WO2017092281A1 - 一种路由选择方法及装置 - Google Patents

一种路由选择方法及装置 Download PDF

Info

Publication number
WO2017092281A1
WO2017092281A1 PCT/CN2016/086032 CN2016086032W WO2017092281A1 WO 2017092281 A1 WO2017092281 A1 WO 2017092281A1 CN 2016086032 W CN2016086032 W CN 2016086032W WO 2017092281 A1 WO2017092281 A1 WO 2017092281A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
mesh node
energy consumption
consumption information
node
Prior art date
Application number
PCT/CN2016/086032
Other languages
English (en)
French (fr)
Inventor
陈秋林
同磊
李国怀
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16869594.8A priority Critical patent/EP3264824B1/en
Publication of WO2017092281A1 publication Critical patent/WO2017092281A1/zh
Priority to US15/800,434 priority patent/US10470195B2/en
Priority to US16/591,282 priority patent/US11032827B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/30Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a routing method and apparatus.
  • Mesh network has the advantages of wide coverage, low deployment cost and convenient access, so it has a very wide application prospect.
  • Mesh network technology is commonly used in the Internet of Things.
  • Each Mesh node to be routed in the Mesh network is routed based on the signal strength of the Mesh node that can provide the route.
  • the client generally accesses the wireless access point with strong signal ( Access Point, AP).
  • AP Access Point
  • each Mesh node in the Mesh network is routed based on the strength of the signal strength, which may result in unbalanced energy usage of the Mesh network and reduce the available time of the Mesh network.
  • the signal strength of AP1 is stronger than that of AP2.
  • c3 and c4 the signal strengths of AP1 and AP2 are equivalent, but the signal strength of AP1 is slightly stronger than that of AP2.
  • the scheme based on the signal strength is used for routing decision.
  • c1, c2, c3 and c4 are connected to AP1.
  • the load of AP1 is significantly higher than that of AP2, which accelerates the energy consumption of AP1, while AP2 has no energy consumption, resulting in uneven energy consumption.
  • c1 and c2 need to connect AP2 farther away, which consumes more energy than when accessing AP1, which increases the overall power consumption of the Mesh network and reduces the available time of the Mesh network.
  • Embodiments of the present invention provide a routing method and apparatus to extend the available time of a mesh network.
  • the first aspect provides a routing method, where the first Mesh node to be routed obtains energy consumption information of a second Mesh node that can provide routing for the first Mesh node.
  • the embodiment of the present invention is mainly directed to the case where the number of second Mesh nodes that provide routing for the first Mesh node exceeds one, so the first Mesh node needs to obtain energy consumption of at least two second Mesh nodes. Information so that routing is possible.
  • the first Mesh node obtains the energy consumption information of the second Mesh node, and performs routing according to the energy consumption information of the at least two second Mesh nodes.
  • the energy consumption information of the Mesh node capable of providing the route can be comprehensively considered when performing routing, and the Mesh node can maintain the long data interaction time as much as possible, thereby prolonging the available time of the Mesh network.
  • the first Mesh node and the second Mesh node may be any type of Mesh node, that is, any one of Client, AP, MP, MAP, and MPP.
  • the Mesh node can be referenced by referring to the energy consumption information.
  • each Mesh node in the Mesh network can use the data interaction process to propagate the energy consumption information.
  • the energy consumption information of the other Mesh nodes is propagated.
  • the first Mesh node may obtain the energy consumption information of the at least two second Mesh nodes in at least one of the following manners, including: The first Mesh node obtains energy consumption information of the second Mesh node by using the second Mesh node; and the first Mesh node obtains energy consumption of the second Mesh node by using the third Mesh node
  • the third Mesh node is a Mesh node in the Mesh network that can obtain the energy consumption information of the second Mesh node.
  • each Mesh node of the data interaction process may actively transmit the energy consumption information of other Mesh nodes obtained according to a certain time frequency, for example, once a day.
  • the Mesh nodes in the Mesh network that are associated with other Mesh nodes are preferentially selected, and the energy consumption information of other Mesh nodes obtained is actively propagated, so as to spread the energy consumption information.
  • the Mesh node associated with at least two Mesh nodes in the Mesh network can be used for energy consumption information propagation.
  • the Mesh node with the most associated Mesh nodes can be used for energy consumption.
  • Information dissemination, that is, the third Mesh node may associate at least two Mesh nodes in the Mesh network Mesh node.
  • the first Mesh node in the embodiment of the present invention may obtain energy consumption information of a fourth Mesh node that is propagated by the second Mesh node, where the fourth Mesh node is different from the a Mesh node of the second Mesh node, and forwarding the energy consumption information of the second Mesh node and the energy consumption information of the fourth Mesh node to other Mesh nodes different from the first Mesh node point.
  • the energy consumption information of the second Mesh node includes a power supply mode of the second Mesh node and a remaining power maintenance time of the second Mesh node;
  • the first Mesh node performs routing according to the energy consumption information of the at least two second Mesh nodes, including: the first Mesh node determines a power supply mode of each second Mesh node;
  • the at least two second Mesh nodes are powered in different ways, and the non-battery-powered priority is higher than the battery-powered priority order to perform routing to extend the available time of the Mesh network.
  • routing may be performed according to the remaining power maintaining time and the signal strength of the at least two second Mesh nodes, so that each Mesh in the mesh network The energy consumption of the nodes is balanced.
  • performing routing according to the remaining power maintaining time and the signal strength of the at least two second Mesh nodes including: determining a signal strength range to which the signal strength of each second Mesh node belongs; a range of signal strengths, selecting a predetermined comprehensive preference index determination method, and determining a comprehensive preference index for each second Mesh node according to the determined comprehensive preference index determination manner;
  • the comprehensive preference index is a remaining power supply maintainable time and Signal strength, a numerical value obtained by mathematical operations according to different weight ratios, and the comprehensive preference index has different determination modes in different signal intensity ranges;
  • the comprehensive preference index is sorted, and the comprehensive preference index is as high as Routing in a low order.
  • the service capability provided by the Mesh node itself can be continued for a longer period of time, and the Mesh node can maintain the length of time according to its remaining power, turn off the data forwarding function, and send a data forwarding function off notification to other Mesh nodes.
  • the message is such that the Mesh node associated with it attempts to associate with other Mesh nodes.
  • the Mesh of the notification message is sent.
  • the remaining power of the node is restored, for example, the battery is manually replaced, or the remaining power is higher than the set threshold, the Mesh node can restart the data forwarding function, and send a data forwarding function start notification message, so that the network needs to be routed.
  • the selected Mesh node selects a more suitable Mesh node as the routing node.
  • the first Mesh node receives a data forwarding function close notification message sent by the selected second Mesh node, and the unselected second Mesh node The sent data forwarding function initiates a notification message.
  • the second aspect provides a routing device, including an obtaining unit and a routing unit, where the acquiring unit is configured to obtain energy consumption information of at least two Mesh nodes, and a routing unit is configured to use the at least two Mesh nodes according to the Point energy consumption information for routing.
  • the energy consumption information of the Mesh node capable of providing the route can be comprehensively considered when performing routing, and the Mesh node can maintain the long data interaction time as much as possible, thereby prolonging the available time of the Mesh network.
  • the acquiring unit acquires energy consumption information of the at least two Mesh nodes by using at least one of the following methods, including:
  • the energy consumption information of the Mesh node is obtained by using the Mesh node, and the energy consumption information of the Mesh node is obtained by using other Mesh nodes that can obtain the energy consumption information of the Mesh node.
  • the other Mesh nodes are Mesh nodes associated with at least two Mesh nodes in the Mesh network.
  • the acquiring unit is further configured to acquire other energy consumption information that is different from the energy consumption information of the Mesh node and that is transmitted by the Mesh node.
  • the device further includes a sending unit, where the sending unit is configured to forward the energy consumption information of the Mesh node and the energy consumption information of other nodes, so that the energy consumption information of each Mesh node is spread more widely, so that the Mesh network Each Mesh node in the middle can obtain energy consumption information of other Mesh nodes.
  • the energy consumption information includes a power supply mode of the Mesh node and a remaining power maintenance time of the Mesh node.
  • the routing unit is specifically configured to: according to the energy of the at least two Mesh nodes in the following manner
  • the information is used for routing, including: determining the power supply mode of each Mesh node; if the power supply modes of the at least two Mesh nodes are different, the priority of the non-battery power supply is higher than the priority order of the battery power supply. Routing; if the power supply modes of the at least two Mesh nodes are the same, routing may be performed according to the remaining power and the signal strength of the at least two Mesh nodes.
  • the routing unit is specifically configured to perform routing according to the remaining power maintaining time and the signal strength of the at least two Mesh nodes, including: determining a signal strength of each Mesh node. a range of signal strengths; selecting a predetermined comprehensive preference index determination method according to the determined signal intensity range, and determining a comprehensive preference index for each Mesh node according to the determined comprehensive preference index determination manner; the comprehensive preference index is the remaining
  • the power can maintain time and signal strength, the values obtained by mathematical operations are performed according to different weight ratios, and the comprehensive preference index has different determination manners in different signal intensity ranges; the comprehensive preference index is sorted and integrated
  • the index is routed from high to low.
  • the acquiring unit is further configured to: receive a data forwarding function off notification message sent by the Mesh node, so that the Mesh node can maintain a longer data interaction to extend the available time of the Mesh network.
  • a routing device comprising a memory and a processor, wherein the memory stores a computer readable program, and the processor executes the embodiment of the present invention by running a program in the memory
