WO2017094347A1 - Pulse and respiration detecting device - Google Patents

Pulse and respiration detecting device Download PDF

Info

Publication number
WO2017094347A1
WO2017094347A1 PCT/JP2016/079551 JP2016079551W WO2017094347A1 WO 2017094347 A1 WO2017094347 A1 WO 2017094347A1 JP 2016079551 W JP2016079551 W JP 2016079551W WO 2017094347 A1 WO2017094347 A1 WO 2017094347A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pulse
subject
seat
wave
Prior art date
Application number
PCT/JP2016/079551
Other languages
French (fr)
Japanese (ja)
Inventor
▲貞▼旬 金
幸夫 大瀧
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2017094347A1 publication Critical patent/WO2017094347A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Definitions

  • the present invention relates to a pulse respiration detection device that detects a pulse rate and a respiration rate of a subject who is seated in a vehicle seat.
  • Patent Document 1 supplies first and second antennas, first and second mixer circuits to which first and second received signals received by these antennas are input, and these mixer circuits, respectively.
  • a signal generation circuit that generates a pulse signal, a signal that the first mixer circuit mixes and outputs the first reception signal and the pulse signal, and a second mixer circuit that outputs the second reception signal and the pulse signal
  • the previous pulse signal is supplied to the first antenna.
  • the next pulse signal is supplied at a close timing that does not overlap with the pulse width of the previous pulse signal applied to the first antenna and the first mixer circuit.
  • a wireless sensor device comprising: control means for controlling the operation timing of the signal generation circuit and the path from the signal generation circuit to the first and second antennas so as to be supplied to the second mixer circuit Disclosure.
  • this wireless sensor device it is possible to detect the azimuth and movement of the object from the reflected wave of the radiated radio wave object, and between the antennas without interfering with each other's radio waves. Therefore, the device can be miniaturized and the peak power required for the oscillator can be halved.
  • the wireless sensor device described in Patent Document 1 when trying to acquire biological information of a subject seated in a vehicle seat, the position and environment where the device is installed, and the biological information to be acquired Depending on the type, the antenna reception sensitivity may not be sufficient.
  • the reflected wave corresponding to changes in the pulse rate and respiratory rate is weaker in signal strength than the reflected wave corresponding to the movement of the entire subject's body, so it may be necessary for detection depending on conditions such as the installation position of the device. There is a case where a signal with a strong intensity cannot be obtained.
  • the radio wave radiated from the wireless sensor device is directed backward, so the movement of the person sitting on the rear seat (body Motion) may also be detected.
  • body Motion body Motion
  • the driver's pulse rate and respiratory rate may not be measured accurately.
  • an object of the present invention is to provide a pulse respiration detection device and a pulse respiration sensor that can accurately detect the pulse rate and respiration rate of a subject who is seated in a specific seat.
  • a pulse respiration detection device is a pulse respiration detection device arranged in a seat in a vehicle, and includes a substrate, an antenna arranged on one side of the substrate, and the antenna.
  • a transmitter / receiver that transmits a transmission wave to the subject seated in the seat and receives the reflected wave, a detection unit that detects a phase difference between the transmission wave and the reflected wave, and a detection unit
  • An arithmetic processing unit that calculates the pulse rate and respiration rate of the subject based on the phase difference, and has at least a surface facing the antenna at a position where the distance to the antenna is 1/4 or less of the wavelength of the transmission wave
  • a metal reflector is disposed, and the surface facing the antenna is disposed to face the subject.
  • the directivity of the antenna with respect to the outside of the metal reflector can be suppressed, and the directivity with respect to the subject can be increased, so that the detection sensitivity can be increased and the influence of the person sitting in the seat behind the subject Can be suppressed.
  • the phase of the transmitted wave radiated to the subject and the transmitted wave reflected by the metal reflector and radiated to the subject substantially matches, Detection sensitivity can be increased.
  • the metal reflector is fixed to the mounting plate via an insulating spacer, and the mounting plate is provided with a support member extending from the base to the substrate, and the support member And the substrate are preferably engaged with each other.
  • the antenna and the metal reflector can be made non-conductive, and the distance between them can be defined.
  • the transmitted wave radiated to the subject and the transmitted wave reflected by the metal reflector and radiated to the subject Can be made to substantially coincide with each other.
  • a shield member having an effect of attenuating electromagnetic waves by a predetermined value or more is disposed outside the metal reflector.
  • the outside of the metal reflector is a direction away from the metal reflector in a direction in which the metal reflector and the antenna face each other.
  • the shield member is a mesh material including a metal thread, and is disposed so as to cover the metal reflector and the antenna with the subject side opened.
  • transmission of transmitted waves and reception of reflected waves can be reliably performed on the subject side, and transmission of transmitted waves and reception of reflected waves can be more effectively suppressed for seats behind the subject. it can.
  • the pulse respiration detection device of the present invention is preferably disposed inside the backrest of the seat.
  • the space in the vehicle can be arranged efficiently without narrowing the space.
  • the antenna directivity is controlled by a configuration in which a metal reflector having at least a surface facing the antenna is disposed at a position where the distance to the antenna is 1 ⁇ 4 or less of the wavelength of the electromagnetic wave. It is possible to provide a pulse respiration detection device capable of accurately detecting a pulse rate and a respiration rate of a subject who is seated in a specific seat.
  • FIG. 1 It is a perspective view showing the state where the pulse respiration detection device concerning an embodiment is arranged in the seat of vehicles. It is a figure which shows the state by which the pulse respiration detection apparatus which concerns on embodiment is arrange
  • FIG. 1 It is a side view which shows the structure of the detection apparatus main body in the embodiment, an insulation spacer, and a metal reflecting plate. It is a figure which shows the structure of the board
  • FIG. 1 is a perspective view showing a state in which a pulse respiration detection device 100 according to the present embodiment is arranged in a vehicle seat (driver's seat 1).
  • FIG. 2 is a view showing a state in which the pulse respiration detection device 100 according to the present embodiment is arranged in a vehicle seat (driver's seat 1), where (A) is a rear view and (B) is a side view. is there.
  • the pulse respiration detection device 100 according to this embodiment includes a detection unit 60 and a shield curtain 50.
  • the form provided with the shield curtain 50 is shown, the form which consists only of the detection apparatus main body 10 without providing the shield curtain 50 is also possible.
  • the form provided in the driver's seat 1 is shown in the present embodiment, the present invention can be applied to a passenger seat and a rear seat of the vehicle.
  • the detecting unit 60 is disposed inside the backrest (back seat) 3 of the driver's seat 1 in the vehicle. From the detection unit 60, an electromagnetic wave Wa as an inspection signal wave is irradiated from the front surface 3 b side of the backrest 3 to the subject 5 (driver) sitting on the seat surface 2 of the driver seat 1. The electromagnetic wave Wa is reflected by the subject 5, and the reflected wave Wb is received by the detection unit 60. In the detection unit 60, the pulse rate and the respiratory rate of the subject 5 are calculated based on the phase difference between the electromagnetic wave Wa and the reflected wave Wb.
  • the shield curtain 50 (shield member) has, for example, a configuration in which a metal thread is knitted into a cloth to form a mesh, and has an effect of attenuating electromagnetic waves by a predetermined value or more. As shown in FIGS. 1 and 2, the shield curtain 50 is arranged on the back surface 3 a of the backrest 3 so as to cover at least a range corresponding to the back surface of the detection unit 60. In other words, the shield curtain 50 is disposed on the back surface 3a side so as to cover the detection unit 60 in a state where the front surface 3b side of the backrest 3 is opened.
  • the shield curtain 50 By arranging the shield curtain 50 in this way, the transmission of the electromagnetic wave Wa to the rear of the driver's seat 1 and the reception of the reflected wave Wb from the rear can be suppressed, and therefore, from a person sitting in the rear seat Therefore, the pulse rate and respiratory rate of the subject 5 can be accurately detected based on the reflected wave from the subject 5 sitting in the driver's seat.
  • FIG. 3 is a view showing the arrangement of the pulse respiration detection device 100 according to the present embodiment, where (A) is a top view and (B) is a front view.
  • FIG. 4 is a perspective view illustrating a configuration of the detection unit 60 of the pulse respiration detection apparatus 100 according to the present embodiment. 3A and 4 show a state before assembling the members.
  • the detection unit 60 includes a metal reflection plate 53, a spacer 51, and a fixing plate 52 that are arranged in order from the back surface 3 a to the front surface 3 b of the backrest 3.
  • the detection device main body 10 is disposed via an insulating spacer 70.
  • the spacer 51 has a frame shape corresponding to the outer edge shape of the metal reflector 53, and an opening 51a is formed at the center.
  • the thickness of the spacer 51 in the Y1-Y2 direction is set so that the detection device body 10 does not protrude from the spacer 51 in the Y1 direction when the spacer 51 is disposed on the front surface 53b of the metal reflector 53.
  • the fixed plate 52 is a plate-like member provided with an opening 52a at substantially the center, and has substantially the same outer shape as the spacer 51.
  • the fixing plate 52, the spacer 51, and the metal reflecting plate 53 are sequentially stacked in the Y1-Y2 direction, and are fixed to each other by bonding or the like.
  • the opening 52a of the fixed plate 52 and the opening 51a of the spacer 51 are provided at positions corresponding to the detection device main body 10 on the metal reflection plate 53, the transmission wave transmitted from the detection device main body 10 and The reflected wave toward the detection device main body 10 passes through the openings 51a and 52a.
  • FIG. 5 is a perspective view showing a configuration of the detection apparatus main body 10.
  • FIG. 6 is a side view illustrating the configuration of the detection device main body 10, the insulating spacer 70, and the metal reflector 53.
  • the detection device main body 10 includes a substrate 20 and a mounting plate 40. Further, as shown in FIG. 6, on the back surface 43a of the mounting plate 40, one surface side of the insulating spacer 70 is fixed with an adhesive or the like, and the other surface side of the insulating spacer 70 on the front surface 53b of the metal reflecting plate 53 is an adhesive or the like. It is fixed with.
  • the mounting plate 40 and the metal reflector 53 may be made of the same metal material, but for example, different materials such as white and aluminum may be used. Further, the insulating spacer 70 may be a non-conductive material or a dielectric, and for example, ABS may be used.
  • cut-and-raised portions 41 and 42 are provided so as to extend toward the substrate 20.
  • the tip portions 41a, 41b, 42a, 42b of the cut and raised portions 41, 42 and the substrate 20 are engaged with each other as will be described later.
