPS cells. FIG. 10A is a diagram showing that iPS cells and differentiated cells can be distinguished on the dot plot plane of flow cytometry using the LIN28A switch. 図10Bは、stbC を挿入したLIN28Aスイッチが分化細胞中よりも、iPS細胞中で翻訳抑制を受けることを示すヒストグラムである。FIG. 10B is a histogram showing that the LIN28A switch inserted with stbC undergoes translational suppression in iPS cells rather than in differentiated cells. 図10Cは、各アプタマーを挿入したmRNAが、分化細胞と比べてiPS細胞中でどの程度翻訳が抑制されたかを示すグラフである。FIG. 10C is a graph showing how much translation of the mRNA into which each aptamer is inserted is suppressed in iPS cells compared to differentiated cells. 図11は、分化誘導の経過に従って、LIN28Aスイッチの翻訳効率が変化することを示す一連の図である。図11Aは、iPS細胞と各分化誘導日数の細胞における翻訳効率比較したグラフである。FIG. 11 is a series of diagrams showing that the translation efficiency of the LIN28A switch changes with the progress of differentiation induction. FIG. 11A is a graph comparing the translation efficiency of iPS cells and cells of each differentiation induction day. 図11Bは、各細胞のフローサイトメトリーの結果を示したドットプロットとその重ね合わせである。FIG. 11B is a dot plot showing the result of flow cytometry of each cell and its overlay. 図12は、実験で使用したU1Aアプタマーの2次構造予測図である。FIG. 12 is a secondary structure prediction diagram of the U1A aptamer used in the experiment. 図13は、各スイッチプラスミドがHEK293 FT細胞中でU1Aに応答し、翻訳抑制されることを示すグラフである。FIG. 13 is a graph showing that each switch plasmid responds to U1A in HEK293 FT cells and is translationally suppressed. 図14は、作製したU1Aスイッチが、ヒト細胞に内在ずるU1Aに応答し、翻訳抑制を受けることを示す一連の図である。図14Aは、U1Aスイッチとその変異体を細胞に導入した際の、蛍光写真である。FIG. 14 is a series of diagrams showing that the produced U1A switch undergoes translational suppression in response to U1A inherent in human cells. FIG. 14A is a fluorescent photograph of the U1A switch and its mutants introduced into cells. 図14Bは、U1Aスイッチとその変異体の蛍光量を示したヒストグラムである。FIG. 14B is a histogram showing the amount of fluorescence of the U1A switch and its mutants. 図14Cは、各U1Aスイッチの蛍光比を示したグラフである。FIG. 14C is a graph showing the fluorescence ratio of each U1A switch. 図15は、U1AスイッチにおけるshRNA導入時の相対翻訳効率を示したグラフである。FIG. 15 is a graph showing the relative translation efficiency at the time of shRNA introduction in the U1A switch. 図16は、LIN28Aスイッチ導入時の内在miRNAの発現レベルを表すグラフである。FIG. 16 is a graph showing the expression level of endogenous miRNA upon introduction of the LIN28A switch. 図17は、実験で使用したp50アプタマーの2次構造予測図である。FIG. 17 is a predicted secondary structure diagram of the p50 aptamer used in the experiment. 図18は、各スイッチプラスミドがHEK293 FT細胞中でp50に応答し、翻訳抑制されることを示すグラフである。FIG. 18 is a graph showing that each switch plasmid responds to p50 in HEK293 FT cells and is repressed in translation.
 以下に、本発明を、実施形態を挙げて詳細に説明する。以下の実施形態は本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments. The following embodiments do not limit the present invention.
 [第1実施形態:細胞内在性タンパク質の検出方法]
 本発明は、第1実施形態によれば、細胞内在性タンパク質の識別方法に関する。当該検出方法は、以下の工程を含む方法である。
 (1)細胞内在性タンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含む細胞内在性タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを所望の細胞に導入する工程;及び
 (2)前記マーカー遺伝子の翻訳量に基づいて、細胞内在性タンパク質を識別する工程。
[First Embodiment: Method for Detecting Cellular Endogenous Protein]
According to the first embodiment, the present invention relates to a method for identifying a cellular endogenous protein. The detection method includes the following steps.
(1) a step of introducing into a desired cell a cell endogenous protein-responsive mRNA or aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto, or a vector encoding the mRNA; 2) A step of identifying a cellular endogenous protein based on the translation amount of the marker gene.
 ここで、所望の細胞とは、特に限定されるものではなく、細胞は任意であってよい。例えば、多細胞生物種から採取した細胞群に含まれる細胞であってもよく、単離された細胞を培養することによって得られる細胞群に含まれる細胞であってもよい。当該細胞は、特には、哺乳動物(例えば、ヒト、マウス、サル、ブタ、ラット等)採取した細胞、若しくは哺乳動物より単離された細胞又は哺乳動物細胞株を培養することによって得られる細胞であってよい。体細胞としては、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞 (組織前駆細胞) 等が挙げられる。細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、未分化な前駆細胞 (体性幹細胞も含む) であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。本発明において、体細胞を採取する由来となる哺乳動物個体は特に制限されないが、好ましくはヒトである。また、細胞は、前期体細胞を採取後に人為的な操作を加えた細胞であってもよい。 Here, the desired cell is not particularly limited, and the cell may be arbitrary. For example, it may be a cell contained in a cell group collected from a multicellular species, or may be a cell contained in a cell group obtained by culturing isolated cells. The cells are particularly cells collected from mammals (eg, humans, mice, monkeys, pigs, rats, etc.) or cells obtained by culturing cells isolated from mammals or mammalian cell lines. It may be. Examples of somatic cells include keratinized epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, epithelial cells of the tongue surface), exocrine glandular epithelial cells (eg, mammary cells), hormone-secreting cells (eg, , Adrenal medullary cells), metabolism / storage cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelial cells of the inner chain (eg, blood vessels) Endothelial cells), ciliated cells with transport ability (eg, airway epithelial cells), cells for extracellular matrix secretion (eg, fibroblasts), contractile cells (eg, smooth muscle cells), blood and immune system Cells (eg, T lymphocytes), sensory cells (eg, sputum cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organs and peripheral neuron support cells (eg, associated cells), central nervous system Neurons and glial cells (eg, astrocytes), pigment cells (eg Retinal pigment epithelial cells), and progenitor cells (tissue progenitor cells), etc. There is no particular limitation on the degree of cell differentiation and the age of the animal from which the cells are collected, and this is the same for both undifferentiated progenitor cells (including somatic stem cells) and terminally differentiated mature cells. It can be used as the source of somatic cells in the invention. Examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells. In the present invention, the mammal individual from which somatic cells are collected is not particularly limited, but is preferably a human. The cells may be cells obtained by artificial manipulation after collecting the somatic cells.
 また、本発明において、「細胞内在性タンパク質を識別する」とは、細胞を生きたまま用いて細胞内在性タンパク質を検出し、同定し、分類し、選別することをいうものとする。あるいは、本発明は、細胞を識別する方法ともいうことができ、この場合、特定の細胞内在性タンパク質を指標として目的の細胞を識別する方法ということができる。そして、細胞の識別には、識別の後に、当該タンパク質を発現する細胞種を同定し、分類し、単離し、除去し、生死を判定し、当該細胞種の特定の生物学的な信号を検出あるいは定量し、当該細胞種の特定の物理的あるいは化学的な信号に基づいて分画することを含んでも良い。 In the present invention, “identifying a cell endogenous protein” refers to detecting, identifying, classifying, and selecting a cell endogenous protein using a cell alive. Alternatively, the present invention can also be referred to as a method of identifying a cell, and in this case, it can be referred to as a method of identifying a target cell using a specific cell endogenous protein as an index. For cell identification, after identification, the cell type that expresses the protein is identified, classified, isolated, removed, determined to be alive or dead, and a specific biological signal of the cell type is detected. Alternatively, it may include quantification and fractionation based on a specific physical or chemical signal of the cell type.
 本実施形態の工程(1)においては、細胞内在性タンパク質応答性mRNAを用いる。本明細書において、細胞内在性タンパク質応答性mRNAを、タンパク質応答性mRNAあるいはmRNAスイッチと指称する場合もある。タンパク質応答性mRNAは、(i)細胞内在性タンパク質に特異的なアプタマー配列と(ii)それと機能的に連結したマーカー遺伝子配列を含む。      In the step (1) of this embodiment, intracellular endogenous protein-responsive mRNA is used. In the present specification, intracellular endogenous protein-responsive mRNA is sometimes referred to as protein-responsive mRNA or mRNA switch. The protein-responsive mRNA comprises (i) an aptamer sequence specific for a cellular endogenous protein and (ii) a marker gene sequence operably linked thereto. .
 (i)細胞内在性タンパク質に特異的なアプタマー配列
 細胞内在性タンパク質に特異的なアプタマー配列は、所望の細胞における内在性タンパク質に特異的に結合する任意のRNAアプタマー配列であってよい。したがって、既に文献等で既知の天然のアプタマー配列および、それを改変した人工アプタマー配列であってもよく、そのほかの人工的に作製したアプタマー配列であってもよい。天然のアプタマー配列は、例えば、ウェブサイト上で利用できるデータベース:(Apta-Index(商標):http://www.aptagen.com/aptamer-index/aptamer-list.aspx)から、適宜選択できる。人工アプタマー配列は、ランダム配列を含む RNA 集団から目的のタンパク質に結合するRNAを選別する手法(参考文献[3])によって取得可能である。この方法は、in vitro selection法またはSELEX法として知られている進化工学的手法として知られている。したがって、所望のタンパク質に結合するアプタマーが、人工の RNA配列から取得できる。そして、これらのアプタマーを mRNAに組み込むことで、所望のタンパク質に応答するmRNAスイッチを創出できる。本発明の方法に適した具体的なアプタマー及び安定化アプタマーについては、第2、3実施形態において詳述する。
(i) Aptamer Sequence Specific to Cellular Endogenous Protein The aptamer sequence specific to the cell endogenous protein may be any RNA aptamer sequence that specifically binds to the endogenous protein in the desired cell. Therefore, it may be a natural aptamer sequence already known in literature or the like, an artificial aptamer sequence obtained by modifying it, or other artificially produced aptamer sequences. The natural aptamer sequence can be appropriately selected from, for example, a database available on the website: (Apta-Index (trademark): http://www.aptagen.com/aptamer-index/aptamer-list.aspx). Artificial aptamer sequences can be obtained by a technique for selecting RNA that binds to a target protein from an RNA population containing random sequences (reference document [3]). This method is known as an evolutionary engineering method known as in vitro selection method or SELEX method. Thus, aptamers that bind to the desired protein can be obtained from artificial RNA sequences. By incorporating these aptamers into mRNA, an mRNA switch that responds to a desired protein can be created. Specific aptamers and stabilized aptamers suitable for the method of the present invention will be described in detail in the second and third embodiments.
 (ii)それと機能的に連結したマーカー遺伝子配列
 本発明において使用される (ii)の「マーカー遺伝子」とは、細胞内で翻訳されて、マーカーとして機能し、細胞の識別を可能にする任意のタンパク質をコードする遺伝子である。細胞内で翻訳されてマーカーとして機能しうるタンパク質としては、一例としては、蛍光、発光、呈色、若しくは蛍光、蛍光タンパク質などの蛍光、発光又は呈色を補助することなどにより、視覚化し、定量化することができるタンパク質をコードする遺伝子、膜タンパク質、または、アポトーシス誘導遺伝子、自殺遺伝子などの、発現することで細胞を死滅させるタンパク質をコードする遺伝子を含むが、これらに限定されない。アポトーシス誘導遺伝子と組み合わせて、アポトーシス抑制遺伝子をマーカー遺伝子として用いることもできる。本明細書において、当該マーカー遺伝子のコード領域に対応する核酸を含むmRNAより翻訳されたタンパク質を、マーカータンパク質と指称する。    
(ii) Marker gene sequence operably linked thereto The “marker gene” of (ii) used in the present invention is any marker gene that is translated in a cell and functions as a marker and enables identification of the cell. It is a gene that encodes a protein. Examples of proteins that can be translated into cells and function as markers include, for example, visualization, quantification by assisting fluorescence, luminescence, coloration, or fluorescence, luminescence, or coloration of fluorescence, fluorescent proteins, etc. Including, but not limited to, a gene that encodes a protein that can be activated, a membrane protein, or a gene that encodes a protein that kills a cell when expressed, such as an apoptosis-inducing gene or a suicide gene. In combination with an apoptosis-inducing gene, an apoptosis-inhibiting gene can also be used as a marker gene. In the present specification, a protein translated from mRNA containing a nucleic acid corresponding to the coding region of the marker gene is referred to as a marker protein.
 本発明において、蛍光タンパク質としては、Sirius、BFP、EBFPなどの青色蛍光タンパク質;mTurquoise、TagCFP、AmCyan、mTFP1、MidoriishiCyan、CFPなどのシアン蛍光タンパク質;TurboGFP、AcGFP、TagGFP、Azami-Green (例えば、hmAG1)、ZsGreen、EmGFP、EGFP、GFP2、HyPerなどの緑色蛍光タンパク質;TagYFP、EYFP、Venus、YFP、PhiYFP、PhiYFP-m、TurboYFP、ZsYellow、mBananaなどの黄色蛍光タンパク質;KusabiraOrange (例えば、hmKO2)、mOrangeなどの橙色蛍光タンパク質;TurboRFP、DsRed-Express、DsRed2、TagRFP、DsRed-Monomer、AsRed2、mStrawberryなどの赤色蛍光タンパク質;TurboFP602、mRFP1、JRed、KillerRed、mCherry、HcRed、KeimaRed(例えば、hdKeimaRed)、mRasberry、mPlumなどの近赤外蛍光タンパク質が挙げられるが、これらには限定されない。 In the present invention, fluorescent proteins include blue fluorescent proteins such as Sirius, BFP, and EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, and CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (for example, hmAG1 ), Green fluorescent proteins such as ZsGreen, EmGFP, EGFP, GFP2, HyPer; yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, mBanana; KusabiraOrange (eg, hmKO2), mOrange Orange fluorescent proteins such as: TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry and other red fluorescent proteins; TurboFP602, mRFP1, JRed, KillerRed, mCherry, HcRed, KeimaRed (eg, hdKeimaRed), mRasberry, Examples include, but are not limited to, near infrared fluorescent proteins such as mPlum.
 本発明において、発光タンパク質としては、イクオリンを例示することができるが、これに限定されない。また、蛍光、発光又は呈色を補助するタンパク質として、ルシフェラーゼ、ホスファターゼ、ペルオキシダーゼ、βラクタマーゼなどの蛍光、発光又は呈色前駆物質を分解する酵素を例示することができるが、これらには限定されない。ここで本発明において、蛍光、発光又は呈色を補助する物質をマーカー遺伝子として使用する場合、特定のタンパク質を内在する、あるいは内在しない細胞の選別において、対応する前駆物質と細胞を接触させること、又は細胞内に対応する前駆物質を導入することによって行われ得る。 In the present invention, the photoprotein can be exemplified by aequorin, but is not limited thereto. Examples of proteins that assist fluorescence, luminescence, or coloration include, but are not limited to, enzymes that degrade fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and β-lactamase. Here, in the present invention, when a substance that assists fluorescence, luminescence, or color is used as a marker gene, in selection of a cell that contains or does not contain a specific protein, the corresponding precursor is brought into contact with the cell. Alternatively, it can be done by introducing the corresponding precursor into the cell.
 本発明において、アポトーシス誘導遺伝子とは、細胞に対してアポトーシス誘導活性を有するタンパク質をコードする遺伝子を意味する。例えば、IκB、Smac/DIABLO、ICE、HtrA2/OMI、AIF、endonuclease G、Bax、Bak、Noxa、Hrk (harakiri)、Mtd、Bim、Bad、Bid、PUMA、activated caspase-3、Fas、Tk等が挙げられるが、これらに限定されない。本発明において、好ましくは、Bimがアポトーシス誘導遺伝子として用いられる。         In the present invention, the apoptosis-inducing gene means a gene encoding a protein having apoptosis-inducing activity for cells. For example, IκB, Smac / DIABLO, ICE, HtrA2 / OMI, AIF, endonuclease G, Bax, Bak, Noxa, Hrk (harakiri), Mtd, Bim, Bad, Bid, PUMA, activated caspase-3, Fas, Tk, etc. For example, but not limited to. In the present invention, Bim is preferably used as an apoptosis-inducing gene. .
 本発明において自殺遺伝子とは、細胞におけるその発現がその細胞にとって致死的である遺伝子を意味する。本発明において、自殺遺伝子は、それ自体で細胞死をもたらすもの(例えば、ジフテリアA毒素)であってもよく、またはこの遺伝子の発現が、特定の薬物に対して細胞を感受性にするもの(例えば、単純ヘルペスチミジンキナーゼ遺伝子の発現により、抗ウィルス化合物に対して細胞を感受性にする)であってもよい。自殺遺伝子として、例えば、ジフテリアA毒素、単純ヘルペスチミジンキナーゼ遺伝子(HSV-TK)、カルボキシペプチダーゼG2(CPG2)、カルボキシルエステラーゼ(CA)、シトシンデアミナーゼ(CD)、チトクロームP450(cyt-450)、デオキシシチジンキナーゼ(dCK)、ニトロレダクターゼ(NR)、プリンヌクレオシドホスホリラーゼ(PNP)、チミジンホスホリラーゼ(TP)、水痘帯状疱疹ウィルスチミジンキナーゼ(VZV-TK)、キサンチン-グアニンホスホリボシルトランスフェラーゼ(XGPRT)をコードする遺伝子等が挙げられるが、これらに限定されない。本発明において、好ましくは、HSV-TKが自殺遺伝子として用いられる。 In the present invention, the suicide gene means a gene whose expression in a cell is lethal to the cell. In the present invention, the suicide gene may be one that causes cell death by itself (eg, diphtheria A toxin) or the expression of this gene sensitizes the cell to a specific drug (eg, Or sensitize cells to antiviral compounds by expression of the herpes simplex thymidine kinase gene. Examples of suicide genes include diphtheria A toxin, herpes simplex thymidine kinase gene (HSV-TK), carboxypeptidase G2 (CPG2), carboxylesterase (CA), cytosine deaminase (CD), cytochrome P450 (cyt-450), deoxycytidine Genes encoding kinase (dCK), nitroreductase (NR), purine nucleoside phosphorylase (PNP), thymidine phosphorylase (TP), varicella-zoster virus thymidine kinase (VZV-TK), xanthine-guanine phosphoribosyltransferase (XGPRT), etc. However, it is not limited to these. In the present invention, HSV-TK is preferably used as a suicide gene.
 本発明において、上記マーカー遺伝子は、局在化シグナルをコードする遺伝子を備えていてもよい。局在化シグナルとしては、核局在化シグナル、細胞膜局在化シグナル、ミトコンドリア局在化シグナル、タンパク質分泌シグナル等を挙げることができ、具体的には、古典的核移行配列(NLS)、M9配列、ミトコンドリア標的配列(MTS)、小胞体移行配列を挙げることができるが、これらには限定されない。このような局在化シグナルは、後述するイメージングサイトメトリー等で、特定のタンパク質を内在する、あるいは内在しない細胞を検出し、さらにそのような細胞を分離・選別する工程を画像上で行うときに特に有利である。 In the present invention, the marker gene may include a gene encoding a localization signal. Examples of the localization signal include a nuclear localization signal, a cell membrane localization signal, a mitochondrial localization signal, a protein secretion signal, and the like. Specifically, a classical nuclear translocation sequence (NLS), M9 Examples include, but are not limited to, sequences, mitochondrial target sequences (MTS), and endoplasmic reticulum translocation sequences. Such a localization signal is obtained when, for example, imaging cytometry described later, a cell that contains or does not contain a specific protein is detected, and further, a step of separating and sorting such cells is performed on the image. Particularly advantageous.
 本発明において、アプタマー配列とマーカー遺伝子配列が機能的に連結されるとは、マーカー遺伝子をコードするオープンリーディングフレーム(ただし、開始コドンを含む)の5'UTR内、3'UTR内、及び/または当該オープンリーディングフレーム内に、アプタマー配列を備えることを意味する。タンパク質応答性mRNAは、好ましくは、5’末端から、5’から3’の向きに、Cap構造(7メチルグアノシン5’リン酸)、マーカー遺伝子をコードするオープンリーディングフレーム並びに、ポリAテイルを備え、5'UTR内、3'UTR内、及び/またはオープンリーディングフレーム内にアプタマー配列を備える。mRNAにおけるアプタマー配列の位置は、5'UTRであっても、3'UTRであってもよく、オープンリーディングフレーム内(開始コドンの3’側)であってもよい。 In the present invention, an aptamer sequence and a marker gene sequence are operatively linked to each other within the 5′UTR, 3′UTR, and / or the open reading frame (including the start codon) encoding the marker gene. It means that an aptamer sequence is provided in the open reading frame. The protein-responsive mRNA preferably comprises a Cap structure (7 methylguanosine 5 ′ phosphate), an open reading frame encoding a marker gene, and a poly A tail in the 5 ′ to 3 ′ direction from the 5 ′ end. An aptamer sequence within the 5'UTR, 3'UTR, and / or in the open reading frame. The position of the aptamer sequence in mRNA may be 5′UTR, 3′UTR, or may be within the open reading frame (3 ′ side of the start codon).
 好ましくは、タンパク質応答性mRNAは、(i)および(ii)の核酸配列が、5'から3'の方向にこの順序で連結されている。このとき、cap構造とアプタマー配列との間の塩基数及び塩基の種類は、ステム構造や立体構造を構成しない限り、任意であってよい。例えば、cap構造とアプタマー配列との間の塩基数は、0~50塩基、好ましくは、0~20塩基となるように設計することができる。また、アプタマー配列と開始コドンとの間の塩基数及び塩基の種類は、ステム構造や立体構造を構成しない限り、任意であってよく、アプタマー配列と開始コドンと間の塩基数は、0~50塩基、好ましくは、10~30塩基となるような配置にて設計することができる。 Preferably, in the protein-responsive mRNA, the nucleic acid sequences (i) and (ii) are linked in this order in the 5 ′ to 3 ′ direction. At this time, the number of bases and the kind of base between the cap structure and the aptamer sequence may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure. For example, the number of bases between the cap structure and the aptamer sequence can be designed to be 0 to 50 bases, preferably 0 to 20 bases. The number of bases and the type of base between the aptamer sequence and the start codon may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure, and the number of bases between the aptamer sequence and the start codon is 0-50. The base can be designed so that the base is preferably 10 to 30 bases.
 本発明において、アプタマー配列内には、開始コドンとなるAUGが存在しないことが好ましい。例えば、アプタマー配列が5'UTRに存在し、かつ、当該アプタマー配列内にAUGを含む場合には、3'側に連結されるマーカー遺伝子との関係上でインフレームとなるように設計されることが好ましい。あるいは、アプタマー配列内にAUGを含む場合、標的との結合に重要でなければ、AUGを別のトリプレット配列に変換可能である。AUGがステム構造内に存在し、当該塩基を置換する場合は、置換後も塩基対を形成するように、対応する塩基も置換する。また、アプタマー配列内のAUGの影響を最小限に留めるために、5'UTR内におけるアプタマー配列の配置場所を適宜変更することができる。例えば、cap構造とアプタマー配列内のAUG配列との間の塩基数が、0~60塩基、例えば、0~15塩基、10~20塩基、20~30塩基、30~40塩基、40~50塩基、50~60塩基となるような配置にて設計され得る。但し、アプタマーの挿入位置は、cap構造に近いことが望ましい。 In the present invention, it is preferable that an AUG serving as a start codon does not exist in the aptamer sequence. For example, if the aptamer sequence is present in the 5 'UTR and AUG is included in the aptamer sequence, it should be designed to be in-frame in relation to the marker gene linked to the 3' side. Is preferred. Alternatively, if the aptamer sequence contains an AUG, it can be converted to another triplet sequence if it is not important for target binding. When AUG is present in the stem structure and the base is substituted, the corresponding base is also substituted so that a base pair is formed after the substitution. In addition, in order to minimize the influence of AUG in the aptamer sequence, the location of the aptamer sequence in the 5 ′ UTR can be changed as appropriate. For example, the number of bases between the cap structure and the AUG sequence in the aptamer sequence is 0 to 60 bases, for example, 0 to 15 bases, 10 to 20 bases, 20 to 30 bases, 30 to 40 bases, 40 to 50 bases , Can be designed in an arrangement of 50-60 bases. However, it is desirable that the aptamer insertion position is close to the cap structure.
 このようなmRNAは、その核酸配列が設計されれば、遺伝子工学的に調製することができる。例えば、所定のプライマーと鋳型DNAに基づき、PCR法で調製することができるが、特定の調整方法には限定されない。また、このようなmRNAをコードするベクターについても、所定のmRNA配列が設計され、決定されれば、市販のDNAベクターシステムを用いて、適宜調製することができる。 Such mRNA can be prepared by genetic engineering if the nucleic acid sequence is designed. For example, it can be prepared by a PCR method based on a predetermined primer and template DNA, but is not limited to a specific adjustment method. Also, a vector encoding such mRNA can be appropriately prepared using a commercially available DNA vector system once a predetermined mRNA sequence is designed and determined.
 次に、本発明の各工程について説明する。工程(1)は、所望の細胞に、タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを導入する工程である(以下、導入工程と指称することがある)。 Next, each step of the present invention will be described. Step (1) is a step of introducing a protein-responsive mRNA or a vector encoding the mRNA into a desired cell (hereinafter sometimes referred to as an introduction step).
