WO2017090493A1 - Tracking-assist-information generating device and tracking-assist-information generating system - Google Patents

Tracking-assist-information generating device and tracking-assist-information generating system Download PDF

Info

Publication number
WO2017090493A1
WO2017090493A1 PCT/JP2016/083924 JP2016083924W WO2017090493A1 WO 2017090493 A1 WO2017090493 A1 WO 2017090493A1 JP 2016083924 W JP2016083924 W JP 2016083924W WO 2017090493 A1 WO2017090493 A1 WO 2017090493A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
route
air vehicle
unmanned air
flight
Prior art date
Application number
PCT/JP2016/083924
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 高木
Original Assignee
東京電力ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力ホールディングス株式会社 filed Critical 東京電力ホールディングス株式会社
Publication of WO2017090493A1 publication Critical patent/WO2017090493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance

Definitions

  • the present invention relates to a tracking support information generation device and a tracking support information generation system.
  • a person who manages the unmanned aerial vehicle may be required to monitor at a distance where the unmanned aerial vehicle in flight can be visually observed.
  • a tracker who tracks the unmanned air vehicle at a distance where the unmanned air vehicle can be viewed may be required to monitor the unmanned air vehicle.
  • the conventional technique is a technique for calculating a route from the present location to the destination, and is a route according to the flight of the unmanned air vehicle, and calculating a route that takes into account the unmanned air vehicle being viewed. It may have been difficult.
  • One aspect of the present invention provides a tracking support information generation device that generates a route along which a tracker who monitors an unmanned air vehicle moves according to the flight of the unmanned air vehicle.
  • One aspect of the present invention is: distance information indicating a distance at which an unmanned air vehicle flying on a flight route based on a laying route of an electric wire and a tracker tracking the unmanned air vehicle can be separated, and a position indicating the position of the electric wire
  • a tracking support information generation device including a tracking route calculation unit that calculates a tracking route on the road on which the tracker tracks the flight of the unmanned air vehicle based on information and map information indicating a position of the road.
  • the tracking support information generation device may further include a relative speed between a tracking speed that is a speed that the tracker tracks and a flight speed that is a speed that the unmanned air vehicle flies along the flight path. Based on this, the tracking route is calculated.
  • the tracking support information generating device is based on a relative speed between a tracking speed that is a speed that the tracker tracks and a flight speed that is a speed at which the unmanned air vehicle flies through the flight path. And a flight information generating unit that generates flight information used for controlling the flight speed of the unmanned aerial vehicle.
  • one aspect of the present invention is based on the tracking support information generation device described above, information indicating that the unmanned air vehicle has reached the end position of the flight path, and information indicating the position of the tracker.
  • a tracking support information generation system comprising: a flight path information generation device that generates flight path information indicating a flight path from the end position to the position of the tracker used for controlling the flight of the unmanned air vehicle.
  • FIG. 1 is a schematic diagram illustrating an example of an overview of the tracking support information generation device 1 according to the first embodiment.
  • the unmanned air vehicle D flies based on the power transmission line WR by a known means. Specifically, the unmanned air vehicle D flies based on the power transmission line WR1 supported by the steel tower ST1 and the steel tower ST2, and flies based on the power transmission line WR2 supported by the steel tower ST2 and the steel tower ST3. That is, the unmanned air vehicle D flies between the steel tower ST1 and the steel tower ST3 based on the power transmission line WR1 and the power transmission line WR2.
  • the unmanned air vehicle D checks the power transmission line WR by flying based on the power transmission line WR.
  • the unmanned air vehicle D flies through a predetermined section to be checked.
  • the unmanned air vehicle D autonomously flies in a section in which inspection is performed by a known means.
  • the section to be inspected is the section from the tower ST1 to the tower ST3.
  • the steel tower ST1, the steel tower ST2, and the steel tower ST3 are collectively referred to as the steel tower ST unless otherwise distinguished.
  • the power transmission line WR1 and the power transmission line WR2 are not particularly distinguished, they are collectively referred to as a power transmission line WR.
  • the unmanned air vehicle D flies based on the power transmission line WR
  • the unmanned air vehicle D may fly based on the distribution line. That is, the power transmission line WR is an example of an electric wire.
  • the tracker TP that tracks the unmanned air vehicle D according to the flight of the unmanned air vehicle D may be required to track at a distance where the flight of the unmanned air vehicle D can be seen.
  • the tracker TP gets on the vehicle V and tracks the unmanned air vehicle D.
  • route which the unmanned air vehicle D flies and the road CW where the vehicle V can drive may not be parallel.
  • the vehicle V on which the tracker TP rides is required to travel on the road CW that maintains a distance at which the unmanned air vehicle D can be seen according to the flight of the unmanned air vehicle D.
  • the tracker TP tracks the unmanned air vehicle D from the tracking start point BP set in the vicinity of the position where the unmanned air vehicle D starts the inspection of the transmission line WR. Further, the tracker TP tracks the unmanned air vehicle D to the tracking end point EP set near the position where the unmanned air vehicle D ends the inspection of the power transmission line WR.
  • the tracker TP may be required to travel from the tracking start point BP to the tracking end point EP along a tracking route CR that is a route that can be tracked at a distance where the unmanned air vehicle D can be seen. is there.
  • the tracking support information generation device 1 of this embodiment is a device that calculates a tracking route CR that can be tracked from a tracking start point BP to a tracking end point EP at a distance where the unmanned air vehicle D can be seen. .
  • the tracker TP may track the unmanned air vehicle D on foot, or may ride the bicycle and track the unmanned air vehicle D. That is, the tracker TP moves on the road and tracks from the tracking start point BP to the tracking end point EP at a distance where the unmanned air vehicle D can be seen. That is, the roadway CW is an example of a road.
  • FIG. 2 is a configuration diagram illustrating an example of the configuration of the tracking support information generation device 1 according to the present embodiment.
  • the tracking support information generation device 1 includes a control unit 100 and a storage unit 120.
  • the storage unit 120 stores map information M, facility information E, and distance information ERD in advance.
  • FIG. 3 is a schematic diagram illustrating an example of the map information M of the present embodiment.
  • the map information M since the tracker TP gets on the vehicle V and tracks the unmanned air vehicle D, the map information M includes information indicating the road CW and information indicating the position of the road CW.
  • FIG. 4 is a table showing an example of the facility information E of the present embodiment.
  • the unmanned air vehicle D checks the power transmission line WR supported by the steel tower ST. Therefore, the facility information E includes information indicating the name of the steel tower ST supporting the power transmission line WR and the position of the steel tower ST. Is included.
  • the information indicating the name of the steel tower ST includes the steel tower ST1, the steel tower ST2, and the steel tower ST3.
  • the position of the steel tower ST1 is position information P1 (35.000000, 135.000000).
  • the position of the steel tower ST2 is position information P2 (35.00200, 135.00200).
  • the position of the steel tower ST3 is position information P3 (35.00400, 135.00400).
  • FIG. 5 is a schematic diagram illustrating an example of the distance information ERD of the present embodiment.
  • the distance information ERD is information indicating a distance at which the tracker TP can see the unmanned air vehicle D. That is, the distance information ERD is information indicating a distance that the unmanned air vehicle D and the tracker TP that tracks the unmanned air vehicle D can be separated. Further, the distance from the ground position GP, which is the intersection of the vertical axis passing through the unmanned air vehicle D and the ground surface, to the distance information ERD is an area where the unmanned air vehicle D can be viewed. As shown in FIG. 5, the region where the unmanned air vehicle D can be viewed is the separable region ERA.
  • control unit 100 includes a CPU (Central Processing Unit), and includes a laying route calculation unit 101, a tracking route calculation unit 102, and an output unit 103 as functional units.
  • the laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E.
  • FIG. 6 is a flowchart illustrating an example of the operation of the tracking support information generation device 1 according to the present embodiment.
  • the laying route calculation unit 101 reads map information M from the storage unit 120 (step S100). Further, the laying route calculation unit 101 reads the facility information E from the storage unit 120 (step S110). The laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E (step S120). The laying route calculation unit 101 supplies the calculated laying route LR to the tracking route calculation unit 102 (step S130).
  • FIG. 7 is a schematic diagram illustrating an example of the laying route LR of the present embodiment.
  • the laying route LR indicates the position on the ground surface of the transmission line WR laid from the position where the unmanned air vehicle D starts the inspection of the transmission line WR to the position where the inspection ends.
  • the laying route LR is calculated based on the map information M and the facility information E. This time, the unmanned air vehicle D flies for the purpose of checking the transmission line WR.
  • the locus of the power transmission line WR and the flight path of the unmanned air vehicle D coincide. That is, the locus on the ground surface of the flight path of the unmanned air vehicle D matches the laying path LR.
  • description will be made assuming that the locus on the ground surface of the flight path of the unmanned air vehicle D is the laying path LR.
  • the laying route LR includes the laying route LR1 and the laying route LR2.
  • the laying route LR1 is a route indicating the position on the ground surface of the transmission line WR1 supported by the steel tower ST1 and the steel tower ST2.
  • the laying route LR1 is a route connecting the position information P1 of the steel tower ST1 and the position information P2 of the steel tower ST2.
  • the laying route LR2 is a route indicating the position on the ground surface of the transmission line WR2 supported by the steel tower ST2 and the steel tower ST3.
  • the laying route LR2 is a route connecting the position information P2 of the steel tower ST2 and the position information P3 of the steel tower ST3.
  • the position information P may include information indicating the position of the laying route LR. That is, the position information P only needs to include information indicating the position of the electric wire.
  • the tracking route calculation unit 102 calculates the tracking route CR based on the laying route LR and the distance information ERD.
  • FIG. 8 is a schematic diagram illustrating an example of the separable area ERA1 according to the present embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of the tracking route CR of the present embodiment.
  • the Z axis is an axis orthogonal to the ground surface.
  • the XY plane is a plane that is horizontal to the ground surface.
  • the Y axis is an axis parallel to the laying path LR.
  • the unmanned air vehicle D can be visually observed in the separable area ERA from the position indicated by the laying route LR to the distance indicated by the distance information ERD. That is, in the X-axis direction, the tracker TP can see the unmanned air vehicle D up to the distance indicated by the distance information ERD in the positive direction of the X-axis and the negative direction centering on the laying route LR.
  • the positive direction of the X axis is also referred to as the right direction
  • the negative direction is also referred to as the left direction.
  • the positive direction of the Y axis is described as the front
  • the negative direction is described as the rear.
  • the unmanned air vehicle D flies from the tower ST1 to the tower ST3 at a constant speed.
  • the vehicle V adjusts a speed
  • the separable area ERA at the position indicated by the laying route LR1 the separable area ERA in the position information P2 of the steel tower ST2, the separable area ERA at the position indicated by the laying path LR2, and the steel tower ST3.
  • the area indicated by the separable area ERA in the position information P3 is collectively referred to as a separable area ERA1.
  • a case where the vehicle V travels on the road CW included in the separable area ERA1 as the tracking route CR will be described.
  • the vehicle V adjusts the speed appropriately according to the flight of the unmanned air vehicle D, and the vehicle V travels on the road CW included in the separable area ERA1, so that the distance information ERD is in the left-right direction. Held in.
  • the tracking route calculation unit 102 acquires the laying route LR from the laying route calculation unit 101 (step S140).
  • the tracking route calculation unit 102 reads the distance information ERD from the storage unit 120 (step S150). Thereby, the tracking route calculation unit 102 calculates the separable area ERA1 (step S160).
  • the tracking route calculation unit 102 repeats Step S180 and Step S190 when calculating the tracking route CR from the tracking start point BP to the tracking end point EP in the roadway CW included in the separable area ERA1 (Step S170). ).
  • the tracking route calculation unit 102 selects a route CS indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 from the position where the tracking route CR is calculated (step S180).
  • the tracking route calculation unit 102 calculates a tracking route CR to the next intersection CP existing in the route CS direction based on the direction indicated by the selected route CS (step S190).
  • the tracking route calculation unit 102 is in the direction of the tracking end point EP from the tracking start point BP, and among the intersection CPs included in the separable area ERA1, the nearest intersection CP The course CS indicating the direction is selected.
  • the direction of the intersection CP from the tracking start point BP to the tracking end point EP and included in the separable area ERA1 is only the direction to the intersection CP1. That is, the tracking route calculation unit 102 selects a route CS from the tracking start point BP to the intersection CP1 (step S180 in FIG. 6).
  • the tracking route calculation unit 102 calculates the tracking route CR1 from the tracking start point BP to the intersection CP1 based on the selected route CS (step S190 in FIG. 6). As shown in FIG. 9, the tracking route CR1 is a tracking route CR from the tracking start point BP to the intersection CP1.
  • the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP1 to the next intersection CP.
  • the route CS from the intersection CP1 to the next intersection CP indicates the route CS1 indicating the route CS from the intersection CP1 to the intersection CP10 and the route CS from the intersection CP1 to the intersection CP2.
  • the intersection CP10 is an intersection CP that is not included in the separable area ERA1.
  • the tracking route calculation unit 102 selects the route CS2 indicating the direction from the intersection CP1 to the intersection CP2 (step S180 in FIG. 6).
  • the tracking route calculation unit 102 calculates a tracking route CR2 from the intersection CP1 to the intersection CP2 based on the selected route CS2 (step S190 in FIG. 6). As shown in FIG. 9, the tracking route CR2 is a tracking route CR from the intersection CP1 to the intersection CP2.
  • the tracking route calculation unit 102 selects a route CS indicating a direction from the intersection CP2 to the next intersection CP.
  • the tracking route calculation unit 102 selects a route CS4 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS3 and CS4 (step S180 in FIG. 6). ).
  • the tracking route calculation unit 102 calculates a tracking route CR3 from the intersection CP2 to the intersection CP3 based on the selected route CS4 (step S190 in FIG. 6). As shown in FIG. 9, the tracking route CR3 is a tracking route CR from the intersection CP2 to the intersection CP3.
  • the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP3 to the next intersection CP.
  • the tracking route calculation unit 102 selects a route CS6 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS5 and CS6 (step S180 in FIG. 6). ).
  • the tracking route calculation unit 102 calculates the tracking route CR4 from the intersection CP3 to the intersection CP4 based on the selected route CS6 (step S190 in FIG. 6). As shown in FIG. 9, the tracking route CR4 is a tracking route CR from the intersection CP3 to the intersection CP4.
  • the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP4 to the next intersection CP.
  • the tracking route calculation unit 102 selects the route CS9 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS7, CS8, and CS9 ( FIG. 6 step S180).
  • the tracking route calculation unit 102 calculates a tracking route CR5 from the intersection CP4 to the intersection CP5 based on the selected route CS9 (step S190 in FIG. 6). As shown in FIG. 9, the tracking route CR5 is a tracking route CR from the intersection CP4 to the intersection CP5.
  • the tracking route calculation unit 102 selects a route CS indicating a direction from the intersection CP5 to the next intersection CP.
  • the tracking route calculation unit 102 selects the route CS11 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS10 and CS11 (step S180 in FIG. 6). ).
  • the tracking route calculation unit 102 calculates a tracking route CR6 from the intersection CP5 to the intersection CP6 based on the selected route CS11 (step S190 in FIG. 6).
  • the tracking route CR6 is a tracking route CR from the intersection CP5 to the intersection CP6.
  • the tracking route CR1, the tracking route CR2, the tracking route CR3, the tracking route CR4, the tracking route CR5, and the tracking route CR6 calculated by the tracking route calculation unit 102 are collectively referred to as a tracking route CR.
  • the tracking route calculation unit 102 supplies the calculated tracking route CR to the output unit 103 (step S200).
  • the output unit 103 acquires the tracking route CR from the tracking route calculation unit 102 (step S210).
  • the output unit 103 outputs the acquired tracking route CR to an external device (step S220).
  • the vehicle V includes a car navigation. For example, information indicating the tracking route CR output by the output unit 103 is displayed on the car navigation screen.