  • the substrate 20 is supported by the mounting plate 40, the back surface 20a of the substrate 20 and the front surface 53b of the metal reflecting plate 53 face each other, and the distance is D. More specifically, the distance D is the distance between the antenna 28 provided on the substrate 20 and the metal reflector 53, and is set to 1 ⁇ 4 or less of the wavelength of the transmission wave transmitted by the RF transmitter 25. Yes.
  • the detection device main body 10 is arranged in the backrest 3 with the front surface 20b side of the substrate 20 facing the subject 5 side and the back surface 53a of the metal reflector 53 facing the back surface 3a side of the backrest 3.
  • FIGS. 7A and 7B are diagrams showing the configuration of the substrate 20 in the detection apparatus main body 10, wherein FIG. 7A is a front view and FIG. 7B is a side view.
  • the substrate 20 is formed in a rectangular shape in plan view, and on the front surface 20b, a ground pattern 22 made of copper is formed in a region excluding the outer peripheral edge.
  • the overall shape of the substrate 20 is not limited to the shape shown in FIGS. 7A and 7B, and may be other shapes that match the shape of the peripheral device for incorporation into the actual device.
  • the lower long side of the substrate 20 is adjacent to the first side L1
  • the upper long side opposite to the first side L1 is adjacent to the second side L2, and the first side L1.
  • These two short sides are referred to as third and fourth side portions L3 and L4.
  • a slot 23 is formed in parallel along the first side portion L1 so as to leave a part of the lower outer edge portion of the ground pattern 22. Yes.
  • the slot 23 is formed in a rectangular shape in plan view extending in a strip shape with a predetermined width, and is formed in the same length in the left-right direction (Z1-Z2 direction) from the center of the first side portion L1 of the substrate 20.
  • a power supply line 24 serving as a power supply unit is provided at a position corresponding to the slot 23 on the back surface 20 a of the substrate 20.
  • the power supply line 24 is branched into two line power supply units 24a and 24b, and the two line power supply units 24a and 24b are symmetrically located with respect to the center in the longitudinal direction (Z1-Z2 direction) of the slot 23. It is bridged in a direction (X1-X2 direction) orthogonal to the longitudinal direction of the slot 23.
  • the power supply line 24 is connected to a circuit unit 30 provided on the back surface 20 a of the substrate 20.
  • the slot 23, the power supply line 24, and the line power supply units 24 a and 24 b constitute an antenna 28, and RF transmission as a transceiver that irradiates the subject 5 with a high-frequency (RF) transmission wave (electromagnetic wave) via the antenna 28.
  • the unit 25 and the RF receiver 26 as a transmitter / receiver that receives a reflected wave from the subject 5 are connected.
  • the RF transmitter 25 and the RF receiver 26 are provided in the circuit unit 30.
  • the lateral outer edge portions of the third and fourth side portions L3 and L4 of the substrate 20 have the copper foil removed along the third and fourth side portions L3 and L4, and the copper foil removal regions A1 and A2 are respectively formed. Is formed.
  • Through hole portions 26a and 26b into which the tip portions 41a and 41b of the cut and raised portion 41 are inserted are formed in the copper foil removal region A1, and the tip portions 42a and 42b of the cut and raised portion 42 are formed in the copper foil removal region A2.
  • Through-hole portions 27a and 27b into which are inserted are formed.
  • the substrate 20 and the mounting plate 40 are integrated by engaging and fixing the tip portions 41a, 41b, 42a, 42b to the through-hole portions 26a, 26b, 27a, 27b, respectively.
  • FIG. 8 is a block diagram showing a circuit configuration of the detection apparatus main body 10.
  • the circuit unit 30 includes an RF transmission unit 25, an RF reception unit 26, a detection circuit 31, a bandpass filter 32, a lowpass filter 33, and a control unit 34.
  • a transmission wave Wa as a test signal wave including a transmission signal (carrier wave signal) of a predetermined frequency is generated according to the instruction signal from the control unit 34 and transmitted from the antenna 28 toward the subject 5.
  • the transmission signal included in the transmission wave Wa is a high-frequency radio wave in the RF band, and preferably has a high frequency of, for example, 2 GHz or more. Further, the frequency, phase, amplitude and other information of the transmission wave Wa are given to the detection circuit 31.
  • the transmitted wave Wa is reflected by the subject 5, and the reflected wave Wb is received by the antenna 28 and supplied to the RF receiver 26.
  • the reflected wave Wb is a signal wave reflected and modulated by the transmission wave Wa applied to the subject 5 in accordance with changes in the pulse rate and respiratory rate generated in the subject 5.
  • the reception signal S1 obtained by receiving the reflected wave Wb by the RF receiving unit 26 is given to a detection circuit 31 as a detection unit.
  • a detection signal S2 as a signal indicating a phase difference between the transmission wave Wa and the reflected wave Wb is obtained from the information of the transmission wave Wa and the reception signal S1.
  • the band-pass filter 32 extracts a signal in a frequency band of 0.7 to 3 Hz, for example, and a measurement signal S4 mainly corresponding to the pulse rate is extracted from the detection signal S2 and given to the control unit 7.
  • the low-pass filter 33 extracts a signal having a frequency band of less than 0.7 Hz or less than 0.7 Hz, for example, and a measurement signal S5 mainly corresponding to the respiratory rate is extracted from the detection signal S2 and given to the control unit 34. It is done.
  • the control unit 34 includes a CPU, a memory, an A / D conversion unit, and the like as an arithmetic processing unit.
  • the measurement signals S4 and S5 are converted into digital values by the A / D converter and supplied to the CPU.
  • the CPU performs arithmetic processing based on software installed in advance, and calculates the pulse rate and respiratory rate of the subject 5 based on the phase difference detected by the detection circuit 31.
  • the RF transmitter 25, the RF receiver 26, and the detection circuit 31 provided on the substrate 20 constitute a pulse respiration sensor.
  • the detection device main body 10 is arranged with the board 20 side facing the subject 5 side in the backrest 3 of the driver's seat 1 in the vehicle, as in the above-described embodiment.
  • the RF transmission unit transmits a transmission wave of 2.45 GHz and a wavelength of 120 mm.
  • a copper plate having a size of 200 mm ⁇ 200 mm ⁇ thickness 1 mm is used as the metal reflector 53.
  • the substrate 20 and the mounting plate 40 are fixed at a distance of 11 mm, the thickness of the insulating spacer 70 is 15 mm, and the distance D between the antenna 28 and the metal reflector 53 is 26 mm. That is, this distance D is approximately 1 ⁇ 4 of the wavelength of the transmission wave.
  • the detection device main body of the comparative example has a configuration in which the metal reflector 53 is removed from the above embodiment.
  • FIG. 9 is a table showing the received power of the electromagnetic wave radiated from the detection unit 60 received on the back surface 3a side of the backrest 3 and the power received without the shield curtain (shield member) 50.
  • the transmission power of the RF transmission unit 25 was set to 0 dBm, and measurement was performed by changing the distance (back surface reception distance) of the detection unit 60 grounded from the detection device body 10 to the back surface 3a side.
  • the “rear surface receiving distance” is a distance (unit: mm) from the detection apparatus body 10 to the reference receiving antenna, and the received power (unit: dBm) is measured by a spectrum analyzer which is one of power measuring apparatuses.
  • “without metal reflector” is a comparative example, and “with metal reflector (200 ⁇ 200 mm)” is an example.
  • the power radiated to the back surface 3a side is smaller by 12 to 20 dB than in the comparative example.
  • an occupant referred to as a rear occupant
  • the rear occupant part near the detection device main body 10 becomes a knee, and it is necessary to eliminate the influence of this movement (body movement).
  • body movement body movement
  • the shield curtain (shield member) 50 is not provided, the back surface radiated power needs to be further attenuated by 8 dB or more when the back surface receiving distance is 300 mm.
  • FIG. 10 shows the received power when the electromagnetic wave radiated from the detection unit 60 is received on the back surface 3a side of the backrest 3 when the size of the metal reflector 53 is changed.
  • FIG. (Member) It is a graph which shows the electric power received in the state without 50.
  • “without metal reflector” is a configuration obtained by removing the metal reflector 53 from the configuration of the above-described embodiment, and corresponds to the comparative example shown in FIG. “100 ⁇ 100 mm”, “150 ⁇ 150 mm”, and “200 ⁇ 200 mm” indicate the planar shape of the metal reflector 53 to be used, and the thickness is 1 mm in common.
  • “200 ⁇ 200 mm” corresponds to the embodiment shown in FIG.
  • the rear receiving distance, the power measuring device, and the measurement target amount are the same as those in the example and comparative example shown in FIG.
  • the transmitted wave to be transmitted can be greatly attenuated.
  • FIG. 11 (A) and 11 (B) are diagrams showing the directivity characteristics of the antenna 28 in the detection apparatus body 10 of the embodiment
  • FIG. 11 (C) is a diagram showing the impedance characteristics of the antenna 28.
  • 11A to 11C includes the insulating spacer 70 and the metal reflector 53.
  • 12A and 12B are diagrams illustrating the directivity characteristics of the antenna 28 in the detection device body 10 of the comparative example
  • FIG. 12C is a diagram illustrating the impedance characteristics of the antenna 28.
  • 11A and 12A are directivity characteristics in a plane orthogonal to the X1-X2 direction
  • FIGS. 11B and 12B are directivity characteristics in a plane orthogonal to the Z1-Z2 direction.
  • C and FIG.
  • FIGS. 11A and 12A show the resonance characteristics.
  • the origin is the position of the origin of the X1-Y1-Z1 orthogonal coordinate system shown in FIG.
  • the center of In FIGS. 11A and 12A the solid line (GainPhi) indicates the directional characteristic of the main polarization, and the broken line (GainTheta) indicates the directional characteristic of the cross polarization.
  • a solid line (GainPhi) indicates the cross-polarization directivity and a broken line (GainTheta) indicates the main polarization directivity.
  • the resonance point that is the resonance frequency of the antenna is about 2.7 GHz.
  • the directivity characteristic on the back lobe B (rear seat) side in the Y1-Y2 direction perpendicular to the substrate 20 is It can be seen that the directivity characteristic is strong only on the front lobe F (driver's seat) side, and the front directivity characteristic is obtained. It can also be seen that the directivity characteristics are suppressed on the side lobe S side (the plane direction perpendicular to the Y1-Y2 direction) as compared with the comparative example. As shown in FIG. 11C, the resonance point P1, which is the resonance frequency of the antenna of the RF transmitter 25, is about 2.45 GHz.