  • the first aspect relates to a routing method.
  • a computer storage medium for storing computer software instructions for use by the routing device, comprising a program for performing the routing method of the first aspect above.
  • FIG. 1 is a schematic diagram of a Mesh network system applied to a routing method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of implementing a routing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of processing of turning off a data forwarding function according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of processing of starting a data forwarding function according to an embodiment of the present invention.
  • 5A to 5B are schematic diagrams showing the structure of a routing device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another structure of a routing device according to an embodiment of the present invention.
  • the routing method provided by the embodiment of the present invention can be applied to the Mesh network shown in FIG. 1.
  • the client (Client), the access point (AP), and the Mesh node (Mesh) Data exchange between Mesh nodes such as Point, MP), Mesh Access Point (MAP) and Mesh Point Portal (MPP), and each Mesh node can have different routing options.
  • Data interaction, the routing refers to accessing the Mesh node, and performing data interaction through the accessed Mesh node.
  • the energy consumption information related to the Mesh node mainly refers to the power supply mode of the Mesh node and the remaining power maintenance time, so the Mesh node selects different routes, and may The overall power consumption of the Mesh network is different, which in turn makes the available time of the Mesh service provided by the entire Mesh network different.
  • the embodiment of the invention provides a method for routing based on energy consumption information of a Mesh node to extend the available time of the Mesh network.
  • the executor of the routing method provided by the embodiment of the present invention may be any Mesh node in the Mesh network that needs to be routed.
  • the Mesh node that needs to be routed is referred to as a first Mesh node.
  • the Mesh node that will be able to provide routing for the first Mesh node is called the second Mesh node.
  • the first Mesh node and the second Mesh node may be any type of Mesh node, that is, any one of Client, AP, MP, MAP, and MPP.
  • FIG. 2 is a flowchart of implementing a routing method according to an embodiment of the present invention, as shown in FIG. 2, include:
  • the first Mesh node to be routed acquires energy consumption information of at least two second Mesh nodes.
  • the first Mesh node selects the unique second Mesh node for data interaction.
  • the embodiment of the present invention is mainly directed to the case where the number of second Mesh nodes that provide routing for the first Mesh node is more than one.
  • the energy consumption information of the second Mesh node mainly refers to the power supply mode of the second Mesh node and the remaining power maintenance time.
  • the power supply mode mainly refers to whether the battery is powered
  • the remaining power maintainable time mainly refers to a time when the remaining power can maintain the normal data interaction of the second Mesh node.
  • the first Mesh node performs routing according to energy consumption information of the at least two second Mesh nodes.
  • the non-battery power supply may be preferentially selected in the acquired at least two second Mesh nodes, and the remaining power may be maintained for a relatively long time.
  • the Mesh node performs data interaction so that the second Mesh node can maintain the time for data interaction, thereby prolonging the available time of the Mesh network.
  • each Mesh node uses a data interaction process to propagate the respective energy consumption information, so that each Mesh node obtains energy consumption information of the Mesh node with which the data is exchanged. If the Mesh node propagates energy consumption information, it not only transmits its own energy consumption information, but also transmits the energy consumption information of other Mesh nodes obtained, so that some Mesh nodes in the Mesh network can be obtained. Energy consumption information of other Mesh nodes other than the Mesh node that has data interaction with itself.
  • the first Mesh node in the embodiment of the present invention may be obtained by using the second Mesh node.
  • the energy consumption information of the second Mesh node is obtained, and the energy consumption information of the second Mesh node is obtained by using the third Mesh node, where the third Mesh node is obtained in the Mesh network.
  • the Mesh node of the second Mesh node energy consumption information.
  • the first Mesh node in the embodiment of the present invention may also obtain energy consumption information of other Mesh nodes except the second Mesh node.
  • the embodiment of the present invention is convenient for description, and the other Mesh nodes may be referred to as a fourth Mesh node.
  • the first Mesh node may forward the energy consumption information of the second Mesh node and the energy consumption information of the fourth Mesh node to the first Other Mesh nodes of the Mesh node.
  • a message for transmitting the energy consumption information sent by each Mesh node may be assigned a unique identifier, and the unique identifier is used to distinguish whether The message has been disseminated, and if it has been transmitted, it will not be repeated.
  • each Mesh node in the Mesh network can refer to the energy consumption information for routing, and the following optional methods can be used for the propagation of the energy consumption information. .
  • the first one use the data interaction process to spread energy consumption information.
  • the Mesh nodes transmit their own energy consumption information during data exchange, and the energy consumption information includes whether the battery is powered and the remaining power can be maintained. For example, when the AP and the client exchange data, the AP's own energy consumption information is simultaneously transmitted.
  • the energy consumption information of the Mesh nodes and the energy consumption information of other Mesh nodes randomly selected are propagated.
  • the AP and the client exchange data
  • the AP not only transmits its own energy consumption parameters, but also randomly selects energy consumption information of a certain number of other Mesh nodes and transmits the information to the client.
  • the Client also randomly selects the energy consumption information of a certain number of other Mesh nodes and transmits them to the AP.
  • the second type the common node actively initiates the dissemination of energy consumption information
  • each Mesh node in the data interaction process may actively transmit the energy consumption information of other acquired Mesh nodes according to a certain time frequency, for example, once a day, to accelerate the propagation of energy consumption information.
  • the energy consumption information of some nodes may be randomly selected for propagation, and the energy consumption information of all other Mesh nodes obtained may be propagated.
  • the third type the seed node initiates the dissemination of energy consumption information
  • a Mesh node that is associated with other Mesh nodes in the Mesh network may be selected, and energy consumption information is transmitted in a broadcast manner to accelerate the propagation of energy consumption information.
  • MPP can be selected, or the Mesh node with the largest number of other Mesh nodes can be selected for energy information transmission.
  • the Mesh node with the largest number of other Mesh nodes is preferentially selected as the seed node.
  • the Mesh node associated with at least two Mesh nodes may be referred to as a seed node. Any Mesh node that receives the energy consumption information sent by the seed node broadcast can forward the received energy consumption information, so that the Mesh nodes in the entire Mesh network can obtain the energy consumption information of other Mesh nodes.
  • a set number of seed node propagation energy consumption information may be selected according to actual needs in the Mesh network, and all Mesh nodes having the seed node function are not necessarily used as seed nodes.
  • the selected seed node in the embodiment of the present invention may propagate energy consumption information according to a certain time frequency, for example, once a day.
  • the embodiment of the present invention does not limit a specific method for transmitting energy consumption information, and the foregoing method is merely illustrative.
  • the third node involved in the embodiment of the present invention may be a seed node, and the first Mesh node.
  • the energy consumption information of the second Mesh node can be obtained through the seed node.
  • the first Mesh node may determine a power supply mode of each second Mesh node that can provide a route. If the power supply mode of the at least two second Mesh nodes is different, the priority of the non-battery power supply is higher than the battery. The priority order of the power supply is routed to increase the available time of the mesh network.
  • the first Mesh node that performs routing may obtain signal strength and energy consumption information of each second Mesh node that can provide routing for the first Mesh node. Therefore, if the power supply modes of the at least two second Mesh nodes are the same, the time can be maintained according to the remaining power and the signal strength of the at least two second Mesh nodes, so that the Mesh in the Mesh network is performed. The energy consumption of the nodes is more balanced.
  • the manner of selecting the Mesh node according to the signal strength and the load condition of the Mesh node can be changed, and the Mesh node signal is comprehensively considered.
  • the strength, load condition, and remaining power can be maintained for the time to select the Mesh node.
  • the signal strength of the Mesh node and the remaining power maintainable time may be set to different weight ratios of the energy consumption information, and mathematical operations may be performed to obtain a value that can reflect the influence of the two on the energy consumption information consumption.
  • the selection of the Mesh node is performed by the magnitude of the value.
  • the comprehensive preference index is used to represent the remaining power amount to maintain the time and the signal strength, and the values obtained by mathematical operations are performed according to different weight ratios.
  • the comprehensive preference index may adopt various determination manners, for example, the comprehensive preference index may be determined as follows:
  • the comprehensive preference index is in different signal strength ranges, and different determination manners are adopted.
  • the first Mesh node may be configured to perform routing according to the remaining power maintaining time and the signal strength of the at least two second Mesh nodes, including:
  • the first Mesh node determines a signal strength range to which the signal strength of each second Mesh node belongs; according to the determined signal strength range, a predetermined comprehensive preference index determining manner is selected, and determined according to the determined comprehensive preference index determining manner
  • the comprehensive preference index of each second Mesh node sorts the obtained comprehensive preference index of each second Mesh node and performs routing in descending order of the comprehensive preference index.
  • the way to set the comprehensive preference index is:
  • the signal strength of the Mesh node B is 0.95, and the remaining power can be maintained for 0.5;
  • the signal strength of the Mesh node C is 0.85, and the remaining power can be maintained at 0.9.
  • the signal strength of the Mesh node D is 0.5, and the remaining power can be maintained for 0.5.
  • the Mesh node A performs routing
  • the Mesh node C is preferentially selected as the routing node.
