WO2017090955A1 - Method for continuously producing metal fluoride-based fluorescent substance - Google Patents

Method for continuously producing metal fluoride-based fluorescent substance Download PDF

Info

Publication number
WO2017090955A1
WO2017090955A1 PCT/KR2016/013472 KR2016013472W WO2017090955A1 WO 2017090955 A1 WO2017090955 A1 WO 2017090955A1 KR 2016013472 W KR2016013472 W KR 2016013472W WO 2017090955 A1 WO2017090955 A1 WO 2017090955A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
phosphor
metal fluoride
metal
reactant
Prior art date
Application number
PCT/KR2016/013472
Other languages
French (fr)
Korean (ko)
Inventor
김창해
최강식
방보극
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017090955A1 publication Critical patent/WO2017090955A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements

Definitions

  • the present invention relates to a continuous manufacturing method of a metal fluoride-based phosphor, and more particularly, a reactant prepared by dissolving or slurrying two or more metal precursors is introduced into a reactor, and a vortex generated by fluid flow of the reactant (VORTEX In the continuous manufacturing method of the metal fluoride phosphor which performs the mixing and phosphor synthesis reaction, and the synthesized phosphor is discharged through the outlet according to the fluid flow of the solution. It is about.
  • Metal fluoride-based phosphors have been widely applied to light emitting devices such as light emitting diodes, laser diodes, surface light emitting diodes, inorganic electroluminescent devices, and organic electroluminescent devices.
  • WO 2012-128837 discloses a metal fluoride-based phosphor having a composition of the formula (A).
  • A is selected from Li, Na, K, Rb, Cs and combinations thereof; M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta , Bi, Gd and combinations thereof; x is an absolute value determined from the charge of the MF y ions, y is 5, 6 or 7)
  • A is an alkali metal element selected from Li, Na, K, Rb, Cs and combinations thereof;
  • M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb Is a metal element selected from Ta, Bi, Gd and combinations thereof;
  • z is an integer of 3, 4 or 5, as determined by the oxidation number of the metal element M)
  • the general method for producing a metal fluoride-based phosphor is largely a solid phase method and a liquid phase method.
  • the fluoride precursor is weighed in a desired ratio, mixed in a mortar using acetone or ethanol, and reacted in a high temperature electric furnace.
  • the use of the solid phase method has the advantage that the phosphor can be more conveniently synthesized than the gas phase method or the liquid phase method, but there is a high possibility that fluoride phosphors of an unwanted composition are synthesized by fluorine reacting with other elements during the reaction.
  • the solid phase method is convenient in terms of method but has a disadvantage in that it is not easy to synthesize a fluoride-based phosphor having a desired composition.
  • the liquid phase method has an advantage that it is possible to produce a phosphor having a desired composition compared to the solid phase method because the fluoride is converted to a solution state and reacted.
  • a so-called precipitation method in which fluoride precursors are dissolved in distilled water or hydrofluoric acid (HF) and then precipitated using solubility of each solution to synthesize fluoride phosphors is most widely used.
  • HF hydrofluoric acid
  • the amount of hydrofluoric acid (HF) used as a solvent needs to be increased as the fluoride used as a reactant is massed.
  • hydrofluoric acid is limited to be used as a precipitation solvent because it is a material with significant safety in handling.
  • the amount synthesized in one batch is increased, so that the secondary treatment process also requires a large-scale device.
  • An object of the present invention is to solve the problems of the solid phase method and the liquid phase method of the batch type at the same time, and to provide a new synthesis method to enable mass production of metal fluoride-based phosphors.
  • the present invention provides a method for continuously producing a metal fluoride-based phosphor that continuously reacts, prepares, mixes, synthesizes, and discharges the synthesized phosphors by continuously preparing a reactant as a solution based on a liquid phase method. .
  • the present invention is a method for continuously producing a metal fluoride-based phosphor by the liquid phase method
  • Step 1 Step 1 to prepare a reactant in the dissolved or slurry state by mixing the metal precursor used for the synthesis of metal fluoride-based phosphor in distilled water or hydrofluoric acid;
  • Step 2 step 2 of continuously introducing the reactants into the reactor through an inlet formed on one side of the reactor using a metering pump;
  • Step 3 The inside of the reactor is equipped with a cylindrical stirrer to rotate at regular intervals with the inner wall of the reactor, the reactant introduced into the reactor while the cylindrical stirrer rotates at a constant speed in the speed range of 10 ⁇ 1500 rpm is a fluid flow Mixing and reacting the resulting vortex (VORTEX) to synthesize metal fluoride-based phosphors;
  • the continuous manufacturing method of the present invention can solve the problems of the general solid-state method and the liquid phase method of the batch (Bach) type at the same time.
  • the present invention is based on the liquid phase method, but overcomes the synthetic limitations of the batch type liquid phase method, and by introducing a continuous process, it is possible to massify the fluoride phosphor as desired by the user.
  • the continuous production method of the present invention since a small amount of the reactant is added in a small reactor space, it is possible to safely synthesize the metal fluoride-based phosphor, and also produce up to 1 to 50 g per minute through a continuous process in a narrow reactor. Since this is possible, mass production of metal fluoride-based phosphors is also possible.
  • FIG. 1 is a block diagram of a reaction apparatus used in the continuous production method according to the present invention.
  • FIG. 2 is an overall configuration diagram of a continuous manufacturing process of a metal fluoride phosphor including the reactor of FIG. 1.
  • Figure 3 is an electron scanning micrograph showing the particle size and shape of the metal fluoride-based phosphor prepared according to the stirring speed.
  • Figure 4 is an electron scanning micrograph showing the particle size and shape of the metal fluoride-based phosphor prepared according to the loading rate of the reactants.
  • K 2 SiF 6 Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors prepared by a continuous manufacturing method.
  • a reactant prepared by dissolving or slurrying a metal precursor used for synthesizing the metal fluoride-based phosphor is introduced into the inlet of the reactor, and is produced by the fluid flow of the reactant.
  • the synthesized phosphor is discharged according to the fluid flow of the reactants, and the addition, mixing, synthesis, and discharge are performed in a continuous process.
  • the precursor compound is dissolved or slurried in distilled water or hydrofluoric acid and used as a reactant, a metal fluoride phosphor having a desired composition can be prepared.
  • the synthesized phosphor is continuously discharged out of the reactor according to the fluid flow formed in the reactor and separated and purified through simple filtration, and the precipitation process for solidifying the phosphor is omitted. It is possible to mass-produce a phosphor by this.
  • hydrofluoric acid HF
  • HF hydrofluoric acid
  • the present invention is capable of carrying out the process of mixing and synthesizing the reaction through the fluid flow of the reactants introduced into the reactor and carrying the resulting phosphor toward the outlet.
  • the reactants have a flow along the rotation direction of the cylindrical stirrer inside the reactor, and the phenomenon of mixing between the reactor and the stirrer occurs.
  • the reactant generates a centrifugal force to go toward the inner wall of the reactor by the stirrer and is forced in the vertical direction of the centrifugal force by another reactant introduced into the reactor. This effect causes the internal reactant fluid to form different ring pair vortices, which affects the mixing and synthesis reactions.
  • the reaction rate can be controlled by controlling the flow of the reactants to control the production rate of the phosphor.
  • the fluid flow in the reactor can be controlled by adjusting the input speed and / or stirring speed of the reactants.
  • the reaction rate of the reactants can be controlled within the range of 1 ⁇ 50 mL / min, it is also possible to quantitatively control the input rate by installing a metering pump.
  • a fixed vortexer or a mechanical stirrer is installed in the reactor, the reaction rate may be further increased, and thus the amount of phosphor synthesized may be further increased.
  • Stirring speeds may preferably range from approximately 10 to 1500 rpm.
  • the metal fluoride phosphor when a reactant was added at a rate of 10 mL / min per minute using a 100 mL reactor, the metal fluoride phosphor was generated at about 5 g / min per minute, thus synthesizing 14 kg / day per day. Can be.
  • the continuous manufacturing method of the present invention is 14 times the capacity of one electric furnace It has the above synthetic performance.
  • the continuous production method according to the present invention can also control the size and shape of the phosphor particles synthesized by adjusting the input speed and the stirring speed of the reactant. That is, the metal fluoride synthesized by varying the input speed of the reactant in the range of 1 to 50 mL / min (based on a capacity of 100 mL reactor), adjusting the stirring speed to 10 to 1500 rpm, or simultaneously controlling the input speed and the stirring speed.
  • the size and shape of the system phosphor can be controlled.
  • the size of the metal fluoride-based phosphor to be synthesized in the present invention may range from about 10 to 100 ⁇ m.
  • two or more reactants are introduced into the reactor and a sufficient amount is reacted, sufficient seeds are formed to synthesize small and uniform phosphor particles.
  • crystal growth is continuously continued in a small amount of seeds.
  • the particle size is increased. That is, as the stirring speed is increased while maintaining the reaction rate of the reactant at a constant rate, the chance of seed generation is reduced, and thus, the phosphor particles already formed may be greatly grown.
  • the reactants introduced into the reactor are mixed and reacted by VORTEX generated by the fluid flow to synthesize metal fluoride-based phosphors;
  • the metal fluoride-based phosphor which may be prepared by performing the continuous manufacturing method according to the present invention may have a composition formula represented by the following formula (1).
  • A is an alkali metal element selected from Li, Na, K, Rb, Cs and combinations thereof;
  • M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb Is a metal element selected from Ta, Bi, Gd and combinations thereof;
  • R is a transition metal or rare earth metal having an oxidation number of +2, +3, +4 as an activator; and the subscripts a, b, f and r are each The number of elements, 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 2, 0 ⁇ f ⁇ 11, 0 ⁇ r ⁇ 2, provided that a and b cannot be 0 at the same time)
  • the precursor compound from which metal A is derived may be AF, AHF 2 , A 2 O, A 2 CO 3 , A x [MF y ], and A x
  • One or more compounds selected from [MF y ]: R may be adopted.
  • the precursor compound from which the metal M is derived one or more compounds selected from H x [MF y ], A x [MF y ], and A x [MF y ]: R may be adopted.
  • the precursor compound from which the metal R is derived one or more compounds selected from A x [MF y ]: R may be adopted.
  • A, M and R used in the definition of the precursor compound are as defined in Formula 1, respectively, x is an absolute value determined from the charge of the MF y ion, y may be an integer of 5, 6 or 7.
  • Figure 1 illustrates an embodiment of a reaction apparatus that can be applied to the present invention, the present invention is not limited thereto.
  • the reactor 10 is provided with inlets 20a and 20b into which a reactant prepared in a solution or slurry state is introduced, and an outlet 30 for discharging the synthesized phosphor out of the reactor according to the fluid flow of the reactant.
  • the reactor 10 is provided with a cylindrical stirrer that rotates at regular intervals with the inner wall of the reactor. When the cylindrical stirrer rotates at a constant speed in a speed range of 10 to 1500 rpm, the reactant is caused by the vortex generated by the centrifugal force generated by the stirrer to the reactor wall and the force of moving the fluid in a direction perpendicular thereto. This mixes and reacts.
  • the reactor or surrounding accessories may be coated with an acid resistant material or made of an acid resistant material to prevent contamination and breakage by hydrofluoric acid.
  • the reactor 10 is provided with an inlet 20 and an outlet 30, the inlet 20 and the outlet 30 may be provided with one or two or more, respectively, and also the inlet 20 and outlet
  • the position of 30 can also be adjusted arbitrarily. That is, by dividing the reactants through two or more inlets by dividing by the type of precursor compound used for the synthesis of the phosphor, it is possible to more easily control the reaction pattern.
  • the number of inlets 20 and outlets 30 may be arbitrarily adjusted to control the flow of fluid formed in the reactor.
  • the positions of the inlets 20 may be separately placed at the lower and middle portions of the reactor so that the reactants react with time difference.
  • the inlet 20 and the outlet 30 may be connected to enable continuous particle growth and the like.
  • the reactants introduced into the two or more inlets 20 are met in the reactor to mix and simultaneously synthesize a metal fluoride-based phosphor, the resulting phosphor is raised. Then, the raised phosphor is discharged to the discharge port 30 in accordance with the flow of the fluid.
  • the reactor 10 may be installed to have a vertical, horizontal or constant inclination relative to the ground depending on the reaction pattern.
  • the reactor 10 is attached to a temperature control device 13 such as a heater or a heat exchanger to adjust the temperature of the reactants.
  • a temperature control jacket 12 capable of circulating the heat exchange medium may be provided outside the reactor to control the temperature of the reactants.
  • the temperature control device 13 may be attached to the reactant reservoir to adjust the temperature of the reactant in advance, and may be introduced into the reactor 3 so that the temperature of the reaction solution may be kept constant.
  • a fixed vortex or mechanical stirrer may be further installed inside the reactor 10 to control the strength of the vortex and the flow of the fluid.
  • a vortex VORTEX
  • a vortex is formed by a reactant in a solution or a slurry flowing through the inlets 20a and 20b of the reactor, and the reactants are mixed and synthesized using the same, and the flow of the fluid is used.
  • the manufactured phosphor is transported toward the outlet 30 to be discharged out of the reactor.
  • the vortex or agitator is installed inside the reactor, it is possible to more easily control the strength of the vortex and thereby to control the reaction rate, and the phosphor prepared by adjusting the direction of the fluid flow to the outlet 30 easily Can be induced and discharged.
  • the mechanical stirrer 11 installed in the reactor 10 has a cylindrical shape.
  • the present invention is not limited by the shape of the stirrer, and a suitable stirrer can be selected according to the purpose.
  • the reactor 10 has a capacity of 100 mL, and is made of Teflon or acid resistant polymer material that can withstand hydrofluoric acid, and is carefully sealed to prevent hydrofluoric acid from flowing out.
  • the peripheral parts are coated with acid resistant material.
  • the reactor 10 is provided with two raw material inlets 20a and 20b and one phosphor outlet 30.
  • a cylindrical stirrer is installed inside the reactor 10 to stir the reactants introduced into the reactor at a constant speed.
  • the precursor compound used as the reaction raw material is dissolved or slurried in distilled water or hydrofluoric acid and stored in the reaction material storage tanks 21a and 21b, and a constant input speed through the inlets 20a and 20b using the metering pumps 22a and 22b.
  • the reaction was poured into.
  • the reactants introduced through the two inlets form a vortex in the reactor and proceed with mixing and phosphor synthesis reaction by the vortices formed, and the synthesized phosphor rises to the top of the reactor in accordance with the flow direction of the fluid outlet 30.
  • Phosphor discharged out of the reactor is stored in the synthetic material reservoir (31).
  • Phosphors stored in the synthetic material storage tank 31 were prepared through the post-treatment process of filtration and washing with the desired metal fluoride-based phosphor.
  • Metal fluoride phosphors were continuously manufactured by the method of the representative example.
  • K 2 SiF 6 : Mn 4 + KF, K 2 MnF 6 , H 2 SiF 6 , HF were prepared as precursor compounds, and each precursor compound was weighed in consideration of the composition ratio.
  • the prepared KF and K 2 MnF 6 was dissolved in hydrogen fluoride at a concentration of 1 to 5% and stored in the reactant storage tank 21a, and H 2 SiF 6 The solution was stored in the reactant reservoir 21b. The reaction was carried out while maintaining the input speed of the reactants shown in Table 1 and the stirring speed of the stirrer.
  • the metal fluoride-based phosphor discharged through the outlet 3 of the reactor after the reaction is stored in the synthetic material storage tank 31, filtered as a post-treatment process, washed with acetone, ethanol and dried, K 2 SiF 6 : the Mn 4 + phosphor was obtained.
  • Example 1 division Feed rate of reactant (mL / min) Stirring Speed (rpm) Example 1 10 100 Example 2 10 200 Example 3 10 300 Example 4 10 400 Example 5 10 600 Example 6 10 800 Example 7 10 1000 Example 8 10 1200 Example 9 2.5 100 Example 10 5 100 Example 11 15 100 Example 12 15 50 Example 13 15 150
  • FIGS. 3 and 4 are attached electron scanning micrographs comparing the particle size and shape of the metal fluoride-based phosphor prepared by changing the stirring speed or the reaction rate of the reactant.
  • Figure 3 is synthesized under the conditions (Examples 2, 4 to 8) to keep the input rate of the reactant constant 10 mL / min, the stirring rate is maintained differently at 200, 400, 600, 800, 1,000, 1,200 rpm Picture of phosphor.
  • Figure 4 is maintained at a constant stirring speed of 100 rpm, the reaction rate of the reactants synthesized in the conditions (Examples 1, 9 to 11) is maintained differently at 2.5, 5. 10, 15 mL / min It is a photograph.
  • the synthesized phosphor particles can be controlled in size and shape by controlling the input speed and / or the stirring speed of the reactants.
  • Phosphors were prepared by the continuous manufacturing method according to Examples 1 to 13, but various metal fluoride-based phosphors shown in Table 2 were synthesized by changing the type and composition ratio of the precursor compounds differently.
  • the synthesized phosphors were analyzed for emission characteristics using excitation light of various wavelengths using a luminescence analyzer (PerKin Elmer Photo-Luminescence), and the results are shown in Table 2 below.
  • various metal fluoride phosphors can be synthesized by the continuous production method according to the present invention, and the synthesized metal fluoride phosphors have various emission wavelengths.
  • 5 and 6 show emission spectra and X-ray powder diffraction spectra of K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors prepared by the continuous preparation method according to Examples 12 and 14 ; Each is attached. 5 shows emission characteristics at an excitation wavelength of 450 nm. It can be seen that the K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors are red phosphors having an emission center wavelength of 630 nm. . In addition, it can be confirmed that the phosphor was well formed through the XRD spectrum of FIG. 6.
  • the emission spectrum of FIG. 7 shows emission characteristics at an excitation wavelength of 980 nm.
  • the KMgF 3 : Eu 2 + phosphor is a UV A phosphor having an emission center wavelength of 358 nm
  • the KLaF 4 : Yb 3+ and Tb 3+ phosphors are It can be seen that the emission center wavelength is a green phosphor having a wavelength of 545 nm.
  • first metering pump 22b second metering pump

Abstract

The present invention relates to a method for continuously producing a metal fluoride-based fluorescent substance and, more particularly, to a method for continuously producing a metal fluoride-based fluorescent substance, wherein feeding, mixing and synthesis, and discharge processes are continuously performed such that a reactant prepared by dissolving or slurrifying two or more metal precursors is fed into a reactor, mixing and fluorescent substance synthesis are performed by vortexes generated by a fluid flow of the reactant, and the resultant synthesized fluorescent substance is discharged through an outlet according to a fluid flow of the solution.

Description

금속불화물계 형광체의 연속 제조방법Continuous manufacturing method of metal fluoride phosphor
본 발명은 금속불화물계 형광체의 연속 제조방법에 관한 것으로서, 더욱 상세하게는 둘 이상의 금속 전구체를 용해 또는 슬러리화하여 제조된 반응물을 반응기 내부로 투입하고, 반응물의 유체흐름에 의해 생성된 와류(VORTEX)에 의해 혼합 및 형광체 합성반응을 수행하고, 합성된 형광체를 용액의 유체흐름에 따라 배출구를 통해 배출되도록 하는, 투입, 혼합 및 합성, 배출이 연속공정으로 진행되는 금속 불화물 형광체의 연속 제조방법에 관한 것이다.The present invention relates to a continuous manufacturing method of a metal fluoride-based phosphor, and more particularly, a reactant prepared by dissolving or slurrying two or more metal precursors is introduced into a reactor, and a vortex generated by fluid flow of the reactant (VORTEX In the continuous manufacturing method of the metal fluoride phosphor which performs the mixing and phosphor synthesis reaction, and the synthesized phosphor is discharged through the outlet according to the fluid flow of the solution. It is about.
금속불화물계 형광체는 발광 다이오드, 레이저 다이오드, 면발광 다이오드, 무기일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자 등의 발광소자에 광범위하게 적용되고 있다.Metal fluoride-based phosphors have been widely applied to light emitting devices such as light emitting diodes, laser diodes, surface light emitting diodes, inorganic electroluminescent devices, and organic electroluminescent devices.
국제공개특허공보 WO 2012-128837호에는 하기 화학식 A의 조성을 가지는 금속불화물계 형광체가 개시되어 있다.WO 2012-128837 discloses a metal fluoride-based phosphor having a composition of the formula (A).
[화학식 A][Formula A]
Ax[MFy]:Mn4+ A x [MF y ]: Mn 4+
(상기 화학식 A에서, A는 Li, Na, K, Rb, Cs 및 이들의 조합으로부터 선택되고; M은 Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd 및 이들의 조합으로부터 선택되고; x는 MFy 이온의 전하로부터 결정되는 절대값이고, y는 5, 6 또는 7이다)(In Formula A, A is selected from Li, Na, K, Rb, Cs and combinations thereof; M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta , Bi, Gd and combinations thereof; x is an absolute value determined from the charge of the MF y ions, y is 5, 6 or 7)
또한, 본 발명자들은 하기 화학식 B의 조성을 가지는 금속불화물계 형광체를 개발하여 대한민국특허출원 10-2015-0134405호로 특허출원한 적도 있다. In addition, the present inventors have developed a metal fluoride-based phosphor having a composition of the following general formula (B) and have filed a patent application as Korean Patent Application No. 10-2015-0134405.
[화학식 B][Formula B]
[AF]3[MFz]:Mn4+ [AF] 3 [MF z ]: Mn 4+
(상기 화학식 B에서, A는 Li, Na, K, Rb, Cs 및 이들의 조합으로부터 선택된 알칼리금속원소이고; M는 Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb, Ta, Bi, Gd 및 이들의 조합으로부터 선택된 금속원소이며; z는 금속원소 M의 산화수에 의해 결정되는 것으로 3, 4 또는 5의 정수이다)(In Formula B, A is an alkali metal element selected from Li, Na, K, Rb, Cs and combinations thereof; M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb Is a metal element selected from Ta, Bi, Gd and combinations thereof; z is an integer of 3, 4 or 5, as determined by the oxidation number of the metal element M)
금속불화물계 형광체를 제조하는 일반적인 방법은 크게 고상법과 액상법이 있다. 고상법을 이용한 금속불화물계 형광체의 제조방법에서는 불화물 전구체를 원하는 비율만큼 칭량한 후, 아세톤이나 에탄올을 이용하여 유발에서 혼합하여 고온의 전기로에서 반응시킨다. 고상법을 이용하게 되면 기상법이나 액상법에 비하여 보다 편리하게 형광체를 합성할 수 있다는 장점은 있지만, 반응이 진행되는 동안 불소가 다른 원소와 반응하여 원하지 않는 조성의 불화물 형광체가 합성될 가능성이 농후하다. 이에 고상법은 방법적으로는 편리하지만 원하는 조성의 불화물계 형광체를 합성하기가 용이하지 않다는 단점이 있다. The general method for producing a metal fluoride-based phosphor is largely a solid phase method and a liquid phase method. In the method for producing a metal fluoride-based phosphor using the solid phase method, the fluoride precursor is weighed in a desired ratio, mixed in a mortar using acetone or ethanol, and reacted in a high temperature electric furnace. The use of the solid phase method has the advantage that the phosphor can be more conveniently synthesized than the gas phase method or the liquid phase method, but there is a high possibility that fluoride phosphors of an unwanted composition are synthesized by fluorine reacting with other elements during the reaction. The solid phase method is convenient in terms of method but has a disadvantage in that it is not easy to synthesize a fluoride-based phosphor having a desired composition.
이에 반하여, 액상법은 불화물을 용액 상태로 전환시켜 반응시키므로 고상법에 비해 원하는 조성의 형광체를 제조하는 것이 가능하다는 장점이 있다. 액상법에서는 불화물 전구체를 증류수나 불산(HF)에 녹인 후 각 용액의 용해도를 이용하여 침전시켜 불화물 형광체를 합성하는 일명, 침전법이 가장 널리 이용되고 있다. 그러나 침전법을 이용하여 불화물계 형광체를 대량으로 합성하기 위해서는 극복해야할 문제점들이 다수 존재한다. 그 대표적인 문제점으로서, 반응물로 사용되는 불화물이 대량화됨에 따라 용제로 사용되는 불산(HF)의 양을 늘려야 하는데, 불산은 취급시 안전이 유의되는 물질이므로 침전용 용제로 사용하기에는 한계가 있다. 또한 대량화를 위해서는 하나의 배치에서 합성되는 양이 커짐으로써 2차적인 처리 과정 또한 큰 규모의 장치를 꾸며야하는 단점이 있다. On the other hand, the liquid phase method has an advantage that it is possible to produce a phosphor having a desired composition compared to the solid phase method because the fluoride is converted to a solution state and reacted. In the liquid phase method, a so-called precipitation method in which fluoride precursors are dissolved in distilled water or hydrofluoric acid (HF) and then precipitated using solubility of each solution to synthesize fluoride phosphors is most widely used. However, there are many problems to overcome in order to synthesize a large amount of fluoride-based phosphors by precipitation. As a representative problem, the amount of hydrofluoric acid (HF) used as a solvent needs to be increased as the fluoride used as a reactant is massed. However, hydrofluoric acid is limited to be used as a precipitation solvent because it is a material with significant safety in handling. In addition, in order to mass-produce, the amount synthesized in one batch is increased, so that the secondary treatment process also requires a large-scale device.
따라서 원료취급이 용이하지 않은 금속불화물계 형광체를 보다 안전하게 그리고 대량화가 가능하도록 하는 새로운 합성방법의 개발이 요구된다.Therefore, there is a need for the development of a new synthetic method to enable safer and more bulky metal fluoride-based phosphors that are not easy to handle raw materials.
본 발명은 고상법과 배치 타입의 액상법이 가지는 문제점을 동시에 해결하고, 금속불화물계 형광체의 대량 생산이 가능하도록 하는 새로운 합성방법을 제공하는 것을 목적으로 한다. An object of the present invention is to solve the problems of the solid phase method and the liquid phase method of the batch type at the same time, and to provide a new synthesis method to enable mass production of metal fluoride-based phosphors.
즉, 본 발명에서는 액상법을 기반으로 하여 반응물을 용액으로 제조하여 반응기 내부로 지속적으로 투입, 혼합 및 합성, 그리고 합성된 형광체의 배출공정을 연속적으로 진행하는 금속불화물계 형광체의 연속 제조방법을 제공한다.That is, the present invention provides a method for continuously producing a metal fluoride-based phosphor that continuously reacts, prepares, mixes, synthesizes, and discharges the synthesized phosphors by continuously preparing a reactant as a solution based on a liquid phase method. .
상기한 과제 해결을 위하여, 본 발명은 액상법에 의해 금속불화물계 형광체를 연속적으로 제조하는 방법으로,In order to solve the above problems, the present invention is a method for continuously producing a metal fluoride-based phosphor by the liquid phase method,
(1단계) 금속불화물계 형광체 합성에 사용되는 금속 전구체를 증류수 또는 불산에 혼합하여 용해 또는 슬러리 상태의 반응물을 제조하는 1단계;(Step 1) Step 1 to prepare a reactant in the dissolved or slurry state by mixing the metal precursor used for the synthesis of metal fluoride-based phosphor in distilled water or hydrofluoric acid;
(2단계) 반응물을 정량 펌프를 이용하여 반응기의 일측에 형성된 투입구를 통해 반응기 내부로 연속 투입시키는 2단계;(Step 2) step 2 of continuously introducing the reactants into the reactor through an inlet formed on one side of the reactor using a metering pump;
(3단계) 반응기 내부에는 반응기 내벽과 일정한 간격을 두고 회전하는 원통형 교반기가 설치되어 있고, 상기 원통형 교반기가 10 ~ 1500 rpm의 속도범위에서 일정 속도로 회전하는 동안에 반응기 내부로 투입된 반응물은 유체흐름으로 생성된 와류(VORTEX)에 의해 혼합 및 반응하여 금속불화물계 형광체를 합성하는 3단계;(Step 3) The inside of the reactor is equipped with a cylindrical stirrer to rotate at regular intervals with the inner wall of the reactor, the reactant introduced into the reactor while the cylindrical stirrer rotates at a constant speed in the speed range of 10 ~ 1500 rpm is a fluid flow Mixing and reacting the resulting vortex (VORTEX) to synthesize metal fluoride-based phosphors;
(4단계) 합성된 금속불화물계 형광체를 반응물의 유체흐름에 따라 반응기의 타측에 형성된 배출구를 향해 이동시켜 배출시키는 4단계; 및(4 steps) 4 steps of discharging the synthesized metal fluoride-based phosphor toward the outlet formed on the other side of the reactor according to the fluid flow of the reactant; And
(5단계) 배출된 형광체를 세척 및 건조하여 형광체 분말을 얻는 5단계; 를 포함하고,(5 steps) 5 steps of obtaining the phosphor powder by washing and drying the discharged phosphor; Including,
상기 반응물의 반응기 내 투입, 반응물의 혼합 및 반응에 의한 형광체의 합성, 반응기로부터 합성된 형광체의 배출이 이루어지는 상기 2단계, 3단계 및 4단계 공정이 연속공정으로 진행되는 금속불화물계 형광체의 연속 제조방법을 그 특징으로 한다.Continuous preparation of the metal fluoride-based phosphor in which the two, three, and four step processes in which the reactants are introduced into the reactor, the reactants are mixed and reacted with the synthesized phosphor, and the phosphors are discharged from the reactor are performed in a continuous process. The method is characterized by that.
본 발명의 연속 제조방법은 일반적인 고상법과 배치(Bach) 타입의 액상법이 가지는 문제점을 동시 해소시킬 수 있다. 특히, 본 발명은 액상법에 기반을 두고는 있지만 배치 타입의 액상법이 가지는 합성 한계를 극복하고, 연속 공정을 도입함에 따라 불화물 형광체를 사용자가 원하는 만큼의 대량화를 할 수 있다.The continuous manufacturing method of the present invention can solve the problems of the general solid-state method and the liquid phase method of the batch (Bach) type at the same time. In particular, the present invention is based on the liquid phase method, but overcomes the synthetic limitations of the batch type liquid phase method, and by introducing a continuous process, it is possible to massify the fluoride phosphor as desired by the user.
또한 본 발명의 연속 제조방법에 의하면 크지 않은 반응기 공간 내에서 소량의 반응물을 투입하므로 보다 안전하게 금속불화물계 형광체를 합성하는 것이 가능하고, 또한 좁은 반응기 내에서 연속공정을 통해 분당 1 ~ 50 g까지 생산이 가능하므로 금속불화물계 형광체의 대량 생산도 가능하다는 장점이 있다.In addition, according to the continuous production method of the present invention, since a small amount of the reactant is added in a small reactor space, it is possible to safely synthesize the metal fluoride-based phosphor, and also produce up to 1 to 50 g per minute through a continuous process in a narrow reactor. Since this is possible, mass production of metal fluoride-based phosphors is also possible.
도 1은 본 발명에 따른 연속 제조방법에 이용되는 반응장치의 구성도이다. 1 is a block diagram of a reaction apparatus used in the continuous production method according to the present invention.
도 2는 도 1의 반응장치를 포함하는 금속불화물계 형광체의 연속 제조공정의 전체 구성도이다. FIG. 2 is an overall configuration diagram of a continuous manufacturing process of a metal fluoride phosphor including the reactor of FIG. 1.
도 3은 교반속도에 따라 제조된 금속불화물계 형광체의 입자 크기 및 모양을 보여주는 전자 주사 현미경 사진이다.Figure 3 is an electron scanning micrograph showing the particle size and shape of the metal fluoride-based phosphor prepared according to the stirring speed.
도 4는 반응물의 투입속도에 따라 제조된 금속불화물계 형광체의 입자 크기 및 모양을 보여주는 전자 주사 현미경 사진이다.Figure 4 is an electron scanning micrograph showing the particle size and shape of the metal fluoride-based phosphor prepared according to the loading rate of the reactants.
도 5는 연속 제조방법으로 제조한 K2SiF6:Mn4 + 및 K2TiF6:Mn4 + 형광체의 발광 스펙트럼이다.5 is an emission spectrum of K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors prepared by a continuous manufacturing method.
도 6은 연속 제조방법으로 제조한 K2SiF6:Mn4 + 및 K2TiF6:Mn4 + 형광체의 X-선 분말 회절 스펙트럼이다.6 is an X-ray powder diffraction spectrum of K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors prepared by a continuous manufacturing method.
도 7은 연속 제조방법으로 제조한 KMgF3:Eu2 + 및 KLaF4:Yb3 +,Tb3 + 형광체의 발광 스펙트럼이다.7 is an emission spectrum of KMgF 3 : Eu 2 + and KLaF 4 : Yb 3 + and Tb 3 + phosphors prepared by a continuous production method.
이와 같은 본 발명을 더욱 상세히 설명하면 하기와 같다.The present invention will be described in more detail as follows.
본 발명에 따른 금속불화물계 형광체의 연속 제조방법에 의하면, 금속불화물계 형광체 합성에 사용되는 금속 전구체를 용해 또는 슬러리화하여 제조된 반응물을 반응기의 투입구로 투입하고, 반응물의 유체흐름에 의해 생성된 와류(VORTEX)에 의해 반응물을 혼합하고 형광체 합성반응을 수행한 후에, 합성된 형광체는 반응물의 유체흐름에 따라 배출되도록 하는, 투입, 혼합 및 합성, 배출이 연속공정으로 진행된다.According to the continuous manufacturing method of the metal fluoride-based phosphor according to the present invention, a reactant prepared by dissolving or slurrying a metal precursor used for synthesizing the metal fluoride-based phosphor is introduced into the inlet of the reactor, and is produced by the fluid flow of the reactant. After mixing the reactants by VORTEX and carrying out phosphor synthesis reaction, the synthesized phosphor is discharged according to the fluid flow of the reactants, and the addition, mixing, synthesis, and discharge are performed in a continuous process.
즉, 본 발명의 연속 제조방법에 의하면 전구체 화합물을 증류수 또는 불산에 용해 또는 슬러리화하여 반응물로 사용하는 액상법을 기반으로 하고 있기 때문에 원하는 조성의 금속불화물계 형광체를 제조할 수 있다. 또한, 본 발명에서는 합성된 형광체를 반응기내에 형성된 유체흐름에 따라 반응기 밖으로 연속적으로 배출시켜 간단한 여과를 통해 분리 정제하며, 형광체를 고체화하기 위한 침전 공정이 생략되어 있으므로 소형의 반응기를 사용하여 연속공정에 의해 형광체를 대량 생산하는 것이 가능하다. 더욱이 형광체의 고체화를 위해 실시하는 침전법의 경우는 불산(HF)을 양용매로서 대량으로 사용하지만, 본 발명에서는 불산(HF)을 전구체 화합물을 용해 또는 슬러리화할 때만 사용하므로, 기존의 방법에 대비하여 환경친화적이라 할 수 있다.That is, according to the continuous production method of the present invention, since the precursor compound is dissolved or slurried in distilled water or hydrofluoric acid and used as a reactant, a metal fluoride phosphor having a desired composition can be prepared. In the present invention, the synthesized phosphor is continuously discharged out of the reactor according to the fluid flow formed in the reactor and separated and purified through simple filtration, and the precipitation process for solidifying the phosphor is omitted. It is possible to mass-produce a phosphor by this. Furthermore, in the case of the precipitation method for solidifying phosphors, hydrofluoric acid (HF) is used in a large amount as a good solvent, but in the present invention, hydrofluoric acid (HF) is used only when dissolving or slurrying a precursor compound. It can be called environmentally friendly.
또한, 본 발명은 반응기로 투입되는 반응물의 유체 흐름을 통해 혼합 및 합성반응을 수행하고 그리고 생성된 형광체를 배출구쪽으로 운반하는 과정을 연속적으로 수행하는 것이 가능하다. 구체적으로 설명하면, 반응기 내부의 원통형 교반기의 회전 방향을 따라서 반응물은 그 흐름을 가지며, 반응기와 교반기 사이에서 혼합되는 현상이 발생하게 된다. 반응물은 교반기에 의해 반응기 내부 벽 방향으로 나가려는 원심력이 생겨나고, 반응기 내부로 투입되는 또 다른 반응물에 의해 상기 원심력의 수직방향으로 힘을 받게 된다. 이러한 영향으로 내부 반응물 유체는 서로 다른 고리쌍 형태의 와류를 형성하게 되어 혼합 및 합성 반응에 영향을 끼치게 된다. 이러한 반응물의 흐름 조절을 통해 반응속도를 제어하여 형광체의 생성속도까지도 제어할 수 있다. In addition, the present invention is capable of carrying out the process of mixing and synthesizing the reaction through the fluid flow of the reactants introduced into the reactor and carrying the resulting phosphor toward the outlet. Specifically, the reactants have a flow along the rotation direction of the cylindrical stirrer inside the reactor, and the phenomenon of mixing between the reactor and the stirrer occurs. The reactant generates a centrifugal force to go toward the inner wall of the reactor by the stirrer and is forced in the vertical direction of the centrifugal force by another reactant introduced into the reactor. This effect causes the internal reactant fluid to form different ring pair vortices, which affects the mixing and synthesis reactions. The reaction rate can be controlled by controlling the flow of the reactants to control the production rate of the phosphor.