  • FIG. 13 is a graph showing measured values of antenna gain (Peak Gain, unit dBi) with respect to the distance between the mounting plate 40 and the metal reflector 53.
  • FIG. 14 is a graph showing measured values of FBR (front-rear ratio, unit dB) with respect to the distance between the mounting plate 40 and the metal reflecting plate 53.
  • FBR front-rear ratio, unit dB
  • the distance between the mounting plate 40 and the metal reflecting plate 53 corresponds to the thickness of the insulating spacer 70.
  • FBR is a value obtained by dividing the antenna gain on the front (driver's seat) side by the antenna gain on the rear (rear seat) side.
  • the antenna gain increases with an increase in the distance between the mounting plate 40 and the metal reflector 53, and is a substantially constant value in the range where the distance is 10 mm or more.
  • the FBR also increases with an increase in the distance between the mounting plate 40 and the metal reflecting plate 53, and is a substantially constant value in the range where the distance is 10 mm or more.
  • the wavelength of the transmitted transmission wave is 120 mm as described above, when the interval at which the FBR is maximum is 15 mm, and the interval of 11 mm between the substrate 20 and the mounting plate 40 is added, the antenna 28 and the metal reflector 53 The distance D is 26 mm.
  • the antenna gain on the front lobe F (driver's seat) side is maximized, and FBR is also maximized.
  • the transmission wave is radiated to the maximum, and the radiation of the transmission wave is minimized on the back surface 3a.
  • the pulse respiration detection apparatus 100 including the shield curtain (shield member) 50 has a back surface receiving distance.
  • the received power at 300 mm was -50 dBm.
  • the shield curtain (shield member) 50 of the example has a substantially trapezoidal shape, and a conductive cloth having an upper side of 400 mm, a lower side of 500 mm, and a height of 500 mm was used.
  • the metal reflector having at least a surface facing the antenna is disposed at a position where the distance to the antenna is 1 ⁇ 4 or less of the wavelength of the transmission wave, the directivity characteristics of the antenna can be controlled.
  • the detection sensitivity can be increased and the influence of the person sitting on the seat behind the subject can be suppressed.
  • the detection sensitivity can be further increased, and the influence of the person sitting on the seat behind the subject can be suppressed.
  • the pulse respiration detection device is useful when it is desired to accurately detect the pulse rate and respiration rate of a subject seated in a specific seat.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided is a pulse and respiration detecting device that can accurately detect the pulse rate and respiratory rate of a subject. A pulse and respiration detecting device (10) disposed on a seat in a vehicle comprises: a base plate (20); an antenna (28) that is disposed on one face of the base plate (20); a transceiver (25, 26) that, via the antenna (28), transmits a transmission wave to a subject seated in a seat and receives a reflected wave of the transmission wave; a detecting unit (31) to detect the phase difference between the transmission wave and the reflected wave; and a calculation processing device (34) that calculates the pulse rate and the respiratory rate of the subject on the basis of the phase difference detected by the detecting unit (31). A metal reflection plate (53) comprising at least a face that is opposite the antenna (28) is disposed in a position where the distance to the antenna (28) is no more than 1/4 of the wavelength of the transmission wave, and the face opposite the antenna (28) faces the subject.

Description

脈拍呼吸検出装置Pulse respiration detector
 本発明は、車両の座席に着座している対象者の脈拍数及び呼吸数を検出する脈拍呼吸検出装置に関する。 The present invention relates to a pulse respiration detection device that detects a pulse rate and a respiration rate of a subject who is seated in a vehicle seat.
 特許文献1は、第1及び第2のアンテナと、これらのアンテナで受信した第1及び第2の受信信号がそれぞれ入力する、第1及び第2のミキサ回路と、これらのミキサ回路へ供給されるパルス信号を生成する信号発生回路と、第1のミキサ回路が第1の受信信号とパルス信号とを混合して出力する信号、及び、第2のミキサ回路が第2の受信信号とパルス信号とを混合して出力する信号が入力される積分差動増幅回路と、第1及び第2のアンテナにパルス信号を給電して無線波を放射する場合、先のパルス信号が第1のアンテナに給電されると同時に第1のミキサ回路へ供給された後、当該第1のアンテナ及び第1のミキサ回路に与えた先のパルス信号のパルス幅と重複しない近接タイミングで次のパルス信号が第2のアンテナに給電されると同時に第2のミキサ回路へ供給されるように、信号発生回路の動作タイミング及び当該信号発生回路から第1及び第2のアンテナまでの経路を制御する制御手段と、を備えた無線センサ装置を開示している。 Patent Document 1 supplies first and second antennas, first and second mixer circuits to which first and second received signals received by these antennas are input, and these mixer circuits, respectively. A signal generation circuit that generates a pulse signal, a signal that the first mixer circuit mixes and outputs the first reception signal and the pulse signal, and a second mixer circuit that outputs the second reception signal and the pulse signal When the pulse signal is fed to the first and second antennas to radiate radio waves, the previous pulse signal is supplied to the first antenna. After being fed to the first mixer circuit at the same time as the power is supplied, the next pulse signal is supplied at a close timing that does not overlap with the pulse width of the previous pulse signal applied to the first antenna and the first mixer circuit. Powered by the antenna At the same time, a wireless sensor device comprising: control means for controlling the operation timing of the signal generation circuit and the path from the signal generation circuit to the first and second antennas so as to be supplied to the second mixer circuit Disclosure.
 この無線センサ装置によれば、放射した無線波の対象物による反射波から対象物の方位や動きを検出することができ、さらに、複数のアンテナ間で互いの無線波が干渉することなくアンテナ間のアイソレーションを確保することができ、装置の小型化が図れると共に、発振器に要求されるピークパワーを半減することができる。 According to this wireless sensor device, it is possible to detect the azimuth and movement of the object from the reflected wave of the radiated radio wave object, and between the antennas without interfering with each other's radio waves. Therefore, the device can be miniaturized and the peak power required for the oscillator can be halved.
特開2011-94997号公報JP 2011-94997 A
 特許文献1に記載の無線センサ装置を用いて、車両の座席に着座している対象者の生体情報を取得しようとした場合、装置を設置する位置や環境、及び、取得しようとする生体情報の種類によっては、アンテナの受信感度が十分ではないという場合がある。特に、脈拍数や呼吸数の変化に対応する反射波は、対象者の身体全体の動きに対応する反射波と比べて信号強度が弱いため、装置の設置位置等の条件によっては、検出に必要な強度の信号が得られない場合がある。 Using the wireless sensor device described in Patent Document 1, when trying to acquire biological information of a subject seated in a vehicle seat, the position and environment where the device is installed, and the biological information to be acquired Depending on the type, the antenna reception sensitivity may not be sufficient. In particular, the reflected wave corresponding to changes in the pulse rate and respiratory rate is weaker in signal strength than the reflected wave corresponding to the movement of the entire subject's body, so it may be necessary for detection depending on conditions such as the installation position of the device. There is a case where a signal with a strong intensity cannot be obtained.
 また、対象者を運転者とし、運転席のシートに上記無線センサ装置を設置した場合、無線センサ装置から放射される無線波は後方にも向かうため、後部座席に座っている人の動き(体動)も検出してしまうことがある。ここで、運転者よりも後部座席に座っている人の動きの方が大きい場合があり、このような場合には、運転者の脈拍数や呼吸数が正確に測定できないおそれがある。 In addition, when the subject person is a driver and the wireless sensor device is installed on the seat of the driver's seat, the radio wave radiated from the wireless sensor device is directed backward, so the movement of the person sitting on the rear seat (body Motion) may also be detected. Here, there are cases where the movement of the person sitting in the back seat is greater than that of the driver. In such a case, the driver's pulse rate and respiratory rate may not be measured accurately.
 そこで本発明は、特定の座席に着座している対象者の脈拍数及び呼吸数を正確に検出することのできる脈拍呼吸検出装置及び脈拍呼吸センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a pulse respiration detection device and a pulse respiration sensor that can accurately detect the pulse rate and respiration rate of a subject who is seated in a specific seat.
 上記課題を解決するために、本発明の脈拍呼吸検出装置は、車両内の座席に配置される脈拍呼吸検出装置であって、基板と、基板の一面側に配置されたアンテナと、アンテナを介して、座席に着座している対象者に対して送信波を送信すると共にその反射波を受信する送受信器と、送信波と反射波との位相差を検知する検波部と、検波部で検知した位相差に基づいて対象者の脈拍数及び呼吸数を算出する演算処理装置と、を設け、アンテナとの距離が送信波の波長の1/4以下の位置に、少なくともアンテナに対向する面を有する金属反射板を配置し、前記アンテナに対向する面が対象者側に向くように配置されることを特徴としている。 In order to solve the above problems, a pulse respiration detection device according to the present invention is a pulse respiration detection device arranged in a seat in a vehicle, and includes a substrate, an antenna arranged on one side of the substrate, and the antenna. A transmitter / receiver that transmits a transmission wave to the subject seated in the seat and receives the reflected wave, a detection unit that detects a phase difference between the transmission wave and the reflected wave, and a detection unit An arithmetic processing unit that calculates the pulse rate and respiration rate of the subject based on the phase difference, and has at least a surface facing the antenna at a position where the distance to the antenna is 1/4 or less of the wavelength of the transmission wave A metal reflector is disposed, and the surface facing the antenna is disposed to face the subject.
 これにより、金属反射板の外側に対するアンテナの指向特性を抑え、対象者側に対する指向特性を高めることができるため、検出感度を高めることができるとともに、対象者の後方の座席に座る者の影響を抑えることができる。 As a result, the directivity of the antenna with respect to the outside of the metal reflector can be suppressed, and the directivity with respect to the subject can be increased, so that the detection sensitivity can be increased and the influence of the person sitting in the seat behind the subject Can be suppressed.
 別言すると、金属反射板の外側への送信波の送信および後方座席から反射される反射波の受信が抑えられるため、対象者の後方の座席に座る者の動きによる対象者の脈拍呼吸検出への影響を抑えることができる。 In other words, since transmission of the transmission wave to the outside of the metal reflector and reception of the reflected wave reflected from the rear seat are suppressed, it is possible to detect the pulse respiration of the subject by the movement of the person sitting in the seat behind the subject. The influence of can be suppressed.