  • the signal strength and the energy consumption information are comprehensively considered, and the load of the Mesh node is not considered, but in actual application, the signal strength and the energy consumption information may be comprehensively considered. And routing information such as load status.
  • the Mesh node when a certain Mesh node has insufficient power, the Mesh node can actively close the data forwarding function, so that the service capability provided by the Mesh node itself can be extended for a longer time, thereby extending the Mesh network.
  • the overall service time is described in detail as follows:
  • the Mesh node can maintain the length of time according to its own remaining power, close the data forwarding function, and send a data forwarding function close notification message to other Mesh nodes, so that the associated Mesh node attempts to select other Mesh nodes.
  • the remaining power of the AP2 can be maintained for a short period of time, and the AP2 sends a data forwarding function close notification message to the AP1, AP3, Client2, and Client3 associated with the AP2, so that AP1, AP3, and Client2 and Client3 attempts to associate with other Mesh nodes.
  • Client2 is associated with AP1
  • Client3 is associated with AP3, and AP1 and AP3 are associated with MP.
  • the Mesh node may send a data forwarding function close notification message to other Mesh nodes if the remaining power is lower than the set threshold.
  • the Mesh node that sends the data forwarding function to close the notification message can also send the remaining power to the other Mesh nodes based on the existing busyness.
  • the Mesh node that receives the data forwarding function close notification message may send back to the Mesh node that sends the data forwarding function to close the notification message whether to agree to disable the data forwarding function, for example, if a more suitable Mesh node is found, the notification The send data forwarding function closes the Mesh node of the notification message and agrees to turn off the data forwarding function. If no more suitable Mesh nodes are found, the number of notifications sent According to the Mesh node of the forwarding function closing notification message, the data forwarding function is not closed, and the Mesh node that sends the data forwarding function to close the notification message determines whether to turn off the data forwarding function.
  • the second Mesh node that can provide the route in the embodiment of the present invention can maintain the length of time according to the remaining power, turn off the data forwarding function, and use the selected second Mesh node as the route.
  • the first Mesh node of the node sends a data forwarding function to close the notification message, so that the first Mesh node attempts to select other second Mesh nodes to extend the available time of the Mesh network.
  • the Mesh node when the remaining power of the Mesh node that sends the data forwarding function close notification message is restored, for example, manually replacing the battery, or the remaining power is higher than a set threshold, the Mesh node may be restarted.
  • the data forwarding function sends a data forwarding function to initiate a notification message.
  • the Mesh node that sends the data forwarding function to initiate the notification message can also send the remaining power to the other Mesh nodes to maintain the time based on the existing busyness.
  • the Mesh node that receives the data forwarding function initiation notification message may perform the routing again by comparing the currently selected Mesh node and the data forwarding function to start the energy consumption information between the Mesh nodes of the notification message.
  • the power of the AP2 is restored and the data forwarding function start notification message is sent to AP1, AP1, AP3, Client2, and Client3.
  • AP1, AP3, Client2, and Client3 re-route, and Client2 and Client3 reselect AP2 as the route junction.
  • each Mesh node in the embodiment of the present invention may also propagate its own active parameter, where the active parameter is used to represent the time difference between the time when the Mesh node recently sent the message and the current time. If the active parameter exceeds a certain threshold, it indicates that the Mesh node has been lost. The reason for the loss is that the Mesh node is exhausted or the battery fault suddenly fails. Therefore, the Mesh node can determine the missing Mesh node by obtaining the active parameters of other Mesh nodes, and then can report the information of the lost connection point.
  • the active parameter is used to represent the time difference between the time when the Mesh node recently sent the message and the current time. If the active parameter exceeds a certain threshold, it indicates that the Mesh node has been lost. The reason for the loss is that the Mesh node is exhausted or the battery fault suddenly fails. Therefore, the Mesh node can determine the missing Mesh node by obtaining the active parameters of other Mesh nodes, and then can report the information of the lost connection point.
  • the embodiment of the present invention further provides a routing device 100
  • FIG. 5A shows a schematic configuration of the routing device 100 according to an embodiment of the present invention.
  • the routing device 100 includes an obtaining unit 101 and a routing unit 102, wherein the obtaining unit 101 is configured to acquire energy consumption information of at least two Mesh nodes, and the routing unit 102 is configured to Obtaining energy consumption information of at least two Mesh nodes acquired by the unit 101, and performing routing.
  • the acquiring unit 101 acquires energy consumption information of the at least two Mesh nodes by using at least one of the following methods, including:
  • the energy consumption information of the Mesh node is obtained by using the Mesh node, and the energy consumption information of the Mesh node is obtained by using other Mesh nodes that can obtain the energy consumption information of the Mesh node.
  • the other Mesh nodes are Mesh nodes associated with at least two Mesh nodes in the Mesh network.
  • the obtaining unit 101 is further configured to acquire other energy consumption information that is different from the energy consumption information of the Mesh node and that is transmitted by the Mesh node.
  • the routing device 100 further includes a sending unit 103, as shown in FIG. 5B, the sending unit 103 is configured to forward the energy consumption information of the Mesh node acquired by the acquiring unit 101, and the difference is different.
  • the other energy consumption information of the Mesh node's own energy consumption information is used to make the energy consumption information of each Mesh node spread more widely, so that each Mesh node in the Mesh network can obtain energy consumption information of other Mesh nodes.
  • the energy consumption information includes a power supply mode of the Mesh node and a remaining power maintenance time of the Mesh node.
  • the routing unit 102 is configured to perform routing according to the energy consumption information of the at least two Mesh nodes in the following manner, including: determining a power supply mode of each Mesh node; and if the at least two Mesh junctions The power supply mode of the point is different, and the routing is performed according to the priority order of the non-battery power supply being higher than the priority order of the battery power supply; if the power supply modes of the at least two Mesh nodes are the same, the time may be maintained according to the remaining power and the at least The signal strength of the two Mesh nodes is routed.
  • the routing unit 102 is specifically configured to perform routing according to the remaining power maintaining time and the signal strength of the at least two Mesh nodes, including: determining signal strength of each Mesh node. The range of signal strengths to which it belongs; based on the determined range of signal strengths, Selecting a predetermined comprehensive preference index determination method, and determining a comprehensive preference index of each Mesh node according to the determined comprehensive preference index determining manner; the comprehensive preference index is a remaining power maintainable time and a signal strength, according to different weight ratios The values obtained by the mathematical operations are performed, and the comprehensive preference index has different determination modes in different signal intensity ranges; the comprehensive preference index is sorted and routed in descending order of the comprehensive preference index.
  • the obtaining unit 101 is further configured to: receive a data forwarding function shutdown notification message sent by the selected Mesh node, so that the selected Mesh node can maintain a longer data interaction to extend the Mesh. The available time of the network.
  • the acquiring unit 101 may also acquire a data forwarding function initiation notification message sent by the unselected Mesh node, so that the Mesh node that needs to perform routing may select a more suitable Mesh node.
  • the energy consumption information of the Mesh node capable of providing the route can be comprehensively considered when performing routing, and the Mesh node can maintain the long data interaction time as much as possible, thereby prolonging the available time of the Mesh network.
  • routing apparatus 100 provided by the embodiment of the present invention can be used to implement the routing method involved in the foregoing embodiment. Therefore, if the description of the routing apparatus 100 is not detailed enough, refer to the description of the related method embodiment. This will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a routing apparatus 200 according to another embodiment of the present invention.
  • the routing device 200 employs a general computer system architecture including a bus, a processor 201, a memory 202, and a communication interface 203.
  • the program code for executing the inventive arrangements is stored in the memory 202 and controlled by the processor 201 for execution.
  • the bus can include a path to transfer information between various components of the computer.
  • the processor 201 can be a general purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • One or more memories included in the computer system which may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or Save Other types of dynamic storage devices that store information and instructions may also be disk storage. These memories are connected to the processor via a bus.
  • the communication interface 203 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • a memory 202 such as a RAM, holds an operating system and a program for executing the inventive arrangements.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • the program stored in the memory 202 is used by the instruction processor 201 to perform a routing method, including: acquiring energy consumption information of at least two Mesh nodes, and performing routing according to energy consumption information of the at least two Mesh nodes. .
  • routing device 200 of the present embodiment can be used to implement all the functions involved in the foregoing method embodiments, and the specific implementation process can refer to the related description of the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present invention further provides a computer storage medium for storing the computer software instructions used by the routing device described in FIG. 5A, FIG. 5B or FIG. 6, which includes a program for executing the foregoing method embodiment. .
  • the evaluation of video quality can be achieved by executing a stored program.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code. Calculation The program is stored/distributed in a suitable medium, provided with other hardware or as part of the hardware, or in other distributed forms, such as over the Internet or other wired or wireless telecommunications systems.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种路由选择方法及装置。本发明实施例中待进行路由选择的第一Mesh结点,获取至少两个第二Mesh结点的能耗信息,所述第二Mesh结点是能够为所述第一Mesh结点提供路由的Mesh结点;所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择,能够延长Mesh网络的可用时间。

