WO2017094379A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017094379A1
WO2017094379A1 PCT/JP2016/080889 JP2016080889W WO2017094379A1 WO 2017094379 A1 WO2017094379 A1 WO 2017094379A1 JP 2016080889 W JP2016080889 W JP 2016080889W WO 2017094379 A1 WO2017094379 A1 WO 2017094379A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
cells
cell
voltage
power
Prior art date
Application number
PCT/JP2016/080889
Other languages
French (fr)
Japanese (ja)
Inventor
充弘 門田
泰明 乗松
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2017553696A priority Critical patent/JP6476318B2/en
Priority to CN201680063053.5A priority patent/CN108370221B/en
Publication of WO2017094379A1 publication Critical patent/WO2017094379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • a power conversion device in which a plurality of power converter cells (hereinafter abbreviated as “cells”) are connected in series or in parallel is used.
  • the output terminals of a plurality of inverters are connected in series, and the output voltage of each inverter is synthesized to output a high voltage (such as a multiple inverter method) Is called).
  • a high voltage can be output directly to the motor without using a large low-frequency step-up transformer.
  • PCS Power Conditioning System
  • Patent Document 1 since a spare power converter cell is provided, there is a problem that the apparatus becomes larger by that amount and the control becomes complicated.
  • the present invention in the power conversion device composed of a plurality of power converter cells, even if some of the power converter cells fail, the operation can be continued using the remaining power converter cells.
  • a highly reliable and small power converter capable of expanding the output voltage is realized.
  • a power conversion device including a plurality of power converter cells and a control unit that controls them, each of the power converter cells converts an input voltage from the outside.
  • a converter that generates a DC link voltage, an inverter that converts the DC link voltage into an AC voltage and outputs the output, and a bypass unit that short-circuits between output terminals of the inverter, and the control unit includes the power
  • the bypass portion of the power converter cell in which the failure is detected is operated to short-circuit between the output terminals, and at least one of the power converter cells that have not failed
  • the DC link voltage of the above power converter cell is increased.
  • 2 is a configuration of a power converter cell 101 in the first embodiment. It is an output voltage waveform during normal operation. It is an output voltage waveform when one cell fails.
  • 3 is a specific example of a control unit 200 according to the first embodiment. It is a flowchart of determination of DC link voltage Vdc based on the failure cell determination of a present Example. It is an output voltage waveform at the time of normal operation in Example 2. It is an output voltage waveform when one cell in Example 2 fails.
  • 6 is an example of a PWM modulation operation during normal operation in the second embodiment. It is an example of the PWM modulation
  • FIG. 1 shows a configuration of a power conversion apparatus 100 according to the present invention. A configuration common to all the embodiments will be described with reference to FIG.
  • the power conversion device 100 converts the power input from the external power supply 300 and outputs it to the external load 400.
  • the power conversion device 100 includes a plurality of power converter cells 101 to 104 and a control unit 200.
  • the output terminal of each cell is connected in series to form an output as the power conversion device 100.
  • FIG. 1 shows an example in which four cells are used, the number of cells is arbitrary.
  • the power supply 300 may be either a DC power supply or an AC power supply.
  • FIG. 1 shows a configuration in which each cell is connected in parallel to the power supply 300. However, similarly to the output side of the power conversion apparatus 100 (connection with the load 400), the input terminal of each cell may be connected to the power supply 300 in series.
  • Each of the power converter cells 101 to 104 converts converters 111 to 114 that convert external input voltages to generate DC link voltages (Vdc1 to Vdc4) and Vdc1 to Vdc4 to AC voltages (Vo1 to Vo4), respectively.
  • Inverters 121 to 124 that convert and output, and bypass units 131 to 134 for short-circuiting the output terminals of the inverters 121 to 124 are provided.
  • elements such as protective components (relays, fuses, etc.) and noise filters may be provided.
  • Vdc1 to Vdc4 may all have the same voltage value or different voltage values. Since the output terminals of the inverters are connected in series, the output voltage Vos of the power conversion device 100 is a sum of the output voltages of the inverters of the cells (Vo1 + Vo2 + Vo3 + Vo4).
  • Vdc and Vo may be referred to as general names of the DC link voltage and the inverter output voltage (for each cell), respectively.
  • converters 111 to 114 are each a DC-DC converter.
  • DC-DC converters include switching power supply type converters such as choppers, flyback converters, and resonant converters.
  • a linear (dropper) converter such as a series regulator may be used.
  • the converters 111 to 114 are each AC-DC converters.
  • the AC-DC converter there is a configuration in which the above-described DC-DC converter is connected to a subsequent stage of a rectifier circuit using a diode.
  • the converters 111 to 114 may have a plurality of configurations, but any specific configuration may be used as long as Vdc1 to Vdc4 can be generated and varied.
  • a plurality of configurations can be considered for the inverters 121 to 124, but any specific configuration may be used as long as Vdc1 to Vdc4 can be converted into Vo1 to Vo4, respectively.
  • One example is an H-bridge single-phase inverter.
  • Examples of the bypass units 131 to 134 include a relay, a semiconductor switching element, and a mechanical switch. Further, semiconductor switching elements included in the inverters 121 to 124 may be used.
  • the control unit 200 detects the physical quantity and state of each cell and outputs a control signal to each cell.
  • the control unit 200 performs the above detection and control signal output so that the operation can be continued using the remaining cells even when some of the cells fail.
  • FIG. 1 shows only signals between the control unit 200 and the cell 101 in order to prevent the drawing from becoming complicated.
  • the control unit 200 exchanges signals with the cells 102 to 104 in the same manner.
  • each signal expressed as one arrow in FIG. 1 may include a plurality of pieces of information.
  • a failure detection unit 201 As the internal configuration of the control unit 200, a failure detection unit 201, a DC link voltage (Vdc) control unit 202, an output voltage (Vos) control unit 203, and a bypass control unit 204 that are particularly important in the present invention are shown.
  • Vdc DC link voltage
  • Vos output voltage
  • the physical quantity detection signal input to the control unit 200 specifically indicates detection signals such as the voltage, current, and temperature of converters and inverters in each cell.
  • the failure detection unit 201 of the control unit 200 grasps phenomena such as “a voltage not being output as a target value”, “overcurrent has occurred”, “temperature is abnormally high” from these physical quantity detection signals. To do. That is, the failure detection unit 201 can compare a detected physical quantity with a physical quantity standard and specify a cell different from the standard. The failure detection unit 201 detects that a cell failure or abnormality has occurred from these phenomena, and outputs a failure detection signal that indicates the presence or absence of a failure or abnormality in each cell.
  • control part 200 can output the control signal which specifies the said cell, when maintaining, diagnosing, and checking arbitrary cells.
  • the control unit 200 can use the physical quantity detection signal (particularly voltage and current information) not only for failure detection but also for output feedback control.
  • the case where the failure detection unit 201 specifies a cell different from the reference will be referred to as a failure.
  • the bypass control unit 204 outputs a bypass control signal for turning on / off the bypass units 131 to 134 of each cell based on the failure detection signal and the control signal.
  • control is performed so that the bypass parts of all cells are off.
  • the bypass unit included in the cell is operated. For example, when a failure of the cell 101 is detected, control is performed so that the bypass unit 131 included in the cell 101 is turned on. As a result, the power conversion apparatus 100 can continue operation with the remaining cells 102 to 104.
  • the DC link voltage (Vdc) control unit 202 determines the Vdc target value of each cell based on the failure detection signal. Further, a converter control signal is output so that the converter outputs Vdc as the target value. For example, when the cell 101 fails, control is performed so that Vdc is increased in at least one of the cells 102 to 104 that are not failed. Thereby, the output voltage range after the failure can be expanded.
  • the output voltage (Vos) control unit 203 generates an inverter control signal for each cell so that Vos according to the target value can be obtained. Details will be described in the following examples.
  • control unit 200 may be mounted on a substrate on which the converter and inverter of each cell are mounted.
  • Example 1 the method in which the power conversion device 100 converts the voltage of the power supply 300 into an AC voltage and outputs the voltage to the load 400, and the operation is continued even when some of the cells fail, and the output voltage is expanded. The method will be specifically described.
  • FIG. 2 shows a configuration of the power converter cell 101 in the first embodiment, and shows a configuration using an H-bridge type single-phase inverter as a specific example of the inverter.
  • FIG. 2 only the power converter cell 101 is shown, and other cells are omitted.
  • the cells 102 to 104 are also provided with the same single-phase inverter.
  • the specific configuration of the converter 111 is arbitrary, and a plurality of configurations can be considered as already described.
  • the single-phase inverter 121 is an H-bridge circuit including four semiconductor switching elements (11 to 14).
  • the semiconductor switching element a MOSFET is shown, but other kinds of elements such as a bipolar transistor and an IGBT may be used.
  • the control unit 200 outputs a gate signal for driving the four MOSFETs (11 to 14) as an inverter control signal output to the inverter 121.
  • the inverter 121 outputs an output voltage (Vo1) detected by the voltage detector 15 and an output current detected by the current detector 16 as a physical quantity detection signal output to the control unit 200.
  • the physical quantity detection signal may include other physical quantities such as the inverter temperature.
  • the converter 111 also outputs a physical quantity detection signal to the control unit 200.
  • the value of the DC link voltage (Vdc 1 ) is V0.
  • the inverter 121 can output three values of + V0 (positive voltage), 0 (zero), and ⁇ V0 (negative voltage) as instantaneous values by ON / OFF control of the MOSFETs (11 to 14). For example, if MOSFETs 11 and 14 (12 and 13) are turned on and MOSFETs 12 and 13 (11 and 14) are turned off, Vo1 becomes + V0 ( ⁇ V0). If the MOSFETs 11 and 13 (12 and 14) are turned on and the MOSFETs 12 and 14 (11 and 13) are turned off, Vo1 becomes almost zero.
  • the power conversion device 100 In normal operation, when the DC link voltages (Vdc1 to Vdc4) of all the cells are V0, the power conversion device 100 is -4V0, -3V0, ..., 0, ..., + 3V0, + 4V0.
  • Nine different voltages can be output at every V0. For example, if the cells 101 and 102 output + V0 and the cells 103 and 104 output 0, Vos is + 2V0. If only the cell 104 outputs 0 and the remaining cells output -V0, Vos becomes -3V0. That is, the output voltage range of the power conversion device 100 is ⁇ 4V0 ⁇ Vos ⁇ + 4V0.
  • the bypass section is turned on in the failed cell, so the output voltage is forced to zero.
  • the Vdc of each cell is kept at V0, the output voltage range of the power conversion device 100 becomes ⁇ 3V0 ⁇ Vos ⁇ + 3V0, which is (3/4) times narrower than that during normal operation.
  • Vdc (N / N ′) ⁇ V0. That is, Vdc is controlled to be inversely proportional to the number of cells to be operated.
  • Vdc voltage applied to each cell component (such as a MOSFET) may exceed the rated value.
  • a method of increasing Vdc as described above is conceivable only when the number of failed cells is less than a predetermined threshold. That is, when the number of failed cells is greater than the above threshold, Vdc may be controlled to be constant regardless of the number of failed cells.
  • FIG. 3 (A) and 3 (B) are output voltage (Vos) waveforms of the power conversion apparatus 100 according to the first embodiment.
  • FIG. 3 (A) shows a waveform during normal operation
  • FIG. 3 (B) shows a waveform when one cell fails.
  • a sine wave indicated by a broken line is a fundamental wave component included in Vos.
  • FIG. 3A shows a case where Vdc during normal operation is V0
  • the power conversion device 100 cannot output the sine wave voltage itself due to the above principle, and outputs a staircase-like pseudo sine wave voltage as shown in FIGS. 3 (A) and 3 (B).
  • the Vos waveforms in FIGS. 3A and 3B show + V0 (or + V1) in the positive half cycle and ⁇ V0 (or ⁇ V1) in the negative half cycle depending on the phase of the AC voltage to be output. It is obtained by changing the number of cells to be output.
  • Vos has a stepped waveform of 8 steps when the positive and negative regions are combined, and the voltage value per step is V0.
  • Vos has a 6-step staircase waveform that is (3/4) times that of normal operation. However, since the voltage value per step is increased to V1 which is (4/3) times, the amplitude of Vos is maintained as compared with the normal operation of FIG.
  • FIG. 4 is a specific example of the control unit 200 in the first embodiment, and shows a configuration for realizing the control described above.
  • Each control signal is represented as an arrow, but these signals include a plurality of pieces of information.
  • the inverter control signal is information for 4 cells, that is, 16 MOSFETs.
  • specific contents of some signals are shown on the assumption that the cell 104 has failed.
  • the failure detection unit 401 of the control unit 200 detects a failure of the cell 104 from the physical quantity detection signal and outputs the detected failure signal to the bypass control unit 402, the Vdc control unit 403, and the output voltage (Vos) control unit 404.