 また、アンテナと金属反射板との位置を所定量離しているため、対象者へ放射される送信波と金属反射板で反射され対象者へ放射された送信波との位相が略一致するため、検出感度を高めることができる。 In addition, because the position of the antenna and the metal reflector is separated by a predetermined amount, the phase of the transmitted wave radiated to the subject and the transmitted wave reflected by the metal reflector and radiated to the subject substantially matches, Detection sensitivity can be increased.
 本発明の脈拍呼吸検出装置において、金属反射板は絶縁スペーサーを介して取付板に固定されており、取付板には、その基部から基板に向けて延設された支持部材が設けられ、支持部材と基板とが互いに係合していることが好ましい。 In the pulse respiration detection device of the present invention, the metal reflector is fixed to the mounting plate via an insulating spacer, and the mounting plate is provided with a support member extending from the base to the substrate, and the support member And the substrate are preferably engaged with each other.
 これにより、アンテナと金属反射板を非導通とした上でそれらの対向距離を規定することができ、対象者へ放射される送信波と金属反射板で反射され対象者へ放射された送信波との位相を略一致させることができる。 Thereby, the antenna and the metal reflector can be made non-conductive, and the distance between them can be defined. The transmitted wave radiated to the subject and the transmitted wave reflected by the metal reflector and radiated to the subject Can be made to substantially coincide with each other.
 本発明の脈拍呼吸検出装置において、電磁波を所定値以上減衰する効果を有するシールド部材を、金属反射板の外側に配置することが好ましい。 In the pulse respiration detection device of the present invention, it is preferable that a shield member having an effect of attenuating electromagnetic waves by a predetermined value or more is disposed outside the metal reflector.
 ここで、金属反射板の外側とは、金属反射板とアンテナが対向する方向において金属反射板から遠ざかる方向である。 Here, the outside of the metal reflector is a direction away from the metal reflector in a direction in which the metal reflector and the antenna face each other.
 これにより、対象者の後方の座席への電磁波の送信及び後方の座席からの反射波の受信を抑えることができるため、検出感度をさらに高めることができるとともに、対象者の後方の座席に座る者の影響を抑えることができる。 As a result, transmission of electromagnetic waves to the seat behind the subject and reception of reflected waves from the seat behind can be suppressed, so that detection sensitivity can be further increased and a person sitting on the seat behind the subject The influence of can be suppressed.
 本発明の脈拍呼吸検出装置において、シールド部材は、金属糸を含むメッシュ材であり、対象者側を開口させた状態で、金属反射板及びアンテナを覆うように配置されていることが好ましい。 In the pulse respiration detection device of the present invention, it is preferable that the shield member is a mesh material including a metal thread, and is disposed so as to cover the metal reflector and the antenna with the subject side opened.
 これにより、対象者側については送信波の送信と反射波の受信を確実に行うことができ、対象者の後方の座席については送信波の送信と反射波の受信をより効果的に抑えることができる。 As a result, transmission of transmitted waves and reception of reflected waves can be reliably performed on the subject side, and transmission of transmitted waves and reception of reflected waves can be more effectively suppressed for seats behind the subject. it can.
 本発明の脈拍呼吸検出装置は、座席の背もたれの内部に配置されることが好ましい。
 車両内の空間を狭めることがなく、効率良く配置することができる。
The pulse respiration detection device of the present invention is preferably disposed inside the backrest of the seat.
The space in the vehicle can be arranged efficiently without narrowing the space.
 本発明によると、アンテナとの距離が電磁波の波長の1/4以下の位置に、少なくともアンテナに対向する面を有する金属反射板を配置した構成によって、アンテナの指向性を制御し、これにより、特定の座席に着座している対象者の脈拍数及び呼吸数を正確に検出することのできる脈拍呼吸検出装置を提供することができる。 According to the present invention, the antenna directivity is controlled by a configuration in which a metal reflector having at least a surface facing the antenna is disposed at a position where the distance to the antenna is ¼ or less of the wavelength of the electromagnetic wave. It is possible to provide a pulse respiration detection device capable of accurately detecting a pulse rate and a respiration rate of a subject who is seated in a specific seat.
実施形態に係る脈拍呼吸検出装置が車両の座席内に配置された状態を示す斜視図である。It is a perspective view showing the state where the pulse respiration detection device concerning an embodiment is arranged in the seat of vehicles. 実施形態に係る脈拍呼吸検出装置が車両の座席内に配置された状態を示す図であって、(A)は背面図、(B)は側面図である。It is a figure which shows the state by which the pulse respiration detection apparatus which concerns on embodiment is arrange | positioned in the seat of a vehicle, Comprising: (A) is a rear view, (B) is a side view. 実施形態に係る脈拍呼吸検出装置の配置を示す図であって、(A)は上面図、(B)は正面図である。It is a figure which shows arrangement | positioning of the pulse respiration detection apparatus which concerns on embodiment, Comprising: (A) is a top view, (B) is a front view. 実施形態に係る脈拍呼吸検出装置の検出部の構成を示す斜視図である。It is a perspective view which shows the structure of the detection part of the pulse respiration detection apparatus which concerns on embodiment. 実施形態における検出装置本体の構成を示す斜視図である。It is a perspective view which shows the structure of the detection apparatus main body in embodiment. 実施形態における検出装置本体と絶縁スペーサーと金属反射板の構成を示す側面図である。It is a side view which shows the structure of the detection apparatus main body in the embodiment, an insulation spacer, and a metal reflecting plate. 実施形態の検出装置本体における基板の構成を示す図であって、(A)は正面図、(B)は側面図である。It is a figure which shows the structure of the board | substrate in the detection apparatus main body of embodiment, Comprising: (A) is a front view, (B) is a side view. 実施形態における検出装置本体の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the detection apparatus main body in embodiment. 検出部から放射される電磁波を背もたれの背面側で受信した受信電力を示し、シールドカーテン(シールド部材)がない状態で受信した電力を示す表である。It is a table | surface which shows the received electric power which received the electromagnetic waves radiated | emitted from a detection part on the back side of a backrest, and received the electric power in the state without a shield curtain (shield member). 金属反射板のサイズを変えた場合に、検出部から放射される電磁波を背もたれの背面側で受信した受信電力を示すグラフである。It is a graph which shows the received electric power which received the electromagnetic waves radiated | emitted from a detection part on the back side of a backrest when the size of a metal reflecting plate was changed. 実施例の脈拍呼吸検出装置におけるアンテナの指向特性とインピーダンス特性を示す図である。It is a figure which shows the directivity characteristic and impedance characteristic of an antenna in the pulse respiration detection apparatus of an Example. 比較例の脈拍呼吸検出装置におけるアンテナの指向特性とインピーダンス特性を示す図である。It is a figure which shows the directivity characteristic and impedance characteristic of the antenna in the pulse respiration detection apparatus of a comparative example. 取付板と金属反射板の間隔に対するアンテナ利得の変化を示すグラフである。It is a graph which shows the change of the antenna gain with respect to the space | interval of a mounting plate and a metal reflecting plate. 取付板と金属反射板の間隔に対するFBRの変化を示すグラフである。It is a graph which shows the change of FBR with respect to the space | interval of a mounting plate and a metal reflecting plate.
 以下、本発明の実施形態に係る脈拍呼吸検出装置について図面を参照しつつ詳しく説明する。 Hereinafter, a pulse respiration detection device according to an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本実施形態に係る脈拍呼吸検出装置100が車両の座席(運転席1)内に配置された状態を示す斜視図である。図2は、本実施形態に係る脈拍呼吸検出装置100が車両の座席(運転席1)内に配置された状態を示す図であって、(A)は背面図、(B)は側面図である。図1に示すように、本実施形態に係る脈拍呼吸検出装置100は、検出部60とシールドカーテン50とを備える。本実施形態では、シールドカーテン50を備えた形態を示すが、シールドカーテン50を設けずに、検出装置本体10のみからなる形態も可能である。また、本実施形態では、運転席1に設けた形態を示すが、これ以外に、助手席や車両の後部座席にも適用できる。 FIG. 1 is a perspective view showing a state in which a pulse respiration detection device 100 according to the present embodiment is arranged in a vehicle seat (driver's seat 1). FIG. 2 is a view showing a state in which the pulse respiration detection device 100 according to the present embodiment is arranged in a vehicle seat (driver's seat 1), where (A) is a rear view and (B) is a side view. is there. As shown in FIG. 1, the pulse respiration detection device 100 according to this embodiment includes a detection unit 60 and a shield curtain 50. In this embodiment, although the form provided with the shield curtain 50 is shown, the form which consists only of the detection apparatus main body 10 without providing the shield curtain 50 is also possible. Moreover, although the form provided in the driver's seat 1 is shown in the present embodiment, the present invention can be applied to a passenger seat and a rear seat of the vehicle.
 検出部60は、車両内の運転席1の背もたれ(バックシート)3の内部に配置されている。検出部60からは、運転席1の座面2に着座している対象者5(運転者)に対して、背もたれ3の前面3b側から、検査信号波としての電磁波Waが照射される。電磁波Waは対象者5によって反射され、その反射波Wbが検出部60によって受信される。検出部60では、電磁波Waと反射波Wbとの位相差に基づいて、対象者5の脈拍数及び呼吸数が算出される。 The detecting unit 60 is disposed inside the backrest (back seat) 3 of the driver's seat 1 in the vehicle. From the detection unit 60, an electromagnetic wave Wa as an inspection signal wave is irradiated from the front surface 3 b side of the backrest 3 to the subject 5 (driver) sitting on the seat surface 2 of the driver seat 1. The electromagnetic wave Wa is reflected by the subject 5, and the reflected wave Wb is received by the detection unit 60. In the detection unit 60, the pulse rate and the respiratory rate of the subject 5 are calculated based on the phase difference between the electromagnetic wave Wa and the reflected wave Wb.
