WO2017094853A1 - Hybrid vehicle and method for controlling same - Google Patents

Hybrid vehicle and method for controlling same Download PDF

Info

Publication number
WO2017094853A1
WO2017094853A1 PCT/JP2016/085771 JP2016085771W WO2017094853A1 WO 2017094853 A1 WO2017094853 A1 WO 2017094853A1 JP 2016085771 W JP2016085771 W JP 2016085771W WO 2017094853 A1 WO2017094853 A1 WO 2017094853A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor generator
value
battery
output torque
engine
Prior art date
Application number
PCT/JP2016/085771
Other languages
French (fr)
Japanese (ja)
Inventor
堀井 裕介
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017094853A1 publication Critical patent/WO2017094853A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly, to a hybrid vehicle and a control method thereof that avoid a situation in which an output torque output from a hybrid system is less than a required torque required for the hybrid system. .
  • HEV hybrid vehicle
  • a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle
  • driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertial traveling or deceleration.
  • Patent Document 1 A device that limits the target output torque of the motor generator when the battery electrically connected to the motor generator is overdischarged or overcharged has been proposed (for example, see Patent Document 1).
  • the target torque of the motor generator was calculated by taking into account the amount of power consumed by an auxiliary device such as a DC / DC converter in addition to the amount of power that can be input and output based on the remaining capacity (SOC) of the battery and its temperature.
  • SOC remaining capacity
  • the target torque is limited to the calculated allowable torque. This suppresses overdischarge and overcharge of the battery and suppresses hunting (vibration) of the motor generator that occurs during overcharge / discharge of the battery.
  • the battery has a problem that the deterioration proceeds when the internal temperature exceeds a preset upper limit temperature.
  • the input / output current value and power value of the battery are limited so that the internal temperature of the battery does not exceed the upper limit temperature.
  • the target output torque of the engine and the motor generator is calculated based on the required torque obtained from the accelerator opening and the like.
  • the above device does not consider the input / output limitation of the battery. For this reason, when the input / output of the battery is restricted, the output torque of the motor generator is reduced, resulting in a problem that the required torque cannot be obtained.
  • the purpose of the present disclosure is to prevent the output torque of the motor generator from reaching the target torque required for the motor generator, so that the output torque output from the hybrid system is higher than the required torque required for the hybrid system. It is an object of the present invention to provide a hybrid vehicle capable of avoiding a shortage and a control method thereof.
  • the hybrid vehicle of the present disclosure that achieves the above object includes a motor generator connected to an output shaft that transmits engine power, a battery electrically connected to the motor generator, and a battery management system that manages the battery.
  • a hybrid vehicle comprising an auxiliary device that consumes electric power charged in the battery, and a control device, the battery management system sets a limit value for limiting an input / output value of the battery. It is configured to calculate based on the state of the battery and transmit the limit value to the control device, and the control device calculates the battery and the motor generator calculated based on the transmitted limit value.
  • the motor generator is configured to perform control to adjust to each target output torque of the motor generator.
  • the hybrid vehicle control method of the present disclosure that achieves the above-described object is a hybrid vehicle control method in which the output torque of each of the engine and the motor generator is adjusted to a target output torque calculated from the required torque.
  • the battery state can be exemplified by the remaining battery capacity (SOC) managed by the battery management system and the internal temperature of the battery.
  • SOC remaining battery capacity
  • specific examples of the input / output values and limit values of the battery include current values and power values output from the battery or input to the battery.
  • This limit value is a value that is intentionally calculated by the battery management system based on the state of the battery, and is different from the input / output value as a characteristic that changes depending on the internal temperature of the battery. When the battery is discharged, this limit value decreases as it approaches full discharge. On the other hand, when charging the battery, it decreases as it approaches full charge. Further, this limit value is set so that the temperature of the battery does not exceed a preset upper limit temperature.
  • auxiliary machine examples include a DC / DC converter, an electric air conditioner, and an electric hydraulic pump.
  • the predicted maximum output torque corresponding to the predicted maximum power value based on the limit value is obtained.
  • the output torque of the engine and the motor generator is adjusted to achieve the required torque as the maximum value of the target output torque of the motor generator.
  • the output torque of the motor generator will not exceed the required torque even if the battery input / output is restricted. It can be avoided that the output torque becomes lower than the target output torque set to be achieved.
  • the hybrid vehicle and the control method thereof are preferably configured to calculate the predicted maximum power value from the input / output possible value calculated based on the limit value and the consumption value consumed by the auxiliary machine. In this way, by taking into account the amount of auxiliary equipment consumed in the predicted maximum power value, it is possible to reliably avoid that the output torque of the motor generator is lower than the target output torque, which improves drivability. Become advantageous.
  • the hybrid vehicle and the control method thereof are configured to calculate the predicted maximum output torque using the predicted maximum power value and the conversion efficiency according to the motor speed of the motor generator.
  • the predicted maximum output torque can be calculated with high accuracy by converting the electric power and the mechanical output based on the conversion efficiency of the motor generator.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating control performed by the battery management system in the hybrid vehicle control method of the present disclosure.
  • FIG. 3 is a flowchart illustrating control performed by the control device in the hybrid vehicle control method of the present disclosure.
  • FIG. 4 is a flowchart illustrating step S110 in FIG.
  • FIG. 5 is a flowchart illustrating step S120 of FIG.
  • FIG. 6 is a characteristic diagram in which conversion efficiency based on the motor speed and torque in the motor generator is set.
  • FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
  • This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and has an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle.
  • a hybrid system 30 is provided.
  • the hybrid system 30 includes a high voltage battery 32 whose voltage is set to 24V or 48V as a battery, and a battery management system (hereinafter referred to as “BMS”) 39 for managing the high voltage battery 32. Yes.
  • the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the engine 10 is a diesel engine or a gasoline engine.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31, an inverter 35 that is electrically connected to the motor generator 31 in order, a high voltage battery 32 (for example, 48V), a DC / DC converter 33, and a low voltage battery 34 (for example, 12V). ).
  • a high voltage battery 32 for example, 48V
  • a DC / DC converter 33 for example, 12V
  • a low voltage battery 34 for example, 12V.
  • the high voltage battery 32 include a lithium ion battery, a nickel metal hydride battery, and a nickel cadmium battery.
  • the low voltage battery 34 include a lead battery and an electric double layer capacitor.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the DC / DC converter 33 can supply power to various vehicle electrical components 36 from the high voltage battery 32 in addition to the low voltage battery 34.
  • Various parameters in the high voltage battery 32 of the hybrid system 30 such as internal temperature, current value, voltage value and remaining capacity (State of charge; SOC) are managed by a BMS (Battery Management System) 39. .
  • SOC Battery Management System
  • the DC / DC converter 33 and the vehicle electrical component 36 are illustrated as auxiliary machines that consume the power of the high-voltage battery 32, but the auxiliary machines are electrically connected to the high-voltage battery 32.
  • An electric air conditioner, an electric hydraulic pump, etc. can also be illustrated.
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the diesel engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
  • the motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
  • the BMS 39 is configured to transmit the limited current value Ia calculated based on the state of the high voltage battery 32 to the control device 80.
  • the control device 80 is configured to limit the current value Ix of the high-voltage battery 32 to the limit current value Ia and calculate the predicted maximum power value Pa based on the limit current value Ia.
  • the control device 80 sets the predicted maximum output torque Ta corresponding to the predicted maximum power value Pa as the maximum value of the target output torque Tm of the motor generator 31 from the required torque Tt required for the hybrid system 30 to the engine 10 and Each of the target output torques Te and Tm of the motor generator 31 is calculated.
  • the control device 80 is configured to perform control to adjust the output torques of the engine 10 and the motor generator 31 to the calculated target output torques Te and Tm, respectively.
  • the BMS 39 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various sensors.
  • Examples of the sensor include a sensor that detects the current value of the high-voltage battery 32 and a sensor that detects the internal temperature.
  • the BMS 39 stores a plurality of execution programs in an internal storage device. As these execution programs, a program for estimating the remaining capacity Cx of the high voltage battery 32 and a limit current value Ia of the high voltage battery 32 are calculated. A program and a program for estimating the voltage value Vx of the high voltage battery 32 can be exemplified.
  • the program for calculating the limited current value Ia of the high voltage battery 32 is a part of the HEV control method. This program will be described below as a function of the BMS 39 with reference to the flowchart of FIG. This program is executed every predetermined time.
  • step S10 the BMS 39 acquires the internal temperature ⁇ x and the remaining capacity Cx of the high voltage battery 32 by a sensor (not shown).
  • step S20 the BMS 39 calculates a limit current value Ia and an estimated voltage value Va estimated when the limit current value Ia is input and output based on the acquired state of the high voltage battery 32.
  • the limited current value Ia is a current value intentionally limited by the BMS 39 based on the state of the high voltage battery 32. That is, it is different from the current value Ix as a characteristic that varies depending on the internal temperature ⁇ x of the high voltage battery 32 and the remaining capacity Cx.
  • the limit current value Ia is calculated based on the map data in which the limit current value Ia based on the internal temperature ⁇ x is set and the map data in which the limit current value Ia based on the remaining capacity Cx is set. These map data are created in advance by experiments and tests and stored in the internal storage device.
