WO2017094843A1 - Operation system - Google Patents

Operation system Download PDF

Info

Publication number
WO2017094843A1
WO2017094843A1 PCT/JP2016/085750 JP2016085750W WO2017094843A1 WO 2017094843 A1 WO2017094843 A1 WO 2017094843A1 JP 2016085750 W JP2016085750 W JP 2016085750W WO 2017094843 A1 WO2017094843 A1 WO 2017094843A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference input
operation system
input commands
dref
input
Prior art date
Application number
PCT/JP2016/085750
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 原口
慧 見上
陽一 平田
Original Assignee
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リバーフィールド株式会社 filed Critical リバーフィールド株式会社
Publication of WO2017094843A1 publication Critical patent/WO2017094843A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an operation system, and more particularly to an operation system for remotely operating a shaft-like body such as a forceps or a rigid endoscope held by a holding device.
  • Patent Document 1 discloses a multi-joint slave arm, a master arm having a joint structure similar to the slave arm, and the slave arm operated based on an operation performed on the master arm.
  • a control unit for controlling the arm, and the control unit is configured to control each joint of the slave arm based on the rotation amount of each joint of the master arm so that the slave arm has a similar shape to the master arm.
  • Disclosed is a medical system that can be switched between a second control mode for controlling the rotational motion of each joint of the slave arm based on the amount of movement of the slave arm. That (see claim 1).
  • an operation system that drives a plurality of axes at the same time may operate in a direction different from the originally intended input depending on the weighting of each axis.
  • an object of the present invention is to provide an operation system with improved operational feeling.
  • an operation system includes an actuator, an operation detection unit that detects a plurality of inputs of two or more axes and outputs a plurality of input commands, and the plurality of input commands.
  • a reference input generation unit that generates a plurality of reference input commands; and an actuator control unit that controls the actuator based on the plurality of reference input commands, wherein the reference input generation unit includes directions of the plurality of input commands.
  • the plurality of reference input commands are generated by performing weighting while maintaining.
  • an operation system with improved operational feeling can be provided.
  • FIG. 1 is a schematic diagram illustrating a configuration of an operation system S according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the operation system S according to the first embodiment.
  • the operation system S according to the first embodiment will be described as a system that detects the operation of the operator OP and operates the visual field of the endoscope (rigid endoscope, laparoscope).
  • the operation system S includes an operation detection unit 1 that detects the operation of the operator OP, a holding arm unit 2 that holds an endoscope (shaft-like body) 100, And a control unit 3 that controls the holding arm unit 2 based on the operation of the operator OP detected by the operation detection unit 1.
  • the motion detection unit 1 is mounted on the head of the operator OP and can detect the movement of the head of the operator OP.
  • the method for fixing the motion detection unit 1 to the head of the operator OP includes, for example, a method in which a pocket is provided in a surgical cap and the motion detection unit 1 is stored in the pocket. It is not a thing.
  • the motion detection unit 1 includes a motion detection unit 11 configured by, for example, a gyro sensor.
  • the motion detection unit 11 includes an input speed ⁇ G Y around the yaw (Yaw) axis that is the rotation of the operator OP in the left-right direction and an input speed ⁇ around the pitch (Pitch) axis that is the rotation of the operator OP in the vertical direction. and it is capable of detecting and a G P.
  • the detection signal of the motion detection unit 11 is transmitted to the control unit 3.
  • the holding arm unit 2 includes an RCM (Remote Center Motion) mechanism that holds the endoscope 100 and realizes a pivot (fixed point) motion, with the fixed point PP as a rotation center,
  • RCM Remote Center Motion
  • the yaw axis of the endoscope 100 is a vertical axis that passes through the fixed point PP.
  • the pitch axis of the endoscope 100 is an axis that passes through the fixed point PP and is orthogonal to the yaw axis of the endoscope 100 and the central axis of the endoscope 100.
  • the holding arm unit 2 includes a holding arm portion 21 and a power control device 24.
  • the holding arm unit 21 includes an actuator 22 and a state quantity detection unit 23.
  • the actuator 22 includes a yaw axis actuator that rotates the held endoscope 100 about the yaw axis, and a pitch axis actuator that rotates the held endoscope 100 about the pitch axis.
  • a pneumatic actuator can be used, for example.
  • the state quantity detection unit 23 detects the state of the holding arm unit 21 (the state of the actuator 22) and transmits a detection signal to the control unit 3. Specifically, the current position q res Y around the yaw axis, the current position q res P around the pitch axis, the driving force f res Y of the yaw axis actuator, and the driving force f res P of the pitch axis actuator are detected.
  • An encoder can be used to detect the current positions q res Y and q res P , and a value obtained by multiplying the pressure sensor value by the pressure receiving area can be used to detect the driving forces f res Y and f res P. it can.
  • the power control device 24 operates the actuator 22 based on a control signal from the control unit 3.
  • the power control device 24 can use a direction controller that controls the air flow direction of the pneumatic actuator, and the control unit 3 sends a control signal to the direction controller valve.
  • the applied voltage u Y, u P is input.
  • the control unit 3 includes a control unit 31 and an input / output unit 34.
  • the control unit 31 includes a reference input generation unit 32 and a feedback control unit 33.
  • the control unit 31 receives the detection signals (input speeds ⁇ G Y , ⁇ G P ) from the motion detection unit 11 of the motion detection unit 1 and the state quantity detection unit 23 of the holding arm unit 2 via the input / output unit 34. Detection signals (current positions q res Y and q res P , driving forces f res Y and f res P ) are input, and control signals (applied voltages u Y and u P ) to the power control device 24 are output.
  • FIG. 3 is a block diagram showing signal processing of the operation system S according to the first embodiment.
  • the reference input generation unit 32 weights the detection signals (input velocities ⁇ G Y , ⁇ G P ) from the motion detection unit 11 of the motion detection unit 1 and the endoscope 100 of the endoscope 100 held by the holding arm unit 2.
  • a reference input speed q dref Y that is a target value of the rotational speed around the yaw axis
  • a reference input speed q dref P that is a rotational speed around the pitch axis of the endoscope 100 are generated.
  • the generation (weighting) of the reference input speeds q dref Y and q dref P in the reference input generation unit 32 will be described later.
  • the feedback control unit 33 includes reference input velocities q dref Y and q dref P from the reference input generation unit 32, and detection signals (current positions q res Y and q res P , driving from the state quantity detection unit 23 of the holding arm unit 2. Based on the force f res Y , f res P ), a control signal (applied voltage u Y , u P ) to the power control device 24 is generated.
  • the feedback control unit 33 includes a position controller 331, a subtracter 332, and a driving force controller 333.
  • the position controller 331 integrates the reference input speed q dref Y of the reference input generation unit 32 to generate the target position q ref Y. Further, the rotational speed q dres Y around the yaw axis of the endoscope 100 is generated from the difference between the current value and the previous value of the current position q res Y of the state quantity detection unit 23. Then, the driving force reference value f ref Y is generated so that the rotational speed q dres Y approaches the reference input speed q dref Y so that the current position q res Y approaches the target position q ref Y.
  • the driving force reference value f ref Y can be expressed by the following equation.
  • f ref Y K p (q dref Y ⁇ q dres Y ) + K d (q ref Y ⁇ q res Y )
  • the position controller 331 generates the target position q ref P by integrating the reference input speed q dref P of the reference input generation unit 32.
  • the rotational speed q dres P around the pitch axis of the endoscope 100 is generated from the difference between the current value and the previous value of the current position q res P of the state quantity detector 23.
  • the driving force reference value f ref P is generated so that the rotational speed q dres P approaches the reference input speed q dref P so that the current position q res P approaches the target position q ref P.
  • the gains K p and K d may be different on the yaw axis and the pitch axis, or may be the same.
  • the subtractor 332 receives the driving force reference value f ref Y of the position controller 331 and the driving force f res Y of the state quantity detection unit 23, and the driving force reference value f ref Y and the driving force f res Y are input. (F ref Y ⁇ f res Y ) is generated and output to the driving force controller 333. Further, the subtractor 332 receives the driving force reference value f ref P of the position controller 331 and the driving force f res P of the state quantity detection unit 23, and the driving force reference value f ref P and the driving force f res. A difference from P (f ref P ⁇ f res P ) is generated and output to the driving force controller 333.
  • the driving force controller 333 sends the difference between the driving force reference value f ref Y of the subtractor 332 and the driving force f res Y (f ref Y ⁇ f res Y ) to the power control device 24 (valve of the direction controller). Control signal (applied voltage u Y ) is generated. Further, the driving force controller 333 determines the power control device 24 (the valve of the direction controller) from the difference (f ref P ⁇ f res P ) between the driving force reference value f ref P of the subtractor 332 and the driving force f res P. ) Is generated (applied voltage u P ).
  • control unit 3 weights the operation (input speeds ⁇ G Y , ⁇ G P ) of the operator OP detected by the motion detection unit 1 (motion detection unit 11) with a reference input speed q dref Y that will be described later.
  • Q dref P can pivot the endoscope 100 held by the holding arm unit 2 (see FIG. 1).
  • the motion detection unit 1 when the motion detection unit 1 is mounted on the head of the operator OP, the vertical direction (pitch axis rotation direction) is compared with the left-right direction (yaw axis rotation direction). Therefore, weighting is performed differently in the vertical direction and in the horizontal direction. Specifically, the weighting is performed so as to amplify the operation signal in the vertical direction. With such a configuration, the visual field of the endoscope 100 can be manipulated with a smaller movement in the vertical direction than in the horizontal direction.
  • FIG. 4A shows a reference example in which different weights are simply applied to the yaw axis and the pitch axis.
  • FIG. 4A is a graph showing the relationship between the input vector in the reference example and the weighted reference input vector.
  • the pitch axis vertical axis in FIG. 4A
  • the yaw axis horizontal axis in FIG. 4A
  • the direction in the original input vector r ( ⁇ G Y , ⁇ G P ) is an angle ⁇ with respect to the horizontal.
  • the direction in the weighted vector R ( ⁇ G Y , ⁇ G P ) is the angle ⁇ 1, and the directions are different.
  • the direction (angle ⁇ ) input by the operator OP is different from the direction (angle ⁇ 1) in which the endoscope 100 actually moves, which may cause the operator OP to feel uncomfortable.
  • FIG. 4B illustrates an example in which weighting is performed in the reference input generation unit 32 of the operation system S according to the first embodiment.
  • FIG. 4B is a graph showing the relationship between the input vector and the weighted reference input vector in the first embodiment.
  • the horizontal axis is yaw and the vertical axis is pitch.
  • the magnitude of the input vector r can be expressed by the following formula (1), and the angle ⁇ with respect to the horizontal indicating the direction of the input vector r can be expressed by the formula (2).
  • the weight in the left-right direction is ⁇ max
  • the weight in the vertical direction is ⁇ max
  • r ⁇ ⁇ max is the radius of the first axis
  • r ⁇ ⁇ max is An elliptic arc E is defined as the radius of the second axis.
  • ⁇ max is “ ⁇ max > 1”
  • the arc indicated by the symbol C is an arc whose radius is r.
  • the reference input vector R (q dref Y , q dref P ) has the same direction (angle ⁇ ) as the input vector r, and (q dref Y , q dref P ) is on the elliptical arc E. From the ellipse equation, the magnitude of the input vector R can be expressed by the following equation (3).
  • the reference input speeds q dref Y and q dref P can be expressed by the following equations (4) and (5).
  • the reference input generation unit 32 of the operation system S uses the reference input speed q from the input speeds ⁇ G Y and ⁇ G P using the expressions (1) to (5).
  • the reference input velocities q dref Y and q dref P are weighted differently in the vertical direction and the horizontal direction, while the input vector r And the direction (angle ⁇ ) of the reference input vector R can be made equal.
  • FIG. 5 is a schematic diagram illustrating a configuration of the operation system SA according to the second embodiment.
  • FIG. 6 is a block diagram showing the configuration of the operation system SA according to the second embodiment.
  • the operation system S according to the second embodiment is a system that operates the robot forceps (shaft-shaped body) 150 by detecting the movement of the operator OP by operating the master robot 1A. It will be explained as being.
  • the operation system SA includes a master robot 1A that detects the movement of the operator OP, a slave robot 2A that holds the robot forceps 150, and an operator that is detected by the master robot 1A. And a control unit 3A that controls the slave robot 2A based on the operation of the OP.
  • the master robot 1 ⁇ / b> A includes an operation detection unit 11 and an actuator 12.
  • Operation detecting unit 11 the position theta M in the vertical direction (direction plugging Z-axis direction, the shaft-like body) and the position theta M X of (X-axis direction, the axial direction perpendicular to the direction of insertion of the shaft-like body), the front-rear direction Z can be detected.
  • the detection signal of the motion detection unit 11 is transmitted to the control unit 3.
  • the slave robot 2 ⁇ / b> A holds the robot forceps 150 and moves the grip 151 provided at the tip of the robot forceps 150 in the vertical direction (X-axis direction) and the front-back direction (Z-axis direction, the direction in which the forceps are inserted). This is a two-degree-of-freedom holding device that can be moved. Note that the slave robot 2A pivots the robot forceps 150 around the fixed point PP as a rotation center.
  • control unit 3 ⁇ / b> A includes a control unit 31 having a reference input generation unit 32 and a feedback control unit 33, and an input / output unit 34.
  • Reference input generator 32 input position theta M X, by weighting the theta M Z, the reference input position q sref X, generates a q sref Z.
  • the other configuration is the first implementation except that the control of “the rotational speed around the yaw axis and the rotational speed around the pitch axis” is changed to the control of “the position in the X-axis direction and the position in the Z-axis direction”. This is the same as the operation system S according to the embodiment, and a duplicate description is omitted.
  • the robot forceps 150 has a gripping portion 151 at the tip.
  • the robot forceps 150 grips the grip 151 in two directions (an axial direction perpendicular to the direction in which the shaft-like body is inserted and another axial direction perpendicular to the direction in which the shaft-like body is inserted), and the gripping force. It has 3 degrees of freedom that combines 1 degree of freedom to open and close the portion 151.
  • the bending and opening / closing of the gripping portion 151 of the robot forceps 150 can be controlled by operating the master robot 1A.
  • the actuator 12 of the master robot 1A is operated by the power control device that operates the actuator that controls the opening / closing of the gripping portion 151 of the robot forceps 150 held by the slave robot 2A, and force feedback is performed. .
  • the movement (z-axis direction) of the robot forceps 150 on the axis is changed. Is weighted so as to be slower than the movement of the axis, in other words, different weights are applied in the vertical direction (x-axis direction) and the front-rear direction (z-axis direction). A weighting that attenuates is performed.
  • ⁇ G Y , ⁇ G P , q dref Y , and q dref P are read as ⁇ M X , ⁇ M Z , q sref X , and q sref Z , respectively.
  • the direction weighting is ⁇ max
  • the front-rear direction weighting is ⁇ max
  • ⁇ max is “ ⁇ max ⁇ 1”
  • the operation system SA sets the directions of the input vector r and the reference input vector R (angle ⁇ in FIG. 4B) while performing different weighting in the vertical direction and the front-back direction. Can be equal.
  • FIG. 7 is a diagram showing the relationship between the input vector r and the weighted reference input vector R in three degrees of freedom.
  • the size of the reference input vector R can be expressed by Equation (9).
  • the weighted reference input signals q dref x , q dref y , and q dref z can be expressed by the following equations (10) to (12).
  • the operation systems S and SA according to the present embodiment can be applied to a case of three degrees of freedom, and similarly, can be applied to a multi-degree of freedom operation system. can do.
  • the input signals ⁇ G x , ⁇ G y , ⁇ G z and the reference input signals q dref x , q dref y , q dref z may indicate speed as in the first embodiment.
  • the position may be indicated as in the second embodiment.
  • actuator 22 of the holding arm unit 2 has been described as using a pneumatic actuator, for example, it is not limited to this.
  • An electric actuator may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Manipulator (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Provided is an operation system having an improved operational feeling. The operation system is provided with: an actuator (22); an action detection unit (11) that detects input from at least two shafts and outputs a plurality of input commands; a reference input generation unit (32) that generates a plurality of reference input commands from the input commands; and an actuator control unit (33) that controls the actuator (22) on the basis of the reference input commands. The reference input generation unit (32) carries out weighting while maintaining the directions of the input commands, and generates the reference input commands.