 シールドカーテン50(シールド部材)は、例えば布に金属糸を編み込んでメッシュ状とした構成であり、電磁波を所定値以上減衰させる効果を有する。図1、図2に示すように、シールドカーテン50は、背もたれ3の背面3aにおいて、少なくとも検出部60の背面に対応する範囲を覆うように配置されている。別言すると、シールドカーテン50は、背もたれ3のうち、前面3b側を開口させた状態で、検出部60を覆うように背面3a側に配置されている。シールドカーテン50をこのように配置することにより、運転席1の後方への電磁波Waの送信、及び、後方からの反射波Wbの受信を抑えることができ、したがって、後部座席に座っている者からの反射波を抑えることができるため、運転席に着座している対象者5からの反射波に基づいて、対象者5の脈拍数及び呼吸数を正確に検出することが可能となる。ここで、シールドカーテン50の金属糸に用いる金属として銅を用いると、減衰性を高めることができるため好ましい。 The shield curtain 50 (shield member) has, for example, a configuration in which a metal thread is knitted into a cloth to form a mesh, and has an effect of attenuating electromagnetic waves by a predetermined value or more. As shown in FIGS. 1 and 2, the shield curtain 50 is arranged on the back surface 3 a of the backrest 3 so as to cover at least a range corresponding to the back surface of the detection unit 60. In other words, the shield curtain 50 is disposed on the back surface 3a side so as to cover the detection unit 60 in a state where the front surface 3b side of the backrest 3 is opened. By arranging the shield curtain 50 in this way, the transmission of the electromagnetic wave Wa to the rear of the driver's seat 1 and the reception of the reflected wave Wb from the rear can be suppressed, and therefore, from a person sitting in the rear seat Therefore, the pulse rate and respiratory rate of the subject 5 can be accurately detected based on the reflected wave from the subject 5 sitting in the driver's seat. Here, it is preferable to use copper as the metal used for the metal yarn of the shield curtain 50 because the attenuation can be increased.
 図3は、本実施形態に係る脈拍呼吸検出装置100の配置を示す図であって、(A)は上面図、(B)は正面図である。図4は、本実施形態に係る脈拍呼吸検出装置100の検出部60の構成を示す斜視図である。図3(A)と図4は、各部材を組み上げる前の状態を示している。 FIG. 3 is a view showing the arrangement of the pulse respiration detection device 100 according to the present embodiment, where (A) is a top view and (B) is a front view. FIG. 4 is a perspective view illustrating a configuration of the detection unit 60 of the pulse respiration detection apparatus 100 according to the present embodiment. 3A and 4 show a state before assembling the members.
 図3(A)及び図4に示すように、検出部60は、背もたれ3の背面3aから前面3bへ順に配置された、金属反射板53と、スペーサー51と、固定板52とを備え、金属反射板53の前面53b上、すなわち、背もたれ3の前面3b側には検出装置本体10が絶縁スペーサー70を介して配置されている。 As shown in FIGS. 3A and 4, the detection unit 60 includes a metal reflection plate 53, a spacer 51, and a fixing plate 52 that are arranged in order from the back surface 3 a to the front surface 3 b of the backrest 3. On the front surface 53 b of the reflecting plate 53, that is, on the front surface 3 b side of the backrest 3, the detection device main body 10 is disposed via an insulating spacer 70.
 図4に示すように、スペーサー51は、金属反射板53の外縁形状に対応した枠状をなし、中央に開口51aが形成されている。スペーサー51のY1-Y2方向における厚みは、金属反射板53の前面53b上にスペーサー51を配置したときに、Y1方向において検出装置本体10がスペーサー51より突出しないように設定されている。固定板52は、略中央に開口52aを設けた板状部材であって、スペーサー51と略同一の外形形状を備える。固定板52、スペーサー51、及び金属反射板53は、Y1-Y2方向に順に重ねられ、接着等により互いに固定される。このとき、固定板52の開口52a、及び、スペーサー51の開口51aが金属反射板53上の検出装置本体10に対応する位置に設けられているため、検出装置本体10から送信された送信波及び検出装置本体10に向かう反射波は、開口51a、52aを通る。 As shown in FIG. 4, the spacer 51 has a frame shape corresponding to the outer edge shape of the metal reflector 53, and an opening 51a is formed at the center. The thickness of the spacer 51 in the Y1-Y2 direction is set so that the detection device body 10 does not protrude from the spacer 51 in the Y1 direction when the spacer 51 is disposed on the front surface 53b of the metal reflector 53. The fixed plate 52 is a plate-like member provided with an opening 52a at substantially the center, and has substantially the same outer shape as the spacer 51. The fixing plate 52, the spacer 51, and the metal reflecting plate 53 are sequentially stacked in the Y1-Y2 direction, and are fixed to each other by bonding or the like. At this time, since the opening 52a of the fixed plate 52 and the opening 51a of the spacer 51 are provided at positions corresponding to the detection device main body 10 on the metal reflection plate 53, the transmission wave transmitted from the detection device main body 10 and The reflected wave toward the detection device main body 10 passes through the openings 51a and 52a.
 図5は、検出装置本体10の構成を示す斜視図である。図6は、検出装置本体10と絶縁スペーサー70と金属反射板53の構成を示す側面図である。 FIG. 5 is a perspective view showing a configuration of the detection apparatus main body 10. FIG. 6 is a side view illustrating the configuration of the detection device main body 10, the insulating spacer 70, and the metal reflector 53.
 図5と図6に示すように、検出装置本体10は、基板20と取付板40を備える。さらに、図6に示すように、取付板40の背面43aでは、絶縁スペーサー70の一面側が接着剤等で固定され、また、金属反射板53の前面53bで絶縁スペーサー70の他面側が接着剤等で固定されている。取付板40及び金属反射板53は同一の金属材料としてもよいが、例えば、洋白とアルミニウムといった別素材を使用してもよい。また、絶縁スペーサー70は非導電性の素材や誘電体でもよく、例えばABSを使用してもよい。取付板40の主面43(基部)のZ1-Z2方向両端には、基板20に向けて延びるように切り起こし部41、42(支持部材)が設けられている。この切り起こし部41、42の先端部41a、41b、42a、42bと基板20は、後述のとおり、互いに係合されている。 As shown in FIGS. 5 and 6, the detection device main body 10 includes a substrate 20 and a mounting plate 40. Further, as shown in FIG. 6, on the back surface 43a of the mounting plate 40, one surface side of the insulating spacer 70 is fixed with an adhesive or the like, and the other surface side of the insulating spacer 70 on the front surface 53b of the metal reflecting plate 53 is an adhesive or the like. It is fixed with. The mounting plate 40 and the metal reflector 53 may be made of the same metal material, but for example, different materials such as white and aluminum may be used. Further, the insulating spacer 70 may be a non-conductive material or a dielectric, and for example, ABS may be used. At both ends in the Z1-Z2 direction of the main surface 43 (base portion) of the mounting plate 40, cut-and-raised portions 41 and 42 (support members) are provided so as to extend toward the substrate 20. The tip portions 41a, 41b, 42a, 42b of the cut and raised portions 41, 42 and the substrate 20 are engaged with each other as will be described later.
 これによって、図6に示すように、基板20が取付板40に支持され、基板20の背面20aと金属反射板53の前面53bが互いに対向し、その距離がDとなる。この距離Dは、より具体的には、基板20に設けたアンテナ28と金属反射板53との距離であって、RF送信部25が送信する送信波の波長の1/4以下に設定されている。検出装置本体10は、基板20の前面20b側を対象者5側に向け、金属反射板53の背面53aを背もたれ3の背面3a側に向けて、背もたれ3内に配置される。 As a result, as shown in FIG. 6, the substrate 20 is supported by the mounting plate 40, the back surface 20a of the substrate 20 and the front surface 53b of the metal reflecting plate 53 face each other, and the distance is D. More specifically, the distance D is the distance between the antenna 28 provided on the substrate 20 and the metal reflector 53, and is set to ¼ or less of the wavelength of the transmission wave transmitted by the RF transmitter 25. Yes. The detection device main body 10 is arranged in the backrest 3 with the front surface 20b side of the substrate 20 facing the subject 5 side and the back surface 53a of the metal reflector 53 facing the back surface 3a side of the backrest 3.
 図7は、検出装置本体10における基板20の構成を示す図であって、(A)は正面図、(B)は側面図である。図7(A)に示すように、基板20は、平面視矩形状に形成され、その前面20bには、外周縁部を除く領域には銅泊からなるグランドパターン22が形成されている。ここで、基板20の全体形状は、図7(A)、(B)に示す形状に限定されず、実機器に組み込むために周辺機器の形状に合わせたその他の形状でも良い。以下の説明では、基板20の下側の長辺を第1の辺部L1、第1の辺部L1に対向する上側の長辺を第2の辺部L2、第1の辺部L1に隣接する2つの短辺を第3、第4の辺部L3、L4とする。 7A and 7B are diagrams showing the configuration of the substrate 20 in the detection apparatus main body 10, wherein FIG. 7A is a front view and FIG. 7B is a side view. As shown in FIG. 7A, the substrate 20 is formed in a rectangular shape in plan view, and on the front surface 20b, a ground pattern 22 made of copper is formed in a region excluding the outer peripheral edge. Here, the overall shape of the substrate 20 is not limited to the shape shown in FIGS. 7A and 7B, and may be other shapes that match the shape of the peripheral device for incorporation into the actual device. In the following description, the lower long side of the substrate 20 is adjacent to the first side L1, the upper long side opposite to the first side L1 is adjacent to the second side L2, and the first side L1. These two short sides are referred to as third and fourth side portions L3 and L4.
 基板20の前面20bの第1の辺部L1の近傍には、グランドパターン22の下側外縁部を一部残すようにして、第1の辺部L1に沿って平行にスロット23が形成されている。スロット23は、所定幅で帯状に延びる平面視長方形状に形成されると共に、基板20の第1の辺部L1の中心から左右方向(Z1-Z2方向)に同じ長さに形成されている。基板20の背面20aにおいてスロット23に対応する位置には、給電部となる給電ライン24が設けられている。給電ライン24は、2本のライン給電部24a、24bに分岐されており、2本のライン給電部24a、24bがスロット23の長手方向(Z1-Z2方向)の中心を挟んで対称な位置においてスロット23の長手方向と直交する方向(X1-X2方向)に架け渡されている。給電ライン24は、基板20の背面20aに設けられた回路部30に接続されている。スロット23、給電ライン24、及びライン給電部24a、24bはアンテナ28を構成し、このアンテナ28を介して対象者5に高周波(RF)の送信波(電磁波)を照射させる送受信器としてのRF送信部25、及び、対象者5からの反射波を受信する送受信器としてのRF受信部26に接続されている。RF送信部25とRF受信部26は、回路部30内に設けられている。 In the vicinity of the first side portion L1 of the front surface 20b of the substrate 20, a slot 23 is formed in parallel along the first side portion L1 so as to leave a part of the lower outer edge portion of the ground pattern 22. Yes. The slot 23 is formed in a rectangular shape in plan view extending in a strip shape with a predetermined width, and is formed in the same length in the left-right direction (Z1-Z2 direction) from the center of the first side portion L1 of the substrate 20. A power supply line 24 serving as a power supply unit is provided at a position corresponding to the slot 23 on the back surface 20 a of the substrate 20. The power supply line 24 is branched into two line power supply units 24a and 24b, and the two line power supply units 24a and 24b are symmetrically located with respect to the center in the longitudinal direction (Z1-Z2 direction) of the slot 23. It is bridged in a direction (X1-X2 direction) orthogonal to the longitudinal direction of the slot 23. The power supply line 24 is connected to a circuit unit 30 provided on the back surface 20 a of the substrate 20. The slot 23, the power supply line 24, and the line power supply units 24 a and 24 b constitute an antenna 28, and RF transmission as a transceiver that irradiates the subject 5 with a high-frequency (RF) transmission wave (electromagnetic wave) via the antenna 28. The unit 25 and the RF receiver 26 as a transmitter / receiver that receives a reflected wave from the subject 5 are connected. The RF transmitter 25 and the RF receiver 26 are provided in the circuit unit 30.