  • the limited current value Ia is set so that the internal temperature ⁇ x of the high-voltage battery 32 does not exceed a preset upper limit temperature ⁇ a.
  • the upper limit temperature ⁇ a is set to a temperature at which the deterioration of the high-voltage battery 32 proceeds, and can range from 55 ° C. to 60 ° C.
  • the limit current value Ia is set so that the remaining capacity Cx of the high voltage battery 32 becomes smaller as it approaches the lower limit value Cmin and the upper limit value Cmax of the preset target range.
  • the target range is an appropriate operation range determined in advance by experiments and tests. When the remaining capacity Cx is outside this target range, the high-voltage battery 32 deteriorates.
  • the target range when the full charge is 100% and the full discharge is 0%, the lower limit value is 15% or more and 25% or less, and the upper limit value is 75% or more and 85% or less.
  • step S30 the BMS 39 transmits the limit current value Ia and the estimated voltage value Va estimated when the limit current value Ia is input / output to the control device 80, and returns to the start. Then, the above steps S10 to S30 are performed every predetermined time.
  • the BMS 39 calculates the limiting current value Ia that limits the input / output of the high voltage battery 32 according to the state of the high voltage battery 32, the progress of deterioration of the high voltage battery 32 can be suppressed. This is advantageous for improving durability.
  • the internal temperature ⁇ x and the remaining capacity Cx are acquired as the state of the high-voltage battery 32.
  • the rate of increase and the degree of deterioration of the internal temperature ⁇ x may be acquired.
  • map data in which the limit current value Ia is set for each of them is created, and the limit current value Ia is calculated from the map data.
  • the control device 80 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various interfaces.
  • the control device 80 is connected to the BMS 39 of the hybrid system 30 via a signal line.
  • the control device 80 is connected to an accelerator opening sensor 96 that detects the amount of depression of the accelerator pedal 95 (accelerator opening) via a signal line.
  • the control device 80 stores a plurality of execution programs in an internal storage device.
  • Examples of the execution programs include a program for limiting the current value Ix of the high voltage battery 32 to the limit current value Ia, and an accelerator opening sensor 96.
  • This program is a part of the HEV control method, and becomes the HEV control method together with the BMS 39 program described above.
  • This program will be described below as a function of the control device 80 with reference to the flowcharts of FIGS.
  • this control method shall be performed for every predetermined time.
  • step S100 the control device 80 receives the limited current value Ia and the estimated voltage value Va transmitted from the BMS 39.
  • the control device 80 limits the current value Ix of the high voltage battery 32 to the limit current value Ia.
  • the limited current value Ia may be equal to the current value Ix as a characteristic.
  • step S120 the control device 80 calculates the predicted maximum power value Pa based on the limited current value Ia and the estimated voltage value Va.
  • the predicted maximum power value Pa is preferably calculated based on the input / output possible current value Ic that can be charged / discharged between the high voltage battery 32 and the motor generator 31.
  • step S120 the control device 80 monitors the current consumption value Ib of the high voltage battery 32 consumed by the auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical equipment 36, and the limit current value Ia and its consumption are monitored. It is desirable to calculate the predicted maximum power value Pa from the input / output possible current value Ic based on the current value Ib.
  • step S122 the control device 80 acquires a current consumption value Ib consumed by auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36.
  • the control device 80 acquires the consumption current value Ib from the operating state of the DC / DC converter 33, a sensor that detects the current value between the high voltage battery 32 and the DC / DC converter 33, and the like.
  • the current consumption value Ib may be calculated by predicting the operating state of auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36. In this embodiment, an example in which the current consumption value Ib is used as the consumption value will be described. However, the power consumption value consumed by the auxiliary machine may be acquired as the consumption value.
  • the control device 80 calculates an input / output possible current value Ic based on the limited current value Ia and the consumed current value Ib.
  • the input / output possible current value Ic is a current value that can be output from the high voltage battery 32 to the motor generator 31 or a current value that can be input from the motor generator 31 to the high voltage battery 32. Therefore, the input / output possible current value Ic is a value obtained by subtracting the consumption current value Ib from the limit current value Ia when the motor generator 31 is driven, and is consumed to the limit current value Ia when the motor generator 31 is regenerated. A value obtained by adding the current value Ib.
  • the input / output possible current value Ic is used as the input / output possible value will be described. However, the input / output power value may be calculated as the input / output possible value.
  • step S126 the control device 80 multiplies the input / output possible current value Ic by the estimated voltage value Va to calculate the predicted maximum power value Pa, and proceeds to step S130.
  • the expected maximum power value Pa is the maximum power value that can be output from the high voltage battery 32 to the motor generator 31 or can be input from the motor generator 31 to the high voltage battery 32. Therefore, in this way, in addition to the predicted maximum power value Pa, in addition to the limited current value Ia, the current consumption value Ib consumed by the auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36 is actually added. Electric power that can be used by the motor generator 31 can be accurately calculated.
  • step S130 the control device 80 calculates the predicted maximum output torque Ta based on the predicted maximum power value Pa.
  • the predicted maximum output torque Ta is preferably calculated based on the highest conversion efficiency ⁇ m having the highest efficiency among the conversion efficiencies.
  • control device 80 calculates the predicted maximum output torque Ta using the maximum conversion efficiency ⁇ m according to the predicted maximum power value Pa and the motor rotation speed Nm of the motor generator 31.
  • step S 130 Details of step S130 are shown in FIG. First, in step S ⁇ b> 132, the control device 80 acquires the motor rotation speed Nm of the motor generator 31.
  • the motor rotation speed Nm is a predicted value, and based on the HEV vehicle speed, the rotation speed of the propeller shaft 22, and the rotation speed of the crankshaft 13 (engine rotation speed Ne), the first pulley 15, the second pulley 16, and the belt shape It is calculated in consideration of the transmission efficiency of the member 17.
  • step S134 the control device 80 calculates the maximum conversion efficiency ⁇ m according to the predicted maximum power value Pa and the predicted motor rotation speed Nm.
  • This maximum conversion efficiency ⁇ m is the efficiency at the time of converting a power value, which is electrical energy, into torque, which is mechanical energy.
  • FIG. 6 is a characteristic diagram in which conversion efficiency based on the motor rotation speed Nm, output torque, and regenerative torque in the motor generator 31 is set.
  • the conversion efficiency is illustrated by a one-dot chain line, and the efficiency is set to be lower from the concentric circle toward the outside.
  • the control device 80 calculates the highest conversion efficiency ⁇ m with the highest efficiency with reference to a characteristic diagram created in advance by experiments and tests and stored in the internal storage device.
  • driving and regenerating the motor generator 31 with the maximum conversion efficiency ⁇ m can suppress energy loss, which is advantageous for improving fuel efficiency.
  • step S136 the control device 80 calculates the predicted maximum output torque Ta based on the maximum conversion efficiency ⁇ m, and proceeds to step S140.
  • step S140 the control device 80 calculates the required torque Tt of the hybrid system 30 based on the accelerator opening, and each of the engine 10 and the motor generator 31 based on the required torque Tt. Target output torques Te and Tm are calculated.
  • HEV vehicle speed, vehicle weight, travel road gradient, gear stage of the transmission 20, and the like may be taken into consideration.
  • step S150 the control device 80 determines whether or not the target output torque Tm of the motor generator 31 is larger than the predicted maximum output torque Ta. If it is determined in step S150 that the target output torque Tm is larger than the predicted maximum output torque Ta, the process proceeds to step S160. On the other hand, if it is determined that the target output torque Tm is equal to or less than the predicted maximum output torque Ta, the process proceeds to step S170.
  • step S160 the control device 80 corrects the target output torques Te and Tm with the predicted maximum output torque Ta as the maximum value of the target output torque Tm of the motor generator 31. For example, when the target output torque Tm is larger than the predicted maximum output torque Ta, a difference obtained by setting the predicted maximum output torque Ta to the maximum value is added to the target output torque Te of the engine 10.
  • step S170 the control device 80 adjusts the output torques of the engine 10 and the motor generator 31 to the calculated target output torques Te and Tm, respectively.
  • step S170 the process returns to the start.
  • the internal temperature ⁇ x of the high voltage battery 32 exceeds the upper limit temperature ⁇ a, or the remaining capacity Cx of the high voltage battery 32 is out of the target range. Even if the input / output of the high-voltage battery 32 is restricted, it is possible to avoid the output torque of the motor generator 31 being lower than the target output torque Tm.
  • the amount of regeneration can be increased by considering the current consumption value Ib consumed by the auxiliary machine.
  • the BMS 39 calculates the limit current value Ia and the control device 80 has been described as an example of a configuration in which the current value Ix of the high voltage battery 32 is limited to the limit current value Ia.
  • the BMS 39 directly The current value Ix of the high voltage battery 32 may be limited to the limit current value Ia.
  • the present invention has an effect that the output torque output from the hybrid system can avoid a situation where the required torque required for the hybrid system is insufficient, and is useful for a hybrid vehicle and a control method thereof. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A battery management system (39) is configured so as to send, to a control device (80), a limiting current value (Ia) for limiting a high-voltage battery (32). The control device (80) is configured so as perform control such that the respective output torques of an engine (10) and a motor-generator (31) are adjusted to meet respective target output torques (Te, Tm) calculated for each, the maximum value for the target output torque (Tm) of the motor-generator (31) being a predicted maximum output torque (Ta) calculated on the basis of the limiting current value (Ia), and in accordance with a predicted maximum chargeable/dischargeable power value (Pa) .