 タンパク質応答性mRNAの導入工程は、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて実施することができる。任意選択的に、アプタマー配列及びマーカー遺伝子配列が異なる2種、3種あるいは4種以上のタンパク質応答性mRNAを共導入することができる。さらに、この時、場合により、コントロールmRNAを、対象細胞に共導入することができる。コントロールmRNAとは、アプタマー配列を有さず、タンパク質応答性mRNAがコードするマーカー遺伝子とは異なるマーカー遺伝子をコードするmRNAをいう。共導入した2以上のmRNAから発現するマーカータンパク質の活性比は、細胞集団内において一定である。また、この時の導入量は、導入される細胞群、導入するmRNA、導入方法および導入試薬の種類により異なり、所望の翻訳量を得るために当業者は適宜これらを選択することができる。コントロールmRNAの導入量もまた、所望の翻訳量を得るために当業者は適宜これらを選択することができる。 The protein-responsive mRNA can be introduced using a lipofection method, a liposome method, an electroporation method, a calcium phosphate coprecipitation method, a DEAE dextran method, a microinjection method, a gene gun method, or the like. Optionally, two, three or four or more protein-responsive mRNAs having different aptamer sequences and marker gene sequences can be co-introduced. Furthermore, at this time, in some cases, control mRNA can be co-introduced into the target cells. Control mRNA refers to mRNA that does not have an aptamer sequence and encodes a marker gene different from the marker gene encoded by protein-responsive mRNA. The activity ratio of marker proteins expressed from two or more co-introduced mRNAs is constant within the cell population. In addition, the introduction amount at this time varies depending on the cell group to be introduced, the mRNA to be introduced, the introduction method and the kind of the introduction reagent, and those skilled in the art can appropriately select these in order to obtain a desired translation amount. The amount of control mRNA introduced can also be appropriately selected by those skilled in the art to obtain a desired translation amount.
 タンパク質応答性mRNAの導入は、当該mRNAをコードするベクターを導入することによっても実施することができる。より安定なDNAベクターでの導入は、導入した細胞を、その後に生体移植等して用いることがない場合、例えばスクリーニング用途や試験用とで用いる場合に、特に有用となる。ベクターの細胞への導入は、mRNAの導入と同様の手段で実施することができる。アプタマー配列及びマーカー遺伝子配列が異なる2種以上のタンパク質応答性mRNAをコードするベクターを導入する場合や、コントロールmRNAをコードするベクターを導入する場合も、同様の方法で実施することができる。 The introduction of protein-responsive mRNA can also be carried out by introducing a vector encoding the mRNA. Introduction with a more stable DNA vector is particularly useful when the introduced cell is not used for subsequent transplantation, for example, when used for screening or testing. Introduction of a vector into a cell can be performed by the same means as introduction of mRNA. The same method can be used when introducing a vector encoding two or more kinds of protein-responsive mRNAs having different aptamer sequences and marker gene sequences, or when introducing a vector encoding a control mRNA.
 タンパク質応答性mRNAが細胞に導入されると、細胞内にアプタマーに特異的なタンパク質が存在する場合、当該タンパク質がアプタマーに結合することにより、タンパク質応答性mRNAがコードするマーカー遺伝子の翻訳量が制御、例えば翻訳量が抑制される。そして、翻訳量の制御は、細胞内のタンパク質の存在量に応じて定量的になされる。一方、細胞に当該タンパク質が存在しない場合、タンパク質応答性mRNAがコードするマーカー遺伝子の翻訳量が抑制されることはない。したがって、当該タンパク質が存在もしくは発現している細胞と、存在もしくは発現してない細胞との間で、マーカー遺伝子の翻訳量が異なる。一方、コントロールmRNAは、タンパク質の存在に関係なくマーカータンパク質を発現する。コントロールmRNAが細胞に導入されても、コントロールmRNAにはアプタマー配列が存在しないため、所定のタンパク質の存在及び/または量に応じて翻訳制御されることがないためである。 When protein-responsive mRNA is introduced into a cell, if there is a protein specific to the aptamer in the cell, the amount of translation of the marker gene encoded by the protein-responsive mRNA is controlled by binding the protein to the aptamer. For example, the translation amount is suppressed. The amount of translation is controlled quantitatively according to the amount of protein present in the cell. On the other hand, when the protein does not exist in the cell, the translation amount of the marker gene encoded by the protein-responsive mRNA is not suppressed. Therefore, the translation amount of the marker gene differs between a cell in which the protein is present or expressed and a cell in which the protein is not present or not expressed. On the other hand, the control mRNA expresses the marker protein regardless of the presence of the protein. This is because even when the control mRNA is introduced into the cell, the aptamer sequence does not exist in the control mRNA, so that the translation is not controlled according to the presence and / or amount of the predetermined protein.
 続く工程(2)は、前記マーカー遺伝子の翻訳量に基づいて、細胞内在性タンパク質を識別する工程である(以下、識別工程と指称することがある)。識別工程では、上記のようなマーカー遺伝子の翻訳量に基づいて、細胞内在性タンパク質を識別する。すなわち、タンパク質応答性mRNAが備えるアプタマー配列に特異的な細胞内在性タンパク質が細胞内に存在する場合には、マーカー遺伝子の翻訳量が抑制されるという現象に基づき、細胞内在性タンパク質を識別する。「識別する」態様には、マーカー遺伝子の翻訳の抑制の有無を検出し、所定の細胞内在性タンパク質の有無を判定すること、マーカー遺伝子の翻訳抑制効率を測定することにより細胞内在性タンパク質を定量する態様、さらには、マーカー遺伝子が薬剤耐性遺伝子等の場合には、薬剤存在下での培養後の細胞の生死に基づいて、細胞内在性タンパク質の存在を確認することが挙げられるが、これらには限定されない。その他の、識別の態様としては、マーカー遺伝子がアポトーシス誘導遺伝子による標的細胞運命の制御、分化誘導遺伝子またはリプログラミング誘導遺伝子による細胞分化やリプログラミング細胞の検出が挙げられる。 The subsequent step (2) is a step of identifying a cellular endogenous protein based on the translation amount of the marker gene (hereinafter sometimes referred to as an identification step). In the identification step, the cellular endogenous protein is identified based on the translation amount of the marker gene as described above. That is, when a cell endogenous protein specific to the aptamer sequence provided in the protein-responsive mRNA is present in the cell, the cell endogenous protein is identified based on the phenomenon that the translation amount of the marker gene is suppressed. In the “discriminating” mode, the presence or absence of suppression of marker gene translation is detected, the presence or absence of a predetermined cellular endogenous protein is determined, and the endogenous protein is quantified by measuring the translational suppression efficiency of the marker gene In addition, in the case where the marker gene is a drug resistance gene or the like, it is possible to confirm the presence of the endogenous protein based on the viability of the cell after culturing in the presence of the drug. Is not limited. Other identification modes include control of target cell fate by a marker gene by an apoptosis-inducing gene, cell differentiation by a differentiation-inducing gene or a reprogramming-inducing gene, and detection of a reprogramming cell.
 具体的には、識別工程は、所定の検出装置を用いて、マーカータンパク質からの信号を検出することにより実施することができる。検出装置としては、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、発光顕微鏡、CCDカメラ等が挙げられるが、これらには限定されない。このような検出装置は、マーカータンパク質及び検出の態様により、当業者が適したものを用いることができる。例えば、マーカータンパク質が、蛍光タンパク質又は発光タンパク質の場合には、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、CCDカメラといった検出装置を用いてマーカータンパク質の定量が可能であり、マーカータンパク質が、蛍光、発光又は呈色を補助するタンパク質の場合には、発光顕微鏡、CCDカメラ、ルミノメーターといった検出装置を用いたマーカータンパク質の定量方法が可能であり、マーカータンパク質が、膜局在タンパク質の場合には、抗体などの細胞表面タンパク質特異的な検出試薬と、上記の検出装置を用いたマーカータンパク質の定量方法が可能である。その他、磁気細胞分離装置(MACS)といった、マーカータンパク質の定量過程を経ない識別方法であって、実質的には細胞を単離することによる識別方法も可能であり、マーカータンパク質が薬剤耐性遺伝子の場合、薬剤投与によりマーカー遺伝子の発現に基づいて生細胞を単離することによる識別方法が可能である。      Specifically, the identification step can be performed by detecting a signal from the marker protein using a predetermined detection device. Examples of the detection device include, but are not limited to, a flow cytometer, an imaging cytometer, a fluorescence microscope, a light emission microscope, and a CCD camera. As such a detection apparatus, those suitable for those skilled in the art can be used depending on the marker protein and the detection mode. For example, when the marker protein is a fluorescent protein or a luminescent protein, the marker protein can be quantified using a detection device such as a flow cytometer, an imaging cytometer, a fluorescence microscope, or a CCD camera. In the case of a protein that assists in luminescence or coloration, a marker protein quantification method using a detection device such as a luminescence microscope, a CCD camera, or a luminometer is possible. When the marker protein is a membrane-localized protein, A marker protein quantification method using a detection reagent specific to a cell surface protein such as an antibody and the above-described detection apparatus is possible. In addition, it is an identification method such as a magnetic cell separator (MACS) that does not go through the quantification process of the marker protein, and can be performed by substantially isolating the cells. In this case, a discrimination method by isolating a living cell based on expression of a marker gene by drug administration is possible. .
 マーカータンパク質が蛍光タンパク質の場合の好ましい識別(検出)方法の一例として、フローサイトメトリーが挙げられる。フローサイトメトリーは、個々の細胞において翻訳されたマーカータンパク質である、蛍光タンパク質、発光酵素が発する光の強度を、識別の情報として提供することができ、特にはフローサイトメーターで測定した蛍光強度比の計測により、識別の情報を得ることができる。例えば、蛍光タンパク質を用いる場合、マーカー遺伝子の翻訳量の異なる細胞は、フローサイトメトリーのドットプロット上で、分離した帯状に観察される。すなわち、フローサイトメトリーのドットプロット上で、検出される内在性タンパク質の量に基づいて細胞が分離されるため、検出後にこれらの細胞を物理的に分離することも可能となり、これも識別の一態様であってよい。あるいは、イメージングサイトメーター等を用いた細胞画像解析による蛍光強度比の測定により、識別の情報を得ることも有効である。 An example of a preferable identification (detection) method when the marker protein is a fluorescent protein is flow cytometry. Flow cytometry can provide the intensity of light emitted by fluorescent proteins and luminescent enzymes, which are marker proteins translated in individual cells, as identification information, especially the fluorescence intensity ratio measured with a flow cytometer. Thus, identification information can be obtained. For example, when a fluorescent protein is used, cells with different amounts of translation of the marker gene are observed as separate bands on a flow cytometry dot plot. In other words, since cells are separated based on the amount of endogenous protein detected on a flow cytometry dot plot, it is also possible to physically separate these cells after detection. It may be an aspect. Alternatively, it is also effective to obtain identification information by measuring the fluorescence intensity ratio by cell image analysis using an imaging cytometer or the like.
 なお、タンパク質応答性mRNAの翻訳量の測定方法は、上記した特定の方法のみには限定されず、他の任意の方法で実施することができる。例えば、ウエスタンブロットによるタンパク質発現量の定量といった方法での翻訳量の測定が可能であり、このような方法を用いて測定した場合も本発明を構成するものとする。 The method for measuring the translation amount of protein-responsive mRNA is not limited to the specific method described above, and can be carried out by any other method. For example, the amount of translation can be measured by a method such as quantification of the protein expression level by Western blot, and the present invention also constitutes the case where measurement is performed using such a method.
 翻訳量を測定した後の細胞は、例えば、アプタマーに特異的に結合するタンパク質の有無あるいは発現量の相違に基づいて、分離、分別、選別し、当該細胞へのさらなる人工的な処理や、移植用途に使用することができる。このような分離、分別、選別については、上記識別の一態様として説明している。特に、工程(1)において、タンパク質応答性mRNAを直接細胞に導入した場合には、mRNAは約10時間から1日程度の半減期で、細胞内で代謝されうるため、安全性の面から有利である。本実施形態による細胞内在性タンパク質の識別方法及び細胞の識別方法によれば、細胞内における特定のタンパク質の発現を、生きたままの細胞を用いて、生きたまま識別することができ、さらに、特定のタンパク質を発現する細胞を生きたままで選択的に分離することができる点で非常に有用である。       The cells after measuring the amount of translation are separated, sorted, and sorted based on the presence or absence of a protein that specifically binds to the aptamer or the difference in the expression level, and further artificial processing or transplantation into the cell. Can be used for applications. Such separation, separation, and sorting are described as one aspect of the identification. In particular, in the step (1), when protein-responsive mRNA is directly introduced into a cell, the mRNA can be metabolized in the cell with a half-life of about 10 hours to 1 day, which is advantageous from the viewpoint of safety. It is. According to the method for identifying a cellular endogenous protein and the method for identifying a cell according to this embodiment, the expression of a specific protein in the cell can be identified alive using a living cell, and This is very useful in that cells expressing a specific protein can be selectively isolated while alive. .
 さらなる応用形態として、本実施形態によるタンパク質応答性mRNAと、マイクロRNA応答性mRNAとを併用することにより、特定のタンパク質と特定のマイクロRNAを発現している細胞を検出し、及び/または識別する方法が挙げられる。マイクロRNA応答性mRNAは、上記のアプタマーに代えて、マイクロRNA応答配列を備えるmRNAである。このようなマイクロRNA応答配列及びこれらを用いた生細胞の選別方法については、本発明者らによる国際公開公報WO2015/105172に詳述されている。 As a further application mode, the protein-responsive mRNA according to the present embodiment and the microRNA-responsive mRNA are used in combination to detect and / or identify cells expressing a specific protein and a specific microRNA. A method is mentioned. The microRNA-responsive mRNA is an mRNA having a microRNA response element instead of the aptamer described above. Such a microRNA response element and a method for selecting a living cell using the same are described in detail in International Publication WO2015 / 105172 by the present inventors.
 本実施形態に用いられるタンパク質応答性mRNA(mRNAスイッチとも指称する)およびその作製原理によって、将来以下のことが期待できる。mRNAスイッチの利点として、アウトプットとして発現するタンパク質が、別のmRNAスイッチのインプットとして機能しうる点がある。従って、複数のmRNAスイッチを組み合わせることで、翻訳制御を基盤とした、ゲノム損傷のリスクが低い人工遺伝子回路の構築が可能となる。また、このような人工遺伝子回路を利用することで、安全で高効率な細胞のリプログラミング(初期化、分化を含む)が期待できる。さらに、特定の遺伝子発現パターンを取るような回路を設計することで、細胞状態の維持にも応用が期待でき、例えば培養しているiPS細胞が自然に分化してしまうのを防ぐ等の目的で用いることができる。 The following can be expected in the future depending on the protein-responsive mRNA (also referred to as mRNA switch) used in the present embodiment and its production principle. An advantage of an mRNA switch is that a protein expressed as an output can function as an input for another mRNA switch. Therefore, by combining a plurality of mRNA switches, it is possible to construct an artificial genetic circuit based on translation control and having a low risk of genome damage. In addition, by using such an artificial gene circuit, safe and highly efficient cell reprogramming (including initialization and differentiation) can be expected. Furthermore, by designing a circuit that takes a specific gene expression pattern, it can also be applied to maintain the cell state. For example, to prevent spontaneous differentiation of cultured iPS cells. Can be used.
 さらに、発明したスイッチの翻訳効率が、細胞内タンパク質発現量と相関することから、タンパク質応答性mRNAスイッチを利用して、生細胞内のタンパク質量を定量できると考えられる。この手法では、ウエスタンブロッティングのように、細胞を破砕する必要がなく、また、検出タグを付加した融合タンパク質の作製も不要であるため、より自然な状態の生細胞内タンパク質量の観察に利用できる。また、トランスフェクション効率を上げることで、一細胞レベルでのタンパク質発現量の定量が期待できる。さらに、FACSと組み合わせることで、特定量のタンパク質を発現する細胞を分離することも可能になる。       Furthermore, since the translation efficiency of the invented switch correlates with the amount of intracellular protein expression, it is considered that the amount of protein in living cells can be quantified using a protein-responsive mRNA switch. This method does not require disruption of cells as in Western blotting, and it is not necessary to prepare a fusion protein with a detection tag, so it can be used to observe the amount of protein in living cells in a more natural state. . In addition, by increasing the transfection efficiency, the protein expression level at the level of one cell can be expected. Furthermore, by combining with FACS, it becomes possible to isolate cells expressing a specific amount of protein. .
 [第2実施形態:構造安定化されたLIN28Aアプタマー]
 本発明は、第2実施形態によれば、構造安定化されたLIN28Aアプタマーである。当該LIN28アプタマーは、配列番号1で表される天然型LIN28Aアプタマー配列が形成するRNA二次構造に基づき、以下の1以上の改変を加えてなる安定化LIN28Aアプタマーである。
 (1)5’末端塩基及び3’末端塩基を含むステムを構成するAU塩基対をGC塩基対に置換する;
 (2)2つのループ間に位置するステムを構成するAU塩基対をGC塩基対に置換する;または
 (3)2つのループ間に位置するステムを構成する非ワトソン・クリック塩基対をGC塩基対に置換する。
[Second embodiment: Structure-stabilized LIN28A aptamer]
According to the second embodiment, the present invention is a structure-stabilized LIN28A aptamer. The LIN28 aptamer is a stabilized LIN28A aptamer obtained by adding one or more of the following modifications based on the RNA secondary structure formed by the natural LIN28A aptamer sequence represented by SEQ ID NO: 1.
(1) AU base pairs constituting a stem including a 5 ′ terminal base and a 3 ′ terminal base are replaced with GC base pairs;
(2) The AU base pair constituting the stem located between the two loops is replaced with a GC base pair; or (3) The non-Watson-Crick base pair constituting the stem located between the two loops is replaced with the GC base pair. Replace with.
 配列番号1で表される天然型LIN28Aアプタマーは、図3のOriginalで表される二次構造をとることが報告されている(Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080-91 (2011)。これに対し、(1)の改変を行うことで、5’末端塩基及び3’末端塩基を含むステムをより安定化することができる。天然型LIN28Aアプタマーに存在する全てのAU塩基対をGC塩基対に置換する必要はなく、少なくとも1以上のAU塩基対をGC塩基対に置換すれば安定化を実現することができる。しかし、より安定化する観点からは、好ましくはより多くの、より好ましくは全てのAU塩基対をGC塩基対に置換する。 The natural LIN28A aptamer represented by SEQ ID NO: 1 has been reported to have the secondary structure represented by Original in FIG. 3 (Nam, Y., Chen, C., Gregory, R. I., Chou, J. J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080-91 (2011), on the other hand, by modifying (1), the 5 'end The stem including the base and the 3 ′ terminal base can be further stabilized, and it is not necessary to replace all AU base pairs present in the natural LIN28A aptamer with GC base pairs, and at least one AU base pair can be replaced with GC. Stabilization can be achieved by substituting base pairs, but from the standpoint of further stabilization, preferably more, more preferably all AU base pairs are replaced with GC base pairs.
 次に、図3のOriginalで表される二次構造に対し、あるいは(1)の改変を行った安定化LIN28Aアプタマーに対し、(2)の改変を行うことで、2つのループ間に位置するステムをより安定化することができる。ここでも、全てのAU塩基対をGC塩基対に置換する必要はないが、好ましくはより多くの、より好ましくは全てのAU塩基対をGC塩基対に置換する。 Next, it is located between two loops by modifying (2) the secondary structure represented by Original in FIG. 3 or the stabilized LIN28A aptamer modified in (1). The stem can be further stabilized. Again, it is not necessary to replace all AU base pairs with GC base pairs, but preferably more, more preferably all AU base pairs are replaced with GC base pairs.
 さらに、図3のOriginalで表される二次構造、(1)の改変を行った安定化LIN28Aアプタマー、あるいは(2)の改変を行った安定化LIN28Aアプタマーに対し、(3)の改変を行うことで、2つのループ間に位置するステムをさらに安定化することができる。       Further, the modification (3) is performed on the secondary structure represented by Original in FIG. 3, the stabilized LIN28A aptamer modified (1), or the stabilized LIN28A aptamer modified (2). Thus, the stem located between the two loops can be further stabilized. .
 これらの改変を行うにあたって、LIN28Aとの結合に重要な塩基配列(ステムの根本にある塩基であって、AU塩基対もしくはGC塩基対を形成している塩基は除く)を変更したり、ループの構造を変更したりすることは好ましくない。天然型のLIN28Aアプタマーにおいて、ループ構造が、LIN28Aタンパク質を特異的に認識する構造として知られているためである。一般的には、LIN28Aアプタマーにおいて、LIN28Aとの結合に重要な塩基配列は、GNGAY (Nは任意の塩基、YはCまたはU)とGGAGであり、以下に示す具体的なLIN28Aアプタマーにおいては、GGGAUとGGAG(表中、下線を付して示した)である。 In making these modifications, the base sequence important for binding to LIN28A (except the base at the root of the stem, which forms the AU base pair or GC base pair) is changed, or the loop It is not preferable to change the structure. This is because, in the natural type LIN28A aptamer, the loop structure is known as a structure that specifically recognizes the LIN28A protein. In general, in the LIN28A aptamer, base sequences important for binding to LIN28A are GNGAY (N is an arbitrary base, Y is C or U) and GGAG. In the specific LIN28A aptamer shown below, GGGAU and GGAG (shown underlined in the table).
 さらなる任意選択的な改変として、(4)5’末端塩基及び3’末端塩基を含むステムに、1~15の塩基対を付加することが挙げられる。 Further optional modifications include (4) adding 1 to 15 base pairs to the stem containing the 5 'terminal base and the 3' terminal base.
 具体的な実施形態としては、上記(1)の改変を行った安定化LIN28AアプタマーであるstbA(配列番号2、図3のstbA)、上記(1)及び(2)の改変を行った安定化LIN28AアプタマーであるstbB(配列番号3、図3のstbB)、stbC(配列番号4、図3のstbC)がある。以下の表1に天然型及び安定化された3種のアプタマーの配列を示す。originalのアプタマーから改変した塩基は小文字で示している。 As specific embodiments, the stabilized LIN28A aptamer stbA (SEQ ID NO: 2, stbA in FIG. 3) modified by (1) above, and stabilized by modifying (1) and (2) above. There are stbB (SEQ ID NO: 3, stbB in FIG. 3) and stbC (SEQ ID NO: 4, stbC in FIG. 3) which are LIN28A aptamers. Table 1 below shows the sequences of natural and stabilized three aptamers. Bases modified from the original aptamer are shown in lower case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 配列番号1~4で表されるアプタマーは、第1実施形態によるタンパク質応答性mRNAのアプタマー配列として用いることができる。アプタマー配列を備えるタンパク質応答性mRNAの設計及び製造については、第1実施形態に詳述している。そして、これらのアプタマー配列を備える用いたLIN28A応答性mRNAの翻訳抑制効率は、高い順に、stbC配列を有するLIN28A応答性mRNA、stbB配列を有するLIN28A応答性mRNA、stbA配列を有するLIN28A応答性mRNA、天然型LIN28Aアプタマー配列を有するLIN28A応答性mRNAである。 The aptamers represented by SEQ ID NOs: 1 to 4 can be used as aptamer sequences for protein-responsive mRNA according to the first embodiment. The design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment. And, the translational repression efficiency of the LIN28A-responsive mRNA used with these aptamer sequences is, in descending order, the LIN28A-responsive mRNA having the stbC sequence, the LIN28A-responsive mRNA having the stbB sequence, the LIN28A-responsive mRNA having the stbA sequence, It is a LIN28A-responsive mRNA having a natural LIN28A aptamer sequence.
 第2実施形態による安定化LIN28Aアプタマーは、LIN28Aタンパク質の特異的な発現を検出するために有用であり、特にはiPS細胞やES細胞といった多能性幹細胞の検出において有用である。また、LIN28A応答性mRNA(LIN28Aスイッチとも指称する)は、これら幹細胞選別技術としての利用が期待できる。LIN28Aは細胞質に存在するタンパク質であるため、細胞質にRNAが入りさえすれば、LIN28A応答性mRNAのようなmRNAスイッチで細胞内タンパク質を容易に検出することができるというメリットがある。スイッチが発現するタンパク質をレポータータンパク質からアポトーシス誘導タンパク質に変更することで、非幹細胞特異的に細胞死を誘導する。前述のように、タンパク質応答性mRNAスイッチの利用はゲノム損傷のリスクが低いため、安全な幹細胞、分化細胞の選別技術として再生医療分野への応用が期待できる。従って、副作用の少ない新たな核酸医薬品の開発が期待できる。      The stabilized LIN28A aptamer according to the second embodiment is useful for detecting specific expression of LIN28A protein, and particularly useful for detecting pluripotent stem cells such as iPS cells and ES cells. In addition, LIN28A-responsive mRNA (also referred to as LIN28A switch) can be expected to be used as a stem cell sorting technique. Since LIN28A is a protein present in the cytoplasm, as long as RNA enters the cytoplasm, there is an advantage that intracellular proteins can be easily detected with an mRNA switch such as LIN28A-responsive mRNA. By changing the protein expressed by the switch from a reporter protein to an apoptosis-inducing protein, cell death is induced specifically in non-stem cells. As described above, the use of a protein-responsive mRNA switch has a low risk of genome damage, and can be expected to be applied to the field of regenerative medicine as a safe stem cell / differentiated cell selection technique. Therefore, development of a new nucleic acid drug with few side effects can be expected. .
 [第3実施形態:改変されたU1Aアプタマー]
 本発明は、第3実施形態によれば、構造安定化されたU1Aアプタマーである。当該U1Aアプタマーは、配列番号6で表される天然型U1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化されたU1Aアプタマーである。
 (1)5’末端塩基及び3’末端塩基を含むステム構造に1~15のAU塩基対もしくはGC塩基対を付加する。あるいは、2つのボックス間に存在するステムに、1~15のAU塩基対もしくはGC塩基対を付加する。以上の改変により、アプタマーが標的との結合に必要な2次構造を形成するように設計する。
 あるいは、配列番号8で表されるU1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化されたU1Aアプタマーである。
 (2)5’末端塩基及び3’末端塩基を含むステムに、1~15のAU塩基対もしくはGC塩基対を付加する。
[Third Embodiment: Modified U1A Aptamer]
According to the third embodiment, the present invention is a structure-stabilized U1A aptamer. The U1A aptamer is a structure-stabilized U1A aptamer based on the RNA secondary structure formed by the natural U1A aptamer sequence represented by SEQ ID NO: 6, with the following modifications.