Description

操作システムOperation system
 本発明は、操作システムに関し、特に保持装置に保持された鉗子や硬性鏡などの軸状体を遠隔で操作する操作システムに関する。 The present invention relates to an operation system, and more particularly to an operation system for remotely operating a shaft-like body such as a forceps or a rigid endoscope held by a holding device.
 腹腔鏡下手術をはじめとした低侵襲医療技術を工学的な見地から研究開発し、医療の現場に役立てようとする動きが広まっている。なかでも、ロボットを用いた手術支援に関する研究開発が盛んに行われている。 Research and development of minimally invasive medical technologies such as laparoscopic surgery from an engineering point of view, and a movement to make use in the medical field is spreading. In particular, research and development related to surgical support using robots is actively conducted.
 例えば、特許文献1には、多関節のスレーブアームと、該スレーブアームと相似構造の関節構成を有し、操作者によって操作されるマスタアームと、該マスタアームになされた操作に基づいて前記スレーブアームを制御する制御部とを備え、該制御部は、前記マスタアームに対して前記スレーブアームが相似形となるように前記マスタアームの各関節の回転量に基づいて前記スレーブアームの各関節の回転動作を制御する第1の制御モードと、前記マスタアームの先端部の所定の部位の移動に前記スレーブアームの先端部の所定の部位が追従するように前記マスタアームの先端部の所定の部位の移動量に基づいて前記スレーブアームの各関節の回転動作を制御する第2の制御モードとの間で切り替え可能である医療用システムが開示されている(請求項1参照)。 For example, Patent Document 1 discloses a multi-joint slave arm, a master arm having a joint structure similar to the slave arm, and the slave arm operated based on an operation performed on the master arm. A control unit for controlling the arm, and the control unit is configured to control each joint of the slave arm based on the rotation amount of each joint of the master arm so that the slave arm has a similar shape to the master arm. A first control mode for controlling the rotation operation, and a predetermined portion of the tip portion of the master arm so that the predetermined portion of the tip portion of the slave arm follows the movement of the predetermined portion of the tip portion of the master arm. Disclosed is a medical system that can be switched between a second control mode for controlling the rotational motion of each joint of the slave arm based on the amount of movement of the slave arm. That (see claim 1).
特開2015-24036号公報Japanese Patent Laying-Open No. 2015-24036
 このような遠隔操作が可能なマスタースレーブ型の操作システムにおいて、術者の意図する入力に対して内視鏡操作に反映させる度合いを重み付けすることで操作感の向上を図ることができる。しかしながら、複数軸を同時に駆動する操作システムにおいては、軸ごとの重み付けの大きさによって本来の意図する入力と異なる方向に動作することがある。 In such a master-slave type operation system capable of remote operation, it is possible to improve the operational feeling by weighting the degree to which the input intended by the operator is reflected in the endoscope operation. However, an operation system that drives a plurality of axes at the same time may operate in a direction different from the originally intended input depending on the weighting of each axis.
 そこで、本発明は、操作感の向上した操作システムを提供することを課題とする。 Therefore, an object of the present invention is to provide an operation system with improved operational feeling.
 このような課題を解決するために、本発明に係る操作システムは、アクチュエータと、2軸以上の複数の入力を検出し、複数の入力指令を出力する動作検出部と、前記複数の入力指令から複数の参照入力指令を生成する参照入力生成部と、前記複数の参照入力指令に基づいて前記アクチュエータを制御するアクチュエータ制御部と、を備え、前記参照入力生成部は、前記複数の入力指令の方向を保ったまま重み付けを行い、前記複数の参照入力指令を生成することを特徴とする。 In order to solve such a problem, an operation system according to the present invention includes an actuator, an operation detection unit that detects a plurality of inputs of two or more axes and outputs a plurality of input commands, and the plurality of input commands. A reference input generation unit that generates a plurality of reference input commands; and an actuator control unit that controls the actuator based on the plurality of reference input commands, wherein the reference input generation unit includes directions of the plurality of input commands. The plurality of reference input commands are generated by performing weighting while maintaining.
 本発明によれば、操作感の向上した操作システムを提供することができる。 According to the present invention, an operation system with improved operational feeling can be provided.
第1実施形態に係る操作システムの構成を示す概略図である。It is the schematic which shows the structure of the operation system which concerns on 1st Embodiment. 第1実施形態に係る操作システムの構成を示すブロック図である。It is a block diagram which shows the structure of the operation system which concerns on 1st Embodiment. 第1実施形態に係る操作システムの信号処理を示すブロック線図である。It is a block diagram which shows the signal processing of the operation system which concerns on 1st Embodiment. 入力ベクトルと重み付けをした参照入力ベクトルとの関係を示すグラフであり、(a)は参考例、(b)は第1実施形態を示す。It is a graph which shows the relationship between the input vector and the reference input vector which weighted, (a) is a reference example, (b) shows 1st Embodiment. 第2実施形態に係る操作システムの構成を示す概略図である。It is the schematic which shows the structure of the operation system which concerns on 2nd Embodiment. 第2実施形態に係る操作システムの構成を示すブロック図である。It is a block diagram which shows the structure of the operation system which concerns on 2nd Embodiment. 3自由度における入力ベクトルと重み付けをした参照入力ベクトルとの関係を示す図である。It is a figure which shows the relationship between the input vector in 3 degrees of freedom, and the reference input vector which weighted.
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
≪第1実施形態≫
<操作システムS>
 第1実施形態に係る操作システムSの構成について、図1および図2を用いて説明する。図1は、第1実施形態に係る操作システムSの構成を示す概略図である。図2は、第1実施形態に係る操作システムSの構成を示すブロック図である。なお、以下の説明において、第1実施形態に係る操作システムSは、術者OPの動作を検出して内視鏡(硬性鏡、腹腔鏡)の視野を操作するシステムであるものとして説明する。
<< First Embodiment >>
<Operation system S>
A configuration of the operation system S according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram illustrating a configuration of an operation system S according to the first embodiment. FIG. 2 is a block diagram illustrating a configuration of the operation system S according to the first embodiment. In the following description, the operation system S according to the first embodiment will be described as a system that detects the operation of the operator OP and operates the visual field of the endoscope (rigid endoscope, laparoscope).
 図1に示すように、第1実施形態に係る操作システムSは、術者OPの動作を検出する動作検出ユニット1と、内視鏡(軸状体)100を保持する保持アームユニット2と、動作検出ユニット1で検出した術者OPの動作に基づいて保持アームユニット2を制御する制御ユニット3と、を備えて構成されている。 As shown in FIG. 1, the operation system S according to the first embodiment includes an operation detection unit 1 that detects the operation of the operator OP, a holding arm unit 2 that holds an endoscope (shaft-like body) 100, And a control unit 3 that controls the holding arm unit 2 based on the operation of the operator OP detected by the operation detection unit 1.
 動作検出ユニット1は、術者OPの頭部に装着され、術者OPの頭部の動きを検出することができるようになっている。なお、動作検出ユニット1を術者OPの頭部に固定する方法は、例えば、手術帽にポケットを設けて、そのポケットに動作検出ユニット1を収納する方法等があるが、これに限定されるものではない。 The motion detection unit 1 is mounted on the head of the operator OP and can detect the movement of the head of the operator OP. The method for fixing the motion detection unit 1 to the head of the operator OP includes, for example, a method in which a pocket is provided in a surgical cap and the motion detection unit 1 is stored in the pocket. It is not a thing.
 図2に示すように、動作検出ユニット1は、例えばジャイロセンサで構成される動作検出部11を備えている。動作検出部11は、術者OPの左右方向の回転であるヨー(Yaw)軸まわりの入力速度ωG Yと、術者OPの上下方向の回転であるピッチ(Pitch)軸まわりの入力速度ωG Pと、を検出することができるようになっている。動作検出部11の検出信号は、制御ユニット3に送信されるようになっている。 As illustrated in FIG. 2, the motion detection unit 1 includes a motion detection unit 11 configured by, for example, a gyro sensor. The motion detection unit 11 includes an input speed ω G Y around the yaw (Yaw) axis that is the rotation of the operator OP in the left-right direction and an input speed ω around the pitch (Pitch) axis that is the rotation of the operator OP in the vertical direction. and it is capable of detecting and a G P. The detection signal of the motion detection unit 11 is transmitted to the control unit 3.