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本開示は、ハイブリッド車両及びその制御方法に関し、より詳細には、ハイブリッドシステムから出力される出力トルクが、ハイブリッドシステムに要求された要求トルクよりも不足する事態を回避するハイブリッド車両及びその制御方法に関する。 The present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly, to a hybrid vehicle and a control method thereof that avoid a situation in which an output torque output from a hybrid system is less than a required torque required for the hybrid system. .
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有したハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や減速時にはモータージェネレーターによる回生発電が行われる。 2. Description of the Related Art In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has been attracting attention from the viewpoint of improving fuel efficiency and environmental measures. ing. In this HEV, driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertial traveling or deceleration.
 このモータージェネレーターに電気的に接続されるバッテリーが、過放電や過充電となるときに、モータージェネレーターの目標出力トルクを制限する装置が提案されている(例えば、特許文献1参照)。 A device that limits the target output torque of the motor generator when the battery electrically connected to the motor generator is overdischarged or overcharged has been proposed (for example, see Patent Document 1).
 この装置は、モータージェネレーターの目標トルクが、バッテリーの残存容量(SOC)やその温度に基づいた入出力可能な電力量にDC/DCコンバーターなどの補機が消費する電力量を加味して算出した許容トルクを超える場合に、その目標トルクをこの算出した許容トルクに制限している。これにより、バッテリーの過放電や過充電を抑制すると共に、バッテリーの過充放電時に生じるモータージェネレーターのハンチング(振動)を抑制している。 In this device, the target torque of the motor generator was calculated by taking into account the amount of power consumed by an auxiliary device such as a DC / DC converter in addition to the amount of power that can be input and output based on the remaining capacity (SOC) of the battery and its temperature. When the allowable torque is exceeded, the target torque is limited to the calculated allowable torque. This suppresses overdischarge and overcharge of the battery and suppresses hunting (vibration) of the motor generator that occurs during overcharge / discharge of the battery.
 バッテリーには、その内部温度が予め設定された上限温度を超えると劣化が進行するという問題がある。これに関しては、バッテリーに、その内部温度が上限温度を超えないように、バッテリーの入出力の電流値や電力値に制限を掛けている。 The battery has a problem that the deterioration proceeds when the internal temperature exceeds a preset upper limit temperature. In this regard, the input / output current value and power value of the battery are limited so that the internal temperature of the battery does not exceed the upper limit temperature.
 エンジン及びモータージェネレーターの目標出力トルクは、アクセル開度等から求められた要求トルクに基づいて算出されている。上記の装置は、このバッテリーの入出力の制限については考慮していない。そのため、バッテリーの入出力に制限が掛けられたときに、モータージェネレーターの出力トルクが減少することになり、結果として、要求トルクが得られないという問題があった。 The target output torque of the engine and the motor generator is calculated based on the required torque obtained from the accelerator opening and the like. The above device does not consider the input / output limitation of the battery. For this reason, when the input / output of the battery is restricted, the output torque of the motor generator is reduced, resulting in a problem that the required torque cannot be obtained.
日本国特開2005-218250号公報Japanese Unexamined Patent Publication No. 2005-218250
 本開示の目的は、モータージェネレーターの出力トルクがこのモータージェネレーターに要求される目標トルクに達しないことを回避して、ハイブリッドシステムから出力される出力トルクが、ハイブリッドシステムに要求された要求トルクよりも不足する事態を回避することができるハイブリッド車両及びその制御方法を提供することである。 The purpose of the present disclosure is to prevent the output torque of the motor generator from reaching the target torque required for the motor generator, so that the output torque output from the hybrid system is higher than the required torque required for the hybrid system. It is an object of the present invention to provide a hybrid vehicle capable of avoiding a shortage and a control method thereof.
 上記の目的を達成する本開示のハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーター、このモータージェネレーターに電気的に接続されたバッテリー、及びこのバッテリーを管理するバッテリーマネージメントシステムと、を有するハイブリッドシステムと、そのバッテリーに充電された電力を消費する補機と、制御装置と、を備えたハイブリッド車両において、前記バッテリーマネージメントシステムが、前記バッテリーの入出力値を制限する制限値を前記バッテリーの状態に基づいて算出して、その制限値を前記制御装置へ送信するように構成され、前記制御装置が、送信されたその制限値に基づいて算出された前記バッテリーと前記モータージェネレーターとの間で充放電可能な予想最大電力値に応じた予想最大出力トルクを、前記モータージェネレーターの目標出力トルクの最大値として、前記エンジン及び前記モータージェネレーターのそれぞれの出力トルクを、前記ハイブリッドシステムに要求された要求トルクから算出された前記エンジン及び前記モータージェネレーターのそれぞれの目標出力トルクに調節する制御を行うように構成されたことを特徴とするものである。 The hybrid vehicle of the present disclosure that achieves the above object includes a motor generator connected to an output shaft that transmits engine power, a battery electrically connected to the motor generator, and a battery management system that manages the battery. , A hybrid vehicle comprising an auxiliary device that consumes electric power charged in the battery, and a control device, the battery management system sets a limit value for limiting an input / output value of the battery. It is configured to calculate based on the state of the battery and transmit the limit value to the control device, and the control device calculates the battery and the motor generator calculated based on the transmitted limit value. Expected maximum power that can be charged and discharged between The estimated maximum output torque corresponding to the maximum value of the target output torque of the motor generator is used, and the output torque of each of the engine and the motor generator is calculated from the required torque required for the hybrid system and the engine The motor generator is configured to perform control to adjust to each target output torque of the motor generator.
 また、上記の目的を達成する本開示のハイブリッド車両の制御方法は、エンジン及びモータージェネレーターのそれぞれの出力トルクを要求トルクから算出された目標出力トルクに調節するハイブリッド車両の制御方法において、前記バッテリーの状態を取得するステップと、その取得したバッテリーの状態に基づいて、前記バッテリーの入出力値の制限値を算出するステップと、前記バッテリーの入出力値を、その制限値に制限するステップと、その制限値に基づいて、前記バッテリーと前記モータージェネレーターとの間で充放電可能な予想最大電力値を算出するステップと、その予想最大電力値に応じた予想最大出力トルクを算出するステップと、その予想最大出力トルクを前記モータージェネレーターの目標出力トルクの最大値として、前記要求トルクから前記エンジン及び前記モータージェネレーターのそれぞれの目標出力トルクを算出するステップと、前記エンジン及び前記モータージェネレーターのそれぞれの出力トルクを、それらの目標出力トルクに調節するステップと、を含むことを特徴とする方法である。 In addition, the hybrid vehicle control method of the present disclosure that achieves the above-described object is a hybrid vehicle control method in which the output torque of each of the engine and the motor generator is adjusted to a target output torque calculated from the required torque. Obtaining a state; calculating a limit value of the input / output value of the battery based on the acquired state of the battery; limiting the input / output value of the battery to the limit value; Based on a limit value, calculating a predicted maximum power value that can be charged and discharged between the battery and the motor generator, calculating a predicted maximum output torque according to the predicted maximum power value, and the predicted The maximum output torque is the maximum value of the target output torque of the motor generator. Calculating a target output torque of each of the engine and the motor generator from the required torque, and adjusting each output torque of the engine and the motor generator to the target output torque. It is the method characterized by this.
 なお、バッテリーの状態としては、バッテリーマネージメントシステムで管理されるバッテリーの残存容量(SOC)やバッテリーの内部温度を例示できる。 The battery state can be exemplified by the remaining battery capacity (SOC) managed by the battery management system and the internal temperature of the battery.
 また、バッテリーの入出力値、制限値の具体的なものとしては、バッテリーから出力される、あるいはバッテリーへ入力される電流値や、電力値を例示できる。 Further, specific examples of the input / output values and limit values of the battery include current values and power values output from the battery or input to the battery.
 また、この制限値は、バッテリーマネージメントシステムがバッテリーの状態に基づいて意図的に算出する値であり、バッテリーの内部温度により変化する特性としての入出力値とは異なるものである。この制限値は、バッテリーを放電する場合には、満放電に近づくに連れて減少する。一方、バッテリーを充電する場合には、満充電に近づくに連れて減少する。更に、この制限値は、バッテリーの温度が予め設定された上限温度を超えないように設定される。 This limit value is a value that is intentionally calculated by the battery management system based on the state of the battery, and is different from the input / output value as a characteristic that changes depending on the internal temperature of the battery. When the battery is discharged, this limit value decreases as it approaches full discharge. On the other hand, when charging the battery, it decreases as it approaches full charge. Further, this limit value is set so that the temperature of the battery does not exceed a preset upper limit temperature.
 また、補機としては、DC/DCコンバーター、電動エアコンディショナー、電動油圧ポンプなどを例示できる。 Further, examples of the auxiliary machine include a DC / DC converter, an electric air conditioner, and an electric hydraulic pump.
 このハイブリッド車両及びその制御方法によれば、バッテリーの入出力値を、バッテリーマネージメントシステムが算出した制限値に制限する場合に、その制限値に基づいた予想最大電力値に応じた予想最大出力トルクを、モータージェネレーターの目標出力トルクの最大値として、要求トルクを達成するようにエンジン及びモータージェネレーターの出力トルクを調節するようにした。 According to this hybrid vehicle and its control method, when the battery input / output value is limited to the limit value calculated by the battery management system, the predicted maximum output torque corresponding to the predicted maximum power value based on the limit value is obtained. The output torque of the engine and the motor generator is adjusted to achieve the required torque as the maximum value of the target output torque of the motor generator.
 これにより、バッテリーの温度が上限温度を超えるような場合や、バッテリーの残存容量が目標範囲外になるような場合に、バッテリーの入出力が制限されても、モータージェネレーターの出力トルクが要求トルクを達成するように設定された目標出力トルクよりも低くなることを回避することができる。 As a result, when the battery temperature exceeds the upper limit or the remaining capacity of the battery falls outside the target range, the output torque of the motor generator will not exceed the required torque even if the battery input / output is restricted. It can be avoided that the output torque becomes lower than the target output torque set to be achieved.