Description

一种路由选择方法及装置
本申请要求在2015年11月30日提交中国专利局、申请号为201510859437.5、发明名称为"一种路由选择方法及装置"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络技术领域,尤其涉及一种路由选择方法及装置。
背景技术
Mesh网络有着覆盖范围广、部署成本低和接入便利等优势,故具有极为广泛的应用前景。例如物联网中普遍使用Mesh网络技术。
Mesh网络中的每个待进行路由选择的Mesh结点基于能够提供路由的Mesh结点的信号强度的大小进行路由选择,例如客户端(Client)一般都会接入信号较强的无线接入点(Access Point,AP)。但是,Mesh网络中的每个Mesh结点基于信号强度的大小进行路由选择,可能会导致Mesh网络的能量使用不均衡,降低Mesh网络的可用时间。例如,目前存在四个Client和两个AP,四个Client分别为c1、c2、c3和c4,两个AP分别为AP1和AP2,对于c1和c2而言,AP1的信号强度强于AP2,对于c3和c4而言,AP1和AP2的信号强度相当,但是AP1的信号强度略强于AP2,则采用基于信号强度的大小进行路由决策的方案,c1、c2、c3和c4会接入到AP1,使得AP1的负载明显高于AP2,加快AP1的能量消耗,而AP2无能量消耗,造成能量消耗不均衡。当AP1能量耗尽时,c1和c2需要连接距离更远的AP2,比接入AP1时更加消耗能量,导致Mesh网络的整体功耗增加,降低Mesh网络的可用时间。
发明内容
本发明实施例提供一种路由选择方法及装置,以延长Mesh网络的可用时间。
第一方面,提供一种路由选择方法,待进行路由选择的第一Mesh结点,获取能够为所述第一Mesh结点提供路由的第二Mesh结点的能耗信息。本发明实施例主要针对为所述第一Mesh结点提供路由的第二Mesh结点的数量超过一个的情况,故所述第一Mesh结点需要获取至少两个第二Mesh结点的能耗信息,以便可以进行路由选择。所述第一Mesh结点获取到第二Mesh结点的能耗信息,则可根据所述至少两个第二Mesh结点的能耗信息,进行路由选择。通过本发明,使得进行路由选择时可综合考虑能够提供路由的Mesh结点的能耗信息,尽量保证Mesh结点能够维持较长的数据交互时间,进而可延长Mesh网络的可用时间。
本发明实施例中,所述第一Mesh结点和所述第二Mesh结点可以是任一种类型的Mesh结点,即可以是Client、AP、MP、MAP和MPP中的任一种。
本发明实施例中为实现Mesh结点可参考能耗信息进行路由选择,一种可能的设计中,Mesh网络中的各Mesh结点可利用数据交互过程,传播各自的能耗信息,当然也可传播其它Mesh结点的能耗信息,故本发明实施例中,所述第一Mesh结点可采用如下至少一种方式,获取所述至少两个第二Mesh结点的能耗信息,包括:第一Mesh结点通过所述第二Mesh结点,获取所述第二Mesh结点的能耗信息;第一Mesh结点通过第三Mesh结点,获取所述第二Mesh结点的能耗信息,所述第三Mesh结点为Mesh网络中能够获取到所述第二Mesh结点能耗信息的Mesh结点。另一种可能的设计中,本发明实施例中,存在数据交互过程的各Mesh结点,可按照一定的时间频率,例如每天一次,主动的传播获取到的其它Mesh结点的能耗信息,以实现主动触发能耗信息的传播,并加快能耗信息的传播。可选的,本发明实施例中可优先选择Mesh网络中关联其它Mesh结点较多的Mesh结点,主动的传播获取到的其它Mesh结点的能耗信息,以使能耗信息的传播更快且更为广泛,换言之,本发明实施例中可利用Mesh网络中关联至少两个Mesh结点的Mesh结点进行能耗信息传播,例如,可选用关联Mesh结点最多的Mesh结点进行能耗信息传播,即所述第三Mesh结点可为所述Mesh网络中关联至少两个Mesh结点 的Mesh结点。
可选的,本发明实施例中所述第一Mesh结点可获取到所述第二Mesh结点传播的第四Mesh结点的能耗信息,所述第四Mesh结点为不同于所述第二Mesh结点的Mesh结点,将所述第二Mesh结点的能耗信息以及所述第四Mesh结点的能耗信息,转发给不同于所述第一Mesh结点的其它Mesh结点。
结合第一方面,在一种可能的实现方式中,所述第二Mesh结点的能耗信息包括所述第二Mesh结点的供电方式以及所述第二Mesh结点剩余电量可维持时间;所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择,包括:所述第一Mesh结点确定每个第二Mesh结点的供电方式;若所述至少两个第二Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择,以延长Mesh网络的可用时间。若所述至少两个第二Mesh结点的供电方式相同,则可根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择,以使Mesh网络中各Mesh结点的能耗消耗均衡。
可选的,根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择,包括:确定每个第二Mesh结点的信号强度所属的信号强度范围;根据确定的信号强度范围,选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个第二Mesh结点的综合优选指数;所述综合优选指数为剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值,且所述综合优选指数在不同的信号强度范围具有不同的确定方式;对所述综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
本发明实施例中为使Mesh结点自身提供的业务能力可以延续更长时间,Mesh结点可依据自身剩余电量可维持时间长短,关闭数据转发功能,并向其它Mesh节点发送数据转发功能关闭通知消息,以使与其关联的Mesh结点尝试选择关联其它Mesh结点。
进一步的,本发明实施例中,当发送数据转发功能关闭通知消息的Mesh 结点的剩余电量恢复,例如人工更换电池,或者剩余电量高于设定的阈值,则该Mesh结点可重新启动数据转发功能,并发送数据转发功能启动通知消息,以使网络中需要进行路由选择的Mesh结点选择更合适的Mesh结点作为路由结点。
故,结合第一方面,另一种可能的实现方式中,所述第一Mesh结点接收已选择的第二Mesh结点发送的数据转发功能关闭通知消息,以及未选择的第二Mesh结点发送的数据转发功能启动通知消息。
第二方面,提供一种路由选择装置,包括获取单元和路由单元,其中,获取单元,用于获取至少两个Mesh结点的能耗信息;路由单元,用于根据所述至少两个Mesh结点的能耗信息,进行路由选择。
通过本发明,使得进行路由选择时可综合考虑能够提供路由的Mesh结点的能耗信息,尽量保证Mesh结点能够维持较长的数据交互时间,进而可延长Mesh网络的可用时间。
具体的,所述获取单元,采用如下至少一种方式,获取所述至少两个Mesh结点的能耗信息,包括:
通过所述Mesh结点,获取所述Mesh结点的能耗信息;通过能够获取到所述Mesh结点能耗信息的其它Mesh结点,获取所述Mesh结点的能耗信息。
可选的,所述其它Mesh结点为所述Mesh网络中关联至少两个Mesh结点的Mesh结点。
可选的,所述获取单元,还用于获取所述Mesh结点传播的、不同于所述Mesh结点自身能耗信息的其它能耗信息。
所述装置还包括发送单元,所述发送单元用于转发所述Mesh结点的能耗信息以及其它结点的能耗信息,以使各Mesh结点的能耗信息传播更广泛,使得Mesh网络中的各Mesh结点可以获取到其它Mesh结点的能耗信息。
本发明实施例中,所述能耗信息包括所述Mesh结点的供电方式以及所述Mesh结点剩余电量可维持时间。
所述路由单元,具体用于采用如下方式根据所述至少两个Mesh结点的能 耗信息,进行路由选择,包括:确定每个Mesh结点的供电方式;若所述至少两个Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择;若所述至少两个Mesh结点的供电方式相同,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择。
具体的,所述路由单元,具体用于采用如下方式,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择,包括:确定每个Mesh结点的信号强度所属的信号强度范围;根据确定的信号强度范围,选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个Mesh结点的综合优选指数;所述综合优选指数为剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值,且所述综合优选指数在不同的信号强度范围具有不同的确定方式;对所述综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
可选的,所述获取单元,还用于:接收Mesh结点发送的数据转发功能关闭通知消息,以使Mesh结点能够维持更长时间的数据交互,以延长Mesh网络的可用时间。
第三方面,提供一种路由选择装置,所述路由选择装置包括存储器和处理器,所述存储器中存储计算机可读程序,所述处理器通过运行所述存储器中的程序,执行本发明实施例第一方面涉及的路由选择方法。