 図1に戻り、保持アームユニット2は、内視鏡100を保持し、ピボット(不動点)運動を実現するRCM(Remote Center Motion;遠隔運動中心)機構を備え、不動点PPを回転中心として、内視鏡100のヨー軸まわりの回転およびピッチ軸まわりの回転をすることができる2自由度の保持装置である。なお、内視鏡100のヨー軸は、不動点PPを通る垂直な軸である。また、内視鏡100のピッチ軸は、不動点PPを通り、内視鏡100のヨー軸および内視鏡100の中心軸と直交する軸である。 Returning to FIG. 1, the holding arm unit 2 includes an RCM (Remote Center Motion) mechanism that holds the endoscope 100 and realizes a pivot (fixed point) motion, with the fixed point PP as a rotation center, This is a two-degree-of-freedom holding device capable of rotating the endoscope 100 about the yaw axis and rotating about the pitch axis. The yaw axis of the endoscope 100 is a vertical axis that passes through the fixed point PP. The pitch axis of the endoscope 100 is an axis that passes through the fixed point PP and is orthogonal to the yaw axis of the endoscope 100 and the central axis of the endoscope 100.
 図2に示すように、保持アームユニット2は、保持アーム部21と、動力制御装置24と、を備えている。保持アーム部21は、アクチュエータ22と、状態量検出部23と、を備えている。 As shown in FIG. 2, the holding arm unit 2 includes a holding arm portion 21 and a power control device 24. The holding arm unit 21 includes an actuator 22 and a state quantity detection unit 23.
 アクチュエータ22は、保持した内視鏡100をヨー軸まわりに回転させるヨー軸アクチュエータと、保持した内視鏡100をピッチ軸まわりに回転させるピッチ軸アクチュエータと、を備えている。なお、アクチュエータとしては、例えば、空気圧アクチュエータを用いることができる。 The actuator 22 includes a yaw axis actuator that rotates the held endoscope 100 about the yaw axis, and a pitch axis actuator that rotates the held endoscope 100 about the pitch axis. In addition, as an actuator, a pneumatic actuator can be used, for example.
 状態量検出部23は、保持アーム部21の状態(アクチュエータ22の状態)を検出し、検出信号を制御ユニット3に送信するようになっている。具体的には、ヨー軸まわりの現在位置qres Y、ピッチ軸まわりの現在位置qres P、ヨー軸アクチュエータの駆動力fres Y、ピッチ軸アクチュエータの駆動力fres Pを検出する。なお、現在位置qres Y,qres Pの検出にはエンコーダを用いることができ、駆動力fres Y,fres Pの検出には圧力センサの値に受圧面積を乗じたものを用いることができる。 The state quantity detection unit 23 detects the state of the holding arm unit 21 (the state of the actuator 22) and transmits a detection signal to the control unit 3. Specifically, the current position q res Y around the yaw axis, the current position q res P around the pitch axis, the driving force f res Y of the yaw axis actuator, and the driving force f res P of the pitch axis actuator are detected. An encoder can be used to detect the current positions q res Y and q res P , and a value obtained by multiplying the pressure sensor value by the pressure receiving area can be used to detect the driving forces f res Y and f res P. it can.
 動力制御装置24は、制御ユニット3からの制御信号より、アクチュエータ22を動作させる。なお、アクチュエータ22として空気圧アクチュエータを用いた場合、動力制御装置24は、空気圧アクチュエータの空気圧の流れ方向を制御する方向制御器を用いることができ、制御ユニット3から制御信号として方向制御器のバルブへの印加電圧uY,uPが入力される。 The power control device 24 operates the actuator 22 based on a control signal from the control unit 3. When a pneumatic actuator is used as the actuator 22, the power control device 24 can use a direction controller that controls the air flow direction of the pneumatic actuator, and the control unit 3 sends a control signal to the direction controller valve. the applied voltage u Y, u P is input.
 制御ユニット3は、制御部31と、入出力部34と、を備えている。制御部31は、参照入力生成部32と、フィードバック制御部33と、を備えている。 The control unit 3 includes a control unit 31 and an input / output unit 34. The control unit 31 includes a reference input generation unit 32 and a feedback control unit 33.
 制御部31は、入出力部34を介して、動作検出ユニット1の動作検出部11からの検出信号(入力速度ωG Y,ωG P)および保持アームユニット2の状態量検出部23からの検出信号(現在位置qres Y,qres P、駆動力fres Y,fres P)が入力され、動力制御装置24への制御信号(印加電圧uY,uP)を出力する。 The control unit 31 receives the detection signals (input speeds ω G Y , ω G P ) from the motion detection unit 11 of the motion detection unit 1 and the state quantity detection unit 23 of the holding arm unit 2 via the input / output unit 34. Detection signals (current positions q res Y and q res P , driving forces f res Y and f res P ) are input, and control signals (applied voltages u Y and u P ) to the power control device 24 are output.
 制御ユニット3の制御部31について、図3を用いてさらに説明する。図3は、第1実施形態に係る操作システムSの信号処理を示すブロック線図である。 The control unit 31 of the control unit 3 will be further described with reference to FIG. FIG. 3 is a block diagram showing signal processing of the operation system S according to the first embodiment.
 参照入力生成部32は、動作検出ユニット1の動作検出部11からの検出信号(入力速度ωG Y,ωG P)に重み付けをして、保持アームユニット2に保持された内視鏡100のヨー軸まわりの回転速度の目標値である参照入力速度qdref Yおよび内視鏡100のピッチ軸まわりの回転速度である参照入力速度qdref Pを生成する。なお、参照入力生成部32における参照入力速度qdref Y,qdref Pの生成(重み付け)については、後述する。 The reference input generation unit 32 weights the detection signals (input velocities ω G Y , ω G P ) from the motion detection unit 11 of the motion detection unit 1 and the endoscope 100 of the endoscope 100 held by the holding arm unit 2. A reference input speed q dref Y that is a target value of the rotational speed around the yaw axis and a reference input speed q dref P that is a rotational speed around the pitch axis of the endoscope 100 are generated. The generation (weighting) of the reference input speeds q dref Y and q dref P in the reference input generation unit 32 will be described later.
 フィードバック制御部33は、参照入力生成部32からの参照入力速度qdref Y,qdref P、保持アームユニット2の状態量検出部23からの検出信号(現在位置qres Y,qres P、駆動力fres Y,fres P)に基づいて、動力制御装置24への制御信号(印加電圧uY,uP)を生成する。具体的には、フィードバック制御部33は、位置制御器331と、減算器332と、駆動力制御器333と、を備えている。 The feedback control unit 33 includes reference input velocities q dref Y and q dref P from the reference input generation unit 32, and detection signals (current positions q res Y and q res P , driving from the state quantity detection unit 23 of the holding arm unit 2. Based on the force f res Y , f res P ), a control signal (applied voltage u Y , u P ) to the power control device 24 is generated. Specifically, the feedback control unit 33 includes a position controller 331, a subtracter 332, and a driving force controller 333.
 位置制御器331は、参照入力生成部32の参照入力速度qdref Yを積分して目標位置qref Yを生成する。また、状態量検出部23の現在位置qres Yの今回値と前回値の差から内視鏡100のヨー軸まわりの回転速度qdres Yを生成する。そして、現在位置qres Yが目標位置qref Yに近づくように、回転速度qdres Yが参照入力速度qdref Yに近づくように駆動力参照値fref Yを生成する。ここで、位置偏差に係るゲインをKpとし、速度偏差に係るゲインをKdとすると、駆動力参照値fref Yは以下の式で表すことができる。
   fref Y=Kp(qdref Y-qdres Y)+Kd(qref Y-qres Y
 また、位置制御器331は、参照入力生成部32の参照入力速度qdref Pを積分して目標位置qref Pを生成する。また、状態量検出部23の現在位置qres Pの今回値と前回値の差から内視鏡100のピッチ軸まわりの回転速度qdres Pを生成する。そして、現在位置qres Pが目標位置qref Pに近づくように、回転速度qdres Pが参照入力速度qdref Pに近づくように駆動力参照値fref Pを生成する。ここで、位置偏差に係るゲインをKpとし、速度偏差に係るゲインをKdとすると、駆動力参照値fref Pは以下の式で表すことができる。
   fref P=Kp(qdref P-qdres P)+Kd(qref P-qres P
 なお、ゲインKp,Kdは、ヨー軸とピッチ軸で異なっていてもよく、同じでもよい。
The position controller 331 integrates the reference input speed q dref Y of the reference input generation unit 32 to generate the target position q ref Y. Further, the rotational speed q dres Y around the yaw axis of the endoscope 100 is generated from the difference between the current value and the previous value of the current position q res Y of the state quantity detection unit 23. Then, the driving force reference value f ref Y is generated so that the rotational speed q dres Y approaches the reference input speed q dref Y so that the current position q res Y approaches the target position q ref Y. Here, assuming that the gain related to the position deviation is K p and the gain related to the speed deviation is K d , the driving force reference value f ref Y can be expressed by the following equation.
f ref Y = K p (q dref Y −q dres Y ) + K d (q ref Y −q res Y )