 その結果、ハイブリッドシステムから出力される出力トルクが、ハイブリッドシステムに要求された要求トルクよりも不足する事態を回避できるので、ドライバビリティを向上することができる。 As a result, it is possible to avoid a situation in which the output torque output from the hybrid system is less than the required torque required for the hybrid system, so that drivability can be improved.
 特に、上記のハイブリッド車両及びその制御方法は、制限値と補機が消費する消費値とに基づいて算出された入出力可能値から予想最大電力値を算出するように構成されることが望ましい。このように、予想最大電力値に補機が消費する分を考慮することで、モータージェネレーターの出力トルクが目標出力トルクよりも低くなることを確実に回避することができるので、ドライバビリティの向上に有利になる。 In particular, the hybrid vehicle and the control method thereof are preferably configured to calculate the predicted maximum power value from the input / output possible value calculated based on the limit value and the consumption value consumed by the auxiliary machine. In this way, by taking into account the amount of auxiliary equipment consumed in the predicted maximum power value, it is possible to reliably avoid that the output torque of the motor generator is lower than the target output torque, which improves drivability. Become advantageous.
 更に、上記のハイブリッド車両及びその制御方法は、予想最大電力値とモータージェネレーターのモータ回転数に応じた変換効率とを用いて予想最大出力トルクを算出するように構成されることが望ましい。このように、電力と機械的な出力とをモータージェネレーターの変換効率に基づいて変換することで、予想最大出力トルクを高精度に算出できる。 Furthermore, it is desirable that the hybrid vehicle and the control method thereof are configured to calculate the predicted maximum output torque using the predicted maximum power value and the conversion efficiency according to the motor speed of the motor generator. As described above, the predicted maximum output torque can be calculated with high accuracy by converting the electric power and the mechanical output based on the conversion efficiency of the motor generator.
図1は、本開示の実施形態からなるハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure. 図2は、本開示のハイブリッド車両の制御方法のうち、バッテリーマネージメントシステムで行われる制御を例示するフロー図である。FIG. 2 is a flowchart illustrating control performed by the battery management system in the hybrid vehicle control method of the present disclosure. 図3は、本開示のハイブリッド車両の制御方法のうち、制御装置で行われる制御を例示するフロー図である。FIG. 3 is a flowchart illustrating control performed by the control device in the hybrid vehicle control method of the present disclosure. 図4は、図3のステップS110を例示するフロー図である。FIG. 4 is a flowchart illustrating step S110 in FIG. 図5は、図3のステップS120を例示するフロー図である。FIG. 5 is a flowchart illustrating step S120 of FIG. 図6は、モータージェネレーターにおけるモータ回転数とトルクとに基づいた変換効率が設定された特性図である。FIG. 6 is a characteristic diagram in which conversion efficiency based on the motor speed and torque in the motor generator is set.
 以下に、本開示の実施形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
 このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。また、このハイブリッドシステム30は、バッテリーとして電圧が24Vや48Vに設定された高電圧バッテリー32と、この高電圧バッテリー32を管理するバッテリーマネージメントシステム(以下、「BMS」という。)39を有している。 This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and has an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle. A hybrid system 30 is provided. The hybrid system 30 includes a high voltage battery 32 whose voltage is set to 24V or 48V as a battery, and a battery management system (hereinafter referred to as “BMS”) 39 for managing the high voltage battery 32. Yes.
 エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。このクランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。 In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32(例えば、48Vなど)、DC/DCコンバーター33及び低電圧バッテリー34(例えば、12Vなど)とを有している。 The hybrid system 30 includes a motor generator 31, an inverter 35 that is electrically connected to the motor generator 31 in order, a high voltage battery 32 (for example, 48V), a DC / DC converter 33, and a low voltage battery 34 (for example, 12V). ).
 高電圧バッテリー32としては、リチウムイオンバッテリー、ニッケル水素バッテリー、ニッケルカドミウムバッテリーなどが好ましく例示される。また、低電圧バッテリー34としては、鉛バッテリーや電気二重層コンデンサが例示される。DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。このDC/DCコンバーター33により、低電圧バッテリー34に加えて、高電圧バッテリー32からも、各種の車両電装品36に電力を供給可能になっている。 Preferred examples of the high voltage battery 32 include a lithium ion battery, a nickel metal hydride battery, and a nickel cadmium battery. Examples of the low voltage battery 34 include a lead battery and an electric double layer capacitor. The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The DC / DC converter 33 can supply power to various vehicle electrical components 36 from the high voltage battery 32 in addition to the low voltage battery 34.
 また、このハイブリッドシステム30の高電圧バッテリー32における種々のパラメータ、例えば、内部温度、電流値、電圧値や残存容量(State of charge; SOC)などは、BMS(バッテリーマネージメントシステム)39により管理される。 Various parameters in the high voltage battery 32 of the hybrid system 30 such as internal temperature, current value, voltage value and remaining capacity (State of charge; SOC) are managed by a BMS (Battery Management System) 39. .
 この実施形態では、高電圧バッテリー32の電力を消費する補機として、DC/DCコンバーター33や車両電装品36を例示するが、この補機としては、高電圧バッテリー32に電気的に接続された電動エアコンディショナー、電動油圧ポンプなども例示できる。 In this embodiment, the DC / DC converter 33 and the vehicle electrical component 36 are illustrated as auxiliary machines that consume the power of the high-voltage battery 32, but the auxiliary machines are electrically connected to the high-voltage battery 32. An electric air conditioner, an electric hydraulic pump, etc. can also be illustrated.
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、ディーゼルエンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であっても良い。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the diesel engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。 The motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 これらのエンジン10及びハイブリッドシステム30は、制御装置80により制御される。具体的には、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。 These engine 10 and hybrid system 30 are controlled by a control device 80. Specifically, at the time of HEV start or acceleration, the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
 このようなHEVにおいて、BMS39が、高電圧バッテリー32の状態に基づいて算出した制限電流値Iaを制御装置80へ送信するように構成される。また、制御装置80が、高電圧バッテリー32の電流値Ixを、その制限電流値Iaに制限すると共に、制限電流値Iaに基づいて予想最大電力値Paを算出するように構成される。また、制御装置80が、その予想最大電力値Paに応じた予想最大出力トルクTaを、モータージェネレーター31の目標出力トルクTmの最大値として、ハイブリッドシステム30に要求された要求トルクTtからエンジン10及びモータージェネレーター31のそれぞれの目標出力トルクTe、Tmを算出するように構成される。そして、制御装置80が、エンジン10及びモータージェネレーター31のそれぞれの出力トルクを、算出されたそれぞれの目標出力トルクTe、Tmに調節する制御を行うように構成される。 In such HEV, the BMS 39 is configured to transmit the limited current value Ia calculated based on the state of the high voltage battery 32 to the control device 80. In addition, the control device 80 is configured to limit the current value Ix of the high-voltage battery 32 to the limit current value Ia and calculate the predicted maximum power value Pa based on the limit current value Ia. In addition, the control device 80 sets the predicted maximum output torque Ta corresponding to the predicted maximum power value Pa as the maximum value of the target output torque Tm of the motor generator 31 from the required torque Tt required for the hybrid system 30 to the engine 10 and Each of the target output torques Te and Tm of the motor generator 31 is calculated. The control device 80 is configured to perform control to adjust the output torques of the engine 10 and the motor generator 31 to the calculated target output torques Te and Tm, respectively.
 BMS39は、各種処理を行うCPU、その各種処理を行うために用いられるプログラムや処理結果を読み書き可能な内部記憶装置、及び各種センサなどから構成される。センサとしては、高電圧バッテリー32の電流値を検出するセンサ、内部温度を検出するセンサを例示できる。 The BMS 39 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various sensors. Examples of the sensor include a sensor that detects the current value of the high-voltage battery 32 and a sensor that detects the internal temperature.
 このBMS39は、複数の実行プログラムが内部記憶装置に記憶されており、これらの実行プログラムとしては、高電圧バッテリー32の残存容量Cxを推定するプログラム、高電圧バッテリー32の制限電流値Iaを算出するプログラム、高電圧バッテリー32の電圧値Vxを推定するプログラムを例示できる。 The BMS 39 stores a plurality of execution programs in an internal storage device. As these execution programs, a program for estimating the remaining capacity Cx of the high voltage battery 32 and a limit current value Ia of the high voltage battery 32 are calculated. A program and a program for estimating the voltage value Vx of the high voltage battery 32 can be exemplified.
 高電圧バッテリー32の制限電流値Iaを算出するプログラムは、HEVの制御方法の一部である。このプログラムについて、図2のフロー図を参照しながらBMS39の機能として以下に説明する。なお、このプログラムは、所定時間ごとに行われるものとする。 The program for calculating the limited current value Ia of the high voltage battery 32 is a part of the HEV control method. This program will be described below as a function of the BMS 39 with reference to the flowchart of FIG. This program is executed every predetermined time.
 まず、ステップS10では、BMS39が、図示しないセンサにより、高電圧バッテリー32の内部温度θxと残存容量Cxを取得する。 First, in step S10, the BMS 39 acquires the internal temperature θx and the remaining capacity Cx of the high voltage battery 32 by a sensor (not shown).
 次いで、ステップS20では、BMS39が、取得した高電圧バッテリー32の状態に基づいて、制限電流値Iaと、その制限電流値Iaを入出力した場合に推定される推定電圧値Vaを算出する。 Next, in step S20, the BMS 39 calculates a limit current value Ia and an estimated voltage value Va estimated when the limit current value Ia is input and output based on the acquired state of the high voltage battery 32.
 制限電流値Iaは、BMS39が高電圧バッテリー32の状態に基づいて意図的に制限された電流値である。つまり、高電圧バッテリー32の内部温度θxや残存容量Cxにより変化する特性としての電流値Ixとは異なるものである。 The limited current value Ia is a current value intentionally limited by the BMS 39 based on the state of the high voltage battery 32. That is, it is different from the current value Ix as a characteristic that varies depending on the internal temperature θx of the high voltage battery 32 and the remaining capacity Cx.
 この制限電流値Iaは、内部温度θxに基づいた制限電流値Iaが設定されたマップデータに、及び残存容量Cxに基づいた制限電流値Iaが設定されたマップデータに基づいて算出される。なお、これらのマップデータは、予め実験や試験により作成され、内部記憶装置に記憶される。 The limit current value Ia is calculated based on the map data in which the limit current value Ia based on the internal temperature θx is set and the map data in which the limit current value Ia based on the remaining capacity Cx is set. These map data are created in advance by experiments and tests and stored in the internal storage device.
