WO2017090871A1 - Axial offset measuring apparatus using parallel beams - Google Patents

Axial offset measuring apparatus using parallel beams Download PDF

Info

Publication number
WO2017090871A1
WO2017090871A1 PCT/KR2016/010068 KR2016010068W WO2017090871A1 WO 2017090871 A1 WO2017090871 A1 WO 2017090871A1 KR 2016010068 W KR2016010068 W KR 2016010068W WO 2017090871 A1 WO2017090871 A1 WO 2017090871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
parallel light
microlens array
pinhole
spots
Prior art date
Application number
PCT/KR2016/010068
Other languages
French (fr)
Korean (ko)
Inventor
이우송
김병창
Original Assignee
주식회사 선진기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선진기술 filed Critical 주식회사 선진기술
Publication of WO2017090871A1 publication Critical patent/WO2017090871A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an axial error measuring apparatus, and more particularly, to quantitatively calculate accurate straightness, flatness, and rotational error of an exercise machine part using parallel light, while dividing the photosensitive image for measuring the error into three or more.
  • the present invention relates to an axial error measuring apparatus according to a new form to more accurately determine the inclination information for each position by providing a spot.
  • a 3D printer, a machine tool, or a three-dimensional measuring instrument is provided with a moving mechanism moving along three orthogonal axes, and a tool, a nozzle, a measuring system, or the like is provided at the end of the moving mechanism, and the movement of the moving mechanism is performed.
  • the position is changed by means of performing each operation (eg, a print job, a workpiece machining job, a three-dimensional measurement job, etc.).
  • the larger the size of the workpiece (or the measuring object) or the table (or frame) for guiding while guiding the movement mechanism the lower the central part is due to the weight of the table, or the error during machining. Considering that the back is present, even if the movement mechanism is precisely operated in the programmed direction and displacement, the error of the operation position due to the above-described error is inevitably generated.
  • a laser interferometer continuously irradiates a laser to a moving exercise device, and at the same time, continuously receives a laser beam reflected from the exercise device, thereby measuring various errors and thereby correcting the error in real time.
  • this type of laser interferometer is not only a very expensive equipment but also used only for calibration and not for real time measurement.
  • the above-described conventional technique is fixed to the parallel light generator at a predetermined position, and the photographing mechanism is installed in the exercise mechanism unit to take a photosensitive image of the reference parallel light irradiated from the parallel light generator and then based on the displacement of the photosensitive image. The error can be confirmed.
  • the present invention has been made to solve the various problems according to the prior art described above, an object of the present invention is to measure such error while quantitatively calculating the correct straightness, flatness and rotational error with respect to the exercise machine using parallel light.
  • the present invention provides an axial error measuring apparatus according to a new form in which a photosensitive image is provided as a spot divided into a plurality of three or more, so that the inclination information for each position can be more accurately determined.
  • Axial error measuring apparatus using the parallel light of the present invention for achieving the above object is a light source unit for irradiating parallel light while fixedly installed at a position capable of irradiating parallel light toward the path of the movement mechanism unit;
  • a microlens array installed in the movement mechanism part installed to be movable and having three or more microlenses and dividing the parallel light emitted from the light source into a plurality of spots;
  • An imaging mechanism unit configured to form a plurality of spots while passing through the microlens array;
  • a controller for checking the displacement according to the arrangement of the spots from the image photographed by the photographing mechanism unit to calculate each operation error of the exercise device unit.
  • the exercise mechanism unit comprises at least two or more exercise mechanisms of the X-axis movement mechanism portion moved to the X-axis, the Y-axis movement mechanism portion moved to the Y-axis, and the Z-axis movement mechanism portion moved to the Z-axis,
  • the microlens array and the photographing mechanism part are respectively provided in each of the exercise mechanism parts.
  • the light source unit may be provided in the same quantity as that of each of the exercise equipment units, and installed to provide parallel light for each of the microlens arrays provided in each of the exercise equipment units.
  • the light source unit may be provided as one and provided to provide parallel light to any one of the exercise device units, and a part of the parallel light irradiated from the light source unit may be separated on the front side of the microlens array provided to the any one of the exercise device units.
  • a half mirror further reflects to the microlens array.
  • the light source unit may include a laser generator providing a laser light source, a pinhole sheet formed at a side of the laser irradiation direction of the laser generator, and having a pinhole through which a laser light source passes, and positioned between the laser generator and the pinhole.
  • a condenser lens for condensing a light source generated from a laser generator to pass through the pinhole, and a laser light source passing through the pinhole at a rear end of the pinhole to form a light source having a Gaussian intensity distribution shape To be characterized in that it comprises a collimating lens (collimating lens).
  • each microlens of the microlens array is arranged to be arranged regularly, having a plurality of columns and a plurality of rows
  • the axial error measuring apparatus using the parallel light divides the laser light source into a plurality of spots rather than a method of measuring the axial error by checking the displacement of one or two light sources, and collectively dividing each of the divided spots.
  • the light source unit of the axial error measuring apparatus using the parallel light of the present invention comprises a pinhole sheet, a condensing lens and a collimating lens to stabilize the optical characteristics of the laser light provided from the laser generator. Therefore, it is possible to generate high quality parallel light, which has the effect of achieving more precise compensation of the axial error.
  • the axial error measuring apparatus using the parallel light of the present invention can provide a parallel light for measuring the straightness, flatness and rotation in a plurality of axial direction through the additional provision of a half mirror, thereby providing a structure Has the effect of achieving the simplification and the simplification of control.
  • FIG. 1 is a state diagram schematically shown to explain an axial error measuring apparatus using parallel light according to an embodiment of the present invention.
  • Figure 2 is a state diagram briefly shown to explain the detailed structure of the light source unit of the axial error measurement apparatus using parallel light according to an embodiment of the present invention
  • Figure 3 is an enlarged view of the main portion briefly shown to explain the installation structure of the microlens array of the axial error measuring apparatus using parallel light according to an embodiment of the present invention
  • Figure 4 is a front view briefly shown to explain the structure of the microlens array of the axial error measuring apparatus using parallel light according to an embodiment of the present invention
  • FIG. 5 is a state diagram schematically shown to explain an example of a photosensitive image photographed on a photographing mechanism of an axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention
  • FIG. 6 is a state diagram schematically shown to explain an installation structure for each exercise device part of the axial error measuring apparatus using parallel light according to an embodiment of the present invention.
  • FIG. 7 is a side view schematically showing an installation example of an axial error measurement apparatus using parallel light according to an embodiment of the present invention.
  • the axial error measuring apparatus using the parallel light of the present invention can measure the axial error for the movement mechanism parts (21, 22, 23) moved horizontally or vertically along the upper surface of the table (10).
  • the device is configured to be.
  • FIG. 1 is a state diagram schematically illustrating an axial error measuring apparatus using parallel light according to an embodiment of the present invention
  • FIG. 2 is a axial error measuring apparatus using parallel light according to an embodiment of the present invention
  • FIG. 3 is an enlarged view illustrating a detailed structure of the light source unit
  • FIG. 3 is an enlarged view illustrating main parts of the microlens array of the axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention
  • 4 is a front view briefly shown to explain a structure of a microlens array of an axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention.
  • the axial error measuring apparatus includes a light source unit 100, a microlens array 200, a photographing apparatus unit 300, and a controller 400.
  • the additional provision of the microlens array 200 enables parallel light emitted from the light source unit 100 to be photographed by the photographing apparatus unit 300 in a plurality of spots, and continuous displacement calculation for the plurality of spots. Through this, the linearity error and the flatness error and the rotational error for the exercise unit 21, 22, 23 can be quantitatively calculated.
  • the light source unit 100 is a portion for irradiating parallel light.
  • the light source unit 100 is fixedly installed at a position at which the parallel light can be irradiated toward the path of the movement mechanism units 21, 22, and 23 of the upper surface of the table 10.
  • the light source unit 100 includes a laser generator 110, a pinhole sheet 120, a condenser lens 130, and a collimating lens 140.
  • the laser generator 110 is a portion for generating and providing a laser light source, and the pinhole sheet 120, the condenser lens 130, and the collimating lens 140 generate parallel light through the wavelength uniformity of the laser light source. It is a part to achieve.
  • the pinhole sheet 120 is a sheet formed with a pinhole 121 through which a laser light source passes while being positioned on the laser irradiation direction side of the laser generator 110, and the condenser lens 130 is the laser generator ( Located between the 110 and the pinhole 121 serves to condense the light source generated from the laser generator 110 to pass through the pinhole 121, and the collimating lens 140 is the pinhole 121.
  • the laser light source that passes through the pinhole 121 while being positioned at the rear end of the c) serves to achieve parallel light having a Gaussian intensity distribution.
  • the microlens array 200 is a portion for dividing the parallel light emitted from the light source unit 100 into a plurality of spots.
  • the microlens array 200 is disposed on the exercise device units 21, 22, and 23 that are horizontally or vertically movable along the table 10, and is arranged to receive parallel light emitted from the light source unit 100. .
  • the microlens array 200 has three or more microlenses 210 and divides parallel light emitted from the light source unit 100 into a plurality of spots.
  • each of these microlenses 210 is proposed to be arranged regularly with a plurality of columns and a plurality of rows. That is, in the exemplary embodiment of the present invention, the three-dimensional exercise device 21, 22, 23 is not calculated by calculating the straightness, flatness, and rotational error at the same time based on the displacement of one or two light sources. The straightness, flatness and rotational error of) can be understood more precisely.
  • each of the microlenses 210 provided in the microlens array 200 is disposed so that its convex direction is directed to the photographing mechanism unit 300 to be described later, whereby the laser light source passing through each of the microlenses 210 is According to the inclination of the microlens 210 is transmitted vertically from the convex surface can be provided in a state focused on the photographing mechanism unit 300 to be described later.
  • the photographing mechanism unit 300 is a portion photographed while forming a plurality of spots formed while passing through the microlens array 200.
  • the embodiment of the present invention suggests that the photographing mechanism part 300 is formed of a CCD camera, and the photographing mechanism part 300 has the controller 400 and data so that the photographing image can be provided to the controller 400 to be described later.
  • the communication is configured to enable the connection.
  • the photographing mechanism unit 300 is configured such that the plurality of spots 510 and 520 are collectively photographed on a lattice plane having a predetermined resolution including a plurality of pixels.
  • the controller 400 receives a captured image from the photographing mechanism unit 300, and calculates an operation error of the exercise device units 21, 22, and 23 by confirming the displacement according to the arrangement of the spots from the image. It is a part to do.
  • the controller 400 is programmed to calculate the inclination of the parallel light wavefront based on the displacement according to the arrangement of the spots based on the Shack-Hartmann sensor.
  • the linearity error, the flatness error and the rotational error with respect to the exercise device parts 21, 22 and 23 are programmed to be quantitatively calculated.
  • the ⁇ -Heartman sensor method is a wavefront measurement sensor method that calculates the local slope of the wavefront formed by the laser light using the arrangement of the plurality of microlenses 210 and measures the degree of distortion of the wavefront therefrom.
  • the laser irradiated from the laser generator 110 constituting the light source unit 100 passes through the pinhole 121 of the pinhole sheet 120 while being condensed while passing through the condenser lens 130, and subsequently collie.
  • the light is provided to the microlens array 200 as parallel light having a shape of a Gaussian intensity distribution while passing through a collimating lens 130.
  • the parallel light provided to the microlens array 200 passes through a plurality of microlenses 210 provided in the microlens array 200, and is divided into a plurality of spots that form regular rows and columns, and then into a CCD camera.
  • the photosensitive image formed in the imaging device 300 is formed, and then the plurality of divided spots (reference spots) 510 are imaged and provided to the controller through data communication.
  • the microlens array 200 and the photographing device unit 300 provided in the exercise device unit 21, 22, 23 are operated.
  • the location also changes continuously.
  • each spot (variable spot) 520 which is divided into a plurality of parts while passing through each microlens 210 of the microlens array 200 and is formed in the photographing mechanism part 300 is the exercise mechanism part 21, 22,. According to the straightness or the flatness in the direction in which 23) is operated, it has a different displacement from the reference spot 510, as shown in FIG. 5.
  • the controller 400 continuously receiving the photosensitive image from which the position of each spot (variable spot) 520 is photographed from the photographing mechanism unit 300 is the position of the reference spot 510 stored as a reference state. After confirming the displacement according to the arrangement of the respective variation spots 520 on the basis of, the slope of the parallel light wavefront based on the displacement according to the arrangement of the variation spots 520 based on the Shack-Hartmann sensor. By calculating the operation can be confirmed in real time the straightness error, flatness error and rotational error of the corresponding exercise mechanism unit (21, 22, 23), by performing the motion compensation according to each of the identified errors in real time 21, 22, and 23 can perform very precise operations.
  • FIG. 6 shows an axial error measuring apparatus using parallel light according to another embodiment of the present invention.
  • the exercise device parts 21, 22, and 23 move on the X axis. At least two or more of the exercise mechanism portion of the X-axis exercise mechanism portion 21, the Y-axis movement mechanism portion 22 to be moved to the Y-axis, and the Z-axis movement mechanism portion 23 to be moved to the Z-axis, the micro It is proposed that the lens array 200 and the photographing mechanism part 300 are provided in each of the exercise mechanism parts 21, 22, and 23, respectively.
  • the exercise mechanisms 21, 22, and 23 are not limited to tools or nozzles, or portions where the measuring instrument is directly installed, but the X of the tool or nozzle or measuring instrument is not limited thereto.
  • Y, Z-axis means that the portion is operated horizontally or vertically, so that any one of the tool (21), 22, 23 of the exercise device (21, 22, 23) to the tool (tool), nozzle, or measuring instrument is installed Is done.
  • the exercise device unit is composed of the X-axis exercise unit 21, the Y-axis exercise unit 22 and the Z-axis exercise unit 23 as described above, the light source unit to all the exercise unit (21, 22, 23) It is comprised so that the parallel light parallel to the operation direction (movement direction) of the said sports equipment part may be provided.
  • the embodiment of the present invention while being provided with only one light source unit 100 is provided to provide parallel light to any one of the exercise unit (eg, X-axis exercise unit) 21 and the X-axis exercise unit 21
  • the front side of the microlens array 200 provided in the) is separated from the parallel light irradiated from the light source unit 100 and reflected to the microlens array 200 of the other exercise device (eg, Z-axis exercise device) 23. Since the half mirror 610 is further provided, the parallel light is also provided to the microlens array 200 of the Z-axis motion mechanism unit 23.
  • the microlens array 200 of the Z-axis movement mechanism unit 23 is configured to be positioned on the side of the direction in which parallel light is reflected through the half mirror 610, as shown in FIG.
  • the microlens array 200 of the Z-axis motion mechanism unit 23 may be configured to be positioned in a direction perpendicular to the direction in which the parallel light is reflected, in which case the parallel light is reflected through the half mirror 610.
  • the direction side may further include a reflection mirror 620 for reflecting the parallel light back to the microlens array 200.
  • the light source unit 100 is provided in the same quantity as the quantity of each of the exercise equipment units 21, 22, and 23, and is provided in the respective exercise machine units 21, 22, and 23, respectively.
  • Each of the microlens arrays 200 of the mechanical parts 21, 22, and 23 may be provided to provide parallel light.
  • the axial error measuring apparatus using the parallel light divides the laser light source into a plurality of spots rather than a method of measuring the axial error by checking the displacement of one or two light sources, thereby collectively displacing the divided spots.
  • the light source unit 100 of the axial error measuring apparatus using the parallel light of the present invention comprises a pinhole sheet 120, a condenser lens 130 and a collimating lens (140) by a laser generator
  • the optical characteristics of the laser light provided from 110 can be stabilized to generate high quality parallel light, thereby achieving more accurate compensation of the axial error.
  • the axial error measuring apparatus using the parallel light of the present invention can provide a parallel light for measuring the straightness, flatness and rotation in a plurality of axial direction through the additional provision of the half mirror 610, This simplifies the structure and simplifies the control.

Abstract

The present invention relates to a novel axial offset measuring apparatus using parallel beams, the apparatus comprising a light source unit, a microlens array, a photographing device unit, and a controller and, specifically, enabling the photographing device unit to photograph, as a plurality of spots, the parallel beams irradiated from the light source unit through the additional provision of the microlens array, and enabling a straightness error, a flatness error, and a rotation error of a moving device unit to be quantitatively calculated through the continuous calculation of the displacement of the plurality of spots.

Description

평행광을 이용한 축오차 측정장치Axis error measuring device using parallel light
본 발명은 축오차 측정장치에 관한 것으로서, 더욱 상세하게는 평행광을 이용하여 운동기구부에 대한 정확한 직진도나 평탄도 및 회전오차를 정량적으로 산출하면서도 이러한 오차 측정을 위한 감광이미지가 셋 이상의 다수로 분할된 스팟으로 제공되도록 하여 각 위치별 기울기 정보를 더욱 정확히 판단할 수 있도록 한 새로운 형태에 따른 축오차 측정장치에 관한 것이다.The present invention relates to an axial error measuring apparatus, and more particularly, to quantitatively calculate accurate straightness, flatness, and rotational error of an exercise machine part using parallel light, while dividing the photosensitive image for measuring the error into three or more. The present invention relates to an axial error measuring apparatus according to a new form to more accurately determine the inclination information for each position by providing a spot.
일반적으로 3D 프린터나 공작기계 혹은, 3차원측정기 등에는 직교된 3축을 따라 움직이는 운동기구부가 제공되며, 이러한 운동기구부의 끝단에 공구(tool)나 노즐 혹은, 측정계 등이 구비되면서 상기 운동기구부의 동작에 의해 위치가 변동되면서 각각의 작업(예컨대, 프린트 작업, 공작물 가공 작업, 3차원 측정 작업 등)을 수행하게 된다.In general, a 3D printer, a machine tool, or a three-dimensional measuring instrument is provided with a moving mechanism moving along three orthogonal axes, and a tool, a nozzle, a measuring system, or the like is provided at the end of the moving mechanism, and the movement of the moving mechanism is performed. The position is changed by means of performing each operation (eg, a print job, a workpiece machining job, a three-dimensional measurement job, etc.).
그러나, 공작물 또는, 측정대상물이 놓이거나 혹은, 운동기구부를 가이드하면서 안내하는 테이블(또는, 프레임)의 크기가 크면 클수록 이 테이블의 자중에 의해 중앙측 부위가 아래로 처지는 현상이나, 가공시의 오차 등이 존재한다는 것을 고려할 때 운동기구부가 프로그래밍된 방향 및 변위로 정밀하게 동작된다 하더라도 전술된 오차로 인한 동작 위치의 오차도 발생될 수밖에 없다.However, the larger the size of the workpiece (or the measuring object) or the table (or frame) for guiding while guiding the movement mechanism, the lower the central part is due to the weight of the table, or the error during machining. Considering that the back is present, even if the movement mechanism is precisely operated in the programmed direction and displacement, the error of the operation position due to the above-described error is inevitably generated.
이에 종래에는 레이저 간섭계를 이용하여 동작중인 운동기구부로 레이저를 지속적으로 조사함과 동시에 상기 운동기구부로부터 반사된 레이저를 지속적으로 수신받아 이를 통해 각종 오차를 측정하면서 실시간으로 이 오차가 보정될 수 있도록 하고 있으나, 이러한 방식의 레이저 간섭계는 매우 고가의 장비일 뿐만 아니라 실시간 측정용이 아닌 보정용으로만 사용되고 있는 실정이다.In the related art, a laser interferometer continuously irradiates a laser to a moving exercise device, and at the same time, continuously receives a laser beam reflected from the exercise device, thereby measuring various errors and thereby correcting the error in real time. However, this type of laser interferometer is not only a very expensive equipment but also used only for calibration and not for real time measurement.
이에 최근에는 등록특허 제10-1119876호를 통해 평행광을 이용하면서도 저렴한 비용으로 직진도나 평탄도 및 3차원 정밀 측정이 가능하도록 한 기술이 제공되고 있다.In recent years, Patent No. 10-1119876 provides a technology that enables linearity, flatness and three-dimensional precision measurement at low cost while using parallel light.
즉, 전술된 종래 기술은 정해진 위치에 평행광 발생기를 고정 설치하고, 운동기구부에는 촬영기구를 설치하여 상기 평행광 발생기로부터 조사되는 기준용 평행광의 감광이미지를 촬영한 후 이러한 감광이미지의 변위를 토대로 오차를 확인할 수 있도록 한 것이다.In other words, the above-described conventional technique is fixed to the parallel light generator at a predetermined position, and the photographing mechanism is installed in the exercise mechanism unit to take a photosensitive image of the reference parallel light irradiated from the parallel light generator and then based on the displacement of the photosensitive image. The error can be confirmed.
하지만, 전술된 종래 기술의 경우 단일의 스팟에 대한 변위를 측정하여 오차를 확인하도록 이루어짐에 따라 X, Y, Z 축 이외의 다양한 방향에 대한 변위 측정에 한계가 있었다. 물론 전술된 종래 기술에서는 광분리기구의 추가적 제공을 통해 2개의 스팟에 대한 변위를 토대로 오차를 확인하고자 하는 노력이 더 있었으나, 이 역시 더욱 다양한 방향이나 정밀한 오차 측정에 어려움이 있었다.However, in the above-described prior art, the measurement of the displacement of a single spot has been limited to the measurement of displacements in various directions other than the X, Y, and Z axes, as the error is determined. Of course, in the above-described prior art, there was a further effort to check the error based on the displacements of the two spots through the additional provision of the optical separation mechanism, but this also has difficulty in measuring the error in more various directions or precisely.
본 발명은 전술된 종래 기술에 따른 각종 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 평행광을 이용하여 운동기구부에 대한 정확한 직진도나 평탄도 및 회전오차를 정량적으로 산출하면서도 이러한 오차 측정을 위한 감광이미지가 셋 이상의 다수로 분할된 스팟으로 제공되도록 하여 각 위치별 기울기 정보를 더욱 정확히 판단할 수 있도록 한 새로운 형태에 따른 축오차 측정장치를 제공하는데 있다.The present invention has been made to solve the various problems according to the prior art described above, an object of the present invention is to measure such error while quantitatively calculating the correct straightness, flatness and rotational error with respect to the exercise machine using parallel light. The present invention provides an axial error measuring apparatus according to a new form in which a photosensitive image is provided as a spot divided into a plurality of three or more, so that the inclination information for each position can be more accurately determined.
상기한 목적을 달성하기 위한 본 발명의 평행광을 이용한 축오차 측정장치는 운동기구부가 동작되는 경로를 향하여 평행광을 조사할 수 있는 위치에 고정 설치되면서 평행광을 조사하는 광원부; 이동 가능하게 설치된 운동기구부에 설치되며, 셋 이상 다수의 마이크로렌즈를 가지면서 상기 광원부로부터 조사된 평행광을 다수의 스팟으로 분할하는 마이크로렌즈 어레이; 상기 마이크로렌즈 어레이를 통과하면서 다수로 분할된 스팟이 결상되는 촬영기구부; 그리고, 상기 촬영기구부에 의해 촬영된 영상으로부터 각 스팟들의 배열에 따른 변위를 확인하여 운동기구부의 각 동작 오차를 산출하는 컨트롤러;를 포함하여 구성됨을 특징으로 한다.Axial error measuring apparatus using the parallel light of the present invention for achieving the above object is a light source unit for irradiating parallel light while fixedly installed at a position capable of irradiating parallel light toward the path of the movement mechanism unit; A microlens array installed in the movement mechanism part installed to be movable and having three or more microlenses and dividing the parallel light emitted from the light source into a plurality of spots; An imaging mechanism unit configured to form a plurality of spots while passing through the microlens array; And a controller for checking the displacement according to the arrangement of the spots from the image photographed by the photographing mechanism unit to calculate each operation error of the exercise device unit.
여기서, 상기 운동기구부는 X축으로 이동되는 X축 운동기구부와, Y축으로 이동되는 Y축 운동기구부와, Z축으로 이동되는 Z축 운동기구부 중 적어도 둘 이상의 운동기구부를 포함하여 이루어지며, 상기 마이크로렌즈 어레이 및 촬영기구부는 상기 각 운동기구부 모두에 각각 구비됨을 특징으로 한다.Here, the exercise mechanism unit comprises at least two or more exercise mechanisms of the X-axis movement mechanism portion moved to the X-axis, the Y-axis movement mechanism portion moved to the Y-axis, and the Z-axis movement mechanism portion moved to the Z-axis, The microlens array and the photographing mechanism part are respectively provided in each of the exercise mechanism parts.
또한, 상기 광원부는 상기 각 운동기구부의 수량과 동일한 수량으로 제공되면서 상기 각 운동기구부에 구비된 마이크로렌즈 어레이마다 각각의 평행광을 제공하도록 설치됨을 특징으로 한다.The light source unit may be provided in the same quantity as that of each of the exercise equipment units, and installed to provide parallel light for each of the microlens arrays provided in each of the exercise equipment units.
또한, 상기 광원부는 하나로 제공되면서 어느 한 운동기구부로 평행광을 제공하도록 설치됨과 더불어 상기 어느 한 운동기구부에 구비된 마이크로렌즈 어레이의 전방측에는 상기 광원부로부터 조사된 평행광의 일부를 분리하여 여타 운동기구부의 마이크로렌즈 어레이로 반사하는 하프미러가 더 구비됨을 특징으로 한다.In addition, the light source unit may be provided as one and provided to provide parallel light to any one of the exercise device units, and a part of the parallel light irradiated from the light source unit may be separated on the front side of the microlens array provided to the any one of the exercise device units. A half mirror further reflects to the microlens array.
또한, 상기 광원부는 레이저 광원을 제공하는 레이저 발생기와, 상기 레이저 발생기의 레이저 조사 방향측에 위치되면서 레이저 광원이 통과되는 핀홀이 형성되어 이루어진 핀홀시트와, 상기 레이저 발생기와 상기 핀홀 사이에 위치되면서 상기 레이저 발생기로부터 발생된 광원이 상기 핀홀을 거치도록 집광하는 집광렌즈와, 상기 핀홀의 후단에 위치되면서 상기 핀홀을 통과한 레이저 광원이 가우시언 광분포(gaussian intensity distribution) 형상을 가진 광원을 이룰 수 있도록 하는 콜리메이팅 렌즈(collimating lens)를 포함하여 구성됨을 특징으로 한다.The light source unit may include a laser generator providing a laser light source, a pinhole sheet formed at a side of the laser irradiation direction of the laser generator, and having a pinhole through which a laser light source passes, and positioned between the laser generator and the pinhole. A condenser lens for condensing a light source generated from a laser generator to pass through the pinhole, and a laser light source passing through the pinhole at a rear end of the pinhole to form a light source having a Gaussian intensity distribution shape To be characterized in that it comprises a collimating lens (collimating lens).
또한, 상기 마이크로렌즈 어레이의 각 마이크로렌즈는 복수의 열과 복수의 행을 가지면서 규칙적으로 배열되도록 이루어짐을 특징으로 In addition, each microlens of the microlens array is arranged to be arranged regularly, having a plurality of columns and a plurality of rows
이상에서와 같은 본 발명의 평행광을 이용한 축오차 측정장치는 하나 혹은, 두 광원의 변위를 확인하여 축오차를 측정하는 방식이 아닌 레이저 광원을 다수의 스팟으로 분할하여 이 분할된 각 스팟의 일괄적인 변위에 대한 확인 및 해석을 통해 레이저 파면의 기울기를 판독함으로써 운동기구부의 직진도 오차와 평탄도 오차 및 회전오차를 정확하면서도 더욱 다양하게 측정할 수 있게 된 효과를 가진다.As described above, the axial error measuring apparatus using the parallel light according to the present invention divides the laser light source into a plurality of spots rather than a method of measuring the axial error by checking the displacement of one or two light sources, and collectively dividing each of the divided spots. By checking the slope of the laser wavefront through the confirmation and analysis of the conventional displacement, it is possible to measure the linearity error, the flatness error, and the rotational error of the moving parts accurately and more variously.
이와 함께, 본 발명의 평행광을 이용한 축오차 측정장치의 광원부는 핀홀시트와, 집광렌즈 및 콜리메이팅 렌즈(collimating lens)를 포함하여 구성함으로써 레이저 발생기로부터 제공되는 레이저광의 광특성이 안정화될 수 있게 되어 고품질의 평행광을 생성할 수 있게 되며, 이로 인한 축오차의 더욱 정밀한 보상을 이룰 수 있게 된 효과를 가진다.In addition, the light source unit of the axial error measuring apparatus using the parallel light of the present invention comprises a pinhole sheet, a condensing lens and a collimating lens to stabilize the optical characteristics of the laser light provided from the laser generator. Therefore, it is possible to generate high quality parallel light, which has the effect of achieving more precise compensation of the axial error.
또한, 본 발명의 평행광을 이용한 축오차 측정장치는 하프미러의 추가적 제공을 통해 복수의 축방향에 대한 직진도나 평탄도 및 회전을 측정하기 위한 평행광을 일괄적으로 제공할 수 있으며, 이로써 구조의 단순화 및 제어의 단순화를 이룰 수 있게 된 효과를 가진다.In addition, the axial error measuring apparatus using the parallel light of the present invention can provide a parallel light for measuring the straightness, flatness and rotation in a plurality of axial direction through the additional provision of a half mirror, thereby providing a structure Has the effect of achieving the simplification and the simplification of control.
도 1은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치를 설명하기 위해 개략화하여 나타낸 상태도1 is a state diagram schematically shown to explain an axial error measuring apparatus using parallel light according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 광원부에 대한 세부 구조를 설명하기 위해 간략히 나타낸 상태도Figure 2 is a state diagram briefly shown to explain the detailed structure of the light source unit of the axial error measurement apparatus using parallel light according to an embodiment of the present invention
도 3은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 마이크로렌즈 어레이에 대한 설치 구조를 설명하기 위해 간략히 나타낸 요부 확대도Figure 3 is an enlarged view of the main portion briefly shown to explain the installation structure of the microlens array of the axial error measuring apparatus using parallel light according to an embodiment of the present invention
도 4는 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 마이크로렌즈 어레이에 대한 구조를 설명하기 위해 간략히 나타낸 정면도Figure 4 is a front view briefly shown to explain the structure of the microlens array of the axial error measuring apparatus using parallel light according to an embodiment of the present invention
도 5는 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 촬영기구부에 촬영된 감광이미지의 일 예를 설명하기 위해 개략적으로 나타낸 상태도5 is a state diagram schematically shown to explain an example of a photosensitive image photographed on a photographing mechanism of an axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 각 운동기구부별 설치 구조를 설명하기 위해 개략적으로 나타낸 상태도6 is a state diagram schematically shown to explain an installation structure for each exercise device part of the axial error measuring apparatus using parallel light according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 설치 예를 설명하기 위해 개략적으로 나타낸 측면도7 is a side view schematically showing an installation example of an axial error measurement apparatus using parallel light according to an embodiment of the present invention.
이하, 본 발명의 평행광을 이용한 축오차 측정장치에 대한 바람직한 실시예를 첨부된 도 1 내지 도 7을 참조하여 설명하도록 한다.Hereinafter, a preferred embodiment of an axial error measuring apparatus using parallel light of the present invention will be described with reference to FIGS. 1 to 7.
실시예의 설명에 앞서, 본 발명의 평행광을 이용한 축오차 측정장치는 테이블(10)의 상면을 따라 수평 혹은, 수직하게 이동되는 운동기구부(21,22,23)에 대한 축오차를 측정할 수 있도록 구성된 장치임을 그 예로 한다.Prior to the description of the embodiment, the axial error measuring apparatus using the parallel light of the present invention can measure the axial error for the movement mechanism parts (21, 22, 23) moved horizontally or vertically along the upper surface of the table (10). For example, the device is configured to be.
첨부된 도 1은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치를 설명하기 위해 개략화하여 나타낸 상태도이고, 도 2는 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 광원부에 대한 세부 구조를 설명하기 위해 간략히 나타낸 상태도이며, 도 3은 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 마이크로렌즈 어레이에 대한 설치 구조를 설명하기 위해 간략히 나타낸 요부 확대도이며, 도 4는 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치의 마이크로렌즈 어레이에 대한 구조를 설명하기 위해 간략히 나타낸 정면도이다.1 is a state diagram schematically illustrating an axial error measuring apparatus using parallel light according to an embodiment of the present invention, and FIG. 2 is a axial error measuring apparatus using parallel light according to an embodiment of the present invention. FIG. 3 is an enlarged view illustrating a detailed structure of the light source unit, and FIG. 3 is an enlarged view illustrating main parts of the microlens array of the axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention. 4 is a front view briefly shown to explain a structure of a microlens array of an axial error measuring apparatus using parallel light according to an exemplary embodiment of the present invention.
이들 도면에 도시된 바와 같이 본 발명의 실시예에 따른 축오차 측정장치는 크게 광원부(100)와, 마이크로렌즈 어레이(200)와, 촬영기구부(300)와, 컨트롤러(400)를 포함하여 이루어지며, 특히 상기 마이크로렌즈 어레이(200)의 추가적인 제공을 통해 광원부(100)로부터 조사되는 평행광이 다수의 스팟으로 촬영기구부(300)에 촬영될 수 있도록 하고, 이러한 다수의 스팟에 대한 연속적인 변위 계산을 통해 운동기구부(21,22,23)에 대한 직진도오차와 평탄도오차 및 회전오차가 정량적으로 산출할 수 있도록 함을 특징으로 한다.As shown in these drawings, the axial error measuring apparatus according to the embodiment of the present invention includes a light source unit 100, a microlens array 200, a photographing apparatus unit 300, and a controller 400. In particular, the additional provision of the microlens array 200 enables parallel light emitted from the light source unit 100 to be photographed by the photographing apparatus unit 300 in a plurality of spots, and continuous displacement calculation for the plurality of spots. Through this, the linearity error and the flatness error and the rotational error for the exercise unit 21, 22, 23 can be quantitatively calculated.
이를 각 구성별로 더욱 상세히 설명하도록 한다.This will be described in more detail for each configuration.
먼저, 상기 광원부(100)는 평행광을 조사하는 부위이다.First, the light source unit 100 is a portion for irradiating parallel light.
이와 같은 광원부(100)는 테이블(10)의 상면 중 운동기구부(21,22,23)가 동작되는 경로를 향하여 평행광을 조사할 수 있는 위치에 고정 설치된다.The light source unit 100 is fixedly installed at a position at which the parallel light can be irradiated toward the path of the movement mechanism units 21, 22, and 23 of the upper surface of the table 10.
이와 함께, 상기 광원부(100)는 레이저 발생기(110)와, 핀홀시트(120)와, 집광렌즈(130) 및 콜리메이팅 렌즈(collimating lens)(140)를 포함하여 구성된다.In addition, the light source unit 100 includes a laser generator 110, a pinhole sheet 120, a condenser lens 130, and a collimating lens 140.
여기서, 상기 레이저 발생기(110)는 레이저 광원을 생성하여 제공하는 부위이고, 상기 핀홀시트(120)와 집광렌즈(130) 및 콜리메이팅 렌즈(140)는 상기 레이저 광원의 파장 균일화를 통해 평행광을 이루도록 하기 위한 부위이다.Here, the laser generator 110 is a portion for generating and providing a laser light source, and the pinhole sheet 120, the condenser lens 130, and the collimating lens 140 generate parallel light through the wavelength uniformity of the laser light source. It is a part to achieve.
이때, 상기 핀홀시트(120)는 상기 레이저 발생기(110)의 레이저 조사 방향측에 위치되면서 레이저 광원이 통과되는 핀홀(121)이 형성되어 이루어진 시트이고, 상기 집광렌즈(130)는 상기 레이저 발생기(110)와 상기 핀홀(121) 사이에 위치되면서 상기 레이저 발생기(110)로부터 발생된 광원이 상기 핀홀(121)을 거치도록 집광하는 역할을 수행하며, 상기 콜리메이팅 렌즈(140)는 상기 핀홀(121)의 후단에 위치되면서 상기 핀홀(121)을 통과한 레이저 광원이 가우시언 광분포(gaussian intensity distribution) 형상을 가진 평행광을 이룰 수 있도록 하는 역할을 수행한다.In this case, the pinhole sheet 120 is a sheet formed with a pinhole 121 through which a laser light source passes while being positioned on the laser irradiation direction side of the laser generator 110, and the condenser lens 130 is the laser generator ( Located between the 110 and the pinhole 121 serves to condense the light source generated from the laser generator 110 to pass through the pinhole 121, and the collimating lens 140 is the pinhole 121. The laser light source that passes through the pinhole 121 while being positioned at the rear end of the c) serves to achieve parallel light having a Gaussian intensity distribution.
다음으로, 상기 마이크로렌즈 어레이(200)는 상기 광원부(100)로부터 조사된 평행광을 다수의 스팟으로 분할하는 부위이다.Next, the microlens array 200 is a portion for dividing the parallel light emitted from the light source unit 100 into a plurality of spots.
이와 같은 마이크로렌즈 어레이(200)는 테이블(10)을 따라 수평 혹은, 수직 이동 가능하게 설치된 운동기구부(21,22,23)에 설치되면서 상기 광원부(100)로부터 조사된 평행광을 제공받도록 배치된다.The microlens array 200 is disposed on the exercise device units 21, 22, and 23 that are horizontally or vertically movable along the table 10, and is arranged to receive parallel light emitted from the light source unit 100. .
특히, 첨부된 도 3 및 도 4에 도시된 바와 같이 상기 마이크로렌즈 어레이(200)는 셋 이상 다수의 마이크로렌즈(210)를 가지면서 상기 광원부(100)로부터 조사된 평행광을 다수의 스팟으로 분할하도록 이루어짐과 더불어 이러한 각 마이크로렌즈(210)는 복수의 열과 복수의 행을 가지면서 규칙적으로 배열되도록 이루어짐을 제시한다. 즉, 본 발명의 실시예에서는 하나 혹은, 두 광원의 변위를 토대로 직진도나 평탄도 및 회전오차를 산출하는 것이 아니라 셋 이상의 다수 광원의 변위를 동시에 고려함으로써 3차원적인 운동기구부(21,22,23)의 직진도나 평탄도 및 회전오차를 보다 정밀하게 파악할 수 있도록 한 것이다.In particular, as shown in FIGS. 3 and 4, the microlens array 200 has three or more microlenses 210 and divides parallel light emitted from the light source unit 100 into a plurality of spots. In addition to each of these microlenses 210 is proposed to be arranged regularly with a plurality of columns and a plurality of rows. That is, in the exemplary embodiment of the present invention, the three- dimensional exercise device 21, 22, 23 is not calculated by calculating the straightness, flatness, and rotational error at the same time based on the displacement of one or two light sources. The straightness, flatness and rotational error of) can be understood more precisely.
이때, 상기 마이크로렌즈 어레이(200)에 구비되는 각 마이크로렌즈(210)는 그의 볼록 방향이 후술될 촬영기구부(300)를 향하도록 배치되며, 이로써 각 마이크로렌즈(210)의 통과하는 레이저 광원은 상기 마이크로렌즈(210)가 이루는 기울기에 따라 볼록면으로부터 수직하게 투과되면서 후술될 촬영기구부(300)에 촛점이 맞춰진 상태로 제공될 수 있게 된다.At this time, each of the microlenses 210 provided in the microlens array 200 is disposed so that its convex direction is directed to the photographing mechanism unit 300 to be described later, whereby the laser light source passing through each of the microlenses 210 is According to the inclination of the microlens 210 is transmitted vertically from the convex surface can be provided in a state focused on the photographing mechanism unit 300 to be described later.
다음으로, 상기 촬영기구부(300)는 상기 마이크로렌즈 어레이(200)를 통과하면서 다수로 분할된 스팟이 결상되면서 촬영되는 부위이다.Next, the photographing mechanism unit 300 is a portion photographed while forming a plurality of spots formed while passing through the microlens array 200.
본 발명의 실시예에서는 상기 촬영기구부(300)가 CCD 카메라로 이루어짐을 제시하며, 이러한 촬영기구부(300)는 그 촬영 영상을 후술될 컨트롤러(400)로 제공될 수 있도록 상기 컨트롤러(400)와 데이터 통신이 가능하게 연결되도록 구성된다.The embodiment of the present invention suggests that the photographing mechanism part 300 is formed of a CCD camera, and the photographing mechanism part 300 has the controller 400 and data so that the photographing image can be provided to the controller 400 to be described later. The communication is configured to enable the connection.
특히, 상기 촬영기구부(300)는 첨부된 도 5에 도시된 바와 같이 다수의 픽셀로 이루어진 정해진 해상도의 격자면에서 상기 다수의 스팟(510,520)이 일괄적으로 감광되도록 구성된다.In particular, as shown in FIG. 5, the photographing mechanism unit 300 is configured such that the plurality of spots 510 and 520 are collectively photographed on a lattice plane having a predetermined resolution including a plurality of pixels.
다음으로, 상기 컨트롤러(400)는 상기 촬영기구부(300)로부터 촬영 영상을 전달받고, 이러한 영상으로부터 각 스팟들의 배열에 따른 변위를 확인하여 운동기구부(21,22,23)의 각 동작 오차를 산출하는 부위이다.Next, the controller 400 receives a captured image from the photographing mechanism unit 300, and calculates an operation error of the exercise device units 21, 22, and 23 by confirming the displacement according to the arrangement of the spots from the image. It is a part to do.
특히, 본 발명의 실시예에서는 상기 컨트롤러(400)가 샥-하트만 센서법(Shack-Hartmann sensor)을 근거하여 상기 각 스팟들의 배열에 따른 변위를 토대로 평행광 파면의 기울기를 계산해 낼 수 있도록 프로그래밍되며, 이렇게 계산된 평행광 파면의 기울기로써 운동기구부(21,22,23)에 대한 직진도오차, 평탄도오차 및 회전오차를 정량적으로 산출할 수 있도록 프로그래밍되어 이루어진다.In particular, in the embodiment of the present invention, the controller 400 is programmed to calculate the inclination of the parallel light wavefront based on the displacement according to the arrangement of the spots based on the Shack-Hartmann sensor. By calculating the slope of the parallel light wave surface calculated in this way, the linearity error, the flatness error and the rotational error with respect to the exercise device parts 21, 22 and 23 are programmed to be quantitatively calculated.
여기서, 상기 샥-하트만 센서법은 다수의 마이크로렌즈(210)의 배열을 이용하여 레이저광이 이루는 파면의 국부적인 기울기를 계산하고 이로부터 파면의 왜곡된 정도를 측정하는 파면측정 센서법이다.Here, the 샥 -Heartman sensor method is a wavefront measurement sensor method that calculates the local slope of the wavefront formed by the laser light using the arrangement of the plurality of microlenses 210 and measures the degree of distortion of the wavefront therefrom.
하기에서는, 전술된 본 발명의 실시예에 따른 평행광을 이용한 축오차 측정장치에 의한 축오차 측정 과정에 대하여 더욱 상세히 설명하도록 한다.Hereinafter, the axial error measuring process by the axial error measuring apparatus using the parallel light according to the embodiment of the present invention described above will be described in more detail.
우선, 테이블(10)의 상면에 고정 설치된 광원부(100)의 동작 제어를 통해 운동기구부(21,22,23)에 설치된 마이크로렌즈 어레이(200)를 향하여 평행광이 조사되도록 한다.First, parallel light is irradiated toward the microlens array 200 installed in the exercise device units 21, 22, and 23 through the operation control of the light source unit 100 fixed to the upper surface of the table 10.
이의 경우, 상기 광원부(100)를 이루는 레이저 발생기(110)로부터 조사된 레이저는 집광렌즈(130)를 거치면서 집광된 상태로 핀홀시트(120)의 핀홀(121)을 통과하게 되며, 계속해서 콜리메이팅 렌즈(collimating lens)(130)를 통과하면서 가우시언 광분포(gaussian intensity distribution) 형상을 가진 평행광으로 상기 마이크로렌즈 어레이(200)로 제공된다.In this case, the laser irradiated from the laser generator 110 constituting the light source unit 100 passes through the pinhole 121 of the pinhole sheet 120 while being condensed while passing through the condenser lens 130, and subsequently collie. The light is provided to the microlens array 200 as parallel light having a shape of a Gaussian intensity distribution while passing through a collimating lens 130.
또한, 상기 마이크로렌즈 어레이(200)로 제공된 평행광은 상기 마이크로렌즈 어레이(200)에 구비된 다수의 마이크로렌즈(210)를 통과하면서 규칙적인 열과 행을 이루는 다수의 스팟으로 분할된 후 CCD 카메라로 이루어진 촬영기구부(300)에 결상되며, 계속해서 상기 다수의 분할된 스팟(기준 스팟)(510)이 결상된 감광이미지는 데이터 통신을 통해 컨트롤러로 제공된다.In addition, the parallel light provided to the microlens array 200 passes through a plurality of microlenses 210 provided in the microlens array 200, and is divided into a plurality of spots that form regular rows and columns, and then into a CCD camera. The photosensitive image formed in the imaging device 300 is formed, and then the plurality of divided spots (reference spots) 510 are imaged and provided to the controller through data communication.
그리고, 상기한 바와 같은 과정이 진행되는 도중 운동기구부(21,22,23)가 동작될 경우 이 운동기구부(21,22,23)에 구비되는 마이크로렌즈 어레이(200)와 촬영기구부(300)의 위치 역시 지속적으로 변동된다.In addition, when the exercise device unit 21, 22, 23 is operated while the above process is in progress, the microlens array 200 and the photographing device unit 300 provided in the exercise device unit 21, 22, 23 are operated. The location also changes continuously.
이에 따라, 마이크로렌즈 어레이(200)의 각 마이크로렌즈(210)를 통과하면서 다수로 분할된 후 촬영기구부(300)에 결상되는 각 스팟(변동 스팟)(520)은 상기 운동기구부(21,22,23)가 동작되는 방향상의 직진도나 평탄도에 따라 기준 스팟(510)과는 다른 변위를 가지게 되며, 이는 첨부된 도 5에 도시된 바와 같다.Accordingly, each spot (variable spot) 520 which is divided into a plurality of parts while passing through each microlens 210 of the microlens array 200 and is formed in the photographing mechanism part 300 is the exercise mechanism part 21, 22,. According to the straightness or the flatness in the direction in which 23) is operated, it has a different displacement from the reference spot 510, as shown in FIG. 5.
따라서, 상기 촬영기구부(300)로부터 상기 각 스팟(변동 스팟)(520)의 위치가 촬영된 감광이미지를 지속적으로 제공받는 컨트롤러(400)는 최초 기준이된 상태로 저장된 기준 스팟(510)의 위치를 기준으로 하여 상기 각 변동 스팟(520)들의 배열에 따른 변위를 확인한 후 샥-하트만 센서법(Shack-Hartmann sensor)에 근거한 각 변동 스팟(520)들의 배열에 따른 변위를 토대로 평행광 파면의 기울기를 계산해 냄으로써 해당 운동기구부(21,22,23)의 직진도 오차나 평탄도 오차 및 회전 오차를 실시간적으로 확인할 수 있게 되고, 이렇게 확인된 각 오차에 따른 동작 보상을 실시간적으로 수행함으로써 운동기구부(21,22,23)는 매우 정밀한 동작을 수행할 수 있게 된다.Therefore, the controller 400 continuously receiving the photosensitive image from which the position of each spot (variable spot) 520 is photographed from the photographing mechanism unit 300 is the position of the reference spot 510 stored as a reference state. After confirming the displacement according to the arrangement of the respective variation spots 520 on the basis of, the slope of the parallel light wavefront based on the displacement according to the arrangement of the variation spots 520 based on the Shack-Hartmann sensor. By calculating the operation can be confirmed in real time the straightness error, flatness error and rotational error of the corresponding exercise mechanism unit (21, 22, 23), by performing the motion compensation according to each of the identified errors in real time 21, 22, and 23 can perform very precise operations.
한편, 첨부된 도 6은 본 발명의 다른 실시예에 따른 평행광을 이용한 축오차 측정장치를 나타내고 있으며, 이러한 본 발명의 다른 실시예에서는 상기 운동기구부(21,22,23)가 X축으로 이동되는 X축 운동기구부(21)와, Y축으로 이동되는 Y축 운동기구부(22)와, Z축으로 이동되는 Z축 운동기구부(23) 중 적어도 둘 이상의 운동기구부를 포함하여 이루어지며, 상기 마이크로렌즈 어레이(200) 및 촬영기구부(300)는 상기 각 운동기구부(21,22,23) 모두에 각각 구비됨을 제시한다.Meanwhile, FIG. 6 shows an axial error measuring apparatus using parallel light according to another embodiment of the present invention. In another embodiment of the present invention, the exercise device parts 21, 22, and 23 move on the X axis. At least two or more of the exercise mechanism portion of the X-axis exercise mechanism portion 21, the Y-axis movement mechanism portion 22 to be moved to the Y-axis, and the Z-axis movement mechanism portion 23 to be moved to the Z-axis, the micro It is proposed that the lens array 200 and the photographing mechanism part 300 are provided in each of the exercise mechanism parts 21, 22, and 23, respectively.
즉, 본 발명의 실시예에서는 운동기구부(21,22,23)가 툴(tool)이나 노즐 혹은, 계측기가 직접적으로 설치되는 부위임을 한정하는 것이 아니라 상기 툴(tool)이나 노즐 혹은, 계측기의 X, Y, Z축 이동을 위해 수평 또는, 수직으로 동작되는 부위임을 의미하며, 이러한 각 운동기구부(21,22,23) 중 어느 한 운동기구부에 상기 툴(tool)이나 노즐 혹은, 계측기가 설치되도록 이루어진다.That is, in the embodiment of the present invention, the exercise mechanisms 21, 22, and 23 are not limited to tools or nozzles, or portions where the measuring instrument is directly installed, but the X of the tool or nozzle or measuring instrument is not limited thereto. , Y, Z-axis means that the portion is operated horizontally or vertically, so that any one of the tool (21), 22, 23 of the exercise device (21, 22, 23) to the tool (tool), nozzle, or measuring instrument is installed Is done.
특히, 상기와 같이 운동기구부가 X축 운동기구부(21)와, Y축 운동기구부(22) 및 Z축 운동기구부(23)로 구성될 경우 광원부는 상기 모든 운동기구부(21,22,23)로 해당 운동기구부의 동작 방향(이동 방향)과 평행한 평행광을 제공하도록 구성된다.In particular, when the exercise device unit is composed of the X-axis exercise unit 21, the Y-axis exercise unit 22 and the Z-axis exercise unit 23 as described above, the light source unit to all the exercise unit (21, 22, 23) It is comprised so that the parallel light parallel to the operation direction (movement direction) of the said sports equipment part may be provided.
이를 위해, 본 발명의 실시예에서는 상기 광원부(100)가 하나로만 제공되면서 어느 한 운동기구부(예컨대, X축 운동기구부)(21)로 평행광을 제공하도록 설치됨과 더불어 상기 X축 운동기구부(21)에 구비된 마이크로렌즈 어레이(200)의 전방측에는 상기 광원부(100)로부터 조사된 평행광의 일부를 분리하여 여타 운동기구부(예컨대, Z축 운동기구부)(23)의 마이크로렌즈 어레이(200)로 반사하는 하프미러(610)를 더 구비함으로써 상기 Z축 운동기구부(23)의 마이크로렌즈 어레이(200)로도 해당 평행광이 제공되도록 구성함을 제시한다.To this end, in the embodiment of the present invention while being provided with only one light source unit 100 is provided to provide parallel light to any one of the exercise unit (eg, X-axis exercise unit) 21 and the X-axis exercise unit 21 The front side of the microlens array 200 provided in the) is separated from the parallel light irradiated from the light source unit 100 and reflected to the microlens array 200 of the other exercise device (eg, Z-axis exercise device) 23. Since the half mirror 610 is further provided, the parallel light is also provided to the microlens array 200 of the Z-axis motion mechanism unit 23.
이때, 상기 Z축 운동기구부(23)의 마이크로렌즈 어레이(200)는 상기 하프미러(610)를 통해 평행광이 반사되는 방향측에 위치되도록 구성됨을 그 예로 하고 있으나, 첨부된 도 7과 같이 상기 Z축 운동기구부(23)의 마이크로렌즈 어레이(200)가 상기 평행광이 반사되는 방향과는 수직한 방향에 위치되도록 구성될 수도 있으며, 이의 경우 상기 하프미러(610)를 통해 평행광이 반사되는 방향측에는 상기 평행광을 상기 마이크로렌즈 어레이(200)에 재차적으로 반사시키는 반사거울(620)을 더 포함하여 구성하면 된다.In this case, the microlens array 200 of the Z-axis movement mechanism unit 23 is configured to be positioned on the side of the direction in which parallel light is reflected through the half mirror 610, as shown in FIG. The microlens array 200 of the Z-axis motion mechanism unit 23 may be configured to be positioned in a direction perpendicular to the direction in which the parallel light is reflected, in which case the parallel light is reflected through the half mirror 610. The direction side may further include a reflection mirror 620 for reflecting the parallel light back to the microlens array 200.
물론, 도시되지는 않았지만 상기 광원부(100)가 상기 각 운동기구부(21,22,23)의 수량과 동일한 수량으로 제공되면서 상기 각 운동기구부(21,22,23)에 각각 구비된 상태로 해당 운동기구부(21,22,23)의 마이크로렌즈 어레이(200)마다 각각의 평행광을 제공하도록 설치되도록 할 수도 있다.Of course, although not shown, the light source unit 100 is provided in the same quantity as the quantity of each of the exercise equipment units 21, 22, and 23, and is provided in the respective exercise machine units 21, 22, and 23, respectively. Each of the microlens arrays 200 of the mechanical parts 21, 22, and 23 may be provided to provide parallel light.
이렇듯, 본 발명의 평행광을 이용한 축오차 측정장치는 하나 혹은, 두 광원의 변위를 확인하여 축오차를 측정하는 방식이 아닌 레이저 광원을 다수의 스팟으로 분할하여 이 분할된 각 스팟의 일괄적인 변위에 대한 확인 및 해석을 통해 레이저 파면의 기울기를 판독함으로써 운동기구부(21,22,23)의 직진도 오차와 평탄도 오차 및 회전오차를 정확하면서도 더욱 다양하게 측정할 수 있게 된다.As described above, the axial error measuring apparatus using the parallel light according to the present invention divides the laser light source into a plurality of spots rather than a method of measuring the axial error by checking the displacement of one or two light sources, thereby collectively displacing the divided spots. By checking the slope of the laser wavefront through the confirmation and analysis of the linearity error, the flatness error and the rotational error of the movement mechanism parts (21, 22, 23) can be more accurately and more variously measured.
이와 함께, 본 발명의 평행광을 이용한 축오차 측정장치의 광원부(100)는 핀홀시트(120)와, 집광렌즈(130) 및 콜리메이팅 렌즈(collimating lens)(140)를 포함하여 구성함으로써 레이저 발생기(110)로부터 제공되는 레이저광의 광특성이 안정화될 수 있게 되어 고품질의 평행광을 생성할 수 있게 되며, 이로 인한 축오차의 더욱 정밀한 보상을 이룰 수 있게 된다.In addition, the light source unit 100 of the axial error measuring apparatus using the parallel light of the present invention comprises a pinhole sheet 120, a condenser lens 130 and a collimating lens (140) by a laser generator The optical characteristics of the laser light provided from 110 can be stabilized to generate high quality parallel light, thereby achieving more accurate compensation of the axial error.
또한, 본 발명의 평행광을 이용한 축오차 측정장치는 하프미러(610)의 추가적 제공을 통해 복수의 축방향에 대한 직진도나 평탄도 및 회전을 측정하기 위한 평행광을 일괄적으로 제공할 수 있으며, 이로써 구조의 단순화 및 제어의 단순화를 이룰 수 있게 된다.In addition, the axial error measuring apparatus using the parallel light of the present invention can provide a parallel light for measuring the straightness, flatness and rotation in a plurality of axial direction through the additional provision of the half mirror 610, This simplifies the structure and simplifies the control.

Claims (6)

  1. 운동기구부가 동작되는 경로를 향하여 평행광을 조사할 수 있는 위치에 고정 설치되면서 평행광을 조사하는 광원부;A light source unit fixedly installed at a position capable of irradiating parallel light toward a path in which the exercise device is operated;
    이동 가능하게 설치된 운동기구부에 설치되며, 셋 이상 다수의 마이크로렌즈를 가지면서 상기 광원부로부터 조사된 평행광을 다수의 스팟으로 분할하는 마이크로렌즈 어레이;A microlens array installed in the movement mechanism part installed to be movable and having three or more microlenses and dividing the parallel light emitted from the light source into a plurality of spots;
    상기 마이크로렌즈 어레이를 통과하면서 다수로 분할된 스팟이 결상되는 촬영기구부; 그리고,An imaging mechanism unit configured to form a plurality of spots while passing through the microlens array; And,
    상기 촬영기구부에 의해 촬영된 영상으로부터 각 스팟들의 배열에 따른 변위를 확인하여 운동기구부의 각 동작 오차를 산출하는 컨트롤러;를 포함하여 구성됨을 특징으로 하는 평행광을 이용한 축오차 측정장치.And a controller for checking each displacement of the spots according to the arrangement of the spots from the image photographed by the photographing mechanism unit to calculate each operation error of the exercise apparatus.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 운동기구부는The exercise device unit
    X축으로 이동되는 X축 운동기구부와, Y축으로 이동되는 Y축 운동기구부와, Z축으로 이동되는 Z축 운동기구부 중 적어도 둘 이상의 운동기구부를 포함하여 이루어지며,It comprises at least two or more of the exercise mechanism portion of the X axis movement mechanism portion moved to the X axis, the Y axis movement mechanism portion moved to the Y axis, and the Z axis movement mechanism portion moved to the Z axis,
    상기 마이크로렌즈 어레이 및 촬영기구부는 상기 각 운동기구부 모두에 각각 구비됨을 특징으로 하는 평행광을 이용한 축오차 측정장치.And the microlens array and the photographing mechanism part are provided in all of the exercise mechanism parts, respectively.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 광원부는 상기 각 운동기구부의 수량과 동일한 수량으로 제공되면서 상기 각 운동기구부에 구비된 마이크로렌즈 어레이마다 각각의 평행광을 제공하도록 설치됨을 특징으로 하는 평행광을 이용한 축오차 측정장치.The light source unit is provided in the same quantity as the quantity of each of the sports equipment portion, the axis error measurement apparatus using parallel light, characterized in that installed to provide each parallel light for each microlens array provided in the sports equipment.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 광원부는 하나로 제공되면서 어느 한 운동기구부로 평행광을 제공하도록 설치됨과 더불어 상기 어느 한 운동기구부에 구비된 마이크로렌즈 어레이의 전방측에는 상기 광원부로부터 조사된 평행광의 일부를 분리하여 여타 운동기구부의 마이크로렌즈 어레이로 반사하는 하프미러가 더 구비됨을 특징으로 하는 평행광을 이용한 축오차 측정장치.The light source unit is provided as one and provided to provide parallel light to any one of the sports equipment units, and the front side of the microlens array provided in one of the sports equipment units separates a part of the parallel light emitted from the light source unit to separate the microlenses of the other sports equipment. An axial error measuring apparatus using parallel light, characterized in that the half mirror further reflects to the array.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 광원부는The light source unit
    레이저 광원을 제공하는 레이저 발생기와,A laser generator providing a laser light source,
    상기 레이저 발생기의 레이저 조사 방향측에 위치되면서 레이저 광원이 통과되는 핀홀이 형성되어 이루어진 핀홀시트와,A pinhole sheet formed with a pinhole through which a laser light source passes while being positioned at a laser irradiation direction side of the laser generator;
    상기 레이저 발생기와 상기 핀홀 사이에 위치되면서 상기 레이저 발생기로부터 발생된 광원이 상기 핀홀을 거치도록 집광하는 집광렌즈와,A condenser lens positioned between the laser generator and the pinhole and condensing a light source generated from the laser generator to pass through the pinhole;
    상기 핀홀의 후단에 위치되면서 상기 핀홀을 통과한 레이저 광원이 가우시언 광분포(gaussian intensity distribution) 형상을 가진 광원을 이룰 수 있도록 하는 콜리메이팅 렌즈(collimating lens)를 포함하여 구성됨을 특징으로 하는 평행광을 이용한 축오차 측정장치.Parallel light, characterized in that it comprises a collimating lens positioned at the rear end of the pinhole and passing through the pinhole to form a light source having a Gaussian intensity distribution shape. Axial error measurement device using.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 마이크로렌즈 어레이의 각 마이크로렌즈는 복수의 열과 복수의 행을 가지면서 규칙적으로 배열되도록 이루어짐을 특징으로 하는 평행광을 이용한 축오차 측정장치.And each microlens of the microlens array is arranged to be regularly arranged with a plurality of columns and a plurality of rows.
PCT/KR2016/010068 2015-11-26 2016-09-08 Axial offset measuring apparatus using parallel beams WO2017090871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150166034A KR101759971B1 (en) 2015-11-26 2015-11-26 apparatus for measurement on axis error using parallel beam
KR10-2015-0166034 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090871A1 true WO2017090871A1 (en) 2017-06-01

Family

ID=58764138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010068 WO2017090871A1 (en) 2015-11-26 2016-09-08 Axial offset measuring apparatus using parallel beams

Country Status (2)

Country Link
KR (1) KR101759971B1 (en)
WO (1) WO2017090871A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109373935A (en) * 2018-09-14 2019-02-22 九江精密测试技术研究所 The double-collimation measurement method of laser multiple spot
CN110243314A (en) * 2019-05-31 2019-09-17 武汉市武昌市政建设(集团)有限公司 A kind of road dental calculus laser directrix measuring device
CN114894122A (en) * 2022-04-26 2022-08-12 深圳市深视智能科技有限公司 Verticality measuring probe and measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030253B1 (en) * 2017-11-24 2019-10-08 창원대학교 산학협력단 A method for face milling machine of axial deflection compensation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066124A (en) * 1999-08-30 2001-03-16 Anritsu Corp Three-dimensional surface shape measuring device
JP2001237404A (en) * 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd Amplifying solid-state image pickup device
KR20110078597A (en) * 2009-12-31 2011-07-07 신국선 System for providing position of beam's axis and method for measuring displacement thereof
KR101275076B1 (en) * 2006-01-23 2013-06-14 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Image detection system and method for producing at least one image detection system
JP2015055561A (en) * 2013-09-12 2015-03-23 株式会社クラレ Defect inspection method and defect inspection device of microlens array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066124A (en) * 1999-08-30 2001-03-16 Anritsu Corp Three-dimensional surface shape measuring device
JP2001237404A (en) * 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd Amplifying solid-state image pickup device
KR101275076B1 (en) * 2006-01-23 2013-06-14 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Image detection system and method for producing at least one image detection system
KR20110078597A (en) * 2009-12-31 2011-07-07 신국선 System for providing position of beam's axis and method for measuring displacement thereof
JP2015055561A (en) * 2013-09-12 2015-03-23 株式会社クラレ Defect inspection method and defect inspection device of microlens array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109373935A (en) * 2018-09-14 2019-02-22 九江精密测试技术研究所 The double-collimation measurement method of laser multiple spot
CN110243314A (en) * 2019-05-31 2019-09-17 武汉市武昌市政建设(集团)有限公司 A kind of road dental calculus laser directrix measuring device
CN114894122A (en) * 2022-04-26 2022-08-12 深圳市深视智能科技有限公司 Verticality measuring probe and measuring device

Also Published As

Publication number Publication date
KR20170061268A (en) 2017-06-05
KR101759971B1 (en) 2017-07-24

Similar Documents

Publication Publication Date Title
WO2017090871A1 (en) Axial offset measuring apparatus using parallel beams
JP4647867B2 (en) Apparatus and method used to evaluate a target larger than the sensor measurement aperture
CN103940377B (en) Optical lens centre of sphere deviation measurement device
JP2016106225A (en) Three-dimensional measuring apparatus
JP2023160849A (en) Device and apparatus
JP2020524101A (en) Calibration of output radiation source focus of additive manufacturing equipment
KR101850222B1 (en) Apparatus and method for correcting axial error of three-dimensional printer
CN110785248A (en) Head system calibration of a power radiation source of an additive manufacturing device
WO2012177663A2 (en) Autofocus system with reference configuration
CN108351540A (en) Method and apparatus for checking power profile and property placed in the middle
CN106289086B (en) A kind of double camera measurement method for apart from Accurate Calibration between optical indicia point
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
JP2022522592A (en) Stereolithography device with detection unit for optical adjustment and image correction
JP2008251797A (en) Reference position detection apparatus and method, and drawing apparatus
JP2007052413A (en) Method and apparatus using hologram mask for printing composite pattern onto large substrate
CN107810399A (en) Manufacture the method and measuring system of the camera lens of lithographic equipment
TW201248338A (en) Exposure apparatus, exposure method, inspecting method of exposure apparatus and manufacturing method of display panel substrate
JP4197340B2 (en) 3D shape measuring device
JP3279979B2 (en) Wafer / mask position detection apparatus and deformation error detection method
JP2995238B2 (en) A scanning device that optically scans a surface along a line
JP2016001131A (en) Measurement device
JP2705778B2 (en) Projection exposure equipment
TWI796315B (en) Exposure device and exposure method
WO2018088827A1 (en) Device and method for measuring three-dimensional shape
CN108008607B (en) Measurement system giving consideration to alignment, focusing and leveling, measurement method thereof and photoetching machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868772

Country of ref document: EP

Kind code of ref document: A1