또한, 반응기 내의 유체 흐름은 반응물의 투입속도 및/또는 교반속도 조절에 의해 제어가 가능하다. 100 mL 용량의 반응기를 기준으로 할 때 반응물의 투입속도는 1 ~ 50 mL/min 범위 내에서 조절이 가능하고, 정량펌프를 설치하여 투입속도를 정량적으로 제어하는 것도 가능하다. 또한, 반응기 내에 고정식 와류기 또는 기계적 교반기를 설치하게 되면 반응속도가 더욱 증가되어 형광체의 합성량도 훨씬 증가될 수 있다. 교반속도는 대략 10 ~ 1500 rpm 범위가 바람직할 수 있다.In addition, the fluid flow in the reactor can be controlled by adjusting the input speed and / or stirring speed of the reactants. Based on the reactor of 100 mL capacity, the reaction rate of the reactants can be controlled within the range of 1 ~ 50 mL / min, it is also possible to quantitatively control the input rate by installing a metering pump. In addition, if a fixed vortexer or a mechanical stirrer is installed in the reactor, the reaction rate may be further increased, and thus the amount of phosphor synthesized may be further increased. Stirring speeds may preferably range from approximately 10 to 1500 rpm.
본 발명에 따르면 100 mL 용량의 반응기를 사용하여 분당 10 mL/min의 투입속도로 반응물을 투입하였을 때, 금속불화물계 형광체는 대략 1분당 5 g/min 생성되므로 1일당 14 kg/day을 합성할 수 있다. 일반적인 고상법을 이용한 형광체의 합성의 경우 전기로 1기(용량 20 L)에서 1일당 1 kg/day을 합성하는 것과 비교하였을 때, 본 발명의 연속 제조방법은 전기로 1기의 용량으로 14배 이상의 합성 성능을 가진다. According to the present invention, when a reactant was added at a rate of 10 mL / min per minute using a 100 mL reactor, the metal fluoride phosphor was generated at about 5 g / min per minute, thus synthesizing 14 kg / day per day. Can be. In the case of the synthesis of the phosphor using a general solid-state method, compared with the synthesis of 1 kg / day per day in one electric furnace (capacity 20 L), the continuous manufacturing method of the present invention is 14 times the capacity of one electric furnace It has the above synthetic performance.
또한, 본 발명에 따른 연속 제조방법은 반응물질의 투입속도와 교반속도를 조절하여 합성되는 형광체 입자의 크기와 모양을 제어하는 것도 가능하다. 즉, 반응물의 투입속도를 1 ~ 50 mL/min 범위 (용량 100 mL 반응기 기준)에서 변화를 주거나, 교반속도를 10 ~ 1500 rpm 으로 조절하거나, 투입속도와 교반속도를 동시에 조절하여 합성되는 금속불화물계 형광체의 크기 및 모양을 제어할 수 있다. 본 발명에서 합성하고자 하는 금속불화물계 형광체의 크기는 대략 10 ~ 100 ㎛ 범위일 수 있다. In addition, the continuous production method according to the present invention can also control the size and shape of the phosphor particles synthesized by adjusting the input speed and the stirring speed of the reactant. That is, the metal fluoride synthesized by varying the input speed of the reactant in the range of 1 to 50 mL / min (based on a capacity of 100 mL reactor), adjusting the stirring speed to 10 to 1500 rpm, or simultaneously controlling the input speed and the stirring speed. The size and shape of the system phosphor can be controlled. The size of the metal fluoride-based phosphor to be synthesized in the present invention may range from about 10 to 100 μm.
본 발명에 따른 연속 제조방법에 의하면, 반응물의 투입속도가 빨라질수록 크기가 작고 균일한 형광체 입자가 합성되고, 반대로 반응물의 투입속도가 느려질수록 크기가 큰 형광체 입자가 합성된다. 두 가지 이상의 반응물이 반응기내에 투입되어 충분한 양이 반응하였을 때 충분한 시드(seed)가 형성되면서 작고 균일한 형광체 입자가 합성되지만, 반응물의 투입 양이 충분하지 않게 되면 소량의 시드에 지속적으로 결정 성장이 이루어져 입자의 크기가 커지게 된다. 즉, 반응물의 투입속도를 일정하게 유지하는 상태에서 교반속도를 빠르게 할수록 시드(seed) 생성의 기회가 줄어들어 이미 형성된 형광체 입자를 크게 성장시킬 수 있다. 또한, 반응물의 투입속도와 교반속도의 조절을 통해서 형성되는 형광체 입자의 모양을 육면체, 십사면체 또는 무정형으로 조절하는 것도 가능할 수 있다.According to the continuous production method according to the present invention, the smaller the size and uniform phosphor particles are synthesized as the reaction rate of the reactant is faster, and the larger phosphor particles are synthesized as the reaction rate of the reactant is slower. When two or more reactants are introduced into the reactor and a sufficient amount is reacted, sufficient seeds are formed to synthesize small and uniform phosphor particles.However, when the amount of reactant is not sufficient, crystal growth is continuously continued in a small amount of seeds. The particle size is increased. That is, as the stirring speed is increased while maintaining the reaction rate of the reactant at a constant rate, the chance of seed generation is reduced, and thus, the phosphor particles already formed may be greatly grown. In addition, it may be possible to adjust the shape of the phosphor particles formed by controlling the input speed and the stirring speed of the reactants to be hexahedron, tetrahedron or amorphous.
본 발명에 따른 금속불화물계 형광체의 연속 제조방법은 구체적으로,Specifically, the method of continuously manufacturing the metal fluoride phosphor according to the present invention,
금속불화물계 형광체 합성에 사용되는 금속 전구체를 증류수 또는 불산에 혼합하여 용해 또는 슬러리 상태의 반응물을 제조하는 1단계;Mixing the metal precursor used for synthesizing the metal fluoride phosphor with distilled water or hydrofluoric acid to prepare a reactant in a dissolved or slurry state;
반응물을 정량 펌프를 이용하여 반응기의 일측에 형성된 투입구를 통해 반응기 내부로 연속 투입시키는 2단계;Continuously feeding the reactants into the reactor through an inlet formed on one side of the reactor using a metering pump;
반응기 내부로 투입된 반응물은 유체흐름으로 생성된 와류(VORTEX)에 의해 혼합 및 반응하여 금속불화물계 형광체를 합성하는 3단계;The reactants introduced into the reactor are mixed and reacted by VORTEX generated by the fluid flow to synthesize metal fluoride-based phosphors;
합성된 금속불화물계 형광체를 반응물의 유체흐름에 따라 반응기의 타측에 형성된 배출구를 향해 이동시켜 배출시키는 4단계; 및4 steps of discharging the synthesized metal fluoride-based phosphor toward the discharge port formed on the other side of the reactor according to the flow of the reactant; And
배출된 형광체를 세척 및 건조하여 형광체 분말을 얻는 5단계; 를 포함한다.Washing and drying the discharged phosphor to obtain phosphor powder; It includes.
또한, 본 발명에 따른 연속 제조방법을 수행하여 제조될 수 있는 금속불화물계 형광체는 하기 화학식 1로 표시되는 조성식을 가질 수 있다.In addition, the metal fluoride-based phosphor which may be prepared by performing the continuous manufacturing method according to the present invention may have a composition formula represented by the following formula (1).
[화학식 1][Formula 1]
AaMmFf:Rr A a M m F f : R r
(상기 화학식 1에서, A는 Li, Na, K, Rb, Cs 및 이들의 조합으로부터 선택된 알칼리금속원소이고; M은 Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb, Ta, Bi, Gd 및 이들의 조합으로부터 선택된 금속원소이고; R은 활성제로 +2, +3, +4의 산화수를 갖는 전이금속 또는 희토류 금속이고; 아래첨자 a, b, f 및 r은 각 원소의 개수를 나타내는 것으로 0≤a≤3, 0≤b≤2, 0<f≤11, 0<r<2 이고, 단 a와 b가 동시에 0이 될 수 없다) (In Formula 1, A is an alkali metal element selected from Li, Na, K, Rb, Cs and combinations thereof; M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb Is a metal element selected from Ta, Bi, Gd and combinations thereof; R is a transition metal or rare earth metal having an oxidation number of +2, +3, +4 as an activator; and the subscripts a, b, f and r are each The number of elements, 0≤a≤3, 0≤b≤2, 0 <f≤11, 0 <r <2, provided that a and b cannot be 0 at the same time)
상기 화학식 1의 조성식을 가지는 금속불화물계 형광체 제조에 사용되는 전구체 화합물로서, 금속 A가 유래되는 전구체 화합물은 AF, AHF2, A2O, A2CO3, Ax[MFy] 및 Ax[MFy]:R로부터 선택된 1종 이상의 화합물이 채택될 수 있다. 금속 M이 유래되는 전구체 화합물은 Hx[MFy], Ax[MFy] 및 Ax[MFy]:R로부터 선택된 1종 이상의 화합물이 채택될 수 있다. 금속 R이 유래되는 전구체 화합물은 Ax[MFy]:R로부터 선택된 1종 이상의 화합물이 채택될 수 있다. 상기한 전구체 화합물의 정의에 사용된 A, M 및 R은 각각 상기 화학식 1에서 정의한 바와 같고, x는 MFy 이온의 전하로부터 결정되는 절대값이고, y는 5, 6 또는 7의 정수일 수 있다.As a precursor compound used to prepare a metal fluoride-based phosphor having a compositional formula of Formula 1, the precursor compound from which metal A is derived may be AF, AHF 2 , A 2 O, A 2 CO 3 , A x [MF y ], and A x One or more compounds selected from [MF y ]: R may be adopted. As the precursor compound from which the metal M is derived, one or more compounds selected from H x [MF y ], A x [MF y ], and A x [MF y ]: R may be adopted. As the precursor compound from which the metal R is derived, one or more compounds selected from A x [MF y ]: R may be adopted. A, M and R used in the definition of the precursor compound are as defined in Formula 1, respectively, x is an absolute value determined from the charge of the MF y ion, y may be an integer of 5, 6 or 7.
또한, 도 1에는 본 발명에 적용될 수 있는 반응장치에 대한 일 구현예를 예시한 것이며, 본 발명이 이에 한정되는 것은 아니다.In addition, Figure 1 illustrates an embodiment of a reaction apparatus that can be applied to the present invention, the present invention is not limited thereto.