(1) Add 1 to 15 AU base pairs or GC base pairs to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base. Alternatively, 1 to 15 AU base pairs or GC base pairs are added to the stem between the two boxes. By the above modification, the aptamer is designed to form a secondary structure necessary for binding to the target.
Alternatively, it is a structure-stabilized U1A aptamer based on the RNA secondary structure formed by the U1A aptamer sequence represented by SEQ ID NO: 8, with the following modifications.
(2) Add 1 to 15 AU base pairs or GC base pairs to the stem containing the 5 ′ terminal base and the 3 ′ terminal base.
 配列番号6で表される天然型U1Aアプタマーは、図12のU1utr下段で表される二次構造をとることが報告されている(参考文献[4])。これに対し、(1)の改変を行うことで、Box1とBox2との間に存在するステムを安定化することができる。付加する1~15の塩基対は、AU塩基対であってもよく、GC塩基対であってもよく、それらの組み合わせであってもよいが、好ましくはより多くのGC塩基対を付加し、より好ましくは全ての付加される塩基対がGC塩基対である。 It has been reported that the natural U1A aptamer represented by SEQ ID NO: 6 has a secondary structure represented by the lower U1utr in FIG. 12 (reference document [4]). On the other hand, the stem existing between Box1 and Box2 can be stabilized by modifying (1). The 1 to 15 base pairs to be added may be AU base pairs, GC base pairs, or combinations thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs.
 具体的な実施形態としては、上記(1)の改変を行った安定化U1Aアプタマーであるs U1utr_stb(配列番号7、図12のU1utr_stb)がある。この配列及び天然型U1utrの配列を下記の表2に示す。 As a specific embodiment, there is s U1utr_stb (SEQ ID NO: 7, U1utr_stb in FIG. 12), which is a stabilized U1A aptamer modified in (1) above. This sequence and the sequence of natural U1utr are shown in Table 2 below.
 配列番号8で表される文献既知のU1Aアプタマーは、図12のU1LSLで表される二次構造をとることが報告されている(参考文献[5])。これに対し、(2)の改変を行うことで、5’末端塩基及び3’末端塩基を含むステムを安定化することができる。付加する1~15の塩基対は、AU塩基対であってもよく、GC塩基対であってもよく、それらの組み合わせであってもよいが、好ましくはより多くのGC塩基対を付加し、より好ましくは全ての付加される塩基対がGC塩基対である。 The U1A aptamer known in the literature represented by SEQ ID NO: 8 has been reported to have a secondary structure represented by U1LSL in FIG. 12 (reference document [5]). On the other hand, the stem containing the 5 ′ terminal base and the 3 ′ terminal base can be stabilized by modifying (2). The 1 to 15 base pairs to be added may be AU base pairs, GC base pairs, or combinations thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs.
 具体的な実施形態としては、上記(2)の改変を行った安定化U1AアプタマーであるU1LSL+10bp(配列番号9、図12のU1LSL+10bp)、及びU1LSL+15bp(配列番号10、図12のU1LSL+15bp)がある。これらの配列及び天然型U1LSLの配列を下記の表2に示す。      As specific embodiments, U1LSL + 10 bp (SEQ ID NO: 9, U1LSL + 10 bp in FIG. 12) and U1LSL + 15 bp (SEQ ID NO: 10, FIG. 12), which are the stabilized U1A aptamers modified in (2) above. U1LSL + 15bp). These sequences and the sequence of natural U1LSL are shown in Table 2 below. .
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 配列番号5~10で表されるアプタマー及び安定化アプタマーは、第1実施形態によるタンパク質応答性mRNAのアプタマー配列として用いることができる。アプタマー配列を備えるタンパク質応答性mRNAの設計及び製造については、第1実施形態に詳述している。     The aptamers and stabilized aptamers represented by SEQ ID NOs: 5 to 10 can be used as aptamer sequences of protein-responsive mRNA according to the first embodiment. The design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment. .
 第3実施形態による安定化U1Aアプタマーは、U1Aタンパク質の特異的な発現を検出するために有用でありうる。U1Aタンパク質は、ある種のがん細胞において高発現することが報告されており、第1実施形態に基づく細胞内在性タンパク質の検出方法を応用することにより、がん細胞の検出、分別に用いることが期待される。 The stabilized U1A aptamer according to the third embodiment may be useful for detecting specific expression of U1A protein. U1A protein has been reported to be highly expressed in certain types of cancer cells, and can be used to detect and separate cancer cells by applying the method for detecting cellular endogenous proteins based on the first embodiment. There is expected.
 [第4実施形態:改変されたp50アプタマー]
 本発明は、第4実施形態によれば、構造安定化されたp50アプタマーである。当該p50アプタマーは、配列番号83で表される人工的に取得されたアプタマーであって、文献[6]により報告されている人工p50アプタマーが形成するRNA二次構造に基づき、以下の改変:
 (1)5’末端塩基及び3’末端塩基を含むステム構造に1~20のAU塩基対もしくはGC塩基対を付加する
を加えてなる構造安定化されたp50アプタマーである。
[Fourth Embodiment: Modified p50 aptamer]
The present invention is a structure-stabilized p50 aptamer according to the fourth embodiment. The p50 aptamer is an artificially obtained aptamer represented by SEQ ID NO: 83, and based on the RNA secondary structure formed by the artificial p50 aptamer reported by the literature [6], the following modifications:
(1) A structure-stabilized p50 aptamer obtained by adding 1 to 20 AU base pairs or GC base pairs to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base.
 配列番号83で表されるp50アプタマーは、図17の左図に示す二次構造をとることが報告されている(参考文献[6])。これに対し、(1)の改変を行うことで、ステムを安定化することができる。付加する1~20の塩基対は、AU塩基対であってもよく、GC塩基対であってもよく、それらの組み合わせであってもよいが、好ましくはより多くのGC塩基対を付加し、より好ましくは全ての付加される塩基対がGC塩基対である。また、付加する塩基対は、5~20塩基対であることが好ましく、10~20塩基対であることがさらに好ましい。 It has been reported that the p50 aptamer represented by SEQ ID NO: 83 has the secondary structure shown in the left diagram of FIG. 17 (reference document [6]). On the other hand, the stem can be stabilized by modifying (1). The 1 to 20 base pairs to be added may be AU base pairs, GC base pairs, or a combination thereof, but preferably more GC base pairs are added, More preferably, all added base pairs are GC base pairs. The added base pair is preferably 5 to 20 base pairs, more preferably 10 to 20 base pairs.
 具体的な実施形態としては、上記(1)の改変を行った安定化p50アプタマーであるp50A-stb(配列番号84、図17の右図p50A-stb)がある。この配列及び天然型U1utrの配列を下記の表3に示す。 As a specific embodiment, there is p50A-stb (SEQ ID NO: 84, right diagram p50A-stb in FIG. 17) which is a stabilized p50 aptamer modified in (1) above. This sequence and the sequence of natural U1utr are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 配列番号84で表されるアプタマー及び安定化アプタマーは、第1実施形態において説明したタンパク質応答性mRNAにおいて、アプタマー配列として用いることができる。アプタマー配列を備えるタンパク質応答性mRNAの設計及び製造については、第1実施形態に詳述している。 The aptamer and the stabilized aptamer represented by SEQ ID NO: 84 can be used as the aptamer sequence in the protein-responsive mRNA described in the first embodiment. The design and production of a protein-responsive mRNA having an aptamer sequence is described in detail in the first embodiment.
 第4実施形態による安定化p50アプタマーは、がん関連タンパク質p50の特異的な発現を検出するために有用でありうる。p50は、ある種のがん細胞において高発現することが報告されており、第1実施形態に基づく細胞内在性タンパク質の検出方法を応用することにより、がん細胞の検出、分別に用いることが期待される。 The stabilized p50 aptamer according to the fourth embodiment may be useful for detecting specific expression of cancer-associated protein p50. p50 has been reported to be highly expressed in certain types of cancer cells, and can be used for detection and sorting of cancer cells by applying the method for detecting cellular endogenous proteins based on the first embodiment. Be expected.
 [第5実施形態:細胞の分化(リプログラミング)状態の識別方法]
 本発明は、第5実施形態によれば、細胞の分化状態の識別方法である。当該方法は、以下の工程を含む。
 (1)多能性幹細胞を含みうる細胞群に、未分化細胞が発現するタンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNA、あるいは当該mRNAをコードするベクターを導入する工程;及び
 (2)前記マーカー遺伝子の翻訳量に基づいて細胞の分化状態を識別する工程。      
[Fifth Embodiment: Method for Identifying Cell Differentiation (Reprogramming) State]
According to the fifth embodiment, the present invention is a method for identifying a differentiation state of a cell. The method includes the following steps.
(1) Introduction of an mRNA containing an aptamer sequence specific to a protein expressed by undifferentiated cells and a marker gene sequence operably linked thereto, or a vector encoding the mRNA into a cell group that can contain pluripotent stem cells And (2) identifying the differentiation state of the cell based on the translation amount of the marker gene.
 本実施形態において、「細胞の分化状態の識別」とは、細胞が分化または未分化状態であることや、その変化、程度などを識別することをいう。例えば、ある実施態様(a)においては、初期化因子と接触させた細胞が、所定の方法及び期間培養された後、リプログラミングされて、人工多能性幹(iPS)細胞の状態になっているか、あるいは、リプログラミングがうまくなされず、目的のiPS細胞となっていないか、といった初期化に関する状態を検知し、検出し、認識し、識別することをいい、あるいは分離分別することをも含めるものとする。iPS細胞が、LIN28Aを発現していることは従来の研究から知られており(Tano, K. et al. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System. PLoS One 9, e110496 (2014).)、初期化因子と接触させた細胞のうち、LIN28Aを十分量発現している細胞(内在性のLIN28Aを有する細胞)が、所望のリプログラミング状態を持つ目的のiPS細胞であるといえる。また、別の実施態様(b)においては、iPS細胞を含む多能性幹細胞に対して、所定の分化のための操作を行った細胞群において、分化することなく残存した多能性幹細胞を検知し、検出し、認識することをいい、あるいは選択的にそれらの細胞を分離分別することをも含めるものとする。iPS細胞や他の多能性幹細胞を、所望の細胞に分化させ、臨床使用する場合に、最も障害となるのは、分化されることなく残存した、腫瘍形成能をもつ細胞である(PLoS One. 2012;7(5):e37342. doi: 10.1371/journal.pone.0037342. Epub 2012 May 17.)。このため、分化させた細胞群から、多能性を保持する細胞を選択的に除去する技術が強く望まれていた。本発明においては、未分化細胞が発現するタンパク質に特異的なアプタマー配列、典型的にはLIN28Aを特異的に検出するLIN28A応答性mRNAを用いることにより、多能性を保持する細胞を検知し、検出し、認識することができ、好ましい実施形態においては、分離し、選択的に除去することができる。また、この際、LIN28Aスイッチは、顕著な副作用なく未分化細胞を識別できることが確認されている。しかし、細胞の分化状態の識別は、特定の態様に限定されるものではなく、分化状態が異なる細胞の混合物であり得る細胞群から未分化の細胞を検出し、同定し、分離し、除去することを可能とする。 In this embodiment, “identification of the differentiation state of a cell” refers to identifying that a cell is differentiated or undifferentiated, its change, degree, and the like. For example, in one embodiment (a), cells that have been contacted with the reprogramming factor are cultured for a predetermined method and for a period of time, and then reprogrammed to become induced pluripotent stem (iPS) cells. Detecting, detecting, recognizing, identifying, and separating the state of initialization such as whether or not reprogramming is not successful and the target iPS cell is not included Shall. It is known from previous studies that iPS cells express LIN28A (Tano, K. et al. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using acientcientHighly Culture System. PLoS One 9 e110496 (2014).) Among cells that have been contacted with reprogramming factors, cells that express a sufficient amount of LIN28A (cells with endogenous LIN28A) are in the desired reprogramming state. It can be said that it is an iPS cell of interest. In another embodiment (b), pluripotent stem cells remaining without differentiation are detected in a group of cells that have undergone a predetermined differentiation operation for pluripotent stem cells including iPS cells. Detecting and recognizing, or selectively separating and sorting the cells. When iPS cells and other pluripotent stem cells are differentiated into desired cells and used clinically, the most hindrance is the cells that have not differentiated and have tumorigenic potential (PLoS One . 2012; 7 (5): e37342. Doi: 10.1371 / journal.pone.0037342. Epub 2012 May 17.). Therefore, a technique for selectively removing cells that retain pluripotency from the differentiated cell group has been strongly desired. In the present invention, an aptamer sequence specific to a protein expressed by undifferentiated cells, typically a LIN28A-responsive mRNA that specifically detects LIN28A, is used to detect cells that retain pluripotency, Can be detected and recognized, and in preferred embodiments can be separated and selectively removed. At this time, it has been confirmed that the LIN28A switch can identify undifferentiated cells without significant side effects. However, the differentiation state of cells is not limited to a specific mode, and undifferentiated cells are detected, identified, separated, and removed from a group of cells that may be a mixture of cells having different differentiation states. Make it possible.
 本実施形態の工程(1)において用いる、「多能性幹細胞を含みうる細胞群」とは、例えば、初期化因子と接触させた細胞であって、所定の方法及び期間培養された後、リプログラミングされて、人工多能性幹(iPS)細胞の状態になっていることが予測される細胞であってよい。あるいは、多能性幹細胞に対して、所定の分化のための操作を行った細胞群であって、未分化細胞が残存しうる細胞群をいうものとする。ただし、未分化細胞が含まれていない細胞群である場合もある。あるいは、その他の任意の多能性幹細胞を含みうる細胞群であってよく、検出の目的や、細胞群の由来は特には限定されあるものではない。    The “cell group that can contain pluripotent stem cells” used in step (1) of the present embodiment is, for example, cells that have been brought into contact with an reprogramming factor and cultured after a predetermined method and period, It may be a cell that is programmed to be predicted to be in the state of an induced pluripotent stem (iPS) cell. Alternatively, it is a cell group obtained by performing a predetermined differentiation operation on pluripotent stem cells, and refers to a cell group in which undifferentiated cells can remain. However, the cell group may not contain undifferentiated cells. Alternatively, it may be a cell group that may contain any other pluripotent stem cells, and the purpose of detection and the origin of the cell group are not particularly limited. *
 次に、実施態様(a)において好ましく用いられる多能性幹細胞を含みうる細胞群である、初期化因子と接触させた細胞について説明する。本実施形態において、初期化因子と接触させた細胞とは、典型的には、iPS細胞の調製を目的として、人工的に操作された細胞をいうものとする。iPS細胞は、特定の初期化因子を、DNA、RNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-coding RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO 2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO 2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。 Next, cells brought into contact with the reprogramming factor, which is a cell group that can contain pluripotent stem cells preferably used in the embodiment (a), will be described. In this embodiment, the cell brought into contact with the reprogramming factor typically refers to a cell that has been artificially manipulated for the purpose of preparing iPS cells. iPS cells can be generated by introducing specific reprogramming factors into somatic cells in the form of DNA, RNA, or protein. Proliferation with almost the same characteristics as ES cells, such as differentiation pluripotency and self-renewal. An artificial stem cell derived from a somatic cell having the ability (K. Takahashi and S. Yamanaka (2006) Cell, 126: 663-676; K. Takahashi et al. (2007), Cell, 131: 861-872; J. Yu et al. (2007), Science, 318: 1917-1920; Nakagawa, M. et al., Nat. Biotechnol. 26: 101-106 (2008); International Publication WO 2007/069666). The reprogramming factor is a gene specifically expressed in ES cells, its gene product or non-cording RNA, a gene that plays an important role in maintaining undifferentiation of ES cells, its gene product or non-coding RNA, or It may be constituted by a low molecular compound. Examples of genes included in the reprogramming factor include Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 etc. are exemplified, and these reprogramming factors may be used alone or in combination. As combinations of reprogramming factors, WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920, WO2010 / 042800, WO2010 / 050626, WO 2010/056831, WO2010 / 068955, WO2010 / 098419, WO2010 / 102267, WO 2010/111409, WO 2010/111422, WO2010 / 115050, WO2010 / 124290, WO2010 / 147395, WO2010 / 147612, Huangfu D, et al. 2008), Nat. Biotechnol., 26: 795-797, Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528, Eminli S, et al. (2008), Stem Cells. 26: 2467 -2474, Huangfu D, et al. (2008), Nat Biotechnol. 26: 1269-1275, Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574, Zhao Y, et al. (2008 ), Cell Stem Cell, 3: 475-479, Marson A, (2008), Cell Stem Cell, 3, 132-13 5, Feng B, et al. (2009), Nat Cell Biol. 11: 197-203, RL Judson et al., (2009), Nat. Biotech., 27: 459-461, Lyssiotis CA, et al. ( 2009), Proc Natl Acad Sci U S A. 106: 8912-8917, Kim89JB, 17et al. (2009), Nature. 461: 649-643, Ichida JK, et al. (2009), Cell Stem Cell. 5 : 491-503, Heng JC, et al. (2010), Cell Stem Cell. 6: 167-74, Han J, et al. (2010), Nature. 463: 1096-100, Mali P, et al. ( 2010), Stem Cells. 28: 713-720, Maekawa M, et al. (2011), Nature. 474: 225-9.
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mershRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294 等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。 The reprogramming factors include histone deacetylase (HDAC) inhibitors [eg small molecule inhibitors such as valproic acid (VPA), trichostatin A, sodium butyrate, MC 、 1293, M344, siRNA and shRNA against HDAC (eg Nucleic acid expression inhibitors such as HDAC1DACsiRNA Smartpool (registered trademark) (Millipore), HuSH 29mershRNA Constructs against HDAC1 (OriGene), etc.], MEK inhibitors (eg, PD184352, PD98059, U0126, SL327 and PD0325901), Glycogen synthase kinase-3 inhibitors (eg, Bio and CHIR99021), DNA methyltransferase inhibitors (eg, 5-azacytidine), histone methyltransferase inhibitors (eg, small molecule inhibitors such as BIX-01294, Suv39hl, Suv39h2, SetDBl And nucleic acid expression inhibitors such as siRNA and shRNA against G9a), L-channel calcium agonist (eg Bayk8644), butyric acid, TGFβ inhibitor or ALK5 inhibitor (eg LY3649) 47, SB431542, 616453 and A-83-01), p53 inhibitors (eg siRNA and shRNA against p53), ARID3A inhibitors (eg siRNA and shRNA against ARID3A), miR-291-3p, miR-294, miR- MiRNA such as 295 and mir-302, Wnt Signaling (eg soluble Wnt3a), neuropeptide Y, prostaglandins (eg prostaglandin E2 and prostaglandin J2), hTERT, SV40LT, UTF1, IRX6, GLISL, PITX2 , DMRTBl and other factors used for the purpose of increasing the establishment efficiency are also included.In this specification, the factors used for the purpose of improving the establishment efficiency are also distinguished from the initialization factor. Shall not.
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。 In the case of a protein form, the reprogramming factor may be introduced into a somatic cell by a technique such as lipofection, fusion with a cell membrane-permeable peptide (for example, HIV-derived TAT and polyarginine), or microinjection.
 一方、DNAの形態の場合、例えば、ウィルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウィルスベクターとしては、レトロウィルスベクター、レンチウィルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウィルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウィルスベクター、センダイウィルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。 On the other hand, in the case of DNA, it can be introduced into somatic cells by techniques such as vectors such as viruses, plasmids, artificial chromosomes, lipofection, liposomes, and microinjection. Virus vectors include retrovirus vectors, lentivirus vectors (cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007 ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (WO 2010/008054), and the like. Examples of artificial chromosome vectors include human artificial chromosomes (HAC), yeast artificial chromosomes (YAC), and bacterial artificial chromosomes (BAC, PAC). As a plasmid, a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008). The vector can contain regulatory sequences such as a promoter, enhancer, ribosome binding sequence, terminator, polyadenylation site, etc. so that a nuclear reprogramming substance can be expressed. For example, selectable marker sequences such as kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, thymidine kinase gene, diphtheria toxin gene, reporter gene sequences such as green fluorescent protein (GFP), β-glucuronidase (GUS), FLAG, etc. Can be included. In addition, the above vector has a LoxP sequence before and after the introduction of the gene into a somatic cell in order to excise the gene or promoter encoding the reprogramming factor and the gene encoding the reprogramming factor that binds to it. May be.
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine (TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。 In the case of RNA, it may be introduced into somatic cells by techniques such as lipofection and microinjection, and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine® (TriLink® Biotechnologies) is used. Yes (Warren L, (2010) Cell Stem Cell. 7: 618-630).
 iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12又はDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)または市販の培養液[例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTeSR、Stemcell Technology社、Essential 8、Life Technologies社、StemFit、Ajinomoto社)]などが含まれる。 As a culture solution for inducing iPS cells, for example, DMEM, DMEM / F12 or DME culture solution containing 10-15% FBS (in addition to these culture solutions, LIF, penicillin / streptomycin, puromycin, L- Glutamine, non-essential amino acids, β-mercaptoethanol, etc. may be included as appropriate.) Or a commercially available culture medium (for example, a culture medium for mouse ES cell culture (TX-WES culture medium, Thrombo X), primate ES Medium for cell culture (primate ES / iPS cell culture medium, Reprocell), serum-free medium (mTeSR, Stemcell Technology, Essential 8, Life Technologies, StemFit, Ajinomoto).
 培養法の例としては、たとえば、37℃、5%CO2存在下にて、10%FBS含有DMEM又はDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上にまきなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日又はそれ以上ののちにiPS様コロニーを生じさせることができる。 As an example of the culture method, for example, a somatic cell is brought into contact with a reprogramming factor on a DMEM or DMEM / F12 medium containing 10% FBS at 37 ° C. in the presence of 5% CO 2 for about 4 to 7 days. Then, re-spread the cells on feeder cells (for example, mitomycin C-treated STO cells, SNL cells, etc.), and use bFGF-containing primate ES cell culture medium about 10 days after contact between the somatic cells and the reprogramming factor. Culturing and generating iPS-like colonies about 30 to about 45 days or more after the contact.
 あるいは、37℃、5% CO2存在下にて、フィーダー細胞(たとえば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日又はそれ以上ののちにES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al. (2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外基質(例えば、Laminin-5(WO2009/123349)、マトリゲル(BD社)およびiMatrix511 (Nippi社) )を用いる方法が例示される。 Alternatively, 10% FBS-containing DMEM medium (including LIF, penicillin / streptomycin, etc.) on feeder cells (eg, mitomycin C-treated STO cells, SNL cells, etc.) in the presence of 5% CO 2 at 37 ° C. Can be suitably included with puromycin, L-glutamine, non-essential amino acids, β-mercaptoethanol, etc.) and can form ES-like colonies after about 25 to about 30 days or more . Desirably, instead of feeder cells, somatic cells to be reprogrammed themselves are used (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746), or extracellular matrix (eg, Laminin- 5 (WO2009 / 123349), Matrigel (BD) and iMatrix511 (Nippi)).
 この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。       In addition to this, a method of culturing using a medium not containing serum is also exemplified (Sun N, et al. (2009), Proc Natl Acad Sci U S A. 106: 15720-15725). Furthermore, in order to increase the establishment efficiency, iPS cells may be established under hypoxic conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5: 237 -241 or WO2010 / 013845). .