 基板20の第3、第4の辺部L3、L4の側方外縁部は、第3、第4の辺部L3、L4に沿って銅箔が除去され、銅箔除去領域A1、A2がそれぞれ形成されている。銅箔除去領域A1には、切り起こし部41の先端部41a、41bが挿入される貫通孔部26a、26bが形成され、銅箔除去領域A2には、切り起こし部42の先端部42a、42bが挿入される貫通孔部27a、27bが形成されている。貫通孔部26a、26b、27a、27bに対して、先端部41a、41b、42a、42bをそれぞれ係合・固定することによって、基板20と取付板40を一体化している。 The lateral outer edge portions of the third and fourth side portions L3 and L4 of the substrate 20 have the copper foil removed along the third and fourth side portions L3 and L4, and the copper foil removal regions A1 and A2 are respectively formed. Is formed. Through hole portions 26a and 26b into which the tip portions 41a and 41b of the cut and raised portion 41 are inserted are formed in the copper foil removal region A1, and the tip portions 42a and 42b of the cut and raised portion 42 are formed in the copper foil removal region A2. Through- hole portions 27a and 27b into which are inserted are formed. The substrate 20 and the mounting plate 40 are integrated by engaging and fixing the tip portions 41a, 41b, 42a, 42b to the through- hole portions 26a, 26b, 27a, 27b, respectively.
 図8は、検出装置本体10の回路構成を示すブロック図である。図8に示すように、回路部30は、RF送信部25、RF受信部26、検波回路31、バンドパスフィルタ32、ローパスフィルタ33、及び制御部34を備える。 FIG. 8 is a block diagram showing a circuit configuration of the detection apparatus main body 10. As illustrated in FIG. 8, the circuit unit 30 includes an RF transmission unit 25, an RF reception unit 26, a detection circuit 31, a bandpass filter 32, a lowpass filter 33, and a control unit 34.
 RF送信部25では、制御部34からの指示信号にしたがって、所定周波数の送信信号(搬送波信号)を含む検査信号波としての送信波Waが生成され、対象者5に向けてアンテナ28より送信される。送信波Waに含まれる送信信号はRF帯域の高周波数の電波であって、例えば2GHz以上の高周波数であることが好ましい。また、送信波Waの周波数、位相、振幅その他の情報は検波回路31に与えられる。 In the RF transmission unit 25, a transmission wave Wa as a test signal wave including a transmission signal (carrier wave signal) of a predetermined frequency is generated according to the instruction signal from the control unit 34 and transmitted from the antenna 28 toward the subject 5. The The transmission signal included in the transmission wave Wa is a high-frequency radio wave in the RF band, and preferably has a high frequency of, for example, 2 GHz or more. Further, the frequency, phase, amplitude and other information of the transmission wave Wa are given to the detection circuit 31.
 送信波Waは対象者5によって反射され、その反射波Wbはアンテナ28で受信され、RF受信部26に供給される。反射波Wbは、対象者5に照射された送信波Waが、対象者5で生じている脈拍数及び呼吸数の変化に対応して変調されて反射された信号波である。 The transmitted wave Wa is reflected by the subject 5, and the reflected wave Wb is received by the antenna 28 and supplied to the RF receiver 26. The reflected wave Wb is a signal wave reflected and modulated by the transmission wave Wa applied to the subject 5 in accordance with changes in the pulse rate and respiratory rate generated in the subject 5.
 RF受信部26で反射波Wbを受信して得られた受信信号S1は、検波部としての検波回路31に与えられる。検波回路31では、送信波Waの情報と受信信号S1から、送信波Waと反射波Wbとの位相差を示す信号としての検波信号S2が得られる。 The reception signal S1 obtained by receiving the reflected wave Wb by the RF receiving unit 26 is given to a detection circuit 31 as a detection unit. In the detection circuit 31, a detection signal S2 as a signal indicating a phase difference between the transmission wave Wa and the reflected wave Wb is obtained from the information of the transmission wave Wa and the reception signal S1.
 バンドパスフィルタ32は、例えば0.7~3Hzの周波数帯の信号を抽出するものであり、検波信号S2から、主に脈拍数に対応する測定信号S4が抽出されて制御部7に与えられる。 The band-pass filter 32 extracts a signal in a frequency band of 0.7 to 3 Hz, for example, and a measurement signal S4 mainly corresponding to the pulse rate is extracted from the detection signal S2 and given to the control unit 7.
 ローパスフィルタ33は、例えば0.7Hz未満または0.7Hz以下の周波数帯の信号抽出するものであり、検波信号S2から、主に呼吸数に対応する測定信号S5が抽出されて制御部34に与えられる。 The low-pass filter 33 extracts a signal having a frequency band of less than 0.7 Hz or less than 0.7 Hz, for example, and a measurement signal S5 mainly corresponding to the respiratory rate is extracted from the detection signal S2 and given to the control unit 34. It is done.
 制御部34は、演算処理装置として、CPUを主体とするほか、メモリやA/D変換部などを含んで構成される。上記測定信号S4、S5はA/D変換部でディジタル値に変換されてCPUに与えられる。CPUでは、予めインストールされているソフトウエアに基づいて演算処理が行われ、検波回路31で検知した位相差に基づいて対象者5の脈拍数及び呼吸数を算出する。 The control unit 34 includes a CPU, a memory, an A / D conversion unit, and the like as an arithmetic processing unit. The measurement signals S4 and S5 are converted into digital values by the A / D converter and supplied to the CPU. The CPU performs arithmetic processing based on software installed in advance, and calculates the pulse rate and respiratory rate of the subject 5 based on the phase difference detected by the detection circuit 31.
 ここで、基板20上に設けられた、RF送信部25、RF受信部26、及び検波回路31は脈拍呼吸センサを構成する。 Here, the RF transmitter 25, the RF receiver 26, and the detection circuit 31 provided on the substrate 20 constitute a pulse respiration sensor.
 以下、図9~図14に基づいて、本実施形態の脈拍呼吸検出装置100による効果について説明する。以下の実施例及び比較例において、検出装置本体10は、上述の実施形態と同様に、車両内の運転席1の背もたれ3の内部において、基板20側を対象者5側に向けて配置される。実施例及び比較例のいずれにおいても、RF送信部は、2.45GHz、波長120mmの送信波を送信している。 Hereinafter, the effects of the pulse respiration detection device 100 of the present embodiment will be described with reference to FIGS. In the following examples and comparative examples, the detection device main body 10 is arranged with the board 20 side facing the subject 5 side in the backrest 3 of the driver's seat 1 in the vehicle, as in the above-described embodiment. . In both the example and the comparative example, the RF transmission unit transmits a transmission wave of 2.45 GHz and a wavelength of 120 mm.
 実施例の検出装置本体10では、金属反射板53として、200mm×200mm×厚さ1mmのサイズの銅板を用いている。また、基板20と取付板40は距離11mmで固定され、絶縁スペーサー70の厚みを15mmとして、アンテナ28と金属反射板53の距離Dを26mmとした。つまり、この距離Dは、概ね、送信波の波長の1/4となっている。比較例の検出装置本体は、上記実施例から金属反射板53を除いた構成を備える。 In the detection apparatus main body 10 of the embodiment, a copper plate having a size of 200 mm × 200 mm × thickness 1 mm is used as the metal reflector 53. The substrate 20 and the mounting plate 40 are fixed at a distance of 11 mm, the thickness of the insulating spacer 70 is 15 mm, and the distance D between the antenna 28 and the metal reflector 53 is 26 mm. That is, this distance D is approximately ¼ of the wavelength of the transmission wave. The detection device main body of the comparative example has a configuration in which the metal reflector 53 is removed from the above embodiment.
 図9は検出部60から放射される電磁波を、背もたれ3の背面3a側で受信した受信電力を示し、シールドカーテン(シールド部材)50がない状態で受信した電力を示す表である。ここで、RF送信部25の送信電力は0dBmとして、検出部60の検出装置本体10からの背面3a側に接地した距離(背面受信距離)を変えて計測した。「背面受信距離」は検出装置本体10から基準受信アンテナまでの距離(単位mm)であり、受信電力(単位dBm)は電力の測定装置のひとつであるスペクトラムアナライザで計測した。また、「金属反射板無し」は比較例であり、「金属反射板有り(200×200mm)」は実施例である。 FIG. 9 is a table showing the received power of the electromagnetic wave radiated from the detection unit 60 received on the back surface 3a side of the backrest 3 and the power received without the shield curtain (shield member) 50. Here, the transmission power of the RF transmission unit 25 was set to 0 dBm, and measurement was performed by changing the distance (back surface reception distance) of the detection unit 60 grounded from the detection device body 10 to the back surface 3a side. The “rear surface receiving distance” is a distance (unit: mm) from the detection apparatus body 10 to the reference receiving antenna, and the received power (unit: dBm) is measured by a spectrum analyzer which is one of power measuring apparatuses. Further, “without metal reflector” is a comparative example, and “with metal reflector (200 × 200 mm)” is an example.