Further, the position controller 331 generates the target position q ref P by integrating the reference input speed q dref P of the reference input generation unit 32. Further, the rotational speed q dres P around the pitch axis of the endoscope 100 is generated from the difference between the current value and the previous value of the current position q res P of the state quantity detector 23. Then, the driving force reference value f ref P is generated so that the rotational speed q dres P approaches the reference input speed q dref P so that the current position q res P approaches the target position q ref P. Here, assuming that the gain related to the position deviation is K p and the gain related to the speed deviation is K d , the driving force reference value f ref P can be expressed by the following equation.
f ref P = K p (q dref P −q dres P ) + K d (q ref P −q res P )
The gains K p and K d may be different on the yaw axis and the pitch axis, or may be the same.
 減算器332は、位置制御器331の駆動力参照値fref Yと、状態量検出部23の駆動力fres Yと、が入力され、駆動力参照値fref Yと駆動力fres Yとの差(fref Y-fres Y)を生成し、駆動力制御器333に出力する。また、減算器332は、位置制御器331の駆動力参照値fref Pと、状態量検出部23の駆動力fres Pと、が入力され、駆動力参照値fref Pと駆動力fres Pとの差(fref P-fres P)を生成し、駆動力制御器333に出力する。 The subtractor 332 receives the driving force reference value f ref Y of the position controller 331 and the driving force f res Y of the state quantity detection unit 23, and the driving force reference value f ref Y and the driving force f res Y are input. (F ref Y −f res Y ) is generated and output to the driving force controller 333. Further, the subtractor 332 receives the driving force reference value f ref P of the position controller 331 and the driving force f res P of the state quantity detection unit 23, and the driving force reference value f ref P and the driving force f res. A difference from P (f ref P −f res P ) is generated and output to the driving force controller 333.
 駆動力制御器333は、減算器332の駆動力参照値fref Yと駆動力fres Yとの差(fref Y-fres Y)から、動力制御装置24(方向制御器のバルブ)への制御信号(印加電圧uY)を生成する。また、駆動力制御器333は、減算器332の駆動力参照値fref Pと駆動力fres Pとの差(fref P-fres P)から、動力制御装置24(方向制御器のバルブ)への制御信号(印加電圧uP)を生成する。 The driving force controller 333 sends the difference between the driving force reference value f ref Y of the subtractor 332 and the driving force f res Y (f ref Y −f res Y ) to the power control device 24 (valve of the direction controller). Control signal (applied voltage u Y ) is generated. Further, the driving force controller 333 determines the power control device 24 (the valve of the direction controller) from the difference (f ref P −f res P ) between the driving force reference value f ref P of the subtractor 332 and the driving force f res P. ) Is generated (applied voltage u P ).
 このように、制御ユニット3は、動作検出ユニット1(動作検出部11)で検出した術者OPの動作(入力速度ωG Y,ωG P)に後述する重み付けをした参照入力速度qdref Y,qdref Pで保持アームユニット2に保持された内視鏡100をピボット運動させることができる(図1参照)。 As described above, the control unit 3 weights the operation (input speeds ω G Y , ω G P ) of the operator OP detected by the motion detection unit 1 (motion detection unit 11) with a reference input speed q dref Y that will be described later. , Q dref P can pivot the endoscope 100 held by the holding arm unit 2 (see FIG. 1).
<参照入力生成部32>
 次に、制御ユニット3の参照入力生成部32における参照入力速度qdref Y,qdref Pの生成について更に説明する。
<Reference input generation unit 32>
Next, generation of the reference input velocities q dref Y and q dref P in the reference input generation unit 32 of the control unit 3 will be further described.
 ここで、図1に示すような操作システムSにおいて、術者OPの頭部に動作検出ユニット1を装着した場合、上下方向(ピッチ軸回転方向)は左右方向(ヨー軸回転方向)と比較して動かしにくいことから、上下方向と左右方向に異なる重み付けをする、具体的には、上下方向に動作信号を増幅するような重み付けを行う。このような構成により、上下方向は左右方向よりも小さな動作で内視鏡100の視野の操作が可能となる。 Here, in the operation system S as shown in FIG. 1, when the motion detection unit 1 is mounted on the head of the operator OP, the vertical direction (pitch axis rotation direction) is compared with the left-right direction (yaw axis rotation direction). Therefore, weighting is performed differently in the vertical direction and in the horizontal direction. Specifically, the weighting is performed so as to amplify the operation signal in the vertical direction. With such a configuration, the visual field of the endoscope 100 can be manipulated with a smaller movement in the vertical direction than in the horizontal direction.
(参考例における重み付け処理)
 ここで、単純にヨー軸とピッチ軸に異なる重み付けをした場合の参考例を図4(a)に示す。図4(a)は、参考例における入力ベクトルと重み付けをした参照入力ベクトルとの関係を示すグラフである。図4(a)に示すように、ピッチ軸(図4(a)において縦軸)に重み付けβ(β>1)、ヨー軸(図4(a)において横軸)には重み付けをしない(α=1)とする。
(Weighting process in the reference example)
Here, FIG. 4A shows a reference example in which different weights are simply applied to the yaw axis and the pitch axis. FIG. 4A is a graph showing the relationship between the input vector in the reference example and the weighted reference input vector. As shown in FIG. 4A, the pitch axis (vertical axis in FIG. 4A) is weighted β (β> 1), and the yaw axis (horizontal axis in FIG. 4A) is not weighted (α = 1).
 このような構成により、術者OPの頭部を上下方向に振った場合、重み付けをする前と比較して大きく動くので、可動域の狭い頭部の上下方向の動きでも、容易に内視鏡100の視野をピッチ軸まわりに回転させることができる。また、術者OPの頭部を左右方向に振った場合、重み付けをしない場合と同様に内視鏡100の視野をヨー軸まわりに回転させることができる。 With such a configuration, when the head of the operator OP is shaken in the vertical direction, it moves greatly compared to before the weighting, so the endoscope can be easily operated even in the vertical movement of the head with a narrow range of motion. 100 fields of view can be rotated around the pitch axis. When the operator OP's head is shaken in the left-right direction, the field of view of the endoscope 100 can be rotated around the yaw axis in the same manner as when weighting is not performed.
 しかしながら、図4(a)に示すように、2軸の動作を同時に行った場合、本来の入力ベクトルr(ωG Y,ωG P)における方向は水平を基準とした角度で角度θとなるのに対して、重み付けされた結果のベクトルR(αωG Y,βωG P)における方向は角度θ1となり、方向が異なってしまう。 However, as shown in FIG. 4A, when two-axis operations are performed simultaneously, the direction in the original input vector r (ω G Y , ω G P ) is an angle θ with respect to the horizontal. On the other hand, the direction in the weighted vector R (αω G Y , βω G P ) is the angle θ1, and the directions are different.
 このため、術者OPの入力した向き(角度θ)と、実際に内視鏡100が移動する向き(角度θ1)とが異なり、術者OPに違和感を生じさせるおそれがある。 For this reason, the direction (angle θ) input by the operator OP is different from the direction (angle θ1) in which the endoscope 100 actually moves, which may cause the operator OP to feel uncomfortable.
(第1実施形態における係る重み付け処理)
 次に、第1実施形態に係る操作システムSの参照入力生成部32における重み付けをした場合の例を図4(b)に示す。図4(b)は、第1実施形態における入力ベクトルと重み付けをした参照入力ベクトルとの関係を示すグラフである。
(Weighting process according to the first embodiment)
Next, FIG. 4B illustrates an example in which weighting is performed in the reference input generation unit 32 of the operation system S according to the first embodiment. FIG. 4B is a graph showing the relationship between the input vector and the weighted reference input vector in the first embodiment.
 ここで、横軸がヨー、縦軸がピッチである。ここで、入力ベクトルrの大きさは、以下の式(1)で表すことができ、入力ベクトルrの方向を示す水平を基準とした角度θは、式(2)で表すことができる。 Here, the horizontal axis is yaw and the vertical axis is pitch. Here, the magnitude of the input vector r can be expressed by the following formula (1), and the angle θ with respect to the horizontal indicating the direction of the input vector r can be expressed by the formula (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式(2)におけるarctan2()関数は、以下の関係を有するものとする。 Note that the arctan2 () function in equation (2) has the following relationship.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、左右方向(ヨー軸回転方向)の重み付けをαmaxとし、上下方向(ピッチ軸回転方向)の重み付けをβmaxとし、r・αmaxを第1軸の半径とし、r・βmaxを第2軸の半径とする楕円弧Eを定義する。なお、上下方向に動作信号を増幅するような重み付けを行うため、βmaxは「βmax>1」であり、αmaxは「αmax=1」とする。ちなみに、符号Cで示す円弧は、半径をrとする円弧である。 Here, the weight in the left-right direction (yaw axis rotation direction) is α max , the weight in the vertical direction (pitch axis rotation direction) is β max , r · α max is the radius of the first axis, and r · β max is An elliptic arc E is defined as the radius of the second axis. Note that β max is “β max > 1” and α max is “α max = 1” in order to perform weighting that amplifies the operation signal in the vertical direction. Incidentally, the arc indicated by the symbol C is an arc whose radius is r.