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり、約5×10~約5×10細胞の範囲である。本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。また、iPS細胞を移植用細胞の材料として用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型が同一もしくは実質的に同一である体細胞を用いることが望ましい。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座あるいはHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞である。 During the culture, the culture medium is exchanged with a fresh culture medium once a day from the second day onward. The number of somatic cells used for nuclear reprogramming is not limited, but ranges from about 5 × 10 3 to about 5 × 10 6 cells per 100 cm 2 of culture dish. As used herein, the term “somatic cell” refers to any animal cell (preferably, a mammalian cell including a human) except a germ line cell such as an egg, oocyte, ES cell, or totipotent cell. Say. Somatic cells include, but are not limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines. Specifically, somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells such as dental pulp stem cells (somatic stem cells), (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells. When iPS cells are used as a material for transplantation cells, it is desirable to use somatic cells having the same or substantially the same HLA genotype of the transplant destination individual from the viewpoint of preventing rejection. Here, “substantially the same” means that the HLA genotype matches the transplanted cells to such an extent that an immune response can be suppressed by an immunosuppressive agent. For example, HLA-A, HLA-B And somatic cells having an HLA type in which 3 loci of HLA-DR or 4 loci plus HLA-C are matched.
 次に、実施態様(b)において好ましく用いられる多能性幹細胞を含みうる細胞群である、多能性幹細胞に対して、所定の分化のための操作を行った細胞群について説明する。本発明において多能性幹細胞とは、生体に存在する多くの細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、所望の分化細胞に誘導される任意の細胞が包含される。多能性幹細胞には、特に限定されないが、例えば、胚性幹(ES)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)などが含まれる。好ましい多能性幹細胞は、製造工程において胚、卵子等の破壊をしないで入手可能であるという観点から、iPS細胞であり、より好ましくはヒトiPS細胞である。上記のiPS細胞のほかの多能性幹細胞について以下に説明する。 Next, a cell group obtained by performing an operation for predetermined differentiation on the pluripotent stem cell, which is a cell group that can contain the pluripotent stem cell preferably used in the embodiment (b), will be described. In the present invention, a pluripotent stem cell is a stem cell that has pluripotency that can be differentiated into many cells existing in a living body and also has proliferative ability, and can be arbitrarily induced into a desired differentiated cell. Cells are included. Examples of pluripotent stem cells include, but are not limited to, embryonic stem (ES) cells, cloned embryo-derived embryonic stem (ntES) cells obtained by nuclear transfer, sperm stem cells (“GS cells”), embryonic Examples include germ cells (“EG cells”), induced pluripotent stem (iPS) cells, cultured fibroblasts and bone marrow stem cell-derived pluripotent cells (Muse cells). A preferred pluripotent stem cell is an iPS cell, more preferably a human iPS cell, from the viewpoint that it can be obtained without destroying an embryo, an egg or the like in the production process. Other pluripotent stem cells other than the above iPS cells will be described below.
 (A) 胚性幹細胞
 胚性幹細胞(ES細胞)は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。      
(A) Embryonic stem cells Embryonic stem cells (ES cells) are established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice, and have the ability to proliferate through self-replication. It has stem cells.
 ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され (M.J. Evans and M.H. Kaufman (1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された (J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)。 ES cells are embryonic stem cells derived from the inner cell mass of the blastocyst, the embryo after the morula, in the 8-cell stage of a fertilized egg, and have the ability to differentiate into any cell that constitutes an adult, so-called differentiation. And ability to proliferate by self-replication. ES cells were discovered in mice in 1981 (MJ Evans and MH Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (JA Thomson et al. (1998), Science 282: 1145-1147; JA Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; JA Thomson et al. (1996), Biol. Reprod 55: 254-259; JA JA Thomson and VS Marshall (1998), Curr. Top. Dev. Biol., 38: 133-165).
 ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor (LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor (bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al. (1998), Science. 282:1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222:273-279;H. Kawasaki et al. (2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al. (2006), Nature. 444:481-485などに記載されている。  ES cells can be established by taking an inner cell mass from a blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. In addition, maintenance of cells by subculture is performed using a culture solution to which substances such as leukemia inhibitory factor (LIF) and basic fibroblast growth factor (basic fibroblast growth factor (bFGF)) are added. It can be carried out. For methods of establishing and maintaining human and monkey ES cells, see, for example, USP 5,843,780; Thomson JA, et al. (1995), Proc Natl. Acad. Sci. U S A. 92: 7844-7848; Thomson JA, et al. (1998), Science. 282: 1145-1147; H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345: 926-932; M. Ueno et al. (2006), Proc. Natl. Acad. Sci. USA, 103: 9554-9559; H. Suemori et al. (2001), Dev. Dyn., 222: 273-279; H. Kawasaki et al. (2002), Proc. Natl Acad. Sci. USA, ; 99: 1580-1585; Klimanskaya I, et al. (2006), Nature. 444: 481-485. *
 ES細胞作製のための培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSRおよび4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、5% CO2、湿潤雰囲気下でヒトES細胞を維持することができる(H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345:926-932)。また、ES細胞は、3~4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。 For example, DMEM / F-12 culture medium supplemented with 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid, 2 mM L-glutamic acid, 20% KSR and 4 ng / ml bFGF is used as the culture medium for ES cell production. Human ES cells can be maintained in a humid atmosphere at 37 ° C., 5% CO 2 (H. Suemori et al. (2006), Biochem. Biophys. Res. Commun., 345: 926-932). ES cells also need to be passaged every 3-4 days, where passage is eg 0.25% trypsin and 0.1 mg / ml collagenase IV in PBS containing 1 mM CaCl 2 and 20% KSR. Can be used.
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al. (2008), Nat. Biotechnol., 26:443-452)。 ES cells can be generally selected by Real-Time PCR using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog as an index. In particular, in the selection of human ES cells, the expression of gene markers such as OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443). -452).
 ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Reserch Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。 Human ES cell lines, for example, WA01 (H1) and WA09 (H9) are obtained from the WiCell Research Institute, and KhES-1, KhES-2 and KhES-3 are obtained from the Institute of Regenerative Medicine (Kyoto, Japan), Kyoto University Is possible.
 (B) 精子幹細胞
 精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor (GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
(B) Sperm stem cells Sperm stem cells are testis-derived pluripotent stem cells that are the origin of spermatogenesis. Like ES cells, these cells can be induced to differentiate into various types of cells, and have characteristics such as the ability to create chimeric mice when transplanted into mouse blastocysts (M. Kanatsu-Shinohara et al. ( 2003) Biol. Reprod., 69: 612-616; K. Shinohara et al. (2004), Cell, 119: 1001-1012). It is capable of self-replication in a culture medium containing glial cell line-derived neurotrophic factor (GDNF), and by repeating subculture under the same culture conditions as ES cells, Stem cells can be obtained (Masatake Takebayashi et al. (2008), Experimental Medicine, Vol. 26, No. 5 (extra number), 41-46, Yodosha (Tokyo, Japan)).
 (C) 胚性生殖細胞
 胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)。
(C) Embryonic germ cells Embryonic germ cells are cells that are established from embryonic primordial germ cells and have the same pluripotency as ES cells, such as LIF, bFGF, stem cell factor, etc. It can be established by culturing primordial germ cells in the presence of these substances (Y. Matsui et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550 -551).
 (D) 核移植により得られたクローン胚由来のES細胞
 核移植により得られたクローン胚由来のES細胞(nt ES細胞)は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al.(2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。 
(D) A cloned embryo-derived ES cell obtained by nuclear transfer A cloned embryo-derived ES cell (nt ES cell) obtained by nuclear transfer is a cloned embryo-derived ES cell produced by nuclear transfer technology, It has almost the same properties as ES cells derived from fertilized eggs (T. Wakayama et al. (2001), Science, 292: 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72 : 932-936; J. Byrne et al. (2007), Nature, 450: 497-502). That is, an ES cell established from an inner cell mass of a clonal embryo-derived blastocyst obtained by replacing the nucleus of an unfertilized egg with the nucleus of a somatic cell is an nt ES (nuclear transfer ES) cell. For the production of nt ES cells, a combination of nuclear transfer technology (JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology is used (Kiyaka Wakayama et al. ( 2008), Experimental Medicine, Vol.26, No.5 (extra number), 47-52). Nuclear transfer can be initialized by injecting a somatic cell nucleus into a mammal's enucleated unfertilized egg and culturing for several hours.
 (E) Multilineage-differentiating Stress Enduring cells
 Multilineage-differentiating Stress Enduring cells (Muse細胞)は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
(E) Multilineage-differentiating Stress Enduring cells
Multilineage-differentiating Stress Enduring cells (Muse cells) are pluripotent stem cells produced by the method described in WO2011 / 007900. Specifically, fibroblasts or bone marrow stromal cells are treated with trypsin for a long time. Preferably, it is a pluripotent cell obtained by trypsin treatment for 8 hours or 16 hours and then suspension culture, and is positive for SSEA-3 and CD105.
 これらの多能性幹細胞を所定の分化細胞に分化誘導させる方法は、既知であり、当業者であれば、目的の細胞に応じて、特定の分化誘導方法を実施することができる。一例として、心筋細胞への分化誘導方法として、例えばLaflamme MAらにより報告された方法により、多能性幹細胞から心筋細胞を製造することができる(Laflamme MA & Murry CE, Nature 2011, Review)。この他にも特に特定されないが、例えば、人工多能性幹細胞を浮遊培養により細胞塊(胚様体)を形成させて心筋細胞を製造する方法、BMPシグナル伝達を抑制する物質の存在下で心筋細胞を製造する方法(WO2005/033298)、Activin AとBMPを順に添加させて心筋細胞を製造する方法(WO2007/002136)、カノニカルWntシグナル経路の活性化を促す物質の存在下で心筋細胞を製造する方法(WO2007/126077)および人工多能性幹細胞からFlk/KDR陽性細胞を単離し、シクロスポリンAの存在下で心筋細胞を製造する方法(WO2009/118928)などが例示される。別の例として、内皮細胞、肝細胞またはインスリン産生細胞などの組織細胞への分化誘導方法として、例えば、Kajiwara M, et al, Proc Natl Acad Sci U S A. 109:12538-12543, 2012、Kunisada Y, et al, Stem Cell Res. 8:274-284, 2012、Nakagawa, M, et al, Sci Rep 4, 3594, 2014等に報告された方法により、多能性幹細胞から組織細胞を製造することができる。さらに別の例として、神経細胞への分化誘導方法としては、例えば、WO2011/019092、WO2011/158960に開示された方法により、多能性幹細胞から神経細胞を製造することができる。 A method for inducing differentiation of these pluripotent stem cells into predetermined differentiated cells is known, and those skilled in the art can implement a specific differentiation induction method according to the target cell. As an example, cardiomyocytes can be produced from pluripotent stem cells as a method for inducing differentiation into cardiomyocytes, for example, by a method reported by Laflamme MA et al. (Laflamme MA & Murry CE, Nature 2011, Review). Although not particularly specified, for example, a method of producing cardiomyocytes by forming a cell mass (embryoid body) by suspension culture of induced pluripotent stem cells, myocardium in the presence of a substance that suppresses BMP signaling A method for producing cells (WO2005 / 033298), a method for producing cardiomyocytes by sequentially adding Activin A and BMP (WO2007 / 002136), and producing cardiomyocytes in the presence of a substance that promotes activation of the canonical Wnt signaling pathway And a method for isolating Flk / KDR positive cells from induced pluripotent stem cells and producing cardiomyocytes in the presence of cyclosporin A (WO2009 / 118928). As another example, as a method of inducing differentiation into tissue cells such as endothelial cells, hepatocytes or insulin-producing cells, for example, Kajiwara M, et al, Proc Natl Acad Sci U S A. 109: 12538-12543, 2012, Kunisada Y, et al, Stem Cell Res. 8: 274-284, 2012, Nakagawa, M, et al, Sci Rep 4, 3594, 2014, etc., to produce tissue cells from pluripotent stem cells Can do. As yet another example, as a method for inducing differentiation into nerve cells, for example, nerve cells can be produced from pluripotent stem cells by the methods disclosed in WO2011 / 019092 and WO2011 / 158960.
 工程(1)は、上記に例示した細胞群などの多能性幹細胞を含みうる細胞群に、未分化細胞が発現するタンパク質に特異的なアプタマー配列を備えるmRNAをコードするベクターを導入する工程である。細胞へのmRNAもしくはベクターの導入工程については、第1実施形態の工程(1)において説明した方法と同様であって良い。この工程は、例えば、実施態様(a)や(b)に対しては、初期化の工程中の、あるいは分化の工程中の任意の時点で行ってよく、任意の時点における、リプログラミング状態あるいは分化状態を得ることができる。実施態様(a)については、特には、iPS様コロニーが形成され、iPS細胞が生成されたと予測される時点、すなわち、リプログラミングされたと予測される時点において、実施することができる。この時点において、iPS細胞の培養培地には、リプログラミングされたiPS細胞と、初期化されなかった細胞とが混在しており、リプログラミングされたiPS細胞を識別する利点があるためである。実施態様(b)については、所定の分化誘導された細胞、例えば心筋細胞や、神経細胞が得られたと予測される時点において、実施することができる。 Step (1) is a step of introducing a vector encoding an mRNA having an aptamer sequence specific to a protein expressed by an undifferentiated cell into a cell group that can contain pluripotent stem cells such as the cell group exemplified above. is there. The step of introducing mRNA or vector into the cell may be the same as the method described in step (1) of the first embodiment. This step may be performed, for example, at any time during the initialization step or during the differentiation step for the embodiments (a) and (b). Differentiated state can be obtained. Embodiment (a) can be performed in particular at the time when iPS-like colonies are formed and iPS cells are predicted to be generated, that is, when it is predicted that they have been reprogrammed. This is because the iPS cell culture medium contains a mixture of reprogrammed iPS cells and cells that have not been initialized at this point, and has an advantage of identifying the reprogrammed iPS cells. The embodiment (b) can be carried out at a time when it is predicted that a predetermined differentiation-induced cell, for example, a cardiomyocyte or a nerve cell is obtained.
 工程(2)は、前記マーカー遺伝子の翻訳量に基づいて細胞の分化状態を識別する工程である。識別工程は、第1実施形態において説明したのと実質的に同様の方法で実施することができる。例えば、マーカー遺伝子の翻訳抑制効率を測定することにより、未分化細胞が発現するタンパク質、典型的には細胞内でのLIN28Aの発現量を定量化することができる。そして、これにより、当該細胞がリプログラミングされたiPS細胞であるか、あるいはそのほかの多能性幹細胞(未分化細胞)であるか否かについての情報を得ることができる。所望の状態にリプログラミングされたiPS細胞や、分化細胞中に残存した望ましくない未分化細胞は、識別後に、あるいは識別と同時に選択的に分離することもできる。これらの分離は、マーカー遺伝子としては、典型的には、蛍光タンパク質を用い、所定の翻訳状態にある細胞を、フローサイトメトリーにより、イメージングサイトメトリーにより分離することで実施することができる。あるいは、マーカータンパク質として薬剤耐性タンパク質や、致死遺伝子を用いる場合には、識別と同時に選択的な分離を実施することも可能である。 Step (2) is a step of identifying the differentiation state of the cell based on the translation amount of the marker gene. The identification step can be performed by a method substantially similar to that described in the first embodiment. For example, by measuring the translational suppression efficiency of a marker gene, the expression level of a protein expressed by an undifferentiated cell, typically, LIN28A in the cell can be quantified. Thus, information about whether the cell is a reprogrammed iPS cell or another pluripotent stem cell (undifferentiated cell) can be obtained. IPS cells reprogrammed to a desired state and undesired undifferentiated cells remaining in differentiated cells can be selectively separated after identification or simultaneously with identification. These separations can be typically performed by using fluorescent proteins as marker genes and separating cells in a predetermined translation state by flow cytometry and imaging cytometry. Alternatively, when a drug resistance protein or a lethal gene is used as a marker protein, selective separation can be performed simultaneously with identification.
 従来、iPS細胞やES細胞などの多能性幹細胞は、形成したコロニーの形状により選択することが可能である。このほかにも、体細胞が初期化された場合に発現する細胞表面タンパク質(例えば、 SSEA-1、SSEA-3、SSEA-4、TRA-2-54、TRA-1-60およびTRA-1-80)を指標として選択していた。本発明の第5実施形態による細胞の分化状態及びリプログラミング状態の検出方法によれば、未分化細胞が発現するタンパク質に特異的なアプタマー配列を備えるmRNA、特には、LIN28A応答性mRNA を用い、未分化細胞が発現するタンパク質、特にはLIN28Aの発現を指標として、生きたまま細胞の分化状態及びリプログラミング状態を検出し、iPS細胞あるいは未分化細胞を選択的に分離・分別することが可能となる。従来の方法と比べて、特には細胞表面タンパク質ではなく、生きたまま細胞内の遺伝子発現状態を検知できる、生きたまま細胞内の情報を可視化できるといった利点がある。 Conventionally, pluripotent stem cells such as iPS cells and ES cells can be selected according to the shape of the formed colonies. In addition, cell surface proteins expressed when somatic cells are reprogrammed (for example, SSEA-1, SSEA-3, SSEA-4, TRA-2-54, TRA-1-60 and TRA-1- 80) was selected as an indicator. According to the method for detecting a differentiation state and a reprogramming state of a cell according to the fifth embodiment of the present invention, mRNA comprising an aptamer sequence specific to a protein expressed by an undifferentiated cell, particularly, a LIN28A-responsive mRNA is used. It is possible to detect and differentiate iPS cells or undifferentiated cells selectively by detecting the differentiation state and reprogramming state of living cells using the expression of undifferentiated cells, especially LIN28A as an index. Become. Compared with the conventional method, there is an advantage that the gene expression state in the cell can be detected while living, not the cell surface protein, and the information inside the cell can be visualized while living.
 以下に、本発明を、実施例を用いてより詳細に説明する。以下の実施例は本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail using examples. The following examples do not limit the invention.
 [プラスミド構築]
 最初に、トリガープラスミドとスイッチプラスミドの空ベクターとして、pTAPmyc-T2A-tagRFPとpAptamerCassette-EGFPをそれぞれ作製した。
 pTAPmyc -T2A-tagRFPの作製では、具体的には、まず、pIRES2-DsRed Express (Clontech)をBamHI、NheIで切断後、合成オリゴSKW003及びSKW004をアニールさせた二本鎖DNAを挿入し、pTAP-IRES2-DsRed Exを作製した。さらに、このプラスミドとpTAP-mycをBamHI、XbaIで切断し、pTAP-IRES2-DsRed Exに挿入することで、pTAPmyc-IRES2-DsRed Exを作製した。次に、pTAP-BS15-T2A-tagRFPを鋳型とし、合成オリゴKWC0093及びKWC0094をプライマーセットとして、目的部分をPCR増幅した。このPCR産物とpTAPmyc-IRES2-DsRed ExをBglII、NotIで切断し、消化済みPCR産物を挿入することでpTAPmyc -T2A-tagRFPを得た。
[Plasmid construction]
First, pTAPmyc-T2A-tagRFP and pAptamerCassette-EGFP were prepared as empty vectors for the trigger plasmid and the switch plasmid, respectively.
In preparation of pTAPmyc-T2A-tagRFP, specifically, first, pIRES2-DsRed Express (Clontech) was cleaved with BamHI and NheI, and then double-stranded DNA annealed with synthetic oligos SKW003 and SKW004 was inserted, and pTAP- IRES2-DsRed Ex was produced. Further, this plasmid and pTAP-myc were cleaved with BamHI and XbaI and inserted into pTAP-IRES2-DsRed Ex to prepare pTAPmyc-IRES2-DsRed Ex. Next, the target portion was PCR amplified using pTAP-BS15-T2A-tagRFP as a template and synthetic oligos KWC0093 and KWC0094 as a primer set. This PCR product and pTAPmyc-IRES2-DsRed Ex were cleaved with BglII and NotI, and the digested PCR product was inserted to obtain pTAPmyc-T2A-tagRFP.
 pAptamerCassette-EGFPは、pBoxCDGC-kMet-EGFP (参考文献[1])をNheI、AgeIで切断後、合成オリゴSKC0041及びSKC0042をアニールさせた二本鎖DNAを挿入することで作製した。LIN28A発現プラスミド(pLIN28Amyc-T2A-tagRFP) の作製では、まず、pTrg5H-hLin28を鋳型として、合成オリゴSKC0052及びKWC0053をプライマーセットとして、目的部分を増幅した。このPCR産物とpTAPmyc-T2A- tagRFPをSalI、BamHIで切断後、両者をライゲーションすることで、 pLIN28Amyc-T2A-tagRFPを得た。 PAptamerCassette-EGFP was prepared by cutting pBoxCDGC-kMet-EGFP (reference document [1]) with NheI and AgeI, and then inserting double-stranded DNA annealed with synthetic oligos SKC0041 and SKC0042. In preparation of a LIN28A expression plasmid (pLIN28Amyc-T2A-tagRFP), first, the target portion was amplified using pTrg5H-hLin28 as a template and synthetic oligos SKC0052 and KWC0053 as a primer set. This PCR product and pTAPmyc-T2A-tagRFP were cleaved with SalI and BamHI and then ligated to obtain pLIN28Amyc-T2A-tagRFP.
 U1A発現プラスミド(pu1Amyc-T2A-tagRFP) の作製では、まず、pTrg5H-U1Aを鋳型として、合成オリゴSKC0052及びKWC0053をプライマーセットとして、目的部分を増幅した。このPCR産物とpTAPmyc-T2A-tagRFPをSalI、BamHIで切断後、両者をライゲーションすることで、 pU1Amyc-T2A-tagRFPを得た。
 ここまでに使用した合成オリゴDNAの配列は、以下の表4に示す。
In preparation of the U1A expression plasmid (pu1Amyc-T2A-tagRFP), first, the target portion was amplified using pTrg5H-U1A as a template and synthetic oligos SKC0052 and KWC0053 as a primer set. This PCR product and pTAPmyc-T2A-tagRFP were cleaved with SalI and BamHI and then ligated to obtain pU1Amyc-T2A-tagRFP.
The sequences of the synthetic oligo DNA used so far are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各スイッチプラスミドの作製では、まず、pAptamerCassette-EGFPをAgeI、BamHIで切断した。次に、下記表5の組み合わせで合成オリゴをアニールさせた二本鎖DNAを作製し、消化済みpAptamerCassette-EGFPに挿入することで、各LIN28Aスイッチプラスミドを得た。 In preparation of each switch plasmid, first, pAptamerCassette-EGFP was cut with AgeI and BamHI. Next, double-stranded DNAs obtained by annealing synthetic oligos with the combinations shown in Table 5 below were prepared and inserted into digested pAptamerCassette-EGFP to obtain each LIN28A switch plasmid.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 各U1Aスイッチプラスミドは、表6の組み合わせでオリゴを用い、LIN28Aスイッチの作製と同様に作製した。 Each U1A switch plasmid was prepared in the same manner as the LIN28A switch using oligos in the combinations shown in Table 6.
Figure JPOXMLDOC01-appb-T000006


 培養細胞へのトランスフェクションのためのプラスミドは、すべてJETSTAR 2.0 (VERITAS)を用いて大量精製した。
Figure JPOXMLDOC01-appb-T000006


All plasmids for transfection into cultured cells were purified in large quantities using JETSTAR 2.0 (VERITAS).
 [IVTテンプレートの構築]
 タンパク質コード領域 (ORF)、トリガーmRNA及びレファレンスmRNA作製用の5'UTR及び3'UTR配列は、プラスミドあるいはオリゴDNAから適当なプライマーを用いて、PCR増幅した。鋳型としたプラスミドと使用したプライマー、及び鋳型としたオリゴDNAと使用したプライマーは、それぞれ下記表7、8、9の通りである。
[Build IVT template]
The 5′UTR and 3′UTR sequences for protein coding region (ORF), trigger mRNA and reference mRNA preparation were PCR amplified using appropriate primers from plasmid or oligo DNA. The plasmids used as templates and the primers used, and the oligo DNAs used as templates and the primers used are shown in Tables 7, 8, and 9, respectively.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
 トリガーmRNA及びレファレンスmRNA合成用IVTテンプレートを作製するために、5'UTR断片、3'UTR断片、及びORFを、表10のT7FwdA及びRev120Aのプライマーセットを用いてPCR増幅して連結した。 In order to prepare the IVT template for synthesizing the trigger mRNA and the reference mRNA, the 5 ′ UTR fragment, 3 ′ UTR fragment, and ORF were ligated by PCR amplification using the T7FwdA and Rev120A primer sets shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 スイッチ mRNA合成用IVTテンプレートを作製するために、3'UTR断片、スペーサー配列及びORFを、5'UTRプライマー及びRev120Aのプライマーセットを用いてPCR増幅して連結した。各スイッチmRNAの作製に使用した5'UTRプライマー及びスペーサー配列は表11の通りである。 In order to prepare an IVT template for switch mRNA synthesis, 3 ′ UTR fragment, spacer sequence and ORF were ligated by PCR amplification using 5 ′ UTR primer and Rev120A primer set. Table 5 shows 5 ′ UTR primers and spacer sequences used for the preparation of each switch mRNA.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 PCR産物は、MinElute PCR purification kit (QIAGEN)を用いて、製造者の指示に従って精製した。精製前に、PCR産物がプラスミドから増幅された場合は、Dpn I (TOYOBO)を用いて、37°Cで30分消化した。 The PCR product was purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions. When the PCR product was amplified from the plasmid before purification, it was digested with Dpn I (TOYOBO) at 37 ° C for 30 minutes.
 [mRNAの合成、精製]
 mRNAの合成は参考文献[2]に従って、MegaScript T7 kit (Ambion)を用いて調整した。この反応において、スイッチ mRNA以外は、ウリジン三リン酸及びシチジン三リン酸に替えて、シュードウリジン-5’-三リン酸及び5-メチルシチジン-5’-三リン酸 (TriLink BioTechnologies)をそれぞれ使用した。また、グアノシン三リン酸は、Anti- Reverse Cap Analog (New England Biolabs)で5倍希釈したものを使用した。反応混合液を37°Cで6時間反応させ、TURBO DNase (Ambion)を添加した後、さらに37°Cで30分恒温処理した。得られたmRNAは、FavorPrep Blood / Cultured Cell total RNA extraction clumn (Favorgen Biotech)で精製し、Antarctic Phosphatase (New England Biolabs)を用いて、37°Cで30分恒温処理した。その後、RNeasy MinElute Cleanup Kit (QIAGEN)により、さらに精製した。
[Synthesis and purification of mRNA]
mRNA synthesis was adjusted using MegaScript T7 kit (Ambion) according to reference [2]. In this reaction, except for switch mRNA, pseudouridine-5'-triphosphate and 5-methylcytidine-5'-triphosphate (TriLink BioTechnologies) were used instead of uridine triphosphate and cytidine triphosphate, respectively. did. The guanosine triphosphate used was diluted 5-fold with Anti-Reverse Cap Analog (New England Biolabs). The reaction mixture was reacted at 37 ° C for 6 hours, TURBO DNase (Ambion) was added, and the mixture was further incubated at 37 ° C for 30 minutes. The obtained mRNA was purified by FavorPrep Blood / Cultured Cell total RNA extraction clumn (Favorgen Biotech), and incubated at 37 ° C. for 30 minutes using Antarctic Phosphatase (New England Biolabs). Then, it further refine | purified by RNeasy MinElute Cleanup Kit (QIAGEN).
 [細胞培養]
 HeLa細胞は、10% Fetal Bovine Serum (FBS)を含むダルベッコ改変イーグル培地(DMEM)-F12(Invitrogen)で培養した。HEK293FT細胞は10% FBS、2mM L-Glutamine (Invitrogen)、0.1 mM Non-Essential Amino Acids (Invitrogen)、1 mM Sodium Pyruvate (Sigma)を添加したDMEM(ナカライテクス)で培養した。iPS細胞はラミニンコーティングした6ウェルプレート上で、StemFit (味の素)を用いてフィーダーフリー条件で培養した。
[Cell culture]
HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) -F12 (Invitrogen) containing 10% Fetal Bovine Serum (FBS). HEK293FT cells were cultured in DMEM (Nacalai Tex) supplemented with 10% FBS, 2 mM L-Glutamine (Invitrogen), 0.1 mM Non-Essential Amino Acids (Invitrogen), and 1 mM Sodium Pyruvate (Sigma). iPS cells were cultured on Laminin-coated 6-well plates using StemFit (Ajinomoto) under feeder-free conditions.
 [プラスミドのトランスフェクション]
 培養細胞は24ウェルプレートに播種し、翌日に精製したプラスミドを全量が500 ngになるよう導入した。変異体を用いた実験では、HEK293FT細胞を96ウェルプレートに播種し、翌日に精製したプラスミドを全量が125 ngになるよう導入した。導入には、2 μLのLipofectamine2000 (Invitrogen)を用いて、製造者の指示に従って実施した。使用したプラスミドは、スイッチプラスミドとトリガープラスミドの量比が1対4になるようにOpti-MEM(Invitrogen)中で混合した。トランスフェクション後、4~6時間後に培地を交換した。
[Plasmid transfection]
The cultured cells were seeded in a 24-well plate, and the purified plasmid was introduced the next day so that the total amount became 500 ng. In the experiment using the mutant, HEK293FT cells were seeded in a 96-well plate, and the purified plasmid was introduced the next day so that the total amount was 125 ng. The introduction was performed using 2 μL of Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. The used plasmid was mixed in Opti-MEM (Invitrogen) so that the quantitative ratio of the switch plasmid and the trigger plasmid was 1: 4. The medium was changed 4 to 6 hours after transfection.
 [mRNAトランスフェクション]
 培養細胞は24ウェルプレートに播種し、翌日に合成したmRNAを導入した。導入には、1 μLのStmFect (Stemgent)を用いて、製造者の指示に従って実施した。HEK293FT細胞を用いた実験では、スイッチmRNA 100 ng、トリガーmRNA 0 ~300 ng、レファレンスmRNA 50 ngを共導入した。iPS細胞を用いた実験では、スイッチmRNA 100 ng、レファレンスmRNA 100 ngを共導入した。トランスフェクション後、4~6時間後に培地を交換した。iPS細胞へのトランスフェクションでは、さらに導入の1時間以上前に培地を交換した。
[MRNA transfection]
The cultured cells were seeded in a 24-well plate, and the synthesized mRNA was introduced the next day. The introduction was performed using 1 μL of StmFect (Stemgent) according to the manufacturer's instructions. In experiments using HEK293FT cells, 100 ng of switch mRNA, 0 to 300 ng of trigger mRNA, and 50 ng of reference mRNA were co-introduced. In experiments using iPS cells, 100 ng of switch mRNA and 100 ng of reference mRNA were co-introduced. The medium was changed 4 to 6 hours after transfection. For transfection into iPS cells, the medium was further changed at least 1 hour before introduction.
[フローサイトメトリー]
 トランスフェクションの翌日に細胞をプレートから分離し、メッシュを通して、フローサイトメトリーにより分析した。24ウェルプレートを用いた実験では、Accuri C6 (BD Biosciences)を使用した。EGFPとhmAG1はFL1 (530/30 nm) filtersフィターにより検出した。tagRFP、mKO2はFL2 (585/40 nm) filtersフィターにより検出した。iRFP670はFL4 (675/12.5 nm) filtersフィターにより検出した。96ウェルプレートを用いた実験ではBD LSRFORTESSA (BD Bioscuence)を使用した。EGFP、tagRFPは、FITC filter(530/30 nm)を備えたBlue laser、PE filter (585/42 nm)を備えたGreen laserにより、それぞれ分析した。死細胞及びデブリは、前方及び側方光散乱シグナルにより除外した。プラスミドを用いた翻訳効率の計算は、生細胞のうち、tagRFPの蛍光値が一定以上のものを解析対象とした。mRNAを用いた翻訳効率の計算は、生細胞のうち、iRFP670またはmKO2の蛍光値が一定以上のものを解析対象とした。
[Flow cytometry]
The day after transfection, cells were detached from the plate and analyzed by flow cytometry through a mesh. In experiments using 24-well plates, Accuri C6 (BD Biosciences) was used. EGFP and hmAG1 were detected by FL1 (530/30 nm) filters. tagRFP and mKO2 were detected with FL2 (585/40 nm) filters. iRFP670 was detected by FL4 (675 / 12.5 nm) filters filter. In experiments using 96-well plates, BD LSRFORTESSA (BD Bioscuence) was used. EGFP and tagRFP were analyzed by a Blue laser equipped with a FITC filter (530/30 nm) and a Green laser equipped with a PE filter (585/42 nm), respectively. Dead cells and debris were excluded by forward and side light scatter signals. For the calculation of the translation efficiency using a plasmid, among the living cells, those with tagRFP fluorescence values above a certain level were analyzed. For the calculation of translation efficiency using mRNA, living cells with iRFP670 or mKO2 fluorescence values above a certain level were analyzed.
 [ドキシサイクリンによるLIN28A発現誘導とトランスフェクション]ドキシサイクリン添加によって、LIN28Aの発現を誘導できる細胞株は、10% FBS、2mM L-Glutamine (Invitrogen)、0.1 mM Non-Essential Amino Acids (Invitrogen)、1 mM Sodium Pyruvate (Sigma)を添加したDMEM(ナカライテクス)で培養した。細胞は12ウェルプレートに播種し、トランスフェクション前にドキシサイクリンを含む培地(0 ng/mL ~ 10 ng/mL)に交換した。トランスフェクションは、播種の翌日に行い、精製したプラスミドを全量が400 ngになるよう導入した。導入には、4 μLのLipofectamine2000 (Invitrogen)を用いて、製造者の指示に従って実施した。使用したプラスミドは、スイッチプラスミドとトリガープラスミドの量比が1対1になるようにOpti-MEM(Invitrogen)中で混合した。トランスフェクション後、4時間後に培地を交換した。 [LIN28A expression induction and transfection by doxycycline] Cell lines that can induce LIN28A expression by adding doxycycline are 10% FBS, 2 mM L-Glutamine (Invitrogen), 0.1 mM Non-Essential Amino Acids (Invitrogen), 1 mM Sodium The cells were cultured in DMEM (Nacalai Tex) supplemented with Pyruvate® (Sigma). Cells were seeded in a 12-well plate and replaced with a medium containing doxycycline (0 ng / mL to 10 ng / mL) before transfection. Transfection was performed the day after seeding, and the purified plasmid was introduced so that the total amount was 400 ng. The introduction was performed using 4 μL of Lipofectamine 2000® (Invitrogen) according to the manufacturer's instructions. The used plasmid was mixed in Opti-MEM (Invitrogen) so that the quantitative ratio of the switch plasmid and the trigger plasmid was 1: 1. The medium was changed 4 hours after transfection.
 [ウエスタンブロッティング]フローサイトメトリー解析する細胞のうち、半分をマイクロチューブに回収し、 300 g、5 min、4°Cで遠心した。上精を除き、PBS 200 uLを加えて再懸濁後、300 g、5 min、4°Cで遠心した。この行程を2度行い、-80°Cで保存した。回収した細胞にRIPA Buffer (25mM Tris (ph7.6)、150 mM NaCl、 1% NP-40、1% sodium deoxycholate、0.1% SDS)を50 uL加え30 min氷上に置きタンパク質を抽出した。これを15000 gで20 min遠心し、上精を別のエッペンに回収後、-20°Cで保存した。各サンプルについて、Pierce BCA Protein Assay Kit (Thermo Scientific)を用いてタンパク質濃度を測定した。その後、Extra PAGE One Precast Gel 10 - 20%(nacalai tesque)を用いてサンプルを泳動した。マーカーは、3 uL Full-Range Rainbow Molecular Weight Markers (GE health care)に、0.5 uL MagicMark(商標) XP Western Protein Standard (invitrogen)を加えて調製した。各サンプルは総タンパク質濃度が5 μg/15 μLになるようライセートをMilliQで希釈した。調製したサンプルに6×SDS buffer 4 uLを添加後、95°C、3 minボイルした。全量をウェルにアプライし、20 mAにて120 min泳動した。泳動後、ゲルをiBlotドライブロッティングシステム(Invitrogen)によってメンブレンに転写し、Blocking One (nacalai tesque)を用いてブロッキングした。GAPDHは、GAPDH Antibody (FL-335) (Santa Cruz Biotechnology)、Goat anti-Rabbit IgG (H+L)- HRP conjugate (bio-rad) を用いて検出した。LIN28Aは、Anti-human LIN28A (Goat) (R and D Systems) 、Rabbit anti-Goat IgG (H+L) Secondary Antibody, HRP conjugate (Life Technologies)を用いて検出した。抗体処理後、ECL Plus Western Blotting Detection System (GE ヘルスケア)を用いて化学発光させ、LAS-4000 (FUJIFILM)で観察した。 [Western blotting] Half of the cells to be analyzed by flow cytometry were collected in a microtube and centrifuged at 300 g, 5 min, and 4 ° C. The supernatant was removed, 200 μl PBS was added and resuspended, and then centrifuged at 300 μg, 5 μmin, 4 ° C. This process was performed twice and stored at -80 ° C. To the collected cells, 50 μl of RIPA buffer (25 mM Tris (ph7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) was added on 30 μmin ice to extract the protein. This was centrifuged at 15000 μg for 20 μmin, and the supernatant was collected in another eppen and stored at −20 ° C. For each sample, the protein concentration was measured using Pierce BCA Protein Assay Kit (Thermo Scientific). Then, the sample was electrophoresed using Extra <PAGE> One <Precast> Gel <10>-<20% (nacalai> tesque). The marker was prepared by adding 0.5 uL, MagicMark (trademark), XP, Western Protein, Standard, (invitrogen) to 3 uL, Full-Range, Rainbow, Molecular, Weight, Markers, (GE, health care). Each sample was diluted with MilliQ so that the total protein concentration was 5 μg / 15 μL. 6 × SDS buffer 4 μl was added to the prepared sample and boiled at 95 ° C. for 3 μmin. The entire amount was applied to a well and electrophoresed at 20 μmA for 120 μmin. After electrophoresis, the gel was transferred to a membrane by iBlot drive blotting system (Invitrogen) and blocked using Blocking®One® (nacalai®tesque). GAPDH was detected using GAPDH Antibody (FL-335) (Santa Cruz Biotechnology), Goat anti-Rabbit IgG (H + L)-HRP conjugate (bio-rad). LIN28A was detected using Anti-human LIN28A (Goat) (R and D Systems), Rabbit anti-Goat IgG (H + L) Secondary Antibody, and HRP conjugate (Life Technologies). After the antibody treatment, chemiluminescence was performed using ECL®Plus®Western®Blotting®Detection®System® (GE®Healthcare), and observed with LAS-4000® (FUJIFILM).
(実施例1)
 [天然アプタマーの改変]
 実験で使用するアプタマーは、LIN28A結合モチーフとして知られているアプタマー(図3左; Original aptamer)を改変し、mRNA上で構造形成が起こりやすくなるように設計した。Originalの配列に存在するAU塩基対を、より強固なGC塩基対に徐々に変更していった(図3右; stbA、stbB、stbC)。改変に従って、塩基対形成確率が上昇し、構造の安定化が予想される。アプタマーの2次構造予測には、CentroidFold (http://www.ncrna.org/centroidfold) を利用した。図3に示したオリジナルを含むアプタマーを、図2のプラスミドに挿入し、スイッチプラスミドを得た。表1に示した安定化アプタマー配列以外の、アプタマー配列を下記表12に示す。originalのアプタマーから改変した塩基は小文字で示している。
Example 1
[Modification of natural aptamer]
The aptamer used in the experiment was designed to modify the aptamer known as the LIN28A binding motif (Figure 3 left; Original aptamer) so that structure formation is likely to occur on mRNA. The AU base pair present in the original sequence was gradually changed to a stronger GC base pair (FIG. 3, right; stbA, stbB, stbC). According to the modification, the probability of base pairing increases and the stabilization of the structure is expected. CentroidFold (http://www.ncrna.org/centroidfold) was used to predict the secondary structure of the aptamer. The aptamer containing the original shown in FIG. 3 was inserted into the plasmid of FIG. 2 to obtain a switch plasmid. Aptamer sequences other than the stabilized aptamer sequences shown in Table 1 are shown in Table 12 below. Bases modified from the original aptamer are shown in lower case.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 [発明したスイッチプラスミドの翻訳効率の確認]
 作製したスイッチプラスミドは、LIN28Aを発現するトリガープラスミドとともに、HEK293FT細胞に共導入した。図4は、各スイッチプラスミドの翻訳効率の比較したグラフである。より良いスイッチであるほど、翻訳効率の低下が見られる。翻訳効率は、まずGFPの蛍光強度をtagRFPの蛍光強度で割り、次に、LIN28A導入時の値と非導入時の値を割って求めた。さらに、コントロールのスイッチプラスミド(図4; No aptamer)を基準として比較した。エラーバーは平均± 標準偏差 (n = 2、各回に3つのサンプルから平均を求めた、独立した2回の実験)を示す。Originalを挿入したスイッチに比べ、より構造を安定化させたスイッチにおいてより強い翻訳抑制が観察された。しかし、最も構造が安定と考えられるstbDでは、強い翻訳抑制は見られなかった。この理由として、図3において明らかなように、stbDではターミナルループの構造が変化していることが挙げられる。従って、より強いスイッチの翻訳抑制には、適切な2次構造が安定に形成される必要があると考えられる。
[Confirmation of translation efficiency of the invented switch plasmid]
The prepared switch plasmid was co-introduced into HEK293FT cells together with a trigger plasmid expressing LIN28A. FIG. 4 is a graph comparing the translation efficiency of each switch plasmid. The better the switch, the lower the translation efficiency. Translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when LIN28A was introduced and the value when it was not introduced. Furthermore, the control switch plasmid (FIG. 4; No aptamer) was used as a reference. Error bars indicate mean ± standard deviation (n = 2, two independent experiments, averaged from 3 samples each time). Stronger translational suppression was observed in the switch with a more stable structure compared to the switch with the original inserted. However, stbD, which is considered to have the most stable structure, did not show strong translational repression. This is because the structure of the terminal loop is changed in stbD, as is apparent in FIG. Therefore, it is considered that an appropriate secondary structure needs to be stably formed in order to suppress translation of a stronger switch.
 次に、特に強い翻訳抑制が観察されたstbCを挿入したスイッチが、他の細胞種でも機能しうるか確認した。実験、及び解析方法は上記HEK293FTの場合と同じである。図5は、HeLa細胞中でのLIN28Aスイッチの翻訳効率を示したグラフである。エラーバーは平均± 標準偏差 (n = 3)を示す。stbCを挿入したスイッチが、HeLa細胞中でもLIN28Aに応答して、翻訳抑制を起こすことが示された。 Next, it was confirmed whether the switch inserted with stbC, in which particularly strong translational suppression was observed, could function in other cell types. The experiment and analysis method are the same as in the case of HEK293FT. FIG. 5 is a graph showing the translation efficiency of the LIN28A switch in HeLa cells. Error bars indicate mean ± standard deviation (n = 3). It was shown that the switch inserted with stbC caused translational suppression in response to LIN28A even in HeLa cells.
 図6は、HEK293FT細胞に、LIN28Aスイッチあるいはその変異体を導入した場合の翻訳効率を示したグラフである。実験、及び解析方法は上記と同じである。エラーバーは平均± 標準偏差 (n = 3)を示す。mutantは、アプタマー配列中に存在するLIN28Aとの結合に関与する塩基を置換したものを意味する。また、deletionはアプタマー配列中からLIN28Aとの結合に関与する塩基を除去したものを意味する。従って、これら2つの変異体はLIN28Aとの結合が阻害されており、翻訳効率の回復が期待される。実際、これら2つの変異体では、stbCを挿入したスイッチのような、強い翻訳抑制は観察されなかった。 FIG. 6 is a graph showing the translation efficiency when the LIN28A switch or a mutant thereof is introduced into HEK293FT cells. The experiment and analysis method are the same as above. Error bars indicate mean ± standard deviation (n = 3). The mutant means a substance in which a base involved in binding to LIN28A existing in the aptamer sequence is substituted. Moreover, deletion means the thing which removed the base involved in the coupling | bonding with LIN28A from an aptamer sequence. Therefore, these two mutants are inhibited from binding to LIN28A, and recovery of translation efficiency is expected. In fact, these two mutants did not show strong translational repression, like the switch with stbC inserted.
 [LIN28Aスイッチの翻訳効率と細胞内LIN28A量の相関関係の確認]
 ドキシサイクリン添加によって、LIN28Aの発現を誘導できる細胞株に、スイッチプラスミドを導入することで、スイッチの翻訳効率と細胞内LIN28A量の相関関係を検証した。この細胞株は、添加するドキシサイクリン濃度に依存して、LIN28Aの発現量を調節できる。すなわち、ドキシサイクリン濃度の増加に従って、スイッチの蛍光比が低下することが期待される。図7Aは、添加したドキシサイクリン濃度と各スイッチの翻訳効率を表したグラフである。stbCを挿入したスイッチが、ドキシサイクリン濃度に依存して、最も高感度に翻訳抑制を受けることが確認された。図7Bは、ドキシサイクリン濃度依存的に、LIN28Aの発現量が上昇しているか、ウエスタンブロッティングによって確認した結果である。内部標準として、同時にGAPDHの発現も検出した。実際、ドキシサイクリン濃度に従って、LIN28Aの発現量が増大することが確認できた。図7Cは、図7Bで得たバンド濃度を定量し、ドキシサイクリン濃度との関係を示したグラフである。LIN28Aの相対発現量は、ドキシサイクリン濃度が、3 ~ 4 ng/mLの時点で上限に達していることが、確認された。この濃度は、図7Aにおいて、stbCを挿入したスイッチの蛍光比が下限に達した濃度と一致する。従って、LIN28Aスイッチは、細胞内LIN28A量依存的に翻訳抑制を受けることが確認された。図7Dは、LIN28Aの相対発現量が上限に達するまでの区画で、相対発現量と各スイッチの蛍光比の関係を表したグラフである。各LIN28Aスイッチの蛍光比とLIN28Aの相対発現量は、相関関係にあり、stbCを挿入したスイッチは、高感度に細胞内で発現するLIN28A量を検出できることが示された。
[Confirmation of correlation between LIN28A switch translation efficiency and intracellular LIN28A content]
By introducing a switch plasmid into a cell line capable of inducing LIN28A expression by doxycycline addition, the correlation between the translation efficiency of the switch and the amount of intracellular LIN28A was verified. This cell line can regulate the expression level of LIN28A depending on the concentration of doxycycline added. That is, it is expected that the fluorescence ratio of the switch decreases as the doxycycline concentration increases. FIG. 7A is a graph showing the added doxycycline concentration and the translation efficiency of each switch. It was confirmed that the switch inserted with stbC was most sensitive to translational suppression depending on the doxycycline concentration. FIG. 7B shows the result of confirming whether the expression level of LIN28A is increased depending on the doxycycline concentration by Western blotting. As an internal standard, the expression of GAPDH was also detected at the same time. In fact, it was confirmed that the expression level of LIN28A increased according to the doxycycline concentration. FIG. 7C is a graph quantifying the band concentration obtained in FIG. 7B and showing the relationship with doxycycline concentration. It was confirmed that the relative expression level of LIN28A reached the upper limit when the doxycycline concentration was 3 to 4 ng / mL. This concentration corresponds to the concentration at which the fluorescence ratio of the switch with the stbC inserted reaches the lower limit in FIG. 7A. Therefore, it was confirmed that the LIN28A switch is subject to translational suppression depending on the intracellular LIN28A amount. FIG. 7D is a graph showing the relationship between the relative expression level and the fluorescence ratio of each switch in the compartment until the relative expression level of LIN28A reaches the upper limit. It was shown that the fluorescence ratio of each LIN28A switch and the relative expression level of LIN28A are correlated, and that the switch inserted with stbC can detect the amount of LIN28A expressed in cells with high sensitivity.
 [LIN28AスイッチのmRNAトランスフェクションにおける翻訳効率の確認]
 タンパク質応答性mRNAを培養細胞へ直接導入しても、LIN28Aスイッチが機能するか検証した。スイッチmRNA、LIN28Aを発現するトリガーmRNA、及び一連のmRNAが細胞に導入されているか確認するためのレファレンスmRNA (iRFP mRNA)をHEK293FT細胞に共導入した。導入するトリガーmRNA量は0 ng(非導入)、50 ng、100 ng、150 ng、200 ng、300 ngの6段階に変化させた。理論的には、トリガーmRNAの導入量に伴って、スイッチmRNAからの翻訳効率の低下が起こる。図8Aは、各量のトリガーmRNA導入時におけるstbCを挿入したスイッチの蛍光を、フローサイトメトリーによってプロットしたものである。トリガーmRNAの導入量に従って、集団が下方に移動する(スイッチmRNAからの翻訳量が低下する)ことが確認された。
[Confirmation of translation efficiency in mRNA transfection of LIN28A switch]