  • Information indicating the tracking route CR may be output to a tablet device or the like, for example. That is, when the tracker TP tracks the unmanned air vehicle D by means other than the vehicle V, if the tracker TP can refer to the tracking route CR, the output unit 103 sets the tracking route CR to any device. It may be output.
  • the tracking support information generation device 1 includes the control unit 100 and the storage unit 120.
  • the storage unit 120 stores in advance distance information ERD indicating a distance at which the unmanned air vehicle D that flies along the flight route based on the laying route LR of the transmission line WR and the tracker TP that tracks the unmanned air vehicle D can be separated. Is done. Further, the storage unit 120 stores in advance position information P indicating the position of the power transmission line WR and map information M indicating the position of the road.
  • the control unit 100 includes a laying route calculation unit 101, a tracking route calculation unit 102, and an output unit 103 as functional units. The laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E.
  • the tracking route calculation unit 102 calculates a tracking route CR on the road on which the tracker TP tracks the flight of the unmanned air vehicle D based on the laying route LR and the map information M.
  • the output unit 103 outputs the tracking route CR calculated by the tracking route calculation unit 102.
  • the tracker TP may be difficult for the tracker TP to select a route to be tracked for each intersection CP during tracking while maintaining a distance that allows the unmanned air vehicle D to be viewed.
  • the tracking support information generation device 1 of the present embodiment when the tracker TP tracks the unmanned air vehicle D, the tracker TP is unmanned based on the map information M, the facility information E, and the distance information ERD.
  • the tracking route CR on the road that tracks the flying object D can be calculated. That is, the tracker TP can track the unmanned air vehicle D while referring to the tracking route CR while maintaining the distance information ERD in the left-right direction. That is, when the tracker TP tracks the unmanned air vehicle D, it is possible to reduce time and effort for calculating a route along which the tracker who monitors the unmanned air vehicle moves.
  • FIG. 10 is a configuration diagram illustrating an example of the configuration of the tracking support information generation device 2 according to a modification.
  • the tracking support information generation device 2 according to the modification includes a control unit 200 and a storage unit 120.
  • symbol is attached
  • the control unit 200 includes a tracking route calculation unit 102-1 in addition to the laying route calculation unit 101 and the output unit 103 described above.
  • the tracking route calculation unit 102-1 calculates the tracking route CR by a method different from that in the first embodiment. Specifically, as shown in FIG. 10, a tracking route candidate calculation unit 210 and a tracking route selection unit 211 are included.
  • the tracking route candidate calculation unit 210 selects all the routes CS indicating the direction of the intersection CP included in the separable area ERA1 in the tracking end point EP direction from the position where the tracking route CR is calculated.
  • the tracking route candidate calculation unit 210 calculates all the tracking routes CR up to the next intersection CP existing in the route CS direction based on the direction indicated by all the selected routes CS.
  • the tracking route selection unit 211 also tracks the tracking route based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP among the plurality of tracking routes CR calculated by the tracking route candidate calculation unit 210. Select CR.
  • FIG. 11 is a schematic diagram illustrating an example of a course CS of a modified example.
  • the tracking route candidate calculation unit 210 performs the tracking end point EP direction from the position where the tracking route CR is calculated, and all directions indicating the direction of the intersection CP included in the separable area ERA1. Select the course CS. That is, as shown in FIG. 11, the tracking route candidate calculation unit 210 selects the route CS10, the route CS14, and the route CS15 in addition to the plurality of routes CS selected in the first embodiment.
  • the tracking route candidate calculation unit 210 calculates a tracking route CR based on the selected route CS.
  • FIG. 12 is a schematic diagram illustrating an example of a tracking route CR according to a modification.
  • all the tracking routes CR up to the next intersection CP existing in the route CS direction are calculated based on the direction indicated by all the routes CS selected by the tracking route candidate calculation unit 210. That is, as shown in FIG. 12, the tracking route candidate calculation unit 210 calculates the tracking route CR7 from the tracking route CR1 calculated in the first embodiment, the tracking route CR7, the tracking route CR8, and the tracking route CR9. .
  • the tracking route candidate calculation unit 210 supplies the tracking route CR from the calculated tracking route CR1 to the tracking route CR9 to the tracking route selection unit 211.
  • the tracking route selection unit 211 acquires the laying route LR from the laying route calculation unit 101.
  • the tracking route selection unit 211 selects the tracking route CR based on the acquired laying route LR, the flight speed FV of the unmanned air vehicle D, and the tracking speed TPV of the tracker TP.
  • FIG. 13 is a schematic diagram illustrating an example of selection of the tracking route CR according to the modification.
  • FIG. 13 is a schematic diagram showing the range LC shown in FIG. 12 in detail.
  • the tracking route selection unit 211 calculates the tracking route CR7, the tracking route CR8, and the tracking route CR9 in addition to the tracking route CR6 from the tracking route CR1 calculated in the first embodiment.
  • the route from the intersection CP5 to the tracking end point EP may be the tracking route CR6, the tracking route CR7, the tracking route CR8, and the tracking route CR9.
  • the distance of the tracking route CR6 is 200 m (tracking route distance CRD6).
  • the distance of the tracking route CR7 is 100 m (tracking route distance CRD7).
  • the distance of the tracking route CR8 is 300 m (tracking route distance CRD8).
  • the distance of the tracking route CR9 is 50 m (tracking route distance CRD9).
  • the speed limit of the vehicle V is set for each tracking route CR.
  • the speed limit of the tracking route CR6 is 10 km / h.
  • the speed limit of the tracking route CR7, the tracking route CR8, and the tracking route CR9 is 60 km / h.
  • the flying speed FV of the unmanned air vehicle D is 30 km / h. That is, in this example, the tracker TP arrives at the tracking end point EP from the intersection CP5 via the tracking route CR6, and from the intersection CP5, the tracking route CR7, the tracking route CR8, and the tracking route CR9.
  • the tracking route selection unit 211 is based on the relative speed between the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP, as the tracking route CR, the tracking route CR7, the tracking route CR8, and the tracking route.
  • a tracking route CR passing through CR9 is selected.
  • the tracking route calculation unit 102-1 supplies the tracking route CR to the output unit 103.
  • the tracking path calculation unit 102-1 sets the relative speed between the tracking speed TPV, which is the speed at which the tracker TP tracks, and the flight speed FV, which is the speed at which the unmanned air vehicle D flies through the flight path. Further, the tracking route CR is calculated based on the above. Thereby, the tracking support information generation device 2 of the modified example can calculate the tracking route CR from a plurality of routes based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP. . That is, the tracking support information generation device 2 of the modified example can adjust the tracking speed TPV of the tracker TP with higher accuracy according to the flight of the unmanned air vehicle D. That is, the tracking support information generation device 2 of the modified example can keep the distance information ERD between the unmanned air vehicle D and the tracker TP in the front-rear direction.
  • FIG. 14 is a schematic diagram illustrating an example of the configuration of the tracking support information generation device 3 according to the second embodiment.
  • the tracking support information generation device 3 of this embodiment includes a storage unit 120 and a control unit 300.
  • symbol is attached
  • the tracking support information generation device 3 generates flight information FC used for controlling the flight speed FV of the flight of the unmanned air vehicle D based on the positions of the unmanned air vehicle D and the tracker TP. To do.
  • the control unit 300 includes a flight speed correction unit 310 and a flight information generation unit 314 in addition to the laying route calculation unit 101, the tracking route calculation unit 102, and the output unit 103 described above.
  • the flight speed correction unit 310 includes a position calculation unit 311, a separation distance calculation unit 312, and a separation distance determination unit 313.
  • FIG. 15 is a first flowchart illustrating an example of the operation of the tracking support information generation device 3 in the present embodiment.
  • FIG. 16 is a second flowchart illustrating an example of the operation of the tracking support information generation device 3 in the present embodiment.
  • the operation of the tracking support information generation device 3 shown in FIG. 15 shows the operation after the processing from step S100 to step S210 shown in FIG. 6 is completed.
  • the unmanned air vehicle D appropriately adjusts the flight speed FV in accordance with the movement of the tracker TP and maintains a position where the tracker TP can be seen.
  • the tracker TP moves at a constant speed will be described.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP that is the position of the unmanned air vehicle D at a certain time t and the tracker position TPP that is the position of the tracker TP. Specifically, the position calculation unit 311 acquires the tracking route CR from the tracking route calculation unit 102 (step S300). The position calculation unit 311 repeats the processing from step S320 to step S360 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S310). The position calculation unit 311 acquires the flight speed FV at a certain time t from the separation distance determination unit 313 (step S320).
  • the position calculation unit 311 calculates the unmanned air vehicle position DP, which is the position of the unmanned air vehicle D at a certain time t, based on the certain time t and the flight speed FV (step S330).
  • the position calculation unit 311 supplies the calculated unmanned air vehicle position DP at a certain time t to the separation distance calculation unit 312 (step S340).
  • the position calculation unit 311 calculates the tracker position TPP at a certain time t (step S350).
  • the position calculation unit 311 supplies the calculated tracker position TPP at a certain time t to the separation distance calculation unit 312 (step S360).
  • FIG. 17 is a table showing an example of processing of the flight speed correction unit 310 of the present embodiment.
  • the position calculation unit 311 acquires the tracking route CR from the tracking route calculation unit 102. Further, the position calculation unit 311 acquires the flight speed FV acquired from the separation distance determination unit 313. At this time, the separation distance determination unit 313 supplies 30 km / h, which is the initial value of the flying speed FV of the unmanned air vehicle D, to the position calculation unit 311 at time t1.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP1, which is the position of the unmanned air vehicle D at time t1, based on the acquired flight speed FV.
  • the time t1 is a time at which a predetermined time has elapsed since the tracking was started from the tracking start point BP. Further, the position calculation unit 311 calculates a tracker position TPP1 that is the position of the tracker TP at time t1 based on the tracking route CR and the tracking speed TPV.
  • the separation distance calculation unit 312 repeats the processing from step S380 to step S410 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S370).
  • the separation distance calculation unit 312 acquires the unmanned air vehicle position DP at a certain time t from the position calculation unit 311 (step S380). Further, the separation distance calculation unit 312 acquires the tracker position TPP at a certain time t from the position calculation unit 311 (step S390).
  • the separation distance calculation unit 312 calculates the separation distance OD based on the acquired unmanned air vehicle position DP and the tracker position TPP (step S400). The separation distance calculation unit 312 supplies the calculated separation distance OD to the separation distance determination unit 313 (step S410).
  • the separation distance calculation unit 312 calculates the separation distance OD1 based on the unmanned air vehicle position DP1 at the time t1 calculated by the position calculation unit 311 and the tracker position TPP1.
  • the separation distance OD1 between the unmanned air vehicle D and the tracker TP at time t1 calculated by the separation distance calculation unit 312 is 195 m.
  • the separation distance determination unit 313 reads the distance information ERD from the storage unit 120 (step S420).
  • the separation distance determination unit 313 repeats the processing from step S440 to step S480 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S430).
  • the separation distance determination unit 313 acquires the separation distance OD at a certain time t from the separation distance calculation unit 312 (step S440).
  • the separation distance determination unit 313 determines whether or not the distance indicated by the separation distance OD at a certain time t is shorter than the distance indicated by the distance information ERD (step S450).
  • the separation distance determination unit 313 determines that the distance indicated by the separation distance OD at a certain time t is shorter than the distance indicated by the distance information ERD (step S450; YES).
  • the separation distance determination unit 313 maintains the flight speed FV at a certain speed t. Then, it determines (step S460).
  • the constant speed of the flight speed FV is 30 km / h.
  • the separation distance determination unit 313 reduces the flight speed FV at a certain time t. Then, it determines (step S470).
  • the separation distance determination unit 313 supplies information indicating the flight speed FV at a certain time t to the position calculation unit 311 and the flight information generation unit 314 (step S480).
  • FIG. 17 is a table showing an example of processing of the flight speed correction unit 310 of the present embodiment.
  • the separation distance determination unit 313 determines whether or not the unmanned air vehicle D and the tracker TP are separated by the distance information ERD or more based on the separation distance OD at the time t1 calculated by the separation distance calculation unit 312. Determine whether.
  • the distance information ERD is 500 m. That is, at time t1, the separation distance determination unit 313 determines to maintain the flying speed FV of the unmanned air vehicle D at a constant speed. In this case, the unmanned air vehicle D flight speed FV at time t1 is 30 km / h.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP2 and the tracker position TPP2 at a time t2 when a predetermined time has elapsed from the time t1.
  • the separation distance calculation unit 312 calculates the separation distance OD2 based on the unmanned air vehicle position DP2 calculated by the position calculation unit 311 and the tracker position TPP2.
  • the separation distance determination unit 313 determines to maintain the flight speed FV of the unmanned air vehicle D at a constant speed at time t2 based on the separation distance OD2 calculated by the separation distance calculation unit 312.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP5 and the tracker position TPP5 at a time t5 when a predetermined time has elapsed from the time t4.
  • the separation distance calculation unit 312 calculates the separation distance OD5 based on the unmanned air vehicle position DP5 calculated by the position calculation unit 311 and the tracker position TPP5.
  • the separation distance OD5 is 584 m.
  • the separation distance determination unit 313 determines to reduce the flight speed FV of the unmanned air vehicle D at time t5 based on the separation distance OD5 calculated by the separation distance calculation unit 312. In this example, reducing the flight speed FV indicates reducing the flight speed FV to 0 km / h. That is, the unmanned air vehicle D hovers at the position indicated by the unmanned air vehicle position DP5.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP6 and the tracker position TPP6 at a time t6 when a predetermined time has elapsed from the time t5.
  • the separation distance determination unit 313 determines to reduce the flight speed FV at time t5
  • the unmanned air vehicle D indicates the same unmanned air vehicle position DP as at time t5 at time t6. That is, the unmanned air vehicle position DP6 and the unmanned air vehicle position DP5 are the same position.
  • the separation distance calculation unit 312 calculates the separation distance OD6 based on the unmanned air vehicle position DP6 calculated by the position calculation unit 311 and the tracker position TPP6. As shown in FIG.
  • the separation distance OD6 is 264 m. That is, when the flight speed FV of the unmanned air vehicle D is reduced at the time t5, the separation distance OD5 and the separation distance OD6 are such that the distance between the unmanned air vehicle D and the tracker TP is greater at the separation distance OD6. Shorter.
  • the separation distance determination unit 313 determines to maintain the flight speed FV of the unmanned air vehicle D at a constant speed at time t6 based on the separation distance OD6 calculated by the separation distance calculation unit 312.
  • the flight information generation unit 314 repeats the process from step S500 to the tracking end point EP shown in the tracking route CR up to step S500 (step S490).
  • the flight information generation unit 314 acquires information indicating the flight speed FV of the unmanned air vehicle D at each time t from the separation distance determination unit 313 (step S500).
  • the flight information generation unit 314 generates flight information FC used for controlling the flight speed FV of the unmanned air vehicle D at each time t based on the acquired information indicating the flight speed FV (step S510).
  • the flight speed correction unit 310 calculates the flight speed FV at each time t. This is supplied to the flight information generation unit 314.
  • the flight speed correction unit 310 has a flight speed FV of 30 km / h from time t1 to time t4, a flight speed FV of 0 km / h at time t5, and a flight speed at time t6.
  • Information indicating that FV is 30 km / h is supplied to the flight information generation unit 314.
  • the flight information generation unit 314 generates flight information FC based on the acquired flight speed FV at each time t.
  • the tracking support information generation device 3 includes the control unit 300 and the storage unit 120.
  • the control unit 300 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, and a flight information generation unit 314.
  • the flight speed correction unit 310 includes a position calculation unit 311, a separation distance calculation unit 312, and a separation distance determination unit 313.
  • the position calculation unit 311 calculates the unmanned air vehicle position DP and the tracker position TPP at a certain time t based on the tracking route CR.
  • the separation distance calculation unit 312 calculates the separation distance OD based on the unmanned air vehicle position DP calculated by the position calculation unit 311 and the tracker position TPP.
  • the separation distance determination unit 313 determines whether or not to reduce the flight speed FV of the unmanned air vehicle D based on the separation distance OD calculated by the separation distance calculation unit 312.
  • the flight information generation unit 314 generates flight information FC used for controlling the flight speed FV of the unmanned air vehicle D based on the flight speed FV of the unmanned air vehicle D at each time t determined by the flight speed correction unit 310. . That is, the flight information generation unit 314 is based on the relative speed between the tracking speed TPV, which is the speed that the tracker TP tracks, and the flight speed FV, which is the speed at which the unmanned air vehicle D flies along the flight path. Flight information FC used to control the flight speed FV of D is generated.
  • the tracking support information generation device 3 generates the flight information FC used for controlling the flight speed FV of the unmanned air vehicle D based on the relative speed between the flight speed FV and the tracking speed TPV. be able to. That is, when the unmanned air vehicle D flies based on the flight information FC, and the separation distance OD between the unmanned air vehicle D and the tracker TP becomes longer than the distance information ERD, the flight speed of the unmanned air vehicle D FV is reduced. Thereby, the tracker TP can hold the distance information ERD between the unmanned air vehicle D and the tracker TP in the front-rear and left-right directions. That is, when the tracker TP tracks the unmanned air vehicle D, the distance information ERD can be maintained with higher accuracy in the front-rear and left-right directions.
  • the present invention is not limited to this.
  • control for reducing the value of the flying speed FV may be performed.
  • the flight speed FV is controlled based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP has been described, but the present invention is not limited thereto.
  • the tracking speed TPV of the tracker TP may be controlled based on the flight speed FV and the tracking speed TPV. Further, the flight speed FV and the tracking speed TPV may be controlled based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP.
  • the present invention is not limited to this.
  • a place where the flying speed FV of the unmanned air vehicle D is reduced may be predetermined on the steel tower ST.
  • the unmanned air vehicle D may stand by at a speed reduction point determined on the steel tower ST1.
  • FIG. 18 is a configuration diagram showing the configuration of the unmanned air vehicle D of the third embodiment.
  • the unmanned aerial vehicle D according to the present embodiment will be described with reference to the control of the unmanned air vehicle D when the unmanned air vehicle D returns to the current location of the tracker TP when the flight of the predetermined section is completed.
  • the unmanned air vehicle D includes a flight path information generation device 4.
  • the flight path information generation device 4 includes a control unit 400 and a storage unit 410.
  • a control unit 400 controls the flight path information generation device 4 .
  • symbol is attached
  • the flight unit information FL is stored in the storage unit 410.
  • the flight route information FL is information indicating a route associated with a flight in a predetermined section in which the unmanned air vehicle D flies.
  • the information is used for controlling the flight of the unmanned air vehicle D when the unmanned air vehicle D autonomously flies from the tower ST1 to the steel tower ST3 based on the power transmission line WR1 and the power transmission line WR2.
  • the control unit 400 includes a position detection unit 401, an inspection end determination unit 402, a transmission unit 403, a reception unit 404, a return path information generation unit 405, and a flight control unit 406 as functional units.
  • the position detector 401 detects the unmanned air vehicle position DP of the unmanned air vehicle D.
  • the position detection unit 401 is, for example, a GPS sensor.
  • the position detection unit 401 supplies the detected unmanned air vehicle position DP to the inspection end determination unit 402 and the return path information generation unit 405.
  • the inspection end determination unit 402 acquires the unmanned air vehicle position DP from the position detection unit 401. Further, the inspection end determination unit 402 reads the flight route information FL from the storage unit 410. The inspection end determination unit 402 determines whether or not the position of the unmanned air vehicle D indicated by the unmanned air vehicle position DP is the final point of the route indicated by the flight route information FL. The inspection end determination unit 402 supplies the inspection end determination result FJR to the transmission unit 403 when the inspection end determination result FJR, which is the determination result, indicates that the position of the unmanned air vehicle D is the final point of the flight path information FL. . The transmission unit 403 transmits the acquired examination end determination result FJR to the tracking support information generation device 5.
  • FIG. 19 is a configuration diagram illustrating a configuration of the tracking support information generation device 5 in the present embodiment.
  • the tracking support information generation device 5 includes a control unit 500 and a storage unit 120.
  • symbol is attached
  • the control unit 500 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, a flight information generation unit 314, a reception unit 501, a position detection unit 502, and a transmission. Part 503.
  • the receiving unit 501 receives the inspection end determination result FJR from the flight path information generation device 4.
  • the reception unit 501 supplies the received inspection end determination result FJR to the position detection unit 502.
  • the position detection unit 502 detects the tracker position TPP of the tracker TP when acquiring the inspection end determination result FJR.
  • the position detection unit 502 is, for example, a GPS sensor.
  • the position detection unit 502 supplies the detected tracker position TPP to the transmission unit 503.
  • the transmission unit 503 transmits information indicating the acquired tracker position TPP to the flight path information generation device 4.
  • the flight path information generation device 4 and the tracking support information generation device 5 are connected via a network and can transmit and receive information.
  • the receiving unit 404 receives information indicating the tracker position TPP from the tracking support information generating device 5.
  • the receiving unit 404 supplies information indicating the received tracker position TPP to the return path information generating unit 405.
  • the return path information generation unit 405 generates return path information RR on which the unmanned air vehicle D flies from the unmanned air vehicle position DP to the tracker position TPP based on the acquired tracker position TPP and the unmanned air vehicle position DP. To do.
  • the return route information RR is information used for autonomous flight control when the unmanned air vehicle D returns from the unmanned air vehicle position DP to the tracker position TPP.
  • the return path information generation unit 405 supplies the generated return path information RR to the flight control unit 406.
  • the flight control unit 406 controls the flight of the unmanned air vehicle D based on the acquired return path information RR. Thereby, the unmanned air vehicle D can return to the position of the tracker TP after the flight in the predetermined section is completed.
  • the unmanned air vehicle D includes the flight path information generation device 4
  • the flight path information generation device 4 may be included in the tracking support information generation device 5.
  • the unmanned air vehicle D transmits information indicating that the flight of the predetermined section has ended to the tracking support information generation device 5 based on the flight path information FL and the unmanned air vehicle position DP.
  • the tracking support information generation device 5 receives the unmanned air vehicle position DP of the unmanned air vehicle D received from the unmanned air vehicle D and information indicating that the unmanned air vehicle D has finished flying in a predetermined section. Based on this, the return route information RR from the tracker position TPP to the unmanned air vehicle position DP may be generated.
  • the tracking support information generation device 5 may transmit the generated return route information RR to the unmanned air vehicle D.
  • the unmanned air vehicle D may return to the tracker position TPP of the tracker TP by controlling autonomous flight based on the received return path information RR.
  • the unmanned air vehicle D of the present embodiment includes the flight path information generation device 4.
  • the flight path information generation device 4 includes a control unit 400 and a storage unit 410.
  • the storage unit 410 stores flight path information FL.
  • the control unit 400 includes a position detection unit 401, an examination end determination unit 402, a transmission unit 403, a reception unit 404, a return path information generation unit 405, and a flight control unit 406.
  • the position detector 401 detects the unmanned air vehicle position DP of the unmanned air vehicle D.
  • the inspection end determination unit 402 indicates that the inspection end determination result FJR, which is the detection result of the unmanned air vehicle position DP detected by the position detection unit 401, indicates that the position of the unmanned air vehicle D is the final point of the flight path information FL.
  • the inspection end determination result FJR is supplied to the transmission unit 403.
  • the transmission unit 403 transmits the acquired examination end determination result FJR to the tracking support information generation device 5.
  • the tracking support information generation device 5 includes a storage unit 120 and a control unit 500.
  • the control unit 500 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, a flight information generation unit 314, a reception unit 501, a position detection unit 502, and a transmission. Part 503.
  • the receiving unit 501 receives the inspection end determination result FJR from the flight path information generation device 4.
  • the reception unit 501 supplies the received inspection end determination result FJR to the position detection unit 502.
  • the position detection unit 502 supplies information indicating the tracker position TPP of the tracker TP to the transmission unit 503. To do.
  • the transmission unit 503 transmits information indicating the tracker position TPP acquired from the position detection unit 502 to the flight path information generation device 4.
  • the receiving unit 404 included in the flight path information generation device 4 receives information indicating the tracker position TPP from the tracking support information generation device 5.
  • the return path information generation unit 405 returns the return path information RR based on the inspection end determination result FJR indicating that the unmanned air vehicle D has reached the end position of the flight path and the information indicating the tracker position TPP of the tracker TP. Is generated.
  • the return path information RR is a path indicating a flight path from the end position used for controlling the flight of the unmanned air vehicle D to the tracker position TPP of the tracker TP.
  • the return path information generation unit 405 supplies the generated return path information RR to the flight control unit 406.
  • the flight control unit 406 controls the flight of the unmanned air vehicle D based on the acquired return path information RR.
  • the tracking support information generation system SYS when the unmanned air vehicle D reaches the end position of the flight path, the unmanned air vehicle from the unmanned air vehicle position DP of the unmanned air vehicle D to the tracker position TPP of the tracker TP. D's flight can be controlled. That is, when the unmanned air vehicle D reaches the end position of the flight path, the unmanned air vehicle D can autonomously fly to the tracker TP. That is, according to the tracking support information generation system SYS of this embodiment, when the unmanned air vehicle D reaches the end position of the flight path, it is possible to reduce the trouble of the tracker TP collecting the unmanned air vehicle D.
  • each part with which the tracking assistance information generation apparatus 1, the tracking assistance information generation apparatus 2, the tracking assistance information generation apparatus 3, the flight route information generation apparatus 4, and the tracking assistance information generation apparatus 5 in each of the above embodiments is dedicated It may be realized by hardware, or may be realized by a memory and a microprocessor.
  • the tracking support information generation device 1, the tracking support information generation device 2, the tracking support information generation device 3, the flight path information generation device 4, and the tracking support information generation device 5 each include a memory and a CPU (central processing unit).
  • a tracking support information generation device 1, a tracking support information generation device 2, a tracking support information generation device 3, a flight path information generation device 4, and a program for realizing the functions of the units included in the tracking support information generation device 5 The function may be realized by loading the program into a memory and executing it.
  • a program for realizing the functions of the respective units included in the tracking support information generation device 1, the tracking support information generation device 2, the tracking support information generation device 3, the flight path information generation device 4, and the tracking support information generation device 5 is a computer. Processing may be performed by recording the program on a readable recording medium, reading the program recorded on the recording medium into a computer system, and executing the program.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Abstract

This tracking-assist-information generating device is provided with a tracking path calculation unit that calculates a tracking path on a road along which a tracker tracks the flight of an unmanned flying body, on the basis of: distance information that indicates the distance by which the tracker tracking the unmanned flying body can be separated from the unmanned flying body flying along a flight path based on the laying path of an electric cable; position information indicating the position of the electric cable; and map information indicating the position of the road.

Description

追尾支援情報生成装置及び追尾支援情報生成システムTracking support information generation apparatus and tracking support information generation system
 本発明は、追尾支援情報生成装置及び追尾支援情報生成システムに関する。 The present invention relates to a tracking support information generation device and a tracking support information generation system.
 従来、現在地と、目的地との情報から2点間の経路を算出する技術が知られている。 Conventionally, a technique for calculating a route between two points from information on a current location and a destination is known.
特開平9-178500号公報JP-A-9-178500
 ここで、無人飛行体を飛行させるに際して、無人飛行体を管理する者が飛行中の無人飛行体の目視が可能な距離において監視することが求められる場合がある。すなわち、無人飛行体の飛行に応じて、無人飛行体の目視が可能な距離において追尾する追尾者が、無人飛行体を監視することが求められる場合がある。
 しかしながら、従来の技術は、現在地から目的地までの経路を算出する技術であって、無人飛行体の飛行に応じた経路であり、かつ無人飛行体を目視することを考慮した経路を算出することまでは困難である場合があった。
 本発明の一態様は、無人飛行体の飛行に応じて、無人飛行体を監視する追尾者が移動する経路を生成する追尾支援情報生成装置を提供する。
Here, when flying an unmanned aerial vehicle, a person who manages the unmanned aerial vehicle may be required to monitor at a distance where the unmanned aerial vehicle in flight can be visually observed. In other words, depending on the flight of the unmanned air vehicle, a tracker who tracks the unmanned air vehicle at a distance where the unmanned air vehicle can be viewed may be required to monitor the unmanned air vehicle.
However, the conventional technique is a technique for calculating a route from the present location to the destination, and is a route according to the flight of the unmanned air vehicle, and calculating a route that takes into account the unmanned air vehicle being viewed. It may have been difficult.
One aspect of the present invention provides a tracking support information generation device that generates a route along which a tracker who monitors an unmanned air vehicle moves according to the flight of the unmanned air vehicle.
 本発明の一態様は、電線の敷設経路に基づく飛行経路を飛行する無人飛行体と前記無人飛行体を追尾する追尾者とが離隔可能な距離を示す距離情報と、前記電線の位置を示す位置情報と、道路の位置を示す地図情報とに基づいて、前記追尾者が前記無人飛行体の飛行を追尾する前記道路上の追尾経路を算出する追尾経路算出部を備える追尾支援情報生成装置である。 One aspect of the present invention is: distance information indicating a distance at which an unmanned air vehicle flying on a flight route based on a laying route of an electric wire and a tracker tracking the unmanned air vehicle can be separated, and a position indicating the position of the electric wire A tracking support information generation device including a tracking route calculation unit that calculates a tracking route on the road on which the tracker tracks the flight of the unmanned air vehicle based on information and map information indicating a position of the road. .
 また、本発明の一態様の追尾支援情報生成装置は、前記追尾者が追尾する速度である追尾速度と、前記無人飛行体が前記飛行経路を飛行する速度である飛行速度との相対速度に更に基づいて前記追尾経路を算出する。 The tracking support information generation device according to one aspect of the present invention may further include a relative speed between a tracking speed that is a speed that the tracker tracks and a flight speed that is a speed that the unmanned air vehicle flies along the flight path. Based on this, the tracking route is calculated.
 また、本発明の一態様の追尾支援情報生成装置は、前記追尾者が追尾する速度である追尾速度と、前記無人飛行体が前記飛行経路を飛行する速度である飛行速度との相対速度に基づいて、前記無人飛行体の前記飛行速度の制御に用いられる飛行情報を生成する飛行情報生成部を更に備える。 The tracking support information generating device according to one aspect of the present invention is based on a relative speed between a tracking speed that is a speed that the tracker tracks and a flight speed that is a speed at which the unmanned air vehicle flies through the flight path. And a flight information generating unit that generates flight information used for controlling the flight speed of the unmanned aerial vehicle.
 また、本発明の一態様は、上述の追尾支援情報生成装置と、前記無人飛行体が前記飛行経路の終了位置に到達したことを示す情報と、前記追尾者の位置を示す情報とに基づいて、前記無人飛行体の飛行の制御に用いられる前記終了位置から前記追尾者の位置までの飛行経路を示す飛行経路情報を生成する飛行経路情報生成装置とを備える追尾支援情報生成システムである。 Moreover, one aspect of the present invention is based on the tracking support information generation device described above, information indicating that the unmanned air vehicle has reached the end position of the flight path, and information indicating the position of the tracker. A tracking support information generation system comprising: a flight path information generation device that generates flight path information indicating a flight path from the end position to the position of the tracker used for controlling the flight of the unmanned air vehicle.
 本発明によれば、無人飛行体を監視する追尾者が移動する経路を算出することができる。 According to the present invention, it is possible to calculate a route along which a tracker who monitors an unmanned air vehicle moves.
第1実施形態の追尾支援情報生成装置の概要の一例を示す模式図である。It is a schematic diagram which shows an example of the outline | summary of the tracking assistance information generation apparatus of 1st Embodiment. 本実施形態の追尾支援情報生成装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the tracking assistance information generation apparatus of this embodiment. 本実施形態の地図情報の一例を示す模式図である。It is a schematic diagram which shows an example of the map information of this embodiment. 本実施形態の設備情報の一例を示す表である。It is a table | surface which shows an example of the equipment information of this embodiment. 本実施形態の距離情報の一例を示す模式図である。It is a schematic diagram which shows an example of the distance information of this embodiment. 本実施形態の追尾支援情報生成装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of the tracking assistance information generation apparatus of this embodiment. 本実施形態の敷設経路の一例を示す模式図である。It is a schematic diagram which shows an example of the laying path | route of this embodiment. 本実施形態の離隔可能領域の一例を示す模式図である。It is a schematic diagram which shows an example of the separable area | region of this embodiment. 本実施形態の追尾経路の一例を示す模式図である。It is a schematic diagram which shows an example of the tracking path | route of this embodiment. 変形例の追尾支援情報生成装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the tracking assistance information generation apparatus of a modification. 変形例の進路の一例を示す模式図である。It is a schematic diagram which shows an example of the course of a modification. 変形例の追尾経路の一例を示す模式図である。It is a schematic diagram which shows an example of the tracking path | route of a modification. 変形例の追尾経路の選択の一例を示す模式図である。It is a schematic diagram which shows an example of selection of the tracking path | route of a modification. 第2実施形態の追尾支援情報生成装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the tracking assistance information generation apparatus of 2nd Embodiment. 本実施形態における追尾支援情報生成装置の動作の一例を示す第1の流れ図である。It is a 1st flowchart which shows an example of operation | movement of the tracking assistance information generation apparatus in this embodiment. 本実施形態における追尾支援情報生成装置の動作の一例を示す第2の流れ図である。It is a 2nd flowchart which shows an example of operation | movement of the tracking assistance information generation apparatus in this embodiment. 本実施形態の飛行速度補正部の処理の一例を示す表である。It is a table | surface which shows an example of the process of the flight speed correction | amendment part of this embodiment. 第3実施形態の無人飛行体の構成を示す構成図である。It is a block diagram which shows the structure of the unmanned air vehicle of 3rd Embodiment. 本実施形態における追尾支援情報生成装置の構成を示す構成図である。It is a block diagram which shows the structure of the tracking assistance information generation apparatus in this embodiment.
[第1実施形態]
 以下、図を参照して本発明の実施形態について説明する。図1は、第1実施形態の追尾支援情報生成装置1の概要の一例を示す模式図である。
 この一例では、無人飛行体Dは、既知の手段によって送電線WRに基づいて飛行する。具体的には、無人飛行体Dは、鉄塔ST1と、鉄塔ST2とが支持する送電線WR1に基づいて飛行し、鉄塔ST2と、鉄塔ST3とが支持する送電線WR2に基づいて飛行する。つまり、無人飛行体Dは、送電線WR1と、送電線WR2とに基づいて、鉄塔ST1から鉄塔ST3までの間を飛行する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of an overview of the tracking support information generation device 1 according to the first embodiment.
In this example, the unmanned air vehicle D flies based on the power transmission line WR by a known means. Specifically, the unmanned air vehicle D flies based on the power transmission line WR1 supported by the steel tower ST1 and the steel tower ST2, and flies based on the power transmission line WR2 supported by the steel tower ST2 and the steel tower ST3. That is, the unmanned air vehicle D flies between the steel tower ST1 and the steel tower ST3 based on the power transmission line WR1 and the power transmission line WR2.
 この一例では、無人飛行体Dは、送電線WRに基づいて飛行することにより、送電線WRの点検を行う。また、無人飛行体Dは、予め定められた点検する区間を飛行する。これにより、無人飛行体Dは、既知の手段によって点検を行う区間を自律飛行する。この一例では、点検を行う区間が、鉄塔ST1から鉄塔ST3までの区間である。以降の説明において、鉄塔ST1と、鉄塔ST2と、鉄塔ST3とを特に区別しない場合には、総称して鉄塔STと記載する。また、送電線WR1と、送電線WR2とを特に区別しない場合には、総称して送電線WRと記載する。 In this example, the unmanned air vehicle D checks the power transmission line WR by flying based on the power transmission line WR. The unmanned air vehicle D flies through a predetermined section to be checked. Thereby, the unmanned air vehicle D autonomously flies in a section in which inspection is performed by a known means. In this example, the section to be inspected is the section from the tower ST1 to the tower ST3. In the following description, the steel tower ST1, the steel tower ST2, and the steel tower ST3 are collectively referred to as the steel tower ST unless otherwise distinguished. Further, when the power transmission line WR1 and the power transmission line WR2 are not particularly distinguished, they are collectively referred to as a power transmission line WR.
 なお、この一例では、無人飛行体Dが送電線WRに基づいて飛行する場合について説明したが、これに限られない。無人飛行体Dは、配電線に基づいて飛行してもよい。つまり、送電線WRとは、電線の一例である。 In addition, in this example, although the case where the unmanned air vehicle D flies based on the power transmission line WR was demonstrated, it is not restricted to this. The unmanned air vehicle D may fly based on the distribution line. That is, the power transmission line WR is an example of an electric wire.
 ここで、無人飛行体Dが飛行するに際して、無人飛行体Dの飛行が目視によって監視されることが求められる場合がある。具体的には、無人飛行体Dの飛行に応じて無人飛行体Dを追尾する追尾者TPが、無人飛行体Dの飛行の目視が可能な距離において追尾することが求められる場合がある。
 図1に示す通り、この一例では、追尾者TPが車両Vに乗車して無人飛行体Dを追尾する。また、図1に示す通り、無人飛行体Dが飛行する経路と、車両Vが走行可能である車道CWとが並行していない場合がある。
 すなわち、追尾者TPが乗車する車両Vは、無人飛行体Dの飛行に応じて無人飛行体Dの目視が可能な距離を保つ車道CWを走行することが求められる。
 具体的には、追尾者TPは、無人飛行体Dが送電線WRの点検を開始する位置の近傍に設定された追尾開始地点BPから無人飛行体Dの追尾を行う。また、追尾者TPは、かつ無人飛行体Dが送電線WRの点検を終了する位置の近傍に設定された追尾終了地点EPまで無人飛行体Dの追尾を行う。
Here, when the unmanned air vehicle D flies, it may be required that the flight of the unmanned air vehicle D is visually monitored. Specifically, the tracker TP that tracks the unmanned air vehicle D according to the flight of the unmanned air vehicle D may be required to track at a distance where the flight of the unmanned air vehicle D can be seen.
As shown in FIG. 1, in this example, the tracker TP gets on the vehicle V and tracks the unmanned air vehicle D. Moreover, as shown in FIG. 1, the path | route which the unmanned air vehicle D flies and the road CW where the vehicle V can drive may not be parallel.
That is, the vehicle V on which the tracker TP rides is required to travel on the road CW that maintains a distance at which the unmanned air vehicle D can be seen according to the flight of the unmanned air vehicle D.
Specifically, the tracker TP tracks the unmanned air vehicle D from the tracking start point BP set in the vicinity of the position where the unmanned air vehicle D starts the inspection of the transmission line WR. Further, the tracker TP tracks the unmanned air vehicle D to the tracking end point EP set near the position where the unmanned air vehicle D ends the inspection of the power transmission line WR.
 すなわち、追尾者TPは、追尾開始地点BPから追尾終了地点EPまで、無人飛行体Dの目視が可能な距離において追尾することが可能な経路である追尾経路CRを走行することが求められる場合がある。
 本実施形態の追尾支援情報生成装置1は、追尾開始地点BPから追尾終了地点EPまで、無人飛行体Dの目視が可能な距離において追尾することが可能である追尾経路CRを算出する装置である。
That is, the tracker TP may be required to travel from the tracking start point BP to the tracking end point EP along a tracking route CR that is a route that can be tracked at a distance where the unmanned air vehicle D can be seen. is there.
The tracking support information generation device 1 of this embodiment is a device that calculates a tracking route CR that can be tracked from a tracking start point BP to a tracking end point EP at a distance where the unmanned air vehicle D can be seen. .
 なお、この一例では、追尾者TPが車両Vに乗車して無人飛行体Dを追尾する場合について説明したが、これに限られない。追尾者TPは、徒歩で無人飛行体Dを追尾してもよく、自転車に乗車して無人飛行体Dを追尾してもよい。すなわち、追尾者TPは、道路を移動し、追尾開始地点BPから追尾終了地点EPまで、無人飛行体Dの目視が可能な距離において追尾する。つまり、車道CWとは、道路の一例である。 In this example, the case where the tracker TP gets on the vehicle V and tracks the unmanned air vehicle D is described, but the present invention is not limited to this. The tracker TP may track the unmanned air vehicle D on foot, or may ride the bicycle and track the unmanned air vehicle D. That is, the tracker TP moves on the road and tracks from the tracking start point BP to the tracking end point EP at a distance where the unmanned air vehicle D can be seen. That is, the roadway CW is an example of a road.
 以下、図2を参照して追尾支援情報生成装置1の構成について説明する。図2は、本実施形態の追尾支援情報生成装置1の構成の一例を示す構成図である。
 図2に示す通り、追尾支援情報生成装置1は、制御部100と、記憶部120とを備える。記憶部120には、地図情報Mと、設備情報Eと、距離情報ERDとが予め記憶される。
Hereinafter, the configuration of the tracking support information generating apparatus 1 will be described with reference to FIG. FIG. 2 is a configuration diagram illustrating an example of the configuration of the tracking support information generation device 1 according to the present embodiment.
As shown in FIG. 2, the tracking support information generation device 1 includes a control unit 100 and a storage unit 120. The storage unit 120 stores map information M, facility information E, and distance information ERD in advance.
 以下、図3を参照して地図情報Mについて説明する。図3は、本実施形態の地図情報Mの一例を示す模式図である。
 この一例の場合、追尾者TPは、車両Vに乗車して無人飛行体Dを追尾するため、地図情報Mには車道CWを示す情報と、車道CWの位置を示す情報とが含まれる。
Hereinafter, the map information M will be described with reference to FIG. FIG. 3 is a schematic diagram illustrating an example of the map information M of the present embodiment.
In this example, since the tracker TP gets on the vehicle V and tracks the unmanned air vehicle D, the map information M includes information indicating the road CW and information indicating the position of the road CW.
 次に、図4を参照して設備情報Eについて説明する。図4は、本実施形態の設備情報Eの一例を示す表である。
 この一例の場合、無人飛行体Dは、鉄塔STが支持する送電線WRの点検を行うため、設備情報Eには、送電線WRを支持する鉄塔STの名称を示す情報と、鉄塔STの位置を示す位置情報Pとが含まれる。
 図4に示す通り、この一例では、鉄塔STの名称を示す情報には、鉄塔ST1と、鉄塔ST2と、鉄塔ST3とが含まれる。また、図4に示す通り、この一例では、鉄塔ST1の位置が位置情報P1(35.00000,135.00000)である。また、鉄塔ST2の位置が位置情報P2(35.00200,135.00200)である。また、鉄塔ST3の位置が位置情報P3(35.00400,135.00400)である。
Next, the facility information E will be described with reference to FIG. FIG. 4 is a table showing an example of the facility information E of the present embodiment.
In the case of this example, the unmanned air vehicle D checks the power transmission line WR supported by the steel tower ST. Therefore, the facility information E includes information indicating the name of the steel tower ST supporting the power transmission line WR and the position of the steel tower ST. Is included.
As shown in FIG. 4, in this example, the information indicating the name of the steel tower ST includes the steel tower ST1, the steel tower ST2, and the steel tower ST3. Moreover, as shown in FIG. 4, in this example, the position of the steel tower ST1 is position information P1 (35.000000, 135.000000). The position of the steel tower ST2 is position information P2 (35.00200, 135.00200). The position of the steel tower ST3 is position information P3 (35.00400, 135.00400).
 以下、図5を参照して距離情報ERDについて説明する。図5は、本実施形態の距離情報ERDの一例を示す模式図である。
 距離情報ERDとは、追尾者TPが無人飛行体Dの目視が可能な距離を示す情報である。つまり、距離情報ERDとは、無人飛行体Dと、無人飛行体Dを追尾する追尾者TPとが離隔可能な距離を示す情報である。また、無人飛行体Dを通る鉛直方向の軸と、地表面との交点である地上位置GPから距離情報ERDまでの距離が無人飛行体Dの目視が可能な領域である。図5に示す通り、この無人飛行体Dの目視が可能な領域とは、離隔可能領域ERAである。
Hereinafter, the distance information ERD will be described with reference to FIG. FIG. 5 is a schematic diagram illustrating an example of the distance information ERD of the present embodiment.
The distance information ERD is information indicating a distance at which the tracker TP can see the unmanned air vehicle D. That is, the distance information ERD is information indicating a distance that the unmanned air vehicle D and the tracker TP that tracks the unmanned air vehicle D can be separated. Further, the distance from the ground position GP, which is the intersection of the vertical axis passing through the unmanned air vehicle D and the ground surface, to the distance information ERD is an area where the unmanned air vehicle D can be viewed. As shown in FIG. 5, the region where the unmanned air vehicle D can be viewed is the separable region ERA.
 図2に戻り、制御部100は、CPU(Central Processing Unit)を備えており、敷設経路算出部101と、追尾経路算出部102と、出力部103とをその機能部として備える。
 敷設経路算出部101は、地図情報Mと、設備情報Eとに基づいて敷設経路LRを算出する。
Returning to FIG. 2, the control unit 100 includes a CPU (Central Processing Unit), and includes a laying route calculation unit 101, a tracking route calculation unit 102, and an output unit 103 as functional units.
The laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E.
 以下、図6を参照して制御部100が備える各部の動作と、追尾支援情報生成装置1の動作とについて説明する。図6は、本実施形態の追尾支援情報生成装置1の動作の一例を示す流れ図である。
 図6に示す通り、敷設経路算出部101は、記憶部120から地図情報Mを読み出す(ステップS100)。また、敷設経路算出部101は、記憶部120から設備情報Eを読み出す(ステップS110)。敷設経路算出部101は、地図情報Mと、設備情報Eとに基づいて、敷設経路LRを算出する(ステップS120)。敷設経路算出部101は、算出した敷設経路LRを追尾経路算出部102へ供給する(ステップS130)。
Hereinafter, the operation of each unit included in the control unit 100 and the operation of the tracking support information generation device 1 will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of the operation of the tracking support information generation device 1 according to the present embodiment.
As shown in FIG. 6, the laying route calculation unit 101 reads map information M from the storage unit 120 (step S100). Further, the laying route calculation unit 101 reads the facility information E from the storage unit 120 (step S110). The laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E (step S120). The laying route calculation unit 101 supplies the calculated laying route LR to the tracking route calculation unit 102 (step S130).
 以下、図7を参照して敷設経路LRについて説明する。図7は、本実施形態の敷設経路LRの一例を示す模式図である。
 図7に示す通り、敷設経路LRには、無人飛行体Dが送電線WRの点検を開始する位置から、点検を終了する位置まで敷設された送電線WRの地表面における位置が示される。
  この一例では、無人飛行体Dが送電線WRの点検を目的として、送電線WRに基づいて飛行するため、地図情報Mと、設備情報Eとに基づいて敷設経路LRが算出される。
 今回は、無人飛行体Dが送電線WRの点検を目的として飛行する。このため、送電線WRの軌跡と、無人飛行体Dの飛行経路とが一致する。すなわち、無人飛行体Dの飛行経路の地表面における軌跡と、敷設経路LRとが一致する。以下、無人飛行体Dの飛行経路の地表面における軌跡が敷設経路LRであるとして説明する。
Hereinafter, the laying route LR will be described with reference to FIG. FIG. 7 is a schematic diagram illustrating an example of the laying route LR of the present embodiment.
As shown in FIG. 7, the laying route LR indicates the position on the ground surface of the transmission line WR laid from the position where the unmanned air vehicle D starts the inspection of the transmission line WR to the position where the inspection ends.
In this example, since the unmanned air vehicle D flies based on the power transmission line WR for the purpose of checking the power transmission line WR, the laying route LR is calculated based on the map information M and the facility information E.
This time, the unmanned air vehicle D flies for the purpose of checking the transmission line WR. For this reason, the locus of the power transmission line WR and the flight path of the unmanned air vehicle D coincide. That is, the locus on the ground surface of the flight path of the unmanned air vehicle D matches the laying path LR. Hereinafter, description will be made assuming that the locus on the ground surface of the flight path of the unmanned air vehicle D is the laying path LR.
 図7に示す通り、敷設経路LRには、敷設経路LR1と、敷設経路LR2とが含まれる。敷設経路LR1とは、鉄塔ST1と、鉄塔ST2とが支持する送電線WR1の地表面における位置を示す経路である。具体的には、敷設経路LR1は、鉄塔ST1の位置情報P1と、鉄塔ST2の位置情報P2とを結んだ経路である。また、敷設経路LR2とは、鉄塔ST2と、鉄塔ST3とが支持する送電線WR2の地表面における位置を示す経路である。具体的には、敷設経路LR2は、鉄塔ST2の位置情報P2と、鉄塔ST3の位置情報P3とを結んだ経路である。 As shown in FIG. 7, the laying route LR includes the laying route LR1 and the laying route LR2. The laying route LR1 is a route indicating the position on the ground surface of the transmission line WR1 supported by the steel tower ST1 and the steel tower ST2. Specifically, the laying route LR1 is a route connecting the position information P1 of the steel tower ST1 and the position information P2 of the steel tower ST2. The laying route LR2 is a route indicating the position on the ground surface of the transmission line WR2 supported by the steel tower ST2 and the steel tower ST3. Specifically, the laying route LR2 is a route connecting the position information P2 of the steel tower ST2 and the position information P3 of the steel tower ST3.
 なお、この一例では、位置情報Pには、鉄塔STの位置を示す情報が含まれる場合について説明したが、これに限られない。位置情報Pには、敷設経路LRの位置を示す情報が含まれていてもよい。つまり、位置情報Pには、電線の位置を示す情報が含まれていればよい。 In this example, the case where the position information P includes information indicating the position of the steel tower ST has been described. However, the present invention is not limited to this. The position information P may include information indicating the position of the laying route LR. That is, the position information P only needs to include information indicating the position of the electric wire.
 図2に戻り、追尾経路算出部102は、敷設経路LRと、距離情報ERDとに基づいて追尾経路CRを算出する。 2, the tracking route calculation unit 102 calculates the tracking route CR based on the laying route LR and the distance information ERD.
 以下、図8と、図9とを参照して追尾経路CRについて説明する。図8は、本実施形態の離隔可能領域ERA1の一例を示す模式図である。図9は、本実施形態の追尾経路CRの一例を示す模式図である。
 ここで、図8に示すXYZ直交座標系について説明する。Z軸は、地表面と直交する軸である。また、X-Y平面は、地表面と水平な平面である。また、Y軸は、敷設経路LRと平行する軸である。
 上述した通り、この一例では、敷設経路LRによって示される位置から距離情報ERDが示す距離までの離隔可能領域ERAにおいて無人飛行体Dの目視が可能である。すなわち、X軸方向において、敷設経路LRを中心としてX軸の正の方向と、負の方向とに距離情報ERDが示す距離までが追尾者TPが無人飛行体Dを目視することができる。
 以降の説明において、X軸の正の方向を右の方向、負の方向を左の方向とも記載する。
また、Y軸の正の方向を前方、負の方向を後方とも記載する。
Hereinafter, the tracking route CR will be described with reference to FIG. 8 and FIG. FIG. 8 is a schematic diagram illustrating an example of the separable area ERA1 according to the present embodiment. FIG. 9 is a schematic diagram illustrating an example of the tracking route CR of the present embodiment.
Here, the XYZ orthogonal coordinate system shown in FIG. 8 will be described. The Z axis is an axis orthogonal to the ground surface. The XY plane is a plane that is horizontal to the ground surface. The Y axis is an axis parallel to the laying path LR.
As described above, in this example, the unmanned air vehicle D can be visually observed in the separable area ERA from the position indicated by the laying route LR to the distance indicated by the distance information ERD. That is, in the X-axis direction, the tracker TP can see the unmanned air vehicle D up to the distance indicated by the distance information ERD in the positive direction of the X-axis and the negative direction centering on the laying route LR.
In the following description, the positive direction of the X axis is also referred to as the right direction, and the negative direction is also referred to as the left direction.
In addition, the positive direction of the Y axis is described as the front, and the negative direction is described as the rear.
 この一例では、無人飛行体Dが、鉄塔ST1から鉄塔ST3までを等速で飛行する場合について説明する。これに対し、車両Vは、無人飛行体D飛行に合わせて適宜速度を調整し、目視が可能な位置を保持する場合について説明する。すなわち、この一例では、無人飛行体Dと、車両Vとの前後方向の距離情報ERDが適宜調整される。 In this example, the case where the unmanned air vehicle D flies from the tower ST1 to the tower ST3 at a constant speed will be described. On the other hand, the case where the vehicle V adjusts a speed | rate suitably according to the unmanned air vehicle D flight, and hold | maintains the position which can be visually observed is demonstrated. That is, in this example, the distance information ERD in the front-rear direction between the unmanned air vehicle D and the vehicle V is appropriately adjusted.
 また、図8に示す通り、敷設経路LR1が示す位置の離隔可能領域ERAと、鉄塔ST2の位置情報P2における離隔可能領域ERAと、敷設経路LR2が示す位置の離隔可能領域ERAと、鉄塔ST3の位置情報P3における離隔可能領域ERAとが示す領域を合わせて離隔可能領域ERA1と記載する。この一例では、車両Vが離隔可能領域ERA1に含まれる車道CW上を追尾経路CRとして走行する場合について説明する。
 つまり、この一例では、車両Vが無人飛行体Dの飛行に合わせて適宜速度を調整することと、車両Vが離隔可能領域ERA1に含まれる車道CWを走行することにより、距離情報ERDが左右方向において保持される。
Further, as shown in FIG. 8, the separable area ERA at the position indicated by the laying route LR1, the separable area ERA in the position information P2 of the steel tower ST2, the separable area ERA at the position indicated by the laying path LR2, and the steel tower ST3. The area indicated by the separable area ERA in the position information P3 is collectively referred to as a separable area ERA1. In this example, a case where the vehicle V travels on the road CW included in the separable area ERA1 as the tracking route CR will be described.
That is, in this example, the vehicle V adjusts the speed appropriately according to the flight of the unmanned air vehicle D, and the vehicle V travels on the road CW included in the separable area ERA1, so that the distance information ERD is in the left-right direction. Held in.
 具体的には、図6に示す通り、追尾経路算出部102は、敷設経路算出部101から敷設経路LRを取得する(ステップS140)。追尾経路算出部102は、記憶部120から距離情報ERDを読み出す(ステップS150)。これにより、追尾経路算出部102は、離隔可能領域ERA1を算出する(ステップS160)。
 追尾経路算出部102は、離隔可能領域ERA1に含まれる車道CWのうち、追尾開始地点BPから追尾終了地点EPまでの追尾経路CRを算出するに際して、ステップS180と、ステップS190とを繰り返す(ステップS170)。
 追尾経路算出部102は、追尾経路CRが算出された位置から追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示す進路CSを選択する(ステップS180)。追尾経路算出部102は、選択した進路CSが示す方向に基づいて、進路CS方向に存在する次の交差点CPまでの追尾経路CRを算出する(ステップS190)。
Specifically, as shown in FIG. 6, the tracking route calculation unit 102 acquires the laying route LR from the laying route calculation unit 101 (step S140). The tracking route calculation unit 102 reads the distance information ERD from the storage unit 120 (step S150). Thereby, the tracking route calculation unit 102 calculates the separable area ERA1 (step S160).
The tracking route calculation unit 102 repeats Step S180 and Step S190 when calculating the tracking route CR from the tracking start point BP to the tracking end point EP in the roadway CW included in the separable area ERA1 (Step S170). ).
The tracking route calculation unit 102 selects a route CS indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 from the position where the tracking route CR is calculated (step S180). The tracking route calculation unit 102 calculates a tracking route CR to the next intersection CP existing in the route CS direction based on the direction indicated by the selected route CS (step S190).
 具体的には、図8に示す通り、追尾経路算出部102は、追尾開始地点BPから追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPのうち、最寄りの交差点CPの方向を示す進路CSを選択する。
 図8に示す通り、この一例では、追尾開始地点BPから追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向は、交差点CP1への方向のみである。すなわち、追尾経路算出部102は、追尾開始地点BPから交差点CP1方向への進路CSを選択する(図6ステップS180)。
Specifically, as shown in FIG. 8, the tracking route calculation unit 102 is in the direction of the tracking end point EP from the tracking start point BP, and among the intersection CPs included in the separable area ERA1, the nearest intersection CP The course CS indicating the direction is selected.
As shown in FIG. 8, in this example, the direction of the intersection CP from the tracking start point BP to the tracking end point EP and included in the separable area ERA1 is only the direction to the intersection CP1. That is, the tracking route calculation unit 102 selects a route CS from the tracking start point BP to the intersection CP1 (step S180 in FIG. 6).
 追尾経路算出部102は、選択した進路CSに基づいて、追尾開始地点BPから交差点CP1までの追尾経路CR1を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR1とは、追尾開始地点BPから交差点CP1までの追尾経路CRである。
The tracking route calculation unit 102 calculates the tracking route CR1 from the tracking start point BP to the intersection CP1 based on the selected route CS (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR1 is a tracking route CR from the tracking start point BP to the intersection CP1.
 図8に戻り、追尾経路算出部102は、交差点CP1から次の交差点CPまでの方向を示す進路CSを選択する。具体的には、図8に示す通り、交差点CP1から次の交差点CPまでの進路CSは、交差点CP1から交差点CP10までの進路CSを示す進路CS1と、交差点CP1から交差点CP2までの進路CSを示す進路CS2とがある。
 図8に示す通り、交差点CP10とは、離隔可能領域ERA1に含まれない交差点CPである。これにより、追尾経路算出部102は、交差点CP1から交差点CP2までの方向を示す進路CS2を選択する(図6ステップS180)。
Returning to FIG. 8, the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP1 to the next intersection CP. Specifically, as shown in FIG. 8, the route CS from the intersection CP1 to the next intersection CP indicates the route CS1 indicating the route CS from the intersection CP1 to the intersection CP10 and the route CS from the intersection CP1 to the intersection CP2. There is a course CS2.
As shown in FIG. 8, the intersection CP10 is an intersection CP that is not included in the separable area ERA1. Thereby, the tracking route calculation unit 102 selects the route CS2 indicating the direction from the intersection CP1 to the intersection CP2 (step S180 in FIG. 6).
 追尾経路算出部102は、選択した進路CS2に基づいて、交差点CP1から交差点CP2までの追尾経路CR2を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR2とは、交差点CP1から交差点CP2までの追尾経路CRである。
The tracking route calculation unit 102 calculates a tracking route CR2 from the intersection CP1 to the intersection CP2 based on the selected route CS2 (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR2 is a tracking route CR from the intersection CP1 to the intersection CP2.
 図8に戻り、追尾経路算出部102は、交差点CP2から次の交差点CPまでの方向を示す進路CSを選択する。追尾経路算出部102は、進路CS3と、進路CS4とのうち、追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示す進路CS4を選択する(図6ステップS180)。追尾経路算出部102は、選択した進路CS4に基づいて、交差点CP2から交差点CP3までの追尾経路CR3を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR3とは、交差点CP2から交差点CP3までの追尾経路CRである。
Returning to FIG. 8, the tracking route calculation unit 102 selects a route CS indicating a direction from the intersection CP2 to the next intersection CP. The tracking route calculation unit 102 selects a route CS4 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS3 and CS4 (step S180 in FIG. 6). ). The tracking route calculation unit 102 calculates a tracking route CR3 from the intersection CP2 to the intersection CP3 based on the selected route CS4 (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR3 is a tracking route CR from the intersection CP2 to the intersection CP3.
 図8に戻り、追尾経路算出部102は、交差点CP3から次の交差点CPまでの方向を示す進路CSを選択する。追尾経路算出部102は、進路CS5と、進路CS6とのうち、追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示す進路CS6を選択する(図6ステップS180)。追尾経路算出部102は、選択した進路CS6に基づいて、交差点CP3から交差点CP4までの追尾経路CR4を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR4とは、交差点CP3から交差点CP4までの追尾経路CRである。
Returning to FIG. 8, the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP3 to the next intersection CP. The tracking route calculation unit 102 selects a route CS6 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS5 and CS6 (step S180 in FIG. 6). ). The tracking route calculation unit 102 calculates the tracking route CR4 from the intersection CP3 to the intersection CP4 based on the selected route CS6 (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR4 is a tracking route CR from the intersection CP3 to the intersection CP4.
 図8に戻り、追尾経路算出部102は、交差点CP4から次の交差点CPまでの方向を示す進路CSを選択する。追尾経路算出部102は、進路CS7と、進路CS8と、進路CS9とのうち、追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示す進路CS9を選択する(図6ステップS180)。追尾経路算出部102は、選択した進路CS9に基づいて、交差点CP4から交差点CP5までの追尾経路CR5を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR5とは、交差点CP4から交差点CP5までの追尾経路CRである。
Returning to FIG. 8, the tracking route calculation unit 102 selects a route CS indicating the direction from the intersection CP4 to the next intersection CP. The tracking route calculation unit 102 selects the route CS9 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS7, CS8, and CS9 ( FIG. 6 step S180). The tracking route calculation unit 102 calculates a tracking route CR5 from the intersection CP4 to the intersection CP5 based on the selected route CS9 (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR5 is a tracking route CR from the intersection CP4 to the intersection CP5.
 図8に戻り、追尾経路算出部102は、交差点CP5から次の交差点CPまでの方向を示す進路CSを選択する。追尾経路算出部102は、進路CS10と、進路CS11とのうち、追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示す進路CS11を選択する(図6ステップS180)。追尾経路算出部102は、選択した進路CS11に基づいて、交差点CP5から交差点CP6までの追尾経路CR6を算出する(図6ステップS190)。
 図9に示す通り、追尾経路CR6とは、交差点CP5から交差点CP6までの追尾経路CRである。
 ここで、追尾経路算出部102が算出した追尾経路CR1、追尾経路CR2、追尾経路CR3、追尾経路CR4、追尾経路CR5、および追尾経路CR6を総称して追尾経路CRと記載する。
Returning to FIG. 8, the tracking route calculation unit 102 selects a route CS indicating a direction from the intersection CP5 to the next intersection CP. The tracking route calculation unit 102 selects the route CS11 indicating the direction of the intersection CP that is in the tracking end point EP direction and included in the separable area ERA1 among the routes CS10 and CS11 (step S180 in FIG. 6). ). The tracking route calculation unit 102 calculates a tracking route CR6 from the intersection CP5 to the intersection CP6 based on the selected route CS11 (step S190 in FIG. 6).
As shown in FIG. 9, the tracking route CR6 is a tracking route CR from the intersection CP5 to the intersection CP6.
Here, the tracking route CR1, the tracking route CR2, the tracking route CR3, the tracking route CR4, the tracking route CR5, and the tracking route CR6 calculated by the tracking route calculation unit 102 are collectively referred to as a tracking route CR.
 図6に戻り、追尾経路算出部102は、算出した追尾経路CRを出力部103へ供給する(ステップS200)。
 出力部103は、追尾経路算出部102から追尾経路CRを取得する(ステップS210)。出力部103は、取得した追尾経路CRを外部の機器へ出力する(ステップS220)。この一例では、車両Vがカーナビゲーションを備える。例えば、出力部103が出力した追尾経路CRを示す情報は、カーナビゲーションの画面上に表示される。
Returning to FIG. 6, the tracking route calculation unit 102 supplies the calculated tracking route CR to the output unit 103 (step S200).
The output unit 103 acquires the tracking route CR from the tracking route calculation unit 102 (step S210). The output unit 103 outputs the acquired tracking route CR to an external device (step S220). In this example, the vehicle V includes a car navigation. For example, information indicating the tracking route CR output by the output unit 103 is displayed on the car navigation screen.
 なお、上述では、追尾経路CRを示す情報がカーナビゲーションに出力される一例について説明したが、これに限られない。追尾経路CRを示す情報は、例えば、タブレット機器等に出力されていてもよい。すなわち、追尾者TPが車両V以外の手段によって無人飛行体Dを追尾する場合、追尾者TPが追尾経路CRを参照可能な機器であれば、出力部103は、いずれの機器に追尾経路CRを出力してもよい。 In the above description, an example in which information indicating the tracking route CR is output to the car navigation has been described. However, the present invention is not limited to this. Information indicating the tracking route CR may be output to a tablet device or the like, for example. That is, when the tracker TP tracks the unmanned air vehicle D by means other than the vehicle V, if the tracker TP can refer to the tracking route CR, the output unit 103 sets the tracking route CR to any device. It may be output.
 以上説明したように、本実施形態の追尾支援情報生成装置1は、制御部100と、記憶部120とを備える。
 記憶部120には、送電線WRの敷設経路LRに基づく飛行経路を飛行する無人飛行体Dと、無人飛行体Dを追尾する追尾者TPとが離隔可能な距離を示す距離情報ERDが予め記憶される。また、記憶部120には、送電線WRの位置を示す位置情報Pと、道路の位置を示す地図情報Mとが予め記憶される。
 制御部100は、敷設経路算出部101と、追尾経路算出部102と、出力部103とをその機能部として備える。
 敷設経路算出部101は、地図情報Mと、設備情報Eとに基づいて、敷設経路LRを算出する。追尾経路算出部102は、敷設経路LRと、地図情報Mとに基づいて、追尾者TPが無人飛行体Dの飛行を追尾する道路上の追尾経路CRを算出する。出力部103は、追尾経路算出部102が算出した追尾経路CRを出力する。
As described above, the tracking support information generation device 1 according to the present embodiment includes the control unit 100 and the storage unit 120.
The storage unit 120 stores in advance distance information ERD indicating a distance at which the unmanned air vehicle D that flies along the flight route based on the laying route LR of the transmission line WR and the tracker TP that tracks the unmanned air vehicle D can be separated. Is done. Further, the storage unit 120 stores in advance position information P indicating the position of the power transmission line WR and map information M indicating the position of the road.
The control unit 100 includes a laying route calculation unit 101, a tracking route calculation unit 102, and an output unit 103 as functional units.
The laying route calculation unit 101 calculates the laying route LR based on the map information M and the facility information E. The tracking route calculation unit 102 calculates a tracking route CR on the road on which the tracker TP tracks the flight of the unmanned air vehicle D based on the laying route LR and the map information M. The output unit 103 outputs the tracking route CR calculated by the tracking route calculation unit 102.
 ここで、従来の技術によると追尾者TPが無人飛行体Dの目視が可能な距離を保持しつつ、追尾中に交差点CP毎に逐一追尾する経路を選択することが困難である場合があった。
 本実施形態の追尾支援情報生成装置1によれば、追尾者TPが無人飛行体Dを追尾するに際して、地図情報Mと、設備情報Eと、距離情報ERDとに基づいて、追尾者TPが無人飛行体Dを追尾する道路上の追尾経路CRを算出することができる。
 すなわち、追尾者TPは、追尾経路CRを参照することにより、距離情報ERDを左右方向に保持しつつ、無人飛行体Dを追尾することができる。つまり、追尾者TPが無人飛行体Dを追尾するに際して、無人飛行体を監視する追尾者が移動する経路を算出する手間を低減する。
Here, according to the conventional technique, it may be difficult for the tracker TP to select a route to be tracked for each intersection CP during tracking while maintaining a distance that allows the unmanned air vehicle D to be viewed. .
According to the tracking support information generation device 1 of the present embodiment, when the tracker TP tracks the unmanned air vehicle D, the tracker TP is unmanned based on the map information M, the facility information E, and the distance information ERD. The tracking route CR on the road that tracks the flying object D can be calculated.
That is, the tracker TP can track the unmanned air vehicle D while referring to the tracking route CR while maintaining the distance information ERD in the left-right direction. That is, when the tracker TP tracks the unmanned air vehicle D, it is possible to reduce time and effort for calculating a route along which the tracker who monitors the unmanned air vehicle moves.
[変形例]
 次に、図を参照して本発明の第1実施形態に係る変形例について説明する。図10は、変形例の追尾支援情報生成装置2の構成の一例を示す構成図である。
 図10に示す通り、変形例の追尾支援情報生成装置2は、制御部200と、記憶部120とを備える。
 なお、上述した第1実施形態と同様の構成および動作については、同一の符号を付してその説明を省略する。
[Modification]
Next, a modification according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a configuration diagram illustrating an example of the configuration of the tracking support information generation device 2 according to a modification.
As illustrated in FIG. 10, the tracking support information generation device 2 according to the modification includes a control unit 200 and a storage unit 120.
In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図10に示す通り、制御部200は、上述の敷設経路算出部101と、出力部103との他、追尾経路算出部102-1を備える。追尾経路算出部102-1は、上述の第1実施形態とは異なる方法によって追尾経路CRを算出する。具体的には図10に示す通り、追尾経路候補算出部210と、追尾経路選択部211とが含まれる。
 追尾経路候補算出部210は、追尾経路CRが算出された位置から追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示すすべての進路CSを選択する。また、変形例では、追尾経路候補算出部210は、選択したすべての進路CSが示す方向に基づいて、進路CS方向に存在する次の交差点CPまでのすべての追尾経路CRを算出する。
 また、追尾経路選択部211は、追尾経路候補算出部210が算出した複数の追尾経路CRのうち、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとに基づいて、追尾経路CRを選択する。
As shown in FIG. 10, the control unit 200 includes a tracking route calculation unit 102-1 in addition to the laying route calculation unit 101 and the output unit 103 described above. The tracking route calculation unit 102-1 calculates the tracking route CR by a method different from that in the first embodiment. Specifically, as shown in FIG. 10, a tracking route candidate calculation unit 210 and a tracking route selection unit 211 are included.
The tracking route candidate calculation unit 210 selects all the routes CS indicating the direction of the intersection CP included in the separable area ERA1 in the tracking end point EP direction from the position where the tracking route CR is calculated. In the modification, the tracking route candidate calculation unit 210 calculates all the tracking routes CR up to the next intersection CP existing in the route CS direction based on the direction indicated by all the selected routes CS.
The tracking route selection unit 211 also tracks the tracking route based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP among the plurality of tracking routes CR calculated by the tracking route candidate calculation unit 210. Select CR.
 次に、図11を参照して追尾経路候補算出部210が選択するすべての進路CSについて説明する。図11は、変形例の進路CSの一例を示す模式図である。上述の通り、変形例では、追尾経路候補算出部210が、追尾経路CRが算出された位置から追尾終了地点EP方向であって、かつ離隔可能領域ERA1に含まれる交差点CPの方向を示すすべての進路CSを選択する。
 つまり、図11に示す通り、追尾経路候補算出部210は、第1実施形態において選択した複数の進路CSの他、進路CS10と、進路CS14と、進路CS15とを選択する。
 また、追尾経路候補算出部210は、選択した進路CSに基づいて追尾経路CRを算出する。
Next, all the routes CS selected by the tracking route candidate calculation unit 210 will be described with reference to FIG. FIG. 11 is a schematic diagram illustrating an example of a course CS of a modified example. As described above, in the modified example, the tracking route candidate calculation unit 210 performs the tracking end point EP direction from the position where the tracking route CR is calculated, and all directions indicating the direction of the intersection CP included in the separable area ERA1. Select the course CS.
That is, as shown in FIG. 11, the tracking route candidate calculation unit 210 selects the route CS10, the route CS14, and the route CS15 in addition to the plurality of routes CS selected in the first embodiment.
The tracking route candidate calculation unit 210 calculates a tracking route CR based on the selected route CS.
 以下、図12を参照して追尾経路候補算出部210が算出するすべての追尾経路CRについて説明する。図12は、変形例の追尾経路CRの一例を示す模式図である。上述の通り、変形例では、追尾経路候補算出部210が選択したすべての進路CSが示す方向に基づいて、進路CS方向に存在する次の交差点CPまでのすべての追尾経路CRを算出する。
 すなわち、図12に示す通り、追尾経路候補算出部210は、第1実施形態において算出した追尾経路CR1から追尾経路CR6の他、追尾経路CR7と、追尾経路CR8と、追尾経路CR9とを算出する。
 追尾経路候補算出部210は、算出した追尾経路CR1から追尾経路CR9までの追尾経路CRを追尾経路選択部211へ供給する。
Hereinafter, all the tracking routes CR calculated by the tracking route candidate calculation unit 210 will be described with reference to FIG. FIG. 12 is a schematic diagram illustrating an example of a tracking route CR according to a modification. As described above, in the modified example, all the tracking routes CR up to the next intersection CP existing in the route CS direction are calculated based on the direction indicated by all the routes CS selected by the tracking route candidate calculation unit 210.
That is, as shown in FIG. 12, the tracking route candidate calculation unit 210 calculates the tracking route CR7 from the tracking route CR1 calculated in the first embodiment, the tracking route CR7, the tracking route CR8, and the tracking route CR9. .
The tracking route candidate calculation unit 210 supplies the tracking route CR from the calculated tracking route CR1 to the tracking route CR9 to the tracking route selection unit 211.
 追尾経路選択部211は、敷設経路算出部101から敷設経路LRを取得する。追尾経路選択部211は、取得した敷設経路LRと、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとに基づいて、追尾経路CRを選択する。 The tracking route selection unit 211 acquires the laying route LR from the laying route calculation unit 101. The tracking route selection unit 211 selects the tracking route CR based on the acquired laying route LR, the flight speed FV of the unmanned air vehicle D, and the tracking speed TPV of the tracker TP.
 以下、図13を参照して、追尾経路選択部211の追尾経路CRの選択について説明する。図13は、変形例の追尾経路CRの選択の一例を示す模式図である。また、図13は、図12に示す範囲LCを詳細に示した模式図である。
 上述したように、追尾経路選択部211は、第1実施形態において算出した追尾経路CR1から追尾経路CR6の他、追尾経路CR7と、追尾経路CR8と、追尾経路CR9とを算出する。
Hereinafter, the selection of the tracking route CR by the tracking route selection unit 211 will be described with reference to FIG. FIG. 13 is a schematic diagram illustrating an example of selection of the tracking route CR according to the modification. FIG. 13 is a schematic diagram showing the range LC shown in FIG. 12 in detail.
As described above, the tracking route selection unit 211 calculates the tracking route CR7, the tracking route CR8, and the tracking route CR9 in addition to the tracking route CR6 from the tracking route CR1 calculated in the first embodiment.
 すなわち、変形例では、交差点CP5から追尾終了地点EPまでの道のりが、追尾経路CR6の場合と、追尾経路CR7と、追尾経路CR8と、追尾経路CR9とを経由する場合とがある。
 また、この一例では、図13に示す通り、追尾経路CR6の距離が200m(追尾経路距離CRD6)である。また、追尾経路CR7の距離が100m(追尾経路距離CRD7)である。また、追尾経路CR8の距離が300m(追尾経路距離CRD8)である。また、追尾経路CR9の距離が50m(追尾経路距離CRD9)である。
That is, in the modified example, the route from the intersection CP5 to the tracking end point EP may be the tracking route CR6, the tracking route CR7, the tracking route CR8, and the tracking route CR9.
In this example, as shown in FIG. 13, the distance of the tracking route CR6 is 200 m (tracking route distance CRD6). The distance of the tracking route CR7 is 100 m (tracking route distance CRD7). The distance of the tracking route CR8 is 300 m (tracking route distance CRD8). The distance of the tracking route CR9 is 50 m (tracking route distance CRD9).
 また、この一例では、各追尾経路CRに車両Vの制限速度が設定される場合について説明する。具体的には、追尾経路CR6の制限速度は、10km/hである。また、追尾経路CR7、追尾経路CR8、追尾経路CR9の制限速度は60km/hである。また、この一例では、無人飛行体Dの飛行速度FVが30km/hである。
 すなわち、この一例では、追尾者TPは、交差点CP5から追尾経路CR6を経由して追尾終了地点EPへ到着する場合と、交差点CP5から、追尾経路CR7と、追尾経路CR8と、追尾経路CR9とを経由して追尾終了地点EPへ到着する場合とでは、後者の方が無人飛行体Dとの離隔する距離が少ない。
 すなわち、追尾経路選択部211は、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとの相対速度に基づいて、追尾経路CRとして追尾経路CR7と、追尾経路CR8と、追尾経路CR9とを経由する追尾経路CRを選択する。
 これにより、追尾経路算出部102-1は、追尾経路CRを出力部103へ供給する。
In this example, a case where the speed limit of the vehicle V is set for each tracking route CR will be described. Specifically, the speed limit of the tracking route CR6 is 10 km / h. Further, the speed limit of the tracking route CR7, the tracking route CR8, and the tracking route CR9 is 60 km / h. In this example, the flying speed FV of the unmanned air vehicle D is 30 km / h.
That is, in this example, the tracker TP arrives at the tracking end point EP from the intersection CP5 via the tracking route CR6, and from the intersection CP5, the tracking route CR7, the tracking route CR8, and the tracking route CR9. In the case of arriving at the tracking end point EP via the latter, the latter is less separated from the unmanned air vehicle D.
That is, the tracking route selection unit 211 is based on the relative speed between the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP, as the tracking route CR, the tracking route CR7, the tracking route CR8, and the tracking route. A tracking route CR passing through CR9 is selected.
As a result, the tracking route calculation unit 102-1 supplies the tracking route CR to the output unit 103.
 以上説明したように、追尾経路算出部102-1は、追尾者TPが追尾する速度である追尾速度TPVと、無人飛行体Dが飛行経路を飛行する速度である飛行速度FVとの相対速度に更に基づいて追尾経路CRを算出する。
 これにより、変形例の追尾支援情報生成装置2は、複数の進路から、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとに基づいて、追尾経路CRを算出することができる。すなわち、変形例の追尾支援情報生成装置2は、無人飛行体Dの飛行に応じて、追尾者TPの追尾速度TPVをより精度高く調整することができる。つまり、変形例の追尾支援情報生成装置2は、無人飛行体Dと、追尾者TPとの距離情報ERDを前後方向に保つことができる。
As described above, the tracking path calculation unit 102-1 sets the relative speed between the tracking speed TPV, which is the speed at which the tracker TP tracks, and the flight speed FV, which is the speed at which the unmanned air vehicle D flies through the flight path. Further, the tracking route CR is calculated based on the above.
Thereby, the tracking support information generation device 2 of the modified example can calculate the tracking route CR from a plurality of routes based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP. . That is, the tracking support information generation device 2 of the modified example can adjust the tracking speed TPV of the tracker TP with higher accuracy according to the flight of the unmanned air vehicle D. That is, the tracking support information generation device 2 of the modified example can keep the distance information ERD between the unmanned air vehicle D and the tracker TP in the front-rear direction.
[第2実施形態]
 以下、図を参照して本発明の第2実施形態について説明する。図14は、第2実施形態の追尾支援情報生成装置3の構成の一例を示す模式図である。
 図14に示す通り、本実施形態の追尾支援情報生成装置3は、記憶部120と、制御部300とを備える。
 なお、上述した第1実施形態、および変形例と同様の構成および動作については、同一の符号を付してその説明を省略する。
 第2実施形態では、追尾支援情報生成装置3は、無人飛行体Dと、追尾者TPとの位置に基づいて、無人飛行体Dの飛行の飛行速度FVの制御に用いられる飛行情報FCを生成する。
[Second Embodiment]
The second embodiment of the present invention will be described below with reference to the drawings. FIG. 14 is a schematic diagram illustrating an example of the configuration of the tracking support information generation device 3 according to the second embodiment.
As shown in FIG. 14, the tracking support information generation device 3 of this embodiment includes a storage unit 120 and a control unit 300.
In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above and a modification, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
In the second embodiment, the tracking support information generation device 3 generates flight information FC used for controlling the flight speed FV of the flight of the unmanned air vehicle D based on the positions of the unmanned air vehicle D and the tracker TP. To do.
 制御部300は、上述の敷設経路算出部101と、追尾経路算出部102と、出力部103との他、飛行速度補正部310と、飛行情報生成部314とを備える。
 飛行速度補正部310には、位置算出部311と、離隔距離算出部312と、離隔距離判定部313とが含まれる。
The control unit 300 includes a flight speed correction unit 310 and a flight information generation unit 314 in addition to the laying route calculation unit 101, the tracking route calculation unit 102, and the output unit 103 described above.
The flight speed correction unit 310 includes a position calculation unit 311, a separation distance calculation unit 312, and a separation distance determination unit 313.
 以下、図15と、図16とを参照して、追尾支援情報生成装置3の動作について説明する。図15は、本実施形態における追尾支援情報生成装置3の動作の一例を示す第1の流れ図である。図16は、本実施形態における追尾支援情報生成装置3の動作の一例を示す第2の流れ図である。
 図15に示す追尾支援情報生成装置3の動作は、図6に示すステップS100からステップS210までの処理が完了した後の動作を示す。
 この一例では、無人飛行体Dが、追尾者TPの移動に合わせて適宜飛行速度FVを調整し、追尾者TPの目視が可能な位置を保持する場合について説明する。また、この一例では、追尾者TPが、一定の速度で移動する場合について説明する。
Hereinafter, the operation of the tracking support information generation device 3 will be described with reference to FIG. 15 and FIG. 16. FIG. 15 is a first flowchart illustrating an example of the operation of the tracking support information generation device 3 in the present embodiment. FIG. 16 is a second flowchart illustrating an example of the operation of the tracking support information generation device 3 in the present embodiment.
The operation of the tracking support information generation device 3 shown in FIG. 15 shows the operation after the processing from step S100 to step S210 shown in FIG. 6 is completed.
In this example, a case will be described in which the unmanned air vehicle D appropriately adjusts the flight speed FV in accordance with the movement of the tracker TP and maintains a position where the tracker TP can be seen. In this example, a case where the tracker TP moves at a constant speed will be described.
 位置算出部311は、ある時刻tにおける無人飛行体Dの位置である無人飛行体位置DPと、追尾者TPの位置である追尾者位置TPPとを算出する。
 具体的には、位置算出部311は、追尾経路算出部102から追尾経路CRを取得する(ステップS300)。位置算出部311は、追尾経路CRに示される追尾開始地点BPから追尾終了地点EPまでステップS320からステップS360までの処理を繰り返す(ステップS310)。
 位置算出部311は、離隔距離判定部313からある時刻tにおける飛行速度FVを取得する(ステップS320)。位置算出部311は、ある時刻tと、飛行速度FVとに基づいて、ある時刻tにおける無人飛行体Dの位置である無人飛行体位置DPを算出する(ステップS330)。位置算出部311は、算出したある時刻tにおける無人飛行体位置DPを離隔距離算出部312へ供給する(ステップS340)。位置算出部311は、ある時刻tにおける追尾者位置TPPを算出する(ステップS350)。位置算出部311は、算出したある時刻tにおける追尾者位置TPPを離隔距離算出部312へ供給する(ステップS360)。
The position calculation unit 311 calculates the unmanned air vehicle position DP that is the position of the unmanned air vehicle D at a certain time t and the tracker position TPP that is the position of the tracker TP.
Specifically, the position calculation unit 311 acquires the tracking route CR from the tracking route calculation unit 102 (step S300). The position calculation unit 311 repeats the processing from step S320 to step S360 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S310).
The position calculation unit 311 acquires the flight speed FV at a certain time t from the separation distance determination unit 313 (step S320). The position calculation unit 311 calculates the unmanned air vehicle position DP, which is the position of the unmanned air vehicle D at a certain time t, based on the certain time t and the flight speed FV (step S330). The position calculation unit 311 supplies the calculated unmanned air vehicle position DP at a certain time t to the separation distance calculation unit 312 (step S340). The position calculation unit 311 calculates the tracker position TPP at a certain time t (step S350). The position calculation unit 311 supplies the calculated tracker position TPP at a certain time t to the separation distance calculation unit 312 (step S360).
 次に、図17を参照して、各時刻tにおける位置算出部311の処理について説明する。図17は、本実施形態の飛行速度補正部310の処理の一例を示す表である。
 図17に示す通り、位置算出部311は、追尾経路算出部102から追尾経路CRを取得する。また、位置算出部311は、離隔距離判定部313から取得した飛行速度FVを取得する。このとき、離隔距離判定部313は、時刻t1において、無人飛行体Dの飛行速度FVの初期値である30km/hを位置算出部311へ供給する。位置算出部311は、取得した飛行速度FVに基づいて、時刻t1における無人飛行体Dの位置である無人飛行体位置DP1を算出する。時刻t1とは、追尾開始地点BPから追尾を開始して所定の時間が経過した時刻である。
 また、位置算出部311は、追尾経路CRと、追尾速度TPVとにも基づいて、時刻t1における追尾者TPの位置である追尾者位置TPP1を算出する。
Next, with reference to FIG. 17, the process of the position calculation unit 311 at each time t will be described. FIG. 17 is a table showing an example of processing of the flight speed correction unit 310 of the present embodiment.
As illustrated in FIG. 17, the position calculation unit 311 acquires the tracking route CR from the tracking route calculation unit 102. Further, the position calculation unit 311 acquires the flight speed FV acquired from the separation distance determination unit 313. At this time, the separation distance determination unit 313 supplies 30 km / h, which is the initial value of the flying speed FV of the unmanned air vehicle D, to the position calculation unit 311 at time t1. The position calculation unit 311 calculates the unmanned air vehicle position DP1, which is the position of the unmanned air vehicle D at time t1, based on the acquired flight speed FV. The time t1 is a time at which a predetermined time has elapsed since the tracking was started from the tracking start point BP.
Further, the position calculation unit 311 calculates a tracker position TPP1 that is the position of the tracker TP at time t1 based on the tracking route CR and the tracking speed TPV.
 図15に戻り、離隔距離算出部312は、追尾経路CRに示される追尾開始地点BPから追尾終了地点EPまでステップS380からステップS410までの処理を繰り返す(ステップS370)。離隔距離算出部312は、位置算出部311からある時刻tにおける無人飛行体位置DPを取得する(ステップS380)。また、離隔距離算出部312は、位置算出部311からある時刻tにおける追尾者位置TPPを取得する(ステップS390)。離隔距離算出部312は、取得した無人飛行体位置DPと、追尾者位置TPPとに基づいて、離隔距離ODを算出する(ステップS400)。離隔距離算出部312は、算出した離隔距離ODを離隔距離判定部313へ供給する(ステップS410)。 15, the separation distance calculation unit 312 repeats the processing from step S380 to step S410 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S370). The separation distance calculation unit 312 acquires the unmanned air vehicle position DP at a certain time t from the position calculation unit 311 (step S380). Further, the separation distance calculation unit 312 acquires the tracker position TPP at a certain time t from the position calculation unit 311 (step S390). The separation distance calculation unit 312 calculates the separation distance OD based on the acquired unmanned air vehicle position DP and the tracker position TPP (step S400). The separation distance calculation unit 312 supplies the calculated separation distance OD to the separation distance determination unit 313 (step S410).
 次に、図17を参照して、各時刻tにおける離隔距離算出部312の処理について説明する。
 図17に示す通り、離隔距離算出部312は、位置算出部311が算出した時刻t1における無人飛行体位置DP1と、追尾者位置TPP1とに基づいて、離隔距離OD1を算出する。この一例では、離隔距離算出部312が算出した時刻t1における無人飛行体Dと、追尾者TPとの離隔距離OD1は、195mである。
Next, with reference to FIG. 17, the processing of the separation distance calculation unit 312 at each time t will be described.
As shown in FIG. 17, the separation distance calculation unit 312 calculates the separation distance OD1 based on the unmanned air vehicle position DP1 at the time t1 calculated by the position calculation unit 311 and the tracker position TPP1. In this example, the separation distance OD1 between the unmanned air vehicle D and the tracker TP at time t1 calculated by the separation distance calculation unit 312 is 195 m.
 図16に戻り、離隔距離判定部313は、記憶部120から距離情報ERDを読み出す(ステップS420)。離隔距離判定部313は、追尾経路CRに示される追尾開始地点BPから追尾終了地点EPまでステップS440からステップS480までの処理を繰り返す(ステップS430)。離隔距離判定部313は、離隔距離算出部312からある時刻tにおける離隔距離ODを取得する(ステップS440)。離隔距離判定部313は、ある時刻tにおける離隔距離ODが示す距離が、距離情報ERDが示す距離より短いか否かを判定する(ステップS450)。離隔距離判定部313は、ある時刻tにおける離隔距離ODが示す距離が、距離情報ERDが示す距離より短いと判定する場合(ステップS450;YES)、ある時刻tにおいて飛行速度FVを定速に維持すると判定する(ステップS460)。この一例では、飛行速度FVの定速が、30km/hである。また、離隔距離判定部313は、ある時刻tにおける離隔距離ODが示す距離が、距離情報ERDが示す距離より短くないと判定する場合(ステップS450;NO)、ある時刻tにおいて飛行速度FVを低減すると判定する(ステップS470)。離隔距離判定部313は、ある時刻tにおける飛行速度FVを示す情報を位置算出部311と、飛行情報生成部314とに供給する(ステップS480)。 16, the separation distance determination unit 313 reads the distance information ERD from the storage unit 120 (step S420). The separation distance determination unit 313 repeats the processing from step S440 to step S480 from the tracking start point BP to the tracking end point EP shown in the tracking route CR (step S430). The separation distance determination unit 313 acquires the separation distance OD at a certain time t from the separation distance calculation unit 312 (step S440). The separation distance determination unit 313 determines whether or not the distance indicated by the separation distance OD at a certain time t is shorter than the distance indicated by the distance information ERD (step S450). When the separation distance determination unit 313 determines that the distance indicated by the separation distance OD at a certain time t is shorter than the distance indicated by the distance information ERD (step S450; YES), the separation distance determination unit 313 maintains the flight speed FV at a certain speed t. Then, it determines (step S460). In this example, the constant speed of the flight speed FV is 30 km / h. Further, when it is determined that the distance indicated by the separation distance OD at a certain time t is not shorter than the distance indicated by the distance information ERD (step S450; NO), the separation distance determination unit 313 reduces the flight speed FV at a certain time t. Then, it determines (step S470). The separation distance determination unit 313 supplies information indicating the flight speed FV at a certain time t to the position calculation unit 311 and the flight information generation unit 314 (step S480).
 次に、図17を参照して、各時刻tにおける離隔距離判定部313の処理について説明する。図17は、本実施形態の飛行速度補正部310の処理の一例を示す表である。
 図17に示す通り、離隔距離判定部313は、離隔距離算出部312が算出した時刻t1における離隔距離ODに基づいて、無人飛行体Dと、追尾者TPとが距離情報ERD以上離れているか否かを判定する。この一例では、距離情報ERDが500mである。すなわち、時刻t1において、離隔距離判定部313は、無人飛行体Dの飛行速度FVを定速に維持すると判定する。この場合、時刻t1における無人飛行体D飛行速度FVは30km/hである。
Next, with reference to FIG. 17, the process of the separation distance determination unit 313 at each time t will be described. FIG. 17 is a table showing an example of processing of the flight speed correction unit 310 of the present embodiment.
As illustrated in FIG. 17, the separation distance determination unit 313 determines whether or not the unmanned air vehicle D and the tracker TP are separated by the distance information ERD or more based on the separation distance OD at the time t1 calculated by the separation distance calculation unit 312. Determine whether. In this example, the distance information ERD is 500 m. That is, at time t1, the separation distance determination unit 313 determines to maintain the flying speed FV of the unmanned air vehicle D at a constant speed. In this case, the unmanned air vehicle D flight speed FV at time t1 is 30 km / h.
 すなわち、図17に示す通り、位置算出部311は、時刻t1から所定の時刻が経過した時刻t2において無人飛行体位置DP2と、追尾者位置TPP2とを算出する。離隔距離算出部312は、位置算出部311が算出した無人飛行体位置DP2と、追尾者位置TPP2とに基づいて、離隔距離OD2を算出する。離隔距離判定部313は、離隔距離算出部312が算出した離隔距離OD2に基づいて、時刻t2において無人飛行体Dの飛行速度FVを定速に維持すると判定する。 That is, as shown in FIG. 17, the position calculation unit 311 calculates the unmanned air vehicle position DP2 and the tracker position TPP2 at a time t2 when a predetermined time has elapsed from the time t1. The separation distance calculation unit 312 calculates the separation distance OD2 based on the unmanned air vehicle position DP2 calculated by the position calculation unit 311 and the tracker position TPP2. The separation distance determination unit 313 determines to maintain the flight speed FV of the unmanned air vehicle D at a constant speed at time t2 based on the separation distance OD2 calculated by the separation distance calculation unit 312.
 さらに、他の時刻において、図17に示す通り、位置算出部311は、時刻t4から所定の時刻が経過した時刻t5において無人飛行体位置DP5と、追尾者位置TPP5とを算出する。離隔距離算出部312は、位置算出部311が算出した無人飛行体位置DP5と、追尾者位置TPP5とに基づいて、離隔距離OD5を算出する。図17に示す通り、この一例では、離隔距離OD5は584mである。
 離隔距離判定部313は、離隔距離算出部312が算出した離隔距離OD5に基づいて、時刻t5において無人飛行体Dの飛行速度FVを低減すると判定する。この一例では、飛行速度FVを低減するとは、飛行速度FVを0km/hに低減することを示す。すなわち、無人飛行体Dは、無人飛行体位置DP5が示す位置においてホバリングする。
Furthermore, at another time, as shown in FIG. 17, the position calculation unit 311 calculates the unmanned air vehicle position DP5 and the tracker position TPP5 at a time t5 when a predetermined time has elapsed from the time t4. The separation distance calculation unit 312 calculates the separation distance OD5 based on the unmanned air vehicle position DP5 calculated by the position calculation unit 311 and the tracker position TPP5. As shown in FIG. 17, in this example, the separation distance OD5 is 584 m.
The separation distance determination unit 313 determines to reduce the flight speed FV of the unmanned air vehicle D at time t5 based on the separation distance OD5 calculated by the separation distance calculation unit 312. In this example, reducing the flight speed FV indicates reducing the flight speed FV to 0 km / h. That is, the unmanned air vehicle D hovers at the position indicated by the unmanned air vehicle position DP5.
 図17に示す通り、位置算出部311は、時刻t5から所定の時刻が経過した時刻t6において無人飛行体位置DP6と、追尾者位置TPP6とを算出する。この場合、離隔距離判定部313は、時刻t5において、飛行速度FVを低減すると判定するため、無人飛行体Dは、時刻t6において時刻t5と同じ無人飛行体位置DPを示す。すなわち、無人飛行体位置DP6と、無人飛行体位置DP5とは、同じ位置である。離隔距離算出部312は、位置算出部311が算出した無人飛行体位置DP6と、追尾者位置TPP6とに基づいて離隔距離OD6を算出する。図17に示す通り、この一例では、離隔距離OD6が264mである。すなわち、無人飛行体Dの飛行速度FVが時刻t5において低減されることにより、離隔距離OD5と、離隔距離OD6とは、離隔距離OD6の方が無人飛行体Dと、追尾者TPとの距離が短くなる。
 離隔距離判定部313は、離隔距離算出部312が算出した離隔距離OD6に基づいて、時刻t6において無人飛行体Dの飛行速度FVを定速に維持すると判定する。
As shown in FIG. 17, the position calculation unit 311 calculates the unmanned air vehicle position DP6 and the tracker position TPP6 at a time t6 when a predetermined time has elapsed from the time t5. In this case, since the separation distance determination unit 313 determines to reduce the flight speed FV at time t5, the unmanned air vehicle D indicates the same unmanned air vehicle position DP as at time t5 at time t6. That is, the unmanned air vehicle position DP6 and the unmanned air vehicle position DP5 are the same position. The separation distance calculation unit 312 calculates the separation distance OD6 based on the unmanned air vehicle position DP6 calculated by the position calculation unit 311 and the tracker position TPP6. As shown in FIG. 17, in this example, the separation distance OD6 is 264 m. That is, when the flight speed FV of the unmanned air vehicle D is reduced at the time t5, the separation distance OD5 and the separation distance OD6 are such that the distance between the unmanned air vehicle D and the tracker TP is greater at the separation distance OD6. Shorter.
The separation distance determination unit 313 determines to maintain the flight speed FV of the unmanned air vehicle D at a constant speed at time t6 based on the separation distance OD6 calculated by the separation distance calculation unit 312.
 図16に戻り、飛行情報生成部314は、追尾経路CRに示される追尾開始地点BPから追尾終了地点EPまでステップS500までの処理を繰り返す(ステップS490)。
 飛行情報生成部314は、離隔距離判定部313から各時刻tにおける無人飛行体Dの飛行速度FV示す情報を取得する(ステップS500)。
 飛行情報生成部314は、取得した飛行速度FVを示す情報に基づいて、各時刻tにおける無人飛行体Dの飛行速度FVの制御に用いられる飛行情報FCを生成する(ステップS510)。
Returning to FIG. 16, the flight information generation unit 314 repeats the process from step S500 to the tracking end point EP shown in the tracking route CR up to step S500 (step S490).
The flight information generation unit 314 acquires information indicating the flight speed FV of the unmanned air vehicle D at each time t from the separation distance determination unit 313 (step S500).
The flight information generation unit 314 generates flight information FC used for controlling the flight speed FV of the unmanned air vehicle D at each time t based on the acquired information indicating the flight speed FV (step S510).
 次に、図17を参照して、各時刻tにおける飛行情報生成部314の処理について説明する。
 上述の通り、飛行速度補正部310は、無人飛行体Dが送電線WR1と、送電線WR2とに基づいて、鉄塔ST1から鉄塔ST3までの間を飛行するに際して、各時刻tにおける飛行速度FVを飛行情報生成部314へ供給する。例えば、この一例では、図17に示す通り、飛行速度補正部310は、時刻t1から時刻t4において飛行速度FVが30km/h、時刻t5において飛行速度FVが0km/h、および時刻t6において飛行速度FVが30km/hを示す情報を飛行情報生成部314へ供給する。飛行情報生成部314は、取得した各時刻tの飛行速度FVに基づいて、飛行情報FCを生成する。
Next, the process of the flight information generation unit 314 at each time t will be described with reference to FIG.
As described above, when the unmanned air vehicle D flies between the tower ST1 and the tower ST3 based on the transmission line WR1 and the transmission line WR2, the flight speed correction unit 310 calculates the flight speed FV at each time t. This is supplied to the flight information generation unit 314. For example, in this example, as shown in FIG. 17, the flight speed correction unit 310 has a flight speed FV of 30 km / h from time t1 to time t4, a flight speed FV of 0 km / h at time t5, and a flight speed at time t6. Information indicating that FV is 30 km / h is supplied to the flight information generation unit 314. The flight information generation unit 314 generates flight information FC based on the acquired flight speed FV at each time t.
 以上説明したように、追尾支援情報生成装置3は、制御部300と、記憶部120とを備える。制御部300は、敷設経路算出部101と、追尾経路算出部102と、出力部103と、飛行速度補正部310と、飛行情報生成部314とを備える。飛行速度補正部310には、位置算出部311と、離隔距離算出部312と、離隔距離判定部313とが含まれる。
 位置算出部311は、追尾経路CRに基づいて、ある時刻tにおける無人飛行体位置DPと、追尾者位置TPPとを算出する。離隔距離算出部312は、位置算出部311が算出した無人飛行体位置DPと、追尾者位置TPPとに基づいて、離隔距離ODを算出する。離隔距離判定部313は、離隔距離算出部312が算出した離隔距離ODに基づいて、無人飛行体Dの飛行速度FVを低減するか否かを判定する。飛行情報生成部314は、飛行速度補正部310が判定した各時刻tにおける無人飛行体Dの飛行速度FVに基づいて、無人飛行体Dの飛行速度FVの制御に用いられる飛行情報FCを生成する。
 つまり、飛行情報生成部314は、追尾者TPが追尾する速度である追尾速度TPVと、無人飛行体Dが飛行経路を飛行する速度である飛行速度FVとの相対速度に基づいて、無人飛行体Dの飛行速度FVの制御に用いられる飛行情報FCを生成する。
As described above, the tracking support information generation device 3 includes the control unit 300 and the storage unit 120. The control unit 300 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, and a flight information generation unit 314. The flight speed correction unit 310 includes a position calculation unit 311, a separation distance calculation unit 312, and a separation distance determination unit 313.
The position calculation unit 311 calculates the unmanned air vehicle position DP and the tracker position TPP at a certain time t based on the tracking route CR. The separation distance calculation unit 312 calculates the separation distance OD based on the unmanned air vehicle position DP calculated by the position calculation unit 311 and the tracker position TPP. The separation distance determination unit 313 determines whether or not to reduce the flight speed FV of the unmanned air vehicle D based on the separation distance OD calculated by the separation distance calculation unit 312. The flight information generation unit 314 generates flight information FC used for controlling the flight speed FV of the unmanned air vehicle D based on the flight speed FV of the unmanned air vehicle D at each time t determined by the flight speed correction unit 310. .
That is, the flight information generation unit 314 is based on the relative speed between the tracking speed TPV, which is the speed that the tracker TP tracks, and the flight speed FV, which is the speed at which the unmanned air vehicle D flies along the flight path. Flight information FC used to control the flight speed FV of D is generated.
 これにより、本実施形態の追尾支援情報生成装置3は、飛行速度FVと、追尾速度TPVとの相対速度に基づいて、無人飛行体Dの飛行速度FVの制御に用いられる飛行情報FCを生成することができる。すなわち、無人飛行体Dが飛行情報FCに基づいて飛行することにより、無人飛行体Dと、追尾者TPとの離隔距離ODが距離情報ERDより長くなる場合には、無人飛行体Dの飛行速度FVが低減される。これにより、追尾者TPは、無人飛行体Dと、追尾者TPとの距離情報ERDを前後左右方向に保持することができる。
つまり、追尾者TPが無人飛行体Dを追尾するに際して、距離情報ERDを前後左右方向により精度高く保つことができる。
Thereby, the tracking support information generation device 3 according to the present embodiment generates the flight information FC used for controlling the flight speed FV of the unmanned air vehicle D based on the relative speed between the flight speed FV and the tracking speed TPV. be able to. That is, when the unmanned air vehicle D flies based on the flight information FC, and the separation distance OD between the unmanned air vehicle D and the tracker TP becomes longer than the distance information ERD, the flight speed of the unmanned air vehicle D FV is reduced. Thereby, the tracker TP can hold the distance information ERD between the unmanned air vehicle D and the tracker TP in the front-rear and left-right directions.
That is, when the tracker TP tracks the unmanned air vehicle D, the distance information ERD can be maintained with higher accuracy in the front-rear and left-right directions.
 なお、上述では、無人飛行体Dの飛行速度FVが低減される場合、無人飛行体Dの飛行速度FVが0km/hである場合について説明したが、これに限られない。無人飛行体Dの飛行速度FVが低減される場合、飛行速度FVの値を小さくする制御が行われてもよい。 In the above description, the case where the flight speed FV of the unmanned air vehicle D is reduced and the flight speed FV of the unmanned air vehicle D is 0 km / h has been described, but the present invention is not limited to this. When the flying speed FV of the unmanned air vehicle D is reduced, control for reducing the value of the flying speed FV may be performed.
 また、上述では、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとに基づいて、飛行速度FVが制御される場合について説明したが、これに限られない。飛行速度FVと、追尾速度TPVとに基づいて、追尾者TPの追尾速度TPVが制御されていてもよい。また、無人飛行体Dの飛行速度FVと、追尾者TPの追尾速度TPVとに基づいて、飛行速度FVと、追尾速度TPVとが制御されていてもよい。 In the above description, the case where the flight speed FV is controlled based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP has been described, but the present invention is not limited thereto. The tracking speed TPV of the tracker TP may be controlled based on the flight speed FV and the tracking speed TPV. Further, the flight speed FV and the tracking speed TPV may be controlled based on the flight speed FV of the unmanned air vehicle D and the tracking speed TPV of the tracker TP.
 また、上述では、無人飛行体Dの飛行速度FVを低減すると判定された箇所において飛行速度FVが0km/hになる場合について説明したが、これに限られない。例えば、無人飛行体Dの飛行速度FVを低減する場所が鉄塔ST上に予め定められていてもよい。この場合、鉄塔ST1から鉄塔ST2の間において、離隔距離ODが距離情報ERDより長くなる場合には、無人飛行体Dは、鉄塔ST1上に定められた速度低減箇所において待機していてもよい。 Further, in the above description, the case where the flight speed FV is 0 km / h at the place where it is determined that the flight speed FV of the unmanned air vehicle D is reduced has been described, but the present invention is not limited to this. For example, a place where the flying speed FV of the unmanned air vehicle D is reduced may be predetermined on the steel tower ST. In this case, when the separation distance OD is longer than the distance information ERD between the steel tower ST1 and the steel tower ST2, the unmanned air vehicle D may stand by at a speed reduction point determined on the steel tower ST1.
[第3実施形態]
 以下、図を参照して本発明の第3実施形態について説明する。第3実施形態では、無人飛行体Dが備える飛行経路情報生成装置4と、追尾者TPが備える追尾支援情報生成装置5とを備える追尾支援情報生成システムSYS(図示せず)について説明する。
 図18は、第3実施形態の無人飛行体Dの構成を示す構成図である。
 本実施形態の無人飛行体Dは、無人飛行体Dが予め定められた区間の飛行を終了した場合、追尾者TPの現在地まで帰還する場合の無人飛行体Dの制御について説明する。
 図18に示す通り、無人飛行体Dは、飛行経路情報生成装置4を備える。飛行経路情報生成装置4は、制御部400と、記憶部410とを備える。
 なお、上述した第1実施形態、変形例、および第2実施形態と同様の構成および動作については、同一の符号を付してその説明を省略する。
[Third embodiment]
The third embodiment of the present invention will be described below with reference to the drawings. In the third embodiment, a tracking support information generation system SYS (not shown) including a flight path information generation device 4 included in the unmanned air vehicle D and a tracking support information generation device 5 included in the tracker TP will be described.
FIG. 18 is a configuration diagram showing the configuration of the unmanned air vehicle D of the third embodiment.
The unmanned aerial vehicle D according to the present embodiment will be described with reference to the control of the unmanned air vehicle D when the unmanned air vehicle D returns to the current location of the tracker TP when the flight of the predetermined section is completed.
As shown in FIG. 18, the unmanned air vehicle D includes a flight path information generation device 4. The flight path information generation device 4 includes a control unit 400 and a storage unit 410.
In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, a modification, and 2nd Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 記憶部410には、飛行経路情報FLが記憶される。飛行経路情報FLとは、無人飛行体Dが飛行する予め定められた区間の飛行に伴う経路を示す情報である。この一例では、無人飛行体Dが鉄塔ST1から鉄塔ST3まで、送電線WR1と、送電線WR2とに基づいて自律飛行するに際して、無人飛行体Dの飛行の制御に用いられる情報である。 The flight unit information FL is stored in the storage unit 410. The flight route information FL is information indicating a route associated with a flight in a predetermined section in which the unmanned air vehicle D flies. In this example, the information is used for controlling the flight of the unmanned air vehicle D when the unmanned air vehicle D autonomously flies from the tower ST1 to the steel tower ST3 based on the power transmission line WR1 and the power transmission line WR2.
 制御部400は、位置検出部401と、検査終了判定部402と、送信部403と、受信部404と、帰還経路情報生成部405と、飛行制御部406とをその機能部として備える。
 位置検出部401は、無人飛行体Dの無人飛行体位置DPを検出する。位置検出部401とは、例えば、GPSセンサである。位置検出部401は、検出した無人飛行体位置DPを検査終了判定部402と、帰還経路情報生成部405とへ供給する。
The control unit 400 includes a position detection unit 401, an inspection end determination unit 402, a transmission unit 403, a reception unit 404, a return path information generation unit 405, and a flight control unit 406 as functional units.
The position detector 401 detects the unmanned air vehicle position DP of the unmanned air vehicle D. The position detection unit 401 is, for example, a GPS sensor. The position detection unit 401 supplies the detected unmanned air vehicle position DP to the inspection end determination unit 402 and the return path information generation unit 405.
 検査終了判定部402は、位置検出部401から無人飛行体位置DPを取得する。また、検査終了判定部402は、記憶部410から飛行経路情報FLを読み出す。検査終了判定部402は、無人飛行体位置DPに示される無人飛行体Dの位置が、飛行経路情報FLに示される経路の最終地点であるか否かを判定する。検査終了判定部402は、判定結果である検査終了判定結果FJRが無人飛行体Dの位置が飛行経路情報FLの最終地点であることを示す場合、検査終了判定結果FJRを送信部403へ供給する。
 送信部403は、取得した検査終了判定結果FJRを追尾支援情報生成装置5へ送信する。
The inspection end determination unit 402 acquires the unmanned air vehicle position DP from the position detection unit 401. Further, the inspection end determination unit 402 reads the flight route information FL from the storage unit 410. The inspection end determination unit 402 determines whether or not the position of the unmanned air vehicle D indicated by the unmanned air vehicle position DP is the final point of the route indicated by the flight route information FL. The inspection end determination unit 402 supplies the inspection end determination result FJR to the transmission unit 403 when the inspection end determination result FJR, which is the determination result, indicates that the position of the unmanned air vehicle D is the final point of the flight path information FL. .
The transmission unit 403 transmits the acquired examination end determination result FJR to the tracking support information generation device 5.
 次に、図19を参照して本実施形態の追尾支援情報生成装置5について説明する。図19は、本実施形態における追尾支援情報生成装置5の構成を示す構成図である。追尾支援情報生成装置5は、制御部500と、記憶部120とを備える。
 なお、上述した第1実施形態、変形例、および第2実施形態と同様の構成および動作については、同一の符号を付してその説明を省略する。
Next, the tracking support information generation device 5 of this embodiment will be described with reference to FIG. FIG. 19 is a configuration diagram illustrating a configuration of the tracking support information generation device 5 in the present embodiment. The tracking support information generation device 5 includes a control unit 500 and a storage unit 120.
In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, a modification, and 2nd Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 制御部500は、敷設経路算出部101と、追尾経路算出部102と、出力部103と、飛行速度補正部310と、飛行情報生成部314と、受信部501と、位置検出部502と、送信部503とを備える。
 受信部501は、飛行経路情報生成装置4から検査終了判定結果FJRを受信する。受信部501は、受信した検査終了判定結果FJRを位置検出部502へ供給する。
 位置検出部502は、検査終了判定結果FJRを取得した場合、追尾者TPの追尾者位置TPPを検出する。位置検出部502とは、例えば、GPSセンサである。位