WO2017090749A1 - Shape acquisition device, target surface shape-equipped object production device, target surface shape-equipped object production method, and program - Google Patents

Shape acquisition device, target surface shape-equipped object production device, target surface shape-equipped object production method, and program Download PDF

Info

Publication number
WO2017090749A1
WO2017090749A1 PCT/JP2016/085042 JP2016085042W WO2017090749A1 WO 2017090749 A1 WO2017090749 A1 WO 2017090749A1 JP 2016085042 W JP2016085042 W JP 2016085042W WO 2017090749 A1 WO2017090749 A1 WO 2017090749A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
curvature
target surface
shape
minimum
Prior art date
Application number
PCT/JP2016/085042
Other languages
French (fr)
Japanese (ja)
Inventor
卓 前川
正仁 竹澤
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2017552743A priority Critical patent/JP6331207B2/en
Publication of WO2017090749A1 publication Critical patent/WO2017090749A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a shape acquisition device, a target surface shape object manufacturing apparatus, a target surface shape object manufacturing method, and a program.
  • Patent Document 1 discloses a technique for accurately obtaining the curvature of a curvature line.
  • the shape of the part of the surface to be formed can be formed on the plane using the curvature line, the shape of the part is formed on the plane and the parts are combined to form The shape of the surface can be formed.
  • the operation of forming the component can be performed relatively easily in that the shape of the component may be formed on a plane.
  • an error occurs in that the shape on the curved surface is developed on the plane. If this error can be distributed to each part on the plane, it is possible to prevent local concentration of strain on the formed surface.
  • the present invention provides a shape acquisition device, a target surface shape object manufacturing apparatus, a target surface shape object manufacturing method, and a program capable of dispersing errors that occur when forming the shape of a part of a target surface on a flat surface. To do.
  • the shape acquisition apparatus includes a target surface curvature line acquisition unit that obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface, and the formation target surface includes the maximum An on-plane area acquisition unit that obtains data indicating the shape of the area on the corresponding plane for each area divided by the main curvature line and the minimum main curvature line.
  • the on-plane area acquisition unit is configured to obtain the maximum principal curvature obtained by mapping a plane including a maximum principal curvature line partial line in which the maximum principal curvature line is a line divided by the minimum principal curvature line into a plane.
  • a corresponding line acquisition unit that obtains a minimum principal curvature direction corresponding line that is a line on a plane corresponding to the minimum main curvature line partial line, obtained by the mapping developed in the above, and forming the region of the formation target surface
  • the on-plane area acquisition unit calculates an angle formed by the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line, which is calculated based on the division area on the formation target surface and the corresponding planar division area. The sum of the squares of the differences between the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line and the minimum main curvature line partial line corresponding to the minimum main curvature direction corresponding line is minimized.
  • an angle determining unit that determines an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line may be provided.
  • the surface including the maximum principal curvature line partial line includes a vector of outer products of a normal vector of the formation target surface at a point on the maximum principal curvature line partial line and a tangent vector of the maximum principal curvature line partial line at the point.
  • a plane including the minimum principal curvature line partial line is a cross product of a normal vector of the formation target surface at a point on the minimum principal curvature line partial line and a tangent vector of the minimum principal curvature line partial line at the point
  • the target surface curvature line acquisition unit performs a plurality of processes for obtaining the plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions.
  • the on-plane region acquisition unit is on a plane constituted by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line corresponding to the plurality of maximum main curvature lines and the plurality of minimum main curvature lines. Data indicating the shape of the region may be obtained.
  • the target surface curvature line acquisition unit determines a start point for obtaining a target main curvature line that is either a maximum main curvature line or a minimum main curvature line on the formation target surface, and configures the target main curvature line
  • the processing for obtaining the points following the point in order is to reach the boundary of the formation target surface, reach a region where the Gaussian curvature is equal to or less than the curvature threshold value, or the target of the acquired maximum main curvature line and minimum main curvature line
  • the process may be repeated until the distance between the main curvature line and the same type of curvature line reaches a point that is equal to or less than the distance threshold.
  • the on-plane area acquisition unit is configured to connect the areas on the plane according to the arrangement in the direction along the maximum principal curvature line of the area on the formation target surface, and the data on the formation target surface. You may make it obtain
  • the target surface shape object manufacturing apparatus is arranged on the plane according to the shape acquisition device and the arrangement in the direction along the maximum principal curvature line of the region in the formation target surface.
  • a shape processing unit that processes the material into a shape in which the regions on the plane are connected in accordance with the shape in which the regions are connected, or according to the arrangement in the direction along the minimum principal curvature line of the region on the formation target surface;
  • a forming target surface forming portion that combines the materials processed by the shape processing portion into a forming target surface shape.
  • the shape processing portion includes a first member that processes a material into a shape in which the regions on the plane are joined together in accordance with the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface, and the formation According to the arrangement of the regions on the target surface in the direction along the minimum principal curvature line, a second member obtained by processing the material into a shape obtained by joining the regions on the plane is generated, and the formation target surface forming unit is The first member and the second member may be combined in a staggered manner to form a surface shape for formation.
  • the target surface shape object manufacturing method determines a starting point for obtaining a target main curvature line that is either the maximum main curvature line or the minimum main curvature line in the formation target surface, and The process of obtaining the points following the start point constituting the target main curvature line in order is reached by reaching the boundary of the formation target surface, reaching a region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired maximum main curvature line And the process of determining the start point and the process of determining a point on the target main curvature line until the distance between the target main curvature line and the same type of curvature line among the minimum main curvature lines reaches a point equal to or less than a distance threshold.
  • a plurality of the maximum main curvature lines and a plurality of the minimum main curvature lines are repeatedly obtained, and for each area where the formation target surface is divided by the maximum main curvature lines and the minimum main curvature lines, Shape showing A shape obtained by joining the regions on the plane according to the arrangement in the direction along the maximum principal curvature line of the region on the formation target surface, or the minimum principal curvature of the region on the formation target surface
  • the material is processed into a shape obtained by joining the regions on the plane, and the processed material is combined to obtain a surface shape for formation.
  • Processing the material generates a first member by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface. And generating a second member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the minimum principal curvature line of each region on the formation target surface.
  • the formation of the surface shape for the purpose of formation may include the formation of the surface shape for the purpose of formation by alternately combining the first member and the second member.
  • the program causes a computer to obtain a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface, and the formation target surface is the maximum main curvature line and the minimum main curvature line.
  • This is a program for obtaining data indicating the shape of a region on a plane associated with the region for the region divided by the main curvature line.
  • target surface shape object manufacturing device According to the above-described shape acquisition device, target surface shape object manufacturing device, target surface shape object manufacturing method, and program, it is possible to disperse errors that occur when forming the shape of the part of the target surface on the plane.
  • FIG. 1 is a schematic block diagram showing a functional configuration of a target surface shape object manufacturing apparatus according to the first embodiment of the present invention.
  • the target surface shape object manufacturing apparatus 100 includes a target surface curvature line acquisition unit 110, an on-plane area acquisition unit 120, a shape processing unit 130, and a formation target surface formation unit 140.
  • the on-plane area acquisition unit 120 includes a corresponding line acquisition unit 121, a connection relationship determination unit 122, and an angle determination unit 123.
  • the target surface shape object manufacturing apparatus 100 processes a planar material to form a target surface shape.
  • the material referred to here is an original object for generating a target shape object.
  • the target surface shape here is the shape of the formation target surface.
  • a target surface shape object is a thing which has the shape of a formation target surface.
  • the formation target surface is a surface for the formation purpose.
  • the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface.
  • the maximum main curvature line and the minimum main curvature line will be described with reference to FIGS. 2 and 3.
  • FIG. 2 is an explanatory diagram showing an example of the normal curvature.
  • a point P11 in FIG. 2 is a point on the curved surface F11.
  • a normal vector N11 of the curved surface F11 at the point P11 is shown.
  • the point on the surface here is a point included in the surface.
  • a line included in a surface is referred to as a line on the surface. Points included in the line are referred to as points on the line.
  • a region included in the surface is referred to as a region on the surface.
  • the curvature vector k11 in FIG. 2 is a curvature vector at the point P11.
  • This curvature vector k11 can be decomposed into a normal curvature vector k11 n and a geodesic curvature vector k11 g .
  • the normal curvature vector k11 n is a component in the direction of the normal vector N11 of the curvature vector k11 (the normal direction of the curved surface F11).
  • the geodesic curvature vector k11 g is a component in the direction of the vector U11 obtained by outer product of the normal vector N11 and the tangent vector t11 of the curvature vector k11 (perpendicular to the normal direction of the curved surface F11). That is, the curvature vector k11 is expressed as in Expression (1).
  • the normal curvature is a value indicating the direction and size of the normal curvature vector k11 n .
  • the front and back of the curved surface F11 are defined, and the normal vector N11 is shown on the front side of the curved surface F11. That is, the normal vector N11 is represented by a vector of the direction from the back side to the front side of the curved surface F11.
  • the normal curvature vector k11 n is the direction of the normal vector
  • the normal curvature takes a positive value of the magnitude of the normal curvature vector k11 n .
  • the normal curvature takes a negative value of the magnitude of the normal curvature vector k11 n .
  • how to determine the front and back of the curved surface F11 is arbitrary. That is, the following description does not depend on which surface of the curved surface F11 is determined as the surface.
  • a curvature line is a line in which each tangent to the curvature line at each point on the curvature line is oriented in the main curvature direction at that point.
  • a line in which the tangent line at each point is directed to the maximum principal curvature direction is referred to as a maximum principal curvature line.
  • a line in which each tangent at each point faces the minimum principal curvature direction is referred to as a minimum principal curvature line.
  • the maximum principal curvature line can be obtained starting from a point on the curved surface (any point other than the umbilic point) and following in the direction of the maximum principal curvature. Also, starting from a point on the curved surface (any point other than the umbilic point) and tracing in the direction of the minimum principal curvature, a minimum principal curvature line can be obtained.
  • the maximum main curvature line and the minimum main curvature line are collectively referred to as a curvature line.
  • the umbilical point is a point where the normal curvature has the same value in any direction.
  • FIG. 3 is an explanatory diagram illustrating an example of a maximum main curvature line and a minimum main curvature line.
  • FIG. 3 shows a curved surface F21, maximum main curvature lines L21-1 to L21-17 of the curved surface F21, and minimum main curvature lines L22-1 to L22-9 of the curved surface F21.
  • the maximum main curvature line L21-6 can be obtained by sequentially following the directions of the arrow B211 and the arrow B212 in the maximum main curvature direction.
  • the minimum main curvature line L22-6 is obtained by sequentially following the direction of the arrow B221 and the direction of the arrow B222 in the minimum main curvature direction.
  • the target surface curvature line acquisition unit 110 acquires data indicating the shape of the formation target surface as CAD (Computer Aided Design) data. Then, the target surface curvature line acquisition unit 110 specifies a plurality of points on the formation target surface, and acquires a plurality of maximum main curvature lines starting from each of the specified plurality of points and sequentially tracing in the maximum main curvature direction. . Further, the target surface curvature line acquisition unit 110 specifies a plurality of points on the formation target surface, and acquires a plurality of minimum main curvature lines starting from each of the specified plurality of points and sequentially tracing in the minimum main curvature direction. .
  • CAD Computer Aided Design
  • the point specified by the target surface curvature line acquisition unit 110 for obtaining the maximum main curvature line and the point specified for obtaining the minimum main curvature line may be the same point or different points.
  • the point specified by the target surface curvature line acquisition unit 110 as the formation target surface corresponds to a calculation start point at which the target surface curvature line acquisition unit 110 starts processing for obtaining the maximum main curvature line and the minimum main curvature line.
  • the processing performed by the target surface curvature line acquisition unit 110 corresponds to an example of processing in the target surface curvature line acquisition step.
  • the on-plane area acquisition unit 120 obtains an area on the plane associated with this area for each area where the formation target surface is divided by the maximum main curvature line and the minimum main curvature line.
  • the on-plane area acquisition unit 120 obtains data indicating the shape of the area on the plane.
  • the process performed by the on-plane area acquisition unit 120 corresponds to an example of the process at the on-plane area acquisition step.
  • each region in which the formation target surface is divided by the maximum main curvature line and the minimum main curvature line is referred to as a target surface mesh region.
  • Each of the regions divided by the maximum main curvature line and the minimum main curvature line in FIG. 3 corresponds to an example of the target surface mesh region.
  • a region surrounded by the maximum principal curvature line, the minimum principal curvature line, and the edge (boundary) line of the formation target surface is also an example of the target surface mesh region.
  • a region on a plane corresponding to the target surface mesh region is referred to as a plane mesh region.
  • the corresponding line acquisition unit 121 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line.
  • a line in which the maximum main curvature line is divided by the minimum main curvature line is referred to as a maximum main curvature line partial line.
  • the line on the plane corresponding to this maximum main curvature line partial line obtained by mapping the developable surface including the maximum main curvature line partial line to a plane without expansion or contraction is referred to as the maximum main curvature direction corresponding line.
  • a line in which the minimum main curvature line is divided by the maximum main curvature line is referred to as a minimum main curvature line partial line.
  • the line on the plane corresponding to the minimum main curvature line partial line obtained by mapping the developable surface including the minimum main curvature line partial line to a plane without expansion or contraction is referred to as the minimum main curvature direction corresponding line. Called.
  • the maximum main curvature line partial line and the minimum main curvature line partial line are collectively referred to as a curvature line partial line.
  • the developable surface here is a curved surface that can be developed on a plane without being expanded or contracted. It is known that the developable surface and the plane obtained by developing the developable surface on a plane are Isometric Surface. It is also known that the geodesic curvature of the corresponding curves on the Isometric Surface is equal. Therefore, by expanding the developable surface on a plane without expanding or contracting, the curvature line on the expandable surface can be expanded on the plane while maintaining the geodesic curvature of the curvature line.
  • the geodesic curvature is a value indicating the magnitude of the geodesic curvature vector.
  • the size of the geodesic curvature vector k g is, corresponds to an example of the geodesic curvature. Further, by expanding the developable surface on a plane without expanding and contracting, the curvature line on the expandable surface can be expanded on the plane while maintaining the length of the curvature line.
  • the developable surface used by the corresponding line acquisition unit 121 is the outer product of the normal vector of the formation target surface at this point and the tangent vector of the maximum main curvature line partial line at each point on the maximum main curvature line partial line. And the vector of the outer product of the normal vector of the target surface at this point and the tangent vector of the minimum principal curvature line at this point at each point on the minimum principal curvature line. It may be a surface.
  • the corresponding line acquisition unit 121 calculates the outer product of the normal vector of the formation target surface at this point and the tangent vector of the maximum main curvature line partial line at each point on the maximum main curvature line partial line.
  • the maximum principal curvature direction correspondence line may be acquired by conversion that develops a developable surface including the vector into a plane without expansion and contraction.
  • the corresponding line acquisition unit 121 calculates the vector of the outer product of the normal vector of the formation target surface at this point and the tangent vector of the minimum main curvature line partial line at this point at each point on the minimum main curvature line partial line. You may make it acquire the minimum main curvature direction corresponding
  • FIG. 4 is an explanatory diagram showing an example of the outer product of the normal vector of the curved surface and the tangent vector of the curvature line partial line.
  • the curvature line partial line L31 on the curved surface F31 is shown.
  • the point P31 is a point on the curvature line partial line L31.
  • a normal vector N31 of the curved surface F31 at the point P31 and a tangent vector t31 of the curvature line partial line L31 at the point P31 are shown.
  • the vector U31 is a vector of the outer product of the normal vector N31 and the tangent vector t31. That is, the vector U31 is expressed as shown in Equation (2).
  • FIG. 5 is an explanatory diagram showing an example of a developable surface obtained from the outer product of the normal vector of the curved surface and the tangent vector of the curvature line partial line.
  • the curvature line partial line L41 on the curved surface F41 is shown.
  • the points P41-1, P41-2, and P41-3 are all lines on the curvature line partial line L41.
  • normal vectors N41-1, N41-2, and N41-3 of the curved surface F41 at points P41-1, P41-2, and P41-3 are shown.
  • tangent vectors t41-1, t41-2, and t41-3 of the curvature line partial line L41 at the points P41-1, P41-2, and P41-3 are shown.
  • the vector U41-1 is the outer product of the normal vector N41-1 and the tangent vector t41-1.
  • the vector U41-2 is the outer product of the normal vector N41-2 and the tangent vector t41-2.
  • the vector U41-3 is the outer product of the normal vector N41-3 and the tangent vector t41-3.
  • These vectors U41-1, U41-2, U41-3 are part of the outer product of the normal vector of the curved surface F41 and the tangent vector of the curvature line partial line L41 at each point on the curvature line partial line L41. Applicable.
  • the curved surface F41 corresponds to an example of a formation target surface.
  • the curved surface F42 corresponds to an example of a surface including the curvature line partial line L41.
  • the curved surface F42 is a surface including a vector of the outer product of the normal vector of the formation target surface at this point and the tangent vector of the curvature line partial line at this point at each point on the curvature line partial line L41.
  • the curved surface F42 is a developable surface.
  • the curvature line partial line L42 is the maximum main curvature line partial line
  • the curved surface F42 corresponds to an example of a surface including the maximum main curvature line partial line.
  • the surface including the maximum principal curvature line partial line includes an outer product vector of the normal vector of the formation target surface at the point on the maximum principal curvature line partial line and the tangent vector of the maximum principal curvature line partial line at this point.
  • the curved surface F42 corresponds to an example of a surface including the minimum main curvature line partial line.
  • the surface including the minimum main curvature line partial line includes an outer product vector of the normal vector of the formation target surface at the point on the minimum main curvature line partial line and the tangent vector of the minimum main curvature line partial line at this point.
  • the corresponding line acquisition unit 121 converts the curvature line partial line included in the expandable surface into a line on the plane by performing conversion to expand the expandable surface into a plane without expansion and contraction.
  • the corresponding line acquisition unit 121 acquires the maximum main curvature direction corresponding line by performing this conversion on the maximum main curvature line partial line.
  • the corresponding line acquisition unit 121 acquires the minimum main curvature direction corresponding line by performing this conversion on the minimum main curvature line partial line.
  • the processing performed by the corresponding line acquisition unit 121 corresponds to an example of processing in the corresponding line acquisition step.
  • the connection relationship determining unit 122 acquires a planar mesh region associated with the target surface mesh region according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. Specifically, the connection relationship determination unit 122 determines the maximum main curvature line portion line and the minimum main curvature line portion according to the connection relationship between the maximum main curvature line portion line and the minimum main curvature line portion line that form the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the line is determined.
  • connection relationship determining unit 122 connects the maximum main curvature line partial line, the minimum main curvature line partial line, and the edge of the formation target surface. Accordingly, a plane mesh region associated with the target surface mesh region is acquired.
  • FIG. 6 is an explanatory diagram showing an example of a maximum main curvature line partial line and a minimum main curvature line partial line that constitute the target surface mesh region.
  • the target surface mesh area A51 on the curved surface F51 is shown.
  • the target surface mesh area A51 is an area surrounded by the maximum main curvature line partial lines L511-1 and L511-2 and the minimum main curvature line partial lines L512-1 and L512-2.
  • the maximum main curvature line partial line L511-1 and the minimum main curvature line partial line L512-2 are connected.
  • the minimum main curvature line partial line L512-1 and the maximum main curvature line partial line L511-1 are connected.
  • the maximum main curvature line partial line L511-2 and the minimum main curvature line partial line L512-1 are connected.
  • the minimum main curvature line partial line L512-2 and the maximum main curvature line partial line L511-2 are connected.
  • FIG. 7 is an explanatory diagram illustrating an example of a planar mesh region.
  • the planar mesh area A52 shown in FIG. 7 is associated with the target mesh area A51 shown in FIG.
  • the maximum main curvature direction corresponding lines L521-1 and L521-2 are respectively associated with the maximum main curvature line partial lines L511-1 and L511-2.
  • the minimum main curvature direction corresponding lines L522-1, L522-2 are respectively associated with the minimum main curvature line partial lines L512-1, L512-2.
  • the connection relationship determining unit 122 connects the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line with the same orientation and connection relationship as the maximum main curvature line partial line and the minimum main curvature line partial line before mapping.
  • the maximum main curvature line partial line L511-1 and the minimum main curvature line partial line L512-2 are connected in FIG. Therefore, the connection relationship determining unit 122 connects the maximum main curvature direction corresponding line L521-1 and the minimum main curvature direction corresponding line L522-2.
  • the maximum main curvature direction corresponding line L521-1 is a line obtained by mapping the maximum main curvature line partial line L511-1 to the plane F 52 by the corresponding line acquisition unit 121.
  • the minimum main curvature direction corresponding line L522-2 is a line obtained by mapping the minimum main curvature line partial line L512-2 to the plane F52 by the corresponding line acquisition unit 121.
  • the end portion on the point P521 side of the maximum main curvature direction corresponding line L521-1 corresponds to the end portion on the point P511 side of the maximum main curvature line partial line L511-1 in FIG.
  • the direction of the maximum principal curvature direction corresponding line L521-1 is determined so as to be the end.
  • connection relationship determination unit 122 connects the connection relationships at the points P522, P523, and P524 so that the connection relationship corresponds to the connection relationship at the points P512, P513, and P514 in FIG. Further, the connection relationship determining unit 122 is configured such that the end on the point P522 side of the minimum main curvature direction corresponding line L522-1 corresponds to the end on the point P512 side of the minimum main curvature line partial line L512-1 in FIG. The direction of the minimum principal curvature direction corresponding line L522-1 is determined so as to be a part.
  • connection relationship determining unit 122 is configured such that the end on the point P523 side of the maximum main curvature direction corresponding line L521-2 corresponds to the end on the point P513 side of the maximum main curvature line partial line L511-2 in FIG. The direction of the maximum principal curvature direction corresponding line L521-2 is determined so as to be a part. Further, the connection relationship determining unit 122 is configured such that the end on the point P524 side of the minimum main curvature direction corresponding line L522-2 corresponds to the end on the point P514 side of the minimum main curvature line partial line L512-2 in FIG. The direction of the minimum principal curvature direction corresponding line L522-2 is determined so as to be a part.
  • connection relationship determining unit 122 supports the maximum principal curvature direction so that the orientation and connection relationship of the maximum main curvature line partial line and the minimum main curvature line partial line surrounding the target surface mesh region are expanded in a plane.
  • the plane mesh region is obtained by determining the direction and connection relationship between the line and the minimum principal curvature direction corresponding line.
  • the processing performed by the connection relationship determination unit 122 corresponds to an example of processing in the connection relationship determination step.
  • the angle determination unit 123 determines an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line constituting the planar mesh. Specifically, the angle determination unit 123 determines the angle formed by the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line, the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line, and the minimum main curvature direction corresponding line. The difference between the angle formed by the minimum main curvature line partial line corresponding to the curvature direction corresponding line is connected to the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line in the connection relationship determined by the connection relationship determining unit 122.
  • the angle determination part 123 determines the angle which the largest main curvature direction corresponding line and the minimum main curvature direction corresponding line make. As the angle formed by the two curves, the angle formed by the tangent lines of these two curves at the point where these two curves are connected can be used.
  • the maximum main curvature line and the minimum main curvature line are orthogonal to each other. Therefore, the maximum main curvature line partial line and the minimum main curvature line partial line are orthogonal to each other.
  • the curved surface of the target surface mesh region is usually not a developable surface. For this reason, in the plane mesh region, the angle between the maximum main curvature line and the minimum main curvature line in the target surface mesh region cannot be completely reproduced.
  • FIG. 8 shows that the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line are set so that the angle determination unit 123 completely reproduces the angle between the maximum principal curvature line and the minimum principal curvature line in the target surface mesh region.
  • the angle determining unit 123 determines that the maximum main curvature direction corresponding line L521-1 and the minimum main curvature direction corresponding line L522-2 are point P 521. The angle formed by is determined to be a right angle.
  • the angle determining unit 123 determines the angle formed by the minimum main curvature direction corresponding line L522-1 and the maximum main curvature direction corresponding line L521-1 at the point P522 as a right angle. Further, the angle determination unit 123 determines the angle formed by the maximum principal curvature direction correspondence line L521-2 and the minimum principal curvature direction correspondence line L522-1 at the point P 523 as a right angle.
  • the end of the minimum main curvature direction corresponding line L522-2 and the end of the maximum main curvature direction corresponding line L521-2 do not overlap.
  • the angles formed by the maximum principal curvature direction corresponding line surrounding the planar mesh region and the minimum main curvature direction corresponding line are all the maximum main curvature line partial lines surrounding the original target surface mesh region. It is not possible to match the angle formed with the minimum main curvature line partial line.
  • the angle determination unit 123 determines the angle formed between the maximum principal curvature direction corresponding line surrounding the planar mesh region and the minimum main curvature direction corresponding line, the maximum main curvature line partial line surrounding the original target surface mesh region, and the minimum main curvature. The difference from the angle formed with the line partial line is dispersed in the plane mesh region.
  • FIG. 9 is an explanatory diagram illustrating an example of an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line surrounding the planar mesh region.
  • FIG. 9 shows a planar mesh region A54 surrounded by maximum main curvature direction corresponding lines L531-1 and L531-2 and minimum main curvature direction corresponding lines L532-1 and L532-2.
  • the maximum main curvature direction corresponding line L531-1 and the minimum main curvature direction corresponding line L532-2 are connected at the vertex P530 of the planar mesh region A54.
  • the minimum main curvature direction corresponding line L532-1 and the maximum main curvature direction corresponding line L531-1 are connected at the vertex P531 of the planar mesh region A54.
  • the maximum main curvature direction corresponding line L531-2 and the minimum main curvature direction corresponding line L532-1 are connected by the vertex P532 of the planar mesh region A54.
  • the minimum main curvature direction corresponding line L532-2 and the maximum main curvature direction corresponding line L531-2 are connected by a vertex P533 of the planar mesh region A54. Vertices of planar mesh area A54 P530, P531, P532, the angle of the P533, respectively ⁇ 0, ⁇ 1, ⁇ 2 , ⁇ 3 and notation.
  • the vertices P531 and P530 are connected by a line segment L540.
  • the vertices P532 and P531 are connected by a line segment L541.
  • the vertices P533 and P532 are connected by a line segment L542.
  • the vertices P530 and P533 are connected by a line segment L543.
  • the line segments L540, L541, L542, and L543 form a quadrangle. Accordingly, the vertices P530, P531, P532, and P533 are also quadrangular vertices.
  • the angles of the vertices P530, P531, P532, and P533 of the quadrangle are expressed as ⁇ 0 , ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively.
  • ⁇ 0 when any one of ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 0 , ⁇ 1 , ⁇ 2, and ⁇ 3 is determined, another angle is also determined.
  • ⁇ 0 as a parameter, ⁇ 1 ( ⁇ 0 ), ⁇ 2 ( ⁇ 0 ), ⁇ 3 ( ⁇ 0 ), ⁇ 0 ( ⁇ 0 ), ⁇ 1 ( ⁇ 0 ), ⁇ 2 ( ⁇ 0 ), It can be expressed as ⁇ 3 ( ⁇ 0 ).
  • Equation (3) the relationship between the vertex angles ⁇ 0 , ⁇ 1 , ⁇ 2 and ⁇ 3 of the planar mesh region A54 and the square vertex angles ⁇ 0 , ⁇ 1 , ⁇ 2 and ⁇ 3 is expressed by Equation (3). Shown in
  • [delta] 0_1 is, the maximum principal curvature direction corresponding line L531-1 and the line segment L540 is a constant indicating the angle formed at the apex P530.
  • positive and negative values of [delta] 0_1 is line L540 for the maximum principal curvature direction corresponding line L531-1 is negative when a certain case in the clockwise side as viewed toward 9 to positive, counterclockwise side
  • ⁇ 0_1 since the line segment L540 is in the counterclockwise side with respect to the maximum principal curvature direction corresponding line L531-1, ⁇ 0_1 has a negative value.
  • [delta] 0_2 has a minimum principal curvature direction corresponding line L532-2 and the line segment L543 is a constant indicating the angle formed at the apex P530.
  • positive and negative values of [delta] 0_2 is line L543 for the minimum principal curvature direction corresponding line L532-2 is negative when there a case where the left-handed side as viewed toward 9 to positive, clockwise side
  • ⁇ 0_2 takes a positive value.
  • ⁇ 1_1 is a constant indicating the angle formed between the minimum principal curvature direction corresponding line L532-1 and the line segment L541 at the vertex P531.
  • the value of ⁇ 1_1 is positive when the line segment L541 is on the clockwise side as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-1, and is negative when the line segment L541 is on the counterclockwise side.
  • ⁇ 1_1 takes a negative value.
  • ⁇ 1_2 is a constant indicating the angle formed by the maximum principal curvature direction corresponding line L531-1 and the line segment L540 at the vertex P531.
  • the sign of ⁇ 1_2 is positive when the line segment L540 is on the left-handed side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-1, and is negative when it is on the right-handed side.
  • ⁇ 1_2 takes a negative value.
  • ⁇ 2_1 is a constant indicating an angle formed by the vertex P532 between the maximum principal curvature direction corresponding line L531-2 and the line segment L542.
  • the value of ⁇ 2_1 is positive when the line segment L542 is on the clockwise side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-2, and negative when the line segment L542 is on the counterclockwise side.
  • ⁇ 2_1 takes a negative value.
  • ⁇ 2_2 is a constant indicating the angle formed between the minimum principal curvature direction corresponding line L532-1 and the line segment L541 at the vertex P532.
  • the sign of ⁇ 2_2 is positive when the line segment L541 is on the counterclockwise side as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-1, and negative when the segment is on the clockwise side.
  • ⁇ 2_2 takes a negative value.
  • [delta] 3_1 has a minimum principal curvature direction corresponding line L532-2 and the line segment L543 is a constant indicating the angle formed at the apex P533.
  • the sign of ⁇ 3_1 is positive when the line segment L543 is in the clockwise direction as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-2 and negative in the case of the counterclockwise side.
  • ⁇ 3_1 takes a positive value.
  • ⁇ 3_2 is a constant indicating the angle formed by the maximum principal curvature direction corresponding line L531-2 and the line segment L542 at the vertex P533.
  • the sign of ⁇ 3_2 is positive when the line segment L542 is on the counterclockwise side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-2 and negative when it is on the clockwise side.
  • ⁇ 3_2 takes a negative value.
  • the angle determination unit 123 solves the optimization problem that minimizes the value of the optimization function F ( ⁇ 0 ) expressed by, for example, Expression (4). Thereby, the angle determination unit 123 calculates the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the target surface mesh area, and the maximum curvature direction corresponding line and the minimum curvature direction corresponding line surrounding the planar mesh area. The difference from the angle formed is equalized in the planar mesh area.
  • the right side of the equation (4) includes the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the plane mesh area, the maximum curvature line partial line and the minimum curvature line partial line surrounding the target plane mesh area, and Is the sum of the squares of the differences from each of the angles (both are 90 °).
  • the angle determination unit 123 obtains ⁇ 0 that satisfies Expression (5) using, for example, the Newton method.
  • F ′ ( ⁇ 0 ) is a function obtained by first-order differentiation of the optimization function F ( ⁇ 0 ) with ⁇ 0 .
  • the angle determination unit 123 obtains ⁇ 0 that satisfies Expression (5), whereby the angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line and the maximum main curvature corresponding to the maximum main curvature direction corresponding line.
  • the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line so that the sum of the squares of the differences between the angle formed by the line partial line and the minimum principal curvature direction partial line corresponding to the minimum principal curvature direction correspondence line is minimized. Determine the angle between.
  • the number of vertices of the corresponding planar mesh region may be other than 4 when the umbilical point is included in the target surface mesh region and in the vicinity of the edge (boundary) of the formation target surface.
  • the angle determination unit 123 obtains the angle of each vertex using an expression that generalizes Expression (5).
  • FIG. 10 is an explanatory diagram illustrating an example in which a planar mesh region is approximated by an N-gon (N is the number of vertices of the planar mesh region).
  • N is the number of vertices of the planar mesh region.
  • N-3 diagonal lines are drawn between the vertex V N-1 and the vertexes V 1 , V 2 ,..., V N-3 shown in FIG.
  • the N-gon is divided into N-2 triangles.
  • the angle determination unit 123 is known about the length of each side of the N-gon in FIG.
  • the angle determination unit 123 obtains the angle of each vertex of the N-gon from Equation (6).
  • the value of ⁇ i can be greater than ⁇ (180 °).
  • the value of ⁇ i and the value of ⁇ i are determined as in equation (8).
  • ⁇ N-3 is not a variable.
  • the sign of ⁇ N ⁇ 3 is determined by comparison with the target angle.
  • the angle determination unit 123 obtains the angle of the line segment at each vertex by connecting the vertices with the line segment in the target surface mesh region, for example. Then, the angle determination unit 123 sets the obtained angle as the target angle ⁇ 0 ... ⁇ N ⁇ 1 and solves the optimization problem that minimizes the value of the objective function shown in Equation (9).
  • the angle determination unit 123 calculates the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the target surface mesh area, and the maximum curvature direction corresponding line and the minimum curvature direction corresponding line surrounding the planar mesh area. Equalize the difference from the angle you make. In order to minimize the value of the function shown in Expression (9), the angle determination unit 123 obtains values of ⁇ 0 , ⁇ 1 ,..., ⁇ N ⁇ 4 that satisfy Expression (10).
  • equation (12) the equation of Newton's method is shown as equation (12).
  • the angle determination unit 123 solves the equation (12) using Newton's method, and the angle formed by the maximum curvature line partial line and the minimum curvature line partial line surrounding the target mesh area and the maximum curvature direction surrounding the planar mesh area. The difference between the angle between the corresponding line and the minimum curvature direction corresponding line is equalized.
  • the angle determination unit 123 sets the maximum main curvature direction corresponding line and the formation purpose.
  • the angle between the line corresponding to the edge of the surface and the angle between the line corresponding to the maximum principal curvature direction and the line corresponding to the edge of the formation target surface are also determined.
  • the determination method the same method as described above can be used.
  • the method by which the angle determination unit 123 determines the angle formed by the line surrounding the planar mesh region is not limited to the method described above.
  • the angle determination unit 123 may determine the angle formed by the line surrounding the planar mesh region by determining the angle ⁇ 1 to 90 degrees.
  • the angle determination unit 123 may determine one or more of the angles formed by the lines surrounding the planar mesh region as a predetermined angle.
  • the process performed by the angle determination unit 123 corresponds to an example of the process in the angle determination step.
  • the shape processing unit 130 is formed by joining regions on the plane (planar mesh regions) according to the arrangement in the direction along the maximum principal curvature line of the regions (target surface mesh regions) on the formation target surface, The material is processed into a shape in which the regions on the plane are joined together in accordance with the arrangement in the direction along the minimum principal curvature line of each region on the surface. For example, the shape processing unit 130 generates a first member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the maximum principal curvature line of each region on the formation target surface.
  • the shape processing unit 130 generates a second member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the minimum main curvature line of each region on the formation target surface.
  • a member here is a thing before a combination obtained by changing a raw material, such as cutting a raw material.
  • the formation target surface is formed by joining the members.
  • FIG. 11 is an explanatory diagram illustrating an example of a development view acquired by the shape processing unit 130.
  • FIG. 11A shows an example of the formation target surface.
  • Part (B) of FIG. 11 shows an example of a development view obtained by joining the planar mesh regions according to the arrangement in the direction along the maximum principal curvature line.
  • (C) part of FIG. 11 shows the example of the expanded view obtained by connecting a planar mesh area
  • the thing obtained by processing a raw material according to the developed view of part (B) in FIG. 11 corresponds to an example of the first member.
  • the thing obtained by processing a raw material according to the expanded view of the (C) part of FIG. 11 corresponds to an example of the second member.
  • a maximum main curvature line L611, a minimum main curvature line L621, maximum main curvature line partial lines L631 to L635, and minimum main curvature line partial lines L641 to L645 are shown. Yes. Further, a target mesh area A611 is formed surrounded by the maximum main curvature line partial lines L631 and L633 and the minimum main curvature line partial lines L641 and L642. A target mesh area A612 is formed by being surrounded by the maximum main curvature line partial lines L632 and L634 and the minimum main curvature line partial lines L642 and L643. A target mesh area A613 is formed surrounded by the maximum main curvature line partial lines L634 and L635 and the minimum main curvature line partial lines L644 and L645.
  • the maximum main curvature direction corresponding lines L671, L672, L673, L674, and L675 shown in the portion (B) of FIG. 11 are expanded on the plane of the maximum main curvature line partial lines L631, L632, L633, L634, and L635, respectively. This is the line obtained.
  • the minimum main curvature direction corresponding lines L681, L682, L683, L684, and L685 are lines obtained by expanding the minimum main curvature line partial lines L641, L642, L643, L644, and L645 on a plane, respectively.
  • planar mesh regions A621, A622, A623 are: , Are respectively associated with the target surface mesh areas A611, A612, and A613.
  • the planar mesh region of the part (B) in FIG. 11 is arranged by joining in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh area in the formation target surface of the part (A) in FIG.
  • the target surface mesh regions A611 and A612 are arranged in contact with each other along the maximum principal curvature line L611.
  • the planar mesh regions A621 and A622 are arranged in contact with each other in the portion (B) of FIG.
  • each of the planar mesh regions A621 and A622 includes a minimum main curvature direction corresponding line L682, and is in contact with the minimum main curvature direction corresponding line L682.
  • the planar mesh regions can be joined together without gaps, and a development view can be configured. Therefore, it is not necessary to deform the plane mesh regions for joining, and in this respect, a development view with a small distortion from the shape of the formation target surface can be obtained.