It was verified whether the LIN28A switch would function even when protein-responsive mRNA was directly introduced into cultured cells. A switch mRNA, a trigger mRNA expressing LIN28A, and a reference mRNA (iRFP mRNA) for confirming whether a series of mRNAs were introduced into the cells were co-introduced into HEK293FT cells. The amount of trigger mRNA to be introduced was changed in 6 stages of 0 ng (non-introduced), 50 ng, 100 ng, 150 ng, 200 ng and 300 ng. Theoretically, translation efficiency from switch mRNA decreases with the amount of trigger mRNA introduced. FIG. 8A is a plot of the fluorescence of a switch into which stbC has been inserted at the time of introduction of each amount of trigger mRNA by flow cytometry. It was confirmed that the population moved downward (translation amount from the switch mRNA decreased) according to the amount of trigger mRNA introduced.
 図8Bは、他のアプタマーを挿入したスイッチ及び図8Aの測定結果を重ね合わせたドットプロットである。各アプタマーを挿入したスイッチのうち、stbCを挿入したスイッチにおいてのみ、トリガーmRNA導入量に伴った細胞集団の移動が観察された。従って、stbCを挿入したスイッチを細胞集団に導入することで、細胞内のLIN28Aの発現量依存的に細胞集団の分離が可能であることが示唆された。図8Cは、各トリガーmRNA導入量でのスイッチmRNAの翻訳効率を示したグラフである。翻訳効率は、まずhmAG1の蛍光強度をiRFP670の蛍光強度で割り、次に、トリガーmRNA導入時の値と非導入時の値を割って求めた。各アプタマーを挿入したスイッチのうち、stbCを挿入したスイッチにおいて、強い翻訳の抑制が観察された。さらに、トリガーmRNAの導入量の増加に伴って、翻訳効率の低下が確認できた。 FIG. 8B is a dot plot in which the switch in which another aptamer is inserted and the measurement result of FIG. 8A are superimposed. Among the switches into which each aptamer was inserted, only in the switch into which stbC was inserted, the movement of the cell population with the amount of trigger mRNA was observed. Therefore, it was suggested that the cell population can be separated depending on the expression level of LIN28A in the cell by introducing the switch into which the stbC is inserted into the cell population. FIG. 8C is a graph showing the translation efficiency of switch mRNA at each trigger mRNA introduction amount. The translation efficiency was determined by first dividing the fluorescence intensity of hmAG1 by the fluorescence intensity of iRFP670, and then dividing the value when the trigger mRNA was introduced and the value when it was not introduced. Of the switches inserted with each aptamer, strong translational suppression was observed in the switch inserted with stbC. Furthermore, a decrease in translation efficiency was confirmed with an increase in the amount of trigger mRNA introduced.
 (実施例2)
 [LIN28AスイッチによるiPS細胞の識別]
 LIN28Aは、iPS細胞やES細胞をはじめとする幹細胞中で高発現しているタンパク質である。従って、LIN28Aの発現量の差から、iPS細胞と分化細胞の区別が生きた細胞を用いて可能である。このことは、LIN28Aスイッチの各細胞における翻訳効率の違いから、iPS細胞と分化細胞の識別が可能であることを示唆している。つまり、LIN28Aスイッチを細胞に導入した時、iPS細胞ではLIN28Aが高発現しているので、翻訳の抑制が観察され、分化細胞では翻訳抑制が観察されないはずである(図9A)。このとき、スイッチmRNAがトランスフェクションされていない細胞は、レファレンスmRNAの発現を測定することで除去できる。さらに、フローサイトメトリーを行うことで、レファレンスmRNAの蛍光値に対するスイッチmRNAの蛍光値の差から、iPS細胞の集団と分化細胞の集団を分離できる(図9B)。      
(Example 2)
[Identification of iPS cells by LIN28A switch]
LIN28A is a protein that is highly expressed in stem cells including iPS cells and ES cells. Therefore, iPS cells and differentiated cells can be differentiated from living cells based on the difference in the expression level of LIN28A. This suggests that iPS cells and differentiated cells can be distinguished from each other in the translation efficiency of each cell of the LIN28A switch. In other words, when LIN28A switch is introduced into cells, LIN28A is highly expressed in iPS cells, so that suppression of translation should be observed, and translational suppression should not be observed in differentiated cells (FIG. 9A). At this time, cells not transfected with the switch mRNA can be removed by measuring the expression of the reference mRNA. Furthermore, by performing flow cytometry, the iPS cell population and the differentiated cell population can be separated from the difference in the fluorescence value of the switch mRNA with respect to the fluorescence value of the reference mRNA (FIG. 9B).
 図10Aは、各LIN28AスイッチとレファレンスmRNA (mKO2)を共導入した際の測定結果を示すドットプロットである。コントロールのスイッチでは、iPS細胞と分化細胞の集団が一致しているが、stbCを挿入したスイッチにおいて、明らかに細胞集団が分離していることが確認できた。また、図10Bは、図10Aのドットプロットにおける2つの蛍光シグナルの比率を表すヒストグラムである。図10Cは、iPS細胞と分化細胞でのLIN28Aスイッチの翻訳効率を比較したグラフである。翻訳効率は、まずhmAG1の蛍光強度をmKO2の蛍光強度で割り、次に、そのiPS細胞における値と分化細胞における値を割って求めた。iPS細胞におけるLIN28Aスイッチの翻訳効率は、分化細胞に比べて50%以上低下していることが観察された。 FIG. 10A is a dot plot showing the measurement results when each LIN28A switch and reference mRNA (mKO2) are co-introduced. In the control switch, the populations of iPS cells and differentiated cells matched, but it was confirmed that the cell populations were clearly separated in the switch into which stbC was inserted. FIG. 10B is a histogram showing the ratio of two fluorescent signals in the dot plot of FIG. 10A. FIG. 10C is a graph comparing the translation efficiency of the LIN28A switch between iPS cells and differentiated cells. The translation efficiency was obtained by first dividing the fluorescence intensity of hmAG1 by the fluorescence intensity of mKO2, and then dividing the value in iPS cells and the value in differentiated cells. It was observed that the translation efficiency of the LIN28A switch in iPS cells was reduced by more than 50% compared to differentiated cells.
 図11Aは、分化誘導14日目及び34日目のiPS細胞と未分化のiPS細胞におけるスイッチの翻訳効率の比較である。翻訳効率は、まずEGFPの蛍光強度をtagRFPの蛍光強度で割り、次に、そのiPS細胞における値と分化細胞における値を割った。さらに、その値をコントロール (No aptamer)の値で標準化したものをグラフに示した。分化細胞に対してiPS細胞の翻訳効率が低下していることが確認された。図11Bは、各細胞のフローサイトメトリーの結果を示すドットプロットとその重ね合わせである。分化誘導に伴って、細胞集団が上方に移動する (翻訳量が増大する)ことが観察された。 FIG. 11A is a comparison of the translation efficiency of the switches between iPS cells on differentiation induction days 14 and 34 and undifferentiated iPS cells. For the translation efficiency, the fluorescence intensity of EGFP was first divided by the fluorescence intensity of tagRFP, and then the value in iPS cells and the value in differentiated cells were divided. Furthermore, the values normalized with the value of the control (No aptamer) are shown in the graph. It was confirmed that the translation efficiency of iPS cells was reduced compared to differentiated cells. FIG. 11B is a dot plot showing the result of flow cytometry of each cell and its overlay. It was observed that the cell population moved upward (translation amount increased) with differentiation induction.
 (実施例3)
 [mRNAスイッチを用いたヒト内在性タンパク質検知の拡張性]
 今回の発明では、mRNAに挿入するアプタマーの構造を安定化させることで、高感度なmRNAスイッチの開発に成功した。この設計原理が、LIN28A以外のタンパク質検出にも応用可能か否か、U1Aに応答するmRNAスイッチを作製することで検証した。U1Aは、スプライシング関連タンパク質として、ヒト細胞内に存在する。図12は、実験に使用したU1Aに結合するアプタマーである。U1hp及びU1utrは、天然に存在するアプタマーである。下段の2次構造(図12中の(b))は、参考文献[4]から転載した。図12上段のU1utrは、報告されている配列をもとに、CentroidFoldを用いて2次構造を予測したものである。この結果、U1utrは安定でなく、報告された構造を形成しない可能性が生じた。そこで、複数ヶ所の塩基を改変することで、報告されたものに近い構造を形成するU1utr_stbを設計した。また、U1LSLは、参考文献[5]で使用されているアプタマーである。このアプタマーに、長いステム構造を付加することで、mRNA上で他の領域と相互作用を起こしにくくし、アプタマーの構造が保護されるようにした。表2に示した安定化アプタマー配列以外の、アプタマー配列を下記表13に示す。originalのアプタマーから改変した塩基は小文字で示している。
(Example 3)
[Scalability of human endogenous protein detection using mRNA switch]
In the present invention, a highly sensitive mRNA switch was successfully developed by stabilizing the structure of the aptamer inserted into mRNA. Whether this design principle can be applied to detection of proteins other than LIN28A was verified by creating an mRNA switch that responds to U1A. U1A exists in human cells as a splicing-related protein. FIG. 12 is an aptamer that binds to U1A used in the experiment. U1hp and U1utr are naturally occurring aptamers. The lower secondary structure ((b) in FIG. 12) was reprinted from Reference [4]. U1utr in the upper part of FIG. 12 is a predicted secondary structure using CentroidFold based on the reported sequence. This resulted in the possibility that U1utr was not stable and did not form the reported structure. Therefore, we designed U1utr_stb to form a structure close to that reported by modifying multiple bases. U1LSL is an aptamer used in the reference [5]. By adding a long stem structure to this aptamer, it was made difficult to interact with other regions on the mRNA, and the aptamer structure was protected. Aptamer sequences other than the stabilized aptamer sequences shown in Table 2 are shown in Table 13 below. Bases modified from the original aptamer are shown in lower case.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 図13は、各スイッチプラスミドの翻訳効率の比較したグラフである。作製したスイッチプラスミドは、U1Aを発現するトリガープラスミドとともに、HEK293FT細胞に共導入した。翻訳効率は、まずGFPの蛍光強度をtagRFPの蛍光強度で割り、次に、U1A導入時の値と非導入時の値を割って求めた。さらに、コントロールのスイッチプラスミド(図4; No aptamer)を基準として比較した。エラーバーは平均± 標準偏差 (n = 3)を示す。その結果、U1utrよりも、より構造が安定であると考えられるU1utr_stbにおいてより強い翻訳抑制が観察された。さらに、U1LSLについても、より長いステム構造を付加し、構造安定化を図ったアプタマーにおいて、より強い翻訳抑制が観察された。 FIG. 13 is a graph comparing the translation efficiency of each switch plasmid. The prepared switch plasmid was co-introduced into HEK293FT cells together with a trigger plasmid expressing U1A. The translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when U1A was introduced and the value when not introduced. Furthermore, the control switch plasmid (FIG. 4; No aptamer) was used as a reference. Error bars indicate mean ± standard deviation (n = 3). As a result, stronger translational suppression was observed in U1utr_stb, which is considered to be more stable than U1utr. Furthermore, for U1LSL, stronger translational suppression was observed in aptamers that had a longer stem structure added to stabilize the structure.
 さらに、U1LSL及びそれにステム構造を付加したアプタマーについて、塩基置換を行い、変異体を作製した。これらの変異体は、野生型と同じ構造を形成するが、U1Aとの結合能は失われている。従って、変異体を挿入したmRNAでは、翻訳効率の回復が期待される。図14Aは、各スイッチプラスミドをコントロールのトリガープラスミドとともに、HEK293FT細胞に導入した際の蛍光顕微鏡写真である。変異体(mut)アプタマーを挿入したスイッチよりも、野生型(WT)アプタマーを挿入したスイッチにおいて、強い翻訳抑制が観察された。図14Bは、図14Aで観察した細胞をフローサイトメトリー解析して得られたヒストグラムである。また、図14Cは、野生型アプタマーを挿入したスイッチと変異体アプタマーを挿入したスイッチの蛍光比を示したグラフである。蛍光比は、まずGFPの蛍光強度をDsRed Exの蛍光強度で割り、次に、野生型と変異体を挿入したスイッチの値を割って求めた。エラーバーは平均± 標準誤差 (n = 3回の独立した実験)を示す。これらの結果から、作製したU1Aスイッチは、細胞内在のU1Aに応答できることが示唆された。すなわち、任意のタンパク質に結合するアプタマーについて、その2次構造を安定化させることで、所望のタンパク質を検知できるmRNAスイッチが作製できる。 Furthermore, U1LSL and aptamer with a stem structure added thereto were subjected to base substitution to produce mutants. These mutants form the same structure as the wild type, but lose the ability to bind U1A. Therefore, recovery of translation efficiency is expected for mRNA with a mutant inserted. FIG. 14A is a fluorescence micrograph when each switch plasmid is introduced into HEK293FT cells together with a control trigger plasmid. Stronger translational suppression was observed in the switch inserted with the wild type (WT) aptamer than in the switch inserted with the mutant (mut) aptamer. FIG. 14B is a histogram obtained by flow cytometric analysis of the cells observed in FIG. 14A. FIG. 14C is a graph showing the fluorescence ratio of the switch inserted with the wild type aptamer and the switch inserted with the mutant aptamer. The fluorescence ratio was determined by first dividing the fluorescence intensity of GFP by the fluorescence intensity of DsRed Ex and then dividing the value of the switch into which the wild type and the mutant were inserted. Error bars indicate mean ± standard error (n = 3 independent experiments). From these results, it was suggested that the produced U1A switch can respond to U1A in cells. In other words, an mRNA switch that can detect a desired protein can be produced by stabilizing the secondary structure of an aptamer that binds to an arbitrary protein.
 (実施例4)[ノックダウン解析]
 培養細胞は24ウェルプレートに播種し、翌日に全量500 ngのプラスミドと5 pmolのshRNAを共導入した。導入には、2 μLのLipofectamine2000 (Invitrogen)を用いて、製造者の指示に従って実施した。使用したプラスミドは、スイッチプラスミドとレファレンスプラスミド(pTAPmyc -T2A-tagRFP)の量比が1対4になるようにOpti-MEM(Invitrogen)中で混合した。トランスフェクション後、4~6時間後に培地を交換した。トランスフェクションの翌日に細胞をプレートから分離し、メッシュを通して、フローサイトメトリーにより分析した。24ウェルプレートを用いた実験では、Accuri C6 (BD Biosciences)を使用した。EGFPはFL1 (530/30 nm) filtersフィターにより検出した。tagRFPはFL2 (585/40 nm) filtersフィターにより検出した。使用したshRNAは以下のとおり。
(Example 4) [Knockdown analysis]
The cultured cells were seeded in a 24-well plate, and the next day, a total amount of 500 ng of plasmid and 5 pmol of shRNA were co-introduced. The introduction was performed using 2 μL of Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. The used plasmid was mixed in Opti-MEM (Invitrogen) so that the quantitative ratio of the switch plasmid and the reference plasmid (pTAPmyc-T2A-tagRFP) was 1: 4. The medium was changed 4 to 6 hours after transfection. The day after transfection, cells were detached from the plate and analyzed by flow cytometry through a mesh. In experiments using 24-well plates, Accuri C6 (BD Biosciences) was used. EGFP was detected with a FL1 (530/30 nm) filters filter. tagRFP was detected with the FL2 (585/40 nm) filters filter. The shRNA used is as follows.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[定量RT-PCR]
 mRNAトランスフェクションを行った翌日に、iPS細胞をプレートから分離し、細胞を回収した。分化細胞は、トランスフェクションを行っていないものを同様の手法で回収し使用した。トータルRNA回収、逆転写、定量PCRはmiRNA Cells-to-CT kit (Applied Biosystems)を用いて行った。成熟miRNAの発現レベルは、miRNA TaqMan probe (Applied Biosystems) を用いた。また、RNU6Bを用いて値を基準化した。発現レベルはΔΔCt法を用いて計算した。使用したTaqMan probeは以下のとおり。
[Quantitative RT-PCR]
The day after the mRNA transfection, iPS cells were separated from the plate, and the cells were collected. Differentiated cells that were not transfected were collected and used in the same manner. Total RNA recovery, reverse transcription, and quantitative PCR were performed using miRNA Cells-to-CT kit (Applied Biosystems). The miRNA TaqMan probe (Applied Biosystems) was used for the expression level of mature miRNA. The values were normalized using RNU6B. Expression levels were calculated using the ΔΔCt method. The TaqMan probes used are as follows.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[U1Aスイッチが内在性U1Aに応答することの確認]
 図15は、U1AスイッチにおけるshRNA導入時の相対翻訳効率を示したグラフである。作製したスイッチプラスミドは、tagRFPを発現するレファレンスプラスミド及びshRNAとともに、HEK293FT細胞に共導入した。相対翻訳効率は、まずGFPの蛍光強度をtagRFPの蛍光強度で割り、次に、shRNA未導入時の値と各サンプルの値を割って求めた。エラーバーは平均± 標準誤差 (n = 3、各回に3つのサンプルから平均を求めた、独立した3回の実験)を示す。その結果、安定なアプタマーを挿入したスイッチにおいてshUA1導入時に、翻訳の増加が認められた。この結果は、より安定な構造を有するアプタマーを挿入したスイッチにおいてより高感度に内在U1Aを検出できることを意味している。従って、2次構造を安定化することで、内在性タンパク質を検出するのに十分な感度を持ったmRNAスイッチが作製できる。
[Confirmation that U1A switch responds to endogenous U1A]
FIG. 15 is a graph showing the relative translation efficiency at the time of shRNA introduction in the U1A switch. The prepared switch plasmid was co-introduced into HEK293FT cells together with a reference plasmid expressing TAGRFP and shRNA. The relative translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when shRNA was not introduced and the value of each sample. Error bars indicate mean ± standard error (n = 3, 3 independent experiments, averaged from 3 samples each time). As a result, an increase in translation was observed when shUA1 was introduced in a switch into which a stable aptamer was inserted. This result means that endogenous U1A can be detected with higher sensitivity in a switch in which an aptamer having a more stable structure is inserted. Therefore, by stabilizing the secondary structure, an mRNA switch having sufficient sensitivity for detecting endogenous protein can be produced.
[LIN28Aスイッチの導入が内在のmiRNA発現に与える影響]
 LIN28Aは、自然界においては、let7ファミリーに属する一連のmiRNAの成熟に関わっている。具体的には、let7 miRNAの前駆体中のループ部位にLIN28A結合サイトが存在し、ここにLIN28Aが結合することで、成熟miRNAの発現を阻害する。そのため、LIN28Aと結合能を有するmRNAスイッチを導入することは、このmiRNA発現制御の過程に影響を及ぼす可能性がある。つまり、内在のLIN28AがmRNAスイッチに結合することで、miRNA成熟の抑制が不十分になり、let7ファミリーの発現量が増加するかもしれない。これを調べるため、定量RT-PCRにより、3種類の代表的な成熟let7ファミリーの発現量を測定した。
[Influence of introduction of LIN28A switch on endogenous miRNA expression]
LIN28A is involved in the maturation of a series of miRNAs belonging to the let7 family in nature. Specifically, there is a LIN28A binding site at the loop site in the precursor of let7 miRNA, and binding of LIN28A here inhibits expression of mature miRNA. Therefore, introduction of an mRNA switch capable of binding to LIN28A may affect the process of miRNA expression control. In other words, binding of endogenous LIN28A to the mRNA switch may result in insufficient miRNA maturation suppression and increased let7 family expression. To investigate this, the expression levels of three typical mature let7 families were measured by quantitative RT-PCR.
 図16は、LIN28Aスイッチ導入時の成熟let7 miRNAの発現レベルを表すグラフである。分化細胞における発現量を1として表した。エラーバーは平均± 標準偏差 (n = 3)を示す。その結果、iPS細胞へのLIN28Aスイッチ導入において(no aptamer, stbC)、顕著な成熟miRNAの発現変化は観察されなかった。従って、今回発明したLIN28Aスイッチは、miRNAの発現プロファイルに大きな影響を与えることなく、iPS細胞と分化細胞を識別できる。 FIG. 16 is a graph showing the expression level of mature let7 miRNA when the LIN28A switch is introduced. The expression level in differentiated cells was expressed as 1. Error bars indicate mean ± standard deviation (n = 3). As a result, when LIN28A switch was introduced into iPS cells (no aptamer, stbC), no significant change in the expression of mature miRNA was observed. Therefore, the LIN28A switch invented this time can distinguish iPS cells from differentiated cells without significantly affecting the miRNA expression profile.
 [人工アプタマーを活用したmRNAスイッチの作製]
 U1Aスイッチ、LIN28Aスイッチで利用したアプタマーは、天然に存在するものをそのまま利用するか、一部を抽出したモチーフを利用して作製した。原理的には、人工的に取得されたアプタマーであっても、今回利用した手法を活用することで、高感度なmRNAスイッチが作製できる。これを検証するため、がん関連タンパク質の1つであるp50に結合するアプタマー(p50A:配列番号83)を用いてmRNAスイッチを作製した (図17、左図、参考文献[6])。このアプタマーに、長いステム構造を付加することで、mRNA上で他の領域と相互作用を起こしにくくし、アプタマーの構造が保護されるようにした(p50A-stb:配列番号84、図17、右図)。また、結合部位の塩基を置換することで、変異体を作製した(p50A-stbmut:配列番号85)。図17は、実験に使用したp50に結合するアプタマーである。変異体を作製するにあたって、置換した塩基は、図17、右図に矢印で示している。
[Preparation of mRNA switch using artificial aptamer]
The aptamers used in the U1A switch and LIN28A switch were either created using naturally occurring ones as they were, or were created using a partially extracted motif. In principle, even aptamers acquired artificially, a highly sensitive mRNA switch can be produced by utilizing the technique used this time. In order to verify this, an mRNA switch was prepared using an aptamer (p50A: SEQ ID NO: 83) that binds to p50, which is one of cancer-related proteins (FIG. 17, left diagram, reference [6]). By adding a long stem structure to this aptamer, it was made difficult to interact with other regions on the mRNA, so that the aptamer structure was protected (p50A-stb: SEQ ID NO: 84, FIG. 17, right) Figure). Moreover, the mutant was produced by substituting the base of the binding site (p50A-stb mut : SEQ ID NO: 85). FIG. 17 is an aptamer that binds to p50 used in the experiment. In preparing the mutant, the substituted base is indicated by an arrow in FIG.
 図18は、各スイッチプラスミドの翻訳効率の比較したグラフである。作製したスイッチプラスミドは、p50を発現するトリガープラスミドとともに、HEK293FT細胞に共導入した。翻訳効率は、まずGFPの蛍光強度をtagRFPの蛍光強度で割り、次に、p50導入時の値と非導入時の値を割って求めた。さらに、コントロールのスイッチプラスミド(図4; No aptamer)を基準として比較した。エラーバーは平均± 標準誤差(n = 3、各回に3つのサンプルから平均を求めた、独立した3回の実験)を示す。その結果、p50Aよりも、より構造が安定であると考えられるp50A-stbにおいてより強い翻訳抑制が観察された。従って、人工的に取得されたアプタマーであっても、同様のアプローチによって、高感度なmRNAスイッチが作製可能である。 FIG. 18 is a graph comparing the translation efficiency of each switch plasmid. The prepared switch plasmid was co-introduced into HEK293FT cells together with a trigger plasmid expressing p50. Translation efficiency was obtained by first dividing the fluorescence intensity of GFP by the fluorescence intensity of tagRFP, and then dividing the value when p50 was introduced and the value when not introduced. Furthermore, the control switch plasmid (FIG. 4; No aptamer) was used as a reference. Error bars show mean ± standard error (n = 3, 3 independent experiments, averaged from 3 samples each time). As a result, stronger translational inhibition was observed in p50A-stb, which is considered to be more structurally stable than p50A. Therefore, even with an aptamer obtained artificially, a highly sensitive mRNA switch can be prepared by the same approach.
 (参考文献)[1] Saito, H., Fujita, Y., Kashida, S., Hayashi, K. & Inoue, T. Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2,160 (2011).
[2] Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-30 (2010).
[3] Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 (1990).
[4] Nagai, K., Oubridge, C., Ito, N., Avis, J. & Evans, P. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem. Sci. 20, 235-240 (1995).
[5] Kashida, S., Inoue, T. & Saito, H. Three-dimensionally designed protein-responsive RNA devices for cell signaling regulation. Nucleic Acids Res. 40, 9369-78 (2012).
[6] Huang, D.-B. et al. Crystal structure of NF- B (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. 100, 9268-9273 (2003).
(Reference) [1] Saito, H., Fujita, Y., Kashida, S., Hayashi, K. & Inoue, T. Synthetic human cell fate regulation by protein-driven RNA switches. Nat. Commun. 2,160 (2011 ).
[2] Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618-30 (2010).
[3] Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 (1990).
[4] Nagai, K., Oubridge, C., Ito, N., Avis, J. & Evans, P. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA.Trends Biochem. Sci. 20, 235-240 (1995).
[5] Kashida, S., Inoue, T. & Saito, H. Three-dimensionally designed protein-responsive RNA devices for cell signaling regulation. Nucleic Acids Res. 40, 9369-78 (2012).
[6] Huang, D.-B. et al. Crystal structure of NF- B (p50) 2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. 100, 9268-9273 (2003).