  • the bypass control unit 402 outputs a bypass control signal to turn on the bypass unit 134 of the failed cell 104.
  • the Vdc control unit 403 of the control unit 200 includes a Vdc setting unit 405 and a converter control unit 406.
  • the Vdc setting unit 405 includes a table that associates the number of failures with Vdc, and generates a Vdc target value for each cell from the failure detection signal.
  • the Vdc of the non-failed cells 101 to 103 is changed from V0 to V1, and the operation of the failed cell 104 is stopped.
  • Converter control unit 406 outputs a converter control signal so that the converter of each cell outputs Vdc as the target value.
  • the Vos control unit 404 of the control unit 200 outputs an inverter control signal so that Vos has the waveform shown in FIG.
  • the Vos target value in FIG. 4 represents an instantaneous value or phase of an AC voltage to be output, and may be considered as a fundamental wave component indicated by a broken line in FIG. 3, for example.
  • the Vos target value is generated inside the control unit 200, and the generation method differs depending on application applications such as motor drive and PCS, and is thus arbitrary in the present invention.
  • the Vos control unit 403 changes the number of cells that output a positive voltage (+ V0 or + V1) or a negative voltage ( ⁇ V0 or ⁇ V1) based on the Vos target value.
  • parameters such as the number of cells that output a positive voltage or a negative voltage and the timing for changing the number of the parameters are the values of Vdc (that is, the number of cells to be operated). It depends on the number of units. Therefore, the failure detection signal and the Vdc target value are input to the Vos control unit 403, and the above parameters are adjusted according to the situation. Further, as shown in the following embodiments, a detected value of Vdc may be used instead of the Vdc target value.
  • FIG. 5 is a flowchart for determining the DC link voltage Vdc based on the failure cell determination of this embodiment.
  • the failure detection unit 401 compares the detected physical quantity of each power converter cell with a physical quantity reference to determine whether there is a cell different from the reference (step 501).
  • bypass control unit 204 If there is a power converter cell different from the reference (YES in step 501), the bypass control unit 204 outputs a bypass control signal so that the bypass unit of the corresponding cell is turned on (step 502).
  • step 501 if there is no cell different from the reference (No in step 501), the bypass unit of each cell is kept off and the determination in step 501 is performed again.
  • the DC link voltage (Vdc) control unit 202 determines the Vdc target value of each cell based on the failure detection signal obtained in the failure detection unit 401, and sets the converter so that the obtained Vdc is obtained. Control (step 503).
  • the output voltage (Vos) control unit 203 generates an inverter control signal for each cell so that Vos according to the target value is obtained (step 504).
  • Vdc during normal operation can be set to the minimum necessary value, that is, it is not necessary to provide a margin for Vdc in preparation for failure. As Vdc is lower, the loss generated in each cell, that is, heat generation, is reduced, and there is an effect of preventing cell failure itself. Further, since it is not necessary to provide a spare cell, it is possible to reduce the size and cost of the apparatus.
  • Example 2 a case where PWM modulation (pulse width modulation) is applied to control of an inverter will be described.
  • the configuration of the power conversion device 100 is the same as that of the first embodiment.
  • FIG. 6 (A) and 6 (B) are output voltage (Vos) waveforms of the power conversion apparatus 100 according to the second embodiment.
  • FIG. 6 (A) shows a waveform during normal operation
  • FIG. 6 (B) shows a waveform when one cell fails.
  • Vdc is set to V0 during normal operation
  • the inverter of each cell can output three kinds of voltages, + V0, 0, and ⁇ V0.
  • the inverter of each cell outputs + V0 and 0 alternately, or ⁇ V0 and 0 alternately. Therefore, as shown in FIG. 6A, a period in which Vos alternately repeats + 3V0 and + 2V0 and a period in which -3V0 and -4V0 are alternately repeated occur.
  • the power conversion apparatus 100 can output an arbitrary voltage satisfying ⁇ 4V0 ⁇ Vos ⁇ + 4V0 as an average value in the period Ts.
  • FIG. 6A the waveform in which the time axis is expanded is also shown for the period in which the power conversion apparatus 100 alternately outputs + 3V0 and + 4V0.
  • Vos can be gradually increased according to the target value by increasing the time ratio of outputting + 4V0 in accordance with the increase of the Vos target value (broken line).
  • the power conversion apparatus 100 has a range of ⁇ 3V1 ⁇ Vos ⁇ + 3V1, that is, ⁇ 4V0 ⁇ Vos ⁇ + 4V0.
  • an arbitrary voltage can be output as an average value in the cycle Ts. That is, (A) The operation can be continued in the same output voltage range as that in the normal operation.
  • V1> V0 holds, that is, if Vdc is increased, the effect of expanding the output voltage range after the failure can be obtained. Further, even if Vdc is increased in at least one cell among non-failed cells, the same effect can be obtained.
  • the output voltage (Vos) control unit of the control unit 200 shown in FIG. 4 uses the Ts as a control cycle, and outputs a Vos as the target value in each cycle, the PWM modulation cell, its time ratio, and the remaining Parameters such as the output state of each cell are determined, and an inverter control signal is output to each cell. Further, as described in the first embodiment, the failure detection signal and the Vdc set value are input to the Vos control unit.
  • the control unit 200 can change the above parameters according to the value of Vdc (that is, the failure occurrence state).
  • FIG. 7A and 7B are examples of the PWM modulation operation in the second embodiment. Specifically, in the case where the target value of Vos is + 2.4 ⁇ V0, the waveforms of the output voltages (Vo1 to Vo4) of each cell and the output voltage (Vos) of the power converter 100 in the cycle Ts are shown. FIG. 7A and FIG. 7B are waveforms during normal operation and when the cell 104 fails, respectively. How the Vos control unit determines the above parameters will be described with reference to FIG.
  • the target value of Vos is revised to + 1.8 ⁇ V1.
  • the cell 101 always outputs + V1
  • a state where + V0 (or + V1) is always output during the period Ts is considered as a time ratio 1
  • a state where 0 is always output during the period Ts is considered as a time ratio 0.
  • a specific method of PWM modulation that is, a specific calculation performed by the Vos control unit may be a method using a triangular wave carrier signal, and the details are omitted.
  • the cell 104 performs PWM modulation, but the number of cells that perform PWM modulation is not limited to one, and a method of performing PWM modulation with a plurality of cells may be used.
  • (A) during normal operation there is a method in which all four cells are PWM-modulated at a duty ratio of 0.6.
  • the power conversion apparatus 100 can output the output voltage as the target value.
  • low-order harmonic components such as the third order and the fifth order included in the Vos waveforms in FIGS.
  • 6A and 6B are smaller than those in FIG. Similarly, the harmonic component of the current output from the power converter 100 is reduced. As a result, it is possible to reduce the loss generated in the load 400 (especially the winding of the motor or the reactor), and to prevent the harmonic component from becoming a noise and adversely affecting other devices.
  • the third embodiment a specific configuration of the converter is shown on the assumption that the power source 300 is a DC power source and the power source 300 and the load 400 are electrically insulated. At this time, an isolated DC-DC converter is required as the converter.
  • FIG. 8 shows the configuration of the power converter 100 when a resonant converter is used as a specific example of the isolated DC-DC converter.
  • the inverter an H-bridge type single-phase inverter was used as in FIG. In FIG. 8, only the cell 101 is shown as a power converter cell, and other cells are omitted. The cells 102 to 104 are also provided with similar resonant converters.
  • the converter 111 is a resonant converter, and an H-bridge type single-phase inverter provided with four MOSFETs (21 to 24), a resonant circuit provided with a coil 25, a capacitor 26, and a transformer 27, A rectifier circuit including four diodes (28 to 31) and a capacitor 32 are provided.
  • the gate signals for driving the MOSFETs 21 to 24 are shown as inverter control signals output from the control unit 200 to the converter 111.
  • the Vdc detected by the voltage detector 33 and the converter output current detected by the current detector 34 are shown, but include other physical quantities such as the converter temperature. You may go out.
  • the single-phase inverter composed of the MOSFETs 21 to 24 outputs + Vin when the MOSFETs 21 and 24 are turned on and the MOSFETs 22 and 23 are turned off.
  • ⁇ Vin is output.
  • the amplitude of the AC voltage generated on the secondary side of the transformer 27 depends on the circuit constant of the resonance circuit and is different from the amplitude of the AC voltage output from the single-phase inverter.
  • the AC voltage generated on the secondary side of the transformer 27 is rectified by the rectifier circuit and smoothed by the capacitor 26 to generate Vdc.
  • the impedance of the resonance circuit varies depending on the frequency of the input AC voltage, that is, the switching frequency of the MOSFETs 21 to 24. Even if Vin is constant, if the switching frequency of the MOSFETs 21 to 24 is changed, it is possible to variably control the amplitude of the alternating voltage generated in the transformer 127, and thus Vdc.
  • the circuit constant of the resonance circuit and the condition of the switching frequency are set so that the lower the switching frequency, that is, the longer the switching period, the higher Vdc.
  • the power conversion device 100 that outputs a high voltage to the load while insulating the power source and the load.
  • the power conversion apparatus 100 that requires such specifications, there is the PCS described above.
  • the voltage output from one inverter is boosted by a transformer, but this transformer is large because it operates at the frequency of the power system.
  • the transformer 27 can be miniaturized by increasing the switching frequency of the MOSFETs 21 to 24.
  • the effect of the present invention can be achieved with a small-sized and low-cost power conversion device 100 as compared with the conventional method of providing a spare cell. can get.
  • FIG. 9 is a specific example of the control unit 200 in the third embodiment, and shows a configuration for realizing the control described above.
  • the physical quantity detection signal input to the control unit 200 is divided into a Vdc detection signal and other detection signals.
  • FIG. 7 four arrows are shown for each MOSFET as the converter control signal, but in FIG. 9, they are combined into one arrow. The description of the configuration common to FIG. 4 is omitted.
  • the converter control unit 901 of the control unit 200 performs Vdc feedback control using the Vdc target value and the Vdc detection signal, and outputs a converter control signal so that the converter of each cell outputs Vdc as the target value.
  • the control calculation unit 902 executes control calculation such as PI control (proportional integration control) and sets the switching cycle so that Vdc matches the target value.
  • the control signal generation unit 903 generates a converter control signal according to the switching period set by the control calculation unit 902. Thereby, even if Vin changes, Vdc can be controlled to the target value. Note that Vdc detection and feedback control are performed independently for each cell.
  • Vdc detection signal is input to the output voltage control unit instead of the Vdc target value.
  • Vdc target value is increased when a cell failure occurs
  • Vdc gradually increases with a certain time constant. That is, a transient period occurs until Vdc actually increases and converges to the target value.
  • the output voltage control unit grasps the change in Vdc during the transient period based on the input Vdc detection signal and reflects it in the PWM modulation time ratio. That is, under the same Vos target value, the PWM modulation duty ratio is changed according to the value of Vdc.
  • the output voltage of the power conversion device 100 can be changed even during the transition period. Operation can be continued without causing
  • the power converter 1000 that outputs three-phase alternating current is configured by using three sets of the power converter 1000 described above.
  • FIG. 10 shows a configuration of the power conversion apparatus 1000 according to the fourth embodiment.
  • the power conversion apparatus 1000 includes a plurality of power converter cells including the cells 105 to 110 and the control unit 200. Only signals between the control unit 200 and the cell 110 are shown to prevent the drawing from becoming complicated. In practice, the control unit 200 exchanges signals with all cells.
  • each output terminal is connected to a three-phase load 401.
  • a three-phase motor can be considered. Further, if it is connected to a three-phase power system through a filter, it can be used as a three-phase output PCS.
  • the cells are divided into three sets for U phase, V phase, and W phase, and the output terminals of the cells constituting each phase are connected in series.
  • cells 105 and 106 are for the U phase
  • cells 107 and 108 are for the V phase
  • cells 109 and 110 are for the W phase.
  • one end of the output terminals of the cells 106, 108, and 110 is connected to form a neutral point in the Y connection of the three-phase circuit.
  • the control unit 200 increases Vdc for the remaining U-phase cells.
  • the effect of the present invention can be obtained also in the power conversion apparatus 1000 that outputs three-phase alternating current, and can be applied to a three-phase motor drive inverter and a three-phase power system PCS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power conversion device is provided with a plurality of power converter cells and a control unit for controlling the power converter cells, wherein the power converter cells are each provided with: a converter for converting an input voltage from the outside to generate a DC link voltage; an inverter for converting the DC link voltage to an AC voltage and outputting the AC voltage; and a bypass unit for short-circuiting the output terminals of the inverter. When detecting a failure in a part of the power converter cells, the control unit operates the bypass unit of a power converter cell in which the failure has been detected to short-circuit the output terminals and increases the DC link voltages of at least one or more power converter cells among the power converter cells in which no failure occurs.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関するものである。 The present invention relates to a power conversion device.