第四方面,提供一种计算机存储介质,用于储存上述路由选择装置所用的计算机软件指令,其包含用于执行上述第一方面涉及的路由选择方法所涉及的程序。
附图说明
图1为本发明实施例提供的路由选择方法所应用的Mesh网络系统架构;
图2为本发明实施例提供的路由选择方法实现流程图;
图3为本发明实施例提供的数据转发功能关闭的处理示意图;
图4为本发明实施例提供的数据转发功能启动的处理示意图;
图5A至图5B为本发明实施例提供的路由选择装置的构成示意图;
图6为本发明实施例提供的路由选择装置另一构成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述。
本发明实施例提供的路由选择方法可应用于图1所示的Mesh网络,图1所示的Mesh网络中,客户端(Client)、无线接入点(Access Point,AP),Mesh节点(Mesh Point,MP)、Mesh接入点(Mesh Access Point,MAP)和Mesh网关(Mesh Point Portal,MPP)等Mesh结点之间会进行数据交互,并且每个Mesh结点可有不同的路由选择进行数据交互,所述路由选择是指接入到Mesh结点,通过接入的Mesh结点进行数据交互。由于每个Mesh结点的能耗信息并不相同,本发明实施例涉及的能耗信息主要是指Mesh结点的供电方式以及剩余电量可维持时间,故Mesh结点选择不同的路由,可能会使Mesh网络的整体功耗不同,进而使得整个Mesh网络提供Mesh服务的可用时间也不同。
本发明实施例提供一种基于Mesh结点的能耗信息进行路由选择的方法,以延长Mesh网络的可用时间。
本发明实施例提供的路由选择方法的执行主体可以是Mesh网络中的任一需要进行路由选择的Mesh结点,以下为描述方便,将需要进行路由选择的Mesh结点称为第一Mesh结点,将能够为第一Mesh结点提供路由的Mesh结点称为第二Mesh结点。
需要说明的是,本发明实施例中第一Mesh结点和第二Mesh结点可以是任一种类型的Mesh结点,即可以是Client、AP、MP、MAP和MPP中的任一种。
图2所示为本发明实施例提供的路由选择方法实现流程图,如图2所示, 包括:
S101:待进行路由选择的第一Mesh结点,获取至少两个第二Mesh结点的能耗信息。
具体的,若为第一Mesh结点提供路由的第二Mesh结点的数量为一个,则第一Mesh结点选择该唯一的第二Mesh结点进行数据交互。本发明实施例主要针对为第一Mesh结点提供路由的第二Mesh结点的数量为不止一个的情况。
可以理解的是,第二Mesh结点的能耗信息主要是指第二Mesh结点的供电方式以及剩余电量可维持时间。所述供电方式主要是指是否电池供电,所述剩余电量可维持时间主要是指剩余电量能够维持第二Mesh结点正常进行数据交互的时间。
S102:所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择。
具体的,本发明实施例中所述第一Mesh结点进行路由选择时,可在获取的所述至少两个第二Mesh结点中优先选择非电池供电以及剩余电量可维持时间相对较长的Mesh结点,进行数据交互,以使得第二Mesh结点能够维持进行数据交互的时间延长,进而可延长Mesh网络的可用时间。
本发明实施例以下对上述涉及的各步骤的具体实现过程进行详细说明。
首先,对第一Mesh结点如何获取第二Mesh结点的能耗信息进行说明。
本发明实施例中,各Mesh节点之间存在数据交互,故可利用数据交互过程,传播各自的能耗信息。本发明实施例中各Mesh节点之间利用数据交互过程进行各自能耗信息的传播,可使得每个Mesh结点获取到与其进行数据交互的Mesh结点的能耗信息。若Mesh结点在进行能耗信息传播时,不仅传播自身的能耗信息,还将获取到的其它Mesh结点的能耗信息进行传播,则可以使得Mesh网络中的一些Mesh结点可以获取到、除与自身有数据交互的Mesh结点之外的其它Mesh结点的能耗信息。
故,本发明实施例中所述第一Mesh结点可通过所述第二Mesh结点,获 取所述第二Mesh结点的能耗信息,还可通过第三Mesh结点,获取所述第二Mesh结点的能耗信息,所述第三Mesh结点为Mesh网络中能够获取到所述第二Mesh结点能耗信息的Mesh结点。
可以理解的是,本发明实施例中第一Mesh结点在获取第二Mesh结点能耗信息过程中,可能还会获取到除第二Mesh结点以外的其它Mesh结点的能耗信息,本发明实施例为描述方便,可将该其它Mesh结点称之为第四Mesh结点。为了加快能耗信息的传播,则所述第一Mesh结点可将所述第二Mesh结点的能耗信息以及所述第四Mesh结点的能耗信息,转发给不同于所述第一Mesh结点的其它Mesh结点。
本发明实施例中,为避免造成很多重复信息的传播,并造成网络风暴,可为各Mesh结点发送的、用于传播能耗信息的消息分配唯一标识符,通过该唯一标识符区分是否已经传播过该消息,若已传播过,则不重复传播。
本发明实施例中为使能耗信息传播的更广泛,使Mesh网络中每个Mesh结点都可参考能耗信息进行路由选择,还可采用以下几种可选的方式进行能耗信息的传播。
可以理解的是,在具体实施过程中,以下方法,可以选用一种,也可以选用多种同时使用,目的是使Mesh网络中所有的Mesh结点都知道其它Mesh结点的能耗信息,从而让每个Mesh结点都可以参考能耗信息进行路由选择。
第一种:利用数据交互过程,传播能耗信息。
Mesh结点之间在数据交换时,传播自身的能耗信息,所述能耗信息包括是否电池供电以及剩余电量可维持时间。例如,AP和Client在数据交换时,同时传播AP自身的能耗信息。
可选的,Mesh结点之间在数据交换时,传播自身的能耗信息以及随机选取的其它Mesh结点的能耗信息。例如,AP和Client在数据交换时,AP不仅传播自身的能耗参数,还可随机选取一定数量其它Mesh结点的能耗信息,传播给Client。当然,Client也会随机选取一定数量其它Mesh结点的能耗信息,传播给AP。
第二种:普通结点主动发起能耗信息的传播
具体的,存在数据交互过程的各Mesh结点,可按照一定的时间频率,例如每天一次,主动传播获取到的其它Mesh结点的能耗信息,以加快能耗信息的传播。
可选的,Mesh结点传播其它Mesh结点的能耗信息时,可随机选取部分结点的能耗信息进行传播,还可将获取到的全部其它Mesh结点的能耗信息都传播。
第三种:种子结点发起能耗信息的传播
具体的,本发明实施例中可选择Mesh网络中关联其它Mesh结点较多的Mesh结点,以广播的方式进行能耗信息传播,以加快能耗信息的传播。例如可选用MPP,或者选用连接其它Mesh结点数量最大的Mesh结点进行能耗信息传播。本发明实施例优先选择连接其它Mesh结点数量最大的Mesh结点为种子结点。本发明实施例为描述方便,可将该关联至少两个Mesh结点的Mesh结点称为种子结点。任何收到种子结点广播发送的能耗信息的Mesh结点可将收到的能耗信息进行转发,以使整个Mesh网络中的Mesh结点都可获取到其它Mesh结点的能耗信息。
可选的,本发明实施例中可在Mesh网络中根据实际需要选择设定数量的种子结点传播能耗信息,而不必将所有具备种子结点功能的Mesh结点都作为种子结点。
进一步的,本发明实施例中选定的种子结点可按照一定的时间频率,例如每天一次,传播能耗信息。
在具体实施过程中,本发明实施例并不限定具体的能耗信息传播方法,上述方法仅是进行举例说明。
可以理解的是,本发明实施例中若第二Mesh结点的能耗信息是通过种子结点传播的,本发明实施例中涉及的第三结点可以是种子节点,则第一Mesh结点可通过该种子结点,获取所述第二Mesh结点的能耗信息。
其次,对Mesh结点基于能耗信息进行路由选择的过程进行说明
所述第一Mesh结点可确定能够提供路由的每个第二Mesh结点的供电方式,若所述至少两个第二Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择,以提高Mesh网络的可用时间。
进一步的,进行路由选择的第一Mesh结点可以获取到能够为所述第一Mesh结点提供路由的每个第二Mesh结点的信号强度以及能耗信息。故若所述至少两个第二Mesh结点的供电方式相同,可根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择,以使Mesh网络中各Mesh结点的能耗消耗更为均衡。
具体的,本发明实施例中为使Mesh网络中各Mesh结点的能耗均衡,可改变目前单纯依据Mesh结点的信号强度大小以及负载情况进行Mesh结点选择的方式,综合考虑Mesh节点信号强度、负载情况以及剩余电量可维持时间,进行Mesh结点的选择。例如,本发明实施例中可为Mesh结点的信号强度以及剩余电量可维持时间对能耗信息设定不同的权重比例并进行数学运算,得到能够反映二者对能耗信息消耗影响的数值,通过该数值的大小进行Mesh节点的选择。本发明实施例中为描述方便,用综合优选指数表征剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值。
本发明实施例中,所述综合优选指数可采用多种确定方式,例如综合优选指数可采用如下方式确定:
第一种方式:
综合优选指数=剩余电量可维持时间*w1+信号强度*w2,其中,w1+w2=1。
第二种方式:
综合优选指数=w1*(剩余电量可维持时间)n+w2*(信号强度)m,其中,w1+w2=1,m和n为正整数。
第三种方式:
综合优选指数=(剩余电量可维持时间)n+(信号强度)m,其中,m和n为正整数。
本发明实施例中,综合优选指数在不同的信号强度范围,采用不同的确定方式。
具体的,第一Mesh结点可采用如下方式,根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择,包括:
第一Mesh结点确定每个第二Mesh结点的信号强度所属的信号强度范围;根据确定的信号强度范围,选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个第二Mesh结点的综合优选指数,对得到的每个第二Mesh结点的综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
例如:设定综合优选指数的确定方式为:
A:信号强度范围在(0.9,1]内,综合优选指数按照综合优选指数=剩余电量可维持时间*0.5+信号强度*0.5的方式确定。
可选的,信号强度在(0.9,1]范围时,信号已经很强,信号强度为0.92和信号强度为0.95没有本质的区别,所以,“信号强度”可以统一计算为1,则综合优选指数=1*0.5+剩余电量可维持时间*0.5
B:信号强度在(0.8,0.9]范围内时,综合优选指数按照综合优选指数=剩余电量可维持时间*0.5+信号强度*0.5的方式确定。
C:信号强度在(0.1,0.8]范围内时,综合优选指数按照综合优选指数=信号强度*0.7+剩余电量可维持时间*0.3的方式确定。
假如Mesh结点A需要从Mesh结点B、Mesh结点C和Mesh结点D三个中选择一个Mesh结点做路由,此时:
Mesh结点B的信号强度为0.95,剩余电量可维持时间为0.5;
Mesh结点C的信号强度为0.85,剩余电量可维持时间为0.9;
Mesh结点D的信号强度为0.5,剩余电量可维持时间为0.5。
则,对于A而言,Mesh结点B、Mesh结点C和Mesh结点D的综合优选指数为:
综合优选指数_B=1*0.5+0.5*0.5=0.75;
综合优选指数_C=0.85*0.5+0.9*0.5=0.875;
综合优选指数_D=0.5*0.7+0.5*0.3=0.5。
故,Mesh结点A进行路由选择时,会优先选择Mesh结点C作为路由结点。
需要说明的是,本发明实施例上述进行综合优选指数确定过程,仅是进行示意性说明,对于具体的计算公式、阈值和权重,可根据实际应用调整。
进一步需要说明的是,本发明实施例上述进行路由选择过程中,综合考虑信号强度和能耗信息,并没有考虑Mesh结点的负载,但在实际应用时,可综合考虑信号强度,能耗信息以及负载状况等信息,进行路由选择。
进一步的,本发明实施例中,当某一个Mesh结点电量不足时,该Mesh结点可以主动关闭数据转发功能,这样Mesh结点自身提供的业务能力可以延续更长时间,从而延长Mesh网络的整体可服务时间,详细描述如下:
Mesh结点可依据自身剩余电量可维持时间长短,关闭数据转发功能,并向与其它Mesh节点发送数据转发功能关闭通知消息,以使与其关联的Mesh结点尝试选择关联其它Mesh结点。例如,图3所示的Mesh网络中,AP2自身剩余电量可维持时间不足,则AP2向与AP2关联的AP1、AP3、Client2和Client3发送数据转发功能关闭通知消息,以使AP1、AP3、Client2和Client3尝试关联其它的Mesh结点,例如Client2关联AP1,Client3关联AP3,AP1和AP3关联MP。
可选的,Mesh结点可在剩余电量低于设定的阈值的情况下,向其它Mesh结点发送数据转发功能关闭通知消息。发送数据转发功能关闭通知消息的Mesh结点还可基于现有的繁忙程度,向其它Mesh结点发送剩余电量可维持时间。
可选的,接收到数据转发功能关闭通知消息的Mesh结点可向发送数据转发功能关闭通知消息的Mesh结点反馈是否同意关闭数据转发功能,例如,如果找到了更合适的Mesh结点,通知发送数据转发功能关闭通知消息的Mesh结点,同意关闭数据转发功能。如果没找到更合适的Mesh结点,通知发送数 据转发功能关闭通知消息的Mesh结点,不同意关闭数据转发功能,由发送数据转发功能关闭通知消息的Mesh结点决定是否关闭数据转发功能。
依据上述数据转发功能关闭的实施方式,本发明实施例中能够提供路由的第二Mesh结点可依据自身剩余电量可维持时间长短,关闭数据转发功能,并向已选择第二Mesh结点作为路由结点的第一Mesh结点,发送数据转发功能关闭通知消息,以使第一Mesh结点尝试选择其它第二Mesh结点,延长Mesh网络的可用时间。
更进一步的,本发明实施例中,当发送数据转发功能关闭通知消息的Mesh结点的剩余电量恢复,例如人工更换电池,或者剩余电量高于设定的阈值,则该Mesh结点可重新启动数据转发功能,并发送数据转发功能启动通知消息。发送数据转发功能启动通知消息的Mesh结点还可基于现有的繁忙程度,向其它Mesh结点发送剩余电量可维持时间。
可选的,接收到数据转发功能启动通知消息的Mesh结点,可通过比较当前已选择的Mesh结点和发送数据转发功能启动通知消息的Mesh结点之间的能耗信息,再次进行路由选择,以选择更为合适的Mesh结点。如图4所示,AP2的电量恢复并向AP1、AP1、AP3、Client2和Client3发送数据转发功能启动通知消息,AP1、AP3、Client2和Client3重新进行路由选择,Client2和Client3重新选择AP2作为路由结点,AP1和AP3重新选择MP和AP2作为路由结点。
可选的,本发明实施例中各Mesh结点进行能耗信息传播过程中,还可传播自身的活跃参数,所述活跃参数用于表征Mesh结点最近发出消息的时间和当前时间的时间差。若活跃参数超过一定阈值,就说明该Mesh结点已经失联,所述失联原因是Mesh结点电量耗尽或者电池故障突然没电。故,Mesh结点可通过获取其它Mesh结点的活跃参数,确定出失联的Mesh结点,进而可以上报失联结点的信息。
基于上述实施例提供的路由选择方法,本发明实施例还提供一种路由选择装置100,图5A所示为本发明实施例提供的路由选择装置100的构成示意 图,如图5A所示,路由选择装置100包括获取单元101和路由单元102,其中,获取单元101,用于获取至少两个Mesh结点的能耗信息;路由单元102,用于根据所述获取单元101获取的至少两个Mesh结点的能耗信息,进行路由选择。
具体的,所述获取单元101,采用如下至少一种方式,获取所述至少两个Mesh结点的能耗信息,包括:
通过所述Mesh结点,获取所述Mesh结点的能耗信息;通过能够获取到所述Mesh结点能耗信息的其它Mesh结点,获取所述Mesh结点的能耗信息。
可选的,所述其它Mesh结点为所述Mesh网络中关联至少两个Mesh结点的Mesh结点。
可选的,所述获取单元101,还用于获取所述Mesh结点传播的、不同于所述Mesh结点自身能耗信息的其它能耗信息。
本发明实施例中路由选择装置100还包括发送单元103,如图5B所示,所述发送单元103用于转发所述获取单元101获取的所述Mesh结点的能耗信息以及所述不同于所述Mesh结点自身能耗信息的其它能耗信息,以使各Mesh结点的能耗信息传播更广泛,使得Mesh网络中的各Mesh结点可以获取到其它Mesh结点的能耗信息。
本发明实施例中,所述能耗信息包括所述Mesh结点的供电方式以及所述Mesh结点剩余电量可维持时间。所述路由单元102,具体用于采用如下方式根据所述至少两个Mesh结点的能耗信息,进行路由选择,包括:确定每个Mesh结点的供电方式;若所述至少两个Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择;若所述至少两个Mesh结点的供电方式相同,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择。
具体的,所述路由单元102,具体用于采用如下方式,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择,包括:确定每个Mesh结点的信号强度所属的信号强度范围;根据确定的信号强度范围, 选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个Mesh结点的综合优选指数;所述综合优选指数为剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值,且所述综合优选指数在不同的信号强度范围具有不同的确定方式;对所述综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
可选的,所述获取单元101,还用于:接收已选择的Mesh结点发送的数据转发功能关闭通知消息,以使已选择的Mesh结点能够维持更长时间的数据交互,以延长Mesh网络的可用时间。所述获取单元101还可获取未选择的Mesh结点发送的数据转发功能启动通知消息,以使需要进行路由选择的Mesh结点可以选择更为合适的Mesh结点。
通过本发明,使得进行路由选择时可综合考虑能够提供路由的Mesh结点的能耗信息,尽量保证Mesh结点能够维持较长的数据交互时间,进而可延长Mesh网络的可用时间。
需要说明的是,本发明实施例提供的路由选择装置100,可用于实现上述实施例涉及的路由选择方法,故对于路由选择装置100描述不够详尽的地方,可参阅相关方法实施例的描述,在此不再赘述。
本发明实施例还提供一种路由选择装置,用于实现Mesh网络中各Mesh结点的路由选择。图6所示的是本发明另一实施例提供的路由选择装置200的结构示意图。路由选择装置200采用通用计算机系统结构,包括总线,处理器201,存储器202和通信接口203,执行本发明方案的程序代码保存在存储器202中,并由处理器201来控制执行。
总线可包括一通路,在计算机各个部件之间传送信息。
处理器201可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路application-specific integrated circuit(ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是只读存储器read-only memory(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器random access memory(RAM)或者可存 储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
通信接口203,可以使用任何收发器一类的装置,以便与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(WLAN)等.
存储器202,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
存储器202中存储的程序用于指令处理器201执行一种路由选择方法,包括:获取至少两个Mesh结点的能耗信息,根据所述至少两个Mesh结点的能耗信息,进行路由选择。
可以理解的是,本实施例的路由选择装置200可用于实现上述方法实施例中涉及的所有功能,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
本发明实施例还提供了一种计算机存储介质,用于储存上述图5A、图5B或图6所述的路由选择装置所用的计算机软件指令,其包含用于执行上述方法实施例所涉及的程序。通过执行存储的程序,可以实现对视频质量的评价。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算 机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本发明是参照本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种路由选择方法,其特征在于,包括:
    待进行路由选择的第一Mesh结点,获取至少两个第二Mesh结点的能耗信息,所述第二Mesh结点是能够为所述第一Mesh结点提供路由的Mesh结点;
    所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择。
  2. 如权利要求1所述的方法,其特征在于,所述第一Mesh结点采用如下至少一种方式,获取所述至少两个第二Mesh结点的能耗信息,包括:
    第一Mesh结点通过所述第二Mesh结点,获取所述第二Mesh结点的能耗信息;
    第一Mesh结点通过第三Mesh结点,获取所述第二Mesh结点的能耗信息,所述第三Mesh结点为Mesh网络中能够获取到所述第二Mesh结点能耗信息的Mesh结点。
  3. 如权利要求2所述的方法,其特征在于,所述第三Mesh结点为所述Mesh网络中关联至少两个Mesh结点的Mesh结点。
  4. 如权利要求2或3所述的方法,其特征在于,所述方法还包括:
    第一Mesh结点获取所述第二Mesh结点传播的第四Mesh结点的能耗信息,所述第四Mesh结点为不同于所述第二Mesh结点的Mesh结点;
    第一Mesh结点将所述第二Mesh结点的能耗信息以及所述第四Mesh结点的能耗信息,转发给不同于所述第一Mesh结点的其它Mesh结点。
  5. 如权利要求2至4任一项所述的方法,其特征在于,所述第二Mesh结点的能耗信息包括所述第二Mesh结点的供电方式以及所述第二Mesh结点剩余电量可维持时间;
    所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择,包括:
    所述第一Mesh结点确定每个第二Mesh结点的供电方式;
    若所述至少两个第二Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择;
    若所述至少两个第二Mesh结点的供电方式相同,根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择。
  6. 如权利要求5所述的方法,其特征在于,根据剩余电量可维持时间以及所述至少两个第二Mesh结点的信号强度,进行路由选择,包括:
    确定每个第二Mesh结点的信号强度所属的信号强度范围;
    根据确定的信号强度范围,选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个第二Mesh结点的综合优选指数;
    所述综合优选指数为剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值,且所述综合优选指数在不同的信号强度范围具有不同的确定方式;
    对所述综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述第一Mesh结点根据所述至少两个第二Mesh结点的能耗信息,进行路由选择之后,所述方法还包括:
    所述第一Mesh结点接收已选择的第二Mesh结点发送的数据转发功能关闭通知消息,以及未选择的第二Mesh结点发送的数据转发功能启动通知消息。
  8. 一种路由选择装置,其特征在于,包括:
    获取单元,用于获取至少两个Mesh结点的能耗信息;
    路由单元,用于根据所述至少两个Mesh结点的能耗信息,进行路由选择。
  9. 如权利要求8所述的装置,其特征在于,所述获取单元,采用如下至少一种方式,获取所述至少两个Mesh结点的能耗信息,包括:
    通过所述Mesh结点,获取所述Mesh结点的能耗信息;
    通过能够获取到所述Mesh结点能耗信息的其它Mesh结点,获取所述Mesh结点的能耗信息。
  10. 如权利要求9所述的装置,其特征在于,所述其它Mesh结点为所述Mesh网络中关联至少两个Mesh结点的Mesh结点。
  11. 如权利要求9或10所述的装置,其特征在于,
    所述获取单元,还用于获取所述Mesh结点传播的、不同于所述Mesh结点自身能耗信息的其它能耗信息;
    所述装置还包括发送单元,所述发送单元用于转发所述Mesh结点的能耗信息以及所述不同于所述Mesh结点自身能耗信息的其它能耗信息。
  12. 如权利要求9至11任一项所述的装置,其特征在于,所述能耗信息包括所述Mesh结点的供电方式以及所述Mesh结点剩余电量可维持时间;
    所述路由单元,具体用于采用如下方式根据所述至少两个Mesh结点的能耗信息,进行路由选择,包括:
    确定每个Mesh结点的供电方式;
    若所述至少两个Mesh结点的供电方式不同,按照非电池供电的优先级高于电池供电的优先级顺序,进行路由选择;
    若所述至少两个Mesh结点的供电方式相同,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择。
  13. 如权利要求12所述的装置,其特征在于,所述路由单元,具体用于采用如下方式,根据剩余电量可维持时间以及所述至少两个Mesh结点的信号强度,进行路由选择,包括:
    确定每个Mesh结点的信号强度所属的信号强度范围;
    根据确定的信号强度范围,选择预先设定的综合优选指数确定方式,并按照确定的综合优选指数确定方式确定每个Mesh结点的综合优选指数;
    所述综合优选指数为剩余电量可维持时间以及信号强度,按照不同权重比例进行数学运算所得到的数值,且所述综合优选指数在不同的信号强度范围具有不同的确定方式;
    对所述综合优选指数进行排序,并按照综合优选指数从高到低的顺序进行路由选择。
  14. 如权利要求8至13任一项所述的装置,其特征在于,所述获取单元,还用于:
    接收已选择的Mesh结点发送的数据转发功能关闭通知消息,以及未选择的Mesh结点发送的数据转发功能启动通知消息。
PCT/CN2016/086032 2015-11-30 2016-06-16 一种路由选择方法及装置 WO2017092281A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16869594.8A EP3264824B1 (en) 2015-11-30 2016-06-16 Route selection method and apparatus
US15/800,434 US10470195B2 (en) 2015-11-30 2017-11-01 Route selection method and apparatus
US16/591,282 US11032827B2 (en) 2015-11-30 2019-10-02 Route selection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510859437.5A CN105515994A (zh) 2015-11-30 2015-11-30 一种路由选择方法及装置
CN201510859437.5 2015-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/800,434 Continuation US10470195B2 (en) 2015-11-30 2017-11-01 Route selection method and apparatus

Publications (1)

Publication Number Publication Date
WO2017092281A1 true WO2017092281A1 (zh) 2017-06-08

Family

ID=55723647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086032 WO2017092281A1 (zh) 2015-11-30 2016-06-16 一种路由选择方法及装置

Country Status (4)

Country Link
US (2) US10470195B2 (zh)
EP (1) EP3264824B1 (zh)
CN (1) CN105515994A (zh)
WO (1) WO2017092281A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515994A (zh) * 2015-11-30 2016-04-20 华为技术有限公司 一种路由选择方法及装置
EP3777033A4 (en) * 2018-06-27 2021-04-07 Apple Inc. VOTING TOPOLOGY FOR DISTRIBUTION NETWORK
US10880807B2 (en) * 2019-03-06 2020-12-29 Qualcomm Incorporated Battery efficient routing in mesh networks
WO2021146911A1 (zh) * 2020-01-21 2021-07-29 深圳市汇顶科技股份有限公司 路由的建立方法及装置、电子设备以及计算机存储介质
CN114071630A (zh) * 2020-07-31 2022-02-18 上海新微技术研发中心有限公司 基于局域无线自组网的NB-IoT网络系统及组网方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195801A1 (en) * 2004-03-02 2005-09-08 Mindspeed Technologies, Inc. Text telephone modem communications over packet networks
CN101299707A (zh) * 2007-09-20 2008-11-05 上海寰创通信科技有限公司 一种路由扩散方法
US20090010189A1 (en) * 2007-07-07 2009-01-08 Nagra Sundeep S Network with remaining battery life routing metric
CN104509168A (zh) * 2012-08-01 2015-04-08 高通股份有限公司 网状网络中的功率优化行为
CN105515994A (zh) * 2015-11-30 2016-04-20 华为技术有限公司 一种路由选择方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873839B2 (en) * 2000-11-13 2005-03-29 Meshnetworks, Inc. Prioritized-routing for an ad-hoc, peer-to-peer, mobile radio access system
US20050195810A1 (en) 2004-03-04 2005-09-08 Chang Industry, Inc. Transparent link layer mesh router
TW201006280A (en) 2005-03-11 2010-02-01 Interdigital Tech Corp Method and system for conserving battery power of mesh points in a mesh network
US20060253735A1 (en) 2005-03-11 2006-11-09 Interdigital Technology Corporation Method and system for conserving battery power of mesh points in a mesh network
US20070204021A1 (en) * 2006-02-28 2007-08-30 Ekl Randy L Method and apparatus for myopic root node selection in an ad hoc network
CN102100109B (zh) * 2008-07-14 2014-12-17 西门子企业通讯有限责任两合公司 用于确定路由量度的方法和装置
CN101790196B (zh) 2010-01-26 2012-09-05 清华大学 一种无线Mesh网络中的分布式接入点关联方法
CN102263688B (zh) 2010-05-26 2015-11-25 华为技术有限公司 一种选择标签转发路径的方法和网络装置
CN102149138B (zh) 2011-05-26 2013-04-24 东南大学 无线Mesh网络网关负载均衡的方法
EP2592870B1 (en) * 2011-11-11 2018-09-26 Itron Global SARL Routing communications based on node availability
CN102857989B (zh) 2012-07-13 2015-01-28 南京邮电大学 一种面向移动传感网的自适应路由方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050195801A1 (en) * 2004-03-02 2005-09-08 Mindspeed Technologies, Inc. Text telephone modem communications over packet networks
US20090010189A1 (en) * 2007-07-07 2009-01-08 Nagra Sundeep S Network with remaining battery life routing metric
CN101299707A (zh) * 2007-09-20 2008-11-05 上海寰创通信科技有限公司 一种路由扩散方法
CN104509168A (zh) * 2012-08-01 2015-04-08 高通股份有限公司 网状网络中的功率优化行为
CN105515994A (zh) * 2015-11-30 2016-04-20 华为技术有限公司 一种路由选择方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, WANLI: "The Research of Ultra-low Power Routing Algorithm Based on WMN", ENGINEERING MASTER'S DISSERTATION OF ZHENGZHOU UNIVERSITY, 15 February 2015 (2015-02-15), XP009502630 *
See also references of EP3264824A4 *

Also Published As

Publication number Publication date
US10470195B2 (en) 2019-11-05
EP3264824A4 (en) 2018-05-30
CN105515994A (zh) 2016-04-20
EP3264824A1 (en) 2018-01-03
US20180054827A1 (en) 2018-02-22
EP3264824B1 (en) 2020-11-25
US11032827B2 (en) 2021-06-08
US20200037333A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2017092281A1 (zh) 一种路由选择方法及装置
Jasmine et al. DSQLR-A distributed scheduling and QoS localized routing scheme for wireless sensor network
US9634923B2 (en) Method, apparatus and system for disseminating routing information
AU2014308403C1 (en) Method, device, and system for joining neighbor awareness network device cluster
KR100777895B1 (ko) 메시지 데이타의 라우팅 방법 및 모바일 애드 혹 네트워크용 모바일 노드
CN105474588B (zh) 自适应流量工程配置
US10070299B2 (en) Local area network meshing
Collotta et al. Dynamic load balancing techniques for flexible wireless industrial networks
WO2012149739A1 (zh) 一种传输数据的方法、设备与基站
US10609621B2 (en) Directed acyclic graph optimization for future time instance requested by a child network device
CN105474692B (zh) 切换控制方法、装置及无线通信网络
JP2019525676A (ja) 端末の移動性パターンを管理する方法及び機器
WO2015143763A1 (zh) 一种负荷信息传递方法、系统、网元及计算机存储介质
WO2015106695A1 (zh) 一种业务分流的方法、系统和设备
US20170086188A1 (en) Radio Network Control Method and Radio Network Controller
US10165514B2 (en) Systems and methods for user equipment power management via third party entity
Prabha et al. A Survey on LEACH and its Descendant Protocols in wireless Sensor Network
Abada et al. A novel path selection and recovery mechanism for MANETs P2P file sharing applications
Sharma et al. Routing and clustering optimization techniques in WSN: A review
Sharmin et al. WEMER: An energy hole mitigation scheme in Wireless Sensor Networks
CN108696460B (zh) 一种报文转发方法及装置
Saad et al. Always best connected and served based scheme in mobile cloud computing
Chandravanshi et al. Minimization of routing overhead on the bases of multipath and destination distance estimation mechanism under MANET
Kumar et al. Optimal multipath routing using BFS for wireless sensor networks
US20230064808A1 (en) Inter-pan load/size balancing controlled by enrollment priority in llns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869594

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016869594

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE