WO2017091961A1 - 体验质量信息获取方法、设备及系统 - Google Patents

体验质量信息获取方法、设备及系统 Download PDF

Info

Publication number
WO2017091961A1
WO2017091961A1 PCT/CN2015/096040 CN2015096040W WO2017091961A1 WO 2017091961 A1 WO2017091961 A1 WO 2017091961A1 CN 2015096040 W CN2015096040 W CN 2015096040W WO 2017091961 A1 WO2017091961 A1 WO 2017091961A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
state
video
scheduling
channel
Prior art date
Application number
PCT/CN2015/096040
Other languages
English (en)
French (fr)
Inventor
石娴文
巢志骏
高慧
张劲林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580084119.4A priority Critical patent/CN108353000A/zh
Priority to PCT/CN2015/096040 priority patent/WO2017091961A1/zh
Publication of WO2017091961A1 publication Critical patent/WO2017091961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of field communication, and in particular, to a method, device and system for acquiring experience quality information.
  • the terminal can detect the video playback component of the terminal's own system or the related information of the video in the installed application, and generate the quality of experience (QoE) information and report it to the management network element (for example, the core).
  • QoE quality of experience
  • the network server or the network server is forwarded to the access network device by the management network element, and the access network device performs related processing of the video service of the terminal according to the QoE information, for example, scheduling radio resources for the video service according to the QoE information.
  • the scheduling refers to that the access network device allocates radio resources to the terminal to transmit data.
  • the terminal in order to ensure the validity of the QoE information, the terminal often reports the signaling carrying the current QoE information, thereby consuming a large amount of air interface resources. Therefore, in the processing of the video service, it is easy to consume more communication resources.
  • the present invention provides a method, device and system for acquiring the experience quality information.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a method for acquiring quality of experience QoE information, including:
  • the method further includes:
  • the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state.
  • the adjusting the scheduling priority of the video service of the terminal according to the QoE information includes:
  • the determining the QoE information of the video service of the terminal according to the quantity of the scheduled data and the video code rate including:
  • the determining, according to the estimated QoE information, the video service scheduling priority of the terminal including:
  • the receiving the QoE information sent by the terminal includes:
  • the QoE information sent by the terminal is periodically reported, and the reporting period is 200 milliseconds or 1 second.
  • the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, where the playing state type of the current playing state includes an initial buffering state, a normal playing state, an interrupt buffering state, and playing. End state.
  • the adjusting the scheduling priority of the video service of the terminal according to the QoE information includes:
  • the scheduling priority is adjusted to the first priority, and the video pre-cache playback duration is the duration of time that the data buffered by the terminal is maintained;
  • the scheduling priority is adjusted to a second priority
  • the QoE information indicates that the current play state is a normal play state and the video pre-cache play duration is between the preset cache duration minimum threshold and a preset cache duration maximum threshold, according to the QoE information and the location
  • the channel state information of the current moment of the terminal adjusts the scheduling priority
  • the scheduling priority is adjusted to a third priority, where the The first priority is greater than or equal to the second priority, and the second priority is greater than the third priority, and the third priority is greater than or equal to a preset minimum priority.
  • the overall scheduling priority includes:
  • the scheduling priority is adjusted according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal.
  • the adjusting the scheduling priority according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal including:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is the preset maximum buffer duration threshold
  • the R is a constant that reflects the channel large-scale fluctuation level of the terminal according to the channel state information of the current moment, and the R and the channel state are good. The degree is positively correlated.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the adjusting the scheduling priority according to the QoE information and the channel state information of the current moment of the terminal including:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the scheduling priority P(n) of the video service of the terminal at time n the PF scheduling priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, where the scheduling priority is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the normal play status includes: a first normal play status and a normal normal play status, and the determining the QoE information of the video service of the terminal according to the scheduled data volume and the video code rate, including:
  • the radio link control layer protocol RLC buffer on the access network device starts to schedule data for the video service of the terminal, determining that the video playing state is an initial buffer state, and recording the initial buffer state generation. time;
  • the QoE information is generated according to the video playing state and the generated moment of the video playing state.
  • the determining, according to the quantity of the scheduled data, whether the video pre-cache playback duration is greater than a preset initial cache duration threshold includes:
  • the amount of scheduled data from the generation time of the initial buffer state to the current time is used as the pre-cached data amount of the current time
  • the determining, according to the quantity of the scheduled data and the video code rate, whether the data cached by the video buffer of the terminal is exhausted including:
  • the QoE information is periodically obtained by using a TTI as a determining period, and the resources of the video service are periodically scheduled by using one TTI as a scheduling period.
  • the scheduling of the video service according to the adjusted scheduling priority is the video service scheduling data of the terminal, including:
  • the scheduling priority of the current scheduling period is the video service scheduling data of the terminal, and the scheduling priority of the current scheduling period is determined according to the QoE information determined by the current determining period.
  • the method further includes:
  • the estimated QoE information is sent to the base station controller of the management target cell through the X2 interface, where the target cell is a cell to which the terminal is to be handed over.
  • the method further includes:
  • the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, wherein the video pre-cache playback
  • the duration is the duration of the data that is cached by the terminal
  • the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the first normal playback state, where the average interruption duration is the terminal within the preset time period.
  • the average of the interrupt durations, the number of interrupts being the number of times the interrupt buffer state is generated within the preset time period.
  • an embodiment of the present invention provides an access network device, including:
  • An acquiring unit configured to acquire, when the access network device determines the video service scheduling data of the terminal, the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal;
  • a determining unit configured to determine QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the device further includes:
  • An adjusting unit configured to adjust scheduling priority of the video service of the terminal according to the QoE information level
  • a scheduling unit configured to schedule data for the video service of the terminal according to the adjusted scheduling priority.
  • the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state.
  • the scheduling unit is configured to:
  • the determining unit is configured to:
  • the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, where the playing state type of the current playing state includes an initial buffering state, a normal playing state, an interrupt buffering state, and playing. End state.
  • the adjusting unit includes:
  • a first adjusting subunit configured to indicate, in the QoE information, that the current playing state is an initial buffering state, or the QoE information indicates that the current playing state is a normal playing state, and the video pre-cache playing duration is not greater than a preset
  • the buffer duration is a minimum threshold
  • the scheduling priority is adjusted to a first priority
  • the video pre-cache playback duration is a duration that the data buffered by the terminal is maintained for playing
  • a second adjusting subunit configured to: when the QoE information indicates that the current playing state is an interrupt buffering state, adjust the scheduling priority to a second priority;
  • a third adjustment subunit configured to: when the QoE information indicates that the current play state is a normal play state, and the video pre-cache play duration is at the preset cache duration minimum threshold and a preset cache Adjusting the scheduling priority according to the QoE information and channel state information of the current moment of the terminal, when the duration is between the maximum thresholds;
  • a fourth adjustment subunit configured to adjust the scheduling priority to the first time when the current playback state is the normal play state and the video pre-cache play duration is greater than the preset cache duration maximum threshold.
  • a third priority wherein the first priority is greater than or equal to the second priority, the second priority is greater than the third priority, and the third priority is greater than or equal to a preset minimum priority level.
  • the third adjustment subunit includes:
  • a first determining subunit configured to determine whether the terminal is in a moving state
  • Obtaining a subunit configured to acquire channel state information of a current moment of the terminal when the terminal is in a mobile state
  • a second determining subunit configured to determine whether a channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state
  • the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state
  • the video pre-buffer playing duration indicated by the QoE information is a large-scale channel fluctuation state
  • the channel large-scale fluctuation level of the terminal Adjust the scheduling priority
  • the priority adjustment subunit is configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset maximum buffer duration threshold
  • the R is a constant that reflects a channel large-scale fluctuation level of the terminal according to the channel state information of the current moment
  • the R is The degree of goodness of the channel state is positively correlated.
  • the second determining subunit is configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the second determining subunit is configured to:
  • the third adjustment subunit is configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the video service of the terminal at the nth moment a historical average rate R(n) and an instantaneous rate r(n) of the video service transmission of the terminal at the nth time, and calculating a scheduling priority P(n) of the video service of the terminal at the nth time, the PF scheduling The priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, where the scheduling priority is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the normal playing state includes: a first normal playing state and a normal normal playing state
  • the determining unit includes:
  • a first determining subunit configured to determine, when the radio link control layer protocol RLC buffer on the access network device starts scheduling data for the video service of the terminal, that the video playing state is an initial buffering state, and Recording a time of generation of the initial cache state;
  • a second determining subunit configured to determine, according to the scheduled data volume, whether the video pre-cache playback duration is greater than a preset initial cache duration threshold after the initial buffering state starts;
  • a third determining subunit configured to determine that the video playing state is the first normal playing state when the video pre-cache playing duration is greater than a preset initial buffer duration threshold, and record the generating moment of the first normal playing state;
  • a fourth determining subunit configured to determine, according to the scheduling data amount and the video code rate, whether data of the video buffer buffer of the terminal is exhausted after the first normal playing state is started;
  • a fifth determining subunit configured to determine, when the data buffered by the video buffer of the terminal is exhausted, that the video playing state is an interrupt buffering state, and record a generating moment of the interrupt buffering state;
  • a sixth determining subunit configured to, according to the scheduled data volume, after the interrupt buffer state starts And determining, by the video bit rate, whether the video pre-cache playback duration is greater than a preset interrupt buffer duration threshold;
  • a seventh determining subunit configured to determine that the video playing state is a normal playing state when the video pre-cache playing duration is greater than a preset interrupt buffer duration threshold, and record the generating moment of the normal playing state again;
  • an eighth determining subunit configured to: when the playing time corresponding to the data amount in the RLC buffer is 0, and the video pre-cache playing duration is equal to 0, determining that the video playing state is the playing end state, and recording the playing end The moment of generation of the state;
  • Generating a subunit configured to generate the QoE information according to the video playing state and a moment of generating the video playing state.
  • the second determining subunit is configured to:
  • the amount of scheduled data from the generation time of the initial buffer state to the current time is used as the pre-cached data amount of the current time
  • the fourth determining subunit is configured to:
  • the QoE information is periodically obtained by using a TTI as a determining period, and the resources of the video service are periodically scheduled by using one TTI as a scheduling period.
  • the scheduling unit is configured to:
  • the scheduling priority of the current scheduling period is the video service scheduling data of the terminal, and the scheduling priority of the current scheduling period is determined according to the QoE information determined by the current determining period.
  • the device further includes:
  • a calculation unit configured to calculate an average subjective MOS of the video service of the terminal according to the QoE information, where the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, where The duration of the video pre-cache playback is the duration of the data that is buffered by the terminal, and the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the first normal playback state, and the average interrupt duration is preset.
  • the average value of the interrupt duration of the terminal in the time period, and the number of interrupts is the number of times the interrupt buffer state is generated in the preset time period.
  • an embodiment of the present invention provides a method for acquiring quality of experience QoE information, including:
  • the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state, where the QoE information is the same as a parameter included in the QoE information determined by the access network device, where the access network
  • the QoE information determined by the device is determined by the access network device according to the scheduled data volume of the data scheduled for the video service of the terminal and the video bit rate of the terminal;
  • the sending the QoE information to the access network device includes:
  • the sending the QoE information to the access network device includes:
  • the access network device may determine the QoE information by using the 1TTI as the determining period, and the QoE information sent by the terminal is periodically reported.
  • the period in which the terminal sends the QoE information may be loosely configured, and the reporting period may be 200 ms (milliseconds). ) or 1 s (seconds), which is much larger than the determined period of the access network device. This ensures that the terminal sends less signaling carrying QoE information, and can also correct the error generated by the QoE information determined by the access network device itself.
  • an embodiment of the present invention provides a terminal, including:
  • a generating unit configured to generate QoE information, where the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state, where the QoE information is the same as a parameter included in the QoE information determined by the access network device,
  • the QoE information determined by the access network device is determined by the access network device according to a scheduled data volume of data scheduled for the video service of the terminal and a video bit rate of the terminal;
  • a sending unit configured to send the QoE information to the access network device, so that the access network device updates the QoE information determined by the access network device by using the QoE information sent by the terminal, to obtain an updated QoE information.
  • the sending unit is configured to:
  • the sending unit is configured to:
  • an embodiment of the present invention provides an experience quality information acquiring system, including the access network device according to any one of the second aspects, and at least one terminal.
  • the terminal can be the terminal of any of the fourth aspects.
  • an embodiment of the present invention provides a video scheduling method, including:
  • the data of the video service of the terminal is scheduled according to the adjusted scheduling priority.
  • the adjusting the scheduling priority according to the channel state information of the current moment of the terminal includes:
  • the scheduling priority is adjusted according to channel state information of the current moment of the terminal.
  • the adjusting the scheduling priority according to the channel state information of the current moment of the terminal includes:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset maximum buffer duration threshold, and the R is according to the current moment.
  • the channel state information determines a constant that reflects the channel's large-scale fluctuation level of the channel, and the R is positively correlated with the goodness of the channel state.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the adjusting the scheduling priority according to the channel state information of the current moment of the terminal includes:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the seventh aspect of the present invention provides an access network device, including:
  • a determining unit configured to determine whether the terminal is in a moving state
  • An acquiring unit configured to acquire channel state information of a current moment of the terminal when the terminal is in a mobile state
  • an adjusting unit configured to adjust a scheduling priority of the video service of the terminal according to channel state information of the current moment of the terminal;
  • a scheduling unit configured to schedule data for the video service of the terminal according to the adjusted scheduling priority.
  • the adjusting unit includes:
  • a determining subunit configured to determine whether a channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state
  • Adjusting the subunit, the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state, and adjusting the scheduling priority according to the channel state information of the current moment of the terminal.
  • the adjusting subunit is configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset buffer duration maximum threshold
  • the R is a constant that reflects a channel large-scale fluctuation level of the terminal determined according to the channel state information of the current moment, and the R and the channel state are positive.
  • the determining subunit is configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining subunit is configured to:
  • the determining subunit is configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the eighth aspect of the present invention provides a video scheduling system, including the access network device according to any one of the seventh aspects, and at least one terminal.
  • an embodiment of the present invention provides an access network device, including:
  • a processor configured to acquire, when the access network device determines the video service scheduling data of the terminal, the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal;
  • the processor is further configured to determine QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the processor is further configured to:
  • the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state.
  • the processor is further configured to:
  • the processor is further configured to:
  • the access network device further includes: a receiver,
  • the receiver is configured to receive QoE information sent by the terminal
  • the processor is further configured to:
  • the receiver is configured to:
  • the QoE information sent by the terminal is periodically reported, and the reporting period is 200 milliseconds or 1 second.
  • the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, where the playing state type of the current playing state includes an initial buffering state, a normal playing state, an interrupt buffering state, and playing. End state.
  • the processor is further configured to:
  • the scheduling priority is adjusted to the first priority, and the video pre-cache play duration is the terminal. The length of time that the cached data is maintained for playback;
  • the scheduling priority is adjusted to a second priority
  • the QoE information indicates that the current play state is a normal play state and the video pre-cache play duration is between the preset cache duration minimum threshold and a preset cache duration maximum threshold, according to the QoE information and the location
  • the channel state information of the current moment of the terminal adjusts the scheduling priority
  • the scheduling priority is adjusted to a third priority, where the The first priority is greater than or equal to the second priority, and the second priority is greater than the third priority, and the third priority is greater than or equal to a preset minimum priority.
  • the processor is further configured to:
  • the scheduling priority is adjusted according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal.
  • the processor is further configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is the preset maximum buffer duration threshold
  • the R is a constant that reflects the channel large-scale fluctuation level of the terminal according to the channel state information of the current moment, and the R and the channel state are good. The degree is positively correlated.
  • the processor is further configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the processor is further configured to:
  • the processor is further configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the scheduling priority P(n) of the video service of the terminal at time n the PF scheduling priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, where the scheduling priority is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the normal play status includes: a first normal play status and a normal normal play status
  • the processor is further configured to:
  • the radio link control layer protocol RLC buffer on the access network device starts to schedule data for the video service of the terminal, determining that the video playing state is an initial buffer state, and recording the initial buffer state generation. time;
  • the QoE information is generated according to the video playing state and the generated moment of the video playing state.
  • the processor is further configured to:
  • the amount of scheduled data from the generation time of the initial buffer state to the current time is used as the pre-cached data amount of the current time
  • the processor is further configured to:
  • the QoE information is periodically obtained by using a TTI as a determining period, and the resources of the video service are periodically scheduled by using one TTI as a scheduling period.
  • the processor is further configured to: use a scheduling priority of the current scheduling period as the video service scheduling data of the terminal, where the scheduling priority of the current scheduling period is determined according to the QoE information determined by the current determining period.
  • the processor is further configured to:
  • the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, wherein the video pre-cache playback
  • the duration is the duration of the data that is cached by the terminal
  • the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the first normal playback state, where the average interruption duration is the terminal within the preset time period.
  • the average of the interrupt durations, the number of interrupts being the number of times the interrupt buffer state is generated within the preset time period.
  • the tenth aspect of the present invention provides a terminal, including:
  • a processor configured to generate QoE information, where the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state, where the QoE information is the same as the parameter included in the QoE information determined by the access network device,
  • the QoE information determined by the access network device is determined by the access network device according to a scheduled data volume of data scheduled for the video service of the terminal and a video bit rate of the terminal;
  • a transmitter configured to send the QoE information to the access network device, so that the access network device uses the QoE information sent by the terminal to update the QoE information determined by the access network device, to obtain an updated QoE information.
  • the transmitter is configured to:
  • the transmitter is configured to:
  • the access network device may determine the QoE information by using the 1TTI as the determining period, and the QoE information sent by the terminal is periodically reported.
  • the period in which the terminal sends the QoE information may be loosely configured, and the reporting period may be 200 ms (milliseconds). ) or 1 s (seconds), which is much larger than the determined period of the access network device. This ensures that the terminal sends less signaling carrying QoE information, and can also correct the error generated by the QoE information determined by the access network device itself.
  • the embodiment of the present invention provides an experience quality information acquiring system, including the access network device according to any one of the ninth aspects, and at least one terminal.
  • the terminal can be the terminal of any of the tenth aspects.
  • an embodiment of the present invention provides an access network device, including: a processor, where the processor is configured to:
  • the data of the video service of the terminal is scheduled according to the adjusted scheduling priority.
  • the processor is further configured to:
  • the processor is further configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset buffer duration maximum threshold
  • the R is a constant that reflects a channel large-scale fluctuation level of the terminal determined according to the channel state information of the current moment, and the R and the channel state are positive.
  • the processor is further configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the processor is further configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the embodiment of the present invention provides a video scheduling system, comprising the access network device according to any one of the twelfth aspects, and at least one terminal.
  • the access network device may determine the QoE information of the video service according to the amount of scheduling data of the data scheduled for the video service of the terminal and the video bit rate of the terminal, The terminal reports through signaling, effectively reducing air interface resources. Waste, therefore, the consumption of communication resources is reduced during the processing of the video service.
  • FIG. 1 is a schematic diagram of an environment structure of a video scheduling system involved in an method for acquiring quality of experience information according to an exemplary embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for acquiring quality of experience information according to an exemplary embodiment of the present invention.
  • FIG. 3 is a flowchart of another method for acquiring quality of experience information according to an exemplary embodiment of the present invention.
  • FIG. 4 is a flowchart of a video scheduling method according to an exemplary embodiment of the present invention.
  • FIG. 5-1 is a flowchart of still another method for acquiring quality of experience information according to an exemplary embodiment of the present invention.
  • FIG. 5-2 is a schematic diagram of a play state change of a video according to an exemplary embodiment of the present invention.
  • FIG. 5-3 is a schematic diagram of channel state area division according to an exemplary embodiment of the present invention.
  • FIG. 5-4 is a schematic structural diagram of a video scheduling system according to an exemplary embodiment of the present invention.
  • FIG. 5-5 is a schematic structural diagram of another video scheduling system according to an exemplary embodiment of the present invention.
  • FIG. 5-6 is a flowchart of a method for adjusting an scheduling priority of a video service of a terminal according to QoE information according to an exemplary embodiment of the present invention.
  • FIG. 5-7 is a schematic structural diagram of still another video scheduling system according to an exemplary embodiment of the present invention. Figure.
  • FIGS. 5-8 are schematic diagrams showing the architecture of still another video scheduling system according to an exemplary embodiment of the present invention.
  • FIG. 5-9 is a schematic diagram of a cell handover method according to an exemplary embodiment of the present invention.
  • 5-10 are initial cache delay CDF curves of a video terminal according to an exemplary embodiment of the present invention.
  • 5-11 are CDW curves of an average interrupt duration of a video terminal according to an exemplary embodiment of the present invention.
  • 5-12 are carton percentage CDF curves of a video terminal according to an exemplary embodiment of the present invention.
  • 5-13 are video subjective subjective CDF curves of a video terminal according to an exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart of another video scheduling method according to an exemplary embodiment of the present invention.
  • FIG. 7-1 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present invention.
  • FIG. 7-2 is a schematic structural diagram of another access network device according to an exemplary embodiment of the present invention.
  • FIG. 7-3 is a schematic structural diagram of an adjusting unit according to an exemplary embodiment of the present invention.
  • FIG. 7-4 is a schematic structural diagram of a third adjustment subunit provided by an exemplary embodiment of the present invention.
  • FIG. 7-5 is a schematic structural diagram of a determining unit according to an exemplary embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another access network device according to an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal according to an exemplary embodiment of the present invention.
  • FIG. 9-1 is a schematic structural diagram of an access network device according to another exemplary embodiment of the present invention.
  • FIG. 9-2 is a schematic structural diagram of an adjusting unit according to another exemplary embodiment of the present invention.
  • FIG. 10-1 is a schematic structural diagram of an access network device according to another exemplary embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another access network device according to another exemplary embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal according to another exemplary embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an access network device according to still another exemplary embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the environment structure of a video scheduling system involved in the method for acquiring quality of experience information provided by an embodiment of the present invention.
  • the video scheduling system includes at least one terminal 00 and an access network device 01.
  • the terminal 00 may be a mobile terminal (whose state may be mobile or static) or may be a fixed terminal.
  • the access network device 01 can determine the QoE information of the video service of the terminal 00, and schedule the data for the video service of the terminal 00 according to the QoE information, or calculate the average subjective score (English: mean opinion score; MOS for short) according to the QoE information.
  • the video scheduling system provided in the embodiment of the present invention is a wireless communication system, such as a long term evolution (LTE) system, and a wideband code division multiple access (English: wideband code division multiple access; Abbreviation: WCDMA) system, time division-synchronous code division multiple access (English: time division-synchronous code division multiple access; TD-SCDMA) system, global interoperability for microwave access (English: worldwide interoperability for microwave access; referred to as: WiMAX) system.
  • LTE long term evolution
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division-synchronous code division multiple access
  • WiMAX global interoperability for microwave access
  • the terminal 00 may be a user equipment (English: user equipment; abbreviated as: UE), and the access network device 01 may be an evolved base station (English: evolved node B; abbreviated as: eNodB), and the management network element may be
  • the core network server may be a mobility management entity (English: mobility management entity; MME for short); in the WCDMA system, the terminal 00 may be a UE, and the access network device 01 may be a wireless network.
  • the management network element may be a network server; in the TD-SCDMA system, the terminal 00 may be a UE, the access network device 01 may be an RNC, and the management network element may be a network server; in the WiMAX system, the terminal 00
  • the access network device 01 can be a base station (English: base station, BS for short), and the management network element can be a network server.
  • the video scheduling system provided by the embodiment of the present invention may include a scenario in which only a video service exists, and may also include a scenario in which a video service is mixed with a non-video service.
  • the embodiment of the present invention provides a method for acquiring the experience quality information, which can be used in the access network device 01 shown in FIG. 1 .
  • the method includes:
  • step 201 when the access network device determines the video service scheduling data of the terminal, the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal are obtained.
  • Step 202 Determine QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the access network device may determine the QoE information of the video service according to the amount of scheduling data of the data scheduled for the video service of the terminal and the video bit rate of the terminal.
  • the terminal does not need to report through the signaling, which effectively reduces the waste of the air interface resources. Therefore, in the processing of the video service, the consumption of the communication resources is reduced.
  • the embodiment of the present invention provides a method for acquiring the experience quality information, which can be used for the terminal 00 shown in FIG. 1 .
  • the method includes:
  • Step 301 Generate QoE information, where the QoE information includes a video playing state of the terminal, and a time of generating the video playing state of the terminal, where the QoE information is the same as the parameter included in the QoE information determined by the access network device, and the access network device determines
  • the QoE information is determined by the access network device according to the amount of scheduled data of the data scheduled for the video service of the terminal and the video bit rate of the terminal.
  • Step 302 Send QoE information to the access network device, so that the access network device uses the QoE information sent by the terminal to update the QoE information determined by the access network device to obtain updated QoE information.
  • the method for acquiring the quality of experience information may be The QoE information is sent to the access network device, so that the access network device uses the QoE information sent by the terminal to update the QoE information determined by the access network device, so that the QoE information acquired by the access network device is more accurate and the acquisition is improved.
  • the accuracy of the QoE information may be The accuracy of the QoE information.
  • the embodiment of the present invention provides a video scheduling method, which can be used in the access network device 01 shown in FIG. 1. As shown in FIG. 4, the method includes:
  • Step 401 Determine whether the terminal is in a moving state.