  • the portions to be joined when assembling the formation target surface from the development view are configured by the same maximum principal curvature direction corresponding line.
  • the target surface mesh regions A612 and A613 are in contact with each other at the maximum principal curvature line partial line L634.
  • the planar mesh regions A622 and A623 in the portion (B) of FIG. 11 are connected.
  • Each of the planar mesh regions A622 and A623 is configured to include a maximum principal curvature direction corresponding line L674.
  • the target surface mesh regions A612 and A613 are joined and connected by the maximum principal curvature direction corresponding line L674.
  • the formation target surface is assembled by connecting the portions shown in the development view with the same maximum principal curvature direction corresponding line, so that it is not necessary to deform the portion when assembling the development view.
  • planar mesh region in the part (C) of FIG. 11 is an arrangement in which the target mesh region in the formation target surface of the part (A) in FIG. 11 is connected according to the arrangement in the direction along the minimum principal curvature line. For example, in the part (A) of FIG.
  • the target surface mesh regions A612 and A613 are aligned in the direction along the minimum main curvature line L621 and are in contact with each other at the maximum main curvature line partial line L634.
  • the planar mesh regions A622 and A623 are arranged in contact with each other at the maximum principal curvature direction corresponding line L674.
  • the planar mesh region is in contact with the same line corresponding to the maximum principal curvature direction.
  • each of the planar mesh regions A622 and A623 includes a maximum principal curvature direction corresponding line L674 and is in contact with the maximum main curvature direction correspondence line L674.
  • the portions that are to be joined when assembling the formation target surface from the development view are configured by the same minimum principal curvature direction corresponding line.
  • the target surface mesh regions A611 and A612 are in contact with each other at the minimum principal curvature line partial line L642.
  • the planar mesh areas A621 and A622 in the part (C) of FIG. 11 are connected.
  • the planar mesh regions A621 and A622 are each configured to include a minimum principal curvature direction corresponding line L682.
  • the target surface mesh regions A611 and A612 are connected and connected by the minimum principal curvature direction corresponding line L682. In this way, since the formation target surface is assembled by joining the parts shown in the development view with the same line corresponding to the minimum principal curvature direction, it is not necessary to deform the part when assembling the development view. When assembling the development view, it is not necessary to make adjustments for joining the parts well together, and the assembly work of the development view is easy.
  • the shape obtained by assembling the development view of the part (B) in FIG. 11 and the shape obtained by assembling the development view of the part (C) in FIG. 11 are the same in which the same plane mesh region is arranged in the same manner. It is the shape.
  • the curved surface obtained by assembling the development view of the part (B) of FIG. 11 and the curved surface obtained by assembling the development view of the part (C) of FIG. 11 can be easily superimposed.
  • the maximum main curvature line and the minimum main curvature line are orthogonal to each other.
  • connection part in the shape obtained by assembling the development view of the part (C) in FIG. 11 corresponds to the minimum principal curvature line. Therefore, the connection portion in the shape obtained by assembling the development view of the portion (B) in FIG. 11 and the connection portion in the shape obtained by assembling the development view of the portion (C) in FIG. Accordingly, the object obtained by assembling the development view of the part (B) of FIG. 11 and the object obtained by assembling the development view of the part (C) of FIG. A shape can be obtained.
  • the features described with reference to part (B) of FIG. 11 are not limited to the development shown in part (B) of FIG. 11, but are arranged in a direction along the maximum principal curvature line of the target surface mesh area on the formation target surface. This applies to the developed view obtained by joining the planar mesh regions according to Further, the feature described with reference to part (C) of FIG. 11 is not limited to the development view shown in part (C) of FIG. 11, but the direction along the minimum principal curvature line of the target surface mesh area on the formation target surface. This applies to a developed view obtained by joining the planar mesh regions according to the arrangement in FIG.
  • the shape processing unit 130 connects and connects two planar mesh regions with the same minimum principal curvature line corresponding line.
  • the shape processing unit 130 acquires a shape obtained by joining the planar mesh regions along the line in the direction along the maximum principal curvature line.
  • the minimum main curvature line corresponding line is a mapping of the edge of the formation target surface
  • the shape processing unit 130 joins two planar mesh regions in contact with the same maximum principal curvature line-corresponding line.
  • the shape processing unit 130 acquires a shape obtained by joining the planar mesh regions along the direction along the minimum principal curvature line. Except for the case where the maximum main curvature line corresponding line is a mapping of the edge of the formation target surface, there are always two planar mesh regions including the same maximum main curvature line corresponding line. Therefore, the shape processing unit 130 connects the two planar mesh regions so that the same maximum principal curvature line corresponding line contacts in the same direction.
  • the shape processing unit 130 has a shape in which the planar mesh regions are joined along the direction along the maximum principal curvature line, and a shape in which the planar mesh regions are joined along the direction along the minimum principal curvature line. Any one of them may be acquired. Alternatively, the shape processing unit 130 joins the planar mesh regions joined in the direction along the maximum principal curvature line and joined the planar mesh regions in the direction along the minimum principal curvature line. You may make it acquire both shapes.
  • the on-planar region acquisition unit 120 forms the planar mesh region
  • an identification number is assigned to the planar mesh region so that the shape processing unit 130 can perform the process of joining the planar mesh regions in this way.
  • the on-plane area acquisition unit 120 also assigns an identification number to each of the maximum main curvature line corresponding line and the minimum main curvature line corresponding line constituting the plane mesh area. Then, the on-planar region acquisition unit 120 generates information that combines the identification number of the planar mesh region and the identification numbers of the maximum main curvature line corresponding line and the minimum main curvature line corresponding to the planar mesh region.
  • the on-plane area acquisition unit 120 generates information that combines the identification number of the maximum main curvature line corresponding line and the identification numbers of the two planar mesh areas including the maximum main curvature line corresponding line.
  • the on-plane area acquisition unit 120 generates information that combines the identification number of the minimum main curvature line corresponding line and the identification numbers of the two planar mesh areas including the minimum main curvature line corresponding line.
  • the shape processing unit 130 refers to the information generated by the on-plane region acquisition unit 120, identifies two planar mesh regions including the same minimum principal curvature line corresponding line, and connects the identified planar mesh regions.
  • the shape processing unit 130 refers to the information generated by the on-planar region acquisition unit 120, identifies two planar mesh regions including the same maximum principal curvature line corresponding line, and connects the identified planar mesh regions. Match.
  • the processing performed by the shape processing unit 130 corresponds to an example of processing in the shape processing step.
  • the formation target surface forming unit 140 combines the members obtained by processing the material by the shape processing unit 130 into a surface shape for the formation purpose.
  • the formation target surface forming unit 140 forms the surface shape for the formation purpose by alternately combining the first member and the second member generated by the shape processing unit 130.
  • FIG. 12 is an explanatory diagram illustrating an example of the outer shape of an object obtained by the combination process performed by the formation target surface forming unit 140. In the areas A711 and A712 of FIG. 12, the first member appears. On the other hand, in the areas A721 and A722, the second member appears.
  • the shape processing unit 130 alternately combines the first member and the second member, and in the obtained product, the first member and the second member are alternately arranged.
  • the shape obtained by assembling the development view of the first member and the shape obtained by assembling the development view of the second member are the same shape (the same planar mesh region is deformed). (Shapes arranged in the same order without). Therefore, when the formation target surface forming portion 140 combines the first member and the second member, the other portions other than the gap due to the thickness of the member can be combined without generating a gap. Thereby, a shape close to the shape of the formation target surface can be obtained. In addition, a target surface shape with relatively high strength can be obtained.
  • the thing obtained by the combination which the formation target surface formation part 140 performs has a design property in the point that the 1st member and the 2nd member appear alternately in a line like the example of FIG.
  • the processing performed by the forming target surface forming unit 140 corresponds to an example of processing in the forming target surface forming step.
  • FIG. 13 is a flowchart illustrating an example of a procedure of processing performed by the target surface shape object manufacturing apparatus 100.
  • the target surface curvature line acquisition unit 110 acquires a plurality of maximum main curvature lines and minimum main curvature lines of the formation target surface (Step S101).
  • Step S101 corresponds to an example of a target surface curvature line acquisition step.
  • the corresponding line acquisition unit 121 acquires a maximum main curvature direction corresponding line and a minimum main curvature corresponding line (step S102).
  • Step S102 corresponds to an example of a corresponding line acquisition step.
  • the connection relationship determining unit 122 determines the connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line (step S103).
  • Step S103 corresponds to an example of a connection relationship determination step.
  • Step S104 determines the angle of the connection part of the largest main curvature direction corresponding line and the minimum main curvature direction corresponding line.
  • Step S104 corresponds to an example of an angle determination step.
  • Steps S102 to S104 correspond to an example of a planar area acquisition step.
  • the shape processing unit 130 processes the material into a shape obtained by joining the planar mesh regions obtained in step S104 (step S105). Specifically, the shape processing unit 130 obtains a shape obtained by joining the planar mesh regions in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh region on the formation target surface.
  • the shape processing unit 130 obtains a shape obtained by joining the planar mesh regions in accordance with the arrangement in the direction along the minimum principal curvature line of the target surface mesh region on the formation target surface. Then, the shape processing unit 130 processes the material into the obtained shape. Step S105 corresponds to an example of a shape processing step.
  • a member obtained by processing a material into a shape in which plane mesh regions are joined in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh region on the formation target surface is referred to as a first member.
  • a member obtained by processing a material into a shape obtained by joining the planar mesh regions in accordance with the alignment in the direction along the minimum principal curvature line of the target surface mesh region on the formation target surface is referred to as a second member.
  • Step S106 corresponds to an example of a formation target surface forming step. After step S106, the process of FIG. 13 is terminated.
  • the formation target surface forming unit 140 may be formed in the shape of the formation target surface by combining the first member and the second member. Then, the formation target surface forming unit 140 may superimpose an object obtained by combining the first member and an object obtained by combining the second member.
  • step S105 the shape processing unit 130 may obtain only one of the first member and the second member.
  • step S ⁇ b> 106 the formation target surface forming unit 140 may combine either one of the first member and the second member to form the formation target surface.
  • the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface. Further, the on-plane area acquisition unit 120 obtains an area on the plane (plane mesh area) associated with this area for each of the target surface mesh areas.
  • the shape processing unit 130 forms the planar mesh region according to the shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, or the arrangement in the direction along the minimum principal curvature line. Process materials into connected shapes. Then, the formation target surface forming unit 140 combines the members obtained by processing the material by the shape processing unit 130 into the surface shape of the formation target.
  • the corresponding line acquisition unit 121 of the on-plane area acquisition unit 120 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line.
  • the maximum principal curvature direction corresponding line is a line obtained by mapping the developable surface including the maximum main curvature line partial line into a plane without expansion and contraction.
  • the minimum main curvature direction corresponding line is a line obtained by mapping a developable surface including the minimum main curvature line partial line to a plane without expansion and contraction.
  • connection relationship determination unit 122 of the on-plane region acquisition unit 120 determines the maximum main curvature line partial line and the minimum main curvature line according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the curvature line partial line is determined.
  • the members obtained by processing the material by the shape processing unit 130 have the same length of curves (edges of the members) in contact with the formation target surface forming unit 140 when the members are combined. For this reason, the edge of the target shape object obtained by combining members becomes smooth. Therefore, no step is generated at the edge of the target shape object obtained by combining the members.
  • the material processed by the target surface shape object manufacturing apparatus 100 is not limited to a steel plate, but may be any material that can perform shape processing and processing from a flat surface to a curved surface.
  • the target surface shape object manufacturing apparatus 100 may process cloth or paper. Or you may make it the target surface shape thing manufacturing apparatus 100 process the wood which can be bent, such as a bark of a tree, for example.
  • the target surface shape object manufacturing apparatus 100 may process a metal plate other than a steel plate such as a tin plate.
  • a metal plate other than a steel plate such as a tin plate.
  • the formation target surface forming unit 140 when the formation target surface forming unit 140 combines the members, there is no gap in the members. In this respect, a target surface shape having a relatively high strength can be obtained. Further, since no gap is generated in the member, it is not necessary to perform a process of filling the gap when the members are combined. In this respect, the process of combining the members is simple, and the load on the formation target surface forming unit 140 can be small. For example, when the formation target surface forming unit 140 bonds members together, only the boundary between the members may be bonded. In addition, the formation target surface forming unit 140 can combine the members with the shape of the formation target surface without having to perform processing such as bending.
  • the planar mesh regions are connected by the same corresponding line (maximum principal curvature direction correspondence line or minimum principal curvature direction correspondence line). And connected without overlap.
  • the shape of the formation target surface can be realized with high accuracy.
  • the target surface shape object manufacturing apparatus 100 can accurately process a material other than a steel plate into a curved surface shape.
  • the formation target surface can be realized with higher precision as the target surface mesh region is set finer. Therefore, design according to the required accuracy is possible.
  • the accuracy for realizing the target surface shape may be low, the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110 is increased to manufacture the target surface shape object.
  • the load of processing performed by the apparatus 100 can be reduced.
  • the accuracy of realizing the target surface shape can be improved.
  • the angle determination unit 123 can obtain the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line by minimizing the objective function of one variable. In this respect, the calculation of the angle determination unit 123 is easy and the processing load of the angle determination unit 123 can be reduced. Further, the time required for the angle determination unit 123 to obtain the angle can be short.
  • the developable surface used by the corresponding line acquisition unit 121 includes a normal vector of the formation target surface at this point and a tangent vector of the maximum main curvature line partial line at this point at each point on the maximum main curvature line partial line.
  • the corresponding line acquisition unit 121 includes the normal vector of the formation target surface and the maximum main curvature line partial line or the minimum main curvature line partial line along each of the maximum main curvature line partial line and the minimum main curvature line partial line.
  • a developable surface can be obtained by a simple operation of obtaining an outer product with a tangent vector.
  • the formation target surface forming unit 140 may generate a plurality of objects having the shape of the formation target surface and superimpose the obtained objects. Thereby, the thickness of the target shape object obtained can be increased and intensity
  • the target surface curvature line acquisition unit 110 may change the position of the curvature line (for example, shift the phase) so that the position of the connecting portion of the member differs for each object to be superimposed. Thereby, the intensity
  • the shape processing unit 130 generates a first member obtained by processing the material into a shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line.
  • the shape processing unit 130 generates a second member obtained by processing the material into a shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the minimum principal curvature line.
  • the formation target surface formation part 140 makes the surface shape of a formation purpose by combining a 1st member and a 2nd member alternately (namely, by knitting a 1st member and a 2nd member).
  • the formation target surface formation part 140 knits a member and manufactures a target surface shape thing, and the combination of a member does not collapse easily.
  • a target surface shape having a relatively high strength can be obtained.
  • the target surface is generated by using an adhesive, but if the curvature of the target surface is gentle, it can be generated without bonding.
  • the design is high in that the first member and the second member appear alternately in the outer shape of the target shape object.
  • the formation target surface forming unit 140 only needs to knit the first member and the second member so that no gap is generated. In this respect, the process of combining the members is simple, and the load on the formation target surface forming unit 140 is reduced. Is small.
  • the formation target surface forming unit 140 can knit the member into the shape of the formation target surface without having to perform a process such as bending.
  • the formation target surface forming unit 140 may be formed in the shape of the formation target surface by combining the first member and the second member. Then, the formation target surface forming unit 140 may superimpose an object obtained by combining the first member and an object obtained by combining the second member. In this case, in the target shape object obtained, the position of the connection part of the member in the object obtained by combining the first member and the position of the connection part of the member in the object obtained by combining the second member are orthogonal to each other. To do. Thereby, the intensity
  • the same effect as the case where the target surface shape object manufacturing apparatus 100 performs processing is performed. Can be obtained.
  • FIG. 14 is a schematic block diagram showing a functional configuration of a shape acquisition apparatus according to the second embodiment of the present invention.
  • the shape acquisition device 200 includes a target surface curvature line acquisition unit 110, a planar area acquisition unit 120, and a shape acquisition unit 230.
  • the on-plane area acquisition unit 120 includes a corresponding line acquisition unit 121, a connection relationship determination unit 122, and an angle determination unit 123. 14, parts having the same configuration corresponding to the parts in FIG. 1 are denoted by the same reference numerals (110, 120... 123), and description thereof is omitted.
  • the shape acquisition device 200 is different from the target surface shape object manufacturing device 100 (FIG. 1) in that a shape acquisition unit 230 is provided instead of the shape processing unit 130 and the formation target surface formation unit 140.
  • the shape acquisition unit 230 has a shape obtained by joining the plane mesh regions according to the sequence of the target surface mesh regions in the direction along the maximum principal curvature line, or a plane according to the sequence of the target surface mesh regions in the direction along the minimum principal curvature line. A shape obtained by joining mesh regions is obtained.
  • the shape acquisition unit 230 is the member of the process for obtaining the shape of the member and the process for processing the material into the obtained shape described for the shape processing unit 130 of the target surface shape object manufacturing apparatus 100. Processing to obtain the shape is performed.
  • FIG. 15 is a flowchart illustrating an example of a procedure of processing performed by the shape acquisition device 200. However, all or part of the processing in FIG. 15 may be performed by a person instead of the shape acquisition device 200. Steps S201 to S204 in FIG. 15 are the same as steps S101 to S104 in FIG.
  • the shape acquisition unit 230 obtains a shape obtained by connecting the planar mesh regions obtained in step S104 (step S205).
  • the shape processing unit 130 includes a shape obtained by joining the planar mesh regions according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, and the target surface mesh in the direction along the minimum principal curvature line.
  • One or both of the shapes obtained by joining the planar mesh regions are obtained according to the region arrangement.
  • the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface. Further, the on-plane area acquisition unit 120 obtains an area on the plane (plane mesh area) associated with this area for each of the target surface mesh areas. Further, the shape acquisition unit 230 forms a shape obtained by joining the planar mesh regions according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, or the planar mesh region according to the arrangement in the direction along the minimum principal curvature line. Get the connected shape.
  • the shape acquisition unit 230 joins the planar mesh regions according to the alignment along the minimum principal curvature line and the shape obtained by joining the planar mesh regions according to the alignment along the target principal mesh region in the direction along the maximum principal curvature line. You may make it acquire both of the shape.
  • the corresponding line acquisition unit 121 of the on-plane area acquisition unit 120 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line.
  • the maximum principal curvature direction corresponding line is a line obtained by mapping the developable surface including the maximum main curvature line partial line into a plane without expansion and contraction.
  • the minimum main curvature direction corresponding line is a line obtained by mapping a developable surface including the minimum main curvature line partial line to a plane without expansion and contraction.
  • the connection relationship determination unit 122 of the on-plane region acquisition unit 120 determines the maximum main curvature line partial line and the minimum main curvature line according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the curvature line partial line is determined.
  • the lengths of the curves (edges of the member) in contact with the members are equal. For this reason, a level
  • the members having the shapes obtained by the shape acquisition unit 230 are combined, no gaps are generated in the members. In this respect, a target surface shape having a relatively high strength can be obtained. Further, since no gap is generated in the member, it is not necessary to perform a process of filling the gap when the members are combined. In this respect, the process of combining the members is simple, and the load of this process can be reduced. For example, when the members having the shape obtained by the shape acquisition unit 230 are bonded to each other, only the boundary between the members may be bonded. Further, the member can be combined with the shape of the formation target surface without the need to perform a process such as bending.
  • the planar mesh regions are connected by the same corresponding line (maximum principal curvature direction correspondence line or minimum principal curvature direction correspondence line). And connected without overlap. In this respect, the shape of the formation target surface can be realized with high accuracy.
  • the formation target surface can be realized with higher precision as the target surface mesh region is set more finely. Therefore, design according to the required accuracy is possible.
  • the shape acquisition device 200 increases the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110 and The load of processing to be performed can be reduced.
  • the accuracy of realizing the target surface shape can be improved.
  • the angle determination unit 123 can obtain the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line by minimizing the objective function of one variable. In this respect, the calculation of the angle determination unit 123 is easy and the processing load of the angle determination unit 123 can be reduced. Further, the time required for the angle determination unit 123 to obtain the angle can be short.
  • the shape processing unit 130 processes the material to form the member, the smaller the cut into the member, the better.
  • the shallow cut means that the cut length is short. Therefore, when the target surface curvature line acquisition unit 110 obtains a curvature line, the calculation of the curvature line may be stopped when it is detected that the distance between the same kind of curvature lines is smaller than the distance threshold. Accordingly, the number of curvature lines acquired by the target surface curvature line acquisition unit 110 may be reduced, and the length of the curvature line acquired by the target surface curvature line acquisition unit 110 may be shortened.
  • the number of curvature line partial lines is reduced, and the number of curvature line corresponding lines is also reduced.
  • the curvature line corresponding line here is a general term for the maximum main curvature line corresponding line and the minimum main curvature line corresponding line.
  • the length of the curvature line acquired by the target surface curvature line acquisition unit 110 is shortened, so that the number of intersections between the maximum main curvature line and the minimum main curvature line is reduced, and the number of curvature line partial lines is reduced. .
  • the number of curvature line corresponding lines is also reduced.
  • FIG. 16 is a diagram illustrating an example in which calculation of the curvature line is stopped when the target surface curvature line acquisition unit 110 detects that the distance between the same type of curvature lines is smaller than the distance threshold.
  • the distance threshold is a threshold given in advance as a constant, for example.
  • Both the line L811 and the line L813 are minimum main curvature lines, and the line L812 is a maximum main curvature line.
  • the target surface curvature line acquisition unit 110 obtains the coordinates of the points on the line L813 in order from the point P811 in a state where the coordinates of the lines L811 and L812 have been calculated. As the line L813 extends, the end portion first approaches the line L812.
  • the line L812 is the minimum main curvature line, whereas the line L812 is the maximum main curvature line, and the types of the curvature lines are different. Therefore, the target surface curvature line acquisition unit 110 continues the process of calculating the coordinates of the line L813. Thereafter, the end portion approaches the line L811 as the line L813 extends, and the distance D81 between the point P812 and the line L811 is smaller than the distance threshold value. Since both the line L811 and the line L813 are the minimum main curvature lines and the same kind of curvature lines, the target surface curvature line acquisition unit 110 ends the calculation of the coordinates of the line L813 up to the point P812.
  • the target surface curvature line acquisition unit 110 stops the process of obtaining the curvature line, as described above, when the shape processing unit 130 processes the material to form the member, there is less cutting into the member. Or the depth of cut into the member becomes shallower.
  • the process for obtaining the curvature line here is a process for obtaining the coordinates of the curvature line, and specifically, a process for obtaining the coordinates of the points on the curvature line.
  • the target surface curvature line acquisition unit 110 may stop the process of obtaining a curvature line for a region having a small Gaussian curvature.
  • a small Gaussian curvature indicates that at least one of the maximum main curvature and the minimum main curvature is close to zero.
  • the material can be formed in the shape of the formation target surface relatively accurately without making a cut in the material.
  • FIG. 17 is a diagram illustrating an example in which the target surface curvature line acquisition unit 110 stops calculating the curvature line for a region where the magnitude of the Gaussian curvature is smaller than the curvature threshold.
  • the curvature threshold is a threshold given in advance as a constant, for example.
  • Region A821 is a region in which the Gaussian curvature is smaller than the curvature threshold.
  • the target surface curvature line acquisition unit 110 does not obtain a curvature line for the region A821.
  • the shape processing unit 130 processes the material in the same manner as when the distance between the curvature lines of the same type becomes smaller than the distance threshold by stopping the process of obtaining the curvature line by the target surface curvature line acquisition unit 110.
  • the cut into the member is reduced, or the cut into the member is shallow.
  • the fact that the target surface curvature line acquisition unit 110 detects that the Gaussian curvature is smaller than the curvature threshold is applicable to both the first embodiment and the second embodiment.
  • the target surface curvature line acquisition unit 110 detects that the distance between the same type of curvature lines is smaller than the distance threshold and stops obtaining the curvature line, it detects that the Gaussian curvature is smaller than the curvature threshold and detects the curvature line
  • the end of the curvature line may not overlap the edge of the formation target surface and any other curvature line. In this case, this end does not form a target surface mesh region. Therefore, the target surface curvature line acquisition unit 110 may delete a portion from this end to the intersection with another curvature line.
  • FIG. 18 is a diagram illustrating an example in which the end portion of the curvature line does not overlap the edge of the formation target surface and any other curvature line.
  • a portion surrounded by a chain line does not form a target surface mesh region.
  • FIG. 19 is a diagram illustrating an example in which the target surface curvature line acquisition unit 110 deletes a portion from the end of the curvature line to the intersection with another curvature line.
  • FIG. 19 shows an example in which the target surface curvature line acquisition unit 110 deletes the portion from the end of the curvature line to the intersection with another curvature line from the state shown in FIG. In each of the lines L831 and L832, a portion surrounded by a chain line is removed. It can be applied to both the first embodiment and the second embodiment that the target surface curvature line acquisition unit 110 deletes a portion from the end of the curvature line to the intersection with another curvature line.
  • FIG. 20 is a flowchart illustrating an example of a processing procedure in which the target surface curvature line acquisition unit 110 obtains a curvature line.
  • the target surface curvature line acquisition unit 110 determines the position of the start point of the curvature line, and calculates the coordinates of the start point (step S301).
  • the target surface curvature line acquisition unit 110 calculates the coordinates of the next point after the points for which the coordinates have been calculated among the points on the calculated curvature line (step S302).
  • the target surface curvature line acquisition unit 110 determines whether or not the current point has reached the boundary of the formation target surface (step S303). If it is determined that the boundary has been reached (step S303: YES), the processing in FIG. On the other hand, if it is determined that the boundary has not yet been reached (step S303: NO), the target surface curvature line acquisition unit 110 calculates a Gaussian curvature at the current point (step S304). Then, the target surface curvature line acquisition unit 110 determines whether or not the Gaussian curvature at the current point is smaller than the curvature threshold (step S305).
  • step S305: YES When it is determined that the Gaussian curvature at the current point is smaller than the curvature threshold (step S305: YES), the processing in FIG. On the other hand, when it is determined that the Gaussian curvature at the current point is greater than or equal to the curvature threshold value (step S305: NO), the target surface curvature line acquisition unit 110 calculates the current point and the calculated same type of curvature line. Is calculated (step S306).
  • the target surface curvature line acquisition unit 110 determines whether or not the distance between the current point and the calculated same kind of curvature line is smaller than the distance threshold (step S307).
  • the process returns to step S302.
  • the shape acquisition unit 230 may obtain a plurality of development views of the formation target surface by shifting the cut positions.
  • FIG. 21 is a diagram illustrating an example of a plurality of development views with different cut positions.
  • Each of (A) part, (B) part, and (C) part of FIG. 21 shows a maximum main curvature line and a minimum main curvature line on the formation target surface.
  • the positions of the maximum main curvature line and the minimum main curvature line are different between the part (B) and the part (C).
  • different combinations are selected from the maximum main curvature line and the minimum main curvature line shown in the (A) portion.
  • the developed view shown in part (D) and the developed view shown in part (F) are both developed views obtained by joining the planar mesh regions along the minimum principal curvature line direction.
  • the developed view shown in part (D) is generated based on the maximum main curvature line and the minimum main curvature line shown in part (B).
  • the developed view shown in the (F) part is generated based on the maximum main curvature line and the minimum main curvature line shown in the (C) part. Since the maximum main curvature line and the minimum main curvature line that are the basis are different, in the development view shown in part (D) of FIG. 21 and the development view shown in part (F), the position of the cut Is different.
  • the developed view shown in the (E) portion and the developed view shown in the (G) portion are both developed views obtained by joining the planar mesh regions along the maximum principal curvature line direction. .
  • the developed view shown in part (E) is generated based on the maximum main curvature line and the minimum main curvature line shown in part (B).
  • the developed view shown in the (G) portion is generated based on the maximum main curvature line and the minimum main curvature line shown in the (C) portion. Since the maximum main curvature line and the minimum main curvature line that are the basis are different, in the development view shown in part (E) of FIG. 21 and the development view shown in part (G), the position of the cut Is different.
  • the target surface curvature line acquisition unit 110 identifies a plurality of calculation start points on the formation target surface, and a plurality of maximum main curvature lines and a plurality of points from the plurality of specified calculation start positions. Find the minimum principal curvature line. In the example of FIG.
  • the target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line of the formation target surface shown in part (A). Thereafter, the target surface curvature line acquisition unit 110 removes the maximum main curvature line and a part of the minimum main curvature line shown in the (A) part so as to become the (B) part, and the (D) part and the (E) part. Find each development. Moreover, the target surface curvature line acquisition part 110 remove
  • the target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line shown in the (B) portion, and then the maximum main curvature shown in the (C) portion. A curvature line and a minimum main curvature line are obtained. Therefore, the target surface curvature line acquisition unit 110 specifies the calculation start position twice.
  • the target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line shown in the part (B) from the plurality of calculation start positions specified for the first time. And the target surface curvature line acquisition part 110 calculates
  • the target surface curvature line acquisition unit 110 performs processing for obtaining a plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions. You can do more than one.
  • FIG. 22 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer includes a CPU, a main storage device, an auxiliary storage device, and an interface.
  • the above-described target surface shape acquisition device is mounted on a computer.
  • the operation of each processing unit described above is stored in the auxiliary storage device in the form of a program.
  • the CPU reads the program from the auxiliary storage device, develops it in the main storage device, and executes the above processing according to the program. Further, the CPU secures a storage area corresponding to each storage unit described above in the main storage device according to the program.
  • the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface.
  • the on-plane area acquisition unit 120 obtains data indicating the shape of the area on the corresponding plane for each area in which the formation target surface is divided by the maximum main curvature line and the minimum main curvature line. Thereby, the error which arises when forming the shape of the part of the surface of the formation object on a plane can be distributed.
  • the corresponding line acquisition unit 121 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line obtained by mapping a plane including the curvature line partial line into a plane.
  • the connection relation determining unit 122 corresponds to the maximum main curvature line partial line and the minimum main curvature line partial line according to the connection relation of the maximum main curvature line partial line and the minimum main curvature line partial line forming the region of the formation target surface.
  • the connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line is determined.
  • connection relationship between the maximum curvature line corresponding line and the minimum curvature line corresponding line on the formation target surface can be reflected in the connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line on the plane. it can.
  • the angle determination unit 123 calculates the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line calculated based on the divided area on the plane corresponding to the formation target surface and the corresponding divided area on the plane, and the maximum main curvature direction.
  • the maximum main curvature so that the sum of the squares of the differences between the maximum main curvature line partial line corresponding to the curvature direction corresponding line and the minimum main curvature line partial line corresponding to the minimum main curvature direction corresponding line is minimized.
  • An angle formed by the direction corresponding line and the minimum principal curvature direction corresponding line is determined. Thereby, the error with the target surface mesh area
  • the surface including the maximum principal curvature line partial line includes a vector of the outer product of the normal vector of the formation target surface at a point on the maximum principal curvature line partial line and the tangent vector of the maximum principal curvature line partial line at this point.
  • the surface that includes the minimum principal curvature line partial line is the vector of the outer product of the normal vector of the target surface at the point on the minimum principal curvature line partial line and the tangent vector of the minimum principal curvature line partial line at this point. It is a surface including. By developing this surface in a plane, a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line corresponding to the maximum main curvature line partial line and the minimum main curvature line partial line are obtained.
  • the target surface curvature line acquisition unit 110 performs a plurality of processes for obtaining a plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions.
  • the on-plane area acquisition unit 120 shows the shape of the area on the plane constituted by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line corresponding to the plurality of maximum main curvature lines and the plurality of minimum main curvature lines.
  • Ask for data Thereby, a plurality of development views in which the positions of the cuts are shifted are obtained.
  • a relatively strong target surface shape object can be generated by forming and superimposing the target surface shape from each of the developed views in which the positions of the cuts are shifted.
  • the target surface curvature line acquisition unit 110 A process of determining a start point for obtaining a target main curvature line that is either the maximum main curvature line or the minimum main curvature line on the formation target surface, and sequentially obtaining points that follow the start point constituting the target main curvature line, It reaches the boundary of the formation target surface, reaches a region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired main main curvature line and minimum main curvature line with the target main curvature line and the same type of curvature line Repeat until the distance reaches a point below the distance threshold. Thereby, the cut in the developed view obtained decreases, and a stronger target surface shape can be obtained.
  • the on-plane area acquisition unit 120 is configured to connect the areas on the plane according to the arrangement in the direction along the maximum principal curvature line of the areas on the formation target surface, and the minimum main curvature of each area on the formation target surface. According to the arrangement in the direction along the line, at least one of the data of the shape obtained by joining the areas on the plane is obtained. As a result, a band-shaped component can be obtained, and the shape of the formation target surface can be configured by a relatively simple process of joining the band-shaped components together.
  • the shape processing unit 130 is formed by joining the regions on the plane according to the arrangement in the direction along the maximum main curvature line of the region on the formation target surface, or along the minimum main curvature line of the region on the formation target surface. According to the arrangement in the selected direction, the material is processed into a shape in which the areas on the plane are connected.
  • the formation target surface forming unit 140 combines the materials processed by the shape processing unit 130 into the surface shape of the formation target. Thereby, the target surface shape object manufacturing apparatus 100 can process the material into the surface shape of the formation purpose. In addition, it is possible to avoid the strain from being concentrated at one place in the target shape object by connecting the regions on the plane.
  • the shape processing unit 130 includes a first member that has processed the material into a shape in which the regions on the plane are joined together according to the arrangement in the direction along the maximum principal curvature line of each region on the formation target surface, and each region on the formation target surface. In accordance with the arrangement in the direction along the minimum principal curvature line, a second member obtained by processing the material into a shape obtained by joining the regions on the plane is generated.
  • the formation target surface forming unit 140 combines the first member and the second member in a staggered manner to obtain a surface shape for the formation purpose. Accordingly, the shape processing unit 130 can obtain a formation target surface by a relatively simple process of alternately combining the first member and the second member.
  • a program for realizing all or part of the functions and operations performed by the target shape object manufacturing apparatus 100 or the shape acquisition apparatus 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium May be read by a computer system and executed to execute the processing of each unit.
  • Computer-readable recording medium refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • An embodiment of the present invention includes a target surface curvature line acquisition unit that obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on a formation target surface, and the formation target surface is the maximum main curvature line and the minimum main curvature line.
  • the present invention relates to a shape acquisition device including an on-plane area acquisition unit that obtains data indicating the shape of a corresponding area on a plane for each divided area. According to this embodiment, it is possible to disperse errors that occur when forming the shape of the component of the surface to be formed on a plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This shape acquisition device is equipped with: a target surface curvature line acquisition unit for obtaining a plurality of maximum principal strips and a plurality of minimum principal strips on a formed target surface; and a planar region acquisition unit for acquiring data indicating the shape of a region on a corresponding plane, for each of a plurality of regions obtained by dividing the formed target surface along the maximum and minimum principal strips.

Description

形状取得装置、目的面形状物製造装置、目的面形状物製造方法およびプログラムShape acquisition apparatus, target surface shape object manufacturing apparatus, target surface shape object manufacturing method, and program
 本発明は、形状取得装置、目的面形状物製造装置、目的面形状物製造方法およびプログラムに関する。
 本願は、2015年11月27日に、日本国に出願された特願2015-232125号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a shape acquisition device, a target surface shape object manufacturing apparatus, a target surface shape object manufacturing method, and a program.
This application claims priority on November 27, 2015 based on Japanese Patent Application No. 2015-232125 filed in Japan, the contents of which are incorporated herein by reference.
 特許文献1では、曲率線の曲率を精度よく求めるための技術が開示されている。 Patent Document 1 discloses a technique for accurately obtaining the curvature of a curvature line.
日本国特開2014-191487号公報Japanese Unexamined Patent Publication No. 2014-191487
 平面から形成目的の面を形成したい場合、曲率線を用いて形成目的の面の部品の形状を平面上に形成することができれば、平面上で部品の形状を形成し、部品を組み合わせて形成目的の面の形状を形成し得る。平面上で部品の形状を形成すればよい点で、部品を形成する作業を比較的容易に行うことができる。
 形成目的の面の部品の形状を平面上に形成する際、曲面上の形状を平面上に展開する点で誤差が生じる。この誤差を平面上の各部品に分散させることができれば、形成される面で局所的にひずみが集中することを防止できる。
If you want to form the surface to be formed from a plane, if the shape of the part of the surface to be formed can be formed on the plane using the curvature line, the shape of the part is formed on the plane and the parts are combined to form The shape of the surface can be formed. The operation of forming the component can be performed relatively easily in that the shape of the component may be formed on a plane.
When forming the shape of the part of the surface to be formed on a plane, an error occurs in that the shape on the curved surface is developed on the plane. If this error can be distributed to each part on the plane, it is possible to prevent local concentration of strain on the formed surface.
 本発明は、形成目的の面の部品の形状を平面上に形成する際に生じる誤差を分散させることができる、形状取得装置、目的面形状物製造装置、目的面形状物製造方法およびプログラムを提供する。 The present invention provides a shape acquisition device, a target surface shape object manufacturing apparatus, a target surface shape object manufacturing method, and a program capable of dispersing errors that occur when forming the shape of a part of a target surface on a flat surface. To do.
 本発明の第1の態様によれば、形状取得装置は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める目的面曲率線取得部と、前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求める平面上領域取得部と、を備える。 According to the first aspect of the present invention, the shape acquisition apparatus includes a target surface curvature line acquisition unit that obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface, and the formation target surface includes the maximum An on-plane area acquisition unit that obtains data indicating the shape of the area on the corresponding plane for each area divided by the main curvature line and the minimum main curvature line.
 前記平面上領域取得部は、前記最大主曲率線が前記最小主曲率線で区切られた線である最大主曲率線部分線を含む面を平面に展開する写像にて得られる、前記最大主曲率線部分線に対応する平面上の線である最大主曲率方向対応線、及び、前記最小主曲率線が前記最大主曲率線で区切られた線である最小主曲率線部分線を含む面を平面に展開する写像にて得られる、前記最小主曲率線部分線に対応する平面上の線である最小主曲率方向対応線を求める対応線取得部と、前記形成目的面の前記領域を形成する前記最大主曲率線部分線及び前記最小主曲率線部分線の接続関係に従って、前記最大主曲率線部分線及び前記最小主曲率線部分線に対応する前記最大主曲率方向対応線及び前記最小主曲率方向対応線の接続関係を決定する接続関係決定部と、を備えるようにしてもよい。 The on-plane area acquisition unit is configured to obtain the maximum principal curvature obtained by mapping a plane including a maximum principal curvature line partial line in which the maximum principal curvature line is a line divided by the minimum principal curvature line into a plane. A plane including a maximum main curvature direction corresponding line that is a line on a plane corresponding to the line partial line, and a minimum main curvature line partial line in which the minimum main curvature line is a line divided by the maximum main curvature line A corresponding line acquisition unit that obtains a minimum principal curvature direction corresponding line that is a line on a plane corresponding to the minimum main curvature line partial line, obtained by the mapping developed in the above, and forming the region of the formation target surface The maximum main curvature direction corresponding line and the minimum main curvature direction corresponding to the maximum main curvature line partial line and the minimum main curvature line partial line according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line. Determining the connection relationship for determining the connection relationship of the corresponding line When, may be provided with.
 前記平面上領域取得部は、前記形成目的面における分割領域と対応する平面状の分割領域とに基づいて算出した、前記最大主曲率方向対応線と前記最小主曲率方向対応線とがなす角度と、前記最大主曲率方向対応線に対応する最大主曲率線部分線と前記最小主曲率方向対応線に対応する最小主曲率線部分線とがなす角度との差の2乗の和が最小となるように前記最大主曲率方向対応線と前記最小主曲率方向対応線とがなす角度を決定する角度決定部を備えるようにしてもよい。 The on-plane area acquisition unit calculates an angle formed by the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line, which is calculated based on the division area on the formation target surface and the corresponding planar division area. The sum of the squares of the differences between the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line and the minimum main curvature line partial line corresponding to the minimum main curvature direction corresponding line is minimized. As described above, an angle determining unit that determines an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line may be provided.
 前記最大主曲率線部分線を含む面は、前記最大主曲率線部分線上の点における前記形成目的面の法線ベクトルと前記点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む面であり、前記最小主曲率線部分線を含む面は、前記最小主曲率線部分線上の点における前記形成目的面の法線ベクトルと前記点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む面であってもよい。 The surface including the maximum principal curvature line partial line includes a vector of outer products of a normal vector of the formation target surface at a point on the maximum principal curvature line partial line and a tangent vector of the maximum principal curvature line partial line at the point. A plane including the minimum principal curvature line partial line is a cross product of a normal vector of the formation target surface at a point on the minimum principal curvature line partial line and a tangent vector of the minimum principal curvature line partial line at the point A plane including the vector of
 前記目的面曲率線取得部は、前記形成目的面において特定した複数の計算開始位置から前記複数の最大主曲率線及び複数の最小主曲率線を求める処理を、前記計算開始位置を変更しながら複数行い、前記平面上領域取得部は、前記複数の最大主曲率線及び複数の最小主曲率線に対応する前記最大主曲率方向対応線と前記最小主曲率方向対応線とにより構成される平面上の領域の形状を示すデータを求めるようにしてもよい。 The target surface curvature line acquisition unit performs a plurality of processes for obtaining the plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions. And the on-plane region acquisition unit is on a plane constituted by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line corresponding to the plurality of maximum main curvature lines and the plurality of minimum main curvature lines. Data indicating the shape of the region may be obtained.
 前記目的面曲率線取得部は、前記形成目的面における最大主曲率線または最小主曲率線のいずれかである対象主曲率線を求める開始点を決定し、前記対象主曲率線を構成する前記開始点に続く点を順に求める処理を、前記形成目的面の境界に達するか、ガウス曲率が曲率閾値以下の領域に達するか、あるいは、取得済みの最大主曲率線および最小主曲率線のうち前記対象主曲率線と同種の曲率線との距離が距離閾値以下の点に達するまで繰り返すようにしてもよい。 The target surface curvature line acquisition unit determines a start point for obtaining a target main curvature line that is either a maximum main curvature line or a minimum main curvature line on the formation target surface, and configures the target main curvature line The processing for obtaining the points following the point in order is to reach the boundary of the formation target surface, reach a region where the Gaussian curvature is equal to or less than the curvature threshold value, or the target of the acquired maximum main curvature line and minimum main curvature line The process may be repeated until the distance between the main curvature line and the same type of curvature line reaches a point that is equal to or less than the distance threshold.
 前記平面上領域取得部は、前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状のデータ、及び、前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状のデータのうち少なくともいずれかを求めるようにしてもよい。 The on-plane area acquisition unit is configured to connect the areas on the plane according to the arrangement in the direction along the maximum principal curvature line of the area on the formation target surface, and the data on the formation target surface. You may make it obtain | require at least any one of the data of the shape which connected the area | region on the said plane according to the arrangement | sequence in the direction along the said minimum main curvature line of each area | region.
 本発明の第2の態様によれば、目的面形状物製造装置は、前記形状取得装置と、前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状、又は、前記形成目的面における前記領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に、素材を加工する形状加工部と、前記形状加工部が加工した素材を合せて形成目的の面形状にする形成目的面形成部と、を備える。 According to the second aspect of the present invention, the target surface shape object manufacturing apparatus is arranged on the plane according to the shape acquisition device and the arrangement in the direction along the maximum principal curvature line of the region in the formation target surface. A shape processing unit that processes the material into a shape in which the regions on the plane are connected in accordance with the shape in which the regions are connected, or according to the arrangement in the direction along the minimum principal curvature line of the region on the formation target surface; And a forming target surface forming portion that combines the materials processed by the shape processing portion into a forming target surface shape.
 前記形状加工部は、前記形成目的面における前記各領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材と、前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材とを生成し、前記形成目的面形成部は、前記第1部材と前記第2部材とを互い違いに組み合わせて形成目的の面形状にするようにしてもよい。 The shape processing portion includes a first member that processes a material into a shape in which the regions on the plane are joined together in accordance with the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface, and the formation According to the arrangement of the regions on the target surface in the direction along the minimum principal curvature line, a second member obtained by processing the material into a shape obtained by joining the regions on the plane is generated, and the formation target surface forming unit is The first member and the second member may be combined in a staggered manner to form a surface shape for formation.
 本発明の第3の態様によれば、目的面形状物製造方法は、形成目的面における最大主曲率線または最小主曲率線のいずれかである対象主曲率線を求める開始点を決定し、前記対象主曲率線を構成する前記開始点に続く点を順に求める処理を、前記形成目的面の境界に達するか、ガウス曲率が曲率閾値以下の領域に達するか、あるいは、取得済みの最大主曲率線および最小主曲率線のうち前記対象主曲率線と同種の曲率線との距離が距離閾値以下の点に達するまで繰り返し、前記開始点を決定する処理及び前記対象主曲率線上の点を求める処理を繰り返して複数の前記最大主曲率線及び複数の前記最小主曲率線を求め、前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求め、前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状、又は、前記形成目的面における前記領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に、素材を加工し、加工した素材を合せて形成目的の面形状にすることを含む。 According to the third aspect of the present invention, the target surface shape object manufacturing method determines a starting point for obtaining a target main curvature line that is either the maximum main curvature line or the minimum main curvature line in the formation target surface, and The process of obtaining the points following the start point constituting the target main curvature line in order is reached by reaching the boundary of the formation target surface, reaching a region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired maximum main curvature line And the process of determining the start point and the process of determining a point on the target main curvature line until the distance between the target main curvature line and the same type of curvature line among the minimum main curvature lines reaches a point equal to or less than a distance threshold. A plurality of the maximum main curvature lines and a plurality of the minimum main curvature lines are repeatedly obtained, and for each area where the formation target surface is divided by the maximum main curvature lines and the minimum main curvature lines, Shape showing A shape obtained by joining the regions on the plane according to the arrangement in the direction along the maximum principal curvature line of the region on the formation target surface, or the minimum principal curvature of the region on the formation target surface In accordance with the arrangement in the direction along the line, the material is processed into a shape obtained by joining the regions on the plane, and the processed material is combined to obtain a surface shape for formation.
 前記素材を加工することは、前記形成目的面における前記各領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材を生成することと、前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材を生成することとを含み、前記形成目的の面形状にすることは、前記第1部材と前記第2部材とを互い違いに組み合わせて形成目的の面形状にすることを含むようにしてもよい。 Processing the material generates a first member by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface. And generating a second member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the minimum principal curvature line of each region on the formation target surface. In addition, the formation of the surface shape for the purpose of formation may include the formation of the surface shape for the purpose of formation by alternately combining the first member and the second member.
 本発明の第4の態様によれば、プログラムは、コンピュータに、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求めさせ、前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた領域について、前記領域に対応付けられる平面上の領域の形状を示すデータを求めさせるためのプログラムである。 According to the fourth aspect of the present invention, the program causes a computer to obtain a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface, and the formation target surface is the maximum main curvature line and the minimum main curvature line. This is a program for obtaining data indicating the shape of a region on a plane associated with the region for the region divided by the main curvature line.
 上記した形状取得装置、目的面形状物製造装置、目的面形状物製造方法およびプログラムによれば、形成目的の面の部品の形状を平面上に形成する際に生じる誤差を分散させることができる。 According to the above-described shape acquisition device, target surface shape object manufacturing device, target surface shape object manufacturing method, and program, it is possible to disperse errors that occur when forming the shape of the part of the target surface on the plane.
第1の実施形態に係る目的面形状物製造装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the target surface shape thing manufacturing apparatus which concerns on 1st Embodiment. 法曲率の例を示す説明図である。It is explanatory drawing which shows the example of a normal curvature. 最大主曲率線及び最小主曲率線の例を示す説明図である。It is explanatory drawing which shows the example of the maximum main curvature line and the minimum main curvature line. 曲面の法線ベクトルと曲率線部分線の接線ベクトルとの外積の例を示す説明図である。It is explanatory drawing which shows the example of the outer product of the normal vector of a curved surface, and the tangent vector of a curvature line partial line. 曲面の法線ベクトルと曲率線部分線の接線ベクトルとの外積から得られる可展面の例を示す説明図である。It is explanatory drawing which shows the example of the developable surface obtained from the outer product of the normal vector of a curved surface, and the tangent vector of a curvature line partial line. 第1の実施形態における目的面メッシュ領域を構成する最大主曲率線部分線及び最小主曲率線部分線の例を示す説明図である。It is explanatory drawing which shows the example of the largest main curvature line partial line and the minimum main curvature line partial line which comprise the target surface mesh area | region in 1st Embodiment. 第1の実施形態における平面メッシュ領域の例を示す説明図である。It is explanatory drawing which shows the example of the plane mesh area | region in 1st Embodiment. 第1の施形態における角度決定部が、仮に、目的面メッシュ領域における最大主曲率線と最小主曲率線との角度を完全に再現するように最大主曲率方向対応線と最小主曲率方向対応線との角度を決定しようとした場合の不具合の例を示す説明図である。The angle determining unit in the first embodiment temporarily corresponds to the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line so as to completely reproduce the angle between the maximum principal curvature line and the minimum principal curvature line in the target mesh area. It is explanatory drawing which shows the example of the malfunction at the time of trying to determine the angle with. 平面メッシュ領域を囲む最大主曲率方向対応線と最小主曲率方向対応線とのなす角度の例を示す説明図である。It is explanatory drawing which shows the example of the angle which the maximum main curvature direction corresponding line and minimum main curvature direction corresponding line surrounding a plane mesh area | region form. 第1の実施形態における平面メッシュ領域をN角形(Nは、平面メッシュ領域の頂点の数)で近似した例を示す説明図である。It is explanatory drawing which shows the example which approximated the planar mesh area | region in 1st Embodiment by N square (N is the number of the vertex of a planar mesh area | region). 第1の実施形態における形状加工部が取得する展開図の例を示す説明図である。It is explanatory drawing which shows the example of the expanded view which the shape process part in 1st Embodiment acquires. 第1の実施形態における形成目的面形成部が行う組み合わせ処理によって得られた物の外形の例を示す説明図である。It is explanatory drawing which shows the example of the external shape of the thing obtained by the combination process which the formation target surface formation part in 1st Embodiment performs. 第1の実施形態における目的面形状物製造装置が行う処理の手順の例を示すフローチャートである。It is a flowchart which shows the example of the procedure of the process which the target surface shape thing manufacturing apparatus in 1st Embodiment performs. 第2の実施形態に係る形状取得装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the shape acquisition apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る形状取得装置が行う処理の手順の例を示すフローチャートである。It is a flowchart which shows the example of the procedure of the process which the shape acquisition apparatus which concerns on 2nd Embodiment performs. 実施形態に係る目的面曲率線取得部が、同種の曲率線間の距離が距離閾値より小さいことを検出した場合にその曲率線の算出を中止する例を示す図である。It is a figure which shows the example which stops the calculation of the curvature line, when the target surface curvature line acquisition part which concerns on embodiment detects that the distance between curvature lines of the same kind is smaller than a distance threshold value. 実施形態に係る目的面曲率線取得部が、ガウス曲率の大きさが曲率閾値より小さい領域について曲率線の算出を中止する例を示す図である。It is a figure which shows the example which the target surface curvature line acquisition part which concerns on embodiment stops calculation of a curvature line about the area | region where the magnitude | size of a Gaussian curvature is smaller than a curvature threshold value. 実施形態に係る曲率線の端部が、形成目的面の縁、他の曲率線のいずれとも重ならない例を示す図である。It is a figure which shows the example in which the edge part of the curvature line which concerns on embodiment does not overlap with the edge of a formation target surface, and other curvature lines. 実施形態に係る目的面曲率線取得部が、曲率線の端部から他の曲率線との交点までの部分を削除した例を示す図である。It is a figure which shows the example from which the target surface curvature line acquisition part which concerns on embodiment deleted the part from the edge part of a curvature line to the intersection with another curvature line. 実施形態に係る目的面曲率線取得部が曲率線を求める処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the process sequence in which the target surface curvature line acquisition part which concerns on embodiment calculates | requires a curvature line. 実施形態に係る切込みの位置が異なる複数の展開図の例を示す図である。It is a figure which shows the example of the some expanded view from which the position of the cut concerning embodiment differs. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Embodiments of the present invention will be described below, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る目的面形状物製造装置の機能構成を示す概略ブロック図である。図1に示すように、目的面形状物製造装置100は、目的面曲率線取得部110と、平面上領域取得部120と、形状加工部130と、形成目的面形成部140とを備える。平面上領域取得部120は、対応線取得部121と、接続関係決定部122と、角度決定部123とを備える。
 目的面形状物製造装置100は、平面形状の素材を加工して目的面形状に形成する。ここでいう素材は、目的面形状物を生成する元の物である。ここでいう目的面形状は、形成目的面の形状である。目的面形状物は、形成目的面の形状を有する物である。形成目的面は、形成目的の面である。
 目的面曲率線取得部110は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める。
 ここで、図2及び図3を参照して最大主曲率線及び最小主曲率線について説明する。
<First Embodiment>
FIG. 1 is a schematic block diagram showing a functional configuration of a target surface shape object manufacturing apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the target surface shape object manufacturing apparatus 100 includes a target surface curvature line acquisition unit 110, an on-plane area acquisition unit 120, a shape processing unit 130, and a formation target surface formation unit 140. The on-plane area acquisition unit 120 includes a corresponding line acquisition unit 121, a connection relationship determination unit 122, and an angle determination unit 123.
The target surface shape object manufacturing apparatus 100 processes a planar material to form a target surface shape. The material referred to here is an original object for generating a target shape object. The target surface shape here is the shape of the formation target surface. A target surface shape object is a thing which has the shape of a formation target surface. The formation target surface is a surface for the formation purpose.
The target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface.
Here, the maximum main curvature line and the minimum main curvature line will be described with reference to FIGS. 2 and 3.
 図2は、法曲率の例を示す説明図である。
 図2の点P11は曲面F11上の点である。点P11における曲面F11の法線ベクトルN11が示されている。ここでいう面上の点とは、面に含まれる点である。同様に、面に含まれる線を面上の線と称する。線に含まれる点を線上の点と称する。面に含まれる領域を面上の領域と称する。
FIG. 2 is an explanatory diagram showing an example of the normal curvature.
A point P11 in FIG. 2 is a point on the curved surface F11. A normal vector N11 of the curved surface F11 at the point P11 is shown. The point on the surface here is a point included in the surface. Similarly, a line included in a surface is referred to as a line on the surface. Points included in the line are referred to as points on the line. A region included in the surface is referred to as a region on the surface.
 図2の曲率ベクトルk11は、点P11における曲率ベクトルである。この曲率ベクトルk11は、法曲率ベクトルk11と測地線曲率ベクトルk11とに分解することができる。法曲率ベクトルk11は、曲率ベクトルk11の法線ベクトルN11の方向(曲面F11の法線方向)の成分である。測地線曲率ベクトルk11は、曲率ベクトルk11の法線ベクトルN11と接線ベクトルt11とを外積したベクトルU11の方向(曲面F11の法線方向に対して直角方向)の成分である。
 すなわち、曲率ベクトルk11は、式(1)のように示される。
The curvature vector k11 in FIG. 2 is a curvature vector at the point P11. This curvature vector k11 can be decomposed into a normal curvature vector k11 n and a geodesic curvature vector k11 g . The normal curvature vector k11 n is a component in the direction of the normal vector N11 of the curvature vector k11 (the normal direction of the curved surface F11). The geodesic curvature vector k11 g is a component in the direction of the vector U11 obtained by outer product of the normal vector N11 and the tangent vector t11 of the curvature vector k11 (perpendicular to the normal direction of the curved surface F11).
That is, the curvature vector k11 is expressed as in Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 法曲率は、法曲率ベクトルk11の向き及び大きさを示す値である。曲面F11の表裏が定められており、法線ベクトルN11は、曲面F11の表側に示される。すなわち、法線ベクトルN11は、曲面F11の裏側から表側への向きのベクトルで示される。そして、法曲率ベクトルk11の向きが法線ベクトルの向きである場合、法曲率は、法曲率ベクトルk11の大きさの正の値を取る。一方、法曲率ベクトルk11の向きが法線ベクトルの向きと反対の場合、法曲率は、法曲率ベクトルk11の大きさの負の値を取る。
 なお、曲面F11の表裏の決め方は任意である。すなわち、以下の説明は、曲面F11のいずれの面を表面に決定するかに依存しない。
The normal curvature is a value indicating the direction and size of the normal curvature vector k11 n . The front and back of the curved surface F11 are defined, and the normal vector N11 is shown on the front side of the curved surface F11. That is, the normal vector N11 is represented by a vector of the direction from the back side to the front side of the curved surface F11. When the direction of the normal curvature vector k11 n is the direction of the normal vector, the normal curvature takes a positive value of the magnitude of the normal curvature vector k11 n . On the other hand, when the direction of the normal curvature vector k11 n is opposite to the direction of the normal vector, the normal curvature takes a negative value of the magnitude of the normal curvature vector k11 n .
In addition, how to determine the front and back of the curved surface F11 is arbitrary. That is, the following description does not depend on which surface of the curved surface F11 is determined as the surface.
 法曲率が最大となる方向及び最小となる方向は、いずれも主曲率方向と称される。
 曲率線は、その曲率線上の各点におけるその曲率線の接線が、いずれもその点での主曲率方向を向いている線である。各点における接線がいずれも最大主曲率方向を向いている線は最大主曲率線と称される。また、各点における接線がいずれも最小主曲率方向を向いている線は最小主曲率線と称される。
Both the direction in which the normal curvature is maximum and the direction in which the normal curvature is minimum are referred to as the main curvature direction.
A curvature line is a line in which each tangent to the curvature line at each point on the curvature line is oriented in the main curvature direction at that point. A line in which the tangent line at each point is directed to the maximum principal curvature direction is referred to as a maximum principal curvature line. A line in which each tangent at each point faces the minimum principal curvature direction is referred to as a minimum principal curvature line.
 従って、曲面上の点(臍点以外の任意の点)から出発して最大主曲率方向へ順に辿っていくと最大主曲率線を得られる。また、曲面上の点(臍点以外の任意の点)から出発して最小主曲率方向へ順に辿っていくと最小主曲率線を得られる。最大主曲率線と最小主曲率線とを総称して曲率線と称される。臍点とは、何れの向きでも法曲率が同じ値になる点である。 Therefore, starting from a point on the curved surface (any point other than the umbilic point) and following in the direction of the maximum principal curvature, the maximum principal curvature line can be obtained. Also, starting from a point on the curved surface (any point other than the umbilic point) and tracing in the direction of the minimum principal curvature, a minimum principal curvature line can be obtained. The maximum main curvature line and the minimum main curvature line are collectively referred to as a curvature line. The umbilical point is a point where the normal curvature has the same value in any direction.
 図3は、最大主曲率線及び最小主曲率線の例を示す説明図である。
 図3にて、曲面F21と、曲面F21の最大主曲率線L21-1からL21-17までと、曲面F21の最小主曲率線L22-1からL22-9までとが示されている。例えば、曲面F21上の点P21から出発して、矢印B211の向き及び矢印B212の向きそれぞれに最大主曲率方向へ順に辿っていくと最大主曲率線L21-6を得られる。点P21から出発して、矢印B221の向き及び矢印B222の向きそれぞれに最小主曲率方向へ順に辿っていくと最小主曲率線L22-6を得られる。
FIG. 3 is an explanatory diagram illustrating an example of a maximum main curvature line and a minimum main curvature line.
FIG. 3 shows a curved surface F21, maximum main curvature lines L21-1 to L21-17 of the curved surface F21, and minimum main curvature lines L22-1 to L22-9 of the curved surface F21. For example, starting from the point P21 on the curved surface F21, the maximum main curvature line L21-6 can be obtained by sequentially following the directions of the arrow B211 and the arrow B212 in the maximum main curvature direction. Starting from the point P21, the minimum main curvature line L22-6 is obtained by sequentially following the direction of the arrow B221 and the direction of the arrow B222 in the minimum main curvature direction.
 目的面曲率線取得部110は、例えば、形成目的面の形状を示すデータをCAD(Computer Aided Design)データにて取得する。そして、目的面曲率線取得部110は、形成目的面に複数の点を特定し、特定した複数の点の各々から出発して最大主曲率方向へ順に辿って複数の最大主曲率線を取得する。また、目的面曲率線取得部110は、形成目的面に複数の点を特定し、特定した複数の点の各々から出発して最小主曲率方向へ順に辿って複数の最小主曲率線を取得する。目的面曲率線取得部110が最大主曲率線を求めるために特定する点と、最小主曲率線を求めるために特定する点とは、同じ点であってもよいし異なる点であってもよい。
 目的面曲率線取得部110が形成目的面に特定する点は、目的面曲率線取得部110が最大主曲率線及び最小主曲率線を求める処理を開始する計算開始点に該当する。
 目的面曲率線取得部110が行う処理は、目的面曲率線取得ステップでの処理の例に該当する。
For example, the target surface curvature line acquisition unit 110 acquires data indicating the shape of the formation target surface as CAD (Computer Aided Design) data. Then, the target surface curvature line acquisition unit 110 specifies a plurality of points on the formation target surface, and acquires a plurality of maximum main curvature lines starting from each of the specified plurality of points and sequentially tracing in the maximum main curvature direction. . Further, the target surface curvature line acquisition unit 110 specifies a plurality of points on the formation target surface, and acquires a plurality of minimum main curvature lines starting from each of the specified plurality of points and sequentially tracing in the minimum main curvature direction. . The point specified by the target surface curvature line acquisition unit 110 for obtaining the maximum main curvature line and the point specified for obtaining the minimum main curvature line may be the same point or different points. .
The point specified by the target surface curvature line acquisition unit 110 as the formation target surface corresponds to a calculation start point at which the target surface curvature line acquisition unit 110 starts processing for obtaining the maximum main curvature line and the minimum main curvature line.
The processing performed by the target surface curvature line acquisition unit 110 corresponds to an example of processing in the target surface curvature line acquisition step.
 平面上領域取得部120は、形成目的面が最大主曲率線及び最小主曲率線で区切られた各領域について、この領域に対応付けられる平面上の領域を求める。特に、平面上領域取得部120は、この平面上の領域の形状を示すデータを求める。平面上領域取得部120が行う処理は、平面上領域取得ステップでの処理の例に該当する。
 以下、形成目的面が最大主曲率線及び最小主曲率線で区切られた各領域を、目的面メッシュ領域と称する。図3で最大主曲率線及び最小主曲率線で区切られた領域の各々が目的面メッシュ領域の例に該当する。最大主曲率線と最小主曲率線と形成目的面の縁(境界)の線とで囲まれた領域も、目的面メッシュ領域の例に該当する。
 また、目的面メッシュ領域に対応する平面上の領域を平面メッシュ領域と称する。
The on-plane area acquisition unit 120 obtains an area on the plane associated with this area for each area where the formation target surface is divided by the maximum main curvature line and the minimum main curvature line. In particular, the on-plane area acquisition unit 120 obtains data indicating the shape of the area on the plane. The process performed by the on-plane area acquisition unit 120 corresponds to an example of the process at the on-plane area acquisition step.
Hereinafter, each region in which the formation target surface is divided by the maximum main curvature line and the minimum main curvature line is referred to as a target surface mesh region. Each of the regions divided by the maximum main curvature line and the minimum main curvature line in FIG. 3 corresponds to an example of the target surface mesh region. A region surrounded by the maximum principal curvature line, the minimum principal curvature line, and the edge (boundary) line of the formation target surface is also an example of the target surface mesh region.
A region on a plane corresponding to the target surface mesh region is referred to as a plane mesh region.
 対応線取得部121は、最大主曲率方向対応線、及び、最小主曲率方向対応線を求める。
 ここで、最大主曲率線が最小主曲率線で区切られた線を、最大主曲率線部分線と称する。また、最大主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる、この最大主曲率線部分線に対応する平面上の線を、最大主曲率方向対応線と称する。
 また、最小主曲率線が最大主曲率線で区切られた線を、最小主曲率線部分線と称する。また、最小主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる、この最小主曲率線部分線に対応する平面上の線を、最小主曲率方向対応線と称する。
 なお、最大主曲率線部分線と最小主曲率線部分線とを総称して曲率線部分線と称する。
The corresponding line acquisition unit 121 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line.
Here, a line in which the maximum main curvature line is divided by the minimum main curvature line is referred to as a maximum main curvature line partial line. Also, the line on the plane corresponding to this maximum main curvature line partial line obtained by mapping the developable surface including the maximum main curvature line partial line to a plane without expansion or contraction is referred to as the maximum main curvature direction corresponding line. Called.
A line in which the minimum main curvature line is divided by the maximum main curvature line is referred to as a minimum main curvature line partial line. Also, the line on the plane corresponding to the minimum main curvature line partial line obtained by mapping the developable surface including the minimum main curvature line partial line to a plane without expansion or contraction is referred to as the minimum main curvature direction corresponding line. Called.
The maximum main curvature line partial line and the minimum main curvature line partial line are collectively referred to as a curvature line partial line.
 ここでいう可展面とは、伸縮を行わずに平面に展開することができる曲面である。可展面と、この可展面を平面展開した平面とはIsometric Surfaceであることが知られている。また、Isometric Surface上の対応する曲線の測地線曲率は等しいことが知られている。従って、可展面を伸縮せずに平面に展開することで、この可展面上の曲率線を、曲率線の測地的曲率を保って平面に展開することができる。ここで、測地的曲率とは、測地線曲率ベクトルの大きさを示す値である。図2の場合、測地線曲率ベクトルkの大きさが、測地的曲率の例に該当する。
 また、可展面を伸縮せずに平面に展開することで、この可展面上の曲率線を、曲率線の長さを保って平面に展開することができる。
The developable surface here is a curved surface that can be developed on a plane without being expanded or contracted. It is known that the developable surface and the plane obtained by developing the developable surface on a plane are Isometric Surface. It is also known that the geodesic curvature of the corresponding curves on the Isometric Surface is equal. Therefore, by expanding the developable surface on a plane without expanding or contracting, the curvature line on the expandable surface can be expanded on the plane while maintaining the geodesic curvature of the curvature line. Here, the geodesic curvature is a value indicating the magnitude of the geodesic curvature vector. For Figure 2, the size of the geodesic curvature vector k g is, corresponds to an example of the geodesic curvature.
Further, by expanding the developable surface on a plane without expanding and contracting, the curvature line on the expandable surface can be expanded on the plane while maintaining the length of the curvature line.
 対応線取得部121が用いる可展面は、最大主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む面、及び、最小主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む面であってもよい。 The developable surface used by the corresponding line acquisition unit 121 is the outer product of the normal vector of the formation target surface at this point and the tangent vector of the maximum main curvature line partial line at each point on the maximum main curvature line partial line. And the vector of the outer product of the normal vector of the target surface at this point and the tangent vector of the minimum principal curvature line at this point at each point on the minimum principal curvature line. It may be a surface.
 具体的には、対応線取得部121が、最大主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む可展面を伸縮無しに平面に展開する変換にて最大主曲率方向対応線を取得するようにしてもよい。また、対応線取得部121が、最小主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む可展面を伸縮無しに平面に展開する変換にて最小主曲率方向対応線を取得するようにしてもよい。 Specifically, the corresponding line acquisition unit 121 calculates the outer product of the normal vector of the formation target surface at this point and the tangent vector of the maximum main curvature line partial line at each point on the maximum main curvature line partial line. The maximum principal curvature direction correspondence line may be acquired by conversion that develops a developable surface including the vector into a plane without expansion and contraction. In addition, the corresponding line acquisition unit 121 calculates the vector of the outer product of the normal vector of the formation target surface at this point and the tangent vector of the minimum main curvature line partial line at this point at each point on the minimum main curvature line partial line. You may make it acquire the minimum main curvature direction corresponding | compatible line by the conversion which expand | deploys the developable surface included in a plane without expansion / contraction.
 図4は、曲面の法線ベクトルと曲率線部分線の接線ベクトルとの外積の例を示す説明図である。
 図4では、曲面F31上の曲率線部分線L31が示されている。また、点P31は、曲率線部分線L31上の点である。また、点P31における曲面F31の法線ベクトルN31と、点P31における曲率線部分線L31の接線ベクトルt31とが示されている。また、ベクトルU31は、法線ベクトルN31と接線ベクトルt31との外積のベクトルである。すなわち、ベクトルU31は式(2)のように示される。
FIG. 4 is an explanatory diagram showing an example of the outer product of the normal vector of the curved surface and the tangent vector of the curvature line partial line.
In FIG. 4, the curvature line partial line L31 on the curved surface F31 is shown. The point P31 is a point on the curvature line partial line L31. Further, a normal vector N31 of the curved surface F31 at the point P31 and a tangent vector t31 of the curvature line partial line L31 at the point P31 are shown. The vector U31 is a vector of the outer product of the normal vector N31 and the tangent vector t31. That is, the vector U31 is expressed as shown in Equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図5は、曲面の法線ベクトルと曲率線部分線の接線ベクトルとの外積から得られる可展面の例を示す説明図である。
 図5では、曲面F41上の曲率線部分線L41が示されている。また、点P41-1、P41-2、P41-3は、いずれも曲率線部分線L41上の線である。また、点P41-1、P41-2、P41-3のそれぞれにおける曲面F41の法線ベクトルN41-1、N41-2、N41-3が示されている。また、点P41-1、P41-2、P41-3のそれぞれにおける曲率線部分線L41の接線ベクトルt41-1、t41-2、t41-3が示されている。
FIG. 5 is an explanatory diagram showing an example of a developable surface obtained from the outer product of the normal vector of the curved surface and the tangent vector of the curvature line partial line.
In FIG. 5, the curvature line partial line L41 on the curved surface F41 is shown. The points P41-1, P41-2, and P41-3 are all lines on the curvature line partial line L41. In addition, normal vectors N41-1, N41-2, and N41-3 of the curved surface F41 at points P41-1, P41-2, and P41-3 are shown. In addition, tangent vectors t41-1, t41-2, and t41-3 of the curvature line partial line L41 at the points P41-1, P41-2, and P41-3 are shown.
 ベクトルU41-1は、法線ベクトルN41-1と接線ベクトルt41-1との外積である。ベクトルU41-2は、法線ベクトルN41-2と接線ベクトルt41-2との外積である。ベクトルU41-3は、法線ベクトルN41-3と接線ベクトルt41-3との外積である。これらのベクトルU41-1、U41-2、U41-3は、曲率線部分線L41上の各点での、曲面F41の法線ベクトルと曲率線部分線L41の接線ベクトルとの外積の一部に該当する。
 曲面F41は、形成目的面の例に該当する。曲面F42は、曲率線部分線L41を含む面の例に該当する。この曲面F42は、曲率線部分線L41上の各点での、この点における形成目的面の法線ベクトルとこの点における曲率線部分線の接線ベクトルとの外積のベクトルを含む面である。この曲面F42は、可展面である。
 曲率線部分線L42が最大主曲率線部分線である場合、曲面F42は、最大主曲率線部分線を含む面の例に該当する。この場合、最大主曲率線部分線を含む面は、最大主曲率線部分線上の点における形成目的面の法線ベクトルとこの点における最大主曲率線部分線の接線ベクトルとの外積ベクトルを含む。
 曲率線部分線L42が最小主曲率線部分線である場合、曲面F42は、最小主曲率線部分線を含む面の例に該当する。この場合、最小主曲率線部分線を含む面は、最小主曲率線部分線上の点における形成目的面の法線ベクトルとこの点における最小主曲率線部分線の接線ベクトルとの外積ベクトルを含む。
The vector U41-1 is the outer product of the normal vector N41-1 and the tangent vector t41-1. The vector U41-2 is the outer product of the normal vector N41-2 and the tangent vector t41-2. The vector U41-3 is the outer product of the normal vector N41-3 and the tangent vector t41-3. These vectors U41-1, U41-2, U41-3 are part of the outer product of the normal vector of the curved surface F41 and the tangent vector of the curvature line partial line L41 at each point on the curvature line partial line L41. Applicable.
The curved surface F41 corresponds to an example of a formation target surface. The curved surface F42 corresponds to an example of a surface including the curvature line partial line L41. The curved surface F42 is a surface including a vector of the outer product of the normal vector of the formation target surface at this point and the tangent vector of the curvature line partial line at this point at each point on the curvature line partial line L41. The curved surface F42 is a developable surface.
When the curvature line partial line L42 is the maximum main curvature line partial line, the curved surface F42 corresponds to an example of a surface including the maximum main curvature line partial line. In this case, the surface including the maximum principal curvature line partial line includes an outer product vector of the normal vector of the formation target surface at the point on the maximum principal curvature line partial line and the tangent vector of the maximum principal curvature line partial line at this point.
When the curvature line partial line L42 is the minimum main curvature line partial line, the curved surface F42 corresponds to an example of a surface including the minimum main curvature line partial line. In this case, the surface including the minimum main curvature line partial line includes an outer product vector of the normal vector of the formation target surface at the point on the minimum main curvature line partial line and the tangent vector of the minimum main curvature line partial line at this point.
 対応線取得部121は、可展面を伸縮無しに平面に展開する変換を行うことで、可展面に含まれる曲率線部分線を平面上の線に変換する。対応線取得部121は、最大主曲率線部分線に対してこの変換を行うことで、最大主曲率方向対応線を取得する。また、対応線取得部121は、最小主曲率線部分線に対してこの変換を行うことで、最小主曲率方向対応線を取得する。
 対応線取得部121が行う処理は、対応線取得ステップでの処理の例に該当する。
The corresponding line acquisition unit 121 converts the curvature line partial line included in the expandable surface into a line on the plane by performing conversion to expand the expandable surface into a plane without expansion and contraction. The corresponding line acquisition unit 121 acquires the maximum main curvature direction corresponding line by performing this conversion on the maximum main curvature line partial line. The corresponding line acquisition unit 121 acquires the minimum main curvature direction corresponding line by performing this conversion on the minimum main curvature line partial line.
The processing performed by the corresponding line acquisition unit 121 corresponds to an example of processing in the corresponding line acquisition step.
 接続関係決定部122は、目的面メッシュ領域を形成する最大主曲率線部分線及び最小主曲率線部分線の接続関係に従って、この目的面メッシュ領域に対応付けられる平面メッシュ領域を取得する。具体的には、接続関係決定部122は、目的面メッシュ領域を形成する最大主曲率線部分線及び最小主曲率線部分線の接続関係に従って、この最大主曲率線部分線及び最小主曲率線部分線に対応付けられる最大主曲率方向対応線及び最小主曲率方向対応線の接続関係を決定する。
 なお、目的面メッシュ領域が形成目的面の縁も含んで構成されている場合、接続関係決定部122は、最大主曲率線部分線、最小主曲率線部分線及び形成目的面の縁の接続関係に従って、この目的面メッシュ領域に対応付けられる平面メッシュ領域を取得する。
The connection relationship determining unit 122 acquires a planar mesh region associated with the target surface mesh region according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. Specifically, the connection relationship determination unit 122 determines the maximum main curvature line portion line and the minimum main curvature line portion according to the connection relationship between the maximum main curvature line portion line and the minimum main curvature line portion line that form the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the line is determined.
When the target surface mesh region is configured to include the edge of the formation target surface, the connection relationship determining unit 122 connects the maximum main curvature line partial line, the minimum main curvature line partial line, and the edge of the formation target surface. Accordingly, a plane mesh region associated with the target surface mesh region is acquired.
 図6は、目的面メッシュ領域を構成する最大主曲率線部分線及び最小主曲率線部分線の例を示す説明図である。
 図6では、曲面F51上の目的面メッシュ領域A51が示されている。目的面メッシュ領域A51は、最大主曲率線部分線L511-1及びL511-2と、最小主曲率線部分線L512-1及びL512-2とで囲まれた領域である。点P511では、最大主曲率線部分線L511-1と最小主曲率線部分線L512-2とが接続されている。点P512では、最小主曲率線部分線L512-1と最大主曲率線部分線L511-1とが接続されている。点P513では、最大主曲率線部分線L511-2と最小主曲率線部分線L512-1とが接続されている。点P514では、最小主曲率線部分線L512-2と最大主曲率線部分線L511-2とが接続されている。
FIG. 6 is an explanatory diagram showing an example of a maximum main curvature line partial line and a minimum main curvature line partial line that constitute the target surface mesh region.
In FIG. 6, the target surface mesh area A51 on the curved surface F51 is shown. The target surface mesh area A51 is an area surrounded by the maximum main curvature line partial lines L511-1 and L511-2 and the minimum main curvature line partial lines L512-1 and L512-2. At the point P511, the maximum main curvature line partial line L511-1 and the minimum main curvature line partial line L512-2 are connected. At point P512, the minimum main curvature line partial line L512-1 and the maximum main curvature line partial line L511-1 are connected. At the point P513, the maximum main curvature line partial line L511-2 and the minimum main curvature line partial line L512-1 are connected. At the point P514, the minimum main curvature line partial line L512-2 and the maximum main curvature line partial line L511-2 are connected.
 図7は、平面メッシュ領域の例を示す説明図である。
 図7に示す平面メッシュ領域A52は、図6に示す目的面メッシュ領域A51に対応付けられる。特に、最大主曲率方向対応線L521-1、L521-2は、それぞれ、最大主曲率線部分線L511-1、L511-2に対応付けられる。また、最小主曲率方向対応線L522-1、L522-2は、それぞれ、最小主曲率線部分線L512-1、L512-2に対応付けられる。
FIG. 7 is an explanatory diagram illustrating an example of a planar mesh region.
The planar mesh area A52 shown in FIG. 7 is associated with the target mesh area A51 shown in FIG. In particular, the maximum main curvature direction corresponding lines L521-1 and L521-2 are respectively associated with the maximum main curvature line partial lines L511-1 and L511-2. Further, the minimum main curvature direction corresponding lines L522-1, L522-2 are respectively associated with the minimum main curvature line partial lines L512-1, L512-2.
 接続関係決定部122は、最大主曲率方向対応線及び最小主曲率方向対応線を、写像前の最大主曲率線部分線及び最小主曲率線部分線と同様の向き及び接続関係で接続する。図7の例の場合、図6で最大主曲率線部分線L511-1と最小主曲率線部分線L512-2とが接続されている。そこで、接続関係決定部122は、最大主曲率方向対応線L521-1と最小主曲率方向対応線L522-2とを接続する。最大主曲率方向対応線L521-1は、対応線取得部121が最大主曲率線部分線L511-1を平面F52に写像した線である。また、最小主曲率方向対応線L522-2は、対応線取得部121が最小主曲率線部分線L512-2を平面F52に写像した線である。
 その際、接続関係決定部122は、最大主曲率方向対応線L521-1の点P521側の端部が、図6の最大主曲率線部分線L511-1の点P511側の端部に対応する端部となるように、最大主曲率方向対応線L521-1の向きを決定する。
The connection relationship determining unit 122 connects the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line with the same orientation and connection relationship as the maximum main curvature line partial line and the minimum main curvature line partial line before mapping. In the example of FIG. 7, the maximum main curvature line partial line L511-1 and the minimum main curvature line partial line L512-2 are connected in FIG. Therefore, the connection relationship determining unit 122 connects the maximum main curvature direction corresponding line L521-1 and the minimum main curvature direction corresponding line L522-2. The maximum main curvature direction corresponding line L521-1 is a line obtained by mapping the maximum main curvature line partial line L511-1 to the plane F 52 by the corresponding line acquisition unit 121. Also, the minimum main curvature direction corresponding line L522-2 is a line obtained by mapping the minimum main curvature line partial line L512-2 to the plane F52 by the corresponding line acquisition unit 121.
At that time, in the connection relationship determining unit 122, the end portion on the point P521 side of the maximum main curvature direction corresponding line L521-1 corresponds to the end portion on the point P511 side of the maximum main curvature line partial line L511-1 in FIG. The direction of the maximum principal curvature direction corresponding line L521-1 is determined so as to be the end.
 同様に、接続関係決定部122は、点P522、P523及びP524における接続関係についても、図6の点P512、P513、P514における接続関係に対応する接続関係となるように接続する。また、接続関係決定部122は、最小主曲率方向対応線L522-1の点P522側の端部が、図6の最小主曲率線部分線L512-1の点P512側の端部に対応する端部となるように、最小主曲率方向対応線L522-1の向きを決定する。また、接続関係決定部122は、最大主曲率方向対応線L521-2の点P523側の端部が、図6の最大主曲率線部分線L511-2の点P513側の端部に対応する端部となるように、最大主曲率方向対応線L521-2の向きを決定する。また、接続関係決定部122は、最小主曲率方向対応線L522-2の点P524側の端部が、図6の最小主曲率線部分線L512-2の点P514側の端部に対応する端部となるように、最小主曲率方向対応線L522-2の向きを決定する。
 このように、接続関係決定部122は、目的面メッシュ領域を囲む最大主曲率線部分線及び最小主曲率線部分線の向き及び接続関係を保って平面に展開するように、最大主曲率方向対応線及び最小主曲率方向対応線の向き及び接続関係を決定して、平面メッシュ領域を取得する。
 接続関係決定部122が行う処理は、接続関係決定ステップでの処理の例に該当する。
Similarly, the connection relationship determination unit 122 connects the connection relationships at the points P522, P523, and P524 so that the connection relationship corresponds to the connection relationship at the points P512, P513, and P514 in FIG. Further, the connection relationship determining unit 122 is configured such that the end on the point P522 side of the minimum main curvature direction corresponding line L522-1 corresponds to the end on the point P512 side of the minimum main curvature line partial line L512-1 in FIG. The direction of the minimum principal curvature direction corresponding line L522-1 is determined so as to be a part. Further, the connection relationship determining unit 122 is configured such that the end on the point P523 side of the maximum main curvature direction corresponding line L521-2 corresponds to the end on the point P513 side of the maximum main curvature line partial line L511-2 in FIG. The direction of the maximum principal curvature direction corresponding line L521-2 is determined so as to be a part. Further, the connection relationship determining unit 122 is configured such that the end on the point P524 side of the minimum main curvature direction corresponding line L522-2 corresponds to the end on the point P514 side of the minimum main curvature line partial line L512-2 in FIG. The direction of the minimum principal curvature direction corresponding line L522-2 is determined so as to be a part.
In this way, the connection relationship determining unit 122 supports the maximum principal curvature direction so that the orientation and connection relationship of the maximum main curvature line partial line and the minimum main curvature line partial line surrounding the target surface mesh region are expanded in a plane. The plane mesh region is obtained by determining the direction and connection relationship between the line and the minimum principal curvature direction corresponding line.
The processing performed by the connection relationship determination unit 122 corresponds to an example of processing in the connection relationship determination step.
 角度決定部123は、平面メッシュを構成する最大主曲率方向対応線及び最小主曲率方向対応線のなす角度を決定する。
 具体的には、角度決定部123は、最大主曲率方向対応線と最小主曲率方向対応線とがなす角度と、この最大主曲率方向対応線に対応する最大主曲率線部分線とこの最小主曲率方向対応線に対応する最小主曲率線部分線とがなす角度との差を、接続関係決定部122が決定した接続関係にて最大主曲率方向対応線及び最小主曲率方向対応線を接続して得られる平面上の領域(平面メッシュ領域)内で各接続箇所に均等化する処理を行う。これにより、角度決定部123は、最大主曲率方向対応線と最小主曲率方向対応線とがなす角度を決定する。
 なお、2つの曲線がなす角度として、これら2つの曲線が接続された点でのこれら2つの曲線の接線がなす角度を用いることができる。
The angle determination unit 123 determines an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line constituting the planar mesh.
Specifically, the angle determination unit 123 determines the angle formed by the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line, the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line, and the minimum main curvature direction corresponding line. The difference between the angle formed by the minimum main curvature line partial line corresponding to the curvature direction corresponding line is connected to the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line in the connection relationship determined by the connection relationship determining unit 122. In the area on the plane (plane mesh area) obtained in this way, a process for equalizing each connection location is performed. Thereby, the angle determination part 123 determines the angle which the largest main curvature direction corresponding line and the minimum main curvature direction corresponding line make.
As the angle formed by the two curves, the angle formed by the tangent lines of these two curves at the point where these two curves are connected can be used.
 ここで、最大主曲率線と最小主曲率線とは互いに直交する。従って、最大主曲率線部分線と最小主曲率線部分線とは互いに直交する。これに対し、目的面メッシュ領域の曲面は、通常、可展面ではない。このため、平面メッシュ領域では、目的面メッシュ領域における最大主曲率線と最小主曲率線との角度を完全に再現することはできない。 Here, the maximum main curvature line and the minimum main curvature line are orthogonal to each other. Therefore, the maximum main curvature line partial line and the minimum main curvature line partial line are orthogonal to each other. On the other hand, the curved surface of the target surface mesh region is usually not a developable surface. For this reason, in the plane mesh region, the angle between the maximum main curvature line and the minimum main curvature line in the target surface mesh region cannot be completely reproduced.
 図8は、仮に、角度決定部123が、目的面メッシュ領域における最大主曲率線と最小主曲率線との角度を完全に再現するように最大主曲率方向対応線と最小主曲率方向対応線との角度を決定しようとした場合の不具合の例を示す説明図である。
 最大主曲率線部分線と最小主曲率線部分線とが互いに直交することから、角度決定部123は、最大主曲率方向対応線L521-1と最小主曲率方向対応線L522-2とが点P521でなす角度を直角に決定している。同様に、角度決定部123は、最小主曲率方向対応線L522-1と最大主曲率方向対応線L521-1とが点P522でなす角度を直角に決定している。また、角度決定部123は、最大主曲率方向対応線L521-2と最小主曲率方向対応線L522-1とが点P523でなす角度を直角に決定している。
FIG. 8 shows that the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line are set so that the angle determination unit 123 completely reproduces the angle between the maximum principal curvature line and the minimum principal curvature line in the target surface mesh region. It is explanatory drawing which shows the example of the malfunction at the time of trying to determine the angle of.
Since the maximum main curvature line partial line and the minimum main curvature line partial line are orthogonal to each other, the angle determining unit 123 determines that the maximum main curvature direction corresponding line L521-1 and the minimum main curvature direction corresponding line L522-2 are point P 521. The angle formed by is determined to be a right angle. Similarly, the angle determining unit 123 determines the angle formed by the minimum main curvature direction corresponding line L522-1 and the maximum main curvature direction corresponding line L521-1 at the point P522 as a right angle. Further, the angle determination unit 123 determines the angle formed by the maximum principal curvature direction correspondence line L521-2 and the minimum principal curvature direction correspondence line L522-1 at the point P 523 as a right angle.
 すると、領域A53に示されるように、最小主曲率方向対応線L522-2の端部と最大主曲率方向対応線L521-2の端部とが重なっていない。このように、一般的には、平面メッシュ領域を囲む最大主曲率方向対応線と最小主曲率方向対応線とのなす角度を、全て、元の目的面メッシュ領域を囲む最大主曲率線部分線と最小主曲率線部分線とのなす角度と一致させることはできない。 Then, as shown in the region A53, the end of the minimum main curvature direction corresponding line L522-2 and the end of the maximum main curvature direction corresponding line L521-2 do not overlap. As described above, generally, the angles formed by the maximum principal curvature direction corresponding line surrounding the planar mesh region and the minimum main curvature direction corresponding line are all the maximum main curvature line partial lines surrounding the original target surface mesh region. It is not possible to match the angle formed with the minimum main curvature line partial line.
 そこで、角度決定部123は、平面メッシュ領域を囲む最大主曲率方向対応線と最小主曲率方向対応線とのなす角度と、元の目的面メッシュ領域を囲む最大主曲率線部分線と最小主曲率線部分線とのなす角度との差を、平面メッシュ領域内で分散させる。
 図9は、平面メッシュ領域を囲む最大主曲率方向対応線と最小主曲率方向対応線とのなす角度の例を示す説明図である。
Therefore, the angle determination unit 123 determines the angle formed between the maximum principal curvature direction corresponding line surrounding the planar mesh region and the minimum main curvature direction corresponding line, the maximum main curvature line partial line surrounding the original target surface mesh region, and the minimum main curvature. The difference from the angle formed with the line partial line is dispersed in the plane mesh region.
FIG. 9 is an explanatory diagram illustrating an example of an angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line surrounding the planar mesh region.
 以下では、最大主曲率方向対応線と最小主曲率方向対応線との接続点を平面メッシュ領域の頂点、又は、単に頂点と称する。また、平面メッシュ領域の頂点にて最大主曲率方向対応線と最小主曲率方向対応線とがなす角度を平面メッシュ領域の頂点の角度、又は、単に頂点の角度と称する。
 図9では、最大主曲率方向対応線L531-1及びL531-2と、最小主曲率方向対応線L532-1及びL532-2とで囲まれた平面メッシュ領域A54が示されている。
Hereinafter, the connection point between the maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line is referred to as a vertex of the planar mesh region or simply as a vertex. In addition, the angle formed by the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line at the vertex of the planar mesh region is referred to as the vertex angle of the planar mesh region or simply the vertex angle.
FIG. 9 shows a planar mesh region A54 surrounded by maximum main curvature direction corresponding lines L531-1 and L531-2 and minimum main curvature direction corresponding lines L532-1 and L532-2.
 また、最大主曲率方向対応線L531-1と最小主曲率方向対応線L532-2とは、平面メッシュ領域A54の頂点P530で接続されている。最小主曲率方向対応線L532-1と最大主曲率方向対応線L531-1とは、平面メッシュ領域A54の頂点P531で接続されている。最大主曲率方向対応線L531-2と最小主曲率方向対応線L532-1とは、平面メッシュ領域A54の頂点P532で接続されている。最小主曲率方向対応線L532-2と最大主曲率方向対応線L531-2とは、平面メッシュ領域A54の頂点P533で接続されている。平面メッシュ領域A54の頂点P530、P531、P532、P533の角度を、それぞれφ、φ、φ、φと表記する。 Further, the maximum main curvature direction corresponding line L531-1 and the minimum main curvature direction corresponding line L532-2 are connected at the vertex P530 of the planar mesh region A54. The minimum main curvature direction corresponding line L532-1 and the maximum main curvature direction corresponding line L531-1 are connected at the vertex P531 of the planar mesh region A54. The maximum main curvature direction corresponding line L531-2 and the minimum main curvature direction corresponding line L532-1 are connected by the vertex P532 of the planar mesh region A54. The minimum main curvature direction corresponding line L532-2 and the maximum main curvature direction corresponding line L531-2 are connected by a vertex P533 of the planar mesh region A54. Vertices of planar mesh area A54 P530, P531, P532, the angle of the P533, respectively φ 0, φ 1, φ 2 , φ 3 and notation.
また、頂点P531とP530とが線分L540で結ばれている。頂点P532とP531とが線分L541で結ばれている。頂点P533とP532とが線分L542で結ばれている。頂点P530とP533とが線分L543で結ばれている。
 線分L540、L541、L542及びL543で四角形を構成する。従って、頂点P530、P531、P532及びP533は、四角形の頂点でもある。
 四角形の頂点P530、P531、P532、P533の角度を、それぞれΨ、Ψ、Ψ、Ψと表記する。
The vertices P531 and P530 are connected by a line segment L540. The vertices P532 and P531 are connected by a line segment L541. The vertices P533 and P532 are connected by a line segment L542. The vertices P530 and P533 are connected by a line segment L543.
The line segments L540, L541, L542, and L543 form a quadrangle. Accordingly, the vertices P530, P531, P532, and P533 are also quadrangular vertices.
The angles of the vertices P530, P531, P532, and P533 of the quadrangle are expressed as Ψ 0 , Ψ 1 , Ψ 2 , and Ψ 3 , respectively.
 ここで、φ、φ、φ、φ、Ψ、Ψ、Ψ及びΨのうちいずれか1つを決定すると、他の角度も決まる。例えば、Ψをパラメータとして、Ψ(Ψ)、Ψ(Ψ)、Ψ(Ψ)、φ(Ψ)、φ(Ψ)、φ(Ψ)、φ(Ψ)と表すことができる。
 また、平面メッシュ領域A54の頂点の角度φ、φ、φ及びφと、四角形の頂点の角度Ψ、Ψ、Ψ及びΨとの関係は、式(3)のように示される。
Here, when any one of φ 0 , φ 1 , φ 2 , φ 3 , ψ 0 , ψ 1 , ψ 2, and ψ 3 is determined, another angle is also determined. For example, with Ψ 0 as a parameter, Ψ 10 ), Ψ 20 ), Ψ 30 ), φ 00 ), φ 10 ), φ 20 ), It can be expressed as φ 30 ).
Further, the relationship between the vertex angles φ 0 , φ 1 , φ 2 and φ 3 of the planar mesh region A54 and the square vertex angles Ψ 0 , Ψ 1 , Ψ 2 and Ψ 3 is expressed by Equation (3). Shown in
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、δ0_1は、最大主曲率方向対応線L531-1と線分L540とが頂点P530でなす角度を示す定数である。δ0_1の値の正負は、最大主曲率方向対応線L531-1に対して線分L540が、図9に向かって見て右回り側にある場合を正とし、左回り側にある場合を負とする。図9の例では、線分L540が最大主曲率方向対応線L531-1に対して左回り側にあるので、δ0_1は負の値をとる。 Here, [delta] 0_1 is, the maximum principal curvature direction corresponding line L531-1 and the line segment L540 is a constant indicating the angle formed at the apex P530. positive and negative values of [delta] 0_1 is line L540 for the maximum principal curvature direction corresponding line L531-1 is negative when a certain case in the clockwise side as viewed toward 9 to positive, counterclockwise side And In the example of FIG. 9, since the line segment L540 is in the counterclockwise side with respect to the maximum principal curvature direction corresponding line L531-1, δ 0_1 has a negative value.
 また、δ0_2は、最小主曲率方向対応線L532-2と線分L543とが頂点P530でなす角度を示す定数である。δ0_2の値の正負は、最小主曲率方向対応線L532-2に対して線分L543が、図9に向かって見て左回り側にある場合を正とし、右回り側にある場合を負とする。図9の例では、線分L540が最小主曲率方向対応線L532-2に対して左回り側にあるので、δ0_2は正の値をとる。 Furthermore, [delta] 0_2 has a minimum principal curvature direction corresponding line L532-2 and the line segment L543 is a constant indicating the angle formed at the apex P530. positive and negative values of [delta] 0_2 is line L543 for the minimum principal curvature direction corresponding line L532-2 is negative when there a case where the left-handed side as viewed toward 9 to positive, clockwise side And In the example of FIG. 9, since the line segment L540 is in the counterclockwise side with respect to the minimum principal curvature direction corresponding line L532-2, δ 0_2 takes a positive value.
 また、δ1_1は、最小主曲率方向対応線L532-1と線分L541とが頂点P531でなす角度を示す定数である。δ1_1の値の正負は、最小主曲率方向対応線L532-1に対して線分L541が、図9に向かって見て右回り側にある場合を正とし、左回り側にある場合を負とする。図9の例では、線分L541が最小主曲率方向対応線L532-1に対して左回り側にあるので、δ1_1は負の値をとる。 Further, δ 1_1 is a constant indicating the angle formed between the minimum principal curvature direction corresponding line L532-1 and the line segment L541 at the vertex P531. The value of δ 1_1 is positive when the line segment L541 is on the clockwise side as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-1, and is negative when the line segment L541 is on the counterclockwise side. And In the example of FIG. 9, since the line segment L541 is on the counterclockwise side with respect to the minimum main curvature direction corresponding line L532-1, δ 1_1 takes a negative value.
 また、δ1_2は、最大主曲率方向対応線L531-1と線分L540とが頂点P531でなす角度を示す定数である。δ1_2の値の正負は、最大主曲率方向対応線L531-1に対して線分L540が、図9に向かって見て左回り側にある場合を正とし、右回り側にある場合を負とする。図9の例では、線分L540が最大主曲率方向対応線L531-1に対して右回り側にあるので、δ1_2は負の値をとる。 Further, δ 1_2 is a constant indicating the angle formed by the maximum principal curvature direction corresponding line L531-1 and the line segment L540 at the vertex P531. The sign of δ 1_2 is positive when the line segment L540 is on the left-handed side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-1, and is negative when it is on the right-handed side. And In the example of FIG. 9, since the line segment L540 is on the clockwise side with respect to the maximum principal curvature direction corresponding line L531-1, δ 1_2 takes a negative value.
 また、δ2_1は、最大主曲率方向対応線L531-2と線分L542とが頂点P532でなす角度を示す定数である。δ2_1の値の正負は、最大主曲率方向対応線L531-2に対して線分L542が、図9に向かって見て右回り側にある場合を正とし、左回り側にある場合を負とする。図9の例では、線分L542が最大主曲率方向対応線L531-2に対して左回り側にあるので、δ2_1は負の値をとる。 Further, δ 2_1 is a constant indicating an angle formed by the vertex P532 between the maximum principal curvature direction corresponding line L531-2 and the line segment L542. The value of δ 2_1 is positive when the line segment L542 is on the clockwise side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-2, and negative when the line segment L542 is on the counterclockwise side. And In the example of FIG. 9, since the line segment L542 is on the counterclockwise side with respect to the maximum principal curvature direction corresponding line L531-2, δ 2_1 takes a negative value.
 また、δ2_2は、最小主曲率方向対応線L532-1と線分L541とが頂点P532でなす角度を示す定数である。δ2_2の値の正負は、最小主曲率方向対応線L532-1に対して線分L541が、図9に向かって見て左回り側にある場合を正とし、右回り側にある場合を負とする。図9の例では、線分L541が最小主曲率方向対応線L532-1に対して右回り側にあるので、δ2_2は負の値をとる。 Further, δ 2_2 is a constant indicating the angle formed between the minimum principal curvature direction corresponding line L532-1 and the line segment L541 at the vertex P532. The sign of δ 2_2 is positive when the line segment L541 is on the counterclockwise side as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-1, and negative when the segment is on the clockwise side. And In the example of FIG. 9, since the line segment L541 is on the clockwise side with respect to the minimum main curvature direction corresponding line L532-1, δ 2_2 takes a negative value.
 また、δ3_1は、最小主曲率方向対応線L532-2と線分L543とが頂点P533でなす角度を示す定数である。δ3_1の値の正負は、最小主曲率方向対応線L532-2に対して線分L543が、図9に向かって見て右回り側にある場合を正とし、左回り側にある場合を負とする。図9の例では、線分L543が最小主曲率方向対応線L532-2に対して右回り側にあるので、δ3_1は正の値をとる。 Furthermore, [delta] 3_1 has a minimum principal curvature direction corresponding line L532-2 and the line segment L543 is a constant indicating the angle formed at the apex P533. The sign of δ 3_1 is positive when the line segment L543 is in the clockwise direction as viewed in FIG. 9 with respect to the minimum principal curvature direction corresponding line L532-2 and negative in the case of the counterclockwise side. And In the example of FIG. 9, since the line segment L543 is on the clockwise side with respect to the minimum main curvature direction corresponding line L532-2, δ 3_1 takes a positive value.
 また、δ3_2は、最大主曲率方向対応線L531-2と線分L542とが頂点P533でなす角度を示す定数である。δ3_2の値の正負は、最大主曲率方向対応線L531-2に対して線分L542が、図9に向かって見て左回り側にある場合を正とし、右回り側にある場合を負とする。図9の例では、線分L542が最大主曲率方向対応線L531-2に対して右回り側にあるので、δ3_2は負の値をとる。 Further, δ 3_2 is a constant indicating the angle formed by the maximum principal curvature direction corresponding line L531-2 and the line segment L542 at the vertex P533. The sign of δ 3_2 is positive when the line segment L542 is on the counterclockwise side as viewed in FIG. 9 with respect to the maximum principal curvature direction corresponding line L531-2 and negative when it is on the clockwise side. And In the example of FIG. 9, since the line segment L542 is on the clockwise side with respect to the maximum principal curvature direction corresponding line L531-2, δ 3_2 takes a negative value.
 角度決定部123は、例えば式(4)に示される最適化関数F(Ψ)の値を最小にする最適化問題を解く。これにより、角度決定部123は、目的面メッシュ領域を囲む最大曲率線部分線と最小曲率線部分線とのなす角度と、平面メッシュ領域を囲む最大曲率方向対応線と最小曲率方向対応線とのなす角度との差を平面メッシュ領域内で均等化させる。 The angle determination unit 123 solves the optimization problem that minimizes the value of the optimization function F (Ψ 0 ) expressed by, for example, Expression (4). Thereby, the angle determination unit 123 calculates the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the target surface mesh area, and the maximum curvature direction corresponding line and the minimum curvature direction corresponding line surrounding the planar mesh area. The difference from the angle formed is equalized in the planar mesh area.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)の右辺は、平面メッシュ領域を囲む最大曲率線部分線と最小曲率線部分線とのなす角度の各々と、目的面メッシュ領域を囲む最大曲率線部分線と最小曲率線部分線とのなす角度の各々(いずれも90°)との差の二乗の合計である。
 角度決定部123は、例えばニュートン法を用いて式(5)を満たすΨを求める。
The right side of the equation (4) includes the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the plane mesh area, the maximum curvature line partial line and the minimum curvature line partial line surrounding the target plane mesh area, and Is the sum of the squares of the differences from each of the angles (both are 90 °).
The angle determination unit 123 obtains Ψ 0 that satisfies Expression (5) using, for example, the Newton method.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここでの「’」は一階微分を示す。すなわち、F’(Ψ)は、最適化関数F(Ψ)をΨで一階微分した関数である。角度決定部123は、式(5)を満たすΨを求めることで、最大主曲率方向対応線と最小主曲率方向対応線とがなす角度と、最大主曲率方向対応線に対応する最大主曲率線部分線と最小主曲率方向対応線に対応する最小主曲率線部分線とがなす角度との差の2乗の和が最小となるように最大主曲率方向対応線と最小主曲率方向対応線とがなす角度を決定する。
 なお、目的面メッシュ領域に臍点が含まれる場合、及び、形成目的面の縁(境界)付近では、対応する平面メッシュ領域の頂点の数が4以外になる場合がある。この場合、角度決定部123は、式(5)を一般化した式を用いて各頂点の角度を求める。
Here, “′” indicates a first derivative. That is, F ′ (Ψ 0 ) is a function obtained by first-order differentiation of the optimization function F (Ψ 0 ) with Ψ 0 . The angle determination unit 123 obtains Ψ 0 that satisfies Expression (5), whereby the angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line and the maximum main curvature corresponding to the maximum main curvature direction corresponding line. The maximum principal curvature direction correspondence line and the minimum principal curvature direction correspondence line so that the sum of the squares of the differences between the angle formed by the line partial line and the minimum principal curvature direction partial line corresponding to the minimum principal curvature direction correspondence line is minimized. Determine the angle between.
Note that the number of vertices of the corresponding planar mesh region may be other than 4 when the umbilical point is included in the target surface mesh region and in the vicinity of the edge (boundary) of the formation target surface. In this case, the angle determination unit 123 obtains the angle of each vertex using an expression that generalizes Expression (5).
 図10は、平面メッシュ領域をN角形(Nは、平面メッシュ領域の頂点の数)で近似した例を示す説明図である。
 図10に示す頂点VN-1と頂点V、V、・・・、VN-3との間にN-3本の対角線を引く。これにより、N角形がN-2個の三角形に分割される。
 角度決定部123は、図10のN角形の各辺の長さについて既知である。これにより、余弦定理を用いてθからαとβ(i=0、1、・・・N-4)とを求めることができる。具体的には、角度決定部123は、N角形の各頂点の角度を式(6)より求める。
FIG. 10 is an explanatory diagram illustrating an example in which a planar mesh region is approximated by an N-gon (N is the number of vertices of the planar mesh region).
N-3 diagonal lines are drawn between the vertex V N-1 and the vertexes V 1 , V 2 ,..., V N-3 shown in FIG. As a result, the N-gon is divided into N-2 triangles.
The angle determination unit 123 is known about the length of each side of the N-gon in FIG. Thus, α i and β i (i = 0, 1,... N−4) can be obtained from θ i using the cosine theorem. Specifically, the angle determination unit 123 obtains the angle of each vertex of the N-gon from Equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Ψ(i=0、・・・、N-1)は、N角形の各頂点の角度を示す。
 なお、θの値は負になり得る。この場合、αの値及びβの値を式(7)のように決定する。
Here, ψ i (i = 0,..., N−1) represents the angle of each vertex of the N-gon.
Note that the value of θ i can be negative. In this case, the value of α i and the value of β i are determined as in equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、θの値はπ(180°)より大きくなり得る。この場合、αの値及びβの値を式(8)のように決定する。 Also, the value of θ i can be greater than π (180 °). In this case, the value of α i and the value of β i are determined as in equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、θN-3は変数ではない。θN-3の値の正負は目標角度との比較により決定する。
 角度決定部123は、例えば、目的面メッシュ領域についても各頂点を線分で結んで各頂点における線分の角度を求める。そして、角度決定部123は、得られた角度を目標角度Ω・・・ΩN-1として、式(9)に示される目的関数の値を最小にする最適化問題を解く。
Note that θ N-3 is not a variable. The sign of θ N−3 is determined by comparison with the target angle.
The angle determination unit 123 obtains the angle of the line segment at each vertex by connecting the vertices with the line segment in the target surface mesh region, for example. Then, the angle determination unit 123 sets the obtained angle as the target angle Ω 0 ... Ω N−1 and solves the optimization problem that minimizes the value of the objective function shown in Equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 これにより、角度決定部123は、目的面メッシュ領域を囲む最大曲率線部分線と最小曲率線部分線とのなす角度と、平面メッシュ領域を囲む最大曲率方向対応線と最小曲率方向対応線とのなす角度との差を均等化させる。
 式(9)に示される関数の値を最小化するために、角度決定部123は、式(10)を満たすθ、θ、・・・、θN-4の値を求める。
Thereby, the angle determination unit 123 calculates the angle between the maximum curvature line partial line and the minimum curvature line partial line surrounding the target surface mesh area, and the maximum curvature direction corresponding line and the minimum curvature direction corresponding line surrounding the planar mesh area. Equalize the difference from the angle you make.
In order to minimize the value of the function shown in Expression (9), the angle determination unit 123 obtains values of θ 0 , θ 1 ,..., Θ N−4 that satisfy Expression (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、式(11)のようにおく。 Here, it is set as equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 すると、ニュートン法の式は、式(12)のように示される。 Then, the equation of Newton's method is shown as equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 角度決定部123は、ニュートン法を用いて式(12)を解いて、目的面メッシュ領域を囲む最大曲率線部分線と最小曲率線部分線とのなす角度と、平面メッシュ領域を囲む最大曲率方向対応線と最小曲率方向対応線とのなす角度との差を均等化させる。 The angle determination unit 123 solves the equation (12) using Newton's method, and the angle formed by the maximum curvature line partial line and the minimum curvature line partial line surrounding the target mesh area and the maximum curvature direction surrounding the planar mesh area. The difference between the angle between the corresponding line and the minimum curvature direction corresponding line is equalized.
 なお、平面メッシュ領域が、最大主曲率方向対応線と最小主曲率方向対応線と形成目的面の縁に対応する線とを含む場合、角度決定部123は、最大主曲率方向対応線と形成目的面の縁に対応する線との角度、及び、最大主曲率方向対応線と形成目的面の縁に対応する線との角度も決定する。その決定方法として、上記と同様の方法を用いることができる。 When the plane mesh region includes the maximum principal curvature direction corresponding line, the minimum main curvature direction corresponding line, and the line corresponding to the edge of the formation target surface, the angle determination unit 123 sets the maximum main curvature direction corresponding line and the formation purpose. The angle between the line corresponding to the edge of the surface and the angle between the line corresponding to the maximum principal curvature direction and the line corresponding to the edge of the formation target surface are also determined. As the determination method, the same method as described above can be used.
 なお、角度決定部123が、平面メッシュ領域を囲む線のなす角を決定する方法は、上述した方法に限らない。例えば、図9の例で、角度決定部123が、角度φを90度に決定することで、平面メッシュ領域を囲む線のなす角を決定するようにしてもよい。このように、角度決定部123が、平面メッシュ領域を囲む線のなす角のうち1つ以上を所定の角度に決定するようにしてもよい。
 角度決定部123が行う処理は、角度決定ステップでの処理の例に該当する。
Note that the method by which the angle determination unit 123 determines the angle formed by the line surrounding the planar mesh region is not limited to the method described above. For example, in the example of FIG. 9, the angle determination unit 123 may determine the angle formed by the line surrounding the planar mesh region by determining the angle φ 1 to 90 degrees. Thus, the angle determination unit 123 may determine one or more of the angles formed by the lines surrounding the planar mesh region as a predetermined angle.
The process performed by the angle determination unit 123 corresponds to an example of the process in the angle determination step.
 形状加工部130は、形成目的面における各領域(目的面メッシュ領域)の最大主曲率線に沿った方向における並びに従って、平面上の領域(平面メッシュ領域)を繋ぎ合わせた形状、又は、形成目的面における各領域の最小主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に、素材を加工する。
 例えば、形状加工部130は、形成目的面における各領域の最大主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材を生成する。また、形状加工部130は、形成目的面における各領域の最小主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材を生成する。
 ここでいう部材は、素材を裁断するなど素材を変形して得られた、組み合わせ前の物である。部材を繋ぎ合わせて形成目的面を形成する。
The shape processing unit 130 is formed by joining regions on the plane (planar mesh regions) according to the arrangement in the direction along the maximum principal curvature line of the regions (target surface mesh regions) on the formation target surface, The material is processed into a shape in which the regions on the plane are joined together in accordance with the arrangement in the direction along the minimum principal curvature line of each region on the surface.
For example, the shape processing unit 130 generates a first member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the maximum principal curvature line of each region on the formation target surface. In addition, the shape processing unit 130 generates a second member obtained by processing the material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the minimum main curvature line of each region on the formation target surface.
A member here is a thing before a combination obtained by changing a raw material, such as cutting a raw material. The formation target surface is formed by joining the members.
 図11は、形状加工部130が取得する展開図の例を示す説明図である。図11の(A)部分は、形成目的面の例を示す。図11の(B)部分は、平面メッシュ領域を最大主曲率線に沿った方向における並びに従って繋ぎ合わせて得られる展開図の例を示す。図11の(C)部分は、平面メッシュ領域を最小主曲率に沿った方向における並びに従って繋ぎ合わせて得られる展開図の例を示す。
 図11の(B)部分の展開図に従って素材を加工して得られた物は第1部材の例に該当する。
また、図11の(C)部分の展開図に従って素材を加工して得られた物は第2部材の例に該当ずる。
FIG. 11 is an explanatory diagram illustrating an example of a development view acquired by the shape processing unit 130. FIG. 11A shows an example of the formation target surface. Part (B) of FIG. 11 shows an example of a development view obtained by joining the planar mesh regions according to the arrangement in the direction along the maximum principal curvature line. (C) part of FIG. 11 shows the example of the expanded view obtained by connecting a planar mesh area | region according to the arrangement in the direction along the minimum principal curvature.
The thing obtained by processing a raw material according to the developed view of part (B) in FIG. 11 corresponds to an example of the first member.
Moreover, the thing obtained by processing a raw material according to the expanded view of the (C) part of FIG. 11 corresponds to an example of the second member.
 図11の(A)部分では、最大主曲率線L611と、最小主曲率線L621と、最大主曲率線部分線L631からL635までと、最小主曲率線部分線L641からL645までとが示されている。
 また、最大主曲率線部分線L631及びL633と、最小主曲率線部分線L641及びL642とに囲まれて目的面メッシュ領域A611が形成されている。最大主曲率線部分線L632及びL634と、最小主曲率線部分線L642及びL643とに囲まれて目的面メッシュ領域A612が形成されている。最大主曲率線部分線L634及びL635と、最小主曲率線部分線L644及びL645とに囲まれて目的面メッシュ領域A613が形成されている。
In part (A) of FIG. 11, a maximum main curvature line L611, a minimum main curvature line L621, maximum main curvature line partial lines L631 to L635, and minimum main curvature line partial lines L641 to L645 are shown. Yes.
Further, a target mesh area A611 is formed surrounded by the maximum main curvature line partial lines L631 and L633 and the minimum main curvature line partial lines L641 and L642. A target mesh area A612 is formed by being surrounded by the maximum main curvature line partial lines L632 and L634 and the minimum main curvature line partial lines L642 and L643. A target mesh area A613 is formed surrounded by the maximum main curvature line partial lines L634 and L635 and the minimum main curvature line partial lines L644 and L645.
 図11の(B)部分に示されている最大主曲率方向対応線L671、L672、L673、L674、L675は、それぞれ、最大主曲率線部分線L631、L632、L633、L634、L635を平面に展開して得られた線である。最小主曲率方向対応線L681、L682、L683、L684、L685は、それぞれ、最小主曲率線部分線L641、L642、L643、L644、L645を平面に展開して得られた線である。また、最大主曲率線部分線と最大主曲率方向対応線との対応関係、及び、最小主曲率線部分線と最小主曲率方向対応線との対応関係から、平面メッシュ領域A621、A622、A623は、それぞれ目的面メッシュ領域A611、A612、A613に対応付けられる。 The maximum main curvature direction corresponding lines L671, L672, L673, L674, and L675 shown in the portion (B) of FIG. 11 are expanded on the plane of the maximum main curvature line partial lines L631, L632, L633, L634, and L635, respectively. This is the line obtained. The minimum main curvature direction corresponding lines L681, L682, L683, L684, and L685 are lines obtained by expanding the minimum main curvature line partial lines L641, L642, L643, L644, and L645 on a plane, respectively. From the correspondence between the maximum main curvature line partial line and the maximum main curvature direction corresponding line and the correspondence between the minimum main curvature line partial line and the minimum main curvature direction corresponding line, the planar mesh regions A621, A622, A623 are: , Are respectively associated with the target surface mesh areas A611, A612, and A613.
 図11の(B)部分の平面メッシュ領域は、図11の(A)部分の形成目的面における目的面メッシュ領域の最大主曲率線に沿った方向における並びに従って繋ぎ合わせた配置になっている。
 例えば、図11の(A)部分では、目的面メッシュ領域A611とA612とが、最大主曲率線L611に沿った方向に接して並んでいる。これに対応して、図11の(B)部分では、平面メッシュ領域A621とA622とが接して並んでいる。
The planar mesh region of the part (B) in FIG. 11 is arranged by joining in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh area in the formation target surface of the part (A) in FIG.
For example, in the portion (A) of FIG. 11, the target surface mesh regions A611 and A612 are arranged in contact with each other along the maximum principal curvature line L611. Correspondingly, the planar mesh regions A621 and A622 are arranged in contact with each other in the portion (B) of FIG.
 また、図11の(B)部分では、平面メッシュ領域が同じ最小主曲率方向対応線で接している。例えば、平面メッシュ領域A621とA622とは、いずれも最小主曲率方向対応線L682を含んで構成されており、この最小主曲率方向対応線L682で接している。
 このように、平面メッシュ領域を同一の最小主曲率線対応線で接して繋ぎ合わせることで、平面メッシュ領域を隙間なく繋ぎ合わせて展開図を構成することができる。従って、平面メッシュ領域をつなぎ合わせるために変形させる必要がなく、この点で、形成目的面の形状からの歪が小さい展開図を得られる。
Further, in the portion (B) of FIG. 11, the planar mesh region is in contact with the same line corresponding to the minimum principal curvature direction. For example, each of the planar mesh regions A621 and A622 includes a minimum main curvature direction corresponding line L682, and is in contact with the minimum main curvature direction corresponding line L682.
In this way, by connecting and joining the planar mesh regions with the same minimum principal curvature line corresponding line, the planar mesh regions can be joined together without gaps, and a development view can be configured. Therefore, it is not necessary to deform the plane mesh regions for joining, and in this respect, a development view with a small distortion from the shape of the formation target surface can be obtained.
 また、図11の(B)部分の展開図では、展開図から形成目的面を組み立てる際に繋ぎ合わせられる予定の部分が同一の最大主曲率方向対応線で構成されている。例えば、図11の(A)部分の形成目的面で、目的面メッシュ領域A612とA613とが最大主曲率線部分線L634で接している。これに対応して図11の(B)部分の平面メッシュ領域A622とA623とが繋ぎ合わせられる。平面メッシュ領域A622とA623とは、何れも最大主曲率方向対応線L674を含んで構成されている。図11の(B)部分の展開図から形成目的面を組み立てる際、目的面メッシュ領域A612とA613とは、この最大主曲率方向対応線L674で接して繋ぎ合わせられる。
 このように、展開図に示される部分を同一の最大主曲率方向対応線でつなぎ合わせて形成目的面を組み立てるので、展開図を組み立てる際に部分を変形させる必要がない。展開図を組み立てる際に、部分同士を上手く繋ぎ合わせるための調整を行う必要がない点で、展開図の組み立て作業が容易である。
Further, in the development view of the portion (B) in FIG. 11, the portions to be joined when assembling the formation target surface from the development view are configured by the same maximum principal curvature direction corresponding line. For example, in the formation target surface of the portion (A) in FIG. 11, the target surface mesh regions A612 and A613 are in contact with each other at the maximum principal curvature line partial line L634. Correspondingly, the planar mesh regions A622 and A623 in the portion (B) of FIG. 11 are connected. Each of the planar mesh regions A622 and A623 is configured to include a maximum principal curvature direction corresponding line L674. When assembling the formation target surface from the development view of the portion (B) in FIG. 11, the target surface mesh regions A612 and A613 are joined and connected by the maximum principal curvature direction corresponding line L674.
In this way, the formation target surface is assembled by connecting the portions shown in the development view with the same maximum principal curvature direction corresponding line, so that it is not necessary to deform the portion when assembling the development view. When assembling the development view, it is not necessary to make adjustments for joining the parts well together, and the assembly work of the development view is easy.
 図11の(C)部分では、図11の(B)部分と同じ平面メッシュ領域が、図11の(B)部分の場合と異なる並びで並んでいる。図11の(B)部分で符号を付した部分について図11の(C)部分でも同一の符号(A621・・・A623、L671・・・L675、L681・・・L685)を付している。
 図11の(C)部分の平面メッシュ領域は、図11の(A)部分の形成目的面における目的面メッシュ領域の最小主曲率線に沿った方向における並びに従って繋ぎ合わせた配置になっている。
 例えば、図11の(A)部分では、目的面メッシュ領域A612とA613とが、最小主曲率線L621に沿った方向に並んでおり、最大主曲率線部分線L634で接している。これに対応して、図11の(C)部分では、平面メッシュ領域A622とA623とが、最大主曲率方向対応線L674で接して並んでいる。
In part (C) of FIG. 11, the same planar mesh regions as in part (B) of FIG. 11 are arranged in a different arrangement from the case of part (B) of FIG. 11. 11B, the same reference numerals (A621... A623, L671... L675, L681... L685) are assigned to the portions indicated by the reference numerals in FIG.
The planar mesh region in the part (C) of FIG. 11 is an arrangement in which the target mesh region in the formation target surface of the part (A) in FIG. 11 is connected according to the arrangement in the direction along the minimum principal curvature line.
For example, in the part (A) of FIG. 11, the target surface mesh regions A612 and A613 are aligned in the direction along the minimum main curvature line L621 and are in contact with each other at the maximum main curvature line partial line L634. Correspondingly, in the portion (C) of FIG. 11, the planar mesh regions A622 and A623 are arranged in contact with each other at the maximum principal curvature direction corresponding line L674.
 また、図11の(C)部分では、平面メッシュ領域が同じ最大主曲率方向対応線で接している。例えば、平面メッシュ領域A622とA623とは、いずれも最大主曲率方向対応線L674を含んで構成されており、この最大主曲率方向対応線L674で接している。
 このように、平面メッシュ領域を同一の最大主曲率線対応線で接して繋ぎ合わせることで、平面メッシュ領域を隙間なく繋ぎ合わせて展開図を構成することができる。従って、平面メッシュ領域をつなぎ合わせるために変形させる必要がなく、この点で、形成目的面の形状からの歪が小さい展開図を得られる。
Further, in the portion (C) of FIG. 11, the planar mesh region is in contact with the same line corresponding to the maximum principal curvature direction. For example, each of the planar mesh regions A622 and A623 includes a maximum principal curvature direction corresponding line L674 and is in contact with the maximum main curvature direction correspondence line L674.
In this way, by connecting and connecting the planar mesh regions with the same maximum principal curvature line-corresponding line, it is possible to connect the planar mesh regions without any gaps to form a development view. Therefore, it is not necessary to deform the plane mesh regions for joining, and in this respect, a development view with a small distortion from the shape of the formation target surface can be obtained.
 また、図11の(C)部分の展開図では、展開図から形成目的面を組み立てる際に繋ぎ合わせられる予定の部分が同一の最小主曲率方向対応線で構成されている。例えば、図11の(A)部分の形成目的面で、目的面メッシュ領域A611とA612とが最小主曲率線部分線L642で接している。これに対応して図11の(C)部分の平面メッシュ領域A621とA622とが繋ぎ合わせられる。平面メッシュ領域A621とA622とは、何れも最小主曲率方向対応線L682を含んで構成されている。図11の(C)部分の展開図から形成目的面を組み立てる際、目的面メッシュ領域A611とA612とは、この最小主曲率方向対応線L682で接して繋ぎ合わせられる。
 このように、展開図に示される部分を同一の最小主曲率方向対応線でつなぎ合わせて形成目的面を組み立てるので、展開図を組み立てる際に部分を変形させる必要がない。展開図を組み立てる際に、部分同士を上手く繋ぎ合わせるための調整を行う必要がない点で、展開図の組み立て作業が容易である。
Further, in the development view of the portion (C) in FIG. 11, the portions that are to be joined when assembling the formation target surface from the development view are configured by the same minimum principal curvature direction corresponding line. For example, in the formation target surface of the portion (A) in FIG. 11, the target surface mesh regions A611 and A612 are in contact with each other at the minimum principal curvature line partial line L642. Correspondingly, the planar mesh areas A621 and A622 in the part (C) of FIG. 11 are connected. The planar mesh regions A621 and A622 are each configured to include a minimum principal curvature direction corresponding line L682. When assembling the formation target surface from the development view of the part (C) in FIG. 11, the target surface mesh regions A611 and A612 are connected and connected by the minimum principal curvature direction corresponding line L682.
In this way, since the formation target surface is assembled by joining the parts shown in the development view with the same line corresponding to the minimum principal curvature direction, it is not necessary to deform the part when assembling the development view. When assembling the development view, it is not necessary to make adjustments for joining the parts well together, and the assembly work of the development view is easy.
 また、図11の(B)部分の展開図を組み立てて得られる形状と、図11の(C)部分の展開図を組み立てて得られる形状とは、同一の平面メッシュ領域を同じ並びに配置した同一の形状である。これにより、図11の(B)部分の展開図を組み立てて得られる曲面と図11の(C)部分の展開図を組み立てて得られる曲面とを容易に重ね合わせることができる。
 ここで、最大主曲率線と最小主曲率線とは直交する。また、図11の(B)部分の展開図を組み立てて得られる形状における接続部分(継目)は、最大主曲率線に対応する。また、図11の(C)部分の展開図を組み立てて得られる形状における接続部分は、最小主曲率線に対応する。従って、図11の(B)部分の展開図を組み立てて得られる形状における接続部分と、図11の(C)部分の展開図を組み立てて得られる形状における接続部分とは、ほぼ直交する。これにより、図11の(B)部分の展開図を組み立てて得られた物と図11の(C)部分の展開図を組み立てて得られた物とを重ね合わせて比較的高強度な目的面形状物を得られる。
Further, the shape obtained by assembling the development view of the part (B) in FIG. 11 and the shape obtained by assembling the development view of the part (C) in FIG. 11 are the same in which the same plane mesh region is arranged in the same manner. It is the shape. Thereby, the curved surface obtained by assembling the development view of the part (B) of FIG. 11 and the curved surface obtained by assembling the development view of the part (C) of FIG. 11 can be easily superimposed.
Here, the maximum main curvature line and the minimum main curvature line are orthogonal to each other. Moreover, the connection part (seam | joint) in the shape obtained by assembling the expanded view of the (B) part of FIG. 11 respond | corresponds to the largest principal curvature line. Moreover, the connection part in the shape obtained by assembling the development view of the part (C) in FIG. 11 corresponds to the minimum principal curvature line. Therefore, the connection portion in the shape obtained by assembling the development view of the portion (B) in FIG. 11 and the connection portion in the shape obtained by assembling the development view of the portion (C) in FIG. Accordingly, the object obtained by assembling the development view of the part (B) of FIG. 11 and the object obtained by assembling the development view of the part (C) of FIG. A shape can be obtained.
 図11の(B)部分を参照して説明した特徴は、図11の(B)部分に示す展開図に限らず、形成目的面における目的面メッシュ領域の最大主曲率線に沿った方向における並びに従って平面メッシュ領域を繋ぎ合わせて得られる展開図に当てはまる。また、図11の(C)部分を参照して説明した特徴は、図11の(C)部分に示す展開図に限らず、形成目的面における目的面メッシュ領域の最小主曲率線に沿った方向における並びに従って平面メッシュ領域を繋ぎ合わせて得られる展開図に当てはまる。 The features described with reference to part (B) of FIG. 11 are not limited to the development shown in part (B) of FIG. 11, but are arranged in a direction along the maximum principal curvature line of the target surface mesh area on the formation target surface. This applies to the developed view obtained by joining the planar mesh regions according to Further, the feature described with reference to part (C) of FIG. 11 is not limited to the development view shown in part (C) of FIG. 11, but the direction along the minimum principal curvature line of the target surface mesh area on the formation target surface. This applies to a developed view obtained by joining the planar mesh regions according to the arrangement in FIG.
 形状加工部130は、図11を参照して説明したように、2つの平面メッシュ領域を同一の最小主曲率線対応線で接して繋ぎ合わせる。この処理を繰り返すことで、形状加工部130は、平面メッシュ領域を最大主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状を取得する。最小主曲率線対応線が形成目的面の縁の写像である場合を除き、同一の最小主曲率線対応線を含む平面メッシュ領域が必ず2つ存在する。そこで、形状加工部130は、この2つの平面メッシュ領域を、同一の最小主曲率線対応線が同じ向きで接するように繋ぎ合わせる。
 同様に、形状加工部130は、2つの平面メッシュ領域を同一の最大主曲率線対応線で接して繋ぎ合わせる。この処理を繰り返すことで、形状加工部130は、平面メッシュ領域を最小主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状を取得する。最大主曲率線対応線が形成目的面の縁の写像である場合を除き、同一の最大主曲率線対応線を含む平面メッシュ領域が必ず2つ存在する。そこで、形状加工部130は、この2つの平面メッシュ領域を、同一の最大主曲率線対応線が同じ向きで接するように繋ぎ合わせる。
 形状加工部130が、平面メッシュ領域を最大主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状、及び、平面メッシュ領域を最小主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状のうち何れか一方を取得するようにしてもよい。あるいは、形状加工部130が、平面メッシュ領域を最大主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状、及び、平面メッシュ領域を最小主曲率線に沿った方向における並びに沿って繋ぎ合わせた形状の両方を取得するようにしてもよい。
As described with reference to FIG. 11, the shape processing unit 130 connects and connects two planar mesh regions with the same minimum principal curvature line corresponding line. By repeating this process, the shape processing unit 130 acquires a shape obtained by joining the planar mesh regions along the line in the direction along the maximum principal curvature line. Except for the case where the minimum main curvature line corresponding line is a mapping of the edge of the formation target surface, there are always two planar mesh regions including the same minimum main curvature line corresponding line. Therefore, the shape processing unit 130 connects the two planar mesh regions so that the same minimum principal curvature line-corresponding line touches in the same direction.
Similarly, the shape processing unit 130 joins two planar mesh regions in contact with the same maximum principal curvature line-corresponding line. By repeating this processing, the shape processing unit 130 acquires a shape obtained by joining the planar mesh regions along the direction along the minimum principal curvature line. Except for the case where the maximum main curvature line corresponding line is a mapping of the edge of the formation target surface, there are always two planar mesh regions including the same maximum main curvature line corresponding line. Therefore, the shape processing unit 130 connects the two planar mesh regions so that the same maximum principal curvature line corresponding line contacts in the same direction.
The shape processing unit 130 has a shape in which the planar mesh regions are joined along the direction along the maximum principal curvature line, and a shape in which the planar mesh regions are joined along the direction along the minimum principal curvature line. Any one of them may be acquired. Alternatively, the shape processing unit 130 joins the planar mesh regions joined in the direction along the maximum principal curvature line and joined the planar mesh regions in the direction along the minimum principal curvature line. You may make it acquire both shapes.
 形状加工部130がこのように平面メッシュ領域を繋ぎ合わせる処理を行えるように、例えば、平面上領域取得部120が、平面メッシュ領域を形成した際、平面メッシュ領域に識別番号を付しておく。また、平面上領域取得部120は、平面メッシュ領域を構成する最大主曲率線対応線及び最小主曲率線対応線のそれぞれにも識別番号を付しておく。そして、平面上領域取得部120は、平面メッシュ領域の識別番号と、この平面メッシュ領域を構成する最大主曲率線対応線及び最小主曲率線対応線の識別番号とを組み合わせた情報を生成する。また、平面上領域取得部120は、最大主曲率線対応線の識別番号と、この最大主曲率線対応線を含む2つの平面メッシュ領域の識別番号とを組み合わせた情報を生成する。また、平面上領域取得部120は、最小主曲率線対応線の識別番号と、この最小主曲率線対応線を含む2つの平面メッシュ領域の識別番号とを組み合わせた情報を生成する。形状加工部130は、平面上領域取得部120が生成した情報を参照して、同一の最小主曲率線対応線を含む2つの平面メッシュ領域を特定し、特定した平面メッシュ領域を繋ぎ合わせる。同様に、形状加工部130は、平面上領域取得部120が生成した情報を参照して、同一の最大主曲率線対応線を含む2つの平面メッシュ領域を特定し、特定した平面メッシュ領域を繋ぎ合わせる。
 形状加工部130が行う処理は、形状加工ステップでの処理の例に該当する。
For example, when the on-planar region acquisition unit 120 forms the planar mesh region, an identification number is assigned to the planar mesh region so that the shape processing unit 130 can perform the process of joining the planar mesh regions in this way. The on-plane area acquisition unit 120 also assigns an identification number to each of the maximum main curvature line corresponding line and the minimum main curvature line corresponding line constituting the plane mesh area. Then, the on-planar region acquisition unit 120 generates information that combines the identification number of the planar mesh region and the identification numbers of the maximum main curvature line corresponding line and the minimum main curvature line corresponding to the planar mesh region. The on-plane area acquisition unit 120 generates information that combines the identification number of the maximum main curvature line corresponding line and the identification numbers of the two planar mesh areas including the maximum main curvature line corresponding line. The on-plane area acquisition unit 120 generates information that combines the identification number of the minimum main curvature line corresponding line and the identification numbers of the two planar mesh areas including the minimum main curvature line corresponding line. The shape processing unit 130 refers to the information generated by the on-plane region acquisition unit 120, identifies two planar mesh regions including the same minimum principal curvature line corresponding line, and connects the identified planar mesh regions. Similarly, the shape processing unit 130 refers to the information generated by the on-planar region acquisition unit 120, identifies two planar mesh regions including the same maximum principal curvature line corresponding line, and connects the identified planar mesh regions. Match.
The processing performed by the shape processing unit 130 corresponds to an example of processing in the shape processing step.
 形成目的面形成部140は、形状加工部130が素材を加工して得られた部材を合せて形成目的の面形状にする。例えば、形成目的面形成部140は、形状加工部130が生成した第1部材と第2部材とを互い違いに組み合わせて形成目的の面形状にする。
 図12は、形成目的面形成部140が行う組み合わせ処理によって得られた物の外形の例を示す説明図である。図12の領域A711及びA712では、第1部材が現れている。
 一方、領域A721及びA722では、第2部材が現れている。このように、形状加工部130が第1部材と第2部材とを互い違いに組み合わせることによって、得られた物では第1部材と第2部材とが交互に並んでいる。
The formation target surface forming unit 140 combines the members obtained by processing the material by the shape processing unit 130 into a surface shape for the formation purpose. For example, the formation target surface forming unit 140 forms the surface shape for the formation purpose by alternately combining the first member and the second member generated by the shape processing unit 130.
FIG. 12 is an explanatory diagram illustrating an example of the outer shape of an object obtained by the combination process performed by the formation target surface forming unit 140. In the areas A711 and A712 of FIG. 12, the first member appears.
On the other hand, in the areas A721 and A722, the second member appears. As described above, the shape processing unit 130 alternately combines the first member and the second member, and in the obtained product, the first member and the second member are alternately arranged.
 図11を参照して説明したように、第1部材の展開図を組み立てて得られる形状と第2部材の展開図を組み立てて得られる形状とは、同一の形状(同一の平面メッシュ領域を変形せずに同じ並び順で並べた形状)である。従って、形成目的面形成部140が第1部材と第2部材とを組み合わせる際、部材の厚みよる隙間以外は隙間を生じずに組み合わせることができる。これにより、形成目的面の形状に近い形状を得られる。また、比較的高強度な目的面形状物を得られる。
 また、形成目的面形成部140が行う組み合わせにて得られた物は、図12の例のように第1部材と第2部材とが交互に並んで見える点でデザイン性を有している。
 形成目的面形成部140が行う処理は、形成目的面形成ステップでの処理の例に該当する。
As described with reference to FIG. 11, the shape obtained by assembling the development view of the first member and the shape obtained by assembling the development view of the second member are the same shape (the same planar mesh region is deformed). (Shapes arranged in the same order without). Therefore, when the formation target surface forming portion 140 combines the first member and the second member, the other portions other than the gap due to the thickness of the member can be combined without generating a gap. Thereby, a shape close to the shape of the formation target surface can be obtained. In addition, a target surface shape with relatively high strength can be obtained.
Moreover, the thing obtained by the combination which the formation target surface formation part 140 performs has a design property in the point that the 1st member and the 2nd member appear alternately in a line like the example of FIG.
The processing performed by the forming target surface forming unit 140 corresponds to an example of processing in the forming target surface forming step.
 次に、図13を参照して目的面形状物製造装置100の動作について説明する。
 図13は、目的面形状物製造装置100が行う処理の手順の例を示すフローチャートである。但し、図13の処理の全部又は一部を、目的面形状物製造装置100に代えて人が行うようにしてもよい。
 図13の処理にて、目的面曲率線取得部110が、形成目的面の最大主曲率線及び最小主曲率線をそれぞれ複数取得する(ステップS101)。ステップS101は、目的面曲率線取得ステップの例に該当する。
Next, the operation of the target surface shape object manufacturing apparatus 100 will be described with reference to FIG.
FIG. 13 is a flowchart illustrating an example of a procedure of processing performed by the target surface shape object manufacturing apparatus 100. However, all or part of the processing in FIG. 13 may be performed by a person instead of the target surface shape object manufacturing apparatus 100.
In the process of FIG. 13, the target surface curvature line acquisition unit 110 acquires a plurality of maximum main curvature lines and minimum main curvature lines of the formation target surface (Step S101). Step S101 corresponds to an example of a target surface curvature line acquisition step.
 次に、対応線取得部121が、最大主曲率方向対応線及び最小主曲率対応線を取得する(ステップS102)。ステップS102は、対応線取得ステップの例に該当する。
 次に、接続関係決定部122が、最大主曲率方向対応線及び最小主曲率方向対応線の接続関係を決定する(ステップS103)。ステップS103は、接続関係決定ステップの例に該当する。
Next, the corresponding line acquisition unit 121 acquires a maximum main curvature direction corresponding line and a minimum main curvature corresponding line (step S102). Step S102 corresponds to an example of a corresponding line acquisition step.
Next, the connection relationship determining unit 122 determines the connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line (step S103). Step S103 corresponds to an example of a connection relationship determination step.
 次に、角度決定部123が、最大主曲率方向対応線と最小主曲率方向対応線との接続部分の角度を決定する。(ステップS104)。ステップS104は、角度決定ステップの例に該当する。また、ステップS102からS104までは、平面上領域取得ステップの例に該当する。
 次に、形状加工部130が、ステップS104で得られた平面メッシュ領域をつなぎ合わせた形状に素材を加工する(ステップS105)。具体的には、形状加工部130は、形成目的面における目的面メッシュ領域の最大主曲率線に沿った方向における並びに従って、平面メッシュ領域を繋ぎ合わせた形状を求める。また、形状加工部130は、形成目的面における目的面メッシュ領域の最小主曲率線に沿った方向における並びに従って、平面メッシュ領域を繋ぎ合わせた形状を求める。そして、形状加工部130は、求めた形状に素材を加工する。
 ステップS105は、形状加工ステップの例に該当する。
Next, the angle determination part 123 determines the angle of the connection part of the largest main curvature direction corresponding line and the minimum main curvature direction corresponding line. (Step S104). Step S104 corresponds to an example of an angle determination step. Steps S102 to S104 correspond to an example of a planar area acquisition step.
Next, the shape processing unit 130 processes the material into a shape obtained by joining the planar mesh regions obtained in step S104 (step S105). Specifically, the shape processing unit 130 obtains a shape obtained by joining the planar mesh regions in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh region on the formation target surface. In addition, the shape processing unit 130 obtains a shape obtained by joining the planar mesh regions in accordance with the arrangement in the direction along the minimum principal curvature line of the target surface mesh region on the formation target surface. Then, the shape processing unit 130 processes the material into the obtained shape.
Step S105 corresponds to an example of a shape processing step.
 以下では、形成目的面における目的面メッシュ領域の最大主曲率線に沿った方向における並びに従って、平面メッシュ領域を繋ぎ合わせた形状に素材を加工して得られた部材を第1部材と称する。また、形成目的面における目的面メッシュ領域の最小主曲率線に沿った方向における並びに従って、平面メッシュ領域を繋ぎ合わせた形状に素材を加工して得られた部材を第2部材と称する。 Hereinafter, a member obtained by processing a material into a shape in which plane mesh regions are joined in accordance with the alignment in the direction along the maximum principal curvature line of the target surface mesh region on the formation target surface is referred to as a first member. In addition, a member obtained by processing a material into a shape obtained by joining the planar mesh regions in accordance with the alignment in the direction along the minimum principal curvature line of the target surface mesh region on the formation target surface is referred to as a second member.
 次に、形成目的面形成部140は、ステップS105で素材を加工して得られた部材を合せて形成目的の面形状にする(ステップS106)。ステップS106は、形成目的面形成ステップの例に該当する。
 ステップS106の後、図13の処理を終了する。
Next, the formation target surface forming unit 140 combines the members obtained by processing the material in step S105 to form the formation target surface shape (step S106). Step S106 corresponds to an example of a formation target surface forming step.
After step S106, the process of FIG. 13 is terminated.
 なお、ステップS106で、形成目的面形成部140が、第1部材、第2部材それぞれを組み合わせて形成目的面の形状に形成するようにしてもよい。そして、形成目的面形成部140が、第1部材を組み合わせて得られた物と、第2部材を組み合わせて得られた物とを重ね合わせるようにしてもよい。 In step S106, the formation target surface forming unit 140 may be formed in the shape of the formation target surface by combining the first member and the second member. Then, the formation target surface forming unit 140 may superimpose an object obtained by combining the first member and an object obtained by combining the second member.
 なお、ステップS105で、形状加工部130が、第1部材及び第2部材のうちいずれか一方のみを求めるようにしてもよい。そして、ステップS106で、形成目的面形成部140が、第1部材及び第2部材のうちいずれか一方を組み合わせて形成目的面の形状に形成するようにしてもよい。 In step S105, the shape processing unit 130 may obtain only one of the first member and the second member. In step S <b> 106, the formation target surface forming unit 140 may combine either one of the first member and the second member to form the formation target surface.
 以上のように、目的面曲率線取得部110は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める。また、平面上領域取得部120は、目的面メッシュ領域の各々について、この領域に対応付けられる平面上の領域(平面メッシュ領域)を求める。また、形状加工部130は、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状、又は、最小主曲率線に沿った方向における並びに従って平面メッシュ領域を繋ぎ合わせた形状に素材を加工する。そして、形成目的面形成部140は、形状加工部130が素材を加工して得られた部材を合せて形成目的の面形状にする。
 また、平面上領域取得部120の対応線取得部121は、最大主曲率方向対応線、及び、最小主曲率方向対応線を求める。上述したように、最大主曲率方向対応線は、最大主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる線である。最小主曲率方向対応線は、最小主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる線である。
 また、平面上領域取得部120の接続関係決定部122は、目的面メッシュ領域を形成する最大主曲率線部分線及び最小主曲率線部分線の接続関係に従って、最大主曲率線部分線及び最小主曲率線部分線に対応付けられる最大主曲率方向対応線及び最小主曲率方向対応線の接続関係を決定する。
As described above, the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface. Further, the on-plane area acquisition unit 120 obtains an area on the plane (plane mesh area) associated with this area for each of the target surface mesh areas. In addition, the shape processing unit 130 forms the planar mesh region according to the shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, or the arrangement in the direction along the minimum principal curvature line. Process materials into connected shapes. Then, the formation target surface forming unit 140 combines the members obtained by processing the material by the shape processing unit 130 into the surface shape of the formation target.
In addition, the corresponding line acquisition unit 121 of the on-plane area acquisition unit 120 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line. As described above, the maximum principal curvature direction corresponding line is a line obtained by mapping the developable surface including the maximum main curvature line partial line into a plane without expansion and contraction. The minimum main curvature direction corresponding line is a line obtained by mapping a developable surface including the minimum main curvature line partial line to a plane without expansion and contraction.
In addition, the connection relationship determination unit 122 of the on-plane region acquisition unit 120 determines the maximum main curvature line partial line and the minimum main curvature line according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the curvature line partial line is determined.
 形状加工部130が素材を加工して得られた部材は、形成目的面形成部140がこの部材を組み合わせる際に接する曲線(部材の縁)同士の長さが等しい。このため、部材を組み合わせて得られる目的面形状物の縁が滑らかになる。従って、部材を組み合わせて得られる目的面形状物の縁に段差が生じない。
 ここで、目的面形状物製造装置100が加工する素材は鋼板に限らず、形状の加工および平面から曲面への加工を行える素材であればよい。例えば、目的面形状物製造装置100が、布を加工するようにしてもよいし、紙を加工するようにしてもよい。あるいは目的面形状物製造装置100が、例えば木の皮など曲げることができる木材を加工するようにしてもよい。あるいは目的面形状物製造装置100が、すずの板など鋼板以外の金属の板を加工するようにしてもよい。
 このように、目的面形状物製造装置100では、鋼板以外の素材についても精度よく曲面形状に加工することができる。
The members obtained by processing the material by the shape processing unit 130 have the same length of curves (edges of the members) in contact with the formation target surface forming unit 140 when the members are combined. For this reason, the edge of the target shape object obtained by combining members becomes smooth. Therefore, no step is generated at the edge of the target shape object obtained by combining the members.
Here, the material processed by the target surface shape object manufacturing apparatus 100 is not limited to a steel plate, but may be any material that can perform shape processing and processing from a flat surface to a curved surface. For example, the target surface shape object manufacturing apparatus 100 may process cloth or paper. Or you may make it the target surface shape thing manufacturing apparatus 100 process the wood which can be bent, such as a bark of a tree, for example. Alternatively, the target surface shape object manufacturing apparatus 100 may process a metal plate other than a steel plate such as a tin plate.
Thus, in the target surface shape object manufacturing apparatus 100, materials other than a steel plate can be processed into a curved surface shape with high accuracy.
 また、形成目的面形成部140が部材を組み合わせる際、部材に隙間が生じない。この点で、比較的高強度な目的面形状物を得られる。また、部材に隙間が生じないので、部材を組み合わせる際に隙間を埋める処理を行う必要がない。この点で、部材を組み合わせる処理が簡単であり、形成目的面形成部140の負荷が小さくて済む。例えば、形成目的面形成部140が部材同士を接着する場合、部材の境界のみを接着すればよい。また、形成目的面形成部140は、折り曲げ等の処理を行う必要無しに、部材を形成目的面の形状に組み合わせることができる。 In addition, when the formation target surface forming unit 140 combines the members, there is no gap in the members. In this respect, a target surface shape having a relatively high strength can be obtained. Further, since no gap is generated in the member, it is not necessary to perform a process of filling the gap when the members are combined. In this respect, the process of combining the members is simple, and the load on the formation target surface forming unit 140 can be small. For example, when the formation target surface forming unit 140 bonds members together, only the boundary between the members may be bonded. In addition, the formation target surface forming unit 140 can combine the members with the shape of the formation target surface without having to perform processing such as bending.
 また、形状加工部130が求める形成目的面の形状では、平面メッシュ領域同士が同じ対応線(最大主曲率方向対応線または最小主曲率方向対応線)で接続されているので、平面メッシュ領域が隙間及び重なり無く接続されている。この点で、形成目的面の形状を精度よく実現することができる。目的面形状物製造装置100は、この点でも、鋼板以外の素材についても精度よく曲面形状に加工することができる。 Further, in the shape of the formation target surface obtained by the shape processing unit 130, the planar mesh regions are connected by the same corresponding line (maximum principal curvature direction correspondence line or minimum principal curvature direction correspondence line). And connected without overlap. In this respect, the shape of the formation target surface can be realized with high accuracy. In this respect, the target surface shape object manufacturing apparatus 100 can accurately process a material other than a steel plate into a curved surface shape.
 また、目的面形状物製造装置100では、目的面メッシュ領域を細かく設定するほど形成目的面を精度よく実現することができる。従って、必要な精度に応じた設計が可能である。目的面形状を実現する精度が低くてよい場合は、目的面曲率線取得部110が求める最大主曲率線及び最小主曲率線のうち少なくともいずれか一方の幅を大きくして、目的面形状物製造装置100が行う処理の負荷を低減させることができる。一方、目的面曲率線取得部110が求める最大主曲率線及び最小主曲率線のうち少なくともいずれか一方の幅を小さくすることで、目的面形状を実現する精度を向上させることができる。 Further, in the target surface shape object manufacturing apparatus 100, the formation target surface can be realized with higher precision as the target surface mesh region is set finer. Therefore, design according to the required accuracy is possible. When the accuracy for realizing the target surface shape may be low, the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110 is increased to manufacture the target surface shape object. The load of processing performed by the apparatus 100 can be reduced. On the other hand, by reducing the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110, the accuracy of realizing the target surface shape can be improved.
 また、平面メッシュ領域が2つの最大主曲率方向対応線及び2つの最小主曲率方向対応線で囲まれて構成されている場合、図9及び式(3)から式(5)までを参照して説明したように、角度決定部123は、1変数の目的関数の最小化計算にて最大主曲率方向対応線と最小主曲率方向対応線との角度を求めることができる。この点で、角度決定部123の計算が容易であり角度決定部123の処理負荷が小さくて済む。また、角度決定部123が角度を求めるのに要する時間が短くて済む。 Further, when the planar mesh region is configured by being surrounded by two lines corresponding to the maximum principal curvature direction and two lines corresponding to the minimum principal curvature direction, refer to FIG. 9 and Expressions (3) to (5). As described above, the angle determination unit 123 can obtain the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line by minimizing the objective function of one variable. In this respect, the calculation of the angle determination unit 123 is easy and the processing load of the angle determination unit 123 can be reduced. Further, the time required for the angle determination unit 123 to obtain the angle can be short.
 また、対応線取得部121の角度決定部123は、接続関係決定部122が決定した接続関係にて最大主曲率方向対応線及び最小主曲率方向対応線を接続して得られる平面メッシュ領域における、この接続箇所における前記最大主曲率方向対応線と前記最小主曲率方向対応線とのなす角度と、この最大主曲率方向対応線に対応する最大主曲率線部分線と、この最小主曲率方向対応線に対応する最小主曲率線部分線とのなす角度との差の均一化を行って、接続関係決定部122が決定した接続関係で接続される前記最大主曲率方向対応線及び前記最小主曲率方向対応線のなす角度を決定する。
 これにより、形成目的面における角度と展開図における角度とのずれが一カ所に集中することを避けることができ、目的面形状を実現する精度を向上させることができる。
Further, the angle determination unit 123 of the corresponding line acquisition unit 121 in the plane mesh region obtained by connecting the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line in the connection relationship determined by the connection relationship determination unit 122, The angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line at this connection location, the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line, and the minimum main curvature direction corresponding line The maximum main curvature direction corresponding line and the minimum main curvature direction connected by the connection relationship determined by the connection relationship determining unit 122 by equalizing the difference between the angle with the minimum main curvature line partial line corresponding to Determine the angle between the corresponding lines.
Thereby, it is possible to avoid the deviation between the angle on the formation target surface and the angle in the development view from being concentrated on one place, and the accuracy of realizing the target surface shape can be improved.
 また、対応線取得部121が用いる可展面は、最大主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む面、及び、最小主曲率線部分線上の各点での、この点における形成目的面の法線ベクトルとこの点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む面である。
 これにより、対応線取得部121は、最大主曲率線部分線、最小主曲率線部分線のそれぞれに沿って形成目的面の法線ベクトルと最大主曲率線部分線又は最小主曲率線部分線の接線ベクトルとの外積を求めるという簡単な演算で、可展面を得ることができる。
Further, the developable surface used by the corresponding line acquisition unit 121 includes a normal vector of the formation target surface at this point and a tangent vector of the maximum main curvature line partial line at this point at each point on the maximum main curvature line partial line. The vector of the outer product of the normal vector of the formation target surface at this point and the tangent vector of the minimum main curvature line partial line at this point at each point on the surface including the vector of the outer product and the minimum main curvature line partial line It is a surface including.
Thereby, the corresponding line acquisition unit 121 includes the normal vector of the formation target surface and the maximum main curvature line partial line or the minimum main curvature line partial line along each of the maximum main curvature line partial line and the minimum main curvature line partial line. A developable surface can be obtained by a simple operation of obtaining an outer product with a tangent vector.
 また、形成目的面形成部140が、形成目的面の形状の物を複数生成し、得られた物を重ね合わせるようにしてもよい。これにより、得られる目的面形状物の厚みを増して強度を高めることができる。
 その際、目的面曲率線取得部110が曲率線の位置を変える(例えば、位相をずらす)ことで、重ね合わせられる物毎に部材の接続部分の位置が異なるようにしてもよい。これにより、得られる目的面形状物の強度をさらに高めることができる。
Further, the formation target surface forming unit 140 may generate a plurality of objects having the shape of the formation target surface and superimpose the obtained objects. Thereby, the thickness of the target shape object obtained can be increased and intensity | strength can be raised.
At that time, the target surface curvature line acquisition unit 110 may change the position of the curvature line (for example, shift the phase) so that the position of the connecting portion of the member differs for each object to be superimposed. Thereby, the intensity | strength of the target surface shape thing obtained can further be raised.
 また、形状加工部130は、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状に素材を加工した第1部材を生成する。
 また、形状加工部130は、最小主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状に素材を加工した第2部材を生成する。
 そして、形成目的面形成部140は、第1部材と第2部材とを互い違いに組み合わせて(すなわち、第1部材と第2部材とを編むことで)形成目的の面形状にする。
 このように、形成目的面形成部140が部材を編んで目的面形状物を製造することで、部材の組み合わせが崩れにくい。この点で、比較的高強度な目的面形状物を得られる。本手法では、原則として接着剤を利用して目的面を生成するが、目的面の曲率が緩やかな場合は、接着をしなくても生成することが可能である。また、目的面形状物の外形で第1部材と第2部材とが交互に現れる点でデザイン性が高い。
 また、形成目的面形成部140は、隙間が生じないように第1部材と第2部材とを編めばよく、この点で、部材を組み合わせる処理が簡単であり、形成目的面形成部140の負荷が小さくて済む。例えば、形成目的面形成部140は、折り曲げ等の処理を行う必要無しに、部材を形成目的面の形状に編むことができる。
In addition, the shape processing unit 130 generates a first member obtained by processing the material into a shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line.
In addition, the shape processing unit 130 generates a second member obtained by processing the material into a shape in which the planar mesh regions are joined according to the arrangement of the target surface mesh regions in the direction along the minimum principal curvature line.
And the formation target surface formation part 140 makes the surface shape of a formation purpose by combining a 1st member and a 2nd member alternately (namely, by knitting a 1st member and a 2nd member).
Thus, the formation target surface formation part 140 knits a member and manufactures a target surface shape thing, and the combination of a member does not collapse easily. In this respect, a target surface shape having a relatively high strength can be obtained. In this method, in principle, the target surface is generated by using an adhesive, but if the curvature of the target surface is gentle, it can be generated without bonding. In addition, the design is high in that the first member and the second member appear alternately in the outer shape of the target shape object.
In addition, the formation target surface forming unit 140 only needs to knit the first member and the second member so that no gap is generated. In this respect, the process of combining the members is simple, and the load on the formation target surface forming unit 140 is reduced. Is small. For example, the formation target surface forming unit 140 can knit the member into the shape of the formation target surface without having to perform a process such as bending.
 なお、形成目的面形成部140が、第1部材、第2部材それぞれを組み合わせて形成目的面の形状に形成するようにしてもよい。そして、形成目的面形成部140が、第1部材を組み合わせて得られた物と、第2部材を組み合わせて得られた物とを重ね合わせるようにしてもよい。
 この場合、得られる目的面形状物では、第1部材を組み合わせて得られた物における部材の接続部分の位置と、第2部材を組み合わせて得られた物における部材の接続部分の位置とが直交する。これにより、得られる目的面形状物の強度を高めることができる。
 なお、目的面形状物製造装置100が行う処理の一部または全部を目的面形状物製造装置100に代わって人が行う場合も、目的面形状物製造装置100が処理を行う場合と同様の効果を得られる。
The formation target surface forming unit 140 may be formed in the shape of the formation target surface by combining the first member and the second member. Then, the formation target surface forming unit 140 may superimpose an object obtained by combining the first member and an object obtained by combining the second member.
In this case, in the target shape object obtained, the position of the connection part of the member in the object obtained by combining the first member and the position of the connection part of the member in the object obtained by combining the second member are orthogonal to each other. To do. Thereby, the intensity | strength of the target surface shape thing obtained can be raised.
In addition, when a part or all of the processing performed by the target surface shape object manufacturing apparatus 100 is performed by a person instead of the target surface shape object manufacturing apparatus 100, the same effect as the case where the target surface shape object manufacturing apparatus 100 performs processing is performed. Can be obtained.
<第2の実施形態>
 図14は、本発明の第2の実施形態に係る形状取得装置の機能構成を示す概略ブロック図である。図14に示すように、形状取得装置200は、目的面曲率線取得部110と、平面上領域取得部120と、形状取得部230とを備える。平面上領域取得部120は、対応線取得部121と、接続関係決定部122と、角度決定部123とを備える。
 図14の各部のうち、図1の各部に対応して同様の構成を有する部分に同一の符号(110、120・・・123)を付して説明を省略する。形状取得装置200は、形状加工部130及び形成目的面形成部140に代えて形状取得部230を備える点で、目的面形状物製造装置100(図1)と異なる。
<Second Embodiment>
FIG. 14 is a schematic block diagram showing a functional configuration of a shape acquisition apparatus according to the second embodiment of the present invention. As illustrated in FIG. 14, the shape acquisition device 200 includes a target surface curvature line acquisition unit 110, a planar area acquisition unit 120, and a shape acquisition unit 230. The on-plane area acquisition unit 120 includes a corresponding line acquisition unit 121, a connection relationship determination unit 122, and an angle determination unit 123.
14, parts having the same configuration corresponding to the parts in FIG. 1 are denoted by the same reference numerals (110, 120... 123), and description thereof is omitted. The shape acquisition device 200 is different from the target surface shape object manufacturing device 100 (FIG. 1) in that a shape acquisition unit 230 is provided instead of the shape processing unit 130 and the formation target surface formation unit 140.
 形状取得部230は、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状、又は、最小主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状を求める。具体的には、形状取得部230は、目的面形状物製造装置100の形状加工部130について説明した、部材の形状を求める処理と得られた形状に素材を加工する処理とのうち、部材の形状を求める処理を行う。 The shape acquisition unit 230 has a shape obtained by joining the plane mesh regions according to the sequence of the target surface mesh regions in the direction along the maximum principal curvature line, or a plane according to the sequence of the target surface mesh regions in the direction along the minimum principal curvature line. A shape obtained by joining mesh regions is obtained. Specifically, the shape acquisition unit 230 is the member of the process for obtaining the shape of the member and the process for processing the material into the obtained shape described for the shape processing unit 130 of the target surface shape object manufacturing apparatus 100. Processing to obtain the shape is performed.
 次に、図15を参照して形状取得装置200の動作について説明する。
 図15は、形状取得装置200が行う処理の手順の例を示すフローチャートである。但し、図15の処理の全部又は一部を、形状取得装置200に代えて人が行うようにしてもよい。
 図15のステップS201からS204までは、図14のステップS101からS104までと同様である。
Next, the operation of the shape acquisition apparatus 200 will be described with reference to FIG.
FIG. 15 is a flowchart illustrating an example of a procedure of processing performed by the shape acquisition device 200. However, all or part of the processing in FIG. 15 may be performed by a person instead of the shape acquisition device 200.
Steps S201 to S204 in FIG. 15 are the same as steps S101 to S104 in FIG.
 ステップS204の後、形状取得部230が、ステップS104で得られた平面メッシュ領域をつなぎ合わせた形状を求める(ステップS205)。具体的には、形状加工部130は、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状、及び、最小主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状のいずれか一方または両方を求める。
 ステップS205の後、図15の処理を終了する。
After step S204, the shape acquisition unit 230 obtains a shape obtained by connecting the planar mesh regions obtained in step S104 (step S205). Specifically, the shape processing unit 130 includes a shape obtained by joining the planar mesh regions according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, and the target surface mesh in the direction along the minimum principal curvature line. One or both of the shapes obtained by joining the planar mesh regions are obtained according to the region arrangement.
After step S205, the process of FIG.
 以上のように、目的面曲率線取得部110は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める。また、平面上領域取得部120は、目的面メッシュ領域の各々について、この領域に対応付けられる平面上の領域(平面メッシュ領域)を求める。また、形状取得部230は、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状、又は、最小主曲率線に沿った方向における並びに従って平面メッシュ領域を繋ぎ合わせた形状を取得する。形状取得部230が、最大主曲率線に沿った方向における目的面メッシュ領域の並びに従って平面メッシュ領域を繋ぎ合わせた形状、及び、最小主曲率線に沿った方向における並びに従って平面メッシュ領域を繋ぎ合わせた形状の両方を取得するようにしてもよい。
 また、平面上領域取得部120の対応線取得部121は、最大主曲率方向対応線、及び、最小主曲率方向対応線を求める。上述したように、最大主曲率方向対応線は、最大主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる線である。最小主曲率方向対応線は、最小主曲率線部分線を含む可展面を伸縮無しに平面に展開する写像にて得られる線である。
 また、平面上領域取得部120の接続関係決定部122は、目的面メッシュ領域を形成する最大主曲率線部分線及び最小主曲率線部分線の接続関係に従って、最大主曲率線部分線及び最小主曲率線部分線に対応付けられる最大主曲率方向対応線及び最小主曲率方向対応線の接続関係を決定する。
 また、対応線取得部121の角度決定部123は、接続関係決定部122が決定した接続関係にて最大主曲率方向対応線及び最小主曲率方向対応線を接続して得られる平面メッシュ領域における、この接続箇所における前記最大主曲率方向対応線と前記最小主曲率方向対応線とのなす角度と、この最大主曲率方向対応線に対応する最大主曲率線部分線と、この最小主曲率方向対応線に対応する最小主曲率線部分線とのなす角度との差の均一化を行って、接続関係決定部122が決定した接続関係で接続される前記最大主曲率方向対応線及び前記最小主曲率方向対応線のなす角度を決定する。
As described above, the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface. Further, the on-plane area acquisition unit 120 obtains an area on the plane (plane mesh area) associated with this area for each of the target surface mesh areas. Further, the shape acquisition unit 230 forms a shape obtained by joining the planar mesh regions according to the arrangement of the target surface mesh regions in the direction along the maximum principal curvature line, or the planar mesh region according to the arrangement in the direction along the minimum principal curvature line. Get the connected shape. The shape acquisition unit 230 joins the planar mesh regions according to the alignment along the minimum principal curvature line and the shape obtained by joining the planar mesh regions according to the alignment along the target principal mesh region in the direction along the maximum principal curvature line. You may make it acquire both of the shape.
In addition, the corresponding line acquisition unit 121 of the on-plane area acquisition unit 120 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line. As described above, the maximum principal curvature direction corresponding line is a line obtained by mapping the developable surface including the maximum main curvature line partial line into a plane without expansion and contraction. The minimum main curvature direction corresponding line is a line obtained by mapping a developable surface including the minimum main curvature line partial line to a plane without expansion and contraction.
In addition, the connection relationship determination unit 122 of the on-plane region acquisition unit 120 determines the maximum main curvature line partial line and the minimum main curvature line according to the connection relationship between the maximum main curvature line partial line and the minimum main curvature line partial line forming the target surface mesh region. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line associated with the curvature line partial line is determined.
Further, the angle determination unit 123 of the corresponding line acquisition unit 121 in the plane mesh region obtained by connecting the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line in the connection relationship determined by the connection relationship determination unit 122, The angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line at this connection location, the maximum main curvature line partial line corresponding to the maximum main curvature direction corresponding line, and the minimum main curvature direction corresponding line The maximum main curvature direction corresponding line and the minimum main curvature direction connected by the connection relationship determined by the connection relationship determining unit 122 by equalizing the difference between the angle with the minimum main curvature line partial line corresponding to Determine the angle between the corresponding lines.
 形状取得部230が求める部材の形状では、この部材を組み合わせる際に接する曲線(部材の縁)同士の長さが等しい。このため、部材を組み合わせて得られる物の境界(縁)で段差ができない。
 また、形状取得部230が求めた形状の部材を組み合わせる際、部材に隙間が生じない。この点で、比較的高強度な目的面形状物を得られる。また、部材に隙間が生じないので、部材を組み合わせる際に隙間を埋める処理を行う必要がない。この点で、部材を組み合わせる処理が簡単であり、この処理の負荷が小さくて済む。例えば、形状取得部230が求めた形状の部材同士を接着する場合、部材の境界のみを接着すればよい。また、折り曲げ等の処理を行う必要無しに、部材を形成目的面の形状に組み合わせることができる。
In the shape of the member required by the shape acquisition unit 230, the lengths of the curves (edges of the member) in contact with the members are equal. For this reason, a level | step difference cannot be performed in the boundary (edge) of the thing obtained by combining a member.
Further, when the members having the shapes obtained by the shape acquisition unit 230 are combined, no gaps are generated in the members. In this respect, a target surface shape having a relatively high strength can be obtained. Further, since no gap is generated in the member, it is not necessary to perform a process of filling the gap when the members are combined. In this respect, the process of combining the members is simple, and the load of this process can be reduced. For example, when the members having the shape obtained by the shape acquisition unit 230 are bonded to each other, only the boundary between the members may be bonded. Further, the member can be combined with the shape of the formation target surface without the need to perform a process such as bending.
 また、形状取得部230が求める形成目的面の形状では、平面メッシュ領域同士が同じ対応線(最大主曲率方向対応線または最小主曲率方向対応線)で接続されているので、平面メッシュ領域が隙間及び重なり無く接続されている。この点で、形成目的面の形状を精度よく実現することができる。 Further, in the shape of the formation target surface obtained by the shape acquisition unit 230, the planar mesh regions are connected by the same corresponding line (maximum principal curvature direction correspondence line or minimum principal curvature direction correspondence line). And connected without overlap. In this respect, the shape of the formation target surface can be realized with high accuracy.
 また、形状取得装置200では、目的面メッシュ領域を細かく設定するほど形成目的面を精度よく実現することができる。従って、必要な精度に応じた設計が可能である。目的面形状を実現する精度が低くてよい場合は、目的面曲率線取得部110が求める最大主曲率線及び最小主曲率線のうち少なくともいずれか一方の幅を大きくして、形状取得装置200が行う処理の負荷を低減させることができる。一方、目的面曲率線取得部110が求める最大主曲率線及び最小主曲率線のうち少なくともいずれか一方の幅を小さくすることで、目的面形状を実現する精度を向上させることができる。 Moreover, in the shape acquisition apparatus 200, the formation target surface can be realized with higher precision as the target surface mesh region is set more finely. Therefore, design according to the required accuracy is possible. When the accuracy for realizing the target surface shape may be low, the shape acquisition device 200 increases the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110 and The load of processing to be performed can be reduced. On the other hand, by reducing the width of at least one of the maximum main curvature line and the minimum main curvature line obtained by the target surface curvature line acquisition unit 110, the accuracy of realizing the target surface shape can be improved.
 また、平面メッシュ領域が2つの最大主曲率方向対応線及び2つの最小主曲率方向対応線で囲まれて構成されている場合、図9及び式(3)から式(5)までを参照して説明したように、角度決定部123は、1変数の目的関数の最小化計算にて最大主曲率方向対応線と最小主曲率方向対応線との角度を求めることができる。この点で、角度決定部123の計算が容易であり角度決定部123の処理負荷が小さくて済む。また、角度決定部123が角度を求めるのに要する時間が短くて済む。 Further, when the planar mesh region is configured by being surrounded by two lines corresponding to the maximum principal curvature direction and two lines corresponding to the minimum principal curvature direction, refer to FIG. 9 and Expressions (3) to (5). As described above, the angle determination unit 123 can obtain the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line by minimizing the objective function of one variable. In this respect, the calculation of the angle determination unit 123 is easy and the processing load of the angle determination unit 123 can be reduced. Further, the time required for the angle determination unit 123 to obtain the angle can be short.
 目的形状物の強度を高める観点からは、形状加工部130が素材を加工して部材を形成する際に部材への切込みが少ないほど好ましく、切込みが浅いほどが好ましい。ここでいう切込みが浅いとは、切込みの長さが短いことである。
 そこで、目的面曲率線取得部110が曲率線を求める際、同種の曲率線間の距離が距離閾値より小さいことを検出した場合にその曲率線の算出を中止するようにしてもよい。これにより、目的面曲率線取得部110が取得する曲率線の数が少なくなり、また、目的面曲率線取得部110が取得する曲率線の長さが短くなる可能性がある。
From the viewpoint of increasing the strength of the target shape object, when the shape processing unit 130 processes the material to form the member, the smaller the cut into the member, the better. The shallow cut here means that the cut length is short.
Therefore, when the target surface curvature line acquisition unit 110 obtains a curvature line, the calculation of the curvature line may be stopped when it is detected that the distance between the same kind of curvature lines is smaller than the distance threshold. Accordingly, the number of curvature lines acquired by the target surface curvature line acquisition unit 110 may be reduced, and the length of the curvature line acquired by the target surface curvature line acquisition unit 110 may be shortened.
 目的面曲率線取得部110が取得する曲率線の数が少なくなることで、曲率線部分線の数が少なくなり、曲率線対応線の数も少なくなる。ここでいう曲率線対応線は、最大主曲率線対応線及び最小主曲率線対応線の総称である。
 また、目的面曲率線取得部110が取得する曲率線の長さが短くなることで、最大主曲率線と最小主曲率線との交点の数が少なくなり、曲率線部分線の数が少なくなる。曲率線部分線の数が少なくなることで、曲率線対応線の数も少なくなる。
 曲率線対応線の数が少なくなることで、形状加工部130が素材を加工して部材を形成する際に部材への切込みが少なくなる、あるいは、部材への切込みが浅くなる。
By reducing the number of curvature lines acquired by the target surface curvature line acquisition unit 110, the number of curvature line partial lines is reduced, and the number of curvature line corresponding lines is also reduced. The curvature line corresponding line here is a general term for the maximum main curvature line corresponding line and the minimum main curvature line corresponding line.
Further, the length of the curvature line acquired by the target surface curvature line acquisition unit 110 is shortened, so that the number of intersections between the maximum main curvature line and the minimum main curvature line is reduced, and the number of curvature line partial lines is reduced. . By reducing the number of curvature line partial lines, the number of curvature line corresponding lines is also reduced.
By reducing the number of lines corresponding to the curvature line, when the shape processing unit 130 processes the material to form the member, the cut into the member is reduced, or the cut into the member is shallow.
 図16は、目的面曲率線取得部110が、同種の曲率線間の距離が距離閾値より小さいことを検出した場合にその曲率線の算出を中止する例を示す図である。距離閾値は、例えば定数で予め与えられている閾値である。
 線L811及び線L813はいずれも最小主曲率線であり、線L812は最大主曲率線である。目的面曲率線取得部110は、線L811、線L812それぞれの座標を算出済みの状態で、線L813上の点の座標を点P811から始めて順に求めていく。線L813が延びるに従って端部が、まず線L812に近付くが、線L813が最小主曲率線であるのに対して線L812は最大主曲率線であり、曲率線の種類が異なる。そこで、目的面曲率線取得部110は、線L813の座標を算出する処理を継続する。
 その後、線L813が延びるに従って端部が線L811に近づき、点P812と線L811との距離D81は、距離閾値よりも小さくなっている。線L811と線L813とは、共に最小主曲率線であり同種の曲率線なので、目的面曲率線取得部110は、線L813の座標の計算を点P812までで終了する。
 このように、目的面曲率線取得部110が曲率線を求める処理を中止することで、上述したように、形状加工部130が素材を加工して部材を形成する際に部材への切込みが少なくなる、あるいは、部材への切込みが浅くなる。ここでいう曲率線を求める処理は、曲率線の座標を求める処理であり、具体的には曲率線上の点の座標を求める処理である。
 目的面曲率線取得部110が、同種の曲率線間の距離が距離閾値より小さいことを検出した場合にその曲率線の算出を中止することは、第1実施形態、第2実施形態のいずれにも適用可能である。
FIG. 16 is a diagram illustrating an example in which calculation of the curvature line is stopped when the target surface curvature line acquisition unit 110 detects that the distance between the same type of curvature lines is smaller than the distance threshold. The distance threshold is a threshold given in advance as a constant, for example.
Both the line L811 and the line L813 are minimum main curvature lines, and the line L812 is a maximum main curvature line. The target surface curvature line acquisition unit 110 obtains the coordinates of the points on the line L813 in order from the point P811 in a state where the coordinates of the lines L811 and L812 have been calculated. As the line L813 extends, the end portion first approaches the line L812. The line L812 is the minimum main curvature line, whereas the line L812 is the maximum main curvature line, and the types of the curvature lines are different. Therefore, the target surface curvature line acquisition unit 110 continues the process of calculating the coordinates of the line L813.
Thereafter, the end portion approaches the line L811 as the line L813 extends, and the distance D81 between the point P812 and the line L811 is smaller than the distance threshold value. Since both the line L811 and the line L813 are the minimum main curvature lines and the same kind of curvature lines, the target surface curvature line acquisition unit 110 ends the calculation of the coordinates of the line L813 up to the point P812.
As described above, when the target surface curvature line acquisition unit 110 stops the process of obtaining the curvature line, as described above, when the shape processing unit 130 processes the material to form the member, there is less cutting into the member. Or the depth of cut into the member becomes shallower. The process for obtaining the curvature line here is a process for obtaining the coordinates of the curvature line, and specifically, a process for obtaining the coordinates of the points on the curvature line.
When the target surface curvature line acquisition unit 110 detects that the distance between the same kind of curvature lines is smaller than the distance threshold, the calculation of the curvature line is stopped in either the first embodiment or the second embodiment. Is also applicable.
 目的面曲率線取得部110が、ガウス曲率の大きさが小さい領域について曲率線を求める処理を中止するようにしてもよい。ガウス曲率の大きさが小さいことは、最大主曲率、最小主曲率の少なくともいずれかが0に近いことを示している。この場合、素材に切込みを入れなくとも、比較的正確に、素材を形成目的面の形状に形成することができる。 The target surface curvature line acquisition unit 110 may stop the process of obtaining a curvature line for a region having a small Gaussian curvature. A small Gaussian curvature indicates that at least one of the maximum main curvature and the minimum main curvature is close to zero. In this case, the material can be formed in the shape of the formation target surface relatively accurately without making a cut in the material.
 図17は、目的面曲率線取得部110が、ガウス曲率の大きさが曲率閾値より小さい領域について曲率線の算出を中止する例を示す図である。曲率閾値は、例えば定数で予め与えられている閾値である。
 領域A821は、ガウス曲率の大きさが曲率閾値より小さい領域である。目的面曲率線取得部110は、曲率線上の点の座標を順に求める際、領域A821に到達してガウス曲率の大きさが曲率閾値より小さいことを検出した場合、その曲率線を求める処理をそこで中止する。その結果、目的面曲率線取得部110は、領域A821については曲率線を求めない。
 このように、目的面曲率線取得部110が曲率線を求める処理を中止することで、同種の曲率線間の距離が距離閾値より小さくなった場合と同様、形状加工部130が素材を加工して部材を形成する際に部材への切込みが少なくなる、あるいは、部材への切込みが浅くなる。
 目的面曲率線取得部110が、ガウス曲率が曲率閾値より小さいことを検出した場合に曲率線の算出を中止することは、第1実施形態、第2実施形態のいずれにも適用可能である。
FIG. 17 is a diagram illustrating an example in which the target surface curvature line acquisition unit 110 stops calculating the curvature line for a region where the magnitude of the Gaussian curvature is smaller than the curvature threshold. The curvature threshold is a threshold given in advance as a constant, for example.
Region A821 is a region in which the Gaussian curvature is smaller than the curvature threshold. When obtaining the coordinates of the points on the curvature line in order, the target surface curvature line acquisition unit 110 arrives at the region A821 and detects that the magnitude of the Gaussian curvature is smaller than the curvature threshold value. Cancel. As a result, the target surface curvature line acquisition unit 110 does not obtain a curvature line for the region A821.
As described above, the shape processing unit 130 processes the material in the same manner as when the distance between the curvature lines of the same type becomes smaller than the distance threshold by stopping the process of obtaining the curvature line by the target surface curvature line acquisition unit 110. Thus, when forming the member, the cut into the member is reduced, or the cut into the member is shallow.
The fact that the target surface curvature line acquisition unit 110 detects that the Gaussian curvature is smaller than the curvature threshold is applicable to both the first embodiment and the second embodiment.
 目的面曲率線取得部110が、同種の曲率線間の距離が距離閾値より小さいことを検出して曲率線の取得を中止した場合、ガウス曲率が曲率閾値より小さいことを検出して曲率線の取得を中止した場合のいずれも、曲率線の端部が、形成目的面の縁、他の曲率線のいずれとも重ならない場合がある。この場合、この端部は目的面メッシュ領域を形成しない。そこで、目的面曲率線取得部110が、この端部から他の曲率線との交点までの部分を削除するようにしてもよい。 When the target surface curvature line acquisition unit 110 detects that the distance between the same type of curvature lines is smaller than the distance threshold and stops obtaining the curvature line, it detects that the Gaussian curvature is smaller than the curvature threshold and detects the curvature line In any case where the acquisition is stopped, the end of the curvature line may not overlap the edge of the formation target surface and any other curvature line. In this case, this end does not form a target surface mesh region. Therefore, the target surface curvature line acquisition unit 110 may delete a portion from this end to the intersection with another curvature line.
 図18は、曲率線の端部が、形成目的面の縁、他の曲率線のいずれとも重ならない例を示す図である。
 線L831、L832のいずれも、鎖線で囲われた部分は目的面メッシュ領域を形成しない。
FIG. 18 is a diagram illustrating an example in which the end portion of the curvature line does not overlap the edge of the formation target surface and any other curvature line.
In any of the lines L831 and L832, a portion surrounded by a chain line does not form a target surface mesh region.
 図19は、目的面曲率線取得部110が、曲率線の端部から他の曲率線との交点までの部分を削除した例を示す図である。
 図19は、図18に示される状態から、目的面曲率線取得部110が、曲率線の端部から他の曲率線との交点までの部分を削除した場合の例を示している。
 線L831、L832のいずれも、鎖線で囲われた部分が除去されている。
 目的面曲率線取得部110が、曲率線の端部から他の曲率線との交点までの部分を削除することは、第1実施形態、第2実施形態のいずれにも適用可能である。
FIG. 19 is a diagram illustrating an example in which the target surface curvature line acquisition unit 110 deletes a portion from the end of the curvature line to the intersection with another curvature line.
FIG. 19 shows an example in which the target surface curvature line acquisition unit 110 deletes the portion from the end of the curvature line to the intersection with another curvature line from the state shown in FIG.
In each of the lines L831 and L832, a portion surrounded by a chain line is removed.
It can be applied to both the first embodiment and the second embodiment that the target surface curvature line acquisition unit 110 deletes a portion from the end of the curvature line to the intersection with another curvature line.
 図20は、目的面曲率線取得部110が曲率線を求める処理手順の例を示すフローチャートである。
 目的面曲率線取得部110は、曲率線の開始点の位置を決定し、開始点の座標を算出する(ステップS301)。
 次に、目的面曲率線取得部110は、求める曲率線上の点のうち、座標を算出済みの点の次の点の座標を算出する(ステップS302)。
FIG. 20 is a flowchart illustrating an example of a processing procedure in which the target surface curvature line acquisition unit 110 obtains a curvature line.
The target surface curvature line acquisition unit 110 determines the position of the start point of the curvature line, and calculates the coordinates of the start point (step S301).
Next, the target surface curvature line acquisition unit 110 calculates the coordinates of the next point after the points for which the coordinates have been calculated among the points on the calculated curvature line (step S302).
 そして、目的面曲率線取得部110は、現在の点が形成目的面の境界に到達したか否かを判定する(ステップS303)。境界に到達したと判定した場合(ステップS303:YES)、図20の処理を終了する。一方、未だ境界に到達していないと判定した場合(ステップS303:NO)、目的面曲率線取得部110は、現在の点でのガウス曲率を算出する(ステップS304)。
 そして、目的面曲率線取得部110は、現在の点でのガウス曲率が曲率閾値より小さいか否かを判定する(ステップS305)。
Then, the target surface curvature line acquisition unit 110 determines whether or not the current point has reached the boundary of the formation target surface (step S303). If it is determined that the boundary has been reached (step S303: YES), the processing in FIG. On the other hand, if it is determined that the boundary has not yet been reached (step S303: NO), the target surface curvature line acquisition unit 110 calculates a Gaussian curvature at the current point (step S304).
Then, the target surface curvature line acquisition unit 110 determines whether or not the Gaussian curvature at the current point is smaller than the curvature threshold (step S305).
 現在の点でのガウス曲率が曲率閾値より小さいと判定した場合(ステップS305:YES)、図20の処理を終了する。
 一方、現在の点でのガウス曲率が曲率閾値より大きいか又は等しいと判定した場合(ステップS305:NO)、目的面曲率線取得部110は、現在の点と、算出済みの同種の曲率線との距離を算出する(ステップS306)。
When it is determined that the Gaussian curvature at the current point is smaller than the curvature threshold (step S305: YES), the processing in FIG.
On the other hand, when it is determined that the Gaussian curvature at the current point is greater than or equal to the curvature threshold value (step S305: NO), the target surface curvature line acquisition unit 110 calculates the current point and the calculated same type of curvature line. Is calculated (step S306).
 そして、目的面曲率線取得部110は、現在の点と算出済みの同種の曲率線との距離が距離閾値より小さいか否かを判定する(ステップS307)。
 現在の点と算出済みの同種の曲率線との距離が距離閾値より大きいか又は等しいと判定した場合(ステップS307:NO)、ステップS302へ戻る。
 一方、現在の点と算出済みの同種の曲率線との距離が距離閾値より小さいと判定した場合(ステップS307:NO)、図20の処理を終了する。
Then, the target surface curvature line acquisition unit 110 determines whether or not the distance between the current point and the calculated same kind of curvature line is smaller than the distance threshold (step S307).
When it is determined that the distance between the current point and the calculated curvature line of the same kind is greater than or equal to the distance threshold (step S307: NO), the process returns to step S302.
On the other hand, when it is determined that the distance between the current point and the calculated curvature line of the same kind is smaller than the distance threshold (step S307: NO), the processing in FIG.
 図20では、目的面曲率線取得部110が、同種の曲率線間の距離が距離閾値より小さいことを検出した場合、ガウス曲率が曲率閾値より小さいことを検出した場合のいずれも計算中の曲率線を求める処理を終了する場合の例を示している。但し、目的面曲率線取得部110が、同種の曲率線間の距離が距離閾値より小さいことを検出した場合の、計算中の曲率線の計算の中止、ガウス曲率が曲率閾値より小さいことを検出した場合の、計算中の曲率線の計算の中止のうちいずれか一方のみを行うようにしてもよい。 In FIG. 20, when the target surface curvature line acquisition unit 110 detects that the distance between the same type of curvature lines is smaller than the distance threshold, the curvature being calculated in both cases where the Gaussian curvature is detected to be smaller than the curvature threshold. The example in the case of complete | finishing the process which calculates | requires a line is shown. However, when the target surface curvature line acquisition unit 110 detects that the distance between the same kind of curvature lines is smaller than the distance threshold, the calculation of the curvature line being calculated is stopped, and it is detected that the Gaussian curvature is smaller than the curvature threshold. In this case, only one of the cancellation of the calculation of the curvature line being calculated may be performed.
 形状取得部230が、形成目的面の展開図を、切込みの位置をずらして複数求めるようにしてもおい。
 図21は、切込みの位置が異なる複数の展開図の例を示す図である。
 図21の(A)部分、(B)部分、(C)部分のそれぞれには、形成目的面における最大主曲率線および最小主曲率線が示されている。(B)部分と(C)部分とでは、最大主曲率線及び最小主曲率線の位置が異なっている。(B)部分と(C)部分とでは、(A)部分に示される最大主曲率線及び最小主曲率線のうち異なる組み合わせを選択している。
The shape acquisition unit 230 may obtain a plurality of development views of the formation target surface by shifting the cut positions.
FIG. 21 is a diagram illustrating an example of a plurality of development views with different cut positions.
Each of (A) part, (B) part, and (C) part of FIG. 21 shows a maximum main curvature line and a minimum main curvature line on the formation target surface. The positions of the maximum main curvature line and the minimum main curvature line are different between the part (B) and the part (C). In the (B) portion and the (C) portion, different combinations are selected from the maximum main curvature line and the minimum main curvature line shown in the (A) portion.
 図21の(D)部分、(E)部分、(F)部分、(G)部分のそれぞれには、形成目的面の展開図が示されている。(D)部分に示される展開図と、(F)部分に示される展開図とは、いずれも平面メッシュ領域を最小主曲率線方向に沿って繋ぎ合わせて得られた展開図である。(D)部分に示される展開図は、(B)部分に示される最大主曲率線及び最小主曲率線に基づいて生成されている。これに対し、(F)部分に示されている展開図は、(C)部分に示される最大主曲率線及び最小主曲率線に基づいて生成されている。基になる最大主曲率線及び最小主曲率線が異なることで、図21の(D)部分に示されている展開図と、(F)部分に示されている展開図とでは、切込みの位置が異なる。 21 (D), (E), (F), and (G) are respectively developed views of the formation target surface. The developed view shown in part (D) and the developed view shown in part (F) are both developed views obtained by joining the planar mesh regions along the minimum principal curvature line direction. The developed view shown in part (D) is generated based on the maximum main curvature line and the minimum main curvature line shown in part (B). On the other hand, the developed view shown in the (F) part is generated based on the maximum main curvature line and the minimum main curvature line shown in the (C) part. Since the maximum main curvature line and the minimum main curvature line that are the basis are different, in the development view shown in part (D) of FIG. 21 and the development view shown in part (F), the position of the cut Is different.
 同様に、(E)部分に示される展開図と、(G)部分に示される展開図とは、いずれも平面メッシュ領域を最大主曲率線方向に沿って繋ぎ合わせて得られた展開図である。(E)部分に示される展開図は、(B)部分に示される最大主曲率線及び最小主曲率線に基づいて生成されている。これに対し、(G)部分に示されている展開図は、(C)部分に示される最大主曲率線及び最小主曲率線に基づいて生成されている。基になる最大主曲率線及び最小主曲率線が異なることで、図21の(E)部分に示されている展開図と、(G)部分に示されている展開図とでは、切込みの位置が異なる。 Similarly, the developed view shown in the (E) portion and the developed view shown in the (G) portion are both developed views obtained by joining the planar mesh regions along the maximum principal curvature line direction. . The developed view shown in part (E) is generated based on the maximum main curvature line and the minimum main curvature line shown in part (B). On the other hand, the developed view shown in the (G) portion is generated based on the maximum main curvature line and the minimum main curvature line shown in the (C) portion. Since the maximum main curvature line and the minimum main curvature line that are the basis are different, in the development view shown in part (E) of FIG. 21 and the development view shown in part (G), the position of the cut Is different.
このように切込みの位置が異なる展開図を得られることで、それぞれの展開図から目的面形状を形成して重ね合わせ、または形成された第1部材と第2部材の目的面メッシュ領域を交互に積層することも可能であり、切込みの位置が異なる点で強度を得られる。
 第1実施形態の目的面形状物製造装置についても同様である。
 図3を参照して説明したように、目的面曲率線取得部110は、形成目的面に複数の計算開始点を特定し、特定した複数の計算開始位置から複数の最大主曲率線及び複数の最小主曲率線を求める。
 図21の例では、目的面曲率線取得部110は、(A)部分に示される形成目的面の最大主曲率線及び最小主曲率線を求める。その後、目的面曲率線取得部110は、(B)部分となるように(A)部分に示される最大主曲率線及び最小主曲率線の一部を除き、(D)部分、(E)部分それぞれの展開図を求める。また、目的面曲率線取得部110は、(C)部分となるように(A)部分に示される最大主曲率線及び最小主曲率線の一部を除き、(F)部分、(G)部分それぞれの展開図を求めることができる。
 別の方法として、図21の例では、目的面曲率線取得部110は、(B)部分に示される最大主曲率線及び最小主曲率線を求めた後、(C)部分に示される最大主曲率線及び最小主曲率線を求める。そのために、目的面曲率線取得部110は、計算開始位置の特定を2回行う。目的面曲率線取得部110は、1回目に特定した複数の計算開始位置から(B)部分に示される最大主曲率線及び最小主曲率線を求める。そして、目的面曲率線取得部110は、2回目に特定した複数の計算開始位置から(C)部分に示される最大主曲率線及び最小主曲率線を求める。このように、目的面曲率線取得部110は、形成目的面において特定した複数の計算開始位置から複数の最大主曲率線及び複数の最小主曲率線を求める処理を、計算開始位置を変更しながら複数行うこともできる。
By obtaining development views with different incision positions in this way, target surface shapes are formed from the respective development views and overlapped, or the formed target surface mesh regions of the first member and the second member are alternately arranged. Stacking is also possible, and strength can be obtained in that the positions of the cuts are different.
The same applies to the target surface shape object manufacturing apparatus of the first embodiment.
As described with reference to FIG. 3, the target surface curvature line acquisition unit 110 identifies a plurality of calculation start points on the formation target surface, and a plurality of maximum main curvature lines and a plurality of points from the plurality of specified calculation start positions. Find the minimum principal curvature line.
In the example of FIG. 21, the target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line of the formation target surface shown in part (A). Thereafter, the target surface curvature line acquisition unit 110 removes the maximum main curvature line and a part of the minimum main curvature line shown in the (A) part so as to become the (B) part, and the (D) part and the (E) part. Find each development. Moreover, the target surface curvature line acquisition part 110 remove | excludes a part of the maximum main curvature line and minimum main curvature line shown by the (A) part so that it may become a (C) part, (F) part, (G) part Each development can be obtained.
As another method, in the example of FIG. 21, the target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line shown in the (B) portion, and then the maximum main curvature shown in the (C) portion. A curvature line and a minimum main curvature line are obtained. Therefore, the target surface curvature line acquisition unit 110 specifies the calculation start position twice. The target surface curvature line acquisition unit 110 obtains the maximum main curvature line and the minimum main curvature line shown in the part (B) from the plurality of calculation start positions specified for the first time. And the target surface curvature line acquisition part 110 calculates | requires the maximum main curvature line and minimum main curvature line shown by the (C) part from the several calculation start position specified for the 2nd time. In this way, the target surface curvature line acquisition unit 110 performs processing for obtaining a plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions. You can do more than one.
 図22は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータは、CPU、主記憶装置、補助記憶装置、インタフェースを備える。
 上述の目的面形状取得装置は、コンピュータに実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置に記憶されている。CPUは、プログラムを補助記憶装置から読み出して主記憶装置に展開し、当該プログラムに従って上記処理を実行する。また、CPUは、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置に確保する。
FIG. 22 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
The computer includes a CPU, a main storage device, an auxiliary storage device, and an interface.
The above-described target surface shape acquisition device is mounted on a computer. The operation of each processing unit described above is stored in the auxiliary storage device in the form of a program. The CPU reads the program from the auxiliary storage device, develops it in the main storage device, and executes the above processing according to the program. Further, the CPU secures a storage area corresponding to each storage unit described above in the main storage device according to the program.
 以上のように、目的面曲率線取得部110は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める。平面上領域取得部120は、形成目的面が最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求める。これにより、形成目的の面の部品の形状を平面上に形成する際に生じる誤差を分散させることができる。 As described above, the target surface curvature line acquisition unit 110 obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on the formation target surface. The on-plane area acquisition unit 120 obtains data indicating the shape of the area on the corresponding plane for each area in which the formation target surface is divided by the maximum main curvature line and the minimum main curvature line. Thereby, the error which arises when forming the shape of the part of the surface of the formation object on a plane can be distributed.
 また、対応線取得部121は、曲率線部分線を含む面を平面に展開する写像にて得られる、最大主曲率方向対応線及び最小主曲率方向対応線を求める。
 接続関係決定部122は、形成目的面の領域を形成する前記最大主曲率線部分線及び最小主曲率線部分線の接続関係に従って、最大主曲率線部分線及び最小主曲率線部分線に対応する最大主曲率方向対応線及び最小主曲率方向対応線の接続関係を決定する。
 これにより、形成目的面上での最大曲率線対応線及び最小曲率線対応線の接続関係を、平面上での最大主曲率方向対応線及び最小主曲率方向対応線の接続関係に反映させることができる。
In addition, the corresponding line acquisition unit 121 obtains a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line obtained by mapping a plane including the curvature line partial line into a plane.
The connection relation determining unit 122 corresponds to the maximum main curvature line partial line and the minimum main curvature line partial line according to the connection relation of the maximum main curvature line partial line and the minimum main curvature line partial line forming the region of the formation target surface. The connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line is determined.
Thereby, the connection relationship between the maximum curvature line corresponding line and the minimum curvature line corresponding line on the formation target surface can be reflected in the connection relationship between the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line on the plane. it can.
 また、角度決定部123は、形成目的面における分割領域と対応する平面上の分割領域とに基づいて算出した、最大主曲率方向対応線と最小主曲率方向対応線とがなす角度と、最大主曲率方向対応線に対応する最大主曲率線部分線と最小主曲率方向対応線に対応する最小主曲率線部分線とがなす角度との差の2乗の和が最小となるように最大主曲率方向対応線と最小主曲率方向対応線とがなす角度を決定する。
 これにより、平面メッシュ領域における目的面メッシュ領域との誤差を各々の角に分散させることができ、誤差によるひずみが一箇所に集中すること回避し得る。
The angle determination unit 123 calculates the angle between the maximum principal curvature direction corresponding line and the minimum main curvature direction corresponding line calculated based on the divided area on the plane corresponding to the formation target surface and the corresponding divided area on the plane, and the maximum main curvature direction. The maximum main curvature so that the sum of the squares of the differences between the maximum main curvature line partial line corresponding to the curvature direction corresponding line and the minimum main curvature line partial line corresponding to the minimum main curvature direction corresponding line is minimized. An angle formed by the direction corresponding line and the minimum principal curvature direction corresponding line is determined.
Thereby, the error with the target surface mesh area | region in a plane mesh area | region can be disperse | distributed to each corner, and it can avoid that the distortion by an error concentrates on one place.
 また、最大主曲率線部分線を含む面は、最大主曲率線部分線上の点における形成目的面の法線ベクトルと、この点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む面であり、最小主曲率線部分線を含む面は、最小主曲率線部分線上の点における形成目的面の法線ベクトルと、この点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む面である。
 この面を平面に展開することで、最大主曲率線部分線及び最小主曲率線部分線に対応する最大主曲率方向対応線及び最小主曲率方向対応線が得られる。
The surface including the maximum principal curvature line partial line includes a vector of the outer product of the normal vector of the formation target surface at a point on the maximum principal curvature line partial line and the tangent vector of the maximum principal curvature line partial line at this point. The surface that includes the minimum principal curvature line partial line is the vector of the outer product of the normal vector of the target surface at the point on the minimum principal curvature line partial line and the tangent vector of the minimum principal curvature line partial line at this point. It is a surface including.
By developing this surface in a plane, a maximum main curvature direction corresponding line and a minimum main curvature direction corresponding line corresponding to the maximum main curvature line partial line and the minimum main curvature line partial line are obtained.
 また、目的面曲率線取得部110は、形成目的面において特定した複数の計算開始位置から複数の最大主曲率線及び複数の最小主曲率線を求める処理を、前記計算開始位置を変更しながら複数行う。
 平面上領域取得部120は、複数の最大主曲率線及び複数の最小主曲率線に対応する最大主曲率方向対応線と最小主曲率方向対応線とにより構成される平面上の領域の形状を示すデータを求める。
 これにより、切込みの位置がずれた展開図を複数得られる。例えば切込みの位置がずれた展開図の各々から目的面形状を形成して重ね合わせることで、比較的強固な目的面形状物を生成することができる。
Further, the target surface curvature line acquisition unit 110 performs a plurality of processes for obtaining a plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions. Do.
The on-plane area acquisition unit 120 shows the shape of the area on the plane constituted by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line corresponding to the plurality of maximum main curvature lines and the plurality of minimum main curvature lines. Ask for data.
Thereby, a plurality of development views in which the positions of the cuts are shifted are obtained. For example, a relatively strong target surface shape object can be generated by forming and superimposing the target surface shape from each of the developed views in which the positions of the cuts are shifted.
 目的面曲率線取得部110は、
 形成目的面における最大主曲率線または最小主曲率線のいずれかである対象主曲率線を求める開始点を決定し、前記対象主曲率線を構成する前記開始点に続く点を順に求める処理を、前記形成目的面の境界に達するか、ガウス曲率が曲率閾値以下の領域に達するか、あるいは、取得済みの最大主曲率線および最小主曲率線のうち前記対象主曲率線と同種の曲率線との距離が距離閾値以下の点に達するまで繰り返す。
 これにより、得られる展開図での切込みが少なくなり、より強固な目的面形状物を得ることができる。
The target surface curvature line acquisition unit 110
A process of determining a start point for obtaining a target main curvature line that is either the maximum main curvature line or the minimum main curvature line on the formation target surface, and sequentially obtaining points that follow the start point constituting the target main curvature line, It reaches the boundary of the formation target surface, reaches a region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired main main curvature line and minimum main curvature line with the target main curvature line and the same type of curvature line Repeat until the distance reaches a point below the distance threshold.
Thereby, the cut in the developed view obtained decreases, and a stronger target surface shape can be obtained.
 平面上領域取得部120は、形成目的面における領域の最大主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状のデータ、及び、形成目的面における各領域の最小主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状のデータのうち少なくともいずれかを求める。
 これによって、帯状の部品を得られ、帯状の部品を繋ぎ合わせるという比較的簡単な処理で形成目的面の形状を構成できる。
The on-plane area acquisition unit 120 is configured to connect the areas on the plane according to the arrangement in the direction along the maximum principal curvature line of the areas on the formation target surface, and the minimum main curvature of each area on the formation target surface. According to the arrangement in the direction along the line, at least one of the data of the shape obtained by joining the areas on the plane is obtained.
As a result, a band-shaped component can be obtained, and the shape of the formation target surface can be configured by a relatively simple process of joining the band-shaped components together.
 また、形状加工部130は、形成目的面における領域の最大主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状、又は、形成目的面における領域の最小主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に、素材を加工する。
 形成目的面形成部140は、形状加工部130が加工した素材を合せて形成目的の面形状にする。
 これによって、目的面形状物製造装置100は、素材を形成目的の面形状に加工することができる。また、平面上の領域を繋ぎ合わせる点で、目的面形状物においてひずみが1箇所に集中することを回避できる。
Further, the shape processing unit 130 is formed by joining the regions on the plane according to the arrangement in the direction along the maximum main curvature line of the region on the formation target surface, or along the minimum main curvature line of the region on the formation target surface. According to the arrangement in the selected direction, the material is processed into a shape in which the areas on the plane are connected.
The formation target surface forming unit 140 combines the materials processed by the shape processing unit 130 into the surface shape of the formation target.
Thereby, the target surface shape object manufacturing apparatus 100 can process the material into the surface shape of the formation purpose. In addition, it is possible to avoid the strain from being concentrated at one place in the target shape object by connecting the regions on the plane.
 形状加工部130は、形成目的面における各領域の最大主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材と、形成目的面における各領域の最小主曲率線に沿った方向における並びに従って、平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材とを生成する。形成目的面形成部140は、第1部材と第2部材とを互い違いに組み合わせて形成目的の面形状にする。
 これによって、形状加工部130は、第1部材と第2部材とを互い違いに組み合わせるという比較的簡単な処理で形成目的面を得られる。
The shape processing unit 130 includes a first member that has processed the material into a shape in which the regions on the plane are joined together according to the arrangement in the direction along the maximum principal curvature line of each region on the formation target surface, and each region on the formation target surface. In accordance with the arrangement in the direction along the minimum principal curvature line, a second member obtained by processing the material into a shape obtained by joining the regions on the plane is generated. The formation target surface forming unit 140 combines the first member and the second member in a staggered manner to obtain a surface shape for the formation purpose.
Accordingly, the shape processing unit 130 can obtain a formation target surface by a relatively simple process of alternately combining the first member and the second member.
 目的面形状物製造装置100又は形状取得装置200が行う演算及び制御の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含む。
 「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
A program for realizing all or part of the functions and operations performed by the target shape object manufacturing apparatus 100 or the shape acquisition apparatus 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium May be read by a computer system and executed to execute the processing of each unit. The “computer system” here includes an OS and hardware such as peripheral devices.
“Computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in a computer system. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態に関し図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明の実施形態は、形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める目的面曲率線取得部と、前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求める平面上領域取得部と、を備える形状取得装置に関する。
 この実施形態によれば、形成目的の面の部品の形状を平面上に形成する際に生じる誤差を分散させることができる。
An embodiment of the present invention includes a target surface curvature line acquisition unit that obtains a plurality of maximum main curvature lines and a plurality of minimum main curvature lines on a formation target surface, and the formation target surface is the maximum main curvature line and the minimum main curvature line. The present invention relates to a shape acquisition device including an on-plane area acquisition unit that obtains data indicating the shape of a corresponding area on a plane for each divided area.
According to this embodiment, it is possible to disperse errors that occur when forming the shape of the component of the surface to be formed on a plane.
 100 目的面形状物製造装置
 110 目的面曲率線取得部
 120 平面上領域取得部
 121 対応線取得部
 122 接続関係決定部
 123 角度決定部
 130 形状加工部
 140 形成目的面形成部
 200 形状取得装置
 230 形状取得部
DESCRIPTION OF SYMBOLS 100 Target surface shape thing manufacturing apparatus 110 Target surface curvature line acquisition part 120 Plane top area | region acquisition part 121 Corresponding line acquisition part 122 Connection relation determination part 123 Angle determination part 130 Shape processing part 140 Formation target surface formation part 200 Shape acquisition apparatus 230 Shape Acquisition department

Claims (12)

  1.  形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求める目的面曲率線取得部と、
     前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求める平面上領域取得部と、
     を備える形状取得装置。
    A target surface curvature line acquisition unit for obtaining a plurality of maximum principal curvature lines and a plurality of minimum principal curvature lines on the formation target surface;
    On-plane area acquisition unit for obtaining data indicating the shape of the area on the corresponding plane for each area where the formation target surface is divided by the maximum main curvature line and the minimum main curvature line;
    A shape acquisition device comprising:
  2.  前記平面上領域取得部は、
     前記最大主曲率線が前記最小主曲率線で区切られた線である最大主曲率線部分線を含む面を平面に展開する写像にて得られる、前記最大主曲率線部分線に対応する平面上の線である最大主曲率方向対応線、及び、前記最小主曲率線が前記最大主曲率線で区切られた線である最小主曲率線部分線を含む面を平面に展開する写像にて得られる、前記最小主曲率線部分線に対応する平面上の線である最小主曲率方向対応線を求める対応線取得部と、
     前記形成目的面の前記領域を形成する前記最大主曲率線部分線及び前記最小主曲率線部分線の接続関係に従って、前記最大主曲率線部分線及び前記最小主曲率線部分線に対応する前記最大主曲率方向対応線及び前記最小主曲率方向対応線の接続関係を決定する接続関係決定部と、
     を備える請求項1に記載の形状取得装置。
    The area acquisition unit on the plane is
    On the plane corresponding to the maximum main curvature line partial line, obtained by mapping a plane including the maximum main curvature line partial line, wherein the maximum main curvature line is a line divided by the minimum main curvature line. And a plane including a plane including a minimum main curvature line partial line in which the minimum main curvature line is a line delimited by the maximum main curvature line. A corresponding line acquisition unit for obtaining a minimum main curvature direction corresponding line that is a line on a plane corresponding to the minimum main curvature line partial line;
    The maximum corresponding to the maximum main curvature line partial line and the minimum main curvature line partial line according to the connection relation of the maximum main curvature line partial line and the minimum main curvature line partial line forming the region of the formation target surface. A connection relationship determining unit for determining a connection relationship between the main curvature direction corresponding line and the minimum main curvature direction corresponding line;
    The shape acquisition apparatus according to claim 1.
  3.  前記平面上領域取得部は、
     前記形成目的面における分割領域と対応する平面状の分割領域とに基づいて算出した、前記最大主曲率方向対応線と前記最小主曲率方向対応線とがなす角度と、前記最大主曲率方向対応線に対応する最大主曲率線部分線と前記最小主曲率方向対応線に対応する最小主曲率線部分線とがなす角度との差の2乗の和が最小となるように前記最大主曲率方向対応線と前記最小主曲率方向対応線とがなす角度を決定する角度決定部を
     備える請求項2に記載の形状取得装置。
    The area acquisition unit on the plane is
    An angle formed by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line, calculated based on the divided area on the formation target surface and the corresponding planar divided area, and the maximum main curvature direction corresponding line Corresponding to the maximum principal curvature direction so that the sum of the squares of the differences between the maximum principal curvature line partial line corresponding to and the minimum principal curvature line partial line corresponding to the minimum principal curvature direction corresponding line is minimized. The shape acquisition apparatus according to claim 2, further comprising an angle determination unit that determines an angle formed by a line and the minimum principal curvature direction corresponding line.
  4.  前記最大主曲率線部分線を含む面は、前記最大主曲率線部分線上の点における前記形成目的面の法線ベクトルと前記点における最大主曲率線部分線の接線ベクトルとの外積のベクトルを含む面であり、前記最小主曲率線部分線を含む面は、前記最小主曲率線部分線上の点における前記形成目的面の法線ベクトルと前記点における最小主曲率線部分線の接線ベクトルとの外積のベクトルを含む面である、請求項2または請求項3に記載の形状取得装置。 The surface including the maximum principal curvature line partial line includes a vector of outer products of a normal vector of the formation target surface at a point on the maximum principal curvature line partial line and a tangent vector of the maximum principal curvature line partial line at the point. A plane including the minimum principal curvature line partial line is a cross product of a normal vector of the formation target surface at a point on the minimum principal curvature line partial line and a tangent vector of the minimum principal curvature line partial line at the point The shape acquisition apparatus according to claim 2, wherein the shape acquisition apparatus is a plane including a vector.
  5.  前記目的面曲率線取得部は、前記形成目的面において特定した複数の計算開始位置から前記複数の最大主曲率線及び複数の最小主曲率線を求める処理を、前記計算開始位置を変更しながら複数行い、
     前記平面上領域取得部は、前記複数の最大主曲率線及び複数の最小主曲率線に対応する前記最大主曲率方向対応線と前記最小主曲率方向対応線とにより構成される平面上の領域の形状を示すデータを求める、
     請求項2から4の何れか一項に記載の形状取得装置。
    The target surface curvature line acquisition unit performs a plurality of processes for obtaining the plurality of maximum main curvature lines and a plurality of minimum main curvature lines from a plurality of calculation start positions specified on the formation target surface while changing the calculation start positions. Done
    The area acquisition unit on the plane is an area on the plane constituted by the maximum main curvature direction corresponding line and the minimum main curvature direction corresponding line corresponding to the plurality of maximum main curvature lines and the plurality of minimum main curvature lines. Find data showing the shape,
    The shape acquisition apparatus as described in any one of Claim 2 to 4.
  6.  前記目的面曲率線取得部は、
     前記形成目的面における最大主曲率線または最小主曲率線のいずれかである対象主曲率線を求める開始点を決定し、
     前記対象主曲率線を構成する前記開始点に続く点を順に求める処理を、前記形成目的面の境界に達するか、ガウス曲率が曲率閾値以下の領域に達するか、あるいは、取得済みの最大主曲率線および最小主曲率線のうち前記対象主曲率線と同種の曲率線との距離が距離閾値以下の点に達するまで繰り返す、請求項1から5のいずれか一項に記載の形状取得装置。
    The target surface curvature line acquisition unit
    Determining a starting point for obtaining a target main curvature line that is either a maximum main curvature line or a minimum main curvature line on the formation target surface;
    The process of obtaining the points following the start point constituting the target main curvature line in order, the boundary of the formation target surface is reached, the region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired maximum principal curvature The shape acquisition device according to any one of claims 1 to 5, wherein the shape acquisition device repeats until a distance between the target main curvature line and the same type of curvature line among the lines and the minimum main curvature line reaches a point that is equal to or less than a distance threshold value.
  7.  前記平面上領域取得部は、前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状のデータ、及び、前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状のデータのうち少なくともいずれかを求める、
     請求項1から6のいずれか一項に記載の形状取得装置。
    The on-plane area acquisition unit is configured to connect the areas on the plane according to the arrangement in the direction along the maximum principal curvature line of the area on the formation target surface, and the data on the formation target surface. According to the arrangement in the direction along the minimum principal curvature line of each region, obtain at least one of the data of the shape obtained by joining the regions on the plane,
    The shape acquisition apparatus as described in any one of Claim 1 to 6.
  8.  請求項7に記載の形状取得装置と、
     前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状、又は、前記形成目的面における前記領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に、素材を加工する形状加工部と、
     前記形状加工部が加工した素材を合せて形成目的の面形状にする形成目的面形成部と、
     を備える目的面形状物製造装置。
    The shape acquisition device according to claim 7,
    According to the arrangement in the direction along the maximum principal curvature line of the region on the formation target surface, the shape in which the regions on the plane are joined together, or along the minimum principal curvature line of the region on the formation target surface In accordance with the arrangement in the direction, a shape processing unit that processes the material into a shape that joins the regions on the plane, and
    A forming target surface forming portion that combines the material processed by the shape processing portion into a forming target surface shape;
    A target surface shape manufacturing apparatus comprising:
  9.  前記形状加工部は、前記形成目的面における前記各領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材と、前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材とを生成し、
     前記形成目的面形成部は、前記第1部材と前記第2部材とを互い違いに組み合わせて形成目的の面形状にする、
     請求項8に記載の目的面形状物製造装置。
    The shape processing portion includes a first member that processes a material into a shape in which the regions on the plane are joined together in accordance with the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface, and the formation According to the arrangement in the direction along the minimum principal curvature line of each region on the target surface, to generate a second member processed material in a shape that joins the regions on the plane,
    The formation target surface forming portion is configured by alternately combining the first member and the second member into a formation target surface shape.
    The target surface shape thing manufacturing apparatus of Claim 8.
  10.  形成目的面における最大主曲率線または最小主曲率線のいずれかである対象主曲率線を求める開始点を決定し、
     前記対象主曲率線を構成する前記開始点に続く点を順に求める処理を、前記形成目的面の境界に達するか、ガウス曲率が曲率閾値以下の領域に達するか、あるいは、取得済みの最大主曲率線および最小主曲率線のうち前記対象主曲率線と同種の曲率線との距離が距離閾値以下の点に達するまで繰り返し、
     前記開始点を決定する処理及び前記対象主曲率線上の点を求める処理を繰り返して複数の前記最大主曲率線及び複数の前記最小主曲率線を求め、
     前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた各領域について、対応する平面上の領域の形状を示すデータを求め、
     前記形成目的面における前記領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状、又は、前記形成目的面における前記領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に、素材を加工し、
     加工した素材を合せて形成目的の面形状にする
     ことを含む、目的面形状物製造方法。
    Determine the starting point for finding the target main curvature line that is either the maximum main curvature line or the minimum main curvature line on the formation target surface,
    The process of obtaining the points following the start point constituting the target main curvature line in order, the boundary of the formation target surface is reached, the region where the Gaussian curvature is equal to or less than the curvature threshold, or the acquired maximum principal curvature It repeats until the distance between the target main curvature line and the same kind of curvature line among the lines and the minimum main curvature line reaches a point that is equal to or less than the distance threshold,
    The process of determining the start point and the process of obtaining a point on the target main curvature line are repeated to obtain a plurality of the maximum main curvature lines and a plurality of the minimum main curvature lines,
    For each region where the formation target surface is divided by the maximum main curvature line and the minimum main curvature line, obtain data indicating the shape of the region on the corresponding plane,
    According to the arrangement in the direction along the maximum principal curvature line of the region on the formation target surface, the shape in which the regions on the plane are joined together, or along the minimum principal curvature line of the region on the formation target surface According to the arrangement in the direction, the material is processed into a shape that joins the areas on the plane,
    A method for producing a target surface shape product, which comprises forming processed surface shapes by combining processed materials.
  11.  前記素材を加工することは、
     前記形成目的面における前記各領域の前記最大主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第1部材を生成することと、
     前記形成目的面における前記各領域の前記最小主曲率線に沿った方向における並びに従って、前記平面上の領域を繋ぎ合わせた形状に素材を加工した第2部材を生成することとを含み、
     前記形成目的の面形状にすることは、前記第1部材と前記第2部材とを互い違いに組み合わせて形成目的の面形状にすることを含む、
     請求項10に記載の目的面形状物製造方法。
    Processing the material
    Generating a first member obtained by processing a material into a shape in which the regions on the plane are joined according to the arrangement in the direction along the maximum principal curvature line of the regions on the formation target surface;
    Generating a second member obtained by processing a material into a shape obtained by joining the regions on the plane according to the arrangement in the direction along the minimum principal curvature line of the regions on the formation target surface,
    Making the surface shape for the purpose of formation includes making the surface shape for the purpose of formation by alternately combining the first member and the second member,
    The method for manufacturing a target shape object according to claim 10.
  12.  コンピュータに、
     形成目的面における複数の最大主曲率線及び複数の最小主曲率線を求めさせ、
     前記形成目的面が前記最大主曲率線及び最小主曲率線で区切られた領域について、前記領域に対応付けられる平面上の領域の形状を示すデータを求めさせる
     ためのプログラム。
    On the computer,
    Obtaining a plurality of maximum principal curvature lines and a plurality of minimum principal curvature lines on the formation target surface;
    A program for obtaining data indicating a shape of a region on a plane associated with the region for a region in which the formation target surface is divided by the maximum main curvature line and the minimum main curvature line.
PCT/JP2016/085042 2015-11-27 2016-11-25 Shape acquisition device, target surface shape-equipped object production device, target surface shape-equipped object production method, and program WO2017090749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552743A JP6331207B2 (en) 2015-11-27 2016-11-25 Shape acquisition apparatus, target surface shape object manufacturing apparatus, target surface shape object manufacturing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232125 2015-11-27
JP2015-232125 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090749A1 true WO2017090749A1 (en) 2017-06-01

Family

ID=58764274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085042 WO2017090749A1 (en) 2015-11-27 2016-11-25 Shape acquisition device, target surface shape-equipped object production device, target surface shape-equipped object production method, and program

Country Status (2)

Country Link
JP (1) JP6331207B2 (en)
WO (1) WO2017090749A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953094A (en) * 1988-07-01 1990-08-28 Aerohydro, Inc. Method for lofting blanks and compounding plates for shell structures
WO2003079238A1 (en) * 2002-03-19 2003-09-25 The Cooperative Association Of Japan Shipbuilders Shell plating developing method, shell plating manufacturing method, computer program for teaching the methods, and image recording medium for teaching the methods
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953094A (en) * 1988-07-01 1990-08-28 Aerohydro, Inc. Method for lofting blanks and compounding plates for shell structures
WO2003079238A1 (en) * 2002-03-19 2003-09-25 The Cooperative Association Of Japan Shipbuilders Shell plating developing method, shell plating manufacturing method, computer program for teaching the methods, and image recording medium for teaching the methods
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
September 2015 (2015-09-01), Retrieved from the Internet <URL:http://ci.nii.ac.jp/naid/110010049788> [retrieved on 20170207] *

Also Published As

Publication number Publication date
JP6331207B2 (en) 2018-05-30
JPWO2017090749A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
Demaine et al. Origamizer: A practical algorithm for folding any polyhedron
JP2024050711A5 (en)
CN114266800B (en) Method and system for generating multiple rectangular bounding boxes of plane graph
JP6331207B2 (en) Shape acquisition apparatus, target surface shape object manufacturing apparatus, target surface shape object manufacturing method, and program
US20060202987A1 (en) Three-dimensional geometry processing system and method for CAD apparatus restricted in surface representations to import solid data
WO2019194114A1 (en) Processing device, feature part detection method and program for cad model
WO2016163048A1 (en) Nesting method, nesting device, and nesting program
KR102575855B1 (en) Auxetic structure and design method thereof
KR101711042B1 (en) A STL File Coupling Method
JP2004157724A (en) Analytic model conversion method
CN111222198A (en) Ship planking expansion calculation method, device, equipment and storage medium
EP3797907A1 (en) Method and system of additive manufacturing contour-based hatching
JP3153578B2 (en) Offset curved surface generating device and offset solid generating device
JP7091212B2 (en) Model automatic correction device, structure evaluation system, model automatic correction method, and model automatic correction program
Smolik et al. Fast parallel triangulation algorithm of large data sets in E 2 and E 3 for in-core and out-core memory processing
KR20160115284A (en) 3-dimensional shape processing method
JP2007172181A (en) Design data creation device and design data generation program
JP5947992B1 (en) Automatic fillet creation system and program
US20220121783A1 (en) Mesh simplification apparatus and program for mesh simplification
JP6026949B2 (en) Curved surface drawing apparatus and curved surface drawing program
JP5383370B2 (en) Analytical model creation apparatus and analytical model creation method
Mahdavi-Amiri et al. Adaptive atlas of connectivity maps
JP6529025B2 (en) Deployment drawing creation device, deployment drawing data creation method, and program
Vitalii et al. Face split interpretations in sheet metal design
JP2020159739A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868692

Country of ref document: EP

Kind code of ref document: A1