도 1에 의하면, 반응기(10)는 용액 또는 슬러리 상태로 제조된 반응물이 투입되는 투입구(20a, 20b), 합성된 형광체를 반응물의 유체흐름에 따라 반응기 밖으로 배출하는 배출구(30)가 구비되어 있다. 또한, 반응기(10) 내부에는 반응기 내벽과 일정한 간격을 두고 회전하는 원통형 교반기가 설치되어 있다. 상기 원통형 교반기가 10 ~ 1500 rpm의 속도범위에서 일정 속도로 회전하게 되면 교반기에 의해 반응기 벽으로 발생하는 원심력과 그와 수직인 방향으로 유체가 이동하는 힘에 의해 생성된 와류(VORTEX)에 의해 반응물이 혼합 및 반응하게 된다. Referring to FIG. 1, the reactor 10 is provided with inlets 20a and 20b into which a reactant prepared in a solution or slurry state is introduced, and an outlet 30 for discharging the synthesized phosphor out of the reactor according to the fluid flow of the reactant. . In addition, the reactor 10 is provided with a cylindrical stirrer that rotates at regular intervals with the inner wall of the reactor. When the cylindrical stirrer rotates at a constant speed in a speed range of 10 to 1500 rpm, the reactant is caused by the vortex generated by the centrifugal force generated by the stirrer to the reactor wall and the force of moving the fluid in a direction perpendicular thereto. This mixes and reacts.
본 발명에서 사용되는 전구체 화합물이 불화물인 점을 감안할 때, 반응기 또는 주변 부속품은 불산에 의한 오염 및 파손을 방지 위해 내산성 물질로 코팅되어 있거나 또는 내산성 재질로 제작되는 것이 좋다.In view of the fact that the precursor compound used in the present invention is a fluoride, the reactor or surrounding accessories may be coated with an acid resistant material or made of an acid resistant material to prevent contamination and breakage by hydrofluoric acid.
또한, 반응기(10)에는 투입구(20)와 배출구(30)가 구비되어 있는데, 투입구(20)와 배출구(30)는 각각 1개씩 또는 2개 이상 구비될 수 있고, 또한 투입구(20)와 배출구(30)의 위치도 임의로 조절하는 것도 가능하다. 즉, 형광체의 합성에 사용되는 전구체 화합물의 종류별로 구분하여 2개 이상의 투입구를 통해 반응물을 나누어 투입하면 반응 양상을 보다 용이하게 조절할 수 있다. 또한, 투입구(20)와 배출구(30)의 개수를 임의로 조절하여 반응기 내부에 형성되는 유체의 흐름을 조절할 수도 있다. 그리고 복수개의 투입구(20)를 구비함에 있어 투입구(20)의 위치를 반응기의 하부와 중간부에 각각 별도로 두어 반응물이 시간적 차이를 두고 반응하도록 조절할 수도 있다. 상황에 따라서는 투입구(20)와 배출구(30)를 연결하여 지속적인 입자성장 등이 가능하도록 할 수도 있다. 두 개 이상의 투입구(20)로 투입된 반응물은 반응기 내에서 만나 혼합과 동시에 금속불화물계 형광체를 합성하게 되고, 생성된 형광체는 상승하게 된다. 그리고, 상승된 형광체는 유체의 흐름에 따라 배출구(30)로 배출되게 된다. In addition, the reactor 10 is provided with an inlet 20 and an outlet 30, the inlet 20 and the outlet 30 may be provided with one or two or more, respectively, and also the inlet 20 and outlet The position of 30 can also be adjusted arbitrarily. That is, by dividing the reactants through two or more inlets by dividing by the type of precursor compound used for the synthesis of the phosphor, it is possible to more easily control the reaction pattern. In addition, the number of inlets 20 and outlets 30 may be arbitrarily adjusted to control the flow of fluid formed in the reactor. In addition, in providing a plurality of inlets 20, the positions of the inlets 20 may be separately placed at the lower and middle portions of the reactor so that the reactants react with time difference. Depending on the situation, the inlet 20 and the outlet 30 may be connected to enable continuous particle growth and the like. The reactants introduced into the two or more inlets 20 are met in the reactor to mix and simultaneously synthesize a metal fluoride-based phosphor, the resulting phosphor is raised. Then, the raised phosphor is discharged to the discharge port 30 in accordance with the flow of the fluid.
또한, 반응기(10)를 설치함에 있어서는 반응 양상에 따라 지면을 기준으로 수직, 수평 또는 일정한 기울기를 갖도록 설치될 수도 있다.In addition, in installing the reactor 10 may be installed to have a vertical, horizontal or constant inclination relative to the ground depending on the reaction pattern.
또한, 반응기(10)에는 히터나 열교환기와 같은 온도 제어 장치(13)가 부착되어 있어 반응물의 온도를 조절할 수도 있다. 또한, 반응기의 외부에는 열교환 매체의 순환이 가능한 온도 제어 재킷(12)을 갖추어서, 반응물의 온도를 조절할 수도 있다. 또한, 반응물질 저장조에 온도 제어 장치(13)를 부착하여 반응물의 온도를 미리 조절하여 반응기(3)로 투입함으로써 반응 용액의 온도를 일정하게 유지할 수 있도록 설비할 수 있다.In addition, the reactor 10 is attached to a temperature control device 13 such as a heater or a heat exchanger to adjust the temperature of the reactants. In addition, a temperature control jacket 12 capable of circulating the heat exchange medium may be provided outside the reactor to control the temperature of the reactants. In addition, the temperature control device 13 may be attached to the reactant reservoir to adjust the temperature of the reactant in advance, and may be introduced into the reactor 3 so that the temperature of the reaction solution may be kept constant.
또한, 반응기(10) 내부에는 와류(VORTEX)의 세기 및 유체의 흐름을 제어할 수 있도록 고정식 와류기 또는 기계적 교반기를 추가로 설치할 수도 있다. 본 발명은 반응기의 투입구(20a, 20b)를 통해 유입되는 용액 또는 슬러리상의 반응물에 의해 와류(VORTEX)가 형성되고, 이를 이용하여 반응물을 혼합 및 합성반응을 진행하고, 이러한 유체의 흐름을 이용하여 제조된 형광체를 배출구(30) 쪽으로 운반하여 반응기 밖으로 배출하도록 한다. 이와 더불어 와류기 또는 교반기를 반응기 내부에 설치된다면, 보다 용이하게 와류의 세기 조절이 가능하고 이에 의해 반응속도를 조절할 수 있고, 그리고 유체 흐름 방향을 조절하여 제조된 형광체를 배출구(30) 쪽으로 용이하게 유도하여 배출할 수 있다.In addition, a fixed vortex or mechanical stirrer may be further installed inside the reactor 10 to control the strength of the vortex and the flow of the fluid. According to the present invention, a vortex (VORTEX) is formed by a reactant in a solution or a slurry flowing through the inlets 20a and 20b of the reactor, and the reactants are mixed and synthesized using the same, and the flow of the fluid is used. The manufactured phosphor is transported toward the outlet 30 to be discharged out of the reactor. In addition, if the vortex or agitator is installed inside the reactor, it is possible to more easily control the strength of the vortex and thereby to control the reaction rate, and the phosphor prepared by adjusting the direction of the fluid flow to the outlet 30 easily Can be induced and discharged.
상기 반응기(10)에 설치되는 기계적 교반기(11)는 원통형 모양을 가지고 있다. 하지만 교반기의 모양에 의해 본 발명이 제한되는 것은 아니며, 목적에 따라 적합한 교반기를 선택할 수 있다.The mechanical stirrer 11 installed in the reactor 10 has a cylindrical shape. However, the present invention is not limited by the shape of the stirrer, and a suitable stirrer can be selected according to the purpose.
본 발명은 하기의 실시예를 통하여 실제로 적용 가능함을 증명하고 해당 기술 분야의 숙련된 작업자라면 상기 기술한 내용을 토대로 다양한 변인의 변화를 통해 본 발명을 다양하게 변경 및 수정할 수 있다. The present invention proves that the present invention is actually applicable through the following examples, and those skilled in the art may variously change and modify the present invention through various variables based on the above description.
[실시예]EXAMPLE
대표실시예. 형광체의 연속 제조Representative Example. Continuous Preparation of Phosphors
도 2에 나타낸 전체 반응장치의 구성도를 중심으로 형광체의 제조방법을 설명하면 하기와 같다.Referring to the configuration of the overall reactor shown in Figure 2 will be described a method for producing a phosphor.
반응기(10)는 100 mL의 용량의 것으로, 불산에 잘 견딜 수 있는 테프론 또는 내산성 고분자 재질로 이루어 있으며, 불산이 유출되지 않도록 정교하게 실링되어 있으며, 주변부속품은 내산성 물질로 코팅되어 있다. 반응기(10)에는 2개의 원료 투입구(20a, 20b)와 1개의 형광체 배출구(30)가 구비되어 있다. 그리고, 반응기(10)의 내부에는 원통형 교반기가 설치되어 있어 반응기로 투입되는 반응물을 일정한 속도로 교반하도록 하였다. The reactor 10 has a capacity of 100 mL, and is made of Teflon or acid resistant polymer material that can withstand hydrofluoric acid, and is carefully sealed to prevent hydrofluoric acid from flowing out. The peripheral parts are coated with acid resistant material. The reactor 10 is provided with two raw material inlets 20a and 20b and one phosphor outlet 30. In addition, a cylindrical stirrer is installed inside the reactor 10 to stir the reactants introduced into the reactor at a constant speed.
반응원료로 사용되는 전구체 화합물은 증류수 또는 불산에 용해 또는 슬러리화하여 반응물질 저장조(21a, 21b)에 보관하고, 정량펌프(22a, 22b)를 이용하여 투입구(20a, 20b)를 통해 일정한 투입속도로 반응물을 투입하였다. 2개의 투입구를 통해 투입된 반응물은 반응기 내에서 와류를 형성하고, 형성된 와류에 의해 혼합 및 형광체 합성반응을 진행하게 되고, 합성된 형광체는 유체의 흐름방향에 따라 반응기의 상부로 상승하여 배출구(30)로 배출된다. 반응기 밖으로 배출된 형광체는 합성물질 저장조(31)에 저장된다. The precursor compound used as the reaction raw material is dissolved or slurried in distilled water or hydrofluoric acid and stored in the reaction material storage tanks 21a and 21b, and a constant input speed through the inlets 20a and 20b using the metering pumps 22a and 22b. The reaction was poured into. The reactants introduced through the two inlets form a vortex in the reactor and proceed with mixing and phosphor synthesis reaction by the vortices formed, and the synthesized phosphor rises to the top of the reactor in accordance with the flow direction of the fluid outlet 30. To be discharged. Phosphor discharged out of the reactor is stored in the synthetic material reservoir (31).
합성물질 저장조(31)에 보관된 형광체는 여과 및 수세의 후처리과정을 통해 목적하는 금속불화계 형광체를 제조하였다.Phosphors stored in the synthetic material storage tank 31 were prepared through the post-treatment process of filtration and washing with the desired metal fluoride-based phosphor.
이상에서 설명한 형광체의 제조방법은 반응물의 투입, 혼합 및 합성, 배출 공정이 연속적으로 진행된다.In the method of manufacturing the phosphor described above, the process of adding, mixing, synthesizing, and discharging the reactants proceeds continuously.
실시예 1 ~ 13. 연속 제조방법으로 제조된 형광체 입자의 크기와 모양 비교Examples 1 to 13. Size and Shape Comparison of Phosphor Particles Prepared by Continuous Manufacturing Method
상기 대표실시예의 방법으로 금속불화물계 형광체를 연속 제조하였다. K2SiF6:Mn4 + 형광체 제조를 위하여 전구체 화합물로서 KF, K2MnF6, H2SiF6, HF를 준비하였고, 조성비를 고려하여 각각의 전구체 화합물을 칭량하였다. 준비된 KF와 K2MnF6는 불화수소에 1 ~ 5% 농도로 녹여서 반응물질 저장조(21a)에 저장하였고, H2SiF6 용액은 반응물질 저장조(21b)에 저장하였다. 하기 표 1에 나타낸 반응물의 투입속도와 교반기의 교반속도를 유지하면서 반응시켰다. 또한, 반응후에 반응기의 배출구(3)를 통해 배출되는 금속불화물계 형광체는 합성물질 저장조(31)에 저장하고, 후처리 과정으로서 여과한 후에 아세톤, 에탄올으로 세척하고 건조하여, K2SiF6:Mn4 + 형광체를 수득하였다. Metal fluoride phosphors were continuously manufactured by the method of the representative example. K 2 SiF 6 : Mn 4 + KF, K 2 MnF 6 , H 2 SiF 6 , HF were prepared as precursor compounds, and each precursor compound was weighed in consideration of the composition ratio. The prepared KF and K 2 MnF 6 was dissolved in hydrogen fluoride at a concentration of 1 to 5% and stored in the reactant storage tank 21a, and H 2 SiF 6 The solution was stored in the reactant reservoir 21b. The reaction was carried out while maintaining the input speed of the reactants shown in Table 1 and the stirring speed of the stirrer. In addition, the metal fluoride-based phosphor discharged through the outlet 3 of the reactor after the reaction is stored in the synthetic material storage tank 31, filtered as a post-treatment process, washed with acetone, ethanol and dried, K 2 SiF 6 : the Mn 4 + phosphor was obtained.
구 분division 반응물의 투입속도(mL/min)Feed rate of reactant (mL / min) 교반속도(rpm)Stirring Speed (rpm)
실시예 1Example 1 1010 100100
실시예 2Example 2 1010 200200
실시예 3Example 3 1010 300300
실시예 4Example 4 1010 400400
실시예 5Example 5 1010 600600
실시예 6Example 6 1010 800800
실시예 7Example 7 1010 10001000
실시예 8Example 8 1010 12001200
실시예 9Example 9 2.52.5 100100
실시예 10Example 10 55 100100
실시예 11Example 11 1515 100100
실시예 12Example 12 1515 5050
실시예 13Example 13 1515 150150
도 3 및 도 4에는 교반속도 또는 반응물의 투입속도를 변화시켜 제조된 금속불화물계 형광체의 입자 크기 및 모양을 비교한 전자 주사 현미경 사진이 첨부되어 있다. 도 3은 반응물의 투입속도를 10 mL/min으로 일정하게 유지하고, 교반속도를 200, 400, 600, 800, 1,000, 1,200 rpm으로 다르게 유지되는 조건(실시예 2, 4 ~ 8)에서 합성된 형광체의 사진이다. 그리고, 도 4는 교반속도는 100 rpm으로 일정하게 유지하고, 반응물의 투입속도를 2.5, 5. 10, 15 mL/min으로 다르게 유지되는 조건(실시예 1, 9 ~ 11)에서 합성된 형광체의 사진이다.3 and 4 are attached electron scanning micrographs comparing the particle size and shape of the metal fluoride-based phosphor prepared by changing the stirring speed or the reaction rate of the reactant. Figure 3 is synthesized under the conditions (Examples 2, 4 to 8) to keep the input rate of the reactant constant 10 mL / min, the stirring rate is maintained differently at 200, 400, 600, 800, 1,000, 1,200 rpm Picture of phosphor. And, Figure 4 is maintained at a constant stirring speed of 100 rpm, the reaction rate of the reactants synthesized in the conditions (Examples 1, 9 to 11) is maintained differently at 2.5, 5. 10, 15 mL / min It is a photograph.
도 3 및 도 4에 의하면, 합성된 형광체 입자는 반응물의 투입속도 및/또는 교반속도 조절에 의해 크기와 모양이 제어될 수 있음을 알 수 있다.3 and 4, it can be seen that the synthesized phosphor particles can be controlled in size and shape by controlling the input speed and / or the stirring speed of the reactants.
실시예 14 ~ 27. 연속 제조방법으로 제조된 형광체의 구조 및 광학특성 비교Examples 14 to 27. Structure and Optical Properties of Phosphors Prepared by Continuous Production
상기 실시예 1 ~ 13에 따른 연속 제조방법에 의해 형광체를 제조하였으며, 다만 전구체 화합물의 종류 및 조성비를 다르게 변화시켜 하기 표 2에 나타낸 다양한 금속불화물계 형광체를 합성하였다.Phosphors were prepared by the continuous manufacturing method according to Examples 1 to 13, but various metal fluoride-based phosphors shown in Table 2 were synthesized by changing the type and composition ratio of the precursor compounds differently.
합성한 형광체는 발광분석기(PerKin Elmer Photo-Luminescence)를 이용하여 다양한 파장의 여기광을 이용하여 발광특성을 분석하였으며, 그 결과는 하기 표 2에 나타내었다.The synthesized phosphors were analyzed for emission characteristics using excitation light of various wavelengths using a luminescence analyzer (PerKin Elmer Photo-Luminescence), and the results are shown in Table 2 below.
구분division 구조식constitutional formula 여기파장 (nm)Excitation wavelength (nm) 발광중심파장 (nm)Luminous center wavelength (nm)
실시예 12Example 12 K2SiF6:Mn4 + K 2 SiF 6 : Mn 4 + 450450 630630
실시예 14Example 14 K2TiF6:Mn4 + K 2 TiF 6 : Mn 4 + 450450 630630
실시예 15Example 15 Cs2GeF6:Mn4 + Cs 2 GeF 6 : Mn 4 + 450450 630630
실시예 16Example 16 K2GeF6:Mn4 + K 2 GeF 6 : Mn 4 + 450450 630630
실시예 17Example 17 K2TiF6:Mn4 + K 2 TiF 6 : Mn 4 + 450450 630630
실시예 18Example 18 KMgF3:Eu2 + KMgF 3 : Eu 2 + 254254 358358
실시예 19Example 19 BaGdF5:Tb3 + BaGdF 5 : Tb 3 + 365365 543543
실시예 20Example 20 CaF2:Mn2 + CaF 2 : Mn 2 + 365365 495495
실시예 21Example 21 ZnF2:Mn2 + ZnF 2 : Mn 2 + 365365 587587
실시예 22Example 22 AlF3:Fe3 + AlF 3 : Fe 3 + 365365 735735
실시예 23Example 23 Sr2AlF5:Eu2 + Sr 2 AlF 5 : Eu 2 + 254254 360360
실시예 24Example 24 MgF2:Mn2 + MgF 2 : Mn 2 + 400400 590590
실시예 25Example 25 YF3:Yb3 +,Er3 + YF 3 : Yb 3 + , Er 3 + 980980 550, 660550, 660
실시예 26Example 26 LiYF4:Nd3 + LiYF 4 : Nd 3 + 365365 520, 580520, 580
실시예 27Example 27 KLaF4:Yb3 +,Tb3 + KLaF 4 : Yb 3 + , Tb 3 + 980980 545545
상기 표 2로부터 확인되고 있듯이, 본 발명에 따른 연속 제조방법에 의하여 다양한 금속불화물계 형광체를 합성할 수 있고, 또한 합성된 금속불화물계 형광체는 다양한 발광 파장을 가진다. As can be seen from Table 2, various metal fluoride phosphors can be synthesized by the continuous production method according to the present invention, and the synthesized metal fluoride phosphors have various emission wavelengths.
도 5와 도 6에는 상기 실시예 12 및 실시예 14에 따른 연속 제조방법으로 제조한 K2SiF6:Mn4 + 및 K2TiF6:Mn4 + 형광체의 발광 스펙트럼과 X-선 분말 회절 스펙트럼이 각각 첨부되어 있다. 도 5의 발광 스펙트럼은 여기파장 450 nm에서의 발광특성을 나타낸 것으로, K2SiF6:Mn4 + 및 K2TiF6:Mn4 + 형광체는 발광중심파장이 630 nm인 적색 형광체임을 확인할 수 있다. 또한, 도 6의 XRD 스펙트럼을 통해 형광체가 잘 형성되었음을 확인할 수 있다.5 and 6 show emission spectra and X-ray powder diffraction spectra of K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors prepared by the continuous preparation method according to Examples 12 and 14 ; Each is attached. 5 shows emission characteristics at an excitation wavelength of 450 nm. It can be seen that the K 2 SiF 6 : Mn 4 + and K 2 TiF 6 : Mn 4 + phosphors are red phosphors having an emission center wavelength of 630 nm. . In addition, it can be confirmed that the phosphor was well formed through the XRD spectrum of FIG. 6.
도 7에는 상기 실시예 18 및 실시예 27에 따른 연속 제조방법으로 제조한 KMgF3:Eu2 + 및 KLaF4:Yb3+,Tb3+ 형광체의 발광 스펙트럼이 첨부되어 있다. 도 7의 발광 스펙트럼은 여기파장 980 nm에서의 발광특성을 나타낸 것으로, KMgF3:Eu2 + 형광체는 발광중심파장이 358 nm인 UV A 형광체이고, KLaF4:Yb3+,Tb3+ 형광체는 발광중심파장이 545 nm인 녹색 형광체임을 확인할 수 있다.7 is attached the emission spectra of the KMgF 3 : Eu 2 + and KLaF 4 : Yb 3+ and Tb 3+ phosphors prepared by the continuous production method according to Examples 18 and 27. The emission spectrum of FIG. 7 shows emission characteristics at an excitation wavelength of 980 nm. The KMgF 3 : Eu 2 + phosphor is a UV A phosphor having an emission center wavelength of 358 nm, and the KLaF 4 : Yb 3+ and Tb 3+ phosphors are It can be seen that the emission center wavelength is a green phosphor having a wavelength of 545 nm.
[부호의 설명][Description of the code]
10: 반응기10: reactor
11: 교반기 12: 온도 제어 재킷 11: Stirrer 12: Temperature Control Jacket
13: 온도 제어 장치13: temperature control device
20: 투입구20: inlet
20a: 제1 투입구 20b: 제2 투입구20a: first inlet 20b: second inlet
21a: 제1 반응물 저장조 21b: 제2 반응물 저장조 21a: first reactant reservoir 21b: second reactant reservoir
22a: 제1 정량펌프 22b: 제2 정량펌프 22a: first metering pump 22b: second metering pump
30: 배출구 31: 합성물질 저장조 30: outlet 31: synthetic material reservoir

Claims (10)

  1. 액상법에 의해 금속불화물계 형광체를 연속적으로 제조하는 방법으로,In the method for continuously producing a metal fluoride phosphor by the liquid phase method,
    (1단계) 금속불화물계 형광체 합성에 사용되는 금속 전구체를 증류수 또는 불산에 혼합하여 용해 또는 슬러리 상태의 반응물을 제조하는 1단계;(Step 1) Step 1 to prepare a reactant in the dissolved or slurry state by mixing the metal precursor used for the synthesis of metal fluoride-based phosphor in distilled water or hydrofluoric acid;
    (2단계) 반응물을 정량 펌프를 이용하여 반응기의 일측에 형성된 투입구를 통해 반응기 내부로 연속 투입시키는 2단계;(Step 2) step 2 of continuously introducing the reactants into the reactor through an inlet formed on one side of the reactor using a metering pump;
    (3단계) 반응기 내부에는 반응기 내벽과 일정한 간격을 두고 회전하는 원통형 교반기가 설치되어 있고, 상기 원통형 교반기가 10 ~ 1500 rpm의 속도범위에서 일정 속도로 회전하는 동안에 반응기 내부로 투입된 반응물은 유체흐름으로 생성된 와류(VORTEX)에 의해 혼합 및 반응하여 금속불화물계 형광체를 합성하는 3단계;(Step 3) The inside of the reactor is equipped with a cylindrical stirrer to rotate at regular intervals with the inner wall of the reactor, the reactant introduced into the reactor while the cylindrical stirrer rotates at a constant speed in the speed range of 10 ~ 1500 rpm is a fluid flow Mixing and reacting the resulting vortex (VORTEX) to synthesize metal fluoride-based phosphors;
    (4단계) 합성된 금속불화물계 형광체를 반응물의 유체흐름에 따라 반응기의 타측에 형성된 배출구를 향해 이동시켜 배출시키는 4단계; 및(4 steps) 4 steps of discharging the synthesized metal fluoride-based phosphor toward the outlet formed on the other side of the reactor according to the fluid flow of the reactant; And
    (5단계) 배출된 형광체를 세척 및 건조하여 형광체 분말을 얻는 5단계; 를 포함하고,(5 steps) 5 steps of obtaining the phosphor powder by washing and drying the discharged phosphor; Including,
    상기 반응물의 반응기 내 투입, 반응물의 혼합 및 반응에 의한 형광체의 합성, 반응기로부터 합성된 형광체의 배출이 이루어지는 상기 2단계, 3단계 및 4단계 공정이 연속공정으로 진행되는 금속불화물계 형광체의 연속 제조방법.Continuous preparation of the metal fluoride-based phosphor in which the two, three, and four step processes in which the reactants are introduced into the reactor, the reactants are mixed and reacted with the synthesized phosphor, and the phosphors are discharged from the reactor are performed in a continuous process. Way.
  2. 제 1 항에 있어서, The method of claim 1,
    2단계에서 반응기 내부로 투입되는 반응물의 투입속도가 1 ~ 50 mL/min (100 mL 용량의 반응기 기준)인 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.Method of continuously manufacturing a metal fluoride-based phosphor, characterized in that the input rate of the reactant introduced into the reactor in step 2 1 ~ 50 mL / min (based on a reactor of 100 mL capacity).
  3. 제 1 항에 있어서, The method of claim 1,
    상기 반응기 또는 주변 부속품은 불산에 의한 오염 및 파손을 방지 위해 내산성 물질로 코팅되어 있거나 또는 내산성 재질로 제작되어진 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The reactor or peripheral accessory is a continuous manufacturing method of a metal fluoride-based phosphor, characterized in that coated with an acid resistant material or made of an acid resistant material in order to prevent contamination and damage by hydrofluoric acid.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 반응기는 반응물의 종류나 반응 양상 조절을 위해 반응물이 투입되는 투입구와 합성된 형광체가 배출되는 배출구의 개수 또는 위치가 조절되는 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The reactor is a continuous method of producing a metal fluoride-based phosphor, characterized in that the number or location of the inlet for the reactant is injected and the outlet for the synthesized phosphor is discharged to control the type or reaction pattern of the reactant.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 반응기는 수직, 수평 또는 일정한 기울기를 갖도록 설치되는 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The reactor is a continuous method of producing a metal fluoride-based phosphor, characterized in that installed to have a vertical, horizontal or a constant slope.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 반응기에는 히터나 열교환기와 같은 온도 제어 장치가 추가로 부착하여 반응물의 온도를 조절하는 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.And a temperature control device such as a heater or a heat exchanger is further attached to the reactor to control the temperature of the reactant.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 반응기의 외부에는 열교환 매체의 순환이 가능한 온도 제어 재킷이 갖추어져 있는 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The outside of the reactor is a continuous manufacturing method of the metal fluoride-based phosphor, characterized in that the temperature control jacket capable of circulating the heat exchange medium.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 와류(VORTEX)는 반응기 내부에 고정식 와류기 또는 기계적 교반기를 설치하여 속도를 조절하는 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The vortex (VORTEX) is a continuous manufacturing method of a metal fluoride-based phosphor, characterized in that the speed is adjusted by installing a fixed vortex or mechanical stirrer inside the reactor.
  9. 제 1 항에 있어서, The method of claim 1,
    금속불화물계 형광체는 하기 화학식 1의 조성식을 가지는 금속불화물계 형광체의 연속 제조방법. Metal fluoride-based phosphor is a continuous method of producing a metal fluoride-based phosphor having a formula of the formula (1).
    [화학식 1][Formula 1]
    AaMmFf:Rr A a M m F f : R r
    (상기 화학식 1에서, A는 Li, Na, K, Rb, Cs 및 이들의 조합으로부터 선택된 알칼리금속원소이고; M은 Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb, Ta, Bi, Gd 및 이들의 조합으로부터 선택된 금속원소이고; R은 활성제로 +2, +3, +4의 산화수를 갖는 전이금속 또는 희토류 금속이고; 아래첨자 a, b, f 및 r은 각 원소의 개수를 나타내는 것으로 0≤a≤3, 0≤b≤2, 0<f≤11, 0<r<2 이고, 단 a와 b가 동시에 0이 될 수 없다)(In Formula 1, A is an alkali metal element selected from Li, Na, K, Rb, Cs and combinations thereof; M is Si, Ge, Ti, Zr, Al, Ga, In, Sc, Y La, Nb Is a metal element selected from Ta, Bi, Gd and combinations thereof; R is a transition metal or rare earth metal having an oxidation number of +2, +3, +4 as an activator; and the subscripts a, b, f and r are each The number of elements, 0≤a≤3, 0≤b≤2, 0 <f≤11, 0 <r <2, provided that a and b cannot be 0 at the same time)
  10. 제 8 항에 있어서, The method of claim 8,
    금속 A의 전구체는 AF, AHF2, A2O, A2CO3, Ax[MFy] 및 Ax[MFy]:R로부터 선택된 1종 이상이고, 금속 M의 전구체는 Hx[MFy], Ax[MFy] 및 Ax[MFy]:R로부터 선택된 1종 이상이고, 금속 R의 전구체는 Ax[MFy]:R로부터 선택된 1종 이상이고, 이때, A, M 및 R은 상기 화학식 1에서 정의한 바와 같고, x는 MFy 이온의 전하로부터 결정되는 절대값이고, y는 5, 6 또는 7의 정수인 것을 특징으로 하는 금속불화물계 형광체의 연속 제조방법.The precursor of metal A is at least one selected from AF, AHF 2 , A 2 O, A 2 CO 3 , A x [MF y ] and A x [MF y ]: R, and the precursor of metal M is H x [MF at least one selected from y ], A x [MF y ], and A x [MF y ]: R, and the precursor of the metal R is at least one selected from A x [MF y ]: R, wherein A, M And R is as defined in Formula 1, x is an absolute value determined from the charge of MF y ions, y is an integer of 5, 6 or 7.
PCT/KR2016/013472 2015-11-24 2016-11-22 Method for continuously producing metal fluoride-based fluorescent substance WO2017090955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150165092A KR101694256B1 (en) 2015-11-24 2015-11-24 Continuous method of metal fluoride-based phosphors
KR10-2015-0165092 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090955A1 true WO2017090955A1 (en) 2017-06-01

Family

ID=57989707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013472 WO2017090955A1 (en) 2015-11-24 2016-11-22 Method for continuously producing metal fluoride-based fluorescent substance

Country Status (2)

Country Link
KR (1) KR101694256B1 (en)
WO (1) WO2017090955A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326279B1 (en) * 2019-10-25 2021-11-15 한국화학연구원 Selective Fabrication Method of Metal Fluoride-based Phosphors
US20210167257A1 (en) * 2019-11-29 2021-06-03 Lextar Electronics Corporation Light conversion material, producing method thereof, light-emitting device and backlight module employing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329260A (en) * 2000-05-25 2001-11-27 Fuji Photo Film Co Ltd Apparatus and method for producing phosphor precursor crystal
JP2003336044A (en) * 2002-05-23 2003-11-28 Konica Minolta Holdings Inc Apparatus and method for producing inorganic metal oxide phosphor
JP2015084327A (en) * 2006-02-28 2015-04-30 ジーイー ライティング ソリューションズ エルエルシー Red line emitting phosphors for use in light-emitting diode applications
JP2015140424A (en) * 2014-01-30 2015-08-03 信越化学工業株式会社 Method for producing complex fluoride phosphor
KR20150093320A (en) * 2014-02-07 2015-08-18 주식회사 제이오 Co-precipitation reactor comprising Couette-Taylor vortex reactor performing reaction, washing, filtration and drying by one-step process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252613B1 (en) 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors
GB2527007B (en) 2013-03-29 2018-01-10 Mitsubishi Electric Corp Signal processing device for time synchronization control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329260A (en) * 2000-05-25 2001-11-27 Fuji Photo Film Co Ltd Apparatus and method for producing phosphor precursor crystal
JP2003336044A (en) * 2002-05-23 2003-11-28 Konica Minolta Holdings Inc Apparatus and method for producing inorganic metal oxide phosphor
JP2015084327A (en) * 2006-02-28 2015-04-30 ジーイー ライティング ソリューションズ エルエルシー Red line emitting phosphors for use in light-emitting diode applications
JP2015140424A (en) * 2014-01-30 2015-08-03 信越化学工業株式会社 Method for producing complex fluoride phosphor
KR20150093320A (en) * 2014-02-07 2015-08-18 주식회사 제이오 Co-precipitation reactor comprising Couette-Taylor vortex reactor performing reaction, washing, filtration and drying by one-step process

Also Published As

Publication number Publication date
KR101694256B1 (en) 2017-01-23

Similar Documents

Publication Publication Date Title
Yi et al. K 2 NaAlF 6: Mn 4+ red phosphor: room-temperature synthesis and electronic/vibronic structures
CN108192606A (en) Full-inorganic perovskite quantum dot preparation method
CN108219786A (en) A kind of method for preparing perovskite quantum dot at room temperature
TWI417347B (en) Crystalline-type crystalline metamorphic dichlorodione-based pigment, an α-type crystalline metamorphic dichlorodione-based pigment produced by the method, and a coloring composition using the pigment
Zhao et al. Fabrication of assembled-spheres YVO 4:(Ln 3+, Bi 3+) towards optically tunable emission
WO2017090955A1 (en) Method for continuously producing metal fluoride-based fluorescent substance
CN111944525B (en) Zero-dimensional cesium-lead-bromine inorganic perovskite material and preparation method thereof
CN106379932A (en) A method of synthesizing a perovskite CsPbX3 quantum dot at room temperature
US9023241B2 (en) Silicon nitride powder for siliconnitride phosphor, Sr3Al3Si13O2N21 phosphor and β-sialon phosphor both obtained using same, and processes for producing these
CN107760302B (en) Method for rapidly synthesizing full-spectrum perovskite quantum dots through organic-inorganic auxiliary ion exchange
CN114656364B (en) Mn-based organic-inorganic hybrid metal halide luminescent material and preparation method thereof
CN112358870B (en) Lead-free indium-based double perovskite material and preparation method and application thereof
WO2015160160A1 (en) Apparatus and method for continuously preparing silicon nitride with improved particle size uniformity
CN113845142B (en) Cesium lead iodine perovskite nanocrystalline as well as preparation method and application thereof
CN110655655B (en) Cyan fluorescent zinc-organic coordination polymer and preparation method and application thereof
CN105885827B (en) Fluorescent red-orange material zinc coordination polymer [Zn (HL) (HBPEP)]nAnd its synthetic method
CN111270310A (en) Pure inorganic narrow-spectrum blue-violet light emitting two-dimensional perovskite single crystal material and growth method
CN107556998A (en) A kind of preparation method of rare-earth-doped fluoride up-conversion luminescence Nanodispersion
US8357313B2 (en) Luminescent substances
CN100427400C (en) Prepn process of high purity yttrium europium oxide
CN114195656B (en) Large-area high-transmittance metal halide scintillating ceramic and preparation method thereof
CN114605987A (en) Lead-doped zinc-based halide nano luminescent material and preparation method and application thereof
CN1210371C (en) Borate red fluorescent powder for color plasma plate display and its producing method
CN101255337B (en) Preparation method of red-light fluorescent powder for LED or PDP display
CN106588713A (en) Fluorescent metal-organic framework porous material and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868851

Country of ref document: EP

Kind code of ref document: A1