 図9から分かるように、背面3a側に放射される電力は比較例より実施例の方が12~20dB以上小さい。運転席1の後部座席に乗員(後部乗員とよぶ)がいた場合、検出装置本体10に近い後部乗員の部位は膝になり、この動き(体動)の影響をなくす必要があった。発明者が実施した実験では、後部乗員の膝が背面受信距離300mmにあるとき受信電力が約-48dBm以下であればその体動の影響がないことが判明した。図9に示すように、シールドカーテン(シールド部材)50がない状態の実施例で背面受信距離が300mmでは背面の放射電力を更に8dB以上減衰させる必要がある。 As can be seen from FIG. 9, the power radiated to the back surface 3a side is smaller by 12 to 20 dB than in the comparative example. When an occupant (referred to as a rear occupant) is present in the rear seat of the driver's seat 1, the rear occupant part near the detection device main body 10 becomes a knee, and it is necessary to eliminate the influence of this movement (body movement). In an experiment conducted by the inventor, it was found that when the rear passenger's knee is at a rear receiving distance of 300 mm and the received power is about −48 dBm or less, there is no influence of the body movement. As shown in FIG. 9, in the embodiment in which the shield curtain (shield member) 50 is not provided, the back surface radiated power needs to be further attenuated by 8 dB or more when the back surface receiving distance is 300 mm.
 図10は、金属反射板53のサイズを変えた場合に、検出部60から放射される電磁波を、背もたれ3の背面3a側で受信した受信電力を示し、図9と同様に、シールドカーテン(シールド部材)50がない状態で受信した電力を示すグラフである。図10において、「金属反射板無し」は上述の実施形態の構成から金属反射板53を除いた構成であって、図9に示す比較例に対応する。「100×100mm」、「150×150mm」、及び「200×200mm」は、使用する金属反射板53の平面形状をそれぞれ示しており、厚さは1mmで共通している。「200×200mm」は、図9に示す実施例に対応する。背面受信距離、電力の測定装置及び測定対象量は、図9に示す実施例・比較例の場合と同様である。 FIG. 10 shows the received power when the electromagnetic wave radiated from the detection unit 60 is received on the back surface 3a side of the backrest 3 when the size of the metal reflector 53 is changed. Similarly to FIG. (Member) It is a graph which shows the electric power received in the state without 50. In FIG. 10, “without metal reflector” is a configuration obtained by removing the metal reflector 53 from the configuration of the above-described embodiment, and corresponds to the comparative example shown in FIG. “100 × 100 mm”, “150 × 150 mm”, and “200 × 200 mm” indicate the planar shape of the metal reflector 53 to be used, and the thickness is 1 mm in common. “200 × 200 mm” corresponds to the embodiment shown in FIG. The rear receiving distance, the power measuring device, and the measurement target amount are the same as those in the example and comparative example shown in FIG.
 図10の各実施例の受信電力を背面受信距離300mmで比較して分かるように、3つの金属反射板53の形状のなかで、実施例とした「200×200mm」で運転席1の後方に送信される送信波を大きく減衰させることができる。 As can be seen by comparing the received power of each embodiment of FIG. 10 at the rear receiving distance of 300 mm, among the shapes of the three metal reflectors 53, “200 × 200 mm” as an embodiment is placed behind the driver's seat 1. The transmitted wave to be transmitted can be greatly attenuated.
 図11(A)と図11(B)は、実施例の検出装置本体10におけるアンテナ28の指向特性を示す図であり、図11(C)はアンテナ28のインピーダンス特性を示す図である。なお、図11(A)~(C)のいずれの特性も、絶縁スペーサー70と金属反射板53を含めた特性である。図12(A)と図12(B)は、比較例の検出装置本体10におけるアンテナ28の指向特性を示す図であり、図12(C)はアンテナ28のインピーダンス特性を示す図である。図11(A)と図12(A)はX1-X2方向に直交する平面における指向特性、図11(B)と図12(B)はZ1-Z2方向に直交する平面における指向特性、図11(C)と図12(C)は共振特性を示している。図11(A)、(B)、及び、図12(A)、(B)において、その原点は図5に示すX1-Y1-Z1直交座標系の原点の位置であり、基板20の前面20bの中心にあたる。図11(A)、図12(A)において、実線(GainPhi)は主偏波の指向特性、破線(GainTheta)は交差偏波の指向特性を示している。一方、図11(B)、図12(B)において、実線(GainPhi)は交差偏波の指向特性、破線(GainTheta)は主偏波の指向特性を示している。 11 (A) and 11 (B) are diagrams showing the directivity characteristics of the antenna 28 in the detection apparatus body 10 of the embodiment, and FIG. 11 (C) is a diagram showing the impedance characteristics of the antenna 28. 11A to 11C includes the insulating spacer 70 and the metal reflector 53. 12A and 12B are diagrams illustrating the directivity characteristics of the antenna 28 in the detection device body 10 of the comparative example, and FIG. 12C is a diagram illustrating the impedance characteristics of the antenna 28. 11A and 12A are directivity characteristics in a plane orthogonal to the X1-X2 direction, and FIGS. 11B and 12B are directivity characteristics in a plane orthogonal to the Z1-Z2 direction. (C) and FIG. 12 (C) show the resonance characteristics. 11A, 11B, and 12A, 12B, the origin is the position of the origin of the X1-Y1-Z1 orthogonal coordinate system shown in FIG. The center of In FIGS. 11A and 12A, the solid line (GainPhi) indicates the directional characteristic of the main polarization, and the broken line (GainTheta) indicates the directional characteristic of the cross polarization. On the other hand, in FIGS. 11B and 12B, a solid line (GainPhi) indicates the cross-polarization directivity and a broken line (GainTheta) indicates the main polarization directivity.
 図12(A)、(B)に示すように、金属反射板53を設けない場合には、基板20に垂直なY1-Y2方向の指向特性が強く出ており、全方向指向特性となっていることがわかる。また、図12(C)に示すように、アンテナの共振周波数である共振ポイントは約2.7GHzである。 As shown in FIGS. 12A and 12B, when the metal reflector 53 is not provided, the directivity characteristics in the Y1-Y2 direction perpendicular to the substrate 20 are strong, and the omnidirectional directivity characteristics are obtained. I understand that. Further, as shown in FIG. 12C, the resonance point that is the resonance frequency of the antenna is about 2.7 GHz.
 一方、図11(A)、(B)に示すように、金属反射板を設けた場合には、基板20に垂直なY1-Y2方向のうち、バックローブB(後部座席)側の指向特性が抑えられ、フロントローブF(運転席)側にのみ指向特性が強く出ており、前方指向特性となっていることがわかる。また、サイドローブS側(Y1-Y2方向に直交する平面方向)についても、比較例と比べると指向特性が抑えられていることがわかる。また、図11(C)に示すように、RF送信部25のアンテナの共振周波数である共振ポイントP1は約2.45GHzである。 On the other hand, as shown in FIGS. 11A and 11B, when the metal reflector is provided, the directivity characteristic on the back lobe B (rear seat) side in the Y1-Y2 direction perpendicular to the substrate 20 is It can be seen that the directivity characteristic is strong only on the front lobe F (driver's seat) side, and the front directivity characteristic is obtained. It can also be seen that the directivity characteristics are suppressed on the side lobe S side (the plane direction perpendicular to the Y1-Y2 direction) as compared with the comparative example. As shown in FIG. 11C, the resonance point P1, which is the resonance frequency of the antenna of the RF transmitter 25, is about 2.45 GHz.
 図13は、取付板40と金属反射板53の間隔に対するアンテナ利得(Peak Gain、単位dBi)の測定値を示すグラフである。図14は、取付板40と金属反射板53の間隔に対するFBR(前後比、単位dB)の測定値を示すグラフである。ここで、取付板40と金属反射板53の間隔は、絶縁スペーサー70の厚みに相当する。また、FBRは、前方(運転席)側におけるアンテナ利得を後方(後部座席)側におけるアンテナ利得で除した値である。 FIG. 13 is a graph showing measured values of antenna gain (Peak Gain, unit dBi) with respect to the distance between the mounting plate 40 and the metal reflector 53. FIG. 14 is a graph showing measured values of FBR (front-rear ratio, unit dB) with respect to the distance between the mounting plate 40 and the metal reflecting plate 53. Here, the distance between the mounting plate 40 and the metal reflecting plate 53 corresponds to the thickness of the insulating spacer 70. FBR is a value obtained by dividing the antenna gain on the front (driver's seat) side by the antenna gain on the rear (rear seat) side.
 図13に示すように、アンテナ利得は、取付板40と金属反射板53の間隔の増加とともに増加し、間隔が10mm以上の範囲では略一定の値となっている。また、図14に示すように、FBRも、取付板40と金属反射板53の間隔の増加とともに増加し、間隔が10mm以上の範囲では略一定の値となっている。ここで、送信した送信波の波長は上述のとおり120mmであるから、FBRが最大となる間隔が15mmのとき、基板20と取付板40の間隔11mmを加えると、アンテナ28と金属反射板53の距離Dは26mmとなる。つまり、距離Dが概ね、送信波の波長の1/4となるときにフロントローブF(運転席)側のアンテナ利得が最大となり、FBRも最大なるため運転席1の前面3bに検出部60の送信波が最大限に放射され、かつ、背面3aに送信波の放射が最小となる。 As shown in FIG. 13, the antenna gain increases with an increase in the distance between the mounting plate 40 and the metal reflector 53, and is a substantially constant value in the range where the distance is 10 mm or more. Further, as shown in FIG. 14, the FBR also increases with an increase in the distance between the mounting plate 40 and the metal reflecting plate 53, and is a substantially constant value in the range where the distance is 10 mm or more. Here, since the wavelength of the transmitted transmission wave is 120 mm as described above, when the interval at which the FBR is maximum is 15 mm, and the interval of 11 mm between the substrate 20 and the mounting plate 40 is added, the antenna 28 and the metal reflector 53 The distance D is 26 mm. That is, when the distance D is approximately ¼ of the wavelength of the transmission wave, the antenna gain on the front lobe F (driver's seat) side is maximized, and FBR is also maximized. The transmission wave is radiated to the maximum, and the radiation of the transmission wave is minimized on the back surface 3a.