 より具体的には、この制限電流値Iaは、高電圧バッテリー32の内部温度θxが予め設定された上限温度θaを超えないように設定される。上限温度θaは、高電圧バッテリー32の劣化が進行する温度に設定されており、55℃以上、60℃以下の範囲を例示できる。 More specifically, the limited current value Ia is set so that the internal temperature θx of the high-voltage battery 32 does not exceed a preset upper limit temperature θa. The upper limit temperature θa is set to a temperature at which the deterioration of the high-voltage battery 32 proceeds, and can range from 55 ° C. to 60 ° C.
 また、この制限電流値Iaは、高電圧バッテリー32の残存容量Cxが予め設定された目標範囲の下限値Cmin及び上限値Cmaxに近づくに連れて小さくなるように設定される。目標範囲は予め実験や試験により定められた適切な運用範囲であり、残存容量Cxがこの目標範囲外になると、高電圧バッテリー32の劣化が進行する。この目標範囲としては、満充電を100%、満放電を0%とした場合に、下限値が15%以上、25%以下、上限値が75%以上、85%以下の範囲を例示できる。 Further, the limit current value Ia is set so that the remaining capacity Cx of the high voltage battery 32 becomes smaller as it approaches the lower limit value Cmin and the upper limit value Cmax of the preset target range. The target range is an appropriate operation range determined in advance by experiments and tests. When the remaining capacity Cx is outside this target range, the high-voltage battery 32 deteriorates. As the target range, when the full charge is 100% and the full discharge is 0%, the lower limit value is 15% or more and 25% or less, and the upper limit value is 75% or more and 85% or less.
 次いで、ステップS30では、BMS39が、制限電流値Iaと、制限電流値Iaを入出力したと仮定した場合に推定される推定電圧値Vaとを制御装置80へ送信して、スタートへ戻る。そして、所定時間ごとに上記のステップS10~S30が行われる。 Next, in step S30, the BMS 39 transmits the limit current value Ia and the estimated voltage value Va estimated when the limit current value Ia is input / output to the control device 80, and returns to the start. Then, the above steps S10 to S30 are performed every predetermined time.
 このように、BMS39が、高電圧バッテリー32の状態に応じて、高電圧バッテリー32の入出力を制限する制限電流値Iaを算出することで、高電圧バッテリー32の劣化の進行を抑制できるので、耐久性の向上に有利になる。 Thus, since the BMS 39 calculates the limiting current value Ia that limits the input / output of the high voltage battery 32 according to the state of the high voltage battery 32, the progress of deterioration of the high voltage battery 32 can be suppressed. This is advantageous for improving durability.
 なお、この実施形態では、高電圧バッテリー32の入出力値として、電流値Ixを、制限値として制限電流値Iaを用いる構成を例に説明するが、入出力値として、電力値、制限値として制限電力値を用いる構成にしてもよい。 In this embodiment, a configuration in which the current value Ix is used as the input / output value of the high-voltage battery 32 and the limited current value Ia is used as the limit value will be described as an example. You may make it the structure which uses a power limit value.
 また、この実施形態では、高電圧バッテリー32の状態として、内部温度θxと残存容量Cxを取得する構成にしたが、内部温度θxの上昇率、劣化度合いなどを取得してもよい。その場合には、それぞれに対して制限電流値Iaが設定されたマップデータを作成し、そのマップデータから制限電流値Iaを算出するとよい。 In this embodiment, the internal temperature θx and the remaining capacity Cx are acquired as the state of the high-voltage battery 32. However, the rate of increase and the degree of deterioration of the internal temperature θx may be acquired. In that case, map data in which the limit current value Ia is set for each of them is created, and the limit current value Ia is calculated from the map data.
 制御装置80は、各種処理を行うCPU、その各種処理を行うために用いられるプログラムや処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成される。 The control device 80 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various interfaces.
 この制御装置80は、信号線を介してハイブリッドシステム30のBMS39に接続される。また、この制御装置80は、信号線を介してアクセルペダル95の踏み込み量(アクセル開度)を検出するアクセル開度センサ96に接続される。 The control device 80 is connected to the BMS 39 of the hybrid system 30 via a signal line. The control device 80 is connected to an accelerator opening sensor 96 that detects the amount of depression of the accelerator pedal 95 (accelerator opening) via a signal line.
 制御装置80は、複数の実行プログラムが内部記憶装置に記憶されており、この実行プログラムとしては、高電圧バッテリー32の電流値Ixを制限電流値Iaに制限するプログラムや、アクセル開度センサ96が検出したアクセル開度に基づいてエンジン10の目標出力トルクTe及びモータージェネレーター31の目標出力トルクTmを算出し、エンジン10及びモータージェネレーター31の出力トルクをそれぞれの目標出力トルクTe、Tmに調節するプログラムを例示できる。 The control device 80 stores a plurality of execution programs in an internal storage device. Examples of the execution programs include a program for limiting the current value Ix of the high voltage battery 32 to the limit current value Ia, and an accelerator opening sensor 96. A program for calculating the target output torque Te of the engine 10 and the target output torque Tm of the motor generator 31 based on the detected accelerator opening, and adjusting the output torque of the engine 10 and the motor generator 31 to the respective target output torques Te and Tm. Can be illustrated.
 このプログラムは、HEVの制御方法の一部であり、前述したBMS39のプログラムと合わせて、HEVの制御方法となる。このプログラムについて、図3~図5のフロー図を参照しながら制御装置80の機能として、以下に説明する。なお、この制御方法は、所定時間ごとに行われるものとする。 This program is a part of the HEV control method, and becomes the HEV control method together with the BMS 39 program described above. This program will be described below as a function of the control device 80 with reference to the flowcharts of FIGS. In addition, this control method shall be performed for every predetermined time.
 まず、ステップS100では、制御装置80が、BMS39から送信された制限電流値Iaと推定電圧値Vaとを受信する。次いで、ステップS110では、制御装置80が、高電圧バッテリー32の電流値Ixを制限電流値Iaに制限する。なお、高電圧バッテリー32の状態によっては、制限電流値Iaは特性としての電流値Ixと等しくなる場合もある。 First, in step S100, the control device 80 receives the limited current value Ia and the estimated voltage value Va transmitted from the BMS 39. Next, in step S110, the control device 80 limits the current value Ix of the high voltage battery 32 to the limit current value Ia. Depending on the state of the high voltage battery 32, the limited current value Ia may be equal to the current value Ix as a characteristic.
 次いで、ステップS120では、制御装置80が、制限電流値Ia及び推定電圧値Vaに基づいて予想最大電力値Paを算出する。この予想最大電力値Paは、高電圧バッテリー32とモータージェネレーター31との間で充放電可能な入出力可能電流値Icに基づいて算出されることが望ましい。 Next, in step S120, the control device 80 calculates the predicted maximum power value Pa based on the limited current value Ia and the estimated voltage value Va. The predicted maximum power value Pa is preferably calculated based on the input / output possible current value Ic that can be charged / discharged between the high voltage battery 32 and the motor generator 31.
 従って、このステップS120においては、制御装置80が、DC/DCコンバーター33や車両電装品36などの補機が消費する高電圧バッテリー32の消費電流値Ibをモニタリングし、制限電流値Iaとその消費電流値Ibとに基づいた入出力可能電流値Icから予想最大電力値Paを算出することが望ましい。 Therefore, in step S120, the control device 80 monitors the current consumption value Ib of the high voltage battery 32 consumed by the auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical equipment 36, and the limit current value Ia and its consumption are monitored. It is desirable to calculate the predicted maximum power value Pa from the input / output possible current value Ic based on the current value Ib.
 このステップS120の詳細については、図4に示す。まず、ステップS122では、制御装置80が、DC/DCコンバーター33や車両電装品36などの補機が消費する消費電流値Ibを取得する。このステップS122では、制御装置80が、DC/DCコンバーター33の作動状況や、高電圧バッテリー32とDC/DCコンバーター33との間の電流値を検出するセンサなどから消費電流値Ibを取得する。なお、この消費電流値Ibは、DC/DCコンバーター33や車両電装品36などの補機の作動状況を予測して算出してもよい。また、この実施形態では、消費値として消費電流値Ibを用いた例を説明するが、消費値としては補機の消費する消費電力値を取得してもよい。 Details of step S120 are shown in FIG. First, in step S122, the control device 80 acquires a current consumption value Ib consumed by auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36. In step S122, the control device 80 acquires the consumption current value Ib from the operating state of the DC / DC converter 33, a sensor that detects the current value between the high voltage battery 32 and the DC / DC converter 33, and the like. The current consumption value Ib may be calculated by predicting the operating state of auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36. In this embodiment, an example in which the current consumption value Ib is used as the consumption value will be described. However, the power consumption value consumed by the auxiliary machine may be acquired as the consumption value.
 次いで、ステップS124では、制御装置80が、制限電流値Iaと消費電流値Ibとに基づいて入出力可能電流値Icを算出する。入出力可能電流値Icは、高電圧バッテリー32からモータージェネレーター31へ出力可能な電流値、あるいは、モータージェネレーター31から高電圧バッテリー32へ入力可能な電流値のことである。従って、この入出力可能電流値Icは、モータージェネレーター31を駆動する場合は、制限電流値Iaから消費電流値Ibを減算した値となり、モータージェネレーター31を回生する場合は、制限電流値Iaに消費電流値Ibを加算した値となる。なお、この実施形態では、入出力可能値として入出力可能電流値Icを用いた例を説明するが、入出力可能値としては入出力電力値を算出してもよい。 Next, in step S124, the control device 80 calculates an input / output possible current value Ic based on the limited current value Ia and the consumed current value Ib. The input / output possible current value Ic is a current value that can be output from the high voltage battery 32 to the motor generator 31 or a current value that can be input from the motor generator 31 to the high voltage battery 32. Therefore, the input / output possible current value Ic is a value obtained by subtracting the consumption current value Ib from the limit current value Ia when the motor generator 31 is driven, and is consumed to the limit current value Ia when the motor generator 31 is regenerated. A value obtained by adding the current value Ib. In this embodiment, an example in which the input / output possible current value Ic is used as the input / output possible value will be described. However, the input / output power value may be calculated as the input / output possible value.
 次いで、ステップS126では、制御装置80が、入出力可能電流値Icに推定電圧値Vaを乗算して予想最大電力値Paを算出してステップS130へ進む。 Next, in step S126, the control device 80 multiplies the input / output possible current value Ic by the estimated voltage value Va to calculate the predicted maximum power value Pa, and proceeds to step S130.