 参照入力ベクトルR(qdref Y,qdref P)は、入力ベクトルrと向き(角度θ)が等しく、かつ、(qdref Y,qdref P)が楕円弧E上にあるようにする。楕円の式から、入力ベクトルRの大きさは、以下の式(3)で表すことができる。 The reference input vector R (q dref Y , q dref P ) has the same direction (angle θ) as the input vector r, and (q dref Y , q dref P ) is on the elliptical arc E. From the ellipse equation, the magnitude of the input vector R can be expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 参照入力速度qdref Y,qdref Pは、以下の式(4)、式(5)で表すことができる。 The reference input speeds q dref Y and q dref P can be expressed by the following equations (4) and (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 以上のように、第1実施形態に係る操作システムSの参照入力生成部32は、入力速度ωG Y,ωG Pから、式(1)から式(5)を用いて、参照入力速度qdref Y,qdref Pを生成することにより、図4(b)に示すように、参照入力速度qdref Y,qdref Pは、上下方向と左右方向に異なる重み付けを行いつつも、入力ベクトルrと参照入力ベクトルRの向き(角度θ)を等しくすることができる。これにより、術者OPの入力した向き(入力ベクトルrの角度θ)と、実際に内視鏡100が移動する向き(参照入力ベクトルRの角度θ)とが等しくなり、術者OPに違和感を生じさせることがなくなり、術者OPの操作感を向上させることができる。 As described above, the reference input generation unit 32 of the operation system S according to the first embodiment uses the reference input speed q from the input speeds ω G Y and ω G P using the expressions (1) to (5). By generating dref Y and q dref P , as shown in FIG. 4B, the reference input velocities q dref Y and q dref P are weighted differently in the vertical direction and the horizontal direction, while the input vector r And the direction (angle θ) of the reference input vector R can be made equal. As a result, the direction input by the operator OP (angle θ of the input vector r) and the direction in which the endoscope 100 actually moves (angle θ of the reference input vector R) become equal, making the operator OP feel uncomfortable. It is not generated, and the operational feeling of the operator OP can be improved.
 ここで、入力ベクトルrと参照入力ベクトルRの向き(角度θ)を等しくするとは、各軸成分の比が入力ベクトルrと参照入力ベクトルRとで等しいことを示す。即ち、「ωG Y:ωG P=qdref Y:qdref P」となる。 Here, making the direction (angle θ) of the input vector r and the reference input vector R equal indicates that the ratio of each axis component is equal between the input vector r and the reference input vector R. That is, “ω G Y : ω G P = q dref Y : q dref P ”.
 ちなみに、術者OPの頭部を左右方向(ヨー軸回転方向)にのみ振った場合、(即ち、ωG P=0、ωG Y≠0)の場合、参照入力速度qdref Yは、「qdref Y=αmax・ωG Y」となる。また、術者OPの頭部を上下方向(ピッチ軸回転方向)にのみ振った場合、(即ち、ωG Y=0、ωG P≠0)の場合、参照入力速度qdref Pは、「qdref P=βmax・ωG P」となる。 Incidentally, when the head of the operator OP is swung only in the left-right direction (the yaw axis rotation direction) (that is, when ω G P = 0, ω G Y ≠ 0), the reference input speed q dref Y is “ q dref Y = α max · ω G Y ”. When the head of the operator OP is swung only in the vertical direction (pitch axis rotation direction) (that is, when ω G Y = 0, ω G P ≠ 0), the reference input speed q dref P is “ q dref P = β max · ω G P ”.
≪第2実施形態≫
<操作システムSA>
 第2実施形態に係る操作システムSAの構成について、図5および図6を用いて説明する。図5は、第2実施形態に係る操作システムSAの構成を示す概略図である。図6は、第2実施形態に係る操作システムSAの構成を示すブロック図である。なお、以下の説明において、第2実施形態に係る操作システムSは、術者OPがマスターロボット1Aを操作することにより、その動作を検出してロボット鉗子(軸状体)150を操作するシステムであるものとして説明する。
<< Second Embodiment >>
<Operation system SA>
A configuration of the operation system SA according to the second embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic diagram illustrating a configuration of the operation system SA according to the second embodiment. FIG. 6 is a block diagram showing the configuration of the operation system SA according to the second embodiment. In the following description, the operation system S according to the second embodiment is a system that operates the robot forceps (shaft-shaped body) 150 by detecting the movement of the operator OP by operating the master robot 1A. It will be explained as being.
 図5に示すように、第2実施形態に係る操作システムSAは、術者OPの動作を検出するマスターロボット1Aと、ロボット鉗子150を保持するスレーブロボット2Aと、マスターロボット1Aで検出した術者OPの動作に基づいてスレーブロボット2Aを制御する制御ユニット3Aと、を備えて構成されている。 As shown in FIG. 5, the operation system SA according to the second embodiment includes a master robot 1A that detects the movement of the operator OP, a slave robot 2A that holds the robot forceps 150, and an operator that is detected by the master robot 1A. And a control unit 3A that controls the slave robot 2A based on the operation of the OP.
 図6に示すように、マスターロボット1Aは、動作検出部11と、アクチュエータ12と、を備えている。動作検出部11は、上下方向(X軸方向、軸状体を差し込む方向と直交する軸方向)の位置θM Xと、前後方向(Z軸方向、軸状体を差し込む方向)の位置θM Zと、を検出することができるようになっている。動作検出部11の検出信号は、制御ユニット3に送信されるようになっている。 As shown in FIG. 6, the master robot 1 </ b> A includes an operation detection unit 11 and an actuator 12. Operation detecting unit 11, the position theta M in the vertical direction (direction plugging Z-axis direction, the shaft-like body) and the position theta M X of (X-axis direction, the axial direction perpendicular to the direction of insertion of the shaft-like body), the front-rear direction Z can be detected. The detection signal of the motion detection unit 11 is transmitted to the control unit 3.
 図5に戻り、スレーブロボット2Aは、ロボット鉗子150を保持し、ロボット鉗子150の先端に設けられた把持部151を上下方向(X軸方向)および前後方向(Z軸方向、鉗子を差し込む方向)の移動をすることができる2自由度の保持装置である。なお、スレーブロボット2Aは、不動点PPを回転中心としてロボット鉗子150をピボット運動させる。 Returning to FIG. 5, the slave robot 2 </ b> A holds the robot forceps 150 and moves the grip 151 provided at the tip of the robot forceps 150 in the vertical direction (X-axis direction) and the front-back direction (Z-axis direction, the direction in which the forceps are inserted). This is a two-degree-of-freedom holding device that can be moved. Note that the slave robot 2A pivots the robot forceps 150 around the fixed point PP as a rotation center.
 図6に示すように、制御ユニット3Aは、参照入力生成部32およびフィードバック制御部33を有する制御部31と、入出力部34と、を備えている。参照入力生成部32は、入力位置θM X,θM Zに重み付けをして、参照入力位置qsref X,qsref Zを生成する。 As shown in FIG. 6, the control unit 3 </ b> A includes a control unit 31 having a reference input generation unit 32 and a feedback control unit 33, and an input / output unit 34. Reference input generator 32, input position theta M X, by weighting the theta M Z, the reference input position q sref X, generates a q sref Z.
 その他の構成は、「ヨー軸まわりの回転速度およびピッチ軸まわりの回転速度」の制御を、「X軸方向の位置およびZ軸方向の位置」の制御に変更する点を除けば、第1実施形態に係る操作システムSと同様であり、重複する説明を省略する。 The other configuration is the first implementation except that the control of “the rotational speed around the yaw axis and the rotational speed around the pitch axis” is changed to the control of “the position in the X-axis direction and the position in the Z-axis direction”. This is the same as the operation system S according to the embodiment, and a duplicate description is omitted.
 ロボット鉗子150は、先端に把持部151を有している。ロボット鉗子150は、把持部151を2方向(軸状体を差し込む方向と直交する軸方向、および、軸状体を差し込む方向と直交するもう一方の軸方向)に屈曲させる2自由度と、把持部151を開閉する1自由度と、をあわせた3自由度を有している。ここでは、詳細な説明を省略するが、マスターロボット1Aを操作することにより、ロボット鉗子150の把持部151の屈曲、開閉を制御することができる。なお、スレーブロボット2Aに保持されるロボット鉗子150の把持部151の開閉を制御するアクチュエータを動作させる動力制御装置により、マスターロボット1Aのアクチュエータ12が動作し、力覚フィードバックを行うようになっている。 The robot forceps 150 has a gripping portion 151 at the tip. The robot forceps 150 grips the grip 151 in two directions (an axial direction perpendicular to the direction in which the shaft-like body is inserted and another axial direction perpendicular to the direction in which the shaft-like body is inserted), and the gripping force. It has 3 degrees of freedom that combines 1 degree of freedom to open and close the portion 151. Although detailed description is omitted here, the bending and opening / closing of the gripping portion 151 of the robot forceps 150 can be controlled by operating the master robot 1A. In addition, the actuator 12 of the master robot 1A is operated by the power control device that operates the actuator that controls the opening / closing of the gripping portion 151 of the robot forceps 150 held by the slave robot 2A, and force feedback is performed. .
<参照入力生成部32>
 次に、制御ユニット3Aの参照入力生成部32における参照入力位置qsref X,qsref Zの生成について更に説明する。
<Reference input generation unit 32>
Next, generation of reference input positions q sref X and q sref Z in the reference input generation unit 32 of the control unit 3A will be further described.
 ここで、図5に示すような操作システムSにおいて、マスターロボット1Aで検出した術者OPの動作に対して、安全性を向上させるためロボット鉗子150の軸線上の動き(z軸方向)を他の軸の動きよりも遅くなるように重み付けを行う、換言すれば、上下方向(x軸方向)と前後方向(z軸方向)に異なる重み付けをする、具体的には、前後方向に動作信号を減衰するような重み付けを行う。即ち、式(1)から式(5)において、ωG Y,ωG P,qdref Y,qdref Pをそれぞれ、θM X,θM Z,qsref X,qsref Zと読み替え、上下方向の重み付けをαmaxとし、前後方向の重み付けをβmaxとし、βmaxは「βmax<1」であり、αmaxは「αmax=1」とする。 Here, in the operation system S as shown in FIG. 5, in order to improve the safety of the operation of the operator OP detected by the master robot 1A, the movement (z-axis direction) of the robot forceps 150 on the axis is changed. Is weighted so as to be slower than the movement of the axis, in other words, different weights are applied in the vertical direction (x-axis direction) and the front-rear direction (z-axis direction). A weighting that attenuates is performed. That is, in equations (1) to (5), ω G Y , ω G P , q dref Y , and q dref P are read as θ M X , θ M Z , q sref X , and q sref Z , respectively. The direction weighting is α max , the front-rear direction weighting is β max , β max is “β max <1”, and α max is “α max = 1”.
 以上のように、第2実施形態に係る操作システムSAは、上下方向と前後方向に異なる重み付けを行いつつも、入力ベクトルrと参照入力ベクトルRの向き(図4(b)の角度θ)を等しくすることができる。これにより、術者OPの入力した向き(入力ベクトルrの角度θ)と、実際にロボット鉗子150が移動する向き(参照入力ベクトルRの角度θ)とが等しくなり、術者OPに違和感を生じさせることがなくなり、術者OPの操作感を向上させることができる。 As described above, the operation system SA according to the second embodiment sets the directions of the input vector r and the reference input vector R (angle θ in FIG. 4B) while performing different weighting in the vertical direction and the front-back direction. Can be equal. As a result, the direction input by the operator OP (angle θ of the input vector r) and the direction in which the robot forceps 150 actually move (angle θ of the reference input vector R) become equal, causing the operator OP to feel uncomfortable. This makes it possible to improve the operational feeling of the operator OP.
≪変形例≫
 なお、本実施形態(第1~第2実施形態)に係る操作システムS,SAは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
≪Modification≫
The operation systems S and SA according to the present embodiment (first and second embodiments) are not limited to the configuration of the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. It is.
 本実施形態(第1~第2実施形態)に係る操作システムS,SAは、2自由度の場合について説明したが、これに限られるものではない。図7は、3自由度における入力ベクトルrと重み付けをした参照入力ベクトルRとの関係を示す図である。例えば、左右方向(軸状体を差し込む方向と直交する軸)、上下方向(軸状体を差し込む方向と直交するもう一方の軸)、前後方向(軸状体を差し込む方向の軸)について、左右方向の重み付け係数をαmaxとし、上下方向の重み付け係数をβmaxとし、前後方向の重み付け係数をγmaxとして、軸半径がαmax・r、βmax・r、γmax・rとなる楕円体を考える。 Although the operation systems S and SA according to the present embodiment (first and second embodiments) have been described with two degrees of freedom, the present invention is not limited to this. FIG. 7 is a diagram showing the relationship between the input vector r and the weighted reference input vector R in three degrees of freedom. For example, in the left-right direction (axis perpendicular to the direction in which the shaft-shaped body is inserted), the vertical direction (the other axis orthogonal to the direction in which the shaft-shaped body is inserted), and the front-rear direction (axis in which the shaft-shaped body is inserted) An ellipsoid having axial radii of α max · r, β max · r, and γ max · r, with the weighting factor in the direction being α max , the weighting factor in the vertical direction being β max, and the weighting factor in the front and rear direction being γ max think of.
 動作検出部11で検出した左右方向の入力信号、上下方向の入力信号、前後方向の入力信号をそれぞれ、ωG x、ωG y、ωG zとすると、入力ベクトルの大きさは式(6)となり、角度θおよび角度φは、式(7)および式(8)で表すことができる。 When the left and right direction input signals, the up and down direction input signals, and the front and back direction input signals detected by the motion detection unit 11 are respectively represented as ω G x , ω G y , and ω G z , the magnitude of the input vector is expressed by the equation (6 The angle θ and the angle φ can be expressed by Expression (7) and Expression (8).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 参照入力ベクトルRの大きさは、式(9)で表すことができる。 The size of the reference input vector R can be expressed by Equation (9).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 重み付けした参照入力信号qdref x,qdref y,qdref zは、以下の式(10)から式(12)で表すことができる。 The weighted reference input signals q dref x , q dref y , and q dref z can be expressed by the following equations (10) to (12).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、本実施形態(第1~第2実施形態)に係る操作システムS,SAは、3自由度の場合についても適用することができ、同様に、多自由度の操作システムについても適用することができる。なお、入力信号ωG x、ωG y、ωG zおよび参照入力信号qdref x,qdref y,qdref zは、第1実施形態のように速度を示すものであってもよく、第2実施形態のように位置を示すものであってもよい。 As described above, the operation systems S and SA according to the present embodiment (first and second embodiments) can be applied to a case of three degrees of freedom, and similarly, can be applied to a multi-degree of freedom operation system. can do. Note that the input signals ω G x , ω G y , ω G z and the reference input signals q dref x , q dref y , q dref z may indicate speed as in the first embodiment. The position may be indicated as in the second embodiment.
 また、第1実施形態は、内視鏡100の操作システムSであり、第2実施形態はロボット鉗子150の操作システムSAとして説明したが、これに限られるものではなく、マスタースレーブ型の操作システム全般に広く適用することができる。 Moreover, although 1st Embodiment demonstrated the operating system S of the endoscope 100 and 2nd Embodiment demonstrated as operating system SA of the robot forceps 150, it is not restricted to this, Master-slave type operating system Can be widely applied in general.
 保持アームユニット2のアクチュエータ22は、例えば、空気圧アクチュエータを用いるものとして説明したが、これに限定されるものではない。電動アクチュエータを用いてもよい。 Although the actuator 22 of the holding arm unit 2 has been described as using a pneumatic actuator, for example, it is not limited to this. An electric actuator may be used.
S     操作システム
1     動作検出ユニット
11    動作検出部
2     保持アームユニット
21    保持アーム部
22    アクチュエータ
23    状態量検出部
24    動力制御装置
3     制御ユニット
31    制御部
32    参照入力生成部
33    フィードバック制御部(アクチュエータ制御部)
331   位置制御器
332   減算器
333   駆動力制御器
34    入出力部
OP    術者
PP    不動点
100   内視鏡
150  ロボット鉗子
ω,θ   入力速度(入力指令)
dref,qsref 参照入力速度(参照入力指令)
S Operation System 1 Motion Detection Unit 11 Motion Detection Unit 2 Holding Arm Unit 21 Holding Arm Unit 22 Actuator 23 State Quantity Detection Unit 24 Power Control Device 3 Control Unit 31 Control Unit 32 Reference Input Generation Unit 33 Feedback Control Unit (Actuator Control Unit)
331 Position controller 332 Subtractor 333 Driving force controller 34 Input / output unit OP Operator PP Fixed point 100 Endoscope 150 Robot forceps ω G , θ M Input speed (input command)
q dref , q sref reference input speed (reference input command)

Claims (4)

  1.  アクチュエータと、
     2軸以上の複数の入力を検出し、複数の入力指令を出力する動作検出部と、
     前記複数の入力指令から複数の参照入力指令を生成する参照入力生成部と、
     前記複数の参照入力指令に基づいて前記アクチュエータを制御するアクチュエータ制御部と、を備え、
     前記参照入力生成部は、
     前記複数の入力指令の方向を保ったまま重み付けを行い、前記複数の参照入力指令を生成する
    ことを特徴とする操作システム。
    An actuator,
    An operation detector that detects a plurality of inputs of two or more axes and outputs a plurality of input commands;
    A reference input generation unit for generating a plurality of reference input commands from the plurality of input commands;
    An actuator controller that controls the actuator based on the plurality of reference input commands,
    The reference input generation unit
    An operation system that performs weighting while maintaining the directions of the plurality of input commands, and generates the plurality of reference input commands.
  2.  前記参照入力生成部は、
     前記複数の参照入力指令の各軸成分の比が、前記複数の入力指令の各軸成分の比と等しくなるように、前記複数の参照入力指令を生成する
    ことを特徴とする請求項1に記載の操作システム。
    The reference input generation unit
    2. The plurality of reference input commands are generated so that a ratio of each axis component of the plurality of reference input commands is equal to a ratio of each axis component of the plurality of input commands. Operation system.
  3.  前記複数の入力指令をω1、ω2とし、前記複数の参照入力指令をq1、q2とした場合、以下の式の関係を満たす
    ことを特徴とする請求項1に記載の操作システム。
    Figure JPOXMLDOC01-appb-M000001
    2. The operation system according to claim 1, wherein when the plurality of input commands are ω 1 and ω 2 and the plurality of reference input commands are q 1 and q 2 , the following relationship is satisfied.
    Figure JPOXMLDOC01-appb-M000001
  4.  前記複数の入力指令をω1、ω2、ω3とし、前記複数の参照入力指令をq1、q2、q3とした場合、以下の式の関係を満たす
    ことを特徴とする請求項1に記載の操作システム。
    Figure JPOXMLDOC01-appb-M000002
    The relation of the following expressions is satisfied when the plurality of input commands are ω 1 , ω 2 , ω 3 and the plurality of reference input commands are q 1 , q 2 , q 3. The operation system described in.
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2016/085750 2015-12-04 2016-12-01 Operation system WO2017094843A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237851 2015-12-04
JP2015237851A JP2017099819A (en) 2015-12-04 2015-12-04 Operation system

Publications (1)

Publication Number Publication Date
WO2017094843A1 true WO2017094843A1 (en) 2017-06-08

Family

ID=58796967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085750 WO2017094843A1 (en) 2015-12-04 2016-12-01 Operation system

Country Status (2)

Country Link
JP (1) JP2017099819A (en)
WO (1) WO2017094843A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161706A1 (en) * 2020-02-12 2021-08-19 リバーフィールド株式会社 Surgical robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890460A (en) * 1994-09-21 1996-04-09 Komatsu Ltd Master/slave manipulator and slave control thereof
JP2015024036A (en) * 2013-07-26 2015-02-05 オリンパス株式会社 Medical system and control method for the same
JP2015535693A (en) * 2012-08-15 2015-12-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Phantom freedom for manipulating machine body movement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890460A (en) * 1994-09-21 1996-04-09 Komatsu Ltd Master/slave manipulator and slave control thereof
JP2015535693A (en) * 2012-08-15 2015-12-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Phantom freedom for manipulating machine body movement
JP2015024036A (en) * 2013-07-26 2015-02-05 オリンパス株式会社 Medical system and control method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161706A1 (en) * 2020-02-12 2021-08-19 リバーフィールド株式会社 Surgical robot

Also Published As

Publication number Publication date
JP2017099819A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6520478B2 (en) Robot arm operation system
JP6113493B2 (en) Surgical robot and control method thereof
US7646161B2 (en) Method for controlling a robot arm, and robot for implementing the method
JP5154712B2 (en) ROBOT CONTROL DEVICE AND CONTROL METHOD, ROBOT, AND CONTROL PROGRAM
US11850014B2 (en) Control system, control method, and surgical arm system
JP5946859B2 (en) Robot control device and robot system for robots that move according to force
Lee et al. Modeling and control of robotic surgical platform for single-port access surgery
Zemiti et al. A force controlled laparoscopic surgical robot without distal force sensing
WO2017094844A1 (en) Operation system
Niccolini et al. Real-time control architecture of a novel Single-Port lapaRoscopy bimaNual roboT (SPRINT)
Li et al. A control scheme for physical human-robot interaction coupled with an environment of unknown stiffness
Marinho et al. Manipulator control based on the dual quaternion framework for intuitive teleoperation using kinect
Wisanuvej et al. Master manipulator designed for highly articulated robotic instruments in single access surgery
Castillo-Cruces et al. Virtual fixtures with autonomous error compensation for human–robot cooperative tasks
WO2017094843A1 (en) Operation system
WO2020161910A1 (en) Control device, control method, and recording medium
Marinho et al. Comparison of remote center-of-motion generation algorithms
JP2022539813A (en) Haptic Feedback of Robotic Manipulator End Effectors Across Different Orientation Ranges
Alassi et al. Development and kinematic analysis of a redundant, modular and backdrivable laparoscopic surgery robot
Yu et al. A new kinematics method based on a dynamic visual window for a surgical robot
JP2005329476A (en) Control method and device of operating member
KR102269985B1 (en) Controlling method and system for multi-joint robot
Su et al. Hierarchical task impedance control of a serial manipulator for minimally invasive surgery
JP2005131417A (en) Control method of medical manipulator
Li et al. Achieving force perception in master-slave manipulators using pneumatic artificial muscles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870780

Country of ref document: EP

Kind code of ref document: A1