  • Step 402 Obtain channel state information of a current moment of the terminal when the terminal is in a mobile state
  • Step 403 Adjust, according to channel state information of the current moment of the terminal, a scheduling priority of the video service of the terminal.
  • Step 404 Perform scheduling data for the video service of the terminal according to the adjusted scheduling priority.
  • the access network device can adjust the scheduling priority of the terminal according to the channel state information of the current moment of the terminal when the terminal is in the mobile state, and prioritize according to the adjusted scheduling.
  • the level is the video service scheduling data of the terminal, which can effectively ensure the video quality of the terminal when it is in the mobile state.
  • the embodiment of the present invention provides a method for acquiring the experience quality information, which can be used in the video scheduling system shown in FIG. 1 , as shown in FIG. 5-1 , the method includes:
  • Step 501 The access network device obtains the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal when determining the video service scheduling data of the terminal.
  • the access network device when the access network device receives the video service request sent by the terminal, it may determine that the video service scheduling data needs to be used for the terminal.
  • the radio link control layer protocol (English: radio link control; RLC) layer of the access network device is provided with an RLC buffer, which is used to buffer data scheduled for the video service of the terminal, and is monitored.
  • the RLC buffer can obtain the amount of scheduling data corresponding to the data scheduled by the video service of the terminal.
  • the amount of the scheduled data is used to identify the amount of video data that the access network device schedules for the terminal, only for the purpose of Different from the amount of data acquired by the terminal, it is not used to limit the amount of data. Therefore, the amount of scheduling data mentioned in the embodiment of the present invention is the amount of data generated by the access network device as the video service scheduling data of the terminal.
  • the data scheduled by the access network device for the video service of the terminal may or may not be encrypted.
  • the access network device can obtain the video bit rate of the terminal by parsing the Transmission Control Protocol (English: Transmission Control Protocol; TCP) packet; when the video service is encrypted and transmitted, the access network device can The video code rate is determined by using a preset acquisition rule, or the video code rate sent by other network elements is received.
  • the acquisition rule of the video code rate may refer to related technologies.
  • Step 502 The access network device determines QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the QoE letter may include a video playing state of the terminal and a generating moment of the video playing state of the terminal.
  • the video playing state of the terminal may include: a current playing state, and a generating moment of the current playing state
  • the playing state type of the current playing state may include an initial buffering state (also referred to as an initial buffering state, initial buffering in English), Normal playback state (playback), interrupt buffer state (also called interrupt buffer state, English is rebuffering) or playback end state.
  • the video playing state of the terminal may further include: a historical playing state and a generating state of the historical playing state, where the historical playing state is a playing state from a time when the initial buffer state is generated (ie, a start playing time) to a time before the current time.
  • the QoE information determined by the access network device may further include: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, wherein the video pre-cache playback duration is maintained for the data cached by the terminal.
  • the duration of the initial buffer is the time delay from the generation time (also called the start time) of the initial buffer state to the generation time of the first normal play state
  • the average interrupt duration is from the generation time of the initial buffer state to the current time, the terminal
  • the average of all interrupt durations (that is, the duration of the interrupt cache state), which is the number of times the interrupt buffer state is generated from the generation time of the initial buffer state to the current time, that is, the number of video interruptions.
  • the normal playing state includes: the first normal playing state and the normal playing again.
  • the state of the first normal play state is usually the state in which the terminal normally plays the video from the initial cache state; the normal play state is the state in which the video is normally played after the terminal has the interrupt cache state.
  • the method for determining the QoE information of the video service of the terminal according to the scheduling data volume and the video bit rate may include:
  • Step A1 When the RLC buffer on the access network device starts to schedule data for the video service of the terminal, the access network device determines that the video playback state is the initial cache state, and records the generation time of the initial cache state.
  • the RLC buffer starts scheduling data for the video service of the terminal according to the preset scheduling instruction, or may perform scheduling when the amount of data in the RLC buffer is greater than a preset threshold (the preset threshold is usually 0).
  • the preset threshold is usually 0. The embodiment does not limit this.
  • the delay is small, and usually does not affect the determination of the video playing state of the terminal by the access network device.
  • the RLC in the access network device can be cached as the data scheduled by the terminal.
  • the access network device determines that the playback state is the initial cache state, and Record the moment when the initial cache state is generated.
  • Step A2 After the initial buffering state starts, the access network device determines, according to the amount of scheduling data, whether the video pre-cache playback duration is greater than a preset initial buffer duration threshold.
  • the method for determining, by the access network device, whether the video pre-cache playback duration is greater than a preset initial cache duration threshold according to the amount of the scheduled data may include:
  • Step A21 The access network device determines, according to the amount of scheduling data, the amount of scheduling data from the time when the initial buffer state is generated to the current time.
  • the amount of scheduling data scheduled from the time when the initial buffer state is generated to the last moment of the current time is the historical data amount H1
  • the amount of scheduling data scheduled at the current time is N1
  • the time from the initial buffer state is generated.
  • the amount of scheduled data W1 to the current time is the historical data amount H1 and current
  • the sum of the schedule data amount N1 scheduled at the time, that is, W1 H1+N1.
  • Step A22 The access network device uses the scheduled data amount from the time when the initial buffer state is generated to the current time as the pre-cached data amount of the current time.
  • the access network device uses the scheduled data amount from the time when the initial buffer state is generated to the current time as the pre-cached data amount of the current time, that is, W1 determined in step A21 is used as the pre-cached data amount of the current time.
  • W1 determined in step A21 is used as the pre-cached data amount of the current time.
  • the code corresponding to the method for obtaining the pre-cached data amount at the current moment is:
  • CurPreBufferedData LastPreBufferedData+CurDownloadData.
  • CurPreBufferedData indicates the amount of pre-cached data at the current time
  • LastPreBufferedData indicates the amount of historical data, which may be equal to H1 in step A21
  • CurDownloadData indicates the amount of data downloaded at the current time
  • CurScheData indicates the amount of scheduled data scheduled at the current time, which may be equal to the step. N1 in A21.
  • the code is scheduled in units of bits.
  • Step A23 The access network device determines, according to the pre-cached data volume of the current time, the video pre-cache playback duration at the current moment.
  • the unit of the pre-cached data volume at the current moment is bit (bit)
  • the unit of the video pre-cache playback duration at the current moment may be ms (millisecond) or s (second), according to a preset conversion rule.
  • the video pre-cache playback duration of the current moment can be determined according to the amount of pre-cached data at the current moment.
  • the data amount D (unit is bit), the video code rate Vd (unit is bit/s), and the time Td (unit is s) satisfy the conversion relationship formula:
  • Video pre-cache playback duration the video pre-buffer playing duration of the current time corresponding to the pre-cached data amount at the current time.
  • Step A24 The access network device determines whether the video pre-cache playback duration at the current moment is greater than a preset initial cache duration threshold.
  • the access network device determines whether to perform video playback state switching by determining whether the video pre-cache playback duration of the current time is greater than a preset initial buffer duration threshold. For example, the access network device determines whether to perform a video playback state handover process. as follows:
  • LastPreBufferedData CurPreBufferedData
  • the video pre-cache playback duration is greater than the preset initial cache duration threshold when the video pre-cache playback duration is greater than the preset initial cache duration threshold; the video pre-cache playback duration at the current moment is not greater than the preset initial cache.
  • the duration of the video pre-cache is determined to be no longer than a preset initial buffer duration threshold.
  • Step A3 When the video pre-cache playback duration is greater than a preset initial buffer duration threshold, the access network device determines that the video playback state is the first normal playback state, and records the generation timing of the first normal playback state.
  • the initial buffer duration threshold is 4.5 s
  • the playback duration of the data in the RLC buffer is RLCBuffer
  • the video pre-cache playback duration is CurBuffer
  • the first normal playback state satisfies the condition RLCBuffer> &CurBuffer ⁇ 4.5s, where "&&" means Logic and.
  • the first normal play state is the state of the first normal play after the initial cache state starts.
  • Step A4 After the first normal play state starts, the access network device determines, according to the scheduled data volume and the video code rate, whether the data buffered by the video buffer of the terminal is exhausted.
  • the method for determining, by the access network device, whether the data cached by the video buffer of the terminal is exhausted according to the scheduled data volume and the video code rate may include:
  • Step A41 Determine a scheduling data amount y from a generation time of the first normal playing state to a current time according to the scheduling data amount.
  • the scheduling data amount y can be obtained from a scheduler of the access network device, and the scheduler can be a basic scheduler or a dynamic scheduler.
  • Step A42 Determine the pre-cached data amount x of the generation time of the first normal play state.
  • the amount of pre-cached data x may be equal to the product of the video code rate and the transmission duration.
  • the transmission duration is the length of time from the start of the scheduling time to the generation of the first normal playback state.
  • Step A45 When the amount of pre-cached data at the current time is 0, it is determined that the data buffered by the video buffer of the terminal is exhausted.
  • Step A46 When the amount of pre-cached data at the current time is greater than 0, it is determined that the data buffered by the video buffer of the terminal is not exhausted.
  • Steps A41 to A46 are actually determining whether the amount of pre-cached data at the current time is 0. When the amount of pre-cached data at the current time is 0, determining that the data buffered by the video buffer of the terminal is exhausted; when the current time is The amount of pre-cached data is not 0, and it is determined that the data buffered by the video buffer of the terminal is not exhausted.
  • the updated code of the amount of pre-cached data is as follows:
  • CurPreBufferedData LastPreBufferedData+CurDownloadData-AccumPlayBackData.
  • the access network device determines whether to perform video playback state switching by determining whether the data buffered by the video buffer of the terminal is exhausted.
  • the code of the process for the access network device to determine whether to perform video playback state switching is as follows:
  • Step A5 When the data buffered by the video buffer of the terminal is exhausted, the access network device determines that the video playing state is the interrupt buffer state, and records the generation time of the interrupt buffer state.
  • Step A6 After the interrupt buffer state starts, the access network device determines, according to the scheduled data volume and the video code rate, whether the video pre-cache playback duration is greater than a preset interrupt buffer duration threshold.
  • the access network device determines the video pre-cache playback duration according to the scheduled data volume and the video bit rate. Whether the method is greater than a preset interrupt buffer duration threshold may include:
  • Step A61 Determine the amount of scheduling data from the generation time of the interrupt buffer state to the current time according to the amount of scheduling data.
  • the amount of scheduling data scheduled from the moment when the interrupt buffer state is generated to the last moment of the current time is the historical data amount H2, and the amount of scheduling data scheduled at the current time is N2, and the time from the interrupt buffer state is generated.
  • Step A62 The amount of scheduled data from the generation time of the interrupt buffer state to the current time is used as the pre-cached data amount of the current time;
  • W2 determined in step A61 is taken as the amount of pre-cached data at the current time.
  • the updated code of the amount of pre-cached data is as follows:
  • CurPreBufferedData CurDownloadData
  • Step A63 Determine a video pre-cache playback duration of the current moment according to the pre-cached data amount at the current moment.
  • the unit of the pre-cached data volume at the current time is bit, and the unit of the video pre-cache playback duration of the current time may be ms.
  • the current cached data amount of the current time may be used to determine the current The video pre-cache playback time of the moment. Referring to step A23, the amount of pre-cached data at the current time is divided by the video bit rate to obtain the video pre-cache playback duration of the current time.
  • Step A64 Determine whether the video pre-cache playback duration of the current time is greater than a preset interrupt buffer duration threshold.
  • the initial cache state and the interrupt cache state may be referred to as a cache state, and the rule that the cache state is switched to the normal play state may be the same, that is, whether the video pre-cache playback duration at the current moment is greater than a preset duration threshold.
  • the threshold is greater than the preset duration, the buffering state is switched to the normal playing state. Therefore, the specific processes of the foregoing steps A2 and A6 can be referred to each other.
  • the initial cache duration threshold and the interrupt cache duration threshold can be equal.
  • the video pre-cache playback duration is greater than the preset interrupt buffer duration threshold, it is determined that the video pre-cache playback duration is greater than the preset interrupt cache duration threshold; the video pre-buffer playback duration at the current moment is not greater than the preset interrupt cache. The duration of the video pre-cache is determined to be no longer than the preset interrupt buffer duration threshold.
  • Step A7 When the video pre-cache playback duration is greater than the preset interrupt buffer duration threshold, the access network device determines that the video playback state is the normal playback state again, and records the generation time of the normal playback state again.
  • the playing time of the data volume in the RLC buffer is 0, but the video pre-cache playing time is greater than 0, it is also determined that the playing state is the normal playing state again, and The time at which the normal playback state is again recorded is recorded.
  • the playback time corresponding to the data amount in the RLC buffer is 0, indicating that the video data of the current video service has been completely scheduled by the access network device (for example, the data of one movie has been scheduled), and the video pre-cache playback duration is greater than 0.
  • the access network device determines that the terminal has not finished playing the video.
  • the interrupt buffer duration threshold is 3.5s
  • the playback time corresponding to the data amount in the RLC buffer is RLCBuffer
  • the video pre-cache playback duration is CurBuffer
  • the normal playback state meets the condition again (RLCBuffer> 0&&CurBuffer ⁇ 3.5s)
  • (RLCBuffer 0&&CurBuffer>0), where "&&" represents a logical AND, and "
  • the access network device determines whether the video playback state is switched by determining whether the video pre-cache playback duration is greater than a preset interrupt buffer duration threshold. For example, the code of the access network device determining whether to perform the video playback state switching is as follows:
  • LastPreBufferedData CurPreBufferedData
  • LastPreBufferedData CurPreBufferedData
  • Step A8 When the playing time corresponding to the data volume in the RLC buffer is 0, and the video pre-cache playing duration is equal to 0, the access network device determines that the video playing state is the playing end state, and records the generating end of the playing end state.
  • Step A9 The access network device generates QoE information according to a video playing state and a video playing state.
  • the access network device may generate QoE information, so as to ensure the timeliness of the video playing state determined by the access network device.
  • Figure 5-2 shows the playback status of the video.
  • the playback time of the data in the RLC buffer is RLCbuffer, and the video pre-cache playback time is CurBuffer.
  • the terminal is in a paly null state, when in the RLC buffer
  • the player of the terminal enters the initial buffering state.
  • the video data starts to be scheduled (be sched), and the player of the terminal starts to download the file until the amount of data buffered in the video buffer area.
  • the player enters a normal playback state when the corresponding buffered time reaches the initial buffer duration threshold.
  • the initial normal playback state is used, and the initial buffer duration threshold may be an access network device.
  • the initial buffer duration threshold may be an access network device.
  • Statically configured determined by the transmission mechanism of the video website and video.
  • the play back state is also referred to as the normal play state in the embodiment of the present invention.
  • the interrupt buffer duration threshold may be statically configured by the access network device, and is also determined by the video website and the video transmission mechanism.
  • the access network device may not determine the playing state, and the access network device only needs to have an initial buffering state, a normal playing state, an interrupted buffering state, and The playback end state is determined.
  • the access network device can determine the playing state by detecting the amount of video data in the RLC buffer. For the specific process, refer to the foregoing steps A1 to A9. As shown in Figure 5-2, in the actual application, after the initial cache state starts, when the amount of data in the RLC buffer is 0, the corresponding playback duration is 0, indicating that the access network device does not obtain the video on the corresponding server. Data, resource scheduling cannot be performed.
  • the video playback state is returned to the unstarted state; after the video playback state is in the playback end state, when the amount of data in the RLC buffer is detected to be greater than 0, the corresponding playback duration is greater than 0, indicating The user starts to watch the new video, and the new video data arrives, and the next round of the video playback state is determined.
  • the process of determining the process is referred to the above process, which is not described in detail in the embodiment of the present invention.
  • the access network device periodically determines the QoE information.
  • the QoE information is determined by a transmission time interval (English: transmission time interval; TTI). sexually acquired.
  • the foregoing step 501 may be that the access network device periodically determines the scheduled data volume of the data scheduled by the video service of the terminal and the video bit rate of the terminal.
  • Step 502 may be that the access network device periodically determines the view according to the scheduled data amount and the video code rate.
  • QoE information for frequency services The periods used in steps 501 to 502 are all equal to a preset determination period, that is, one TTI. Therefore, the current time in step 502 refers to the time in the current period, which may be the current TTI in the embodiment of the present invention.
  • the access network device determines the QoE information by using one TTI period, and can realize the real-time determination of the QoE information to ensure the timeliness and accuracy of the QoE information.
  • the video code rate may be redundantly processed to obtain a code rate estimation value, where the code rate estimation value is greater than the video code rate;
  • the scheduling data amount and the code rate estimate determine the QoE information of the video service of the terminal.
  • the code rate estimation value obtained by performing redundancy processing is larger than the actual video code rate (also called actual value).
  • This redundancy processing method is called conservative estimation, and the terminal rate is determined by using a code rate estimation value larger than the actual code rate.
  • the video scheduling priority can guarantee the robustness of the scheduling.
  • the method for determining the QoE information of the video service according to the scheduling data volume and the video code rate may be implemented in multiple ways.
  • the embodiments of the present invention are only illustrative, and the spirit and principles of the present invention are applicable. Any modifications, equivalent substitutions, improvements, etc. made therein are intended to be included within the scope of the present invention.
  • Step 503 The access network device adjusts a scheduling priority of the video service of the terminal according to the QoE information.
  • the access network device to adjust the scheduling priority of the video service of the terminal according to the QoE information.
  • the following embodiments of the present invention are described as an example:
  • the method for adjusting the scheduling priority of the video service of the terminal according to the QoE information may include:
  • Step B1 When the QoE information indicates that the current playing state is the initial buffering state, or the QoE information indicates that the current playing state is the normal playing state and the video pre-cache playing duration is not greater than the preset minimum buffering duration threshold, the video service scheduling of the terminal is performed. The priority is adjusted to the first priority, and the video pre-cache playback duration is the duration of time that the data cached by the terminal is maintained.
  • the buffer duration minimum threshold (BufferedPlayTimeLowerThres) is usually 1 s.
  • the video pre-cache playback duration is not greater than the preset cache duration minimum threshold, it indicates that the video is prone to interruption.
  • Step B2 When the QoE information indicates that the current playing state is the interrupt buffer state, the scheduling priority of the video service of the terminal is adjusted to the second priority.
  • Step B3 When the QoE information indicates that the current play state is the normal play state and the video pre-cache play duration is between the preset cache duration minimum threshold and the preset cache duration maximum threshold, according to the QoE information and the channel state of the current moment of the terminal. The information adjusts the scheduling priority of the video service of the terminal.
  • the maximum buffer length threshold (BufferedPlayTimeHigherThres) is usually 10s, and the configuration of the parameter is related to the cell coverage radius and the moving speed of the terminal. For example, in the LTE system, when the base station spacing is 500 meters and the terminal moving speed is 120 kilometers/hour (km/h), the maximum buffer length threshold can be set to 10 seconds.
  • the access network device can maintain the video service scheduling data for the video pre-cache playback duration, and the terminal can still play the video normally.
  • the process of adjusting the scheduling priority of the video service of the terminal according to the QoE information and the channel state information of the current moment of the terminal in step B3 may include:
  • Step B31 The access network device determines whether the terminal is in a mobile state.
  • the method for identifying the terminal's Doppler frequency shift may be used to determine whether the terminal is in a mobile state.
  • specific identification method reference may be made to the related art, which is not described in detail in the embodiment of the present invention.
  • Step B32 When the terminal is in a mobile state, the access network device acquires channel state information of the current moment of the terminal.
  • the channel state information reflects the state of the channel indicating the service data transmission or the control signaling transmission by the access network device and the terminal.
  • the access network device in the video scheduling system can perform resource scheduling for the video service of the terminal.
  • the channel state information needs to be transmitted through the channel in the resource scheduling process. Therefore, the channel state information in the embodiment of the present invention may be used to reflect the state of the channel in which the access network device and the terminal perform video service data transmission or control signaling transmission.
  • the channel state information may be reported by the terminal to the access network device.
  • the channel state information may be a channel quality indicator (CQI).
  • the access network device can determine the channel state of the current base station according to the CQI.
  • A the cache duration maximum threshold
  • T the video pre-cache play duration indicated by the QoE information.
  • the basic scheduling priority is allocated to the terminal by the basic scheduler of the access network device.
  • Step B33 The access network device determines whether the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state.
  • Large-scale channel fluctuations refer to the fading of electromagnetic wave signal strength due to path loss and shadow effects in a wireless environment.
  • the terminal In the wireless mobile environment, the terminal is prone to large-scale channel fluctuations. For example, when the terminal moves to the cell edge and the channel conditions become worse, the large-scale channel fluctuation level is poor.
  • there are various methods for determining whether the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state The following three examples are used in the embodiment of the present invention:
  • whether the channel state indicated by the channel state information is a large-scale channel fluctuation state can be determined by comparing the SINR of the channel with the cell-level variable.
  • the access network device may determine, according to the channel state information, a signal to interference plus noise ratio (SINR) of the channel indicated by the channel state information at the current time, and indicate the channel state information.
  • SINR signal to interference plus noise ratio
  • X1 is the sum of the historical average SINR of the channel and the preset first cell variable
  • X2 is the difference between the historical average SINR of the channel and the preset second cell variable
  • the historical average SINR of the channel is from the initial buffer. The average value of the SINR from the time of generation of the state to the previous moment of the current time.
  • the channel state is a large-scale channel fluctuation state.
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, it is determined that the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state.
  • the channel state indicated by the channel state information is CurSINR
  • the historical average SINR of the channel is HistAvgSINR
  • the first cell variable is x1
  • the second cell variable is x2
  • the x1 may be equal to or not equal to x2.
  • the x1 may be equal to 3 dB (decibel), and x2 may be equal to 3 dB.
  • Using the manner provided by the first aspect to determine the state of the large-scale channel fluctuation can improve the resource utilization of the terminal.
  • whether the channel state indicated by the channel state information is a large-scale channel fluctuation state can be determined by comparing the SINR of the channel with a preset threshold.
  • the access network device may determine, according to the channel state information, the SINR of the channel indicated by the channel state information at the current time, and compare the SINR of the channel indicated by the channel state information with the good region threshold and the bad region threshold respectively.
  • the SINR of the channel indicated by the channel state information at the current time is greater than a preset good region threshold, it is determined that the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state.
  • the SINR of the channel indicated by the channel state information at the current time is less than the preset bad region threshold, it is determined that the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state.
  • the good area threshold is Thres1
  • the bad area threshold is Thres2
  • the Thres1 may be equal to or equal to Thres2.
  • the Thres1 may be equal to 20 dB (decibel), and Thres2 may be equal to 10 dB.
  • Using the method provided by the first aspect to judge the state of the large-scale channel fluctuation can improve the spectrum efficiency of the system.
  • the first aspect and the second aspect may be combined to determine whether the channel state indicated by the channel state information is a large-scale channel fluctuation state.
  • the access network device may determine, according to the channel state information, the SINR of the channel indicated by the channel state information at the current time, and perform the SINR of the channel indicated by the channel state information with the X1, X2, the good region threshold, and the bad region threshold respectively.
  • X1 is the sum of the historical average SINR of the channel and the preset first cell variable
  • X2 is the difference between the historical average SINR of the channel and the preset second cell variable
  • the historical average SINR of the channel is from the initial buffer state. The average value of the SINR at the last moment from the moment to the current moment is generated.
  • the SINR of the channel is greater than or equal to the sum of the signal to interference plus noise ratio SINR of the channel indicated by the channel state information at the current time and the historical average SINR of the channel and the preset first cell variable; or, when the SINR of the channel is less than or equal to a difference between a historical average SINR of the channel and a preset second cell variable; or, when the SINR of the channel indicated by the channel state information at the current time is greater than a preset good region threshold, or when the channel state information at the current time indicates When the SINR of the channel is less than the preset bad area threshold, the channel state indicated by the channel state information at the current time is determined to be a large-scale channel fluctuation state.
  • the SINR of the channel indicated by the channel state information is CurSINR
  • the historical average SINR of the channel is HistAvgSINR
  • the first cell variable is x1
  • the second cell variable is x2
  • the good region threshold is Thres1
  • the bad region threshold is Thres2
  • the method provided by the fourth aspect is used to determine the state of the large-scale channel fluctuation.
  • the channel condition of the current terminal is not only compared with the historical average value but also the threshold ratio of the cell level, thereby improving the accuracy of the judgment, and not only improving the terminal.
  • Resource utilization can also provide system spectral efficiency.
  • step B34 when the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state, the scheduling priority of the video service of the terminal is adjusted according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal.
  • adjusting the scheduling priority of the video service of the terminal according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal may include:
  • Step B341 determining a constant reflecting a large-scale fluctuation level of the channel of the terminal.
  • determining a constant reflecting a large-scale fluctuation level of a channel of a terminal there are various methods for determining a constant reflecting a large-scale fluctuation level of a channel of a terminal.
  • it is generally determined whether a channel state indicated by channel state information at a current time is a large-scale channel fluctuation.
  • the channel is allocated a constant R1 reflecting the channel's large-scale fluctuation level of the channel.
  • the channel is allocated a constant R2 reflecting the bad horizontal channel fluctuation level of the terminal, and R includes R1 or R2.
  • the channel is allocated a constant R3 reflecting the channel's large-scale fluctuation level of the channel.