 高電圧または大容量の電力変換においては、複数の電力変換器セル(以下、「セル」と略す)を直列または並列に接続した電力変換装置が用いられる。例えば、高電圧モータの駆動には、複数のインバータ(電力変換器の一種)の出力端子を直列に接続し、各インバータの出力電圧を合成して高電圧を出力する方式(多重インバータ方式などと呼ばれる)が利用されている。この方式では、大型の低周波昇圧トランスを利用することなく、モータに直接高電圧を出力できる。 In high-voltage or large-capacity power conversion, a power conversion device in which a plurality of power converter cells (hereinafter abbreviated as “cells”) are connected in series or in parallel is used. For example, for driving a high voltage motor, the output terminals of a plurality of inverters (a type of power converter) are connected in series, and the output voltage of each inverter is synthesized to output a high voltage (such as a multiple inverter method) Is called). In this system, a high voltage can be output directly to the motor without using a large low-frequency step-up transformer.
 また、太陽光発電や風力発電といった自然エネルギー発電の導入が世界的に拡大している。自然エネルギーから得られる電力を変換して電力系統に出力するための電力変換装置として、PCS(パワーコンディショニングシステム)がある。このPCSにおいても、高電圧化や大容量化に対応する際には、上記のように複数のセルを用いる構成が有効と考えられる。 Also, the introduction of natural energy power generation such as solar power generation and wind power generation is expanding worldwide. There is a PCS (Power Conditioning System) as a power conversion device for converting electric power obtained from natural energy and outputting it to an electric power system. In this PCS as well, a configuration using a plurality of cells as described above is considered effective when dealing with higher voltages and larger capacities.
 このように複数のセルを備えた電力変換装置では、信頼性の確保が重要である。信頼性に関する機能の例として、一部のセルが故障した場合でも、残りの電力変換器セルを用いて運転を継続できることが望ましい。各セルの出力を直列に接続する構成であれば、各セルの出力端子間を短絡できるようにバイパス部を設け、一部のセルが故障した場合、同セルの出力端子間を短絡することによって、残りのセルを用いた運転が可能となる。しかし、セルの直列段数が減少することから、電力変換装置が出力できる最大電圧も減少する。これによって、モータであれば運転範囲(回転速度やトルクの範囲)が狭くなり、PCSであれば動作が成り立たなくなる場合もある。 In such a power conversion device having a plurality of cells, it is important to ensure reliability. As an example of a function related to reliability, it is desirable that operation can be continued using the remaining power converter cells even when some cells fail. If the output of each cell is connected in series, a bypass unit is provided so that the output terminals of each cell can be short-circuited, and if some cells fail, the output terminals of the same cell can be short-circuited. The operation using the remaining cells becomes possible. However, since the number of series stages of cells is reduced, the maximum voltage that can be output by the power converter is also reduced. As a result, the operating range (rotational speed and torque range) is narrow for a motor, and the operation may not be achieved for a PCS.
 この問題を解決する電力変換装置として、特許文献1に記載された直接高圧インバータ装置がある。この直接高圧インバータ装置では、複数台の単相インバータの出力をそれぞれ直列接続して三相高圧出力を得る。また、各相に予備単相インバータを設け、通常運転時は予備単相インバータの出力端を短絡状態にして運転し、少なくとも1つの相で1台の単相インバータが故障発生した時は、当該相の予備インバータの運転で装置運転を再開する。 There is a direct high-voltage inverter device described in Patent Document 1 as a power converter that solves this problem. In this direct high-voltage inverter device, the outputs of a plurality of single-phase inverters are respectively connected in series to obtain a three-phase high-voltage output. Also, each phase is provided with a spare single-phase inverter. During normal operation, the output terminal of the spare single-phase inverter is operated in a short-circuit state. When one single-phase inverter fails in at least one phase, Operation of the equipment is resumed by the operation of the phase backup inverter.
特開2009-033943号公報JP 2009-033943 A
 特許文献1では、予備の電力変換器セルを設けるので、その分だけ装置が大型化し、また、制御が複雑化するという課題がある。 In Patent Document 1, since a spare power converter cell is provided, there is a problem that the apparatus becomes larger by that amount and the control becomes complicated.
 そこで本発明では、複数の電力変換器セルから構成される電力変換装置において、一部の電力変換器セルに故障等が生じた場合でも残りの電力変換器セルを用いて運転を継続でき、さらに出力電圧を拡大可能な高信頼かつ小型の電力変換装置を実現する。 Therefore, in the present invention, in the power conversion device composed of a plurality of power converter cells, even if some of the power converter cells fail, the operation can be continued using the remaining power converter cells. A highly reliable and small power converter capable of expanding the output voltage is realized.
  上記課題を解決するために、例えば、複数の電力変換器セルとこれらを制御する制御部とを備えた電力変換装置であって、前記電力変換器セルの各々は、外部からの入力電圧を変換して直流リンク電圧を生成するコンバータと、前記直流リンク電圧を交流電圧に変換して出力するインバータと、前記インバータの出力端子間を短絡するためのバイパス部を備え、前記制御部は、前記電力変換器セルのうち一部の故障を検出した場合、前記故障を検出した電力変換器セルのバイパス部を動作させて出力端子間を短絡させ、故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を増大させることを特徴とする。 In order to solve the above-described problem, for example, a power conversion device including a plurality of power converter cells and a control unit that controls them, each of the power converter cells converts an input voltage from the outside. A converter that generates a DC link voltage, an inverter that converts the DC link voltage into an AC voltage and outputs the output, and a bypass unit that short-circuits between output terminals of the inverter, and the control unit includes the power When some failure is detected among the converter cells, the bypass portion of the power converter cell in which the failure is detected is operated to short-circuit between the output terminals, and at least one of the power converter cells that have not failed The DC link voltage of the above power converter cell is increased.
 複数の電力変換器セルから構成される電力変換装置において、一部の電力変換器セルに故障等が生じた場合でも残りの電力変換器セルを用いて運転を継続でき、さらに故障後の出力電圧を拡大可能な高信頼かつ小型の電力変換装置を実現する。 In a power conversion device composed of a plurality of power converter cells, even if some of the power converter cells fail, operation can be continued using the remaining power converter cells, and the output voltage after the failure A highly reliable and compact power converter that can expand
本発明における電力変換装置100の構成である。It is the structure of the power converter device 100 in this invention. 実施例1における電力変換器セル101の構成である。2 is a configuration of a power converter cell 101 in the first embodiment. 通常運転時における出力電圧波形である。It is an output voltage waveform during normal operation. セルが1台故障した場合の出力電圧波形である。It is an output voltage waveform when one cell fails. 実施例1における制御部200の具体例である。3 is a specific example of a control unit 200 according to the first embodiment. 本実施例の故障セル判定に基づく直流リンク電圧Vdcの決定のフローチャートである。It is a flowchart of determination of DC link voltage Vdc based on the failure cell determination of a present Example. 実施例2における通常運転時における出力電圧波形である。It is an output voltage waveform at the time of normal operation in Example 2. 実施例2におけるセルが1台故障した場合の出力電圧波形である。It is an output voltage waveform when one cell in Example 2 fails. 実施例2における通常運転時におけるPWM変調動作の一例である。6 is an example of a PWM modulation operation during normal operation in the second embodiment. 実施例2におけるセルが1台故障した場合のPWM変調動作の一例である。It is an example of the PWM modulation | alteration operation | movement when one cell in Example 2 fails. 実施例3における絶縁型DC-DCコンバータの具体例として共振型コンバータを用いる場合の、電力変換装置100の構成である。This is a configuration of the power converter 100 when a resonant converter is used as a specific example of the isolated DC-DC converter in the third embodiment. 実施例3における制御部200の具体例である。It is a specific example of the control part 200 in Example 3. FIG. 実施例4における電力変換装置1000の構成である。It is a structure of the power converter device 1000 in Example 4. FIG.
 以下、本発明の実施例について、図面を用いながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明における電力変換装置100の構成である。図1を用いて、全ての実施例に共通の構成を説明する。 FIG. 1 shows a configuration of a power conversion apparatus 100 according to the present invention. A configuration common to all the embodiments will be described with reference to FIG.
 電力変換装置100は、外部の電源300から入力される電力を変換し、外部の負荷400に出力する。また、電力変換装置100は、複数の電力変換器セル101~104と制御部200を備える。各セルの出力端子がそれぞれ直列に接続されることによって、電力変換装置100としての出力を成す。なお、図1では、セルを4台利用する例を示したが、台数については任意である。 The power conversion device 100 converts the power input from the external power supply 300 and outputs it to the external load 400. The power conversion device 100 includes a plurality of power converter cells 101 to 104 and a control unit 200. The output terminal of each cell is connected in series to form an output as the power conversion device 100. Although FIG. 1 shows an example in which four cells are used, the number of cells is arbitrary.
 電源300は、直流電源または交流電源のいずれでもよい。図1では、電源300に対して各セルが並列に接続される構成を示した。ただし、電力変換装置100の出力側(負荷400との接続)と同様に、電源300に対して各セルの入力端子が直列に接続される構成であってもよい。 The power supply 300 may be either a DC power supply or an AC power supply. FIG. 1 shows a configuration in which each cell is connected in parallel to the power supply 300. However, similarly to the output side of the power conversion apparatus 100 (connection with the load 400), the input terminal of each cell may be connected to the power supply 300 in series.
 電力変換器セル101~104の各々は、外部からの入力電圧を変換して直流リンク電圧(Vdc1~Vdc4)を生成するコンバータ111~114と、Vdc1~Vdc4をそれぞれ交流電圧(Vo1~Vo4)に変換して出力するインバータ121~124と、インバータ121~124の出力端子間をそれぞれ短絡するためのバイパス部131~134を備える。なお、これらの他に、保護用部品(リレー、ヒューズなど)やノイズフィルタなどの要素を備えていてもよい。 Each of the power converter cells 101 to 104 converts converters 111 to 114 that convert external input voltages to generate DC link voltages (Vdc1 to Vdc4) and Vdc1 to Vdc4 to AC voltages (Vo1 to Vo4), respectively. Inverters 121 to 124 that convert and output, and bypass units 131 to 134 for short-circuiting the output terminals of the inverters 121 to 124 are provided. In addition to these, elements such as protective components (relays, fuses, etc.) and noise filters may be provided.
 Vdc1~Vdc4は、全て同じ電圧値であっても、それぞれ異なる電圧値であってもよい。各インバータの出力端子は直列に接続されているため、電力変換装置100の出力電圧Vosは、各セルのインバータの出力電圧を合計した値(Vo1+Vo2+Vo3+Vo4)となる。なお、図面及び下記では、直流リンク電圧及び(各セルの)インバータ出力電圧の一般呼称として、それぞれVdc及びVoと記す場合がある。 Vdc1 to Vdc4 may all have the same voltage value or different voltage values. Since the output terminals of the inverters are connected in series, the output voltage Vos of the power conversion device 100 is a sum of the output voltages of the inverters of the cells (Vo1 + Vo2 + Vo3 + Vo4). In the drawings and the following description, Vdc and Vo may be referred to as general names of the DC link voltage and the inverter output voltage (for each cell), respectively.
 電力変換器セルの内部構成について補足する。電源300が直流電源であれば、コンバータ111~114はそれぞれDC-DCコンバータになる。DC-DCコンバータの例として、チョッパやフライバックコンバータ、共振型コンバータといったスイッチング電源方式のコンバータがある。また、シリーズレギュレータなどのリニア方式(ドロッパ方式)のコンバータを用いてもよい。図1のように電源300に対して各セルを並列に接続する場合,上記の中でもフライバックコンバータや共振型コンバータのように入出力間をトランスで絶縁可能なコンバータを用いる。 Supplementary explanation of the internal configuration of the power converter cell. If power supply 300 is a DC power supply, converters 111 to 114 are each a DC-DC converter. Examples of DC-DC converters include switching power supply type converters such as choppers, flyback converters, and resonant converters. Further, a linear (dropper) converter such as a series regulator may be used. When connecting each cell in parallel to the power supply 300 as shown in FIG. 1, among them, a converter that can insulate the input and output with a transformer, such as a flyback converter or a resonant converter, is used.
 電源300が交流電源であれば、コンバータ111~114はそれぞれAC-DCコンバータになる。AC-DCコンバータの例として、ダイオードを用いた整流回路の後段に上記のDC-DCコンバータを接続する構成などがある。このように、コンバータ111~114には複数の構成が考えられるが、Vdc1~Vdc4を生成し、これらを可変できれば具体的構成については問わない。 If the power source 300 is an AC power source, the converters 111 to 114 are each AC-DC converters. As an example of the AC-DC converter, there is a configuration in which the above-described DC-DC converter is connected to a subsequent stage of a rectifier circuit using a diode. As described above, the converters 111 to 114 may have a plurality of configurations, but any specific configuration may be used as long as Vdc1 to Vdc4 can be generated and varied.