 予想最大電力値Paは、高電圧バッテリー32からモータージェネレーター31へ出力可能な、あるいは、モータージェネレーター31から高電圧バッテリー32へ入力可能な最大の電力値である。従って、このように、この予想最大電力値Paに制限電流値Iaに加えて、DC/DCコンバーター33や車両電装品36などの補機が消費する消費電流値Ibを加味することで、実際にモータージェネレーター31が使用可能な電力を正確に算出できる。 The expected maximum power value Pa is the maximum power value that can be output from the high voltage battery 32 to the motor generator 31 or can be input from the motor generator 31 to the high voltage battery 32. Therefore, in this way, in addition to the predicted maximum power value Pa, in addition to the limited current value Ia, the current consumption value Ib consumed by the auxiliary equipment such as the DC / DC converter 33 and the vehicle electrical component 36 is actually added. Electric power that can be used by the motor generator 31 can be accurately calculated.
 次いで、図3に示すように、ステップS130では、制御装置80が、予想最大電力値Paに基づいて予想最大出力トルクTaを算出する。この予想最大出力トルクTaは、変換効率のうち最も効率の高い最高変換効率ηmに基づいて算出されることが望ましい。 Next, as shown in FIG. 3, in step S130, the control device 80 calculates the predicted maximum output torque Ta based on the predicted maximum power value Pa. The predicted maximum output torque Ta is preferably calculated based on the highest conversion efficiency ηm having the highest efficiency among the conversion efficiencies.
 従って、このステップS130においては、制御装置80が、予想最大電力値Paとモータージェネレーター31のモータ回転数Nmとに応じた最高変換効率ηmを用いて予想最大出力トルクTaを算出することが望ましい。 Therefore, in this step S130, it is desirable that the control device 80 calculates the predicted maximum output torque Ta using the maximum conversion efficiency ηm according to the predicted maximum power value Pa and the motor rotation speed Nm of the motor generator 31.
 このステップS130の詳細については、図5に示す。まず、ステップS132では、制御装置80が、モータージェネレーター31のモータ回転数Nmを取得する。このモータ回転数Nmは予測値であって、HEVの車速、プロペラシャフト22の回転数、クランクシャフト13の回転数(エンジン回転数Ne)から、第1プーリー15、第2プーリー16、及びベルト状部材17の伝達効率を考慮して算出される。 Details of step S130 are shown in FIG. First, in step S <b> 132, the control device 80 acquires the motor rotation speed Nm of the motor generator 31. The motor rotation speed Nm is a predicted value, and based on the HEV vehicle speed, the rotation speed of the propeller shaft 22, and the rotation speed of the crankshaft 13 (engine rotation speed Ne), the first pulley 15, the second pulley 16, and the belt shape It is calculated in consideration of the transmission efficiency of the member 17.
 次いで、ステップS134では、制御装置80が、予想最大電力値Paと予測したモータ回転数Nmとに応じた最高変換効率ηmを算出する。この最高変換効率ηmは、電気的なエネルギーである電力値を機械的なエネルギーであるトルクに変換する際の効率のことである。 Next, in step S134, the control device 80 calculates the maximum conversion efficiency ηm according to the predicted maximum power value Pa and the predicted motor rotation speed Nm. This maximum conversion efficiency ηm is the efficiency at the time of converting a power value, which is electrical energy, into torque, which is mechanical energy.
 図6は、モータージェネレーター31におけるモータ回転数Nmと出力トルク及び回生トルクとに基づいた変換効率が設定された特性図である。なお、変換効率は一点鎖線で例示してあり、同心円上から外側に向ってその効率が低く設定されている。 FIG. 6 is a characteristic diagram in which conversion efficiency based on the motor rotation speed Nm, output torque, and regenerative torque in the motor generator 31 is set. The conversion efficiency is illustrated by a one-dot chain line, and the efficiency is set to be lower from the concentric circle toward the outside.
 モータ回転数Nmに基づいた最大出力トルクTmaxを出力したときに、予想最大電力値Paになる場合に、その最大出力トルクTmaxを予想最大出力トルクTaに設定すると、変換効率の低いため、無駄なエネルギーが消費されることになる。そこで、このステップS134では、制御装置80が、予め実験や試験により作成され、内部記憶装置に記憶された特性図を参照して、最も効率の高い最高変換効率ηmを算出することが好ましい。このように、最高変換効率ηmでモータージェネレーター31を駆動、回生することで、エネルギーの損失を抑制できるので、燃費の向上に有利になる。 When the maximum output torque Tmax based on the motor rotation speed Nm is output and the predicted maximum power value Pa is reached, setting the maximum output torque Tmax to the predicted maximum output torque Ta is wasteful because conversion efficiency is low. Energy will be consumed. Therefore, in this step S134, it is preferable that the control device 80 calculates the highest conversion efficiency ηm with the highest efficiency with reference to a characteristic diagram created in advance by experiments and tests and stored in the internal storage device. Thus, driving and regenerating the motor generator 31 with the maximum conversion efficiency ηm can suppress energy loss, which is advantageous for improving fuel efficiency.
 次いで、ステップS136では、制御装置80が、最高変換効率ηmに基づいた予想最大出力トルクTaを算出してステップS140へ進む。 Next, in step S136, the control device 80 calculates the predicted maximum output torque Ta based on the maximum conversion efficiency ηm, and proceeds to step S140.
 次いで、図3に示すように、ステップS140では、制御装置80が、アクセル開度に基づいたハイブリッドシステム30の要求トルクTtを算出し、その要求トルクTtに基づいてエンジン10及びモータージェネレーター31のそれぞれの目標出力トルクTe、Tmを算出する。なお、このステップS140では、HEVの車速、車重、走行路の勾配、トランスミッション20のギヤ段などを考慮するとよい。 Next, as shown in FIG. 3, in step S140, the control device 80 calculates the required torque Tt of the hybrid system 30 based on the accelerator opening, and each of the engine 10 and the motor generator 31 based on the required torque Tt. Target output torques Te and Tm are calculated. In this step S140, HEV vehicle speed, vehicle weight, travel road gradient, gear stage of the transmission 20, and the like may be taken into consideration.
 次いで、ステップS150では、制御装置80が、モータージェネレーター31の目標出力トルクTmが予想最大出力トルクTaよりも大きいか否かを判定する。このステップS150で、目標出力トルクTmが予想最大出力トルクTaよりも大きいと判定すると、ステップS160へ進む。一方、目標出力トルクTmが予想最大出力トルクTa以下と判定すると、ステップS170へ進む。 Next, in step S150, the control device 80 determines whether or not the target output torque Tm of the motor generator 31 is larger than the predicted maximum output torque Ta. If it is determined in step S150 that the target output torque Tm is larger than the predicted maximum output torque Ta, the process proceeds to step S160. On the other hand, if it is determined that the target output torque Tm is equal to or less than the predicted maximum output torque Ta, the process proceeds to step S170.
 次いで、ステップS160では、制御装置80が、予想最大出力トルクTaをモータージェネレーター31の目標出力トルクTmの最大値として、それぞれの目標出力トルクTe、Tmを補正する。例えば、目標出力トルクTmが予想最大出力トルクTaよりも大きい場合には、その予想最大出力トルクTaを最大値にした差分を、エンジン10の目標出力トルクTeに加算する。 Next, in step S160, the control device 80 corrects the target output torques Te and Tm with the predicted maximum output torque Ta as the maximum value of the target output torque Tm of the motor generator 31. For example, when the target output torque Tm is larger than the predicted maximum output torque Ta, a difference obtained by setting the predicted maximum output torque Ta to the maximum value is added to the target output torque Te of the engine 10.
 次いで、ステップS170では、制御装置80が、エンジン10及びモータージェネレーター31のそれぞれの出力トルクを、算出したそれぞれの目標出力トルクTe、Tmに調節する。このステップS170が完了するとスタートへ戻る。 Next, in step S170, the control device 80 adjusts the output torques of the engine 10 and the motor generator 31 to the calculated target output torques Te and Tm, respectively. When step S170 is completed, the process returns to the start.
 以上のような制御を行うようにしたことで、高電圧バッテリー32の内部温度θxが上限温度θaを超えるような場合や、高電圧バッテリー32の残存容量Cxが目標範囲外になるような場合に、高電圧バッテリー32の入出力が制限されても、モータージェネレーター31の出力トルクが目標出力トルクTmよりも低くなることを回避することができる。 By performing the control as described above, the internal temperature θx of the high voltage battery 32 exceeds the upper limit temperature θa, or the remaining capacity Cx of the high voltage battery 32 is out of the target range. Even if the input / output of the high-voltage battery 32 is restricted, it is possible to avoid the output torque of the motor generator 31 being lower than the target output torque Tm.
 その結果、ハイブリッドシステム30から出力される出力トルクが、ハイブリッドシステム30に要求された要求トルクTtよりも不足する事態を回避できるので、ドライバビリティを向上することができる。 As a result, it is possible to avoid a situation in which the output torque output from the hybrid system 30 is less than the required torque Tt required for the hybrid system 30, so that drivability can be improved.
 また、モータージェネレーター31を回生する場合においては、補機が消費する消費電流値Ibが考慮されることで、その分、回生量を多くすることができる。 In addition, when the motor generator 31 is regenerated, the amount of regeneration can be increased by considering the current consumption value Ib consumed by the auxiliary machine.
 特に、予想最大電力値Paに補機が消費する分を考慮することで、モータージェネレーター31の出力トルクが目標出力トルクTmよりも低くなることを確実に回避することができるので、ドライバビリティの向上に有利になる。 In particular, by taking into account the amount of auxiliary equipment consumed in the predicted maximum power value Pa, it is possible to reliably avoid the output torque of the motor generator 31 being lower than the target output torque Tm, so that drivability is improved. To be advantageous.
 更に、最高変換効率ηmを算出することで、無駄なエネルギーの損失を抑制できるので、燃費の向上に有利になる。 Furthermore, by calculating the maximum conversion efficiency ηm, it is possible to suppress a loss of useless energy, which is advantageous for improving fuel consumption.
 なお、この実施形態では、BMS39が制限電流値Iaを算出して、制御装置80が高電圧バッテリー32の電流値Ixをその制限電流値Iaに制限する構成を例に説明したが、BMS39が直接、高電圧バッテリー32の電流値Ixをその制限電流値Iaに制限する構成にしてもよい。 In this embodiment, the BMS 39 calculates the limit current value Ia and the control device 80 has been described as an example of a configuration in which the current value Ix of the high voltage battery 32 is limited to the limit current value Ia. However, the BMS 39 directly The current value Ix of the high voltage battery 32 may be limited to the limit current value Ia.
 本出願は、2015年12月4日付で出願された日本国特許出願(特願2015-237237)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-237237) filed on December 4, 2015, the contents of which are incorporated herein by reference.
 本発明は、ハイブリッドシステムから出力される出力トルクが、ハイブリッドシステムに要求された要求トルクよりも不足する事態を回避することができるという効果を有し、ハイブリッド車両及びその制御方法等に有用である。 The present invention has an effect that the output torque output from the hybrid system can avoid a situation where the required torque required for the hybrid system is insufficient, and is useful for a hybrid vehicle and a control method thereof. .
 10 エンジン
 30 ハイブリッドシステム
 31 モータージェネレーター
 32 高電圧バッテリー
 33 DC/DCコンバーター
 36 車両電装品
 39 BMS(バッテリーマネージメントシステム)
 80 制御装置
 Ia 制限電流値
 Pa 予想最大電力値
 Ta 予想最大出力トルク
 Te、Tm 目標出力トルク
10 Engine 30 Hybrid System 31 Motor Generator 32 High Voltage Battery 33 DC / DC Converter 36 Vehicle Electrical Equipment 39 BMS (Battery Management System)
80 Control device Ia Limit current value Pa Expected maximum power value Ta Expected maximum output torque Te, Tm Target output torque

Claims (6)

  1.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーター、このモータージェネレーターに電気的に接続されたバッテリー、及び前記バッテリーを管理するバッテリーマネージメントシステムと、を有するハイブリッドシステムと、前記バッテリーに充電された電力を消費する補機と、制御装置と、を備えたハイブリッド車両において、
     前記バッテリーマネージメントシステムが、
       前記バッテリーの入出力値を制限する制限値を前記バッテリーの状態に基づいて算出して、
       前記算出した制限値を前記制御装置へ送信するように構成され、
     前記制御装置が、
       前記バッテリーマネージメントシステムより送信された前記制限値に基づいて前記バッテリーと前記モータージェネレーターとの間で充放電可能な予想最大電力値に応じた予想最大出力トルクを算出し、
       前記予想最大出力トルクを前記モータージェネレーターの目標出力トルクの最大値として、前記ハイブリッドシステムに要求された要求トルクから前記エンジン及び前記モータージェネレーターのそれぞれの目標出力トルクを算出し、
       前記エンジン及び前記モータージェネレーターのそれぞれの出力トルクを、算出したそれぞれの前記目標出力トルクに調節する制御を行うように構成されたことを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power, a battery electrically connected to the motor generator, and a battery management system for managing the battery, and the battery charged In a hybrid vehicle including an auxiliary machine that consumes electric power and a control device,
    The battery management system is
    A limit value for limiting the input / output value of the battery is calculated based on the state of the battery,
    Configured to transmit the calculated limit value to the control device;
    The control device is
    Based on the limit value transmitted from the battery management system, to calculate the expected maximum output torque according to the expected maximum power value that can be charged and discharged between the battery and the motor generator,
    With the predicted maximum output torque as the maximum value of the target output torque of the motor generator, the target output torque of each of the engine and the motor generator is calculated from the required torque required for the hybrid system,
    A hybrid vehicle configured to perform control to adjust output torques of the engine and the motor generator to the calculated target output torques.
  2.  前記制御装置が、前記補機が消費する前記バッテリーの消費値をモニタリングし、前記制限値とその消費値とに基づいた入出力可能値から前記予想最大電力値を算出するように構成された請求項1に記載のハイブリッド車両。 The control device is configured to monitor a consumption value of the battery consumed by the auxiliary device and calculate the predicted maximum power value from an input / output possible value based on the limit value and the consumption value. Item 2. The hybrid vehicle according to Item 1.
  3.  前記制御装置が、前記予想最大電力値と前記モータージェネレーターのモータ回転数とに基づいて算出された変換効率を用いて前記予想最大出力トルクを算出するように構成された請求項1又は2に記載のハイブリッド車両。 3. The control device according to claim 1, wherein the control device is configured to calculate the predicted maximum output torque using a conversion efficiency calculated based on the predicted maximum power value and a motor rotation speed of the motor generator. Hybrid vehicle.
  4.  前記制限値が、前記バッテリーの内部温度が予め設定された上限温度以下になるように設定された請求項1~3のいずれか1項に記載のハイブリッド車両。 The hybrid vehicle according to any one of claims 1 to 3, wherein the limit value is set such that an internal temperature of the battery is equal to or lower than a preset upper limit temperature.
  5.  エンジン及びモータージェネレーターのそれぞれの出力トルクを要求トルクから算出された目標出力トルクに調節するハイブリッド車両の制御方法において、
     前記モータージェネレーターに電気的に接続されたバッテリーの状態を取得するステップと、
     前記取得したバッテリーの状態に基づいて、前記バッテリーの入出力値の制限値を算出するステップと、
     前記バッテリーの入出力値を、前記算出した制限値に制限するステップと、
     前記制限値に基づいて、前記バッテリーと前記モータージェネレーターとの間で充放電可能な予想最大電力値を算出するステップと、
     前記予想最大電力値に応じた予想最大出力トルクを算出するステップと、
     前記予想最大出力トルクを前記モータージェネレーターの目標出力トルクの最大値として、前記要求トルクから前記エンジン及び前記モータージェネレーターのそれぞれの目標出力トルクを算出するステップと、
     前記エンジン及び前記モータージェネレーターのそれぞれの出力トルクを、それらの前記目標出力トルクに調節するステップと、を含むことを特徴とするハイブリッド車両の制御方法。
    In the hybrid vehicle control method of adjusting the output torque of each of the engine and the motor generator to the target output torque calculated from the required torque,
    Obtaining a state of a battery electrically connected to the motor generator;
    Calculating a limit value of the input / output value of the battery based on the acquired state of the battery;
    Limiting the input / output value of the battery to the calculated limit value;
    Calculating an expected maximum power value that can be charged and discharged between the battery and the motor generator based on the limit value;
    Calculating a predicted maximum output torque according to the predicted maximum power value;
    Calculating the target output torque of each of the engine and the motor generator from the required torque with the predicted maximum output torque as the maximum value of the target output torque of the motor generator;
    Adjusting the output torque of each of the engine and the motor generator to the target output torque of the engine and the motor generator, respectively.
  6.  前記ハイブリッド車両の制御方法はさらに、
     前記目標出力トルクを算出するステップの後に、前記モータージェネレーターの前記目標出力トルクが前記予想最大出力よりも大きいか否かを判定するステップと、
     前記判定するステップにおいて前記モータージェネレーターの前記目標出力トルクが前記予想最大出力よりも大きいと判定された場合に、前記予想最大出力を前記モータージェネレーターの前記目標出力トルクの最大値とし、前記モータージェネレーターの前記目標出力トルクと前記予想最大出力との差分を、前記エンジンの前記目標出力トルクに加算するステップと、
    をさらに含むことを特徴とする、請求項5に記載のハイブリッド車両の制御方法。
    The hybrid vehicle control method further includes:
    After the step of calculating the target output torque, determining whether the target output torque of the motor generator is greater than the predicted maximum output;
    When it is determined in the determining step that the target output torque of the motor generator is larger than the predicted maximum output, the predicted maximum output is set as the maximum value of the target output torque of the motor generator, and the motor generator Adding the difference between the target output torque and the predicted maximum output to the target output torque of the engine;
    The method for controlling a hybrid vehicle according to claim 5, further comprising:
PCT/JP2016/085771 2015-12-04 2016-12-01 Hybrid vehicle and method for controlling same WO2017094853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237237 2015-12-04
JP2015237237A JP2017100639A (en) 2015-12-04 2015-12-04 Hybrid vehicle and control method therefor