Claims (10)

  1.  細胞内在性タンパク質の識別方法であって、以下の工程を含む方法:
     (1)細胞内在性タンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含む細胞内在性タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを所望の細胞に導入する工程;及び
     (2)前記マーカー遺伝子の翻訳量に基づいて、細胞内在性タンパク質を識別する工程。
    A method for identifying an endogenous protein comprising the following steps:
    (1) a step of introducing into a desired cell a cell endogenous protein-responsive mRNA or aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto, or a vector encoding the mRNA; 2) A step of identifying a cellular endogenous protein based on the translation amount of the marker gene.
  2.  細胞の識別方法であって、以下の工程を含む方法:
     (1)細胞内在性タンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含む細胞内在性タンパク質応答性mRNAもしくは当該mRNAをコードするベクターを所望の細胞に導入する工程; 
     (2)前記マーカー遺伝子の翻訳量に基づいて、前記タンパク質を発現する細胞を識別する工程。
    A method for identifying a cell comprising the following steps:
    (1) A step of introducing a cell endogenous protein-responsive mRNA containing an aptamer sequence specific to a cell endogenous protein and a marker gene sequence operably linked thereto or a vector encoding the mRNA into a desired cell;
    (2) A step of identifying cells expressing the protein based on the translation amount of the marker gene.
  3.  配列番号1で表される天然型LIN28Aアプタマー配列が形成するRNA二次構造に基づき、以下の1以上の改変を加えてなる構造安定化LIN28Aアプタマー:
     (1)5’末端塩基及び3’末端塩基を含むステムを構成するAU塩基対をGC塩基対に置換する;
     (2)2つのループ間に位置するステムを構成するAU塩基対をGC塩基対に置換する;または
     (3)2つのループ間に位置するステムに、1~5の塩基対を付加する。
    A structure-stabilized LIN28A aptamer obtained by adding one or more of the following modifications based on the RNA secondary structure formed by the natural LIN28A aptamer sequence represented by SEQ ID NO: 1:
    (1) AU base pairs constituting a stem including a 5 ′ terminal base and a 3 ′ terminal base are replaced with GC base pairs;
    (2) Replace the AU base pair constituting the stem located between the two loops with a GC base pair; or (3) Add 1 to 5 base pairs to the stem located between the two loops.
  4.  配列番号2~4のいずれかで表される構造安定化LIN28Aアプタマー。 Structure-stabilized LIN28A aptamer represented by any of SEQ ID NOs: 2 to 4.
  5.  配列番号6で表される天然型U1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化U1Aアプタマー:
     (1)5’末端塩基及び3’末端塩基を含むステム構造に1~15のAU塩基対もしくはGC塩基対を付加する、あるいは2つのボックス間に存在するステムに、1~15のAU塩基対もしくはGC塩基対を付加する;または
     配列番号8で表されるU1Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化U1Aアプタマー:
     (2)5’末端塩基及び3’末端塩基を含むステムに、1~15のAU塩基対もしくはGC塩基対を付加する。
    Based on the RNA secondary structure formed by the natural U1A aptamer sequence represented by SEQ ID NO: 6, the structure-stabilized U1A aptamer is modified as follows:
    (1) 1 to 15 AU base pairs or GC base pairs are added to a stem structure containing a 5 ′ terminal base and a 3 ′ terminal base, or 1 to 15 AU base pairs are added to a stem existing between two boxes. Alternatively, a GC base pair is added; or a structure-stabilized U1A aptamer obtained by adding the following modifications based on the RNA secondary structure formed by the U1A aptamer sequence represented by SEQ ID NO: 8:
    (2) Add 1 to 15 AU base pairs or GC base pairs to the stem containing the 5 ′ terminal base and the 3 ′ terminal base.
  6.  配列番号83で表されるp50Aアプタマー配列が形成するRNA二次構造に基づき、以下の改変を加えてなる構造安定化p50Aアプタマー:
     5’末端塩基及び3’末端塩基を含むステム構造に1~20のAU塩基対もしくはGC塩基対を付加する。
    Based on the RNA secondary structure formed by the p50A aptamer sequence represented by SEQ ID NO: 83, the structure-stabilized p50A aptamer is modified as follows:
    1 to 20 AU base pairs or GC base pairs are added to the stem structure containing the 5 ′ terminal base and the 3 ′ terminal base.
  7.  配列番号7、9、10、84のいずれかで表される構造安定化U1Aアプタマー。 Structure-stabilized U1A aptamer represented by any of SEQ ID NOs: 7, 9, 10, and 84.
  8.  請求項3~7のいずれか1項に記載の構造安定化アプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNA。 An mRNA comprising the structure-stabilized aptamer sequence according to any one of claims 3 to 7 and a marker gene sequence operably linked thereto.
  9.  細胞の分化状態の識別方法であって、以下の工程を含む方法:
     (1)多能性幹細胞を含みうる細胞群に、未分化細胞が発現するタンパク質に特異的なアプタマー配列とそれと機能的に連結したマーカー遺伝子配列を含むmRNA、あるいは当該mRNAをコードするベクターを導入する工程;及び
     (2)前記マーカー遺伝子の翻訳量に基づいて細胞の分化状態を識別する工程。
    A method for identifying the differentiation state of a cell, comprising the following steps:
    (1) Introduction of an mRNA containing an aptamer sequence specific to a protein expressed by undifferentiated cells and a marker gene sequence operably linked thereto, or a vector encoding the mRNA into a cell group that can contain pluripotent stem cells And (2) identifying the differentiation state of the cell based on the translation amount of the marker gene.
  10.  前記アプタマー配列が、天然型LIN28Aアプタマー配列、または請求項3もしくは4に記載の構造安定化アプタマー配列である、請求項9に記載の方法。  The method according to claim 9, wherein the aptamer sequence is a natural LIN28A aptamer sequence or the structure-stabilized aptamer sequence according to claim 3 or 4.
PCT/JP2016/085879 2015-12-02 2016-12-02 Method for identifying intracellular endogenous protein WO2017094878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017554197A JP6877752B2 (en) 2015-12-02 2016-12-02 Method for identifying intracellular proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015236040 2015-12-02
JP2015-236040 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017094878A1 true WO2017094878A1 (en) 2017-06-08