  • the channel is allocated a constant R2 reflecting the channel's large-scale fluctuation level of the terminal, and R4 includes R3 or R4.
  • R1 above may be equal to R3, and R2 may be equal to R4.
  • Step B342 Determine the priority adjustment factor Q by using an adjustment factor calculation formula according to the video pre-cache playback duration T and the current channel state information indicated by the QoE information.
  • Step B343 The product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority of the video service of the terminal, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal.
  • the adjustment factor calculation formula is:
  • A is a preset maximum threshold value of the buffer duration
  • R is a constant that reflects the large-scale fluctuation level of the channel of the terminal according to the channel state information at the current time, and R is positively correlated with the goodness of the channel state.
  • R can be configured as a constant greater than 1, thereby increasing the video scheduling priority to allocate more radio resources; if the channel state is bad, R can be configured to be a constant greater than 1, thereby reducing The video is scheduled for priority to allocate less radio resources; if the channel state is moderate, R can be configured to 1.
  • the R may be the above R1, R2, R3 or R4.
  • step B341 to step B343 can improve the priority of the video scheduling when the channel state is good and the video pre-buffer playing time is insufficient, and fill the video buffer area of the terminal in advance, so that when the terminal moves to a bad location of the channel, Reduce the scheduling of video resources, and maintain the smooth playback of the video by consuming the data of the video buffer.
  • Step B4 When the QoE information indicates that the current play state is the normal play state and the video pre-cache play duration is greater than the preset cache duration maximum threshold, the scheduling priority of the terminal is adjusted to the third priority, where the first priority is greater than Or equal to the second priority, the second priority is greater than the third priority, and the third priority is greater than or equal to the preset minimum priority.
  • the first priority is usually the preset maximum priority
  • the second priority is less than or equal to the first priority
  • the third priority is usually the minimum priority
  • the usual minimum priority is 0,
  • the scheduler is a module for performing video scheduling in the access network device, and the scheduler in the embodiment of the present invention is usually a basic scheduler.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, and the scheduling priority of the video service of the terminal is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the basic scheduler can perform video scheduling by using a proportional fair (PF) algorithm. Therefore, a factor adjustment module can be set at the front end of the basic dispatcher, and the factor adjustment module is used to calculate the priority adjustment factor Q; the basic scheduler can calculate the basic scheduling priority, and adjust the adjustment factor Q and the basic basic schedule input by the factor adjustment module.
  • the product of the priority is output as the scheduling priority of the video service of the terminal.
  • the priority adjustment factor Q may be determined according to the QoE information, or may be jointly determined according to the QoE information and the channel state information. For example, when the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state, the adjustment factor in step B343 is adopted.
  • the calculation formula is determined. Pr0 is calculated by the basic scheduler according to the PF algorithm.
  • the scheduling priority of the video service of the terminal is determined by the access network device according to the current playing state indicated in the QoE information, and the current playing state is different, and the corresponding priority is The level is different, as shown in FIG. 5-3.
  • the embodiment of the present invention uses the method provided by the third aspect in step B33 to determine whether the channel state indicated by the channel state information is large.
  • the channel state area shown in Figure 5-3 can be divided into five areas according to the channel state information of the current time and the video pre-cache playback duration indicated by the QoE information, as shown in Figure 5-3.
  • the horizontal axis is the video Buffered Play Time
  • the vertical axis is the channel state.
  • the channel state can be determined according to the channel state information at the current time.
  • the area 5 belongs to the channel good area
  • the area 3 is the bad channel area
  • the area 3 has the lower priority, so as to benefit other terminals except the terminal, the other terminal may be a video service terminal or a non-video.
  • Business terminal may be a video service terminal or a non-video.
  • the embodiment of the present invention uses Table 1 as an example to introduce different priority adjustment factors corresponding to different current playing states.
  • the process of adjusting the scheduling priority of the terminal according to the QoE information and the channel state information of the current moment of the terminal in step B3 may also include:
  • Step B35 determining, according to the QoE information determined by the access network device, the scheduled data volume TxTbSize(n) scheduled by the access network device at the nth time;
  • B36 Determine, according to the channel state information reported by the terminal, an instantaneous rate r(n) of the video service transmission of the terminal at the time n;
  • Step B37 Calculate the historical average rate R(n) of the video service of the terminal at the nth time according to the historical average rate calculation formula and the scheduling data amount TxTbSize(n) scheduled by the access network device at the nth time, and calculate the historical average rate. for:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n); “ ⁇ ” represents multiplication.
  • Step B38 Calculate the scheduling of the terminal at the nth time according to the PF scheduling priority formula, the historical average rate R(n) of the video service of the terminal at the nth time, and the instantaneous rate r(n) of the video service transmission at the nth moment.
  • Priority P(n) PF scheduling priority formula is:
  • is the filter coefficient set by the alpha (alpha) filtering algorithm for the video service of the terminal
  • R(n-1) is the historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1, when n is equal to At 1 o'clock, R(n-1) is the preset value.
  • the reciprocal of the filter coefficient ⁇ is equal to the length of the sliding time window, ie Among them, the alpha default value is 0.005, which means the average value of the terminal's historical average rate within 0.2s.
  • the scheduling priority of the non-video service may also be determined by using the method of step B35 to step B38, but the configuration of the video service may be It is smaller than ⁇ of the non-video service, so that the smaller filter coefficient ⁇ of the video service terminal can ensure a larger sliding time window length, lengthen the observation time of the average historical rate, and improve the PF in the PF scheduling priority, that is, the terminal is at the nth.
  • the instantaneous rate r(n) of the video service transmission at the moment affects the proportion of the video scheduling priority, thereby achieving the effect of the regional selective scheduling, that is, when the channel condition is good, the scheduling is more, and when the channel condition is poor, the scheduling is less.
  • the main factors affecting the comprehensive evaluation index of video QoE-mean opinion score include: video bit rate, initial buffer delay (also called initial buffer delay, English: initial delay), Rebuffering times and average rebuffering duration, and each factor affects the weight, the video bit rate is the main cause, the initial cache delay and the number of interrupts are more important than the average interrupt duration, so
  • the embodiment of the present invention enables the access network device to identify the current playing state of the video, and configure priorities of different sizes according to the different weights of the influence factors of the MOS influencing factors, for example, by adjusting the weight of the priority adjusting factor.
  • the priority adjustment factor is because the average interrupt duration does not occupy the main cause in the MOS, and finally the current play state is the initial cache state, or the QoE information indicates that the current play state is the normal play state and the video pre-cache play duration is not greater than the preset cache.
  • the scheduling priority of the video service of the terminal is adjusted to the first priority; the current playback state is the interrupt buffer state, and the scheduling priority is adjusted to the second priority; when the QoE information indicates that the current playing state is the normal playing state.
  • the video pre-cache playback duration is between the preset minimum buffer duration threshold and the preset cache duration maximum threshold, and dynamically adjusts the scheduling priority of the terminal according to the QoE information and the channel state information of the current moment of the terminal; when the QoE information indicates the current
  • the scheduling priority is adjusted to the third priority.
  • the first priority is greater than or equal to the second priority
  • the second priority is greater than the third priority
  • the third priority is greater than or equal to the preset minimum priority, where the minimum priority is usually the lowest priority, that is, no scheduling .
  • the access network device allocates different priorities for different playing states according to different current playing states, thereby comprehensively and comprehensively improving various indicators of the video user QoE.
  • the architecture of the video scheduling system can be as shown in Figure 5-4.
  • the scheduling system may include: a terminal and an access network device, and the video code rate of the terminal may also be reported by the management network element to the base station server, where the access network device may include: a QoE information determining module, a factor adjusting module, and a basic scheduler, where The QoE information determining module may perform the foregoing step 501, the factor adjusting module and the basic scheduler are configured to perform the foregoing step 502 and the foregoing step 503, wherein the factor adjusting module may include a first sub-adjusting module and a second sub-adjusting module, the first sub- The adjustment module is configured to perform the adjustment of the priority adjustment factor triggered by the QoE information, for example, the foregoing steps B1, B2, and B4, where the second sub-adjustment module is configured to perform the adjustment of the priority adjustment factor triggered by the channel state information of the current moment of the terminal, for example, In step B31 to step B33 in the above step B3, the first sub-adjustment module and the second sub-a
  • the basic scheduler also needs to transmit the scheduled data (Scheduled Data) to the QoE information determining module, so that the QoE information determining module performs the determination of the QoE information.
  • the module in the access network device provided in the embodiment of the present invention may be a processing period of one TTI, and may perform corresponding actions for each subframe of each video terminal.
  • the access network device may further include: a QoE information determining module and a basic scheduler, wherein the QoE information determining module may perform the above step 501, and the basic scheduler may perform the foregoing steps B35 to B38.
  • the parameter settings in the QoE information determining module and the meaning of each parameter may be as shown in Table 2.
  • the MOS of the video service of the terminal may be calculated according to the QoE information; then, the scheduling priority of the terminal is adjusted according to the MOS, and the value of the MOS is negatively correlated with the scheduling priority.
  • the calculation input parameters of the MOS may include: a video pre-buffered time (Buffered Time), an initial buffer delay, an average interrupt duration, and an interrupt number, wherein the video pre-cache playback
  • the duration is the duration of playback of the data buffered by the terminal.
  • the initial buffer delay is the delay from the generation time (also called the start time) of the initial buffer state to the generation time of the first normal playback state, and the average interruption duration is from the initial buffer state.
  • the average value of the interrupt duration of the terminal (that is, the duration of the interrupt buffer state) is generated from the time instant to the current time.
  • the number of interrupts is the number of times the interrupt buffer state is generated from the generation time of the initial buffer state to the current time, that is, the number of times the video is interrupted.
  • the QoE information determined by the access network device may include these parameters, and the above parameters in the base station QoE information are used as input parameters of the MOS, and the MOS can be calculated.
  • the calculated value of the MOS is negatively correlated with the scheduling priority of the video service of the terminal, that is, the larger the value of the MOS, the smaller the scheduling priority of the video service.
  • the access network device can configure the scheduling priority according to the MOS.
  • the value of the MOS and the scheduling priority may be linearly negatively correlated (ie, inversely proportional), or may be nonlinearly negatively correlated.
  • the architecture of the video scheduling system can be as shown in Figure 5-5.
  • the video scheduling system may include: a terminal and an access network device, where the access network device may include: a QoE information determining module, a MOS determining module, a factor adjusting module, and a basic scheduler, and the MOS determining module may be configured to calculate the terminal according to the QoE information.
  • the MOS of the video service, the factor adjustment module can determine the priority adjustment factor of the terminal according to the MOS, and output to the basic scheduler, and the basic scheduler determines the scheduling priority of the video service of the terminal.
  • the basic scheduler also needs to transmit the scheduled data (Scheduled Data) to the QoE information determining module, so that the QoE information determining module performs the determination of the QoE information.
  • the module in the access network device provided in the embodiment of the present invention may be a TTI as a processing cycle. The corresponding action can be performed for each subframe of each video terminal.
  • the closed-loop correction of the information may be performed according to the QoE information sent by the terminal, and then the scheduling priority of the terminal is adjusted.
  • the method for adjusting the scheduling priority of the video service of the terminal according to the QoE information may include:
  • Step 5011 The access network device receives the QoE information sent by the terminal.
  • the open system interconnection (OSI) model is an open communication system interconnection reference model, also known as the network seven-layer protocol.
  • the OSI model has a seven-layer structure, and each layer can have several sub-layers.
  • the 7 layers of OSI are 7-application layer, 6-representation layer, 5-session layer, 4-transport layer, 3-network layer, 2-data link layer and 1-physical layer from top to bottom, respectively, above Layer 4, Layer 7, 6, 5, and 4 define the functionality of the application.
  • the following three layers, Layers 3, 2, and Layer 1 are primarily intended for end-to-end data flow through the network.
  • a communication interface can be established between the terminal and the access network device, and a communication interface (also referred to as a logical interface) established between the terminal and the access network device is a 7-application layer and 2- A communication interface established between data link layers.
  • the access network device receives the QoE information sent by the terminal through a communication interface established between the terminal and the access network device.
  • the access network device may also receive the QoE information that is forwarded by the management network element, where the QoE information is generated by the terminal and sent to the management network element.
  • the video scheduling system is an LTE system
  • the terminal may be a UE
  • the access network device may be eNodB
  • the management network element may be a core network server, such as an MME, or a network server.
  • the process of reporting the QoE information to the MME by the UE is supported by the third generation partnership project (English: third generation partnership project; 3GPP) 26.247.
  • Step 5032 The access network device updates the QoE information determined by the access network device by using the QoE information sent by the terminal, to obtain the updated QoE information, and the QoE information sent by the terminal is the same as the parameter included in the QoE information.
  • the process of updating the QoE information by the access network device according to the QoE information sent by the terminal is actually a process of replacing the QoE information by the QoE information sent by the terminal, and the updated QoE information is the same as the QoE information sent by the terminal.
  • the terminal can perform the video playback, so the terminal can monitor various parameters of the video playback in real time, and obtain the QoE information.
  • the QoE information sent by the terminal and the QoE information include the same parameters.
  • the method may include: the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, and the playing state type of the current playing state may include an initial buffering state, a normal playing state, an interrupt buffering state, and a playing end state.
  • the QoE information sent by the terminal may further include a historical playing state and a generating state of the historical playing state, where the historical playing state is a playing state from a time when the initial buffer state is generated (ie, a start playing time) to a time before the current time, the history playing.
  • the play status type of the status may include an initial cache status, a normal play status, and an interrupt cache status.
  • the current time is the time at which the terminal generates QoE information.
  • the QoE information sent by the terminal may further include: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt count.
  • the access network device receives the QoE information reported by the terminal each time, according to the The QoE information sent by the terminal is used to update (also referred to as correcting) the QoE information determined by the access network device. In this way, the access network device can eliminate the error of the QoE information determined by the access network device, and effectively ensure the accuracy of the QoE information acquired by the access network device.
  • the access network device mainly determines the scheduling priority of the video service of the terminal according to the QoE information determined by the user, and the QoE information reported by the terminal only plays a supporting role.
  • the access network device may determine the QoE information by using the 1TTI as the determining period, and the QoE information sent by the terminal is periodically reported.
  • the period in which the terminal sends the QoE information may be loosely configured, and the reporting period may be 200 ms (milliseconds). ) or 1 s (seconds), which is much larger than the determined period of the access network device. This ensures that the terminal sends less signaling carrying QoE information, and can also correct the error generated by the QoE information determined by the access network device itself.
  • the format of the QoE information reported by the terminal may be as shown in Table 3.
  • the video playing status information of the terminal is added, and the type and the generating time of the current playing state are recorded. ).
  • the video scheduling system includes: a management network element, a terminal, and an access network device, where the terminal can periodically report the QoE information to the management network element, and the management network element forwards the information to the access network device, so that The access network device performs the closed-loop correction process, and the terminal can periodically report the QoE information through the communication interface established with the access network device.
  • the third implementation manner is an auxiliary step performed by the access network device when determining the QoE information. Therefore, the video scheduling system can be based on the first implementable architecture, as shown in FIG. 5-7, where For the functions of each module of the access network device, refer to Figure 5-4. It can also be based on the architecture of the second implementation manner, as shown in Figure 5-8. The functions of the modules of the access network device can be referred to Figure 5-5.
  • Step 5033 The access network device adjusts the scheduling of the video service of the terminal according to the updated QoE information. priority.
  • the determining of the QoE information of the video service is mainly performed by the access network device itself, and the algorithm for determining the QoE information determined by the access network device has certain robustness, and the QoE information reported by the terminal is only Used as a closed loop correction for QoE information determined by the access network device. In this way, the access network device does not need to rely on the information reported by the terminal to obtain the QoE information, and the QoE information is determined mainly by the access network device itself.
  • Step 504 The access network device schedules data of the video service according to the adjusted scheduling priority.
  • the resource of the video service may be periodically scheduled by using one TTI as the scheduling period. Therefore, the process of scheduling the video service according to the adjusted scheduling priority may include:
  • the scheduling priority of the current scheduling period is the video service scheduling data of the terminal, and the scheduling priority of the current scheduling period is determined according to the currently determined periodic QoE information.
  • the current scheduling period described above is also referred to as the current TTI.
  • Step 505 When detecting the inter-cell handover of the terminal, the access network device sends the QoE information to the access network device of the management target cell through the X2 interface, where the target cell is the cell to which the terminal is to be handed over.
  • the access network device may use the X2 interface between the cells to perform QoE information. Send to the access network device that manages the target cell.
  • the QoE information includes the video playback status of the terminal determined by the access network device.
  • the target cell can accurately know the video playback state of the terminal before the handover according to the QoE information, and continue to perform subsequent video service scheduling to ensure the user of the terminal. Video viewing experience.
  • This embodiment implements joint video QoE information of an access network device and terminal experience in a mobile environment.
  • the information of the large-scale fluctuation of the channel is used to schedule the video service, and the current video playback state is differentiated, and different scheduling priorities are configured for each play state, thereby comprehensively improving the video experience and correspondingly improving the MOS.
  • the initial cache time is reduced by statically configuring a higher priority adjustment factor to preferentially schedule data for such video terminals.
  • Step 506 The access network device calculates the MOS of the video service of the terminal according to the QoE information.
  • MOS is an important indicator for measuring voice quality or video quality in wireless communication systems.
  • the terminal performs calculation.
  • the MOS can be determined based on the video interruption time (also called the number of times of carding), the buffer delay, the video bit rate, etc. detected by the terminal, and the higher MOS indicates the service quality. (English: quality of service; referred to as: QoS) performance is high.
  • the MOS is determined according to the QoE information determined by the access network device, and the MOS algorithm has multiple types.
  • the MOS calculation input parameters may include: video pre-cache playback duration, initial cache delay, and average interrupt duration. And the number of interruptions.
  • the QoE information determined by the access network device may include these parameters.
  • the above parameters in the QoE information of the base station are used as input parameters of the MOS, and the MOS can be calculated, so that the MOS evaluation of the network side video experience can be implemented, and the access network device can be based on real time. MOS gets the user's current level of video experience.
  • the calculated MOS can be used for network planning and network optimization, which is referred to as network planning network optimization.
  • the architecture of the video scheduling system may refer to FIG. 5-5 or FIG. 5-8, and the QoE information that the access network device determines in real time may be used as a standard for video scheduling. It can also be used as a MOS evaluation of the video on the network side, and obtain the current video experience level of the user in real time, which is used as a reference for the network planning network optimization.
  • step 507 may be directly performed, and any familiar technology may be used.
  • Figure 5-10 to Figure 5-13 show the simulation comparison of the cumulative distribution function (English: cumulative distribution function; CDF) curve of the user's various QoE performance indicators.
  • Figure 5-10 shows the initial cache delay of the video terminal.
  • CDF curve the horizontal axis represents the initial buffer delay, the vertical axis represents the cumulative percentage;
  • Figure 5-11 shows the average interrupt duration CDF curve of the video terminal, the horizontal axis represents the average interruption duration; the vertical axis represents the cumulative percentage;
  • Figure 5-12 shows the video The terminal's stalling ratio CDF curve, the horizontal axis represents the percentage of the carton; the vertical axis represents the cumulative percentage; and the graph 5-13 shows the video average opinion score of the video terminal (English: video mean opinion score; abbreviated as: vMOS) CDF
  • the horizontal axis represents the average subjective score;
  • the vertical axis represents the cumulative percentage.
  • Each of Figures 5-10 through 5-13 includes: a normal scheduler curve, a QoE VR1.2 curve, a QoE ReBT 0.5 curve, a QoE VR0.5 curve, and an ideal QoE ideal curve.
  • the normal scheduling curve is a curve corresponding to the video service scheduling performed by the access network device by using the PF algorithm;
  • the QoE VR1.2 curve is the code rate estimation value proposed by the access network device according to the embodiment of the present invention (refer to the code of the foregoing step A9)
  • the estimated value of the rate is larger than the actual value (refer to the video bit rate of the above step A9) (for 1.2 Mbps), and the curve corresponding to the video service scheduling is performed;
  • the ideal QoE curve is the estimated value of the access network device under ideal conditions.
  • the curve corresponding to the video service scheduling; QoE VR0.5 curve is the video service scheduling of the access network device in the non-ideal state, the code rate estimation value is smaller than the actual value, 0.5 Mbps
  • the corresponding curve; the QoE ReBT0.5 curve is used by the access network device to obtain the QoE information obtaining method provided by the embodiment of the present invention, and the video service scheduling is performed when the interrupt buffer duration threshold (refer to the interrupt buffer duration threshold in step A6 above) is 0.5s. Corresponding curve.
  • the video scheduling algorithm provided by the embodiment of the present invention significantly improves the initial buffer delay of the video, reduces the number of interrupts, and interrupts the delay, thereby performing scheduling.
  • the comprehensive indicator MOS of the video experience has been greatly improved.
  • the present embodiment can obtain QoE performance similar to the ideal QoE determination scheme. The reason is that, when the code rate is determined to be conservative, the base station will schedule more radio resources to the video terminal to ensure video QoE.
  • the access network device may determine the QoE information of the video service according to the amount of scheduling data of the data scheduled for the video service of the terminal and the video bit rate of the terminal.
  • the terminal does not need to report through the signaling, which effectively reduces the waste of the air interface resources. Therefore, in the processing of the video service, the consumption of the communication resources is reduced.
  • the access network device can also utilize QoE information for radio resource scheduling, and the access network device can perform large-scale channel fluctuation characteristics of the video terminal in the wireless mobile environment. Combined with QoE information as a standard for resource scheduling, it ensures smooth playback of video.
  • the QoE information acquisition method provided by the embodiment of the present invention can effectively improve the QoE and video user capacity of the video user, and improve the system spectrum efficiency.
  • An embodiment of the present invention provides a video scheduling method, which can be used in the video scheduling system shown in FIG. 1. As shown in FIG. 6, the method includes:
  • Step 601 The access network device determines whether the terminal is in a mobile state.
  • step 601 reference may be made to the step B31 in the foregoing embodiment, which is not described in detail in the embodiment of the present invention.
  • Step 602 When the terminal is in a mobile state, the access network device acquires channel state information of the current moment of the terminal. Go to step 604.
  • the channel state information reflects the state of the channel indicating the service data transmission or the control signaling transmission by the access network device and the terminal.
  • the access network device in the video scheduling system can perform resource scheduling for the video service of the terminal.
  • the channel state information needs to be transmitted through the channel in the resource scheduling process. Therefore, the channel state information in the embodiment of the present invention can be used to reflect the access network device and the terminal.
  • the channel state information may be reported by the terminal to the access network device.
  • the channel state information may be a channel quality indicator (CQI).
  • the access network device can determine the channel state of the current base station according to the CQI.
  • Step 603 When the terminal is not in the mobile state, the access network device calculates a scheduling priority of the video service of the terminal according to a preset algorithm.
  • A the cache duration maximum threshold
  • T the video pre-cache playback duration indicated by the QoE information.
  • the basic scheduling priority is allocated to the terminal by the basic scheduler of the access network device.
  • Step 604 The access network device adjusts the scheduling priority of the video service of the terminal according to the channel state information of the current moment of the terminal.
  • the method for adjusting the scheduling priority of the video service of the terminal according to the channel state information of the current time of the terminal may be implemented in various manners. example:
  • the scheduling priority of the video service of the terminal may be adjusted by determining whether the channel state at the current time is a large-scale channel fluctuation state.
  • the scheduling priority of the video service of the terminal is adjusted according to the channel state information of the current moment of the terminal, including:
  • Step C1 determining whether the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state
  • the fluctuation state may include: when the SINR of the channel is greater than or equal to the sum of the signal and interference plus noise ratio SINR of the channel indicated by the channel state information at the current time and the historical average SINR of the channel and the preset first cell variable, determining the current time
  • the channel state indicated by the channel state information is a large-scale channel fluctuation state; when the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining the channel state indicated by the channel state information at the current time is Large-scale channel fluctuations.
  • determining whether the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state includes: determining a channel at the current time when the SINR of the channel indicated by the channel state information at the current time is greater than a preset good region threshold.
  • the channel state indicated by the status information is a large-scale channel fluctuation state; when the SINR of the channel indicated by the channel state information at the current time is less than the preset bad region threshold, determining that the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation status.
  • step C For the step C1, reference may be made to the step B33 in the foregoing embodiment, which is not described in detail in the embodiment of the present invention.
  • Step C2 When the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state, adjust the scheduling priority of the video service of the terminal according to the channel state information of the current moment of the terminal.
  • the scheduling priority of the video service of the terminal is adjusted according to the channel state information of the current moment of the terminal, including:
  • Step C21 Obtain a video pre-cache playback duration T at the current moment.
  • the video pre-cache playback duration is the duration of time that the data cached by the terminal is maintained.
  • the video pre-cache playback duration of the current time may be obtained from the QoE information, or may be obtained by other methods, which is not limited by the embodiment of the present invention.
  • the QoE information may be the QoE information reported by the terminal, or may be determined by the access network device, and the determining method may refer to the foregoing steps 501 to 502, where the pre-cache playback duration is obtained from the QoE information. There is no limit to this.
  • Step C22 Determine the priority adjustment factor Q by using an adjustment factor calculation formula according to the video pre-cache playback duration T and the current channel state information.
  • Step C23 The product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority of the terminal, and the basic scheduling priority of the preset video service is allocated to the basic scheduler of the access network device. Terminal's.
  • the adjustment factor calculation formula is:
  • A is a preset maximum threshold value of the buffer duration
  • R is a constant that reflects the large-scale fluctuation level of the channel of the terminal according to the channel state information at the current time, and R is positively correlated with the goodness of the channel state.
  • step C23 For the method of obtaining the R in the step C23, reference may be made to the foregoing step B341, which is not described in detail in the embodiment of the present invention.
  • the scheduling priority of the video service of the terminal may be adjusted based on the historical average rate and the amount of data acquired at the current time.
  • the scheduling priority of the video service of the terminal is adjusted according to the channel state information of the current moment of the terminal, including:
  • Step D1 Determine a scheduling data amount TxTbSize(n) scheduled by the access network device at the nth time.
  • the TxTbSize(n) may be obtained from the QoE information determined by the access network device, or may be obtained by other means, for example, directly from the scheduler of the access network device, and the implementation of the present invention is implemented. This example does not limit this.
  • the method for determining the QoE information may refer to the foregoing steps 501 to 502, which is not limited in this embodiment.
  • Step D2 determining, according to the channel state information reported by the terminal, an instantaneous rate r(n) of the video service transmission of the terminal at the nth time;
  • Step D3 Calculate the historical average rate R(n) of the video service of the terminal at the nth time according to the historical average rate calculation formula and the data amount TxTbSize(n) acquired by the terminal at the nth time, and calculate the historical average rate as:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • Step D4 according to the proportional fair PF scheduling priority formula, the video service of the terminal at the nth time
  • the historical average rate R(n) and the instantaneous rate r(n) of the video service transmission of the terminal at the nth time, and the scheduling priority P(n) of the video service of the terminal at the nth time is calculated, and the PF scheduling priority formula is:
  • is the filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is the historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1, when n is equal to 1
  • R(n-1) is a preset value.
  • steps D2 to D4 reference may be made to the steps B36 to B38 in the foregoing embodiment, which are not described in detail in the embodiments of the present invention.
  • Step 605 The access network device schedules data for the video service of the terminal according to the adjusted scheduling priority.
  • the video scheduling method adjusts the scheduling priority of the terminal according to the channel state information of the current moment of the terminal, and adjusts the scheduling priority according to the adjusted scheduling priority.
  • Scheduling data for the video service of the terminal can effectively guarantee the video quality of the terminal when it is in a mobile state.
  • An embodiment of the present invention provides an access network device 70, as shown in Figure 7-1, including:
  • the obtaining unit 701 is configured to acquire, when the access network device determines the video service scheduling data of the terminal, the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal;
  • the determining unit 702 is configured to determine QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the determining unit may determine the QoE information of the video service according to the scheduling data amount of the data scheduled by the acquiring unit for the video service of the terminal and the video bit rate of the terminal. No need for the terminal to report through the signaling, effectively reducing the air interface resources. Waste, therefore, the consumption of communication resources is reduced during the processing of the video service.
  • the access network device 70 further includes:
  • the adjusting unit 703 is configured to adjust a scheduling priority of the video service of the terminal according to the QoE information
  • the scheduling unit 704 is configured to schedule data for the video service of the terminal according to the adjusted scheduling priority.
  • the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state.
  • the scheduling unit 704 is configured to:
  • the determining unit 702 is configured to:
  • the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, where the playing state type of the current playing state includes an initial buffering state, a normal playing state, an interrupt buffering state, and playing. End state.
  • the adjusting unit 703 includes:
  • the first adjustment subunit 7031 is configured to indicate, in the QoE information, that the current play state is an initial cache state, or the QoE information indicates that the current play state is a normal play state, and the video pre-cache play duration is not greater than a preset.
  • the buffering duration is adjusted to a first priority, and the video pre-cache playback duration is a duration of time that the data cached by the terminal is maintained;
  • a second adjustment subunit 7032 configured to indicate, in the QoE information, that the current playing state is Disabling the buffer state, adjusting the scheduling priority to the second priority
  • the third adjustment subunit 7033 is configured to indicate, between the QoE information, that the current play state is a normal play state, and the video pre-cache play duration is between the preset cache duration minimum threshold and a preset cache duration maximum threshold. Adjusting the scheduling priority according to the QoE information and channel state information of the current moment of the terminal;
  • the fourth adjustment sub-unit 7034 is configured to adjust the scheduling priority to be when the current playback state is the normal play state and the video pre-cache play duration is greater than the preset cache duration maximum threshold. a third priority, where the first priority is greater than or equal to the second priority, the second priority is greater than the third priority, and the third priority is greater than or equal to a preset minimum priority.
  • the third adjustment subunit 7033 includes:
  • the first determining subunit 70331 is configured to determine whether the terminal is in a moving state
  • the obtaining sub-unit 70332 is configured to acquire channel state information of the current moment of the terminal when the terminal is in a mobile state;
  • the second determining sub-unit 70333 is configured to determine whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state
  • the priority adjustment sub-unit 70334 is configured to: the channel state indicated by the channel state information at the current time is a large-scale channel fluctuation state, the video pre-cache playback duration indicated by the QoE information, and the channel large-scale fluctuation of the terminal The scheduling priority is adjusted horizontally.
  • the priority adjustment subunit 70334 is configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is the preset maximum buffer duration threshold
  • the R is a constant that reflects the channel large-scale fluctuation level of the terminal according to the channel state information of the current moment, and the R and the channel state are good. The degree is positively correlated.
  • the second determining subunit 70333 is configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the second determining subunit 70333 is configured to:
  • the third adjustment subunit 7033 is configured to:
  • the historical average rate calculation formula is:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the scheduling priority P(n) of the video service of the terminal at time n the PF scheduling priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, where the scheduling priority is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the determining unit 702 includes:
  • the first determining sub-unit 7021 is configured to determine, when the radio link control layer protocol RLC buffer on the access network device starts scheduling data for the video service of the terminal, that the video playing state is an initial buffering state, And recording a moment of generating the initial cache state;
  • a second determining sub-unit 7022 configured to determine, according to the scheduled data volume, whether the video pre-cache play duration is greater than a preset initial cache duration threshold after the initial cache state is started;
  • the third determining sub-unit 7023 is configured to: when the video pre-cache playback duration is greater than a preset initial buffer duration threshold, determine that the video playing state is the first normal playing state, and record the generating moment of the first normal playing state;
  • a fourth determining subunit 7024 configured to determine, after the first normal playing state starts, whether the data buffered by the video buffer of the terminal is exhausted according to the scheduled data amount and the video code rate;
  • a fifth determining subunit 7025 configured to cache data in the video buffer of the terminal Determining that the video playing state is an interrupt buffer state, and recording a generation time of the interrupt buffer state;
  • a sixth determining sub-unit 7026 configured to determine, according to the scheduled data volume and the video code rate, whether the video pre-cache play duration is greater than a preset interrupt buffer duration threshold after the interrupt buffer state is started;
  • the seventh determining sub-unit 7027 is configured to: when the video pre-cache playback duration is greater than a preset interrupt buffer duration threshold, determine that the video playing state is a normal normal playing state, and record the generating moment of the re-normal playing state;
  • the eighth determining sub-unit 7028 is configured to: when the playing time corresponding to the data amount in the RLC buffer is 0, and the video pre-cache playing duration is equal to 0, determining that the video playing state is the playing end state, and recording the playing The moment when the end state is generated;
  • the generating subunit 7029 is configured to generate the QoE information according to the video playing state and the generated moment of the video playing state.
  • the second determining subunit 7022 is configured to:
  • the amount of scheduled data from the generation time of the initial buffer state to the current time is used as the pre-cached data amount of the current time
  • the fourth determining subunit 7024 is configured to:
  • the QoE information is periodically obtained by using a TTI as a determining period, and the resources of the video service are periodically scheduled by using one TTI as a scheduling period.
  • the scheduling unit 703 is configured to:
  • the scheduling priority of the current scheduling period is the video service scheduling data of the terminal, and the scheduling priority of the current scheduling period is determined according to the QoE information determined by the current determining period.
  • the access network device 70 further includes:
  • the calculating unit 705 is configured to calculate, according to the QoE information, an average subjective MOS of the video service of the terminal, where the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, where The duration of the video pre-cache playback is the duration of the data that is buffered by the terminal, and the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the first normal playback state, and the average interruption duration is The average value of the interrupt duration of the terminal in the time period is set, and the number of interrupts is the number of times the interrupt buffer state is generated in the preset time period.
  • the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, where The duration of the video pre-cache playback is the duration of the data that is buffered by the terminal, and the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the
  • the determining unit may determine the QoE information of the video service according to the scheduling data amount of the data scheduled by the acquiring unit for the video service of the terminal and the video bit rate of the terminal.
  • the terminal does not need to report by signaling, which effectively reduces the waste of air interface resources. Therefore, in the processing of the video service, the consumption of communication resources is reduced.
  • the embodiment of the present invention provides a terminal 80, as shown in FIG. 8, including:
  • a generating unit 801 configured to generate QoE information, where the QoE information includes a video of the terminal The playing state, and the moment when the video playing state is generated, the QoE information is the same as the parameter included in the QoE information determined by the access network device, and the QoE information determined by the access network device is determined by the access network device The amount of scheduling data of the data scheduled by the video service of the terminal and the video bit rate of the terminal are determined;
  • the sending unit 802 is configured to send the QoE information to the access network device, so that the access network device updates the QoE information determined by the access network device by using the QoE information sent by the terminal, to obtain an updated QoE information.
  • the terminal provided by the embodiment of the present invention may generate QoE information by the generating unit, and report the information to the access network device, so that the access network device uses the QoE information sent by the terminal to update the access network device.
  • the QoE information can make the QoE information acquired by the access network device more accurate and improve the accuracy of obtaining QoE information.
  • the sending unit 802 is configured to:
  • the sending unit 802 is configured to:
  • the terminal provided by the embodiment of the present invention may generate QoE information by the generating unit, and report the information to the access network device, so that the access network device uses the QoE information sent by the terminal to update the access network device.
  • the QoE information can make the QoE information acquired by the access network device more accurate and improve the accuracy of obtaining QoE information.
  • An embodiment of the present invention provides an experience quality information acquiring system, including the access network device 80 described in any of FIG. 7-1, 7-2 or 7-6, and at least one terminal.
  • the terminal can be the terminal 80 shown in FIG.
  • the quality of experience information acquisition system may include the video scheduling system described above.
  • An embodiment of the present invention provides an access network device 90, as shown in Figure 9-1, including:
  • the determining unit 901 is configured to determine whether the terminal is in a moving state
  • the obtaining unit 902 is configured to acquire channel state information of the current moment of the terminal when the terminal is in a mobile state
  • the adjusting unit 903 is configured to adjust a scheduling priority of the video service of the terminal according to channel state information of the current moment of the terminal;
  • the scheduling unit 904 is configured to schedule data for the video service of the terminal according to the scheduling priority.
  • the access network device provided by the embodiment of the present invention can adjust the scheduling priority of the terminal according to the channel state information of the current moment of the terminal, and the scheduling unit can be adjusted by the determining unit when the determining unit determines that the terminal is in the mobile state. According to the adjusted scheduling priority, the video service scheduling data of the terminal can effectively ensure the video quality of the terminal when it is in the mobile state.
  • the adjusting unit 903 as shown in FIG. 9-2, includes:
  • a determining subunit 9031 configured to determine whether a channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state
  • the adjustment subunit 9032 is configured to adjust the scheduling priority according to the channel state information of the current moment of the terminal according to the channel state indicated by the channel state information at the current time.
  • the adjusting subunit 0932 is configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the basic scheduling of the access network device. Assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset maximum buffer duration threshold, and the R is according to the current moment.
  • the channel state information determines a constant that reflects the channel's large-scale fluctuation level of the channel, and the R is positively correlated with the goodness of the channel state.
  • the determining subunit 9031 is configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining subunit 9031 is configured to:
  • the determining subunit 9031 is configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the video service of the terminal at the nth moment The historical average rate R(n) and the instantaneous rate r(n) of the video service transmission of the terminal at the nth time, and the scheduling priority P(n) at the nth time is calculated, and the PF scheduling priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the access network device provided by the embodiment of the present invention can adjust the scheduling priority of the terminal according to the channel state information of the current moment of the terminal, and the scheduling unit can be adjusted by the determining unit when the determining unit determines that the terminal is in the mobile state. According to the adjusted scheduling priority, the video service scheduling data of the terminal can effectively ensure the video quality of the terminal when it is in the mobile state.
  • the embodiment of the invention provides a video scheduling system, including the access network device 90 described in FIG. 9-1, and at least one terminal.
  • An embodiment of the present invention provides an access network device 100, as shown in Figure 10-1, including:
  • the processor 1001 is configured to acquire, when the access network device determines the video service scheduling data of the terminal, the scheduling data volume of the video service of the terminal and the video code rate of the video service of the terminal;
  • the processor 1001 is further configured to determine QoE information of the video service of the terminal according to the scheduled data volume and the video code rate.
  • the processor can determine the QoE information of the video service according to the scheduled data volume of the data scheduled for the video service of the terminal and the video bit rate of the terminal, and the terminal does not need to pass the terminal.
  • Signaling reporting effectively reduces the waste of air interface resources. Therefore, in the processing of video services, the consumption of communication resources is reduced.
  • the processor 1001 is further configured to:
  • the QoE information includes a video playing state of the terminal, and the video broadcast The moment when the state is released.
  • the processor 1001 is further configured to:
  • the processor 1001 is further configured to:
  • the access network device 100 further includes: a receiver 1002,
  • the receiver 1002 is configured to receive QoE information sent by the terminal.
  • the processor 1001 is further configured to:
  • the receiver 1002 is configured to:
  • the QoE information sent by the terminal is periodically reported, and the reporting period is 200 milliseconds or 1 second.
  • the video playing state of the terminal includes: a current playing state, and a generating moment of the current playing state, where the playing state type of the current playing state includes an initial buffering state, a normal playing state, an interrupt buffering state, and playing. End state.
  • the processor 1001 is further configured to:
  • the scheduling priority is adjusted to the first priority, and the video pre-cache playback duration is the duration of time that the data buffered by the terminal is maintained;
  • the scheduling priority is adjusted to a second priority
  • the QoE information indicates that the current play state is a normal play state and the video pre-cache play duration is between the preset cache duration minimum threshold and a preset cache duration maximum threshold, according to the QoE information and the location
  • the channel state information of the current moment of the terminal adjusts the scheduling priority
  • the scheduling priority is adjusted to a third priority, where the The first priority is greater than or equal to the second priority, and the second priority is greater than the third priority, and the third priority is greater than or equal to a preset minimum priority.
  • the processor 1001 is further configured to:
  • the scheduling priority is adjusted according to the video pre-cache playback duration indicated by the QoE information and the channel large-scale fluctuation level of the terminal.
  • the processor 1001 is further configured to:
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device;
  • the adjustment factor is calculated as:
  • the A is the preset maximum buffer duration threshold
  • the R is a constant that reflects the channel large-scale fluctuation level of the terminal according to the channel state information of the current moment, and the R and the channel state are good. The degree is positively correlated.
  • the processor 1001 is further configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the processor 1001 is further configured to:
  • the processor 1001 is further configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the scheduling priority P(n) of the video service of the terminal at time n the PF scheduling priority formula is:
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the scheduling priority of the video service of the terminal is equal to the product of the priority adjustment factor and the basic scheduling priority of the preset video service, where the scheduling priority is adjusted by adjusting the priority adjustment factor.
  • the basic scheduling priority of the preset video service is allocated to the terminal by the basic scheduler of the access network device.
  • the normal play status includes: a first normal play status and a normal normal play status
  • the processor 1001 is further configured to:
  • the radio link control layer protocol RLC buffer on the access network device starts to schedule data for the video service of the terminal, determining that the video playing state is an initial buffer state, and recording the initial buffer state generation. time;
  • the QoE information is generated according to the video playing state and the generated moment of the video playing state.
  • the processor 1001 is further configured to:
  • the amount of scheduled data from the generation time of the initial buffer state to the current time is used as the pre-cached data amount of the current time
  • the processor 1001 is further configured to:
  • the QoE information is periodically obtained by using a TTI as a determining period, and the resources of the video service are periodically scheduled by using one TTI as a scheduling period.
  • the processor 1001 is further configured to: use a scheduling priority of the current scheduling period as the video service scheduling data of the terminal, where the scheduling priority of the current scheduling period is determined according to the QoE information determined by the current determining period.
  • the processor 1001 is further configured to:
  • the QoE information includes: a video pre-cache playback duration, an initial cache delay, an average interrupt duration, and an interrupt number, wherein the video pre-cache playback
  • the duration is the duration of the data that is cached by the terminal
  • the initial buffer delay is the delay from the generation time of the initial buffer state to the generation time of the first normal playback state, where the average interruption duration is the terminal within the preset time period.
  • the average of the interrupt durations, the number of interrupts being the number of times the interrupt buffer state is generated within the preset time period.
  • the processor can determine the QoE information of the video service according to the scheduled data volume of the data scheduled for the video service of the terminal and the video bit rate of the terminal, and the terminal does not need to pass the terminal.
  • Signaling reporting effectively reduces the waste of air interface resources. Therefore, in the processing of video services, the consumption of communication resources is reduced.
  • the embodiment of the present invention provides a terminal 110, as shown in FIG.
  • the processor 1101 is configured to generate QoE information, where the QoE information includes a video playing state of the terminal, and a moment of generating the video playing state, where the QoE information and the access network device are The determined QoE information includes the same parameters, and the QoE information determined by the access network device is a scheduled data amount of the data scheduled by the access network device according to the video service of the terminal, and a video bit rate of the terminal. Determined;
  • the transmitter 1102 is configured to send the QoE information to the access network device, so that the access network device updates the QoE information determined by the access network device by using the QoE information sent by the terminal, to obtain an updated QoE information.
  • the terminal provided by the embodiment of the present invention may generate QoE information and report it to the access network device by the transmitter, so that the access network device uses the QoE information sent by the terminal to update the access network device.
  • the QoE information can make the QoE information acquired by the access network device more accurate and improve the accuracy of obtaining QoE information.
  • the transmitter 1102 is configured to:
  • the transmitter 1102 is configured to:
  • the access network device may determine the QoE information by using the 1TTI as the determining period, and the QoE information sent by the terminal is periodically reported.
  • the period in which the terminal sends the QoE information may be loosely configured, and the reporting period may be 200 ms (milliseconds). ) or 1 s (seconds), which is much larger than the determined period of the access network device. This ensures that the terminal sends less signaling carrying QoE information, and can also correct the error generated by the QoE information determined by the access network device itself.
  • the terminal provided by the embodiment of the present invention may generate QoE information and report it to the access network device by the transmitter, so that the access network device uses the QoE information sent by the terminal to update the access network device.
  • the QoE information can make the QoE information acquired by the access network device more accurate and improve the accuracy of obtaining QoE information.
  • An embodiment of the present invention provides an experience quality information acquiring system, including the access network device 100 shown in 10-1 or 10-2, and at least one terminal.
  • the terminal may be the terminal 110 shown in FIG.
  • the quality of experience information acquisition system may include the video scheduling system described above.
  • An embodiment of the present invention provides an access network device 120, as shown in FIG. 12, including: a processor 1201, where the processor 1201 is configured to:
  • the data of the video service of the terminal is scheduled according to the adjusted scheduling priority.
  • the access network device provided by the embodiment of the present invention can adjust the scheduling priority of the terminal according to the channel state information of the current moment of the terminal, and according to the adjusted scheduling priority, when the terminal is in the mobile state. Scheduling data for the video service of the terminal can effectively ensure the video quality of the terminal when it is in a mobile state.
  • the processor 1201 is further configured to:
  • the scheduling priority is adjusted according to channel state information of the current moment of the terminal.
  • the processor 1201 is further configured to:
  • the product of the priority adjustment factor Q and the basic scheduling priority of the preset video service is used as the scheduling priority, and the basic scheduling priority of the preset video service is the access network device.
  • the basic scheduler is assigned to the terminal;
  • the adjustment factor is calculated as:
  • the A is a preset buffer duration maximum threshold
  • the R is a constant that reflects a channel large-scale fluctuation level of the terminal determined according to the channel state information of the current moment, and the R and the channel state are positive.
  • the processor 1201 is further configured to:
  • the SINR of the channel is greater than or equal to a sum of a signal to interference plus noise ratio SINR of a channel indicated by the channel state information of the current time and a historical average SINR of the channel and a preset first cell variable
  • the channel state indicated by the channel state information at the current moment is a large-scale channel fluctuation state
  • the SINR of the channel is less than or equal to the difference between the historical average SINR of the channel and the preset second cell variable, determining that the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state.
  • the determining whether the channel state indicated by the channel state information of the current time is a large-scale channel fluctuation state includes:
  • the processor 1201 is further configured to:
  • R(n) (1- ⁇ ) ⁇ R(n-1)+ ⁇ TxTbSize(n);
  • the ⁇ is a filter coefficient set by the alpha filtering algorithm for the video service of the terminal
  • R(n-1) is a historical average rate of the video service of the terminal at the n-1th time, n ⁇ 1,
  • R(n-1) is a preset value.
  • the access network device provided by the embodiment of the present invention can adjust the scheduling priority of the terminal according to the channel state information of the current moment of the terminal, and according to the adjusted scheduling priority, when the terminal is in the mobile state. Scheduling data for the video service of the terminal can effectively ensure the video quality of the terminal when it is in a mobile state.
  • An embodiment of the present invention provides a video scheduling system, including the access network device 120 illustrated in FIG. 12, and at least one terminal.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, It can be electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明实施例提供了一种体验质量信息获取方法、设备及系统,涉及通信领域,所述方法包括:当接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。本发明解决了在视频业务的处理过程中,容易消耗较多的通信资源的问题。实现了在视频业务的处理过程中,减少通信资源的消耗的有益效果。本发明用于体验质量信息的获取。

Description

体验质量信息获取方法、设备及系统 技术领域
本发明涉及领域通信领域,特别涉及一种体验质量信息获取方法、设备及系统。
背景技术
随着移动网络的发展,越来越多的用户通过终端收看视频,接入网设备需要为用户的视频业务合理分配资源,以保证视频的流畅播放。
相关技术中,假设终端可以检测终端自身系统的视频播放组件或者安装的应用中视频的相关信息,生成体验质量(英文:quality of experience;简称:QoE)信息,并上报给管理网元(例如核心网服务器或网络服务器),再由管理网元转发给接入网设备,由该接入网设备根据该QoE信息来进行该终端的视频业务的相关处理,如根据QoE信息为视频业务调度无线资源。其中,调度是指接入网设备给终端分配无线资源来传输数据。
但是,为了保证QoE信息的有效性,终端会经常上报携带当前QoE信息的信令,从而消耗较多的空口资源,因此,在视频业务的处理过程中,容易消耗较多的通信资源。
发明内容
为了解决在视频业务的处理过程中,容易消耗较多的通信资源的问题,本发明提供了一种体验质量信息获取方法、设备及系统。所述技术方案如下:
第一方面,本发明实施例提供一种体验质量QoE信息获取方法,包括:
当接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业 务的调度数据量和所述终端的视频业务的视频码率;
根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
可选的,在所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息之后,所述方法还包括:
根据所述QoE信息调整所述终端的视频业务的调度优先级;
根据所述调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
可选的,所述根据所述QoE信息调整所述终端的视频业务的调度优先级,包括:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
可选的,所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息,包括:
对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
可选的,所述根据估计的QoE信息确定所述终端的视频业务调度优先级,包括:
接收所述终端发送的QoE信息;
采用所述终端发送的QoE信息更新所述估计的QoE信息,得到更新的QoE信息,所述终端发送的QoE信息与所述估计的QoE信息包含的参数相同;
根据所述更新的QoE信息确定所述终端的视频业务调度优先级。
可选的,所述接收所述终端发送的QoE信息,包括:
通过所述终端与所述基站控制器之间建立的通讯接口接收所述终端发送的QoE信息;
或者,接收管理网元转发的QoE信息,所述QoE信息是所述终端生成并发送至所述管理网元的。
可选的,所述终端发送的QoE信息是周期性上报的,上报周期为200毫秒或1秒。
可选的,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
可选的,所述根据所述QoE信息调整所述终端的视频业务的调度优先级,包括:
当所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
当所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
可选的,所述根据所述QoE信息和所述终端当前时刻的信道状态信息调 整所述调度优先级,包括:
判断所述终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
可选的,所述根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级,包括:
根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000001
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
可选的,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
可选的,所述正常播放状态包括:首次正常播放状态和再次正常播放状态,所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息,包括:
当所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
当视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
当所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
当视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
当RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
可选的,所述根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值,包括:
根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
可选的,所述根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽,包括:
根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
确定所述首次正常播放状态的产生时刻的预缓存数据量x;
根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
确定当前时刻的预缓存数据量u,所述u=x+y-z;
当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存 的数据未被耗尽。
可选的,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
所述根据所述调整后的调度优先级为所述终端的视频业务调度数据,包括:
根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
可选的,所述方法还包括:
当检测到所述终端发生小区间切换时,将所述估计的QoE信息通过X2接口发送至管理目标小区的基站控制器,所述目标小区为所述终端要切换到的小区。
可选的,在所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息之后,所述方法还包括:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
第二方面,本发明实施例提供一种接入网设备,包括:
获取单元,用于在接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
确定单元,用于根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
可选的,所述设备还包括:
调整单元,用于根据所述QoE信息调整所述终端的视频业务的调度优先 级;
调度单元,用于根据所述调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
可选的,所述调度单元,用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
可选的,所述确定单元,用于:
对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
可选的,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
可选的,所述调整单元,包括:
第一调整子单元,用于在所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
第二调整子单元,用于在所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
第三调整子单元,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存 时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
第四调整子单元,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
可选的,第三调整子单元,包括:
第一判断子单元,用于判断所述终端是否处于移动状态;
获取子单元,用于在所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
第二判断子单元,用于判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
优先级调整子单元,用于在所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
可选的,所述优先级调整子单元,用于:
根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与 信道状态的良好程度正相关。
可选的,所述第二判断子单元,用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述第二判断子单元,用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述第三调整子单元,用于:
根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的 历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000002
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
可选的,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
可选的,所述正常播放状态包括:首次正常播放状态和再次正常播放状态,所述确定单元,包括:
第一确定子单元,用于在所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
第二确定子单元,用于在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
第三确定子单元,用于在视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
第四确定子单元,用于在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
第五确定子单元,用于在所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
第六确定子单元,用于在所述中断缓存状态开始后,根据所述调度数据量 和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
第七确定子单元,用于在视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
第八确定子单元,用于在RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
生成子单元,用于根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
可选的,所述第二确定子单元,用于:
根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
可选的,所述第四确定子单元,用于:
根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
确定所述首次正常播放状态的产生时刻的预缓存数据量x;
根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
确定当前时刻的预缓存数据量u,所述u=x+y-z;
当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的 数据被耗尽;
当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的数据未被耗尽。
可选的,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
所述调度单元,用于:
根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
可选的,所述设备还包括:
计算单元,用于根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
第三方面,本发明实施例提供一种体验质量QoE信息获取方法,包括:
生成QoE信息,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻,所述QoE信息与接入网设备确定的QoE信息包含的参数相同,所述接入网设备确定的QoE信息是所述接入网设备根据为所述终端的视频业务所调度的数据的调度数据量以及所述终端的视频码率确定得到的;
向所述接入网设备发送所述QoE信息,以便于所述接入网设备采用所述终端发送的QoE信息更新所述接入网设备确定的QoE信息,得到更新的QoE信息。
可选的,所述向所述接入网设备发送所述QoE信息,包括:
通过所述终端与所述接入网设备之间建立的通讯接口发送所述QoE信息;
或者,向管理网元发送所述QoE信息,以便于所述管理网元向所述接入网设备转发所述QoE信息。
可选的,所述向所述接入网设备发送所述QoE信息,包括:
以200毫秒或1秒为上报周期,周期性向所述向接入网设备发送QoE信息
实际应用中,接入网设备可以以1TTI为确定周期确定QoE信息,而终端发送的QoE信息是周期性上报的,终端发送QoE信息的周期可以配置的宽松些,该上报周期可以为200ms(毫秒)或1s(秒),远远大于接入网设备的确定周期。这样既保证了终端发送较少的携带QoE信息的信令,又能对接入网设备自身确定的QoE信息产生的误差进行一定的修正。
第四方面,本发明实施例提供一种终端,包括:
生成单元,用于生成QoE信息,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻,所述QoE信息与接入网设备确定的QoE信息包含的参数相同,所述接入网设备确定的QoE信息是所述接入网设备根据为所述终端的视频业务所调度的数据的调度数据量以及所述终端的视频码率确定得到的;
发送单元,用于向所述接入网设备发送所述QoE信息,以便于所述接入网设备采用所述终端发送的QoE信息更新所述接入网设备确定的QoE信息,得到更新的QoE信息。
可选的,所述发送单元,用于:
通过所述终端与所述接入网设备之间建立的通讯接口发送所述QoE信息;
或者,向管理网元发送所述QoE信息,以便于所述管理网元向所述接入网设备转发所述QoE信息。
可选的,所述发送单元,用于:
以200毫秒或1秒为上报周期,周期性向所述向接入网设备发送QoE信息
第五方面,本发明实施例提供一种体验质量信息获取系统,包括第二方面任一所述的接入网设备,以及至少一个终端。该终端可以是第四方面任一所述的终端。
第六方面,本发明实施例提供一种视频调度方法,包括:
判断终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
根据所述终端当前时刻的信道状态信息调整所述终端的视频业务的调度优先级;
根据调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述根据所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述终端当前时刻的信道状态信息调整所述调度优先级。
可选的,所述根据所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
获取当前时刻的视频预缓存播放时长T;
根据所述视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为预设的缓存时长最大阈值,所述R为根据所述当前时刻 的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述根据所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历 史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000003
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
第七方面,本发明实施例提供一种接入网设备,包括:
判断单元,用于判断终端是否处于移动状态;
获取单元,用于在所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
调整单元,用于根据所述终端当前时刻的信道状态信息调整所述终端的视频业务的调度优先级;
调度单元,用于根据调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述调整单元,包括:
判断子单元,用于判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
调整子单元,用于在所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述终端当前时刻的信道状态信息调整所述调度优先级。
可选的,所述调整子单元,用于:
获取当前时刻的视频预缓存播放时长T;
根据所述视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调 整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述判断子单元,用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断子单元,用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断子单元,用于:
确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000004
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
第八方面,本发明实施例提供一种视频调度系统,包括第七方面任一所述的接入网设备,以及至少一个终端。
第九方面,本发明实施例提供一种接入网设备,其特征在于,包括:
处理器,用于在接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
所述处理器还用于根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
可选的,所述处理器还用于:
根据所述QoE信息调整所述终端的视频业务的调度优先级;
根据所述调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
可选的,所述处理器还用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
可选的,所述处理器还用于:
对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
可选的,所述接入网设备还包括:接收机,
所述接收机用于接收所述终端发送的QoE信息;
所述处理器还用于:
采用所述终端发送的QoE信息更新所述估计的QoE信息,得到更新的QoE信息,所述终端发送的QoE信息与所述估计的QoE信息包含的参数相同;
根据所述更新的QoE信息确定所述终端的视频业务调度优先级。
可选的,所述接收机用于:
通过所述终端与所述基站控制器之间建立的通讯接口接收所述终端发送的QoE信息;
或者,接收管理网元转发的QoE信息,所述QoE信息是所述终端生成并发送至所述管理网元的。
可选的,所述终端发送的QoE信息是周期性上报的,上报周期为200毫秒或1秒。
可选的,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
可选的,所述处理器还用于:
当所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信 息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
当所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
可选的,所述处理器还用于:
判断所述终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
可选的,所述处理器还用于:
根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述处理器还用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器还用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器还用于:
根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据 量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000005
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
可选的,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
可选的,所述正常播放状态包括:首次正常播放状态和再次正常播放状态,所述处理器还用于:
当所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
当视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
当所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
当视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
当RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
可选的,所述处理器还用于:
根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
可选的,所述处理器还用于:
根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
确定所述首次正常播放状态的产生时刻的预缓存数据量x;
根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
确定当前时刻的预缓存数据量u,所述u=x+y-z;
当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的数据未被耗尽。
可选的,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
所述处理器还用于:根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
可选的,所述处理器还用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
第十方面,本发明实施例提供一种终端,包括:
处理器,用于生成QoE信息,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻,所述QoE信息与接入网设备确定的QoE信息包含的参数相同,所述接入网设备确定的QoE信息是所述接入网设备根据为所述终端的视频业务所调度的数据的调度数据量以及所述终端的视频码率确定得到的;
发射机,用于向所述接入网设备发送所述QoE信息,以便于所述接入网设备采用所述终端发送的QoE信息更新所述接入网设备确定的QoE信息,得到更新的QoE信息。
可选的,所述发射机,用于:
通过所述终端与所述接入网设备之间建立的通讯接口发送所述QoE信息;
或者,向管理网元发送所述QoE信息,以便于所述管理网元向所述接入网设备转发所述QoE信息。
可选的,所述发射机,用于:
以200毫秒或1秒为上报周期,周期性向所述向接入网设备发送QoE信息
实际应用中,接入网设备可以以1TTI为确定周期确定QoE信息,而终端发送的QoE信息是周期性上报的,终端发送QoE信息的周期可以配置的宽松些,该上报周期可以为200ms(毫秒)或1s(秒),远远大于接入网设备的确定周期。这样既保证了终端发送较少的携带QoE信息的信令,又能对接入网设备自身确定的QoE信息产生的误差进行一定的修正。
第十一方面,本发明实施例提供一种体验质量信息获取系统,包括第九方面任一所述的接入网设备,以及至少一个终端。该终端可以是第十方面任一所述的终端。
第十二方面,本发明实施例提供一种接入网设备,包括:处理器,所述处理器用于:
判断终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
根据所述终端当前时刻的信道状态信息调整所述终端的视频业务的调度优先级;
根据调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述处理器还用于:
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态, 根据所述终端当前时刻的信道状态信息调整所述调度优先级。
可选的,所述处理器还用于:
获取当前时刻的视频预缓存播放时长T;
根据所述视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述处理器还用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器还用于:
确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000006
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
第十三方面,本发明实施例提供一种视频调度系统,包括第十二方面任一所述的接入网设备,以及至少一个终端。
需要说明的是,本发明实施例提供的公式中的“×”和“*”均代表相乘。
本发明提供的技术方案的有益效果是:
本发明实施例提供的体验质量信息获取方法、设备及系统,由于接入网设备可以根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的 浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一示意性实施例提供的体验质量信息获取方法所涉及的一种视频调度系统的环境结构示意图。
图2是本发明一示意性实施例提供的一种体验质量信息获取方法的流程图。
图3是本发明一示意性实施例提供的另一种体验质量信息获取方法的流程图。
图4是本发明一示意性实施例提供的一种视频调度方法的流程图。
图5-1是本发明一示意性实施例提供的又一种体验质量信息获取方法的流程图。
图5-2是本发明一示意性实施例提供的视频的播放状态变化示意图。
图5-3是本发明一示意性实施例提供的一种信道状态区域划分示意图。
图5-4是本发明一示意性实施例提供的一种视频调度系统的架构示意图。
图5-5是本发明一示意性实施例提供的另一种视频调度系统的架构示意图。
图5-6是本发明一示意性实施例提供的一种接入网设备根据QoE信息调整终端的视频业务的调度优先级的方法流程图。
图5-7是本发明一示意性实施例提供的又一种视频调度系统的架构示意 图。
图5-8是本发明一示意性实施例提供的再一种视频调度系统的架构示意图。
图5-9是本发明一示意性实施例提供的一种小区切换方法示意图。
图5-10是本发明一示意性实施例提供的一种视频终端的初始缓存时延CDF曲线。
图5-11是本发明一示意性实施例提供的一种视频终端的平均中断时长CDF曲线。
图5-12是本发明一示意性实施例提供的一种视频终端的卡顿百分比CDF曲线。
图5-13是本发明一示意性实施例提供的一种视频终端的视频平均主观分CDF曲线。
图6是本发明一示意性实施例提供的另一种视频调度方法的流程图。
图7-1是本发明一示意性实施例提供的一种接入网设备的结构示意图。
图7-2是本发明一示意性实施例提供的另一种接入网设备的结构示意图。
图7-3是本发明一示意性实施例提供的一种调整单元的结构示意图。
图7-4是本发明一示意性实施例提供的一种第三调整子单元的结构示意图。
图7-5是本发明一示意性实施例提供的一种确定单元的结构示意图。
图7-6是本发明一示意性实施例提供的又一种接入网设备的结构示意图。
图8是本发明一示意性实施例提供的一种终端的结构示意图。
图9-1是本发明另一示意性实施例提供的一种接入网设备的结构示意图。
图9-2是本发明另一示意性实施例提供的一种调整单元的结构示意图。
图10-1是本发明又一示意性实施例提供的一种接入网设备的结构示意图。
图10-2是本发明又一示意性实施例提供的另一种接入网设备的结构示意图。
图11是本发明另一示意性实施例提供的一种终端的结构示意图。
图12是本发明再一示意性实施例提供的一种接入网设备的结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图1,其示出了本发明实施例提供的体验质量信息获取方法所涉及的一种视频调度系统的环境结构示意图。该视频调度系统包括至少一个终端00和接入网设备01,该终端00可以为移动终端(其状态可以是移动的,也可以是静止的),也可以为固定终端。接入网设备01可以确定终端00的视频业务的QoE信息,并根据QoE信息为终端00的视频业务调度数据,或者根据QoE信息计算平均主观分(英文:mean opinion score;简称:MOS)。
需要说明的是,本发明实施例中提供的视频调度系统为无线通信系统,如长期演进(英文:long term evolution;简称:LTE)系统,宽带码分多址(英文:wideband code division multiple access;简称:WCDMA)系统,时分同步码分多址(英文:time division-synchronous code division multiple access;简称:TD-SCDMA)系统,全球微波互联接入(英文:worldwide interoperability for microwave access;简称:WiMAX)系统。其中,在LTE系统中,上述终端00可以为用户设备(英文:user equipment;简称:UE),接入网设备01可以为演进型基站(英文:evolved nodeB;简称:eNodB),管理网元可以为核心网服务器或网络服务器,该核心网服务器可以为移动管理实体(英文:mobility management entity;简称:MME);在WCDMA系统中,上述终端00可以为UE,接入网设备01可以为无线网络控制器(英文:radio network controller;简称: RNC),管理网元可以为网络服务器;在TD-SCDMA系统中,上述终端00可以为UE,接入网设备01可以为RNC,管理网元可以为网络服务器;在WiMAX系统中,上述终端00可以为UE,接入网设备01可以为基站(英文:base station,简称:BS),管理网元可以为网络服务器。
并且,本发明实施例提供的视频调度系统可以包括只有视频业务存在的场景,也可以包括视频业务与非视频业务混合的场景。
本发明实施例提供一种体验质量信息获取方法,可以用于如图1所示的接入网设备01,如图2所示,该方法包括:
步骤201、当接入网设备确定为终端的视频业务调度数据时,获取终端的视频业务的调度数据量和终端的视频业务的视频码率。
步骤202、根据调度数据量和视频码率确定终端的视频业务的QoE信息。
综上所述,本发明实施例提供的体验质量信息获取方法,由于接入网设备可以根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
本发明实施例提供一种体验质量信息获取方法,可以用于如图1所示的终端00,如图3所示,该方法包括:
步骤301、生成QoE信息,该QoE信息包括终端的视频播放状态,以及终端的视频播放状态的产生时刻,该QoE信息与接入网设备确定的QoE信息包含的参数相同,该接入网设备确定的QoE信息是接入网设备根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定得到的。
步骤302、向接入网设备发送QoE信息,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,得到更新的QoE信息。
综上所述,本发明实施例提供的体验质量信息获取方法,由于终端可以生 成QoE信息,并上报给接入网设备,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,能够使得接入网设备获取的QoE信息更为准确,提高获取QoE信息的准确性。
本发明实施例提供一种视频调度方法,可以用于如图1所示的接入网设备01,如图4所示,该方法包括:
步骤401、判断终端是否处于移动状态;
步骤402、当终端处于移动状态时,获取终端当前时刻的信道状态信息;
步骤403、根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级;
步骤404、根据调整后的调度优先级为终端的视频业务调度数据。
综上所述,本发明实施例提供的视频调度方法,由于接入网设备能够在终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并根据调整后的调度优先级为该终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
本发明实施例提供一种体验质量信息获取方法,可以用于如图1所示的视频调度系统,如图5-1所示,该方法包括:
步骤501、接入网设备在确定为终端的视频业务调度数据时,获取终端的视频业务的调度数据量和终端的视频业务的视频码率。
在本发明实施例中,当接入网设备接收到终端发送的视频业务请求时,可以确定需要为终端的视频业务调度数据。接入网设备的无线链路控制层协议(英文:radio link control;简称:RLC)层设置有RLC缓存器(buffer),该RLC缓存器用于缓存为终端的视频业务所调度的数据,通过监测该RLC缓存器可以获取为终端的视频业务调度的数据所对应的调度数据量,需要说明的是,该调度数据量用于标识接入网设备为终端调度的视频数据量,仅仅是为了 与终端获取的数据量进行区别,并不是用来限定数据量,因此,本发明实施例中所提及的调度数据量均是接入网设备为终端的视频业务调度数据所产生的数据量。
接入网设备为终端的视频业务所调度的数据可以加密也可以不加密。当视频业务不加密传输时,接入网设备可以通过解析传输控制协议(英文:Transmission Control Protocol;简称:TCP)包来获取终端的视频码率;当视频业务加密传输时,接入网设备可以通过预设获取规则进行视频码率的确定,或者接收其他网元发送的视频码率,该视频码率的获取规则可以参考相关技术。
步骤502、接入网设备根据调度数据量和视频码率确定终端的视频业务的QoE信息。
在本发明实施例中,该QoE信可以包括终端的视频播放状态,以及终端的视频播放状态的产生时刻。可选的,该终端的视频播放状态可以包括:当前播放状态,以及当前播放状态的产生时刻,当前播放状态的播放状态类型可以包括初始缓存状态(也称初始缓冲状态,英文为initial buffering)、正常播放状态(playback)、中断缓存状态(也称中断缓冲状态,英文为rebuffering)或者播放结束状态。该终端的视频播放状态还可以包括:历史播放状态及历史播放状态的产生时刻,该历史播放状态为从初始缓存状态产生时刻(即开始播放时刻)到当前时刻之前的时刻的播放状态。
可选的,接入网设备确定的QoE信息还可以包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,该视频预缓存播放时长为终端缓存的数据所维持播放的时长,该初始缓存时延为初始缓存状态的产生时刻(也称开始时刻)到首次正常播放状态的产生时刻所用时延,该平均中断时长为从初始缓存状态的产生时刻到当前时刻,终端所有中断时长(即中断缓存状态保持的时长)的平均值,该中断次数为从初始缓存状态的产生时刻到当前时刻,产生中断缓存状态的次数,即视频中断的次数。
在本发明实施例中,正常播放状态包括:首次正常播放状态和再次正常播放 状态,该首次正常播放状态通常为终端从初始缓存状态开始第一次正常播放视频的状态;再次正常播放状态为终端出现中断缓存状态之后,正常播放视频的状态。
示例的,在步骤502中,当QoE信息包括终端的视频播放状态,以及终端的视频播放状态的产生时刻时,根据调度数据量和视频码率确定终端的视频业务的QoE信息的方法可以包括:
步骤A1、当接入网设备上的RLC缓存器(buffer)开始为终端的视频业务调度数据时,接入网设备确定视频播放状态为初始缓存状态,并记录初始缓存状态的产生时刻。
实际应用中,RLC buffer根据预设调度指令开始为终端的视频业务调度数据,也可以是在RLC buffer中的数据量大于预设阈值(该预设阈值通常为0)时,进行调度,本发明实施例对此不做限定。
虽然接入网设备与终端之间存在传输时延,但是该时延较小,通常不会影响接入网设备对终端的视频播放状态的确定。接入网设备中的RLC可以缓存为终端所调度的数据,在本发明实施例中,当RLC缓存器开始为终端的视频业务调度数据时,接入网设备确定播放状态为初始缓存状态,并记录初始缓存状态的产生时刻。
步骤A2、在初始缓存状态开始后,接入网设备根据调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值。
示例的,接入网设备根据调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值的方法可以包括:
步骤A21、接入网设备根据调度数据量确定从初始缓存状态的产生时刻到当前时刻的调度数据量。
在本发明实施例中,从初始缓存状态的产生时刻到当前时刻的上一时刻调度的调度数据量为历史数据量H1,当前时刻调度的调度数据量为N1,则从初始缓存状态的产生时刻到当前时刻的调度数据量W1为历史数据量H1与当前 时刻调度的调度数据量N1之和,即W1=H1+N1。
步骤A22、接入网设备将从初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量。
接入网设备将从初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量,即将步骤A21中确定的W1作为当前时刻的预缓存数据量。示例的,当前时刻的预缓存数据量的获取方法所对应的代码为:
CurDownloadData+=CurScheData;
CurPreBufferedData=LastPreBufferedData+CurDownloadData。
该代码中,CurPreBufferedData表示当前时刻的预缓存数据量,LastPreBufferedData表示历史数据量,可以等于步骤A21中的H1,CurDownloadData表示当前时刻下载的数据量,CurScheData表示当前时刻调度的调度数据量,可以等于步骤A21中的N1。该代码中以bit(比特)为单位进行调度。
步骤A23、接入网设备根据当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长。
在本发明实施例中,当前时刻的预缓存数据量的单位为bit(比特),当前时刻的视频预缓存播放时长的单位可以为ms(毫秒)或s(秒),根据预设转化规则,可以根据当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长。
在本发明实施例中,数据量D(单位为bit)、视频码率Vd(单位为bit/s)和时间Td(单位为s)满足转化关系公式:
Vd*Td=D,因此,根据转化关系公式可以确定当前时刻的预缓存数据量对应的当前时刻的视频预缓存播放时长,即当前时刻的预缓存数据量除以视频码率可以得到当前时刻的视频预缓存播放时长。
步骤A24、接入网设备判断当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
接入网设备通过判断当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值来确定是否进行视频播放状态切换,示例的,接入网设备判断是否进行视频播放状态切换的过程的代码如下:
if(isRLCBufferEmpty==fasle)
{
If(CurPreBufferedData>=VideoInitialBufferingTimeThres)
{VideoPlayOutState=PLAY_BACK;
FirstPlaybackTime=CurrentTime;
PlaybackTime=CurrentTime;
//**********Statistic for Initial Delay*********//
InitialDelay=CurrentTime–FirstPacketTime;
LastPreBufferedData=CurPreBufferedData;
CurDownloadData=0;
}
}else
{VideoPlayOutState=PLAY_NULL;
}
相应的参数解释可以参考下述表1。
在当前时刻的视频预缓存播放时长大于预设的初始缓存时长阈值时,确定视频预缓存播放时长大于预设的初始缓存时长阈值;在当前时刻的视频预缓存播放时长不大于预设的初始缓存时长阈值时,确定视频预缓存播放时长不大于预设的初始缓存时长阈值。
步骤A3、当视频预缓存播放时长大于预设的初始缓存时长阈值时,接入网设备确定视频播放状态为首次正常播放状态,并记录首次正常播放状态的产生时刻。
在本发明实施例中,假设初始缓存时长阈值为4.5s,假设RLC缓存器中的数据量对应的播放时长为RLCBuffer,视频预缓存播放时长为CurBuffer,则首次正常播放状态满足条件RLCBuffer>0﹠﹠CurBuffer≥4.5s,其中“﹠﹠”表示 逻辑与。
该首次正常播放状态即为初始缓存状态开始后,首次正常播放的状态。
步骤A4、在首次正常播放状态开始后,接入网设备根据调度数据量和视频码率确定终端的视频缓存区缓存的数据是否被耗尽。
示例的,接入网设备根据调度数据量和视频码率确定终端的视频缓存区缓存的数据是否被耗尽的方法可以包括:
步骤A41、根据调度数据量确定从首次正常播放状态的产生时刻到当前时刻的调度数据量y。
该调度数据量y可以从接入网设备的调度器中获取,该调度器可以为基础调度器,也可以为动态调度器。
步骤A42、确定首次正常播放状态的产生时刻的预缓存数据量x。
该预缓存数据量x可以等于视频码率与传输时长的乘积。该传输时长是从开始调度时刻到首次正常播放状态的产生时刻的时长。
步骤A43、根据视频码率m确定从首次正常播放状态的产生时刻到当前时刻终端播放的数据量z,z=m*t,t为首次正常播放状态的产生时刻到当前时刻的时长。
步骤A44、确定当前时刻的预缓存数据量u,u=x+y-z。
步骤A45、当当前时刻的预缓存数据量为0,确定终端的视频缓存区缓存的数据被耗尽。
步骤A46、当当前时刻的预缓存数据量大于0,确定终端的视频缓存区缓存的数据未被耗尽。
步骤A41至A46实际上是在判断当前时刻的预缓存数据量是否为0,当该当前时刻的预缓存数据量为0,确定终端的视频缓存区缓存的数据被耗尽;当该当前时刻的预缓存数据量不为0,确定终端的视频缓存区缓存的数据未被耗尽。
示例的,在首次正常播放状态,预缓存数据量的更新代码如下:
CurDownloadData+=CurScheData;
AccumPlayBackData=(CurrentTime-PlaybackTime)*VideoRate;
CurPreBufferedData=LastPreBufferedData+CurDownloadData-AccumPlayBackData.
相应的参数解释可以参考下述表1和步骤A22。
接入网设备通过判断终端的视频缓存区缓存的数据是否被耗尽来确定是否进行视频播放状态切换,示例的,接入网设备判断是否进行视频播放状态切换的过程的代码如下:
If(CurPreBufferedData==0)
{if(isRLCBufferEmpty==fasle)
{VideoPlayOutState=REBUFFERING;
RebufferingStartTime=CurrentTime;
LastPreBufferedData=0;
CurDownloadData=0;
}else
{VideoPlayOutState=PLAY_END;
}
}
相应的参数解释可以参考下述表1和步骤A22。
步骤A5、当终端的视频缓存区缓存的数据被耗尽时,接入网设备确定视频播放状态为中断缓存状态,并记录中断缓存状态的产生时刻。
实际应用中,当终端处于中断缓存状态时,终端的视频停止播放。假设RLC缓存器中的数据量对应的播放时长为RLCBuffer,视频预缓存播放时长为CurBuffer,则中断缓存状态满足条件RLCBuffer>0﹠﹠CurBuffer=0,其中“﹠﹠”表示逻辑与。
步骤A6、在中断缓存状态开始后,接入网设备根据调度数据量和视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值。
示例的,接入网设备根据调度数据量和视频码率确定视频预缓存播放时长 是否大于预设的中断缓存时长阈值的方法可以包括:
步骤A61、根据调度数据量确定从中断缓存状态的产生时刻到当前时刻的调度数据量。
在本发明实施例中,从中断缓存状态的产生时刻到当前时刻的上一时刻调度的调度数据量为历史数据量H2,当前时刻调度的调度数据量为N2,则从中断缓存状态的产生时刻到当前时刻的调度数据量W2为历史数据量H2与当前时刻调度的调度数据量N2之和,即W2=H2+N2。
步骤A62、将从中断缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
即将步骤A61中确定的W2作为当前时刻的预缓存数据量。
示例的,在中断缓存状态下,预缓存数据量的更新代码如下:
CurDownloadData+=CurScheData;
CurPreBufferedData=CurDownloadData;
相应的参数解释可以参考下述表1。
步骤A63、根据当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长。
在本发明实施例中,当前时刻的预缓存数据量的单位为bit,当前时刻的视频预缓存播放时长的单位可以为ms,根据预设转化规则,可以根据当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长。参考步骤A23,即当前时刻的预缓存数据量除以视频码率可以得到当前时刻的视频预缓存播放时长。
步骤A64、判断当前时刻的视频预缓存播放时长是否大于预设的中断缓存时长阈值。
实际应用中,初始缓存状态和中断缓存状态均可以称为缓存状态,缓存状态切换至正常播放状态的规则可以是相同的,即判断当前时刻的视频预缓存播放时长是否大于预设的时长阈值,在大于预设的时长阈值时,则从缓存状态切换至正常播放状态,因此,上述步骤A2和步骤A6的具体过程可以相互参考, 初始缓存时长阈值和中断缓存时长阈值可以相等。
在当前时刻的视频预缓存播放时长大于预设的中断缓存时长阈值时,确定视频预缓存播放时长大于预设的中断缓存时长阈值;在当前时刻的视频预缓存播放时长不大于预设的中断缓存时长阈值时,确定视频预缓存播放时长不大于预设的中断缓存时长阈值。
步骤A7、当视频预缓存播放时长大于预设的中断缓存时长阈值时,接入网设备确定视频播放状态为再次正常播放状态,并记录再次正常播放状态的产生时刻。
需要说明的是,再次正常播放状态还有一种特殊情况,在RLC缓存器中的数据量对应的播放时长为0但视频预缓存播放时长大于0时,也确定播放状态为再次正常播放状态,并记录再次正常播放状态的产生时刻。RLC缓存器中的数据量对应的播放时长为0表示接入网设备对当前的视频业务的视频数据已经全部调度完(例如一个电影的数据已经调度完),而视频预缓存播放时长大于0表明接入网设备确定终端还没有将视频播放完。因此,在本发明实施例中,假设中断缓存时长阈值为3.5s,RLC缓存器中的数据量对应的播放时长为RLCBuffer,视频预缓存播放时长为CurBuffer,则再次正常播放状态满足条件(RLCBuffer>0﹠﹠CurBuffer≥3.5s)||(RLCBuffer=0﹠﹠CurBuffer>0),其中,“﹠﹠”表示逻辑与,“||”表示逻辑或。
接入网设备通过判断视频预缓存播放时长是否大于预设的中断缓存时长阈值来确定是否进行视频播放状态切换,示例的,接入网设备判断是否进行视频播放状态切换的过程的代码如下:
If(isRLCBufferEmpty==fasle)
{if(CurPreBufferedData>=VideoRebufferingTimeThres)
{VideoPlayOutState=PLAY_BACK;
PlaybackTime=CurrentTime;
LastPreBufferedData=CurPreBufferedData;
CurDownloadData=0;
//**********Statistic for RebufferingDuration*********//
RebufferingDuration=CurrentTime–RebufferingStartTime;
}
}else//isRLCBufferEmpty==true
{if(CurPreBufferedData>0)
{VideoPlayOutState=PLAY_BACK;
PlaybackTime=CurrentTime;
LastPreBufferedData=CurPreBufferedData;
CurDownloadData=0;
}else//CurPreBufferedData==0
{VideoPlayOutState=PLAY_END;
}
}
相应的参数解释可以参考下述表1和步骤A22。
步骤A8、当RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0,接入网设备确定视频播放状态为播放结束状态,并记录播放结束状态的产生时刻。
假设RLC缓存器中的数据量对应的播放时长为RLCBuffer,视频预缓存播放时长为CurBuffer,则播放结束状态满足条件RLCBuffer=0﹠﹠CurBuffer=0,其中“﹠﹠”表示逻辑与。
步骤A9、接入网设备根据视频播放状态和视频播放状态的产生时刻生成QoE信息。
在本发明实施例中,可选的,每次视频播放状态更新(即产生状态切换),接入网设备就可以生成QoE信息,这样可以保证接入网设备确定的视频播放状态的时效性。
如图5-2所示,图5-2为视频的播放状态变化示意图,其中,RLC缓存器中的数据量对应的播放时长为RLCbuffer,视频预缓存播放时长为CurBuffer。在视频业务没有开始时,终端处于未开始(paly null)状态,当RLC buffer中 一旦有视频数据到达,终端的播放器就进入初始缓存(initial buffering)状态,此时视频数据开始被调度(be sched),终端的播放器开始下载文件,一直到视频缓存区缓存的数据量所对应的预缓存时长(buffered time)达到初始缓存时长阈值时播放器才进入正常播放(playback)状态,在本发明实施例中称为首次正常播放状态,该初始缓存时长阈值可以是接入网设备静态配置的,由视频网站及视频的传输机制决定。在首次正常播放状态中,视频缓存区缓存的数据量耗尽会导致视频播放的中断,播放器就进入中断缓存(rebuffering)状态,直到视频缓存区缓存的数据量达到中断缓存时长阈值时播放器又进入正常播放(play back)状态,在本发明实施例中称为再次正常播放状态,该中断缓存时长阈值可以是接入网设备静态配置的,也是由视频网站及视频的传输机制决定。在本发明实施例中,由于未开始状态对视频调度没有影响,因此接入网设备可以对该播放状态不进行确定,接入网设备只需要对初始缓存状态、正常播放状态、中断缓存状态和播放结束状态进行确定。接入网设备可以通过检测RLC buffer中的视频数据量来确定上述播放状态,具体过程可以参考上述步骤A1至A9。如图5-2所示,实际应用中,在初始缓存状态开始后,当RLC buffer中的数据量为0,其对应的播放时长为0,说明接入网设备没有在相应的服务器获取到视频数据,无法进行资源调度,因此,视频播放状态又退回到未开始状态;在视频播放状态处于播放结束状态后,当检测到RLC buffer中的数据量大于0,其对应的播放时长大于0,表示用户开始看新的视频,有新的视频数据到达,开始下一轮视频播放状态确定,其确定过程看参考上述过程,本发明实施例对此不做赘述。
实际应用中,接入网设备是周期性进行QoE信息的确定的,在本发明实施例中,QoE信息是以1个传输时间间隔(英文:transmission time interval;简称:TTI)为确定周期,周期性获取的。相应的,上述步骤501可以是接入网设备周期性确定为终端的视频业务所调度的数据的调度数据量和终端的视频码率。步骤502可以是接入网设备根据调度数据量和视频码率周期性确定视 频业务的QoE信息。其中,步骤501至502所采用的周期均等于预设的确定周期,即1个TTI。因此,步骤502中的当前时刻指的是当前周期中的时刻,在本发明实施例中可以为当前TTI。
在本发明实施例中,接入网设备以1个TTI为周期进行QoE信息的确定,可以实现QoE信息的实时确定,保证QoE信息的时效性和准确性。
需要说明的是,在根据调度数据量和视频码率确定视频业务的QoE信息时,可以先对视频码率进行冗余处理得到码率估计值,该码率估计值大于视频码率;然后根据调度数据量和码率估计值确定终端的视频业务的QoE信息。
一方面,对视频码率f进行冗余处理得到码率估计值g的过程可以满足第一冗余公式:g=f+k,其中,k为预设冗余值,例如k为0.2M(兆);
另一方面,对视频码率f进行冗余处理得到码率估计值g的过程可以满足第二冗余公式:g=f(1+p),P为预设冗余比值,通常0<P≤1,优选的,10%≤P≤20%。
进行冗余处理得到的码率估计值较实际的视频码率(也称实际值)大,这种冗余处理方法称为保守估计,采用比实际码率较大的码率估计值来确定终端的视频调度优先级可以保证调度的鲁棒性。
实际应用中,接入网设备根据调度数据量和视频码率确定视频业务的QoE信息的方法的可实现方式可以有多种,本发明实施例只是示意性说明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
步骤503、接入网设备根据QoE信息调整终端的视频业务的调度优先级。
在本发明实施例中,接入网设备根据QoE信息调整终端的视频业务的调度优先级的方法可以有多种,本发明实施例以以下几种可实现方式为例进行说明:
第一种可实现方式,根据QoE信息调整终端的视频业务的调度优先级的方法可以包括:
步骤B1、当QoE信息指示当前播放状态为初始缓存状态,或QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将终端的视频业务的调度优先级调整为第一优先级,该视频预缓存播放时长为终端缓存的数据所维持播放的时长。
本发明实施例中,缓存时长最小阈值(BufferedPlayTimeLowerThres)通常为1s,当视频预缓存播放时长不大于该预设的缓存时长最小阈值时,表明视频容易产生中断。
步骤B2、当QoE信息指示当前播放状态为中断缓存状态,将终端的视频业务的调度优先级调整为第二优先级。
步骤B3、当QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长在预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据QoE信息和终端当前时刻的信道状态信息调整终端的视频业务的调度优先级。
本发明实施例中,缓存时长最大阈值(BufferedPlayTimeHigherThres)通常为10s,该参数的配置与小区覆盖半径及终端的移动速度有关。示例的,在LTE系统中,基站间距为500米,终端移动速度为120千米/小时(km/h)下,缓存时长最大阈值可以设置为10秒。当视频预缓存播放时长大于该缓存时长最大阈值时,表示缓存充裕,接入网设备可以维持在该视频预缓存播放时长内不为视频业务调度数据,终端还能正常播放视频。
可选的,步骤B3中根据QoE信息和终端当前时刻的信道状态信息调整终端的视频业务的调度优先级的过程可以包括:
步骤B31、接入网设备判断终端是否处于移动状态。
在本发明实施例中,可以采用识别终端的多普勒频移的方法来判断终端是否处于移动状态,具体识别方法可以参考相关技术,本发明实施例对此不做赘述。
步骤B32、当终端处于移动状态时,接入网设备获取终端当前时刻的信道状态信息。
信道状态信息反映指示接入网设备与终端进行业务数据传输或控制信令传输的信道的状态,由于本发明实施例中视频调度系统中接入网设备能够为终端的视频业务进行资源调度,则该资源调度过程中需要通过信道进行数据的传输,因此本发明实施例中的信道状态信息可以用来反映接入网设备与终端进行视频业务数据传输或控制信令传输的信道的状态。该信道状态信息可以是终端上报给接入网设备的。
在本发明实施例中,信道状态信息可以为信道质量指示符(英文:channel quality indicator;简称:CQI)。接入网设备可以根据CQI确定当前基站的信道状态。
需要说明的是,当终端不处于移动状态时,可以计算优先级调整因子Q,Q=A/T,其中,A=缓存时长最大阈值,T为QoE信息指示的视频预缓存播放时长。然后,采用优先级计算公式来确定视频业务的调度优先级Pr,该优先级计算公式为:Pr=Q*Pr0,其中,Q为优先级调整因子,Pr0为基础调度优先级。该基础调度优先级是接入网设备的基础调度器分配给终端的。
步骤B33、接入网设备判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态。
大尺度信道波动是指在无线环境中电磁波信号强度会因为路径损耗和阴影效应引起的衰落。终端在无线移动环境下,容易出现大尺度信道波动,比如,当终端移动到小区边缘,信道条件变差时,其大尺度信道波动水平恶劣。本发明实施例中,判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态的方法可以有多种,本发明实施例以以下三种为例:
第一方面,可以通过信道的SINR与小区级变量进行比较来判断信道状态信息指示的信道状态是否为大尺度信道波动状态。
示例的,接入网设备可以根据信道状态信息,确定当前时刻的信道状态信息指示的信道的信号干扰加噪声比(英文:signal to interference plus noise ratio;简称:SINR),将该信道状态信息指示的信道的SINR分别与X1和X2进行比 较,其中,X1为信道的历史平均SINR与预设的第一小区变量之和,X2为信道的历史平均SINR与预设的第二小区变量之差,该信道的历史平均SINR为从初始缓存状态的产生时刻到当前时刻的上一时刻的SINR平均值。
当信道的SINR大于或等于当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与信道的历史平均SINR与预设的第一小区变量之和,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
当信道的SINR小于或等于信道的历史平均SINR与预设的第二小区变量之差,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
本发明实施例中,假设信道状态信息指示的信道的SINR为CurSINR,信道的历史平均SINR为HistAvgSINR,第一小区变量为x1,第二小区变量为x2,则当信道状态信息指示的信道状态为大尺度信道波动状态时,其满足:
(CurSINR≥HistAvgSINR+x1)||(CurSINR≤HistAvgSINR-x2),其中“||”表示逻辑或。
实际应用中,该x1可以与x2相等,也可以不相等,示例的,该x1可以等于3dB(分贝),x2可以等于3dB。
采用第一方面提供的方式来进行大尺度信道波动状态的判断可以提高该终端的资源利用率。
第二方面,可以通过信道的SINR与预设阈值进行比较来判断信道状态信息指示的信道状态是否为大尺度信道波动状态。
示例的,接入网设备可以根据信道状态信息,确定当前时刻的信道状态信息指示的信道的SINR,将该信道状态信息指示的信道的SINR分别与良好区域阈值和恶劣区域阈值进行比较。
当当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
当当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
本发明实施例中,假设信道状态信息指示的信道的SINR为CurSINR,良好区域阈值为Thres1,恶劣区域阈值为Thres2,则当信道状态信息指示的信道状态为大尺度信道波动状态时,其满足:
(CurSINR>Thres1)||(CurSINR<Thres2),其中“||”表示逻辑或。
实际应用中,该Thres1可以与Thres2相等,也可以不相等,示例的,该Thres1可以等于20dB(分贝),Thres2可以等于10dB。
采用第一方面提供的方式来进行大尺度信道波动状态的判断可以提高系统频谱效率。
第三方面,可以将第一方面和第二方面进行结合来判断信道状态信息指示的信道状态是否为大尺度信道波动状态。
示例的,接入网设备可以根据信道状态信息,确定当前时刻的信道状态信息指示的信道的SINR,将该信道状态信息指示的信道的SINR分别与X1、X2、良好区域阈值和恶劣区域阈值进行比较。其中,X1为信道的历史平均SINR与预设的第一小区变量之和,X2为信道的历史平均SINR与预设的第二小区变量之差,该信道的历史平均SINR为从初始缓存状态的产生时刻到当前时刻的上一时刻的SINR平均值。
当信道的SINR大于或等于当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与信道的历史平均SINR与预设的第一小区变量之和;或者,当信道的SINR小于或等于信道的历史平均SINR与预设的第二小区变量之差;或者,当当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,或者,当当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
本发明实施例中,假设信道状态信息指示的信道的SINR为CurSINR,信道的历史平均SINR为HistAvgSINR,第一小区变量为x1,第二小区变量为x2,良好区域阈值为Thres1,恶劣区域阈值为Thres2,则当信道状态信息指示的信 道状态为大尺度信道波动状态时,其满足:
(CurSINR>Thres1)||(CurSINR<Thres2)||(CurSINR≥HistAvgSINR+x1)||(CurSINR≤HistAvgSINR-x2),其中“||”表示逻辑或。
采用第四方面提供的方式来进行大尺度信道波动状态的判断,当前终端的信道条件不仅和自身历史平均值比还要和小区级的门限比,提高了判断准确性,不仅可以提高该终端的资源利用率还可以提供系统频谱效率。
步骤B34、当当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据QoE信息指示的视频预缓存播放时长和终端的信道大尺度波动水平调整终端的视频业务的调度优先级。
一方面,在本发明实施例中,根据QoE信息指示的视频预缓存播放时长和终端的信道大尺度波动水平调整终端的视频业务的调度优先级,可以包括:
步骤B341、确定反映终端的信道大尺度波动水平的常数。
在本发明实施例中,确定反映终端的信道大尺度波动水平的常数的方法可以有多种,本发明实施例中通常是在判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态的过程中确定的反映终端的信道大尺度波动水平的常数。
示例的,当信道的SINR大于或等于信道的历史平均SINR与预设的第一小区变量之和,为信道分配反映终端的信道大尺度波动水平良好的常数R1。
当信道的SINR小于或等于信道的历史平均SINR与预设的第一小区变量之和,为信道分配反映终端的信道大尺度波动水平恶劣的常数R2,R包括R1或R2。
当当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,为信道分配反映终端的信道大尺度波动水平良好的常数R3。
当当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,为信道分配反映终端的信道大尺度波动水平恶劣的常数R2,R4包括R3或R4。
其中,上述R1可以等于R3,R2可以等于R4。
步骤B342、根据QoE信息指示的视频预缓存播放时长T和当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q。
步骤B343、将优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为终端的视频业务的调度优先级,预设的视频业务的基础调度优先级为接入网设备的基础调度器分配给终端的。
其中,调整因子计算公式为:
Q=A/T*R;
其中,A为预设的缓存时长最大阈值,R为根据当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,R与信道状态的良好程度正相关。
示例的,如果信道状态良好,R可以配置为大于1的常数,从而增大视频调度优先级,以分配更多的无线资源;如果信道状态恶劣,R可以配置为大于1的常数,从而减小视频调度优先级,以分配较少的无线资源;如果信道状态适中,R可以配置为1。在本发明实施例中,该R可以为上述的R1、R2、R3或R4。
采用步骤B341至步骤B343的方法,可以在信道状态良好且视频预缓存播放时长不足时将视频调度优先级提高,提前把终端的视频缓存区填满,使得终端移动到信道恶劣的位置时,可以减少视频资源的调度,能通过消耗视频缓冲区的数据来维持视频的平稳播放。
步骤B4、当QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长大于预设的缓存时长最大阈值时,将终端的调度优先级调整为第三优先级,其中,第一优先级大于或等于第二优先级,第二优先级大于第三优先级,第三优先级大于或等于预设的最小优先级。
实际应用中,第一优先级通常是预设的最大优先级,第二优先级小于或等于该第一优先级,第三优先级通常是最小优先级,通常的最小优先级为0,对 应该最小优先级的终端,接入网设备不为该终端的视频业务分配资源,即不进行资源调度。
相关技术中,调度器是接入网设备中用来进行视频调度的模块,本发明实施例中的调度器通常为基础调度器。
在本发明实施例中,终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,终端的视频业务的调度优先级通过调整优先级调整因子来调整,预设的视频业务的基础调度优先级为接入网设备的基础调度器分配给终端的。该基础调度器可以采用比例公平(英文:proportional fair;简称:PF)算法进行视频调度。因此,可以在基础调取器前端设置因子调整模块,因子调整模块用于计算优先级调整因子Q;基础调度器可以计算基础调度优先级,并将因子调整模块输入的调整因子Q与基础基础调度优先级的乘积作为终端的视频业务的调度优先级输出。例如,采用优先级计算公式来确定视频业务的调度优先级Pr,该优先级计算公式为:Pr=Q*Pr0,其中,Q为优先级调整因子,Pr0为基础调度优先级。优先级调整因子Q可以根据QoE信息确定,也可以根据QoE信息与信道状态信息联合确定,如在当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态时,采用步骤B343中的调整因子计算公式确定。Pr0是基础调度器根据PF算法计算得到的。
在步骤503的第一种可实现方式中,可以看出,终端的视频业务的调度优先级是接入网设备根据QoE信息中指示的当前播放状态确定的,当前播放状态不同,其对应的优先级不同,示例的,如图5-3所示,第一种可实现方式中假设本发明实施例在步骤B33中采用第三方面所提供的方法来判断信道状态信息指示的信道状态是否为大尺度信道波动状态,则可以根据当前时刻的信道状态信息和QoE信息指示的视频预缓存播放时长将图5-3所示的信道状态区域划分为5个区域,如图5-3所示,该图中,以横轴为视频预缓存播放时长(Video Buffered Play Time),以纵轴为信道状态(Channel State)建立坐标系,该信道状态可以根据当前时刻的信道状态信息来确定,其中,良好区域阈值 (GoodRegionThres)=Thres1=K;恶劣区域阈值(BadRegionThres)=Thres2=J;缓存时长最小阈值(BufferedPlayTimeLowerThres)=U;缓存时长最大阈值(BufferedPlayTimeHigherThres)=V,该5个区域分别对应不同的优先级调整因子。其中,区域5属于信道良好区域,区域3为信道恶劣区域,区域3的优先级较低,是为了使除本终端之外的其他终端受益,该其他终端可以是视频业务终端,也可以是非视频业务终端。
在步骤503的第一种可实现方式中,本发明实施例以表1为例,介绍不同当前播放状态所对应的不同优先级调整因子。
表1
Figure PCTCN2015096040-appb-000007
Figure PCTCN2015096040-appb-000008
可选的,步骤B3中根据QoE信息和终端当前时刻的信道状态信息调整终端的调度优先级的过程也可以包括:
步骤B35、根据接入网设备确定的QoE信息确定接入网设备在第n时刻调度的调度数据量TxTbSize(n);
B36、根据终端上报的信道状态信息确定终端在第n时刻的视频业务传输的瞬时速率r(n);
步骤B37、根据历史平均速率计算公式和接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻终端的视频业务的历史平均速率R(n),历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);“×”代表相乘。
步骤B38、根据PF调度优先级公式、第n时刻终端的视频业务的历史平均速率R(n)以及终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻终端的调度优先级P(n),PF调度优先级公式为:”
Figure PCTCN2015096040-appb-000009
其中,α为采用阿尔法(alpha)滤波算法为终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
在阿尔法滤波算法中,滤波系数α的倒数等于滑动时间窗长度,即
Figure PCTCN2015096040-appb-000010
其中,alpha默认值为0.005,表示终端的历史平均速率0.2s内的均值。在本发明实施例中,当视频调度系统包括视频业务与非视频业务混合的场景,非视频业务的调度优先级也可以采用步骤B35至步骤B38的方法确定,但是为视频业务的配置的α可以小于非视频业务的α,这样视频业务终端的较小的滤波系数α可以保证较大的滑动时间窗长度,拉长平均历史速率的观测时间,提升PF调度优先级中的分子即终端在第n时刻的视频业务传输的瞬时速率r(n)在视频 调度优先级中的影响比重,从而达到区域选择性调度的效果,即达到信道条件好的时候多调度,信道条件差的时候少调度。
由于影响视频QoE的综合评价指标-平均主观分(英文:mean opinion score;简称:MOS)的主要因素包括:视频码率、初始缓存时延(也称初始缓冲时延,英文:initial delay)、中断次数(rebuffering times)和平均中断时长(average rebuffering duration),且各因素影响权重不同,视频码率是主因之外,初始缓存时延和中断次数的重要性要比平均中断时长要高,所以为了提高MOS,本发明实施例使得接入网设备能够识别视频的当前播放状态,并根据各MOS影响因素的影响权重的不同来配置不同大小的优先级,例如,通过调整优先级调整因子的权重来分配不同的优先级,给处于初始缓存时延和处于正常播放状态但视频预缓存播放时长偏低的终端的视频业务配置较高的优先级调整因子,来尽量减少初始缓存时延和中断次数;而给处于中断缓存状态的终端的视频业务配置相对低一级的优先级调整因子,因为比平均中断时长在MOS中不占主因,最终实现当前播放状态为初始缓存状态,或QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,终端的视频业务的调度优先级调整为第一优先级;当前播放状态为中断缓存状态,该调度优先级调整为第二优先级;当QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长在预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据QoE信息和终端当前时刻的信道状态信息动态调整终端的调度优先级;当QoE信息指示当前播放状态为正常播放状态且视频预缓存播放时长大于预设的缓存时长最大阈值时,该调度优先级调整为第三优先级。第一优先级大于或等于第二优先级,第二优先级大于第三优先级,第三优先级大于或等于预设的最小优先级,该最小优先级通常为最低优先级,即不进行调度。
在第一种可实现方式中,接入网设备根据当前播放状态的不同,为不同的播放状态分配不同的优先级,从而综合而全面地提高视频用户QoE的各项指标。在第一种可实现方式中,视频调度系统的架构可以如图5-4所示。该视频 调度系统可以包括:终端和接入网设备,终端的视频码率也可以由管理网元上报给基站服务器,该接入网设备可以包括:QoE信息确定模块、因子调整模块和基础调度器,其中,QoE信息确定模块可以执行上述步骤501,因子调整模块和基础调度器用于执行上述步骤502和上述步骤503,其中,因子调整模块可以包括第一子调整模块和第二子调整模块,第一子调整模块用于执行QoE信息触发的优先级调整因子的调整,例如上述步骤B1、B2和B4,第二子调整模块用于执行终端当前时刻的信道状态信息触发的优先级调整因子的调整,例如上述步骤B3中的步骤B31至步骤B33,第一子调整模块和第二子调整模块还用于联合确定优先级调整因子,如联合执行上述步骤B34。并且,基础调度器还需要将被调度的数据(Scheduled Data)传送给QoE信息确定模块,以便于QoE信息确定模块进行QoE信息的确定。本发明实施例中提供的接入网设备中的模块可以是以一个TTI为处理周期的,可以针对每个视频终端的每个子帧执行相应动作。
需要说明的是,该接入网设备还可以包括:QoE信息确定模块和基础调度器,其中,QoE信息确定模块可以执行上述步骤501,基础调度器可以执行上述步骤B35至B38。
在第一种可实现方式中,QoE信息确定模块中的参数设置及各个参数的意义可以如表2所示。
表2
Figure PCTCN2015096040-appb-000011
Figure PCTCN2015096040-appb-000012
Figure PCTCN2015096040-appb-000013
Figure PCTCN2015096040-appb-000014
第二种可实现方式,可以先根据QoE信息计算终端的视频业务的MOS;然后根据MOS调整终端的调度优先级,该MOS的数值与调度优先级负相关。
在本发明实施例中,MOS的算法有多种,MOS的计算输入参数可以包括:视频预缓存播放时长(Buffered Time)、初始缓存时延、平均中断时长和中断次数,其中,视频预缓存播放时长为终端缓存的数据所维持播放的时长,初始缓存时延为初始缓存状态的产生时刻(也称开始时刻)到首次正常播放状态的产生时刻所用时延,平均中断时长为从初始缓存状态的产生时刻到当前时刻,终端所有中断时长(即中断缓存状态保持的时长)的平均值,中断次数为从初始缓存状态的产生时刻到当前时刻,产生中断缓存状态的次数,即视频中断的次数。接入网设备确定的QoE信息可以包括这些参数,将基站QoE信息中的上述参数作为MOS的输入参数,可以计算出MOS。
计算出的MOS的数值与终端的视频业务的调度优先级负相关,即MOS的数值越大,视频业务的调度优先级越小。接入网设备可以根据MOS来配置调度优先级。在本发明实施例中,MOS的数值与该调度优先级可以是线性负相关(即成反比),也可以非线性负相关,本发明实施例对此不做限定。
在第二种可实现方式中,视频调度系统的架构可以如图5-5所示。该视频调度系统可以包括:终端和接入网设备,该接入网设备可以包括:QoE信息确定模块、MOS确定模块、因子调整模块和基础调度器,MOS确定模块可以用于根据QoE信息计算终端的视频业务的MOS,因子调整模块可以根据MOS确定终端的优先级调整因子,并输出给基础调度器,由基础调度器确定终端的视频业务的调度优先级。并且,基础调度器还需要将被调度的数据(Scheduled Data)传送给QoE信息确定模块,以便于QoE信息确定模块进行QoE信息的确定。本发明实施例中提供的接入网设备中的模块可以是以一个TTI为处理周期 的,可以针对每个视频终端的每个子帧执行相应动作。
第三种可实现方式,可以根据终端发送的QoE信息进行信息的闭环修正,然后再调整终端的调度优先级。如图5-6所示,接入网设备根据QoE信息调整终端的视频业务的调度优先级的方法可以包括:
步骤5031、接入网设备接收终端发送的QoE信息。
开放式系统互联(英文:open system interconnection;简称:OSI)模型是一个开放性的通信系统互连参考模型,也称网络七层协议。OSI模型有7层结构,每层都可以有几个子层。OSI的7层从上到下分别是7-应用层、6-表示层、5-会话层、4-传输层、3-网络层、2-数据链路层和1-物理层,其中,上面4层,即7、6、5、4层定义了应用程序的功能,下面3层,即3、2、1层主要面向通过网络的端到端的数据流。在本发明实施例中,可以在终端与接入网设备之间建立的通讯接口,该终端与接入网设备之间建立的通讯接口(也称逻辑接口),为7-应用层与2-数据链路层之间建立的通讯接口。接入网设备通过终端与接入网设备之间建立的通讯接口接收终端发送的QoE信息。
可选的,接入网设备也可以接收管理网元转发的QoE信息,该QoE信息是终端生成并发送至管理网元的。假设视频调度系统为LTE系统,终端可以为UE,接入网设备可以为eNodB,管理网元可以为核心网服务器,如MME,或网络服务器。其中,UE上报QoE信息给MME的过程是协议第三代合作伙伴计划(英文:third generation partnership project;简称:3GPP)26.247所支持的。
步骤5032、接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,得到更新的QoE信息,终端发送的QoE信息与QoE信息包含的参数相同。
在本发明实施例中,接入网设备根据终端发送的QoE信息更新QoE信息的过程,实际上是拿终端发送的QoE信息替换QoE信息的过程,更新的QoE信息与终端发送的QoE信息相同。
在本发明实施例中,由于终端进行视频的播放,因此终端可以实时监测视频播放的各种参数,得到QoE信息,在本发明实施例中,终端发送的QoE信息与QoE信息包含的参数相同,可以包括:终端的视频播放状态包括:当前播放状态,以及当前播放状态的产生时刻,当前播放状态的播放状态类型可以包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。该终端发送的QoE信息还可以包括历史播放状态及历史播放状态的产生时刻,该历史播放状态为从初始缓存状态产生时刻(即开始播放时刻)到当前时刻之前的时刻的播放状态,该历史播放状态的播放状态类型可以包括初始缓存状态、正常播放状态和中断缓存状态。该当前时刻为终端生成QoE信息的时刻。进一步的,终端发送的QoE信息还可以包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数。
由于终端通过在本地监测视频播放的参数得到的QoE信息,而接入网设备实际上是在估计终端侧的QoE信息,因此,在接入网设备每次接收到终端上报的QoE信息,可以根据终端发送的QoE信息来更新(也称修正)接入网设备确定的QoE信息。这样能够供接入网设备消除自身确定到的QoE信息的误差,有效保证接入网设备获取的QoE信息的准确性。但是,在本发明实施例中,接入网设备主要根据自身确定的QoE信息来进行终端的视频业务的调度优先级的确定,终端上报的QoE信息只是起到辅助作用。实际应用中,接入网设备可以以1TTI为确定周期确定QoE信息,而终端发送的QoE信息是周期性上报的,终端发送QoE信息的周期可以配置的宽松些,该上报周期可以为200ms(毫秒)或1s(秒),远远大于接入网设备的确定周期。这样既保证了终端发送较少的携带QoE信息的信令,又能对接入网设备自身确定的QoE信息产生的误差进行一定的修正。
示例的,在本发明实施例中,该终端上报的QoE信息的格式可以如表3所示,增加了终端的视频播放状态信息,用于记录当前播放状态的类型和产生时刻(也称开始时刻)。
表3
Figure PCTCN2015096040-appb-000015
在第三种可实现方式中,该视频调度系统包括:管理网元、终端和接入网设备,终端可以向管理网元周期性上报QoE信息,由管理网元向接入网设备转发,使接入网设备执行闭环修正过程,终端也可以通过与接入网设备建立的通讯接口周期性上报QoE信息,具体过程参考上述第三种可实现方式中的步骤5031和5032,在本发明实施例中,第三种可实现方式是接入网设备在确定QoE信息时执行的辅助步骤,因此,该视频调度系统可以基于第一种可实现方式的架构,如图5-7所示,其中,接入网设备的各个模块的功能可以参考图5-4。也可以基于第二种可实现方式的架构,如图5-8所示,其中,接入网设备的各个模块的功能可以参考图5-5。
步骤5033、接入网设备根据更新的QoE信息调整终端的视频业务的调度 优先级。
接入网设备根据更新的QoE信息调整终端的视频业务的调度优先级可以参考上述步骤B1至B4的过程。
由于本发明实施例中,对视频业务的QoE信息的确定主要是由接入网设备自身完成的,且接入网设备确定的QoE信息的算法具有一定的鲁棒性,终端上报的QoE信息只是用作接入网设备的QoE信息确定的闭环修正。这样,接入网设备不需要完全依赖终端上报的信息来获取QoE信息,主要通过接入网设备自身进行QoE信息的确定。
步骤504、接入网设备根据调整后的调度优先级为终端的视频业务调度数据。
在本发明实施例中,视频业务的资源可以是以1个TTI为调度周期,周期性调度的;因此,根据调整后的调度优先级为终端的视频业务调度数据的过程,可以包括:
根据当前调度周期的调度优先级为终端的视频业务调度数据,当前调度周期的调度优先级为根据当前确定周期QoE信息确定的。上述当前调度周期,也称当前TTI。
步骤505、当检测到终端发生小区间切换时,接入网设备将QoE信息通过X2接口发送至管理目标小区的接入网设备,该目标小区为终端要切换到的小区。
示例的,如图5-9所示,假设接入网设备当前管理的小区为源小区,在确定了终端要切换至的目标小区后,接入网设备可以通过小区间的X2接口将QoE信息发送至管理目标小区的接入网设备。由于QoE信息包括接入网设备确定的终端的视频播放状态,在进行小区切换后,目标小区可以根据QoE信息准确了解切换前终端的视频播放状态,继续进行后续视频业务调度,保证终端的用户的视频观看体验。
本实施例实现了接入网设备联合视频QoE信息以及移动环境中终端经历 信道大尺度波动的信息来对视频业务进行调度,通过区分当前的视频播放状态,给各播放状态配置不同的调度优先级,全面综合地提升视频体验,相应地提高了MOS。例如当处于初始缓存状态,或,处于正常播放状态且预缓存时长较少的紧急状态下,通过静态配置较高优先级调整因子来绝对优先地为这类视频终端调度数据,来减少初始缓存时延和中断次数,从而提高视频MOS;当处于中断缓存状态,也通过配置相对低一点的优先级调整因子来优先为这类视频终端调度数据,来减少中断缓存时长,以提高MOS,当处于正常播放状态且预缓存时长较长的非紧急状态时,就可以直接不进行视频资源调度,留出资源来给其他有需要的终端;当处于正常播放且预缓存时长适中时,就可以联合预缓存时长与当前信道状态信息来动态配置优先级调整因子,缓存时长小或信道条件好的终端优先调度,而缓存时长大或信道条件差的终端减少调度。这样能提高系统频谱效率、保证用户QoE和视频用户容量,从而也保证了视频MOS。
步骤506、接入网设备根据QoE信息计算终端的视频业务的MOS。
MOS是衡量无线通信系统中语音质量或视频质量的重要指标。相关技术中,是由终端进行计算,相关技术中,MOS可以基于终端检测到的视频中断次(也称卡顿次数)、缓存时延、视频码率等确定的,较高的MOS说明服务质量(英文:quality of service;简称:QoS)性能较高。
在本发明实施例中,MOS是根据接入网设备确定的QoE信息确定的,MOS的算法有多种,MOS的计算输入参数可以包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数。接入网设备确定的QoE信息可以包括这些参数,将基站QoE信息中的上述参数作为MOS的输入参数,可以计算出MOS,这样可以实现网络侧视频体验的MOS评估,接入网设备可以实时根据MOS获得用户当前的视频体验水平。在本发明实施例中,计算出的MOS可以用于网络规划和网络优化,简称网规网优。此时,视频调度系统的架构可以参考图5-5或图5-8,接入网设备将实时确定到的QoE信息除了可以用作视频调度的标准, 还可以用作网络侧对视频的MOS评估,实时获得用户当前的视频体验水平,供网规网优作为参考。
需要说明的是,本发明实施例提供的体验质量信息获取方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,例如在步骤502之后可以直接执行步骤507,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
图5-10至图5-13是用户各项QoE性能指标累积分布函数(英文:cumulative distribution function;简称:CDF)曲线的仿真比较图,其中,图5-10为视频终端的初始缓存时延CDF曲线,横轴表示初始缓冲时延,纵轴表示累积百分比;图5-11为视频终端的平均中断时长CDF曲线,横轴表示平均中断时长;纵轴表示累积百分比;图5-12为视频终端的卡顿百分比(stalling ratio)CDF曲线,横轴表示卡顿百分比;纵轴表示累积百分比;图5-13为视频终端的视频平均主观分(英文:video mean opinion score;简称:vMOS)CDF曲线,横轴表示平均主观分;纵轴表示累积百分比。图5-10至图5-13中每幅图都包括:正常调度(normal scheduler)曲线,QoE VR1.2曲线,QoE ReBT0.5曲线,QoE VR0.5曲线和理想QoE(QoE ideal)曲线。其中,正常调度曲线是接入网设备采用PF算法进行视频业务调度所对应的曲线;QoE VR1.2曲线是接入网设备采用本发明实施例提出的码率估计值(参考上述步骤A9的码率估计值)比实际值(参考上述步骤A9的视频码率)大(为1.2Mbps),进行视频业务调度所对应的曲线;理想QoE曲线是接入网设备在理想状态下,码率估计值与实际值(为1Mbps)相同,进行视频业务调度所对应的曲线;QoE VR0.5曲线是接入网设备在非理想状态下,码率估计值比实际值小,为0.5Mbps的视频业务调度对应的曲线;QoE ReBT0.5曲线为接入网设备采用本发明实施例提供的QoE信息获取方法,在中断缓存时长阈值(参考上述步骤A6的中断缓存时长阈值)为0.5s时进行视频业务调度所对应的曲线。
根据图5-10至图5-13可见,相比于采用PF算法进行调度,本发明实施例提供的视频调度算法显著提高了视频的初始缓存时延,减少了中断次数和中断时延,从而大大提高了视频体验的综合指标MOS。并且,在码率确定偏大即偏保守一些时,本实施例可以获得与理想QoE确定方案相近的QoE性能。原因是,在码率确定保守情况下,基站会调度更多的无线资源给视频终端来保证视频QoE。
综上所述,本发明实施例提供的体验质量信息获取方法,由于接入网设备可以根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。并且,接入网设备除了能够对QoE信息进行实时确定,还能利用QoE信息做无线资源调度,并且接入网设备可以在视频终端在无线移动环境中,将其经历的大尺度信道波动的特点与QoE信息相结合作为资源调度的标准,保证视频的平稳播放。采用本发明实施例提供的QoE信息获取方法能够有效提升视频用户的QoE和视频用户容量,并且提高系统频谱效率。
本发明实施例提供一种视频调度方法,可以用于如图1所示的视频调度系统,如图6所示,该方法包括:
步骤601、接入网设备判断终端是否处于移动状态。
步骤601可以参考上述实施例中步骤B31,本发明实施例对此不做赘述。
步骤602、当终端处于移动状态时,接入网设备获取终端当前时刻的信道状态信息。执行步骤604。
信道状态信息反映指示接入网设备与终端进行业务数据传输或控制信令传输的信道的状态,由于本发明实施例中视频调度系统中接入网设备能够为终端的视频业务进行资源调度,则该资源调度过程中需要通过信道进行数据的传输,因此本发明实施例中的信道状态信息可以用来反映接入网设备与终端进行 视频业务数据传输或控制信令传输的信道的状态。该信道状态信息可以是终端上报给接入网设备的。
在本发明实施例中,信道状态信息可以为信道质量指示符(英文:channel quality indicator;简称:CQI)。接入网设备可以根据CQI确定当前基站的信道状态。
步骤603、当终端不处于移动状态时,接入网设备根据预设算法计算终端的视频业务的调度优先级。
示例的,当终端不处于移动状态时,可以计算优先级调整因子Q,Q=A/T,其中,A=缓存时长最大阈值,T为QoE信息指示的视频预缓存播放时长。然后,采用优先级计算公式来确定调度优先级Pr,该优先级计算公式为:Pr=Q*Pr0,其中,Q为优先级调整因子,Pr0为基础调度优先级。该基础调度优先级是接入网设备的基础调度器分配给终端的。
实际应用中,也可以采用其他算法计算终端的调度优先级,本发明实施例对此不做限定。
步骤604、接入网设备根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级。
在本发明实施例中,接入网设备根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级的方法可以有多种可实现方式,本发明实施例以以下两种可实现方式为例:
在第一种可实现方式中,可以通过判断当前时刻的信道状态是否为大尺度信道波动状态来调整终端的视频业务的调度优先级。
示例的,根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级,包括:
步骤C1、判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
示例的,判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道 波动状态,可以包括:当信道的SINR大于或等于当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与信道的历史平均SINR与预设的第一小区变量之和,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;当信道的SINR小于或等于信道的历史平均SINR与预设的第二小区变量之差,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
示例的,判断当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:当当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;当当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
步骤C1可以参考上述实施例中步骤B33,本发明实施例对此不做赘述。
步骤C2、当当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级。
其中,根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级,包括:
步骤C21、获取当前时刻的视频预缓存播放时长T。
该视频预缓存播放时长为终端缓存的数据所维持播放的时长。在本发明实施例中,当前时刻的视频预缓存播放时长可以是从QoE信息中获取,也可以是通过其他方式获取,本发明实施例对此不做限定。其中,当预缓存播放时长是从QoE信息中获取时,该QoE信息可以是终端上报的QoE信息,也可以是接入网设备确定的,其确定方法可以参考上述步骤501至502,本实施例对此不做限定。
步骤C22、根据视频预缓存播放时长T和当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q。
步骤C23、将优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为终端的调度优先级,预设的视频业务的基础调度优先级为接入网设备的基础调度器分配给终端的。
其中,调整因子计算公式为:
Q=A/T*R;
其中,A为预设的缓存时长最大阈值,R为根据当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,R与信道状态的良好程度正相关。
步骤C23中,R的获取方法可以参考上述步骤B341,本发明实施例对此不做赘述。
在第二种可实现方式中,可以基于历史平均速率和当前时刻获取的数据量来调整终端的视频业务的调度优先级。
示例的,根据终端当前时刻的信道状态信息调整终端的视频业务的调度优先级,包括:
步骤D1、确定接入网设备在第n时刻调度的调度数据量TxTbSize(n)。
在本发明实施例中,当TxTbSize(n)可以是从接入网设备确定的QoE信息中获取,也可以是通过其他方式获取,例如直接从接入网设备的调度器中获取,本发明实施例对此不做限定。其中,当TxTbSize(n)是从QoE信息中获取时,该QoE信息的确定方法可以参考上述步骤501至502,本实施例对此不做限定。
步骤D2、根据终端上报的信道状态信息确定终端在第n时刻的视频业务传输的瞬时速率r(n);
步骤D3、根据历史平均速率计算公式和终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻终端的视频业务的历史平均速率R(n),历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
步骤D4、根据比例公平PF调度优先级公式、第n时刻终端的视频业务的 历史平均速率R(n)以及终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻终端的视频业务的调度优先级P(n),PF调度优先级公式为:
Figure PCTCN2015096040-appb-000016
其中,α为采用阿尔法滤波算法为终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
步骤D2至D4可以参考上述实施例中的步骤B36至B38,本发明实施例对此不做赘述。
步骤605、接入网设备根据调整后的调度优先级为终端的视频业务调度数据。
综上所述,本发明实施例提供的视频调度方法,由于接入网设备能够终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并根据调整后的调度优先级为终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
需要说明的是,本发明提供的实施例可以相互参考、结合,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明实施例提供一种接入网设备70,如图7-1所示,包括:
获取单元701,用于在接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
确定单元702,用于根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
综上所述,本发明实施例提供的接入网设备,由于确定单元可以根据获取单元获取的为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的 浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
可选的,如图7-2所示,接入网设备70还包括:
调整单元703,用于根据所述QoE信息调整所述终端的视频业务的调度优先级;
调度单元704,用于根据所述调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
可选的,所述调度单元704,用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
可选的,所述确定单元702,用于:
对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
可选的,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
可选的,如图7-3所示,所述调整单元703,包括:
第一调整子单元7031,用于在所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
第二调整子单元7032,用于在所述QoE信息指示所述当前播放状态为中 断缓存状态,将所述调度优先级调整为第二优先级;
第三调整子单元7033,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
第四调整子单元7034,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
可选的,如图7-4所示,第三调整子单元7033,包括:
第一判断子单元70331,用于判断所述终端是否处于移动状态;
获取子单元70332,用于在所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
第二判断子单元70333,用于判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
优先级调整子单元70334,用于在所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
可选的,所述优先级调整子单元70334,用于:
根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述第二判断子单元70333,用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述第二判断子单元70333,用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,第三调整子单元7033,用于:
根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述 历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000017
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
可选的,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
可选的,如图7-5所示,确定单元702,包括:
第一确定子单元7021,用于在所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
第二确定子单元7022,用于在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
第三确定子单元7023,用于在视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
第四确定子单元7024,用于在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
第五确定子单元7025,用于在所述终端的视频缓存区缓存的数据被耗尽 时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
第六确定子单元7026,用于在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
第七确定子单元7027,用于在视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
第八确定子单元7028,用于在RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
生成子单元7029,用于根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
可选的,所述第二确定子单元7022,用于:
根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
可选的,所述第四确定子单元7024,用于:
根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
确定所述首次正常播放状态的产生时刻的预缓存数据量x;
根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时 刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
确定当前时刻的预缓存数据量u,所述u=x+y-z;
当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的数据未被耗尽。
可选的,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
所述调度单元703用于:
根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
可选的,如图7-6所示,接入网设备70还包括:
计算单元705,用于根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
综上所述,本发明实施例提供的接入网设备,由于确定单元可以根据获取单元获取的为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
本发明实施例提供一种终端80,如图8所示,包括:
生成单元801,用于生成QoE信息,所述QoE信息包括所述终端的视频 播放状态,以及所述视频播放状态的产生时刻,所述QoE信息与接入网设备确定的QoE信息包含的参数相同,所述接入网设备确定的QoE信息是所述接入网设备根据为所述终端的视频业务所调度的数据的调度数据量以及所述终端的视频码率确定得到的;
发送单元802,用于向所述接入网设备发送所述QoE信息,以便于所述接入网设备采用所述终端发送的QoE信息更新所述接入网设备确定的QoE信息,得到更新的QoE信息。
综上所述,本发明实施例提供的终端,由于生成单元可以生成QoE信息,并由发送单元上报给接入网设备,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,能够使得接入网设备获取的QoE信息更为准确,提高获取QoE信息的准确性。
可选的,所述发送单元802,用于:
通过所述终端与所述接入网设备之间建立的通讯接口发送所述QoE信息;
或者,向管理网元发送所述QoE信息,以便于所述管理网元向所述接入网设备转发所述QoE信息。
可选的,所述发送单元802,用于:
以200毫秒或1秒为上报周期,周期性向所述向接入网设备发送QoE信息
综上所述,本发明实施例提供的终端,由于生成单元可以生成QoE信息,并由发送单元上报给接入网设备,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,能够使得接入网设备获取的QoE信息更为准确,提高获取QoE信息的准确性。
本发明实施例提供一种体验质量信息获取系统,包括图7-1、7-2或7-6任一所述的接入网设80,以及至少一个终端。该终端可以为图8所示的终端80。该体验质量信息获取系统可以包括上述的视频调度系统。
本发明实施例提供一种接入网设备90,如图9-1所示,包括:
判断单元901,用于判断终端是否处于移动状态;
获取单元902,用于在所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
调整单元903,用于根据所述终端当前时刻的信道状态信息调整所述终端的视频业务的调度优先级;
调度单元904,用于根据所述调度优先级为所述终端的视频业务调度数据。
综上所述,本发明实施例提供的接入网设备,由于调整单元能够在判断单元判断得到终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并由调度单元根据调整后的调度优先级为该终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
可选的,所述调整单元903,如图9-2所示,包括:
判断子单元9031,用于判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
调整子单元9032,用于在所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述终端当前时刻的信道状态信息调整所述调度优先级。
可选的,所述调整子单元0932,用于:
获取当前时刻的视频预缓存播放时长T;
根据所述视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为预设的缓存时长最大阈值,所述R为根据所述当前时刻 的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述判断子单元9031,用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断子单元9031,用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断子单元9031,用于:
确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的 历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000018
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
综上所述,本发明实施例提供的接入网设备,由于调整单元能够在判断单元判断得到终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并由调度单元根据调整后的调度优先级为该终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
本发明实施例提供一种视频调度系统,包括图9-1所述的接入网设备90,以及至少一个终端。
本发明实施例提供一种接入网设备100,如图10-1所示,包括:
处理器1001,用于在接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
所述处理器1001还用于根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
综上所述,本发明实施例提供的接入网设备,由于处理器可以根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
可选的,所述处理器1001还用于:
根据所述QoE信息调整所述终端的视频业务的调度优先级;
根据所述调整后的调度优先级为所述终端的视频业务调度数据。
可选的,所述QoE信息包括所述终端的视频播放状态,以及所述视频播 放状态的产生时刻。
可选的,所述处理器1001还用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
可选的,所述处理器1001还用于:
对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
可选的,如图10-2所示,所述接入网设备100还包括:接收机1002,
所述接收机1002用于接收所述终端发送的QoE信息;
所述处理器1001还用于:
采用所述终端发送的QoE信息更新所述估计的QoE信息,得到更新的QoE信息,所述终端发送的QoE信息与所述估计的QoE信息包含的参数相同;
根据所述更新的QoE信息确定所述终端的视频业务调度优先级。
可选的,所述接收机1002用于:
通过所述终端与所述基站控制器之间建立的通讯接口接收所述终端发送的QoE信息;
或者,接收管理网元转发的QoE信息,所述QoE信息是所述终端生成并发送至所述管理网元的。
可选的,所述终端发送的QoE信息是周期性上报的,上报周期为200毫秒或1秒。
可选的,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
可选的,所述处理器1001还用于:
当所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
当所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
可选的,所述处理器1001还用于:
判断所述终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
可选的,所述处理器1001还用于:
根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作 为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述处理器1001还用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器1001还用于:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器1001还用于:
根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传 输的瞬时速率r(n);
根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000019
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
可选的,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
可选的,所述正常播放状态包括:首次正常播放状态和再次正常播放状态,所述处理器1001还用于:
当所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
当视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
当所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
当视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
当RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
可选的,所述处理器1001还用于:
根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
可选的,所述处理器1001还用于:
根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
确定所述首次正常播放状态的产生时刻的预缓存数据量x;
根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时 刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
确定当前时刻的预缓存数据量u,所述u=x+y-z;
当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的数据未被耗尽。
可选的,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
所述处理器1001还用于:根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
可选的,所述处理器1001还用于:
根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
综上所述,本发明实施例提供的接入网设备,由于处理器可以根据为终端的视频业务所调度的数据的调度数据量以及终端的视频码率确定视频业务的QoE信息,无需终端通过信令上报,有效减少空口资源的浪费,因此,在视频业务的处理过程中,减少了通信资源的消耗。
本发明实施例提供一种终端110,如图11所示,包括:
处理器1101,用于生成QoE信息,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻,所述QoE信息与接入网设备确 定的QoE信息包含的参数相同,所述接入网设备确定的QoE信息是所述接入网设备根据为所述终端的视频业务所调度的数据的调度数据量以及所述终端的视频码率确定得到的;
发射机1102,用于向所述接入网设备发送所述QoE信息,以便于所述接入网设备采用所述终端发送的QoE信息更新所述接入网设备确定的QoE信息,得到更新的QoE信息。
综上所述,本发明实施例提供的终端,由于处理器可以生成QoE信息,并由发射机上报给接入网设备,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,能够使得接入网设备获取的QoE信息更为准确,提高获取QoE信息的准确性。
可选的,所述发射机1102,用于:
通过所述终端与所述接入网设备之间建立的通讯接口发送所述QoE信息;
或者,向管理网元发送所述QoE信息,以便于所述管理网元向所述接入网设备转发所述QoE信息。
可选的,所述发射机1102,用于:
以200毫秒或1秒为上报周期,周期性向所述向接入网设备发送QoE信息
实际应用中,接入网设备可以以1TTI为确定周期确定QoE信息,而终端发送的QoE信息是周期性上报的,终端发送QoE信息的周期可以配置的宽松些,该上报周期可以为200ms(毫秒)或1s(秒),远远大于接入网设备的确定周期。这样既保证了终端发送较少的携带QoE信息的信令,又能对接入网设备自身确定的QoE信息产生的误差进行一定的修正。
综上所述,本发明实施例提供的终端,由于处理器可以生成QoE信息,并由发射机上报给接入网设备,以便于接入网设备采用终端发送的QoE信息更新接入网设备确定的QoE信息,能够使得接入网设备获取的QoE信息更为准确,提高获取QoE信息的准确性。