 インバータ121~124についても複数の構成が考えられるが、Vdc1~Vdc4をVo1~Vo4にそれぞれ変換できるのであれば具体的構成については問わない。一例として、Hブリッジ方式の単相インバータがある。バイパス部131~134の例として、リレー、半導体スイッチング素子、機械スイッチなどがある。また、インバータ121~124が備える半導体スイッチング素子を用いてもよい。 A plurality of configurations can be considered for the inverters 121 to 124, but any specific configuration may be used as long as Vdc1 to Vdc4 can be converted into Vo1 to Vo4, respectively. One example is an H-bridge single-phase inverter. Examples of the bypass units 131 to 134 include a relay, a semiconductor switching element, and a mechanical switch. Further, semiconductor switching elements included in the inverters 121 to 124 may be used.
 次に、制御部200について説明する。制御部200は、各セルの物理量や状態を検出するとともに、各セルに対して制御信号を出力する。制御部200は、一部のセルが故障した場合でも、残りのセルを用いて運転を継続できるように、上記の検出及び制御信号の出力を行う。 Next, the control unit 200 will be described. The control unit 200 detects the physical quantity and state of each cell and outputs a control signal to each cell. The control unit 200 performs the above detection and control signal output so that the operation can be continued using the remaining cells even when some of the cells fail.
 図1では、図面の煩雑化を防ぐため、制御部200とセル101間の信号のみを示した。実際には、制御部200はセル102~104とも同様に信号をやり取りする。また、図1において1本の矢印として表現した各信号は、複数の情報を含んでいてもよい。制御部200の内部構成として、本発明において特に重要となる故障検出部201、直流リンク電圧(Vdc)制御部202、出力電圧(Vos)制御部203、バイパス制御部204を示した。 FIG. 1 shows only signals between the control unit 200 and the cell 101 in order to prevent the drawing from becoming complicated. Actually, the control unit 200 exchanges signals with the cells 102 to 104 in the same manner. Moreover, each signal expressed as one arrow in FIG. 1 may include a plurality of pieces of information. As the internal configuration of the control unit 200, a failure detection unit 201, a DC link voltage (Vdc) control unit 202, an output voltage (Vos) control unit 203, and a bypass control unit 204 that are particularly important in the present invention are shown.
 制御部200に入力される物理量検出信号とは、具体的には各セルにおけるコンバータやインバータの電圧、電流、温度などの検出信号を示す。制御部200の故障検出部201は、これらの物理量検出信号から、「目標値通りの電圧が出力されていない」、「過電流が発生した」、「温度が異常に高い」などの現象を把握する。すなわち、故障検出部201は、検出される物理量を物理量の基準と比較し、基準と異なるセルを特定することができる。故障検出部201は、これらの現象からセルの故障や異常が生じていることを検出し、各セルの故障、異常の有無を表す故障検出信号を出力する。なお、制御部200は、任意のセルを保守、診断、点検する場合に当該セルを特定する制御信号を出力することができる。また、図1では省略したが、制御部200は、物理量検出信号(特に電圧、電流の情報)を故障検出だけでなく、出力のフィードバック制御にも利用できる。以下では、故障検出部201で基準と異なるセルを特定した場合を故障と称することとして、説明をする。 The physical quantity detection signal input to the control unit 200 specifically indicates detection signals such as the voltage, current, and temperature of converters and inverters in each cell. The failure detection unit 201 of the control unit 200 grasps phenomena such as “a voltage not being output as a target value”, “overcurrent has occurred”, “temperature is abnormally high” from these physical quantity detection signals. To do. That is, the failure detection unit 201 can compare a detected physical quantity with a physical quantity standard and specify a cell different from the standard. The failure detection unit 201 detects that a cell failure or abnormality has occurred from these phenomena, and outputs a failure detection signal that indicates the presence or absence of a failure or abnormality in each cell. In addition, the control part 200 can output the control signal which specifies the said cell, when maintaining, diagnosing, and checking arbitrary cells. Although not shown in FIG. 1, the control unit 200 can use the physical quantity detection signal (particularly voltage and current information) not only for failure detection but also for output feedback control. Hereinafter, the case where the failure detection unit 201 specifies a cell different from the reference will be referred to as a failure.
 バイパス制御部204は、故障検出信号や制御信号をもとに各セルのバイパス部131~134をオン・オフするためのバイパス制御信号を出力する。通常運転時(全セルが故障なく運転する時)は、全セルのバイパス部がオフであるように制御する。セルの故障を検出した場合や保守、診断、点検する場合には、同セルが備えるバイパス部を動作させる。例えば、セル101の故障を検出した場合には、セル101が備えるバイパス部131をオンにするように制御する。これによって、電力変換装置100は残りのセル102~104によって運転を継続できる。 The bypass control unit 204 outputs a bypass control signal for turning on / off the bypass units 131 to 134 of each cell based on the failure detection signal and the control signal. During normal operation (when all cells operate without failure), control is performed so that the bypass parts of all cells are off. When a cell failure is detected, or when maintenance, diagnosis, or inspection is performed, the bypass unit included in the cell is operated. For example, when a failure of the cell 101 is detected, control is performed so that the bypass unit 131 included in the cell 101 is turned on. As a result, the power conversion apparatus 100 can continue operation with the remaining cells 102 to 104.
 直流リンク電圧(Vdc)制御部202は、故障検出信号をもとに各セルのVdc目標値を定める。また、コンバータが目標値通りのVdcを出力するようにコンバータ制御信号を出力する。例えば、セル101が故障した場合には、故障していないセル102~104のうち少なくとも1台以上のセルにおいてVdcを増大させるように制御する。これによって、故障後の出力電圧範囲を拡大可能である。 The DC link voltage (Vdc) control unit 202 determines the Vdc target value of each cell based on the failure detection signal. Further, a converter control signal is output so that the converter outputs Vdc as the target value. For example, when the cell 101 fails, control is performed so that Vdc is increased in at least one of the cells 102 to 104 that are not failed. Thereby, the output voltage range after the failure can be expanded.
 出力電圧(Vos)制御部203は、目標値通りのVosが得られるように、各セルのインバータ制御信号を生成する。詳細については、以下の実施例で説明する。 The output voltage (Vos) control unit 203 generates an inverter control signal for each cell so that Vos according to the target value can be obtained. Details will be described in the following examples.
 なお、制御部200の全ての要素が、1枚の基板上に実装される必要はない。各セルのコンバータやインバータが実装される基板上に、制御部200の要素が実装されてもよい。 Note that not all elements of the control unit 200 need be mounted on a single board. The elements of the control unit 200 may be mounted on a substrate on which the converter and inverter of each cell are mounted.
 実施例1として、電力変換装置100が電源300の電圧を交流電圧に変換して負荷400に出力する方法、及び、一部のセルが故障した場合でも運転を継続し、その出力電圧を拡大する方法について具体的に説明する。 As Example 1, the method in which the power conversion device 100 converts the voltage of the power supply 300 into an AC voltage and outputs the voltage to the load 400, and the operation is continued even when some of the cells fail, and the output voltage is expanded. The method will be specifically described.
 図2は、実施例1における電力変換器セル101の構成であり、インバータの具体例としてHブリッジ方式の単相インバータを用いる構成を示す。図2では、電力変換器セル101のみを示し、他セルについては省略した。セル102~104についても、同様の単相インバータを備える。コンバータ111の具体的構成については任意であり、既に説明したように複数の構成が考えられる。 FIG. 2 shows a configuration of the power converter cell 101 in the first embodiment, and shows a configuration using an H-bridge type single-phase inverter as a specific example of the inverter. In FIG. 2, only the power converter cell 101 is shown, and other cells are omitted. The cells 102 to 104 are also provided with the same single-phase inverter. The specific configuration of the converter 111 is arbitrary, and a plurality of configurations can be considered as already described.
 図2のように、単相インバータ121は、4個の半導体スイッチング素子(11~14)備えたHブリッジ回路である。半導体スイッチング素子の例として、MOSFETを示したが、バイポーラトランジスタやIGBTなど他種の素子であってもよい。 As shown in FIG. 2, the single-phase inverter 121 is an H-bridge circuit including four semiconductor switching elements (11 to 14). As an example of the semiconductor switching element, a MOSFET is shown, but other kinds of elements such as a bipolar transistor and an IGBT may be used.
 制御部200は、インバータ121に出力されるインバータ制御信号として、4個のMOSFET(11~14)を駆動するためのゲート信号を出力する。また、インバータ121からは、制御部200に出力される物理量検出信号として、電圧検出器15によって検出される出力電圧(Vo1)および電流検出器16によって検出される出力電流が出力される。なお、物理量検出信号として、インバータの温度など他の物理量を含んでいてもよい。また、コンバータ111も制御部200に物理量検出信号を出力する。 The control unit 200 outputs a gate signal for driving the four MOSFETs (11 to 14) as an inverter control signal output to the inverter 121. The inverter 121 outputs an output voltage (Vo1) detected by the voltage detector 15 and an output current detected by the current detector 16 as a physical quantity detection signal output to the control unit 200. The physical quantity detection signal may include other physical quantities such as the inverter temperature. The converter 111 also outputs a physical quantity detection signal to the control unit 200.
 ここで、直流リンク電圧(Vdc)の値をV0とする。インバータ121は、MOSFET(11~14)のオン・オフ制御によって、瞬時値としては+V0(正電圧)、0(ゼロ)、-V0(負電圧)の3通りを出力できる。例えば、MOSFET11と14(12と13)をオンに、MOSFET12と13(11と14)をオフにすれば、Vo1は+V0(-V0)となる。MOSFET11と13(12と14)をオンに、MOSFET12と14(11と13)をオフにすれば、Vo1はほぼ0となる。 Here, the value of the DC link voltage (Vdc 1 ) is V0. The inverter 121 can output three values of + V0 (positive voltage), 0 (zero), and −V0 (negative voltage) as instantaneous values by ON / OFF control of the MOSFETs (11 to 14). For example, if MOSFETs 11 and 14 (12 and 13) are turned on and MOSFETs 12 and 13 (11 and 14) are turned off, Vo1 becomes + V0 (−V0). If the MOSFETs 11 and 13 (12 and 14) are turned on and the MOSFETs 12 and 14 (11 and 13) are turned off, Vo1 becomes almost zero.
 通常運転時において、全セルの直流リンク電圧(Vdc1~Vdc4)の値がV0である場合、電力変換装置100は、-4V0、-3V0、・・・、0、・・・、+3V0、+4V0とV0置きに9通りの電圧を出力できる。例えば、セル101と102が+V0を出力し、セル103と104が0を出力すれば、Vosは+2V0となる。また、セル104のみが0を出力し、残りのセルが-V0を出力すれば、Vosは-3V0となる。すなわち、電力変換装置100の出力電圧範囲は、-4V0≦Vos≦+4V0である。 In normal operation, when the DC link voltages (Vdc1 to Vdc4) of all the cells are V0, the power conversion device 100 is -4V0, -3V0, ..., 0, ..., + 3V0, + 4V0. Nine different voltages can be output at every V0. For example, if the cells 101 and 102 output + V0 and the cells 103 and 104 output 0, Vos is + 2V0. If only the cell 104 outputs 0 and the remaining cells output -V0, Vos becomes -3V0. That is, the output voltage range of the power conversion device 100 is −4V0 ≦ Vos ≦ + 4V0.
 1台のセルが故障した場合、故障したセルではバイパス部がオンとなるため、その出力電圧は強制的に0となる。このとき、各セルのVdcをV0のままとすれば、電力変換装置100の出力電圧範囲は-3V0≦Vos≦+3V0となり、通常運転時と比べて(3/4)倍に狭くなる。 When one cell fails, the bypass section is turned on in the failed cell, so the output voltage is forced to zero. At this time, if the Vdc of each cell is kept at V0, the output voltage range of the power conversion device 100 becomes −3V0 ≦ Vos ≦ + 3V0, which is (3/4) times narrower than that during normal operation.
 ここで、故障していないセルのVdcを全てV1に変更すると、電力変換装置100の出力電圧範囲は-3V1≦Vos≦+3V1となる。このとき、V1=(4/3)×V0の関係式が成り立つようにすれば、出力電圧範囲は-4V0≦Vos≦+4V0のまま維持される。ただし、V1>V0が成り立つ、すなわち、Vdcを増大させれば、故障後の出力電圧範囲を拡大する効果は得られる。また、故障していないセルのうち少なくとも1台以上のセルにおいてVdcを増大させても、同様の効果が得られる。 Here, if all the Vdc of the cells that have not failed are changed to V1, the output voltage range of the power converter 100 becomes −3V1 ≦ Vos ≦ + 3V1. At this time, if the relational expression of V1 = (4/3) × V0 is established, the output voltage range is maintained at −4V0 ≦ Vos ≦ + 4V0. However, if V1> V0 holds, that is, if Vdc is increased, the effect of expanding the output voltage range after the failure can be obtained. Further, even if Vdc is increased in at least one cell among non-failed cells, the same effect can be obtained.
 ここで、セルの総台数がNである場合を想定して、上記の関係式V1=(4/3)×V0を一般化する。動作させるセル(故障、異常でないセル)の台数をN’、このときのVdcをV’とすると、関係式はV’=(N/N’)×V0となる。すなわち、動作させるセルの台数と反比例するようにVdcを制御する。 Here, assuming that the total number of cells is N, the above relational expression V1 = (4/3) × V0 is generalized. When the number of cells to be operated (cells that are not faulty or abnormal) is N ′ and Vdc at this time is V ′, the relational expression is V ′ = (N / N ′) × V0. That is, Vdc is controlled to be inversely proportional to the number of cells to be operated.
 故障台数が多くなり、その分だけVdcが高くなると、各セルの部品(MOSFETなど)に印加される電圧が定格値を超える恐れがある。この問題を解決する方法として、故障したセルの台数が所定の閾値より少ない場合に限り、上記のようにVdcを増大させる方法が考えられる。すなわち、故障したセルの台数が上記閾値より多い場合、Vdcを故障したセルの台数に依らず一定に制御すればよい。 If the number of failures increases and Vdc increases accordingly, the voltage applied to each cell component (such as a MOSFET) may exceed the rated value. As a method for solving this problem, a method of increasing Vdc as described above is conceivable only when the number of failed cells is less than a predetermined threshold. That is, when the number of failed cells is greater than the above threshold, Vdc may be controlled to be constant regardless of the number of failed cells.
 図3(A)および図3(B)は、実施例1における電力変換装置100の出力電圧(Vos)波形である。図3(A)は通常運転時、図3(B)はセルが1台故障した場合の波形である。破線で示した正弦波は、Vosに含まれる基本波成分である。図3(A)では、通常運転時のVdcをV0とし、図3(B)では、故障発生時のVdcをV1=(4/3)×V0とする場合を示している。 3 (A) and 3 (B) are output voltage (Vos) waveforms of the power conversion apparatus 100 according to the first embodiment. FIG. 3 (A) shows a waveform during normal operation, and FIG. 3 (B) shows a waveform when one cell fails. A sine wave indicated by a broken line is a fundamental wave component included in Vos. FIG. 3A shows a case where Vdc during normal operation is V0, and FIG. 3B shows a case where Vdc when failure occurs is V1 = (4/3) × V0.
 電力変換装置100は、上記の原理上、正弦波電圧そのものを出力することはできず、図3(A)および(B)のような階段状の疑似正弦波電圧を出力する。図3(A)および(B)のVos波形は、出力すべき交流電圧の位相に応じて、正の半周期では+V0(または+V1)を、負の半周期では-V0(または-V1)を出力させるセルの台数を変えることによって得られる。図3(A)の通常運転時では、Vosは正負の領域を合わせると8ステップの階段状波形となり、1ステップあたりの電圧値はV0である。図3(B)の故障発生時では、Vosは通常運転時の(3/4)倍である6ステップの階段状波形となる。しかし、1ステップあたりの電圧値が(4/3)倍であるV1に増大されるため、図3(A)の通常運転時と比べてVosの振幅は維持される。 The power conversion device 100 cannot output the sine wave voltage itself due to the above principle, and outputs a staircase-like pseudo sine wave voltage as shown in FIGS. 3 (A) and 3 (B). The Vos waveforms in FIGS. 3A and 3B show + V0 (or + V1) in the positive half cycle and −V0 (or −V1) in the negative half cycle depending on the phase of the AC voltage to be output. It is obtained by changing the number of cells to be output. In the normal operation of FIG. 3A, Vos has a stepped waveform of 8 steps when the positive and negative regions are combined, and the voltage value per step is V0. When a failure occurs in FIG. 3B, Vos has a 6-step staircase waveform that is (3/4) times that of normal operation. However, since the voltage value per step is increased to V1 which is (4/3) times, the amplitude of Vos is maintained as compared with the normal operation of FIG.
 図4は、実施例1における制御部200の具体例であり、以上で説明した制御を実現するための構成を示している。制御信号をそれぞれ1本の矢印として表したが、これらの信号は複数の情報を含む。例えば、図2ではインバータ制御信号としてMOSFET毎に4本の矢印を示したが、図4では1本の矢印として纏めた。さらに正確に言えば、インバータ制御信号は4セル分、すなわちMOSFET16個分の情報となる。図4では、セル104が故障した場合を想定して、一部の信号について具体的内容を記した。 FIG. 4 is a specific example of the control unit 200 in the first embodiment, and shows a configuration for realizing the control described above. Each control signal is represented as an arrow, but these signals include a plurality of pieces of information. For example, in FIG. 2, four arrows are shown for each MOSFET as the inverter control signal, but in FIG. 4, they are summarized as one arrow. More precisely, the inverter control signal is information for 4 cells, that is, 16 MOSFETs. In FIG. 4, specific contents of some signals are shown on the assumption that the cell 104 has failed.
 制御部200の故障検出部401は、物理量検出信号からセル104の故障を検出し、故障検出信号としてバイパス制御部402、Vdc制御部403、出力電圧(Vos)制御部404に出力する。バイパス制御部402は、既に説明したように、故障したセル104のバイパス部134をオンにするようにバイパス制御信号を出力する。 The failure detection unit 401 of the control unit 200 detects a failure of the cell 104 from the physical quantity detection signal and outputs the detected failure signal to the bypass control unit 402, the Vdc control unit 403, and the output voltage (Vos) control unit 404. As already described, the bypass control unit 402 outputs a bypass control signal to turn on the bypass unit 134 of the failed cell 104.
 制御部200のVdc制御部403は、Vdc設定部405とコンバータ制御部406を備える。Vdc設定部405は、図4に示したように故障台数とVdcを関係付けるテーブルを備えており、故障検出信号から各セルのVdc目標値を生成する。故障していないセル101~103のVdcをV0からV1に変更し、故障したセル104については動作を停止させる。コンバータ制御部406は、各セルのコンバータが目標値通りのVdcを出力するように、コンバータ制御信号を出力する。 The Vdc control unit 403 of the control unit 200 includes a Vdc setting unit 405 and a converter control unit 406. As shown in FIG. 4, the Vdc setting unit 405 includes a table that associates the number of failures with Vdc, and generates a Vdc target value for each cell from the failure detection signal. The Vdc of the non-failed cells 101 to 103 is changed from V0 to V1, and the operation of the failed cell 104 is stopped. Converter control unit 406 outputs a converter control signal so that the converter of each cell outputs Vdc as the target value.
 制御部200のVos制御部404は、Vosが図3に示した波形となるようにインバータ制御信号を出力する。図4のVos目標値は、出力すべき交流電圧の瞬時値や位相を表し、例えば図3に破線で示した基本波成分と考えてよい。Vos目標値は、制御部200の内部で生成されるものであり、その生成方法は、モータ駆動やPCSといった適用アプリケーションによって異なるため、本発明では任意とする。 The Vos control unit 404 of the control unit 200 outputs an inverter control signal so that Vos has the waveform shown in FIG. The Vos target value in FIG. 4 represents an instantaneous value or phase of an AC voltage to be output, and may be considered as a fundamental wave component indicated by a broken line in FIG. 3, for example. The Vos target value is generated inside the control unit 200, and the generation method differs depending on application applications such as motor drive and PCS, and is thus arbitrary in the present invention.
 Vos制御部403は、Vos目標値に基づいて、正電圧(+V0や+V1)または負電圧(-V0や-V1)を出力させるセルの台数を変化させる。図3から分かるように、Vos目標値が同じ条件であっても、正電圧または負電圧を出力させるセルの台数や、この台数を変化させるタイミングといったパラメータは、Vdcの値(すなわち動作させるセルの台数)によって異なる。そこで、Vos制御部403に故障検出信号とVdc目標値を入力し、状況に応じて上記パラメータの調節を行う。また、以降の実施例で示すように、Vdc目標値の代わりにVdcの検出値を用いてもよい。 The Vos control unit 403 changes the number of cells that output a positive voltage (+ V0 or + V1) or a negative voltage (−V0 or −V1) based on the Vos target value. As can be seen from FIG. 3, even if the Vos target value is the same, parameters such as the number of cells that output a positive voltage or a negative voltage and the timing for changing the number of the parameters are the values of Vdc (that is, the number of cells to be operated). It depends on the number of units. Therefore, the failure detection signal and the Vdc target value are input to the Vos control unit 403, and the above parameters are adjusted according to the situation. Further, as shown in the following embodiments, a detected value of Vdc may be used instead of the Vdc target value.
 図5は、本実施例の故障セル判定に基づく直流リンク電圧Vdcの決定のフローチャートである。 FIG. 5 is a flowchart for determining the DC link voltage Vdc based on the failure cell determination of this embodiment.
 まず、故障検出部401において、各電力変換器セルの検出される物理量を物理量の基準と比較し、基準と異なるセルがあるかを判定する(ステップ501)。 First, the failure detection unit 401 compares the detected physical quantity of each power converter cell with a physical quantity reference to determine whether there is a cell different from the reference (step 501).
 基準と異なる電力変換器セルがある場合には(ステップ501のYES)、バイパス制御部204において、該当セルのバイパス部がオンとなるようにのバイパス制御信号を出力する(ステップ502)。 If there is a power converter cell different from the reference (YES in step 501), the bypass control unit 204 outputs a bypass control signal so that the bypass unit of the corresponding cell is turned on (step 502).
 一方、基準と異なるセルがない場合には(ステップ501のNo)、各セルのバイパス部をオフに維持して、再度ステップ501の判断を行う。 On the other hand, if there is no cell different from the reference (No in step 501), the bypass unit of each cell is kept off and the determination in step 501 is performed again.
 ステップ502の次に、直流リンク電圧(Vdc)制御部202は、故障検出部401において得られた故障検出信号をもとに各セルのVdc目標値を定め、求めたVdcとなるようにコンバータを制御する(ステップ503)。 Following step 502, the DC link voltage (Vdc) control unit 202 determines the Vdc target value of each cell based on the failure detection signal obtained in the failure detection unit 401, and sets the converter so that the obtained Vdc is obtained. Control (step 503).
 出力電圧(Vos)制御部203は、目標値通りのVosが得られるように、各セルのインバータ制御信号を生成する(ステップ504)。 The output voltage (Vos) control unit 203 generates an inverter control signal for each cell so that Vos according to the target value is obtained (step 504).
 以上によって、一部のセルが故障した場合でも残りセルを用いて運転を継続でき、さらに故障後の出力電圧を拡大可能な高信頼かつ小型の電力変換装置100が実現される。また、通常運転時におけるVdcを必要最小限の値に設定できる、すなわち、故障に備えてVdcに余裕を持たせる必要がない。Vdcが低いほど、各セルで発生する損失すなわち発熱が減少し、セルの故障自体を防止する効果がある。また、予備のセルを設ける必要がないので、装置の小型化および低コスト化を実現することが出来る。 As described above, even when a part of the cells fails, the operation can be continued using the remaining cells, and the highly reliable and small-sized power conversion device 100 that can expand the output voltage after the failure is realized. Further, Vdc during normal operation can be set to the minimum necessary value, that is, it is not necessary to provide a margin for Vdc in preparation for failure. As Vdc is lower, the loss generated in each cell, that is, heat generation, is reduced, and there is an effect of preventing cell failure itself. Further, since it is not necessary to provide a spare cell, it is possible to reduce the size and cost of the apparatus.
 実施例2として、インバータの制御にPWM変調(パルス幅変調)を適用する場合について説明する。電力変換装置100の構成は、実施例1と同様である。 As Example 2, a case where PWM modulation (pulse width modulation) is applied to control of an inverter will be described. The configuration of the power conversion device 100 is the same as that of the first embodiment.
 図6(A)および図6(B)は、実施例2における電力変換装置100の出力電圧(Vos)波形である。図6(A)は通常運転時、図6(B)はセルが1台故障した場合の波形である。実施例1と同様に、図6(A)は通常運転時におけるVdcをV0とし、図6(B)は故障発生時ではVdcをV1=(4/3)×V0まで増大させる。 6 (A) and 6 (B) are output voltage (Vos) waveforms of the power conversion apparatus 100 according to the second embodiment. FIG. 6 (A) shows a waveform during normal operation, and FIG. 6 (B) shows a waveform when one cell fails. 6A, Vdc is set to V0 during normal operation, and FIG. 6B increases Vdc to V1 = (4/3) × V0 when a failure occurs.
 図6(A)の通常運転時、すなわち、Vdc=V0である場合を例にPWM変調について説明する。実施例1で説明したように、各セルのインバータは+V0、0、-V0の3通りの電圧を出力できる。PWM変調を用いる場合、各セルのインバータは+V0と0を交互に、または、-V0と0を交互に出力する。そのため、図6(A)のように、Vosが+3V0と+2V0を交互に繰り返す期間や、-3V0と-4V0を交互に繰り返す期間が発生する。 The PWM modulation will be described taking the case of normal operation in FIG. 6A, that is, a case where Vdc = V0 as an example. As described in the first embodiment, the inverter of each cell can output three kinds of voltages, + V0, 0, and −V0. When using PWM modulation, the inverter of each cell outputs + V0 and 0 alternately, or −V0 and 0 alternately. Therefore, as shown in FIG. 6A, a period in which Vos alternately repeats + 3V0 and + 2V0 and a period in which -3V0 and -4V0 are alternately repeated occur.
 インバータが+V0と0を交互に出力する場合について説明する。Vosの周期と比べて十分に短い(スイッチング)周期Tsにおいて、インバータが+V0を出力する時比率(デューティ)をd(0≦d≦1)とおく。インバータが0を出力する時比率は1-dである。このとき、周期Tsにおける出力電圧(Vo)の平均値はd×V0となる。時比率dを0≦d≦1の範囲内で制御することで、インバータは周期Tsにおける平均値として0≦Vo≦+V0を満たす任意の電圧を出力できる。インバータが-V0と0を交互に出力する場合を含めて考えると、周期Tsにおける平均値として-V0≦Vo≦+V0を満たす任意の電圧を出力できる。 The case where the inverter outputs + V0 and 0 alternately will be described. In a sufficiently short (switching) period Ts compared to the period of Vos, a time ratio (duty) at which the inverter outputs + V0 is set to d (0 ≦ d ≦ 1). The ratio when the inverter outputs 0 is 1-d. At this time, the average value of the output voltage (Vo) in the period Ts is d × V0. By controlling the time ratio d within the range of 0 ≦ d ≦ 1, the inverter can output any voltage satisfying 0 ≦ Vo ≦ + V0 as an average value in the period Ts. Considering the case where the inverter alternately outputs -V0 and 0, an arbitrary voltage satisfying -V0 ≦ Vo ≦ + V0 can be output as an average value in the period Ts.
 以上の説明を4セル分に拡張すると、電力変換装置100は、周期Tsにおける平均値として-4V0≦Vos≦+4V0を満たす任意の電圧を出力できる。図6(A)では、電力変換装置100が+3V0と+4V0を交互に出力する期間について、時間軸を拡大した波形を合わせて示した。この期間における各セルの動作の例として、3台のセルが周期Tsの間常に(d=1で)+V0を出力し、1台のセルがPWM変調によって+V0と0を交互に出力する動作が考えられる。本拡大図に示すように、Vos目標値(破線)の増大に合わせて+4V0を出力する時比率を増大させることによって、Vosを目標値に従って徐々に増大させることができる。 Extending the above description to 4 cells, the power conversion apparatus 100 can output an arbitrary voltage satisfying −4V0 ≦ Vos ≦ + 4V0 as an average value in the period Ts. In FIG. 6A, the waveform in which the time axis is expanded is also shown for the period in which the power conversion apparatus 100 alternately outputs + 3V0 and + 4V0. As an example of the operation of each cell in this period, three cells always output + V0 (d = 1) during the period Ts, and one cell alternately outputs + V0 and 0 by PWM modulation. Conceivable. As shown in this enlarged view, Vos can be gradually increased according to the target value by increasing the time ratio of outputting + 4V0 in accordance with the increase of the Vos target value (broken line).
 図6(B)の故障発生時では、V1=(4/3)×V0であることから、電力変換装置100は、-3V1≦Vos≦+3V1、すなわち、-4V0≦Vos≦+4V0の範囲であれば、周期Tsにおける平均値として任意の電圧を出力できる。すなわち、(A)通常運転時と同じ出力電圧範囲で運転を継続できる。ただし、V1>V0が成り立つ、すなわち、Vdcを増大させれば、故障後の出力電圧範囲を拡大する効果は得られる。また、故障していないセルのうち少なくとも1台以上のセルにおいてVdcを増大させても、同様の効果が得られる。 At the time of failure occurrence in FIG. 6B, V1 = (4/3) × V0. Therefore, the power conversion apparatus 100 has a range of −3V1 ≦ Vos ≦ + 3V1, that is, −4V0 ≦ Vos ≦ + 4V0. For example, an arbitrary voltage can be output as an average value in the cycle Ts. That is, (A) The operation can be continued in the same output voltage range as that in the normal operation. However, if V1> V0 holds, that is, if Vdc is increased, the effect of expanding the output voltage range after the failure can be obtained. Further, even if Vdc is increased in at least one cell among non-failed cells, the same effect can be obtained.
 図4に示した制御部200の出力電圧(Vos)制御部は、Tsを制御周期として、各周期で目標値通りのVosを出力させるために、PWM変調を行うセルとその時比率、また、残りのセルの出力状態といったパラメータを決定し、各セルにインバータ制御信号を出力する。また、実施例1で説明したように、Vos制御部には故障検出信号とVdc設定値が入力される。制御部200は、Vdcの値(すなわち故障発生状況)に応じて上記のパラメータを変えることができる。 The output voltage (Vos) control unit of the control unit 200 shown in FIG. 4 uses the Ts as a control cycle, and outputs a Vos as the target value in each cycle, the PWM modulation cell, its time ratio, and the remaining Parameters such as the output state of each cell are determined, and an inverter control signal is output to each cell. Further, as described in the first embodiment, the failure detection signal and the Vdc set value are input to the Vos control unit. The control unit 200 can change the above parameters according to the value of Vdc (that is, the failure occurrence state).
 図7(A)および図7(B)は、実施例2におけるPWM変調動作の一例である。具体的には、Vosの目標値が+2.4×V0の場合について、周期Tsにおける各セルの出力電圧(Vo1~Vo4)と電力変換装置100の出力電圧(Vos)の波形を示した。図7(A)と図7(B)は、それぞれ通常運転時とセル104が故障した場合の波形である。図6を用いて、Vos制御部が上記のパラメータをどのように決定するかについて説明する。 7A and 7B are examples of the PWM modulation operation in the second embodiment. Specifically, in the case where the target value of Vos is + 2.4 × V0, the waveforms of the output voltages (Vo1 to Vo4) of each cell and the output voltage (Vos) of the power converter 100 in the cycle Ts are shown. FIG. 7A and FIG. 7B are waveforms during normal operation and when the cell 104 fails, respectively. How the Vos control unit determines the above parameters will be described with reference to FIG.
 図7(A)の通常運転時では、セル101と102が常に(d=1で)+V0を出力し、セル104が常に0を出力し、セル103がd=0.4で+V0と0を交互に出力することによって、Vosの平均値を+2.4×V0にする。図7(B)のようにセル104のみが故障した場合、V1=(4/3)×V0であることから、Vosの目標値は+1.8×V1と改められる。上記と同じ要領で、セル101が常に+V1を出力し、セル103が常に0を出力し、セル102がd=0.8で+V1と0を交互に出力することによって、Vosの平均値を+2.4×V0(+1.8×V1)にする。 In the normal operation of FIG. 7A, the cells 101 and 102 always output + V0 (when d = 1), the cell 104 always outputs 0, and the cell 103 outputs + V0 and 0 when d = 0.4. By alternately outputting, the average value of Vos is set to + 2.4 × V0. When only the cell 104 fails as shown in FIG. 7B, since V1 = (4/3) × V0, the target value of Vos is revised to + 1.8 × V1. In the same manner as described above, the cell 101 always outputs + V1, the cell 103 always outputs 0, and the cell 102 alternately outputs + V1 and 0 at d = 0.8, whereby the average value of Vos is +2. 4 × V0 (+ 1.8 × V1).
 ここで、周期Tsの間常に+V0(または+V1)を出力する状態を時比率1、周期Tsの間常に0を出力する状態を時比率0と考える。このとき、各セルにおけるPWM変調の時比率の合計値は、図7(A)通常運転時で2.4に、図7(B)1セル故障発生時で1.8となる。また、上記の通り2.4×V0=1.8×V1である。すなわち、時比率の合計値とVdcの積が一定値となる。 Here, a state where + V0 (or + V1) is always output during the period Ts is considered as a time ratio 1, and a state where 0 is always output during the period Ts is considered as a time ratio 0. At this time, the total value of the duty ratio of PWM modulation in each cell is 2.4 in FIG. 7 (A) during normal operation, and 1.8 in FIG. 7 (B) when one cell failure occurs. Further, as described above, 2.4 × V0 = 1.8 × V1. That is, the product of the total value of the duty ratio and Vdc is a constant value.
 PWM変調の具体的な方法、すなわち、Vos制御部で行われる具体的な演算には、三角波キャリア信号を用いる方法などを用いればよく、詳細については省略する。なお、上記の例ではセル104のみがPWM変調を行うが、PWM変調を行うセルは1台とは限らず、複数のセルでPWM変調する方式を用いてもよい。例えば(A)通常運転時であれば、4台全てのセルを時比率0.6でPWM変調する方法もある。
以上によって、電力変換装置100は目標値通りの出力電圧を出力できる。また、図6(A)および図6(B)のVos波形に含まれる3次や5次といった低次の高調波成分は、実施例1の図3と比較して小さくなる。電力変換装置100から出力される電流についても、同様に高調波成分が小さくなる。これによって、負荷400(特にモータやリアクトルの巻線)で発生する損失を低減でき、高調波成分がノイズとなって他の機器に悪影響を及ぼすことを防止できる。
A specific method of PWM modulation, that is, a specific calculation performed by the Vos control unit may be a method using a triangular wave carrier signal, and the details are omitted. In the above example, only the cell 104 performs PWM modulation, but the number of cells that perform PWM modulation is not limited to one, and a method of performing PWM modulation with a plurality of cells may be used. For example, (A) during normal operation, there is a method in which all four cells are PWM-modulated at a duty ratio of 0.6.
As described above, the power conversion apparatus 100 can output the output voltage as the target value. Further, low-order harmonic components such as the third order and the fifth order included in the Vos waveforms in FIGS. 6A and 6B are smaller than those in FIG. Similarly, the harmonic component of the current output from the power converter 100 is reduced. As a result, it is possible to reduce the loss generated in the load 400 (especially the winding of the motor or the reactor), and to prevent the harmonic component from becoming a noise and adversely affecting other devices.
 実施例3では、電源300が直流電源であり、かつ、電源300と負荷400の間を電気的に絶縁することを想定して、コンバータの具体的構成を示す。このとき、コンバータとして絶縁型DC-DCコンバータが必要となる。 In the third embodiment, a specific configuration of the converter is shown on the assumption that the power source 300 is a DC power source and the power source 300 and the load 400 are electrically insulated. At this time, an isolated DC-DC converter is required as the converter.
 図8は、絶縁型DC-DCコンバータの具体例として共振型コンバータを用いる場合の、電力変換装置100の構成である。インバータについては、図2と同様にHブリッジ方式の単相インバータを用いた。図8では、電力変換器セルとしてセル101のみを示し、他セルについては省略した。セル102~104についても、同様の共振型コンバータを備える。 FIG. 8 shows the configuration of the power converter 100 when a resonant converter is used as a specific example of the isolated DC-DC converter. As for the inverter, an H-bridge type single-phase inverter was used as in FIG. In FIG. 8, only the cell 101 is shown as a power converter cell, and other cells are omitted. The cells 102 to 104 are also provided with similar resonant converters.
 図8のように、コンバータ111は共振型コンバータであり、MOSFETを4個(21~24)備えたHブリッジ方式の単相インバータと、コイル25、コンデンサ26、トランス27を備えた共振回路と、ダイオードを4個(28~31)備えた整流回路と、コンデンサ32を備える。 As shown in FIG. 8, the converter 111 is a resonant converter, and an H-bridge type single-phase inverter provided with four MOSFETs (21 to 24), a resonant circuit provided with a coil 25, a capacitor 26, and a transformer 27, A rectifier circuit including four diodes (28 to 31) and a capacitor 32 are provided.
 制御部200からコンバータ111に出力されるインバータ制御信号として、MOSFET21~24を駆動するためのゲート信号を示した。コンバータ111から制御部200に出力される物理量検出信号として、電圧検出器33によって検出されるVdcと電流検出器34によって検出されるコンバータ出力電流を示したが、コンバータの温度など他の物理量を含んでいてもよい。 The gate signals for driving the MOSFETs 21 to 24 are shown as inverter control signals output from the control unit 200 to the converter 111. As the physical quantity detection signal output from the converter 111 to the control unit 200, the Vdc detected by the voltage detector 33 and the converter output current detected by the current detector 34 are shown, but include other physical quantities such as the converter temperature. You may go out.
 コンバータ11によるVdcの生成及び制御について説明する。電源300の直流電圧をVinとすると、MOSFET21~24から成る単相インバータは、MOSFET21と24をオンに、MOSFET22と23をオフにすれば、+Vinを出力する。また、MOSFET22と23をオンに、MOSFET21と24をオフにすれば、-Vinを出力する。これら2状態を交互に繰り返すことで、単相インバータは矩形波状の交流電圧が生成される。この交流電圧は、共振回路を介してトランス27の1次側から2次側へと伝達される。トランス27の2次側に発生する交流電圧の振幅は、共振回路の回路定数に依存し、単相インバータが出力する交流電圧の振幅とは異なる。トランス27の2次側に発生する交流電圧が整流回路によって整流され、また、コンデンサ26によって平滑されることでVdcが生成される。 The generation and control of Vdc by the converter 11 will be described. When the DC voltage of the power supply 300 is Vin, the single-phase inverter composed of the MOSFETs 21 to 24 outputs + Vin when the MOSFETs 21 and 24 are turned on and the MOSFETs 22 and 23 are turned off. When the MOSFETs 22 and 23 are turned on and the MOSFETs 21 and 24 are turned off, −Vin is output. By alternately repeating these two states, the single-phase inverter generates a rectangular-wave AC voltage. This AC voltage is transmitted from the primary side to the secondary side of the transformer 27 via the resonance circuit. The amplitude of the AC voltage generated on the secondary side of the transformer 27 depends on the circuit constant of the resonance circuit and is different from the amplitude of the AC voltage output from the single-phase inverter. The AC voltage generated on the secondary side of the transformer 27 is rectified by the rectifier circuit and smoothed by the capacitor 26 to generate Vdc.
 ここで、共振回路のインピーダンスは、入力される交流電圧の周波数、すなわち、MOSFET21~24のスイッチング周波数によって変化する。Vinが一定であっても、MOSFET21~24のスイッチング周波数を変化させれば、トランス127に発生する交流電圧の振幅、ひいては、Vdcを可変制御できる。一般的には、スイッチング周波数を低くするほど、すなわち、スイッチング周期を長くするほどVdcが高くなるように、共振回路の回路定数やスイッチング周波数の条件を設定する。 Here, the impedance of the resonance circuit varies depending on the frequency of the input AC voltage, that is, the switching frequency of the MOSFETs 21 to 24. Even if Vin is constant, if the switching frequency of the MOSFETs 21 to 24 is changed, it is possible to variably control the amplitude of the alternating voltage generated in the transformer 127, and thus Vdc. In general, the circuit constant of the resonance circuit and the condition of the switching frequency are set so that the lower the switching frequency, that is, the longer the switching period, the higher Vdc.
 図8の構成によって、電源と負荷の間を絶縁しつつ、負荷に高電圧を出力する電力変換装置100が得られる。このような仕様が求められる電力変換装置100の例として、既に説明したPCSがある。従来のPCSでは、1台のインバータが出力する電圧をトランスによって昇圧していたが、このトランスは電力系統の周波数で動作することから大型であった。図8の構成であれば、MOSFET21~24のスイッチング周波数を高くすることによって、トランス27を小型化できる。また、このように絶縁や昇圧を目的としてコンバータを備えることを前提とすれば、従来のように予備のセルを設ける方式と比べて、小型・低コストの電力変換装置100で本発明の効果を得られる。 With the configuration in FIG. 8, it is possible to obtain the power conversion device 100 that outputs a high voltage to the load while insulating the power source and the load. As an example of the power conversion apparatus 100 that requires such specifications, there is the PCS described above. In the conventional PCS, the voltage output from one inverter is boosted by a transformer, but this transformer is large because it operates at the frequency of the power system. With the configuration of FIG. 8, the transformer 27 can be miniaturized by increasing the switching frequency of the MOSFETs 21 to 24. In addition, if it is assumed that a converter is provided for the purpose of insulation and boosting, the effect of the present invention can be achieved with a small-sized and low-cost power conversion device 100 as compared with the conventional method of providing a spare cell. can get.
 図9は、実施例3における制御部200の具体例であり、以上で説明した制御を実現するための構成を示した。図9では、制御部200に入力される物理量検出信号をVdc検出信号と他の検出信号に分けて示した。図7ではコンバータ制御信号としてMOSFET毎に4本の矢印を示したが、図9では1本の矢印に纏めた。図4と共通の構成については説明を省略する。 FIG. 9 is a specific example of the control unit 200 in the third embodiment, and shows a configuration for realizing the control described above. In FIG. 9, the physical quantity detection signal input to the control unit 200 is divided into a Vdc detection signal and other detection signals. In FIG. 7, four arrows are shown for each MOSFET as the converter control signal, but in FIG. 9, they are combined into one arrow. The description of the configuration common to FIG. 4 is omitted.
 制御部200のコンバータ制御部901は、Vdc目標値とVdc検出信号を用いて、Vdcのフィードバック制御を行い、各セルのコンバータが目標値通りのVdcを出力するようにコンバータ制御信号を出力する。制御演算部902は、PI制御(比例積分制御)などの制御演算を実行し、Vdcが目標値と一致するようにスイッチング周期を設定する。制御信号生成部903は、制御演算部902が設定したスイッチング周期にしたがってコンバータ制御信号を生成する。これによって、Vinが変動しても、Vdcを目標値に制御できる。なお、Vdcの検出及びフィードバック制御は、各セルについて独立に行われる。 The converter control unit 901 of the control unit 200 performs Vdc feedback control using the Vdc target value and the Vdc detection signal, and outputs a converter control signal so that the converter of each cell outputs Vdc as the target value. The control calculation unit 902 executes control calculation such as PI control (proportional integration control) and sets the switching cycle so that Vdc matches the target value. The control signal generation unit 903 generates a converter control signal according to the switching period set by the control calculation unit 902. Thereby, even if Vin changes, Vdc can be controlled to the target value. Note that Vdc detection and feedback control are performed independently for each cell.
 図9の制御部200では、出力電圧制御部にVdc目標値ではなく、Vdc検出信号を入力する構成を示した。セル故障発生時にVdc目標値を増大させたとき、Vdcはある時定数で徐々に増大する。すなわち、Vdcが実際に増大して目標値に収束するまでの過渡期間が発生する。出力電圧制御部は、入力されるVdc検出信号によって過渡期間におけるVdcの変化を把握し、PWM変調の時比率に反映させる。すなわち、Vos目標値が同じ条件において、Vdcの値に応じてPWM変調の時比率を変化させる。例えば、実施例2で説明したように、各セルにおけるPWM変調時比率の合計値とVdcの積が一定値になるように制御すれば、過渡期間においても、電力変換装置100の出力電圧を変化させることなく運転を継続できる。 9 shows a configuration in which a Vdc detection signal is input to the output voltage control unit instead of the Vdc target value. When the Vdc target value is increased when a cell failure occurs, Vdc gradually increases with a certain time constant. That is, a transient period occurs until Vdc actually increases and converges to the target value. The output voltage control unit grasps the change in Vdc during the transient period based on the input Vdc detection signal and reflects it in the PWM modulation time ratio. That is, under the same Vos target value, the PWM modulation duty ratio is changed according to the value of Vdc. For example, as described in the second embodiment, if the product of the total PWM modulation ratio in each cell and the Vdc is controlled to be a constant value, the output voltage of the power conversion device 100 can be changed even during the transition period. Operation can be continued without causing
 実施例4では、以上で説明した電力変換装置1000を3組利用して、3相交流を出力する電力変換装置1000を構成する。 In the fourth embodiment, the power converter 1000 that outputs three-phase alternating current is configured by using three sets of the power converter 1000 described above.
 図10は、実施例4における電力変換装置1000の構成である。電力変換装置1000は、セル105~110を含む複数の電力変換器セルと制御部200を備える。図面の煩雑化を防ぐため、制御部200とセル110間の信号のみを示した。実際には、制御部200は全てのセルと信号をやり取りする。 FIG. 10 shows a configuration of the power conversion apparatus 1000 according to the fourth embodiment. The power conversion apparatus 1000 includes a plurality of power converter cells including the cells 105 to 110 and the control unit 200. Only signals between the control unit 200 and the cell 110 are shown to prevent the drawing from becoming complicated. In practice, the control unit 200 exchanges signals with all cells.
 図10の電力変換装置1000は、U相、V相、W相の3相分の出力端子を備え、各出力端子は3相負荷401に接続される。負荷401の例として、3相モータが考えられる。また、フィルタを介して3相電力系統に接続すれば、3相出力のPCSとして利用できる。 10 is provided with output terminals for three phases of U phase, V phase, and W phase, and each output terminal is connected to a three-phase load 401. As an example of the load 401, a three-phase motor can be considered. Further, if it is connected to a three-phase power system through a filter, it can be used as a three-phase output PCS.
 セルはU相用、V相用、W相用の3組に分けられ、各相を構成するセルの出力端子は直列に接続される。図9では、セル105と106がU相用、セル107と108がV相用、セル109と110がW相用である。図9のように、セル106、108、110の出力端子のうち一端が接続され、3相回路のY結線における中性点を成す。 The cells are divided into three sets for U phase, V phase, and W phase, and the output terminals of the cells constituting each phase are connected in series. In FIG. 9, cells 105 and 106 are for the U phase, cells 107 and 108 are for the V phase, and cells 109 and 110 are for the W phase. As shown in FIG. 9, one end of the output terminals of the cells 106, 108, and 110 is connected to form a neutral point in the Y connection of the three-phase circuit.
 制御部200は、例えばU相のセルが故障した場合、U相の残りのセルについてVdcを増大させる。これによって、3相交流を出力する電力変換装置1000においても本発明の効果を得られ、3相モータ駆動用インバータや3相電力系統用PCSに適用できる。 For example, when a U-phase cell fails, the control unit 200 increases Vdc for the remaining U-phase cells. Thus, the effect of the present invention can be obtained also in the power conversion apparatus 1000 that outputs three-phase alternating current, and can be applied to a three-phase motor drive inverter and a three-phase power system PCS.
101~110 電力変換器セル
111~114 コンバータ
121~124 インバータ
131~134 バイパス部
200 制御部
300 電源
400、401 負荷
11~14、21~24 MOSFET
15、33 電圧検出器
16、34 電流検出器
25 コイル
26、32 コンデンサ
27 トランス
28~31 ダイオード
101-110 Power converter cell 111-114 Converter 121-124 Inverter 131-134 Bypass unit 200 Control unit 300 Power supply 400, 401 Load 11-14, 21-24 MOSFET
15, 33 Voltage detector 16, 34 Current detector 25 Coil 26, 32 Capacitor 27 Transformer 28-31 Diode

Claims (13)

  1.  複数の電力変換器セルとこれらを制御する制御部とを備えた電力変換装置であって、
     前記電力変換器セルの各々は、外部からの入力電圧を変換して直流リンク電圧を生成するコンバータと、前記直流リンク電圧を交流電圧に変換して出力するインバータと、前記インバータの出力端子間を短絡するためのバイパス部を備え、
     前記制御部は、前記電力変換器セルのうち一部の故障を検出した場合、前記故障を検出した電力変換器セルのバイパス部を動作させて出力端子間を短絡させ、故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を増大させることを特徴とする電力変換装置。
    A power conversion device comprising a plurality of power converter cells and a controller for controlling them,
    Each of the power converter cells includes a converter that converts an external input voltage to generate a DC link voltage, an inverter that converts the DC link voltage into an AC voltage, and an output, and an output terminal of the inverter. With a bypass to short circuit,
    When the control unit detects a failure of a part of the power converter cell, the control unit operates the bypass unit of the power converter cell that detects the failure to short-circuit between the output terminals, and the power conversion is not failed. A power converter for increasing the DC link voltage of at least one power converter cell among the converter cells.
  2.  請求項1に記載の電力変換装置において、
     前記制御部は、前記電力変換器セルのうち故障を検出した電力変換器セルの台数が多いほど、故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を高く制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    As the number of power converter cells in which a failure is detected among the power converter cells increases, the control unit increases the DC link voltage of at least one power converter cell among the power converter cells that have not failed. The power converter characterized by controlling the high.
  3.  請求項1に記載の電力変換装置において、
     前記制御部は、前記電力変換器セルのうち動作させる電力変換器セルの台数と反比例するように前記直流リンク電圧を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The said control part controls the said DC link voltage so that it may be inversely proportional to the number of the power converter cells operated among the said power converter cells, The power converter device characterized by the above-mentioned.
  4.  請求項1に記載の電力変換装置において、
     前記制御部は、前記電力変換器セルのうち故障を検出した電力変換器セルの台数が所定の閾値より少ない場合に限り、故障した電力変換器セルの台数が多いほど、故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を高く制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The control unit is configured so that, as long as the number of power converter cells that have failed is less than a predetermined threshold, the power converter cell that has not failed is increased. A power conversion device that controls the DC link voltage of at least one power converter cell among the converter cells to be high.
  5.  請求項1に記載の電力変換装置において、
     故障を検出した電力変換器セルの台数が前記所定の閾値より多い場合では、前記直流リンク電圧を故障した電力変換器セルの台数に依らず一定に制御することを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    When the number of power converter cells in which a failure has been detected is greater than the predetermined threshold value, the DC converter voltage is controlled to be constant regardless of the number of power converter cells in which the failure has occurred.
  6.  請求項1から5に記載のいずれかの電力変換装置において、
     前記制御部は、前記インバータをPWM変調に基づいて制御し、前記直流リンク電圧に応じて前記PWM変調の時比率を変化させることを特徴とする電力変換装置。
    In the power converter device in any one of Claims 1-5,
    The said control part controls the said inverter based on PWM modulation, and changes the time ratio of the said PWM modulation according to the said DC link voltage, The power converter device characterized by the above-mentioned.
  7.  請求項6に記載の電力変換装置において、
     前記制御部は、出力電圧の目標値が同じ条件であれば、前記電力変換器セルの各々におけるPWM変調の時比率の合計値と前記直流リンク電圧との積が一定になるように前記インバータを制御することを特徴とする電力変換装置。
    The power conversion device according to claim 6, wherein
    If the target value of the output voltage is the same, the control unit sets the inverter so that the product of the total value of the PWM modulation time ratios in each of the power converter cells and the DC link voltage is constant. The power converter characterized by controlling.
  8.  請求項1から7に記載のいずれかの電力変換装置において、
     前記複数の電力変換器セルが備えるインバータの出力端子は、それぞれ直列に接続されており、前記複数の電力変換器セルの入力端子は、前記電源に対して全て並列に接続されることを特徴とする電力変換装置。
    The power conversion device according to any one of claims 1 to 7,
    The output terminals of the inverters included in the plurality of power converter cells are respectively connected in series, and the input terminals of the plurality of power converter cells are all connected in parallel to the power source. Power converter.
  9.  請求項1から8に記載のいずれかの電力変換装置において、
     前記コンバータは、1個以上の半導体スイッチング素子によるインバータ回路と、コイル、コンデンサ、トランスを備えた共振回路と、1個以上のダイオードによる整流回路を備える共振型コンバータであることを特徴とする電力変換装置。
    The power conversion device according to any one of claims 1 to 8,
    The converter is a resonant converter including an inverter circuit including one or more semiconductor switching elements, a resonant circuit including a coil, a capacitor, and a transformer, and a rectifier circuit including one or more diodes. apparatus.
  10.  請求項1から9に記載のいずれかの電力変換装置において、
     前記インバータは、4個の半導体スイッチング素子によるHブリッジ方式の単相インバータ回路であることを特徴とする電力変換装置。
    The power converter according to any one of claims 1 to 9,
    The inverter is an H-bridge type single-phase inverter circuit including four semiconductor switching elements.
  11.  請求項1乃至10に記載のいずれかの電力変換装置において、
     前記制御部は、前記故障している電力変換器セルの台数と故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧とを関係付けるデータテーブルを有している電力変換装置。
    In the power converter device in any one of Claims 1 thru | or 10,
    The control unit has a data table associating the number of the failed power converter cells and the DC link voltage of at least one power converter cell among the non-failed power converter cells. Power converter.
  12.  複数の電力変換器セルとこれらを制御する制御部とを備えた電力変換装置であって、
     前記電力変換器セルの各々は、外部からの入力電圧を変換して直流リンク電圧を生成するコンバータと、前記直流リンク電圧を交流電圧に変換して出力するインバータと、前記インバータの出力端子間を短絡するためのバイパス部を備え、
     前記制御部は、前記電力変換器セルから検出される物理量と前記物理量の基準とを比較し、前記物理量の基準と異なる物理量を取る電力変換器セルのバイパス部を動作させて出力端子間を短絡させ、故障していない電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を増大させることを特徴とする電力変換装置。
    A power conversion device comprising a plurality of power converter cells and a controller for controlling them,
    Each of the power converter cells includes a converter that converts an external input voltage to generate a DC link voltage, an inverter that converts the DC link voltage into an AC voltage, and an output, and an output terminal of the inverter. With a bypass to short circuit,
    The control unit compares a physical quantity detected from the power converter cell with a reference of the physical quantity, operates a bypass unit of a power converter cell that takes a physical quantity different from the physical quantity reference, and short-circuits between output terminals. And increasing the DC link voltage of at least one power converter cell among the power converter cells that are not faulty.
  13.  複数の電力変換器セルとこれらを制御する制御部とを備えた電力変換装置であって、
     前記電力変換器セルの各々は、外部からの入力電圧を変換して直流リンク電圧を生成するコンバータと、前記直流リンク電圧を交流電圧に変換して出力するインバータと、前記インバータの出力端子間を短絡するためのバイパス部を備え、
     前記制御部は、前記電力変換器セルのうち任意の電力変換器セルのバイパス部を動作させて出力端子間を短絡させ、前記任意の電力変換器セル以外の電力変換器セルのうち少なくとも1台以上の電力変換器セルの前記直流リンク電圧を増大させることを特徴とする電力変換装置。
    A power conversion device comprising a plurality of power converter cells and a controller for controlling them,
    Each of the power converter cells includes a converter that converts an external input voltage to generate a DC link voltage, an inverter that converts the DC link voltage into an AC voltage, and an output, and an output terminal of the inverter. With a bypass to short circuit,
    The control unit operates a bypass unit of any power converter cell among the power converter cells to short-circuit between output terminals, and at least one power converter cell other than the arbitrary power converter cell. A power conversion device for increasing the DC link voltage of the above power converter cell.
PCT/JP2016/080889 2015-11-30 2016-10-19 Power conversion device WO2017094379A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017553696A JP6476318B2 (en) 2015-11-30 2016-10-19 Power converter
CN201680063053.5A CN108370221B (en) 2015-11-30 2016-10-19 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232592 2015-11-30
JP2015-232592 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094379A1 true WO2017094379A1 (en) 2017-06-08

Family

ID=58796961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080889 WO2017094379A1 (en) 2015-11-30 2016-10-19 Power conversion device

Country Status (3)

Country Link
JP (1) JP6476318B2 (en)
CN (1) CN108370221B (en)
WO (1) WO2017094379A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019187229A (en) * 2018-04-03 2019-10-24 サングロー パワー サプライ カンパニー リミテッド Medium and high voltage energy conversion system
WO2019220561A1 (en) * 2018-05-16 2019-11-21 三菱電機株式会社 Power conversion device
JP6671550B1 (en) * 2019-02-15 2020-03-25 東芝三菱電機産業システム株式会社 Power conversion device, motor drive system and control method
JP2020523967A (en) * 2017-06-12 2020-08-06 ティーエーイー テクノロジーズ, インコーポレイテッド Multi-level multi-quadrant hysteretic current controller and method for its control
WO2021005792A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Electric power conversion device
JP2021505120A (en) * 2017-11-29 2021-02-15 ▲蘇▼州博思得▲電▼▲気▼有限公司 Pulse voltage generator, method and controller
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device
JP2021151064A (en) * 2020-03-18 2021-09-27 富士電機株式会社 Power conversion device and control method therefor
EP3905508A4 (en) * 2018-12-25 2021-12-22 Mitsubishi Electric Corporation Power conversion device
JP7504761B2 (en) 2020-10-16 2024-06-24 株式会社日立製作所 Power Conversion Systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102053B2 (en) * 2018-12-05 2022-07-19 日立建機株式会社 Regenerative braking system and electrically driven work vehicle using it
WO2020255691A1 (en) * 2019-06-21 2020-12-24 ジヤトコ株式会社 Vehicle power supply device and control method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060142A (en) * 1998-05-21 2000-02-25 Robicon Corp Method and apparatus for drive with high output in breakdown mode
JP2000245168A (en) * 1999-02-18 2000-09-08 Hitachi Ltd Power converter system
JP2002359929A (en) * 2001-03-30 2002-12-13 Mitsubishi Electric Corp Voltage variation compensator
JP2009136098A (en) * 2007-11-30 2009-06-18 Meidensha Corp High-pressure direct inverter device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1215625C (en) * 2001-03-30 2005-08-17 三菱电机株式会社 Power fluctuation compensation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000060142A (en) * 1998-05-21 2000-02-25 Robicon Corp Method and apparatus for drive with high output in breakdown mode
JP2000245168A (en) * 1999-02-18 2000-09-08 Hitachi Ltd Power converter system
JP2002359929A (en) * 2001-03-30 2002-12-13 Mitsubishi Electric Corp Voltage variation compensator
JP2009136098A (en) * 2007-11-30 2009-06-18 Meidensha Corp High-pressure direct inverter device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998830B2 (en) * 2017-06-06 2021-05-04 Hitachi, Ltd. Power conversion device and three-phase power conversion device
US11973436B2 (en) 2017-06-12 2024-04-30 Tae Technologies, Inc. Multi-level multi-quadrant hysteresis current controllers and methods for control thereof
JP2020523967A (en) * 2017-06-12 2020-08-06 ティーエーイー テクノロジーズ, インコーポレイテッド Multi-level multi-quadrant hysteretic current controller and method for its control
JP7398961B2 (en) 2017-06-12 2023-12-15 ティーエーイー テクノロジーズ, インコーポレイテッド Multi-level multi-quadrant hysteresis current controller and method for its control
US11146250B2 (en) 2017-11-29 2021-10-12 Suzhou Powersite Electric Co., Ltd. Pulse voltage generation device, method, and controller
JP2021505120A (en) * 2017-11-29 2021-02-15 ▲蘇▼州博思得▲電▼▲気▼有限公司 Pulse voltage generator, method and controller
JP2019187229A (en) * 2018-04-03 2019-10-24 サングロー パワー サプライ カンパニー リミテッド Medium and high voltage energy conversion system
JP7012036B2 (en) 2018-04-03 2022-01-27 サングロー パワー サプライ カンパニー リミテッド Medium and high voltage energy conversion system
WO2019220561A1 (en) * 2018-05-16 2019-11-21 三菱電機株式会社 Power conversion device
JPWO2019220561A1 (en) * 2018-05-16 2021-04-22 三菱電機株式会社 Power converter
US11336169B2 (en) 2018-12-25 2022-05-17 Mitsubishi Electric Corporation Power conversion device
EP3905508A4 (en) * 2018-12-25 2021-12-22 Mitsubishi Electric Corporation Power conversion device
US11271508B2 (en) 2019-02-15 2022-03-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device, motor driving system, and control method
WO2020166065A1 (en) * 2019-02-15 2020-08-20 東芝三菱電機産業システム株式会社 Power conversion device, electric motor drive system, and control method
JP6671550B1 (en) * 2019-02-15 2020-03-25 東芝三菱電機産業システム株式会社 Power conversion device, motor drive system and control method
JPWO2021005792A1 (en) * 2019-07-11 2021-10-21 三菱電機株式会社 Power converter
WO2021005792A1 (en) * 2019-07-11 2021-01-14 三菱電機株式会社 Electric power conversion device
JP7086298B2 (en) 2019-07-11 2022-06-17 三菱電機株式会社 Power converter
JP2021151064A (en) * 2020-03-18 2021-09-27 富士電機株式会社 Power conversion device and control method therefor
JP7443858B2 (en) 2020-03-18 2024-03-06 富士電機株式会社 Power conversion device and its control method
JP7504761B2 (en) 2020-10-16 2024-06-24 株式会社日立製作所 Power Conversion Systems

Also Published As

Publication number Publication date
CN108370221A (en) 2018-08-03
JP6476318B2 (en) 2019-02-27
CN108370221B (en) 2020-06-05
JPWO2017094379A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6476318B2 (en) Power converter
JP6227041B2 (en) Multi-level inverter
JP6357976B2 (en) DC power supply
US10998830B2 (en) Power conversion device and three-phase power conversion device
JP4715429B2 (en) AC / DC converter
JP6575289B2 (en) Power converter
EP2254223B1 (en) Improved self powered supply for power converter switch driver
WO2013175644A1 (en) Power conversion device
EP2865085A1 (en) Scalable-voltage current-link power electronic system for multi-phase ac or dc loads
EP2830210B1 (en) Generator excitation apparatus and power conversion system
WO2015045197A1 (en) Dc power source, and dc power source control method
WO2015056491A1 (en) Power conversion device and power conversion method
WO2020129122A1 (en) Dc-dc converter
JP5362657B2 (en) Power converter
JP2015156740A (en) Power conversion device
JP2013074767A (en) Dc/dc converter
TW201541851A (en) Motor driving circuit
JPH11252992A (en) Power converter
JP6314734B2 (en) Power converter
JP2017184496A (en) Power conversion device and method for controlling the same
EP3806303A1 (en) Alternating capacitor step-down dc/dc converter
Cordeiro et al. Fault-tolerant three-phase quasi-switched boost inverter
JP6444204B2 (en) Power converter
WO2017179179A1 (en) Power conversion device
Nagarajan et al. Comparison of fault diagnostics on Z-source and trans Z-source inverter fed induction motor drives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870319

Country of ref document: EP

Kind code of ref document: A1