Publications (1)

Publication Number Publication Date
WO2017094853A1 true WO2017094853A1 (en) 2017-06-08

Family

ID=58797486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085771 WO2017094853A1 (en) 2015-12-04 2016-12-01 Hybrid vehicle and method for controlling same

Country Status (2)

Country Link
JP (1) JP2017100639A (en)
WO (1) WO2017094853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229084A1 (en) * 2019-05-16 2020-11-19 Volkswagen Aktiengesellschaft Method for operating at least two electrical components of a vehicle
CN112406848A (en) * 2020-11-13 2021-02-26 东风越野车有限公司 Output torque control method for automobile high-power generator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562240B (en) * 2019-08-19 2020-10-16 中国第一汽车股份有限公司 Torque capacity calculation method for light hybrid power system
JP7484672B2 (en) 2020-11-12 2024-05-16 マツダ株式会社 Vehicle motor control system and vehicle motor control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104937A (en) * 2002-09-11 2004-04-02 Honda Motor Co Ltd Controller for hybrid vehicle
JP2005218250A (en) * 2004-01-30 2005-08-11 Mitsubishi Motors Corp Torque controller
JP2012090416A (en) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd Electric vehicle control device
US20150142236A1 (en) * 2012-05-21 2015-05-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104937A (en) * 2002-09-11 2004-04-02 Honda Motor Co Ltd Controller for hybrid vehicle
JP2005218250A (en) * 2004-01-30 2005-08-11 Mitsubishi Motors Corp Torque controller
JP2012090416A (en) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd Electric vehicle control device
US20150142236A1 (en) * 2012-05-21 2015-05-21 Robert Bosch Gmbh Method and device for controlling an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020229084A1 (en) * 2019-05-16 2020-11-19 Volkswagen Aktiengesellschaft Method for operating at least two electrical components of a vehicle
CN112406848A (en) * 2020-11-13 2021-02-26 东风越野车有限公司 Output torque control method for automobile high-power generator

Also Published As

Publication number Publication date
JP2017100639A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6011541B2 (en) Charge control device and charge control method
WO2011027449A1 (en) Assembled battery state-of-charge detecting device and state-of-charge detecting method
WO2012131864A1 (en) Electric vehicle and control method therefor
JP2013252845A (en) Engine clutch transmission torque learning apparatus and method of environment friendly vehicle
US9873336B2 (en) Hybrid vehicle
JP2004129373A (en) Output control arrangement of hybrid vehicle
CN103863317A (en) Method and system for setting motor torque for hybrid vehicle
WO2017094853A1 (en) Hybrid vehicle and method for controlling same
WO2017090630A1 (en) Hybrid vehicle and control method therefor
WO2012101796A1 (en) Vehicle, and vehicle control method
US9849773B2 (en) Generation control apparatus
KR101028019B1 (en) Method for balancing SOC of hybrid vehicle
US20170341527A1 (en) A method and device for charging an electric energy storage system in a vehicle
JP2011225079A (en) Hybrid automobile
JP6582928B2 (en) Shift control device for hybrid vehicle
JP5772209B2 (en) Charge / discharge control device for power storage device and electric vehicle equipped with the same
JP6686384B2 (en) Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
JP2017103972A (en) Battery control system, hybrid vehicle, and battery control method
JP6701699B2 (en) Battery control system, hybrid vehicle, and battery control method
JP6428658B2 (en) Hybrid vehicle
JP2012121555A (en) Device and method for controlling hybrid vehicle
JP5267875B2 (en) Vehicle control device
JP6447473B2 (en) Hybrid vehicle
JP6322417B2 (en) Voltage fluctuation control device
JP2018093630A (en) Control apparatus for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870790

Country of ref document: EP

Kind code of ref document: A1