本发明实施例提供一种体验质量信息获取系统,包括10-1或10-2所示的接入网设备100,以及至少一个终端。该终端可以是图11所示的终端110。该体验质量信息获取系统可以包括上述的视频调度系统。
本发明实施例提供一种接入网设备120,如图12所示,包括:处理器1201,所述处理器1201用于:
判断终端是否处于移动状态;
当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
根据所述终端当前时刻的信道状态信息调整所述终端的视频业务的调度优先级;
根据调整后的调度优先级为所述终端的视频业务调度数据。
综上所述,本发明实施例提供的接入网设备,由于处理器能够在终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并根据调整后的调度优先级为该终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
可选的,所述处理器1201还用于:
判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述终端当前时刻的信道状态信息调整所述调度优先级。
可选的,所述处理器1201还用于:
获取当前时刻的视频预缓存播放时长T;
根据所述视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备 的基础调度器分配给所述终端的;
其中,所述调整因子计算公式为:
Q=A/T*R;
其中,所述A为预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
可选的,所述处理器1201还用于:
当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
可选的,所述处理器1201还用于:
确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
根据历史平均速率计算公式和所述终端在第n时刻获取的数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述调度优先级P(n),所述PF调度优先级公式为:
Figure PCTCN2015096040-appb-000020
其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
综上所述,本发明实施例提供的接入网设备,由于处理器能够在终端处于移动状态时,根据终端当前时刻的信道状态信息调整终端的调度优先级,并根据调整后的调度优先级为该终端的视频业务调度数据,能够有效保证终端在移动状态时的视频质量。
本发明实施例提供一种视频调度系统,包括图12所述的接入网设备120,以及至少一个终端。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接, 可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (37)

  1. 一种体验质量QoE信息获取方法,其特征在于,包括:
    当接入网设备确定为终端的视频业务调度数据时,获取所述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
    根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息之后,所述方法还包括:
    根据所述QoE信息调整所述终端的视频业务的调度优先级;
    根据所述调整后的调度优先级为所述终端的视频业务调度数据。
  3. 根据权利要求2所述的方法,其特征在于,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述QoE信息调整所述终端的视频业务的调度优先级,包括:
    根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
    根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
  5. 根据权利要求1或2所述的方法,其特征在于,所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息,包括:
    对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
    根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
  6. 根据权利要求3所述的方法,其特征在于,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束状态。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述QoE信息调整所述终端的视频业务的调度优先级,包括:
    当所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
    当所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
    当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
    当所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
    判断所述终端是否处于移动状态;
    当所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
    判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
    当所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级,包括:
    根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
    将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
    其中,所述调整因子计算公式为:
    Q=A/T*R;
    其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
  10. 根据权利要求9所述的方法,其特征在于,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
    当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变 量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
    当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
  11. 根据权利要求9所述的方法,其特征在于,所述判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态,包括:
    当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
    当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
  12. 根据权利要求7所述的方法,其特征在于,所述根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级,包括:
    根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
    根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
    根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
    R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
    根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历 史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
    Figure PCTCN2015096040-appb-100001
    其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
  13. 根据权利要求7所述的方法,其特征在于,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
  14. 根据权利要求7所述的方法,其特征在于,所述正常播放状态包括:首次正常播放状态和再次正常播放状态,所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息,包括:
    当所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
    在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
    当视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
    在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
    当所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
    在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
    当视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
    当RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记录所述播放结束状态的产生时刻;
    根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值,包括:
    根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
    将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
    根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
    判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
  16. 根据权利要求14所述的方法,其特征在于,所述根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽,包括:
    根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
    确定所述首次正常播放状态的产生时刻的预缓存数据量x;
    根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时刻 终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
    确定当前时刻的预缓存数据量u,所述u=x+y-z;
    当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
    当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的数据未被耗尽。
  17. 根据权利要求2所述的方法,其特征在于,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
    所述根据所述调整后的调度优先级为所述终端的视频业务调度数据,包括:
    根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
  18. 根据权利要求1所述的方法,其特征在于,在所述根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息之后,所述方法还包括:
    根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
  19. 一种接入网设备,其特征在于,包括:
    获取单元,用于在接入网设备确定为终端的视频业务调度数据时,获取所 述终端的视频业务的调度数据量和所述终端的视频业务的视频码率;
    确定单元,用于根据所述调度数据量和所述视频码率确定所述终端的视频业务的QoE信息。
  20. 根据权利要求19所述的设备,其特征在于,所述设备还包括:
    调整单元,用于根据所述QoE信息调整所述终端的视频业务的调度优先级;
    调度单元,用于根据所述调整后的调度优先级为所述终端的视频业务调度数据。
  21. 根据权利要求20所述的设备,其特征在于,所述QoE信息包括所述终端的视频播放状态,以及所述视频播放状态的产生时刻。
  22. 根据权利要求20所述的设备,其特征在于,所述调度单元,用于:
    根据所述QoE信息计算所述终端的视频业务的平均主观分MOS;
    根据所述MOS调整所述终端的视频业务的调度优先级,所述MOS的数值与视频业务的调度优先级负相关。
  23. 根据权利要求19或20所述的设备,其特征在于,所述确定单元,用于:
    对所述视频码率进行冗余处理得到码率估计值,所述码率估计值大于所述视频码率;
    根据所述调度数据量和所述码率估计值确定所述终端的视频业务的QoE信息。
  24. 根据权利要求21所述的设备,其特征在于,所述终端的视频播放状态包括:当前播放状态,以及所述当前播放状态的产生时刻,所述当前播放状态的播放状态类型包括初始缓存状态、正常播放状态、中断缓存状态和播放结束 状态。
  25. 根据权利要求24所述的设备,其特征在于,所述调整单元,包括:
    第一调整子单元,用于在所述QoE信息指示所述当前播放状态为初始缓存状态,或所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长不大于预设的缓存时长最小阈值时,将所述调度优先级调整为第一优先级,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长;
    第二调整子单元,用于在所述QoE信息指示所述当前播放状态为中断缓存状态,将所述调度优先级调整为第二优先级;
    第三调整子单元,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长在所述预设的缓存时长最小阈值与预设的缓存时长最大阈值之间时,根据所述QoE信息和所述终端当前时刻的信道状态信息调整所述调度优先级;
    第四调整子单元,用于在所述QoE信息指示所述当前播放状态为正常播放状态且视频预缓存播放时长大于所述预设的缓存时长最大阈值时,将所述调度优先级调整为第三优先级,其中,所述第一优先级大于或等于所述第二优先级,所述第二优先级大于所述第三优先级,所述第三优先级大于或等于预设的最小优先级。
  26. 根据权利要求25所述的设备,其特征在于,第三调整子单元,包括:
    第一判断子单元,用于判断所述终端是否处于移动状态;
    获取子单元,用于在所述终端处于移动状态时,获取所述终端当前时刻的信道状态信息;
    第二判断子单元,用于判断所述当前时刻的信道状态信息指示的信道状态是否为大尺度信道波动状态;
    优先级调整子单元,用于在所述当前时刻的信道状态信息指示的信道状态 为大尺度信道波动状态,根据所述QoE信息指示的视频预缓存播放时长和所述终端的信道大尺度波动水平调整所述调度优先级。
  27. 根据权利要求26所述的设备,其特征在于,所述优先级调整子单元,用于:
    根据所述QoE信息指示的视频预缓存播放时长T和所述当前时刻的信道状态信息,采用调整因子计算公式确定优先级调整因子Q;
    将所述优先级调整因子Q与预设的视频业务的基础调度优先级的乘积作为所述调度优先级,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的;
    其中,所述调整因子计算公式为:
    Q=A/T*R;
    其中,所述A为所述预设的缓存时长最大阈值,所述R为根据所述当前时刻的信道状态信息确定的反映终端的信道大尺度波动水平的常数,所述R与信道状态的良好程度正相关。
  28. 根据权利要求27所述的设备,其特征在于,所述第二判断子单元,用于:
    当所述信道的SINR大于或等于所述当前时刻的信道状态信息指示的信道的信号与干扰加噪声比SINR与所述信道的历史平均SINR与预设的第一小区变量之和,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
    当所述信道的SINR小于或等于所述信道的历史平均SINR与预设的第二小区变量之差,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
  29. 根据权利要求27所述的设备,其特征在于,所述第二判断子单元,用于:
    当所述当前时刻的信道状态信息指示的信道的SINR大于预设的良好区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态;
    当所述当前时刻的信道状态信息指示的信道的SINR小于预设的恶劣区域阈值时,确定所述当前时刻的信道状态信息指示的信道状态为大尺度信道波动状态。
  30. 根据权利要求25所述的设备,其特征在于,所述第三调整子单元,用于:
    根据所述QoE信息确定所述接入网设备在第n时刻调度的调度数据量TxTbSize(n);
    根据所述终端上报的信道状态信息确定所述终端在第n时刻的视频业务传输的瞬时速率r(n);
    根据历史平均速率计算公式和所述接入网设备在第n时刻调度的调度数据量TxTbSize(n),计算第n时刻所述终端的视频业务的历史平均速率R(n),所述历史平均速率计算公式为:
    R(n)=(1-α)×R(n-1)+α×TxTbSize(n);
    根据比例公平PF调度优先级公式、所述第n时刻所述终端的视频业务的历史平均速率R(n)以及所述终端在第n时刻的视频业务传输的瞬时速率r(n),计算第n时刻所述终端的视频业务的调度优先级P(n),所述PF调度优先级公式为:
    Figure PCTCN2015096040-appb-100002
    其中,所述α为采用阿尔法滤波算法为所述终端的视频业务所设置的滤波系数,R(n-1)为第n-1时刻所述终端的视频业务的历史平均速率,n≥1,当n等于1时,R(n-1)为预设值。
  31. 根据权利要求25所述的设备,其特征在于,所述终端的视频业务的调度优先级等于优先级调整因子与预设的视频业务的基础调度优先级的乘积,所述调度优先级通过调整所述优先级调整因子来调整,所述预设的视频业务的基础调度优先级为所述接入网设备的基础调度器分配给所述终端的。
  32. 根据权利要求25所述的设备,其特征在于,所述确定单元,包括:
    第一确定子单元,用于在所述接入网设备上的无线链路控制层协议RLC缓存器开始为所述终端的视频业务调度数据时,确定所述视频播放状态为初始缓存状态,并记录所述初始缓存状态的产生时刻;
    第二确定子单元,用于在所述初始缓存状态开始后,根据所述调度数据量确定视频预缓存播放时长是否大于预设的初始缓存时长阈值;
    第三确定子单元,用于在视频预缓存播放时长大于预设的初始缓存时长阈值时,确定所述视频播放状态为首次正常播放状态,并记录所述首次正常播放状态的产生时刻;
    第四确定子单元,用于在所述首次正常播放状态开始后,根据所述调度数据量和所述视频码率确定所述终端的视频缓存区缓存的数据是否被耗尽;
    第五确定子单元,用于在所述终端的视频缓存区缓存的数据被耗尽时,确定所述视频播放状态为中断缓存状态,并记录所述中断缓存状态的产生时刻;
    第六确定子单元,用于在所述中断缓存状态开始后,根据所述调度数据量和所述视频码率确定视频预缓存播放时长是否大于预设的中断缓存时长阈值;
    第七确定子单元,用于在视频预缓存播放时长大于预设的中断缓存时长阈值时,确定所述视频播放状态为再次正常播放状态,并记录所述再次正常播放状态的产生时刻;
    第八确定子单元,用于在RLC缓存器中的数据量对应的播放时长为0,且视频预缓存播放时长等于0时,确定所述视频播放状态为播放结束状态,并记 录所述播放结束状态的产生时刻;
    生成子单元,用于根据所述视频播放状态和所述视频播放状态的产生时刻生成所述QoE信息。
  33. 根据权利要求32所述的设备,其特征在于,所述第二确定子单元,用于:
    根据所述调度数据量确定从所述初始缓存状态的产生时刻到当前时刻的调度数据量;
    将从所述初始缓存状态的产生时刻到当前时刻的调度数据量作为当前时刻的预缓存数据量;
    根据所述当前时刻的预缓存数据量确定当前时刻的视频预缓存播放时长;
    判断所述当前时刻的视频预缓存播放时长是否大于预设的初始缓存时长阈值。
  34. 根据权利要求32所述的设备,其特征在于,所述第四确定子单元,用于:
    根据所述调度数据量确定从所述首次正常播放状态的产生时刻到当前时刻的调度数据量y,
    确定所述首次正常播放状态的产生时刻的预缓存数据量x;
    根据所述视频码率m确定从所述首次正常播放状态的产生时刻到当前时刻终端播放的数据量z,所述z=m*t,所述t为所述首次正常播放状态的产生时刻到当前时刻的时长;
    确定当前时刻的预缓存数据量u,所述u=x+y-z;
    当所述当前时刻的预缓存数据量为0,确定所述终端的视频缓存区缓存的数据被耗尽;
    当所述当前时刻的预缓存数据量大于0,确定所述终端的视频缓存区缓存的 数据未被耗尽。
  35. 根据权利要求20所述的设备,其特征在于,所述QoE信息是以1个传输时间间隔TTI为确定周期,周期性获取的;所述视频业务的资源是以1个TTI为调度周期,周期性调度的;
    所述调度单元用于:
    根据当前调度周期的调度优先级为所述终端的视频业务调度数据,所述当前调度周期的调度优先级为根据当前确定周期所确定的QoE信息来确定的。
  36. 根据权利要求19所述的设备,其特征在于,所述设备还包括:
    计算单元,用于根据所述QoE信息计算所述终端的视频业务的平均主观分MOS,所述QoE信息包括:视频预缓存播放时长、初始缓存时延、平均中断时长和中断次数,其中,所述视频预缓存播放时长为终端缓存的数据所维持播放的时长,所述初始缓存时延为初始缓存状态的产生时刻到首次正常播放状态的产生时刻所用时延,所述平均中断时长为预设时间段内终端的中断时长的平均值,所述中断次数为所述预设时间段内产生中断缓存状态的次数。
  37. 一种体验质量信息获取系统,包括权利要求19至36任一所述的接入网设备,以及至少一个终端。
PCT/CN2015/096040 2015-11-30 2015-11-30 体验质量信息获取方法、设备及系统 WO2017091961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580084119.4A CN108353000A (zh) 2015-11-30 2015-11-30 体验质量信息获取方法、设备及系统
PCT/CN2015/096040 WO2017091961A1 (zh) 2015-11-30 2015-11-30 体验质量信息获取方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096040 WO2017091961A1 (zh) 2015-11-30 2015-11-30 体验质量信息获取方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2017091961A1 true WO2017091961A1 (zh) 2017-06-08

Family

ID=58796120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096040 WO2017091961A1 (zh) 2015-11-30 2015-11-30 体验质量信息获取方法、设备及系统

Country Status (2)

Country Link
CN (1) CN108353000A (zh)
WO (1) WO2017091961A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430598A (zh) * 2019-07-08 2019-11-08 新华三技术有限公司成都分公司 服务质量QoS的控制方法及相关装置
CN111147875A (zh) * 2019-12-25 2020-05-12 视联动力信息技术股份有限公司 一种业务时长显示方法和装置
CN111432246A (zh) * 2020-03-23 2020-07-17 广州市百果园信息技术有限公司 推送视频数据的方法、装置及存储介质
CN112019916A (zh) * 2020-08-26 2020-12-01 广州市百果园信息技术有限公司 一种视频下载的方法、装置、服务器和存储介质
CN112423096A (zh) * 2020-11-03 2021-02-26 上海哔哩哔哩科技有限公司 播放优化方法及系统
CN113473116A (zh) * 2021-07-12 2021-10-01 杭州时趣信息技术有限公司 一种直播质量监测方法、装置及介质
CN113891388A (zh) * 2021-10-15 2022-01-04 中国联合网络通信集团有限公司 一种体验质量QoE上报的控制方法、装置、设备及存储介质
EP4213570A4 (en) * 2020-10-22 2023-11-22 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS, AND COMPUTER-READABLE STORAGE MEDIUM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107958A (zh) * 2011-11-11 2013-05-15 中兴通讯股份有限公司 一种获取用户感知的方法及系统
CN103476123A (zh) * 2013-08-30 2013-12-25 西安电子科技大学 LTE网络视频业务QoE保障资源分配方法
WO2014032307A1 (zh) * 2012-09-03 2014-03-06 华为技术有限公司 一种资源调度的方法、装置及系统
US20140269526A1 (en) * 2013-03-14 2014-09-18 Allied Communications, LLC Radio resource managment
WO2015021821A1 (zh) * 2013-08-14 2015-02-19 中兴通讯股份有限公司 评价用户体验质量的方法及装置、用户终端、网络服务器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015085525A1 (zh) * 2013-12-12 2015-06-18 华为技术有限公司 体验质量QoE的实现方法及装置
US9609040B2 (en) * 2014-02-21 2017-03-28 Dialogic Corporation Efficient bitrate adaptation in video communications over IP networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107958A (zh) * 2011-11-11 2013-05-15 中兴通讯股份有限公司 一种获取用户感知的方法及系统
WO2014032307A1 (zh) * 2012-09-03 2014-03-06 华为技术有限公司 一种资源调度的方法、装置及系统
US20140269526A1 (en) * 2013-03-14 2014-09-18 Allied Communications, LLC Radio resource managment
WO2015021821A1 (zh) * 2013-08-14 2015-02-19 中兴通讯股份有限公司 评价用户体验质量的方法及装置、用户终端、网络服务器
CN103476123A (zh) * 2013-08-30 2013-12-25 西安电子科技大学 LTE网络视频业务QoE保障资源分配方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430598A (zh) * 2019-07-08 2019-11-08 新华三技术有限公司成都分公司 服务质量QoS的控制方法及相关装置
CN110430598B (zh) * 2019-07-08 2023-02-07 新华三技术有限公司成都分公司 服务质量QoS的控制方法及相关装置
CN111147875A (zh) * 2019-12-25 2020-05-12 视联动力信息技术股份有限公司 一种业务时长显示方法和装置
CN111147875B (zh) * 2019-12-25 2022-07-08 视联动力信息技术股份有限公司 一种业务时长显示方法和装置
CN111432246A (zh) * 2020-03-23 2020-07-17 广州市百果园信息技术有限公司 推送视频数据的方法、装置及存储介质
CN112019916A (zh) * 2020-08-26 2020-12-01 广州市百果园信息技术有限公司 一种视频下载的方法、装置、服务器和存储介质
CN112019916B (zh) * 2020-08-26 2022-05-03 广州市百果园信息技术有限公司 一种视频下载的方法、装置、服务器和存储介质
EP4213570A4 (en) * 2020-10-22 2023-11-22 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS, AND COMPUTER-READABLE STORAGE MEDIUM
CN112423096A (zh) * 2020-11-03 2021-02-26 上海哔哩哔哩科技有限公司 播放优化方法及系统
CN113473116A (zh) * 2021-07-12 2021-10-01 杭州时趣信息技术有限公司 一种直播质量监测方法、装置及介质
CN113891388A (zh) * 2021-10-15 2022-01-04 中国联合网络通信集团有限公司 一种体验质量QoE上报的控制方法、装置、设备及存储介质
CN113891388B (zh) * 2021-10-15 2024-04-02 中国联合网络通信集团有限公司 一种体验质量QoE上报的控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN108353000A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017091961A1 (zh) 体验质量信息获取方法、设备及系统
US8755811B2 (en) Techniques for aligning application output and uplink resource allocation in wireless communication systems
JP5213724B2 (ja) ユーザ機器からワイヤレス・ネットワークへ閾値に基づいたバッファ状態報告を提供する装置、方法、およびコンピュータ・プログラム
US8902781B2 (en) Device and method for dynamically configuring discontinuous reception parameters
RU2510598C2 (ru) Способ и устройство в системе беспроводной связи
Cui et al. Performance-aware energy optimization on mobile devices in cellular network
TWI381680B (zh) 用於以時間可調為優先基礎之排序器之系統及方法
US10271345B2 (en) Network node and method for handling a process of controlling a data transfer related to video data of a video streaming service
US8165083B2 (en) Communication system, base station, and mobile station
WO2008042813A2 (en) Method and apparatus for managing resources at a wireless device
EP3562166B1 (en) Video data processing method and device
JP6627966B2 (ja) 無線アクセスネットワークノード、外部ノード、及びこれらの方法
EP2862387A2 (en) Systems and methods for resource booking for admission control and scheduling using drx
WO2011129260A1 (ja) 移動通信システムにおける基地局及び方法
CN103209494A (zh) 一种基于重要性标记的实时视频业务资源分配方法
WO2016065876A1 (zh) 一种上行业务等待时延的估算方法和装置
Khorov et al. SEBRA: SAND-enabled bitrate and resource allocation algorithm for network-assisted video streaming
US8995259B2 (en) Systems and methods for resource booking for admission control and scheduling using DRX
WO2015035573A1 (zh) 一种网络传输方法和装置
WO2015035927A1 (zh) 一种信道配置方法及系统、接入控制器
WO2017147771A1 (zh) 业务优化处理方法、设备及系统
WO2012010039A1 (zh) 一种用于小区间干扰协调的用户管理方法及系统
WO2020107155A1 (zh) 信道状态信息的获取方法、装置及计算机存储介质
KR20160139822A (ko) 무선 통신 시스템에서 스케줄링 방법 및 장치
WO2017201711A1 (zh) 视频优化方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909478

Country of ref document: EP

Kind code of ref document: A1