Family

ID=58797431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085879 WO2017094878A1 (en) 2015-12-02 2016-12-02 Method for identifying intracellular endogenous protein

Country Status (2)

Country Link
JP (1) JP6877752B2 (en)
WO (1) WO2017094878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013294A1 (en) * 2017-07-12 2019-01-17 国立大学法人京都大学 HIGH EXPRESSION mRNA SWITCH

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142259A (en) * 2007-11-22 2009-07-02 Japan Science & Technology Agency Protein-responsive translation control system utilizing rna-protein interaction motif

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142259A (en) * 2007-11-22 2009-07-02 Japan Science & Technology Agency Protein-responsive translation control system utilizing rna-protein interaction motif

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CULLER, STEPHANIE J. ET AL.: "Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins", SCIENCE, vol. 330, no. 26, 2010, pages 1251 - 1255, XP055388430, ISSN: 1095-9203 *
SHUNSUKE KAWASAKI: "Hito Naizaisei Tanpakushitsu ni Oto suru Jinko mRNA Switch no Kaihatsu", THE RNA SOCIETY OF JAPAN NENKAI YOSHISHU, vol. 17, 15 July 2015 (2015-07-15), pages 239 *
SHUNSUKE KAWASAKI: "Jinko mRNA Switch ni yoru Hito Naizaisei Tanpakushitsu no Kenchi", THE 88TH ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY YOSHISHU, 16 November 2015 (2015-11-16), pages 3LBA064, Retrieved from the Internet <URL:http://www.aeplan.co.jp/bmb2015/online.html> [retrieved on 20151116] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013294A1 (en) * 2017-07-12 2019-01-17 国立大学法人京都大学 HIGH EXPRESSION mRNA SWITCH
JPWO2019013294A1 (en) * 2017-07-12 2020-10-22 国立大学法人京都大学 Highly expressed mRNA switch
JP7318931B2 (en) 2017-07-12 2023-08-01 国立大学法人京都大学 High expression mRNA switch

Also Published As

Publication number Publication date
JP6877752B2 (en) 2021-05-26
JPWO2017094878A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6473077B2 (en) Pluripotent stem cells for inducing neural differentiation
JP6612736B2 (en) Cardiomyocyte sorting method
US20200056248A1 (en) Method for sorting tissue cells
JP6893633B2 (en) Extraction method of differentiated cells
JP6883791B2 (en) How to select skeletal muscle progenitor cells
JP7236738B2 (en) Method for sorting neural progenitor cells
WO2016104717A1 (en) Hepatocyte induction method
JPWO2016148307A1 (en) Induction of airway epithelial cell differentiation
US10689624B2 (en) Compound for identifying pluripotent cells
JP6877752B2 (en) Method for identifying intracellular proteins
WO2023166111A1 (en) Method for the generation of outer radial glial (org) cells
WO2016167329A1 (en) Method for producing stem cell clones suitable for induction of differentiation into somatic cells
JP5888769B2 (en) Simple detection method for pluripotent stem cells genetically modified by homologous recombination
US20220326225A1 (en) Pluripotent stem cell, nerve cell, and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870813

Country of ref document: EP

Kind code of ref document: A1