 上述の図9~図14はシールドカーテン(シールド部材)50がない状態での検出部60を元に説明したが、シールドカーテン(シールド部材)50を含めた脈拍呼吸検出装置100では、背面受信距離300mmでの受信電力が-50dBmが得られた。つまり、後部乗員の膝が背面受信距離300mmにあるとき受信電力が約-48dBm以下となったので、その体動の影響がない状態にできる。ここで、実施例のシールドカーテン(シールド部材)50は略台形であり、上辺が400mm、下辺500mm、高さ500mmの導電性布を使用した。 9 to 14 described above based on the detection unit 60 in the absence of the shield curtain (shield member) 50, the pulse respiration detection apparatus 100 including the shield curtain (shield member) 50 has a back surface receiving distance. The received power at 300 mm was -50 dBm. In other words, when the rear occupant's knee is at a rear receiving distance of 300 mm, the received power is about −48 dBm or less, so that the body movement is not affected. Here, the shield curtain (shield member) 50 of the example has a substantially trapezoidal shape, and a conductive cloth having an upper side of 400 mm, a lower side of 500 mm, and a height of 500 mm was used.
 以上のように構成されたことから、上記実施形態によれば、次の効果を奏する。
(1)アンテナとの距離が送信波の波長の1/4以下の位置に、少なくともアンテナに対向する面を有する金属反射板を配置したことにより、アンテナの指向特性を制御することができるため、検出感度を高めることができるとともに、対象者の後方の座席に座る者の影響を抑えることができる。
(2)アンテナと金属反射板の間、または金属反射板の外側にシールドカーテンを配置することによって、対象者の後方の座席への送信波の送信及び後方の座席からの反射波の受信を抑えることができるため、検出感度をさらに高めることができるとともに、対象者の後方の座席に座る者の影響を抑えることができる。
With the configuration described above, the following effects are achieved according to the above embodiment.
(1) Since the metal reflector having at least a surface facing the antenna is disposed at a position where the distance to the antenna is ¼ or less of the wavelength of the transmission wave, the directivity characteristics of the antenna can be controlled. The detection sensitivity can be increased and the influence of the person sitting on the seat behind the subject can be suppressed.
(2) By arranging a shield curtain between the antenna and the metal reflector or outside the metal reflector, it is possible to suppress transmission of transmission waves to the seat behind the subject and reception of reflected waves from the seat behind. Therefore, the detection sensitivity can be further increased, and the influence of the person sitting on the seat behind the subject can be suppressed.
 本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
 以上のように、本発明に係る脈拍呼吸検出装置は、特定の座席に着座している対象者の脈拍数及び呼吸数を正確に検出したい場合に有用である。 As described above, the pulse respiration detection device according to the present invention is useful when it is desired to accurately detect the pulse rate and respiration rate of a subject seated in a specific seat.
 1   運転席
 3   背もたれ
 3a  背面
 3b  前面
 5   対象者
 10  検出装置本体
 20  基板
 23  スロット(アンテナ)
 24  給電ライン(アンテナ)
 24a ライン給電部(アンテナ)
 24b ライン給電部(アンテナ)
 25  RF送信部(送受信器)
 26  RF受信部(送受信器)
 28  アンテナ
 30  回路部
 31  検波回路(検波部)
 34  制御部(演算処理装置)
 40  取付板
 41、42  切り起こし部(支持部材)
 43  主面(基部)
 50  シールドカーテン(シールド部材)
 51  スペーサー
 52  固定板
 53  金属反射板
 60  検出部
 70  絶縁スペーサー
 100 脈拍呼吸検出装置
DESCRIPTION OF SYMBOLS 1 Driver's seat 3 Backrest 3a Back surface 3b Front surface 5 Target person 10 Detection apparatus main body 20 Board | substrate 23 Slot (antenna)
24 Feed line (antenna)
24a Line feeder (antenna)
24b Line feeder (antenna)
25 RF transmitter (transceiver)
26 RF receiver (transceiver)
28 Antenna 30 Circuit part 31 Detection circuit (Detection part)
34 Control unit (arithmetic processing unit)
40 Mounting plate 41, 42 Cut and raised part (support member)
43 Main surface (base)
50 Shield curtain (shield member)
51 Spacer 52 Fixing Plate 53 Metal Reflecting Plate 60 Detection Unit 70 Insulating Spacer 100 Pulse Respiration Detection Device

Claims (5)

  1.  車両内の座席に配置される脈拍呼吸検出装置であって、
     基板と、
     前記基板の一面側に配置されたアンテナと、
     前記アンテナを介して、前記座席に着座している対象者に対して送信波を送信すると共にその反射波を受信する送受信器と、
     前記送信波と前記反射波との位相差を検知する検波部と、
     前記検波部で検知した位相差に基づいて前記対象者の脈拍数及び呼吸数を算出する演算処理装置と、
    を設け、
     前記アンテナとの距離が前記送信波の波長の1/4以下の位置に、少なくとも前記アンテナに対向する面を有する金属反射板を配置し、
     前記アンテナに対向する面が前記対象者側に向くように配置されることを特徴とする脈拍呼吸検出装置。
    A pulse respiration detection device disposed on a seat in a vehicle,
    A substrate,
    An antenna disposed on one side of the substrate;
    A transceiver for transmitting a transmission wave to the subject seated in the seat and receiving the reflected wave via the antenna;
    A detector for detecting a phase difference between the transmitted wave and the reflected wave;
    An arithmetic processing device that calculates the pulse rate and respiratory rate of the subject based on the phase difference detected by the detection unit;
    Provided,
    A metal reflector having at least a surface facing the antenna is disposed at a position where the distance to the antenna is 1/4 or less of the wavelength of the transmission wave,
    A pulse respiration detection device, wherein a surface facing the antenna is arranged to face the subject.
  2.  前記金属反射板は絶縁スペーサーを介して取付板に固定されており、
     前記取付板には、その基部から、前記基板に向けて延設された支持部材が設けられ、前記支持部材と前記基板とが互いに係合していることを特徴とする請求項1に記載の脈拍呼吸検出装置。
    The metal reflector is fixed to the mounting plate via an insulating spacer,
    2. The support plate according to claim 1, wherein a support member extending from the base portion toward the substrate is provided on the mounting plate, and the support member and the substrate are engaged with each other. Pulse respiration detector.
  3.  電磁波を所定値以上減衰させる効果を有するシールド部材を、前記金属反射板の外側に配置したことを特徴とする請求項1又は請求項2に記載の脈拍呼吸検出装置。 3. The pulse respiration detecting device according to claim 1, wherein a shield member having an effect of attenuating electromagnetic waves by a predetermined value or more is disposed outside the metal reflector.
  4.  前記シールド部材は金属糸を含むメッシュ材であり、前記対象者側を開口させた状態で、前記金属反射板および前記アンテナを覆うように配設されていることを特徴とする請求項1から請求項3のいずれか1項に記載の脈拍呼吸検出装置。 2. The shield member according to claim 1, wherein the shield member is a mesh material including a metal thread, and is disposed so as to cover the metal reflector and the antenna with the subject side opened. Item 4. The pulse respiration detection device according to any one of Item 3.
  5.  前記座席の背もたれの内部に配置されていることを特徴とする請求項1から請求項4のいずれか1項に記載の脈拍呼吸検出装置。 The pulse respiration detection device according to any one of claims 1 to 4, wherein the pulse respiration detection device is disposed inside a backrest of the seat.
PCT/JP2016/079551 2015-12-02 2016-10-04 Pulse and respiration detecting device WO2017094347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-235572 2015-12-02
JP2015235572 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017094347A1 true WO2017094347A1 (en) 2017-06-08

Family

ID=58796907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079551 WO2017094347A1 (en) 2015-12-02 2016-10-04 Pulse and respiration detecting device

Country Status (1)

Country Link
WO (1) WO2017094347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769747A (en) * 2017-07-21 2020-02-07 欧姆龙株式会社 Antenna device for biological measurement, pulse wave measurement device, blood pressure measurement device, biological information measurement method, pulse wave measurement method, and blood pressure measurement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248081A (en) * 2001-02-26 2002-09-03 Olympus Optical Co Ltd Medical equipment
JP2009055997A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Biological vibration frequency detector and vehicle
JP2010120493A (en) * 2008-11-19 2010-06-03 Panasonic Corp Biological signal detection device
WO2012115220A1 (en) * 2011-02-25 2012-08-30 株式会社産学連携機構九州 Living organism information detection system
JP2013538602A (en) * 2010-08-12 2013-10-17 コーニンクレッカ フィリップス エヌ ヴェ Apparatus, system and method for measuring vital signs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248081A (en) * 2001-02-26 2002-09-03 Olympus Optical Co Ltd Medical equipment
JP2009055997A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Biological vibration frequency detector and vehicle
JP2010120493A (en) * 2008-11-19 2010-06-03 Panasonic Corp Biological signal detection device
JP2013538602A (en) * 2010-08-12 2013-10-17 コーニンクレッカ フィリップス エヌ ヴェ Apparatus, system and method for measuring vital signs
WO2012115220A1 (en) * 2011-02-25 2012-08-30 株式会社産学連携機構九州 Living organism information detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769747A (en) * 2017-07-21 2020-02-07 欧姆龙株式会社 Antenna device for biological measurement, pulse wave measurement device, blood pressure measurement device, biological information measurement method, pulse wave measurement method, and blood pressure measurement method

Similar Documents

Publication Publication Date Title
US10684355B2 (en) Radar module, and vehicle radar device comprising same
EP2857858B1 (en) Digital active array radar
US10775477B2 (en) Antenna device and vehicle radar device comprising same
EP3540851B1 (en) Antenna device
US10777878B2 (en) Radome and vehicular radar apparatus comprising same
WO2011118462A1 (en) Antenna and integrated antenna
JP2011089864A (en) Radio sensor apparatus
KR101673200B1 (en) Microstrip patch array radar antenna for heavy equipment vehicle
JP4080497B2 (en) Antenna device
WO2017094347A1 (en) Pulse and respiration detecting device
WO2020090681A1 (en) Antenna device, mobile body, and target determination method
CN106249206B (en) Antenna device for receiving electromagnetic waves and method for operating an antenna device for receiving electromagnetic waves
EP3128345B1 (en) Position-detecting system
EP3340381B1 (en) Adjacent antenna interference mitigation
US20150077305A1 (en) Antenna device
JP2007124235A (en) Sneak prevention method of radiation noise
JP2009105613A (en) On-board antenna device, and on-board antenna system
JP2006094547A (en) Vehicle-mounted signal processing apparatus and vehicle-mounted radar installation
JP2014195232A (en) Antenna device
JP2006014154A (en) Antenna
JP2004129138A (en) Method for mounting antenna, mounting structure of antenna and monitor
CN215732189U (en) Display device and antenna assembly thereof
JP2015201782A (en) Transmission apparatus
JP6820071B1 (en) Wireless communication device and wireless communication method
JP2013113644A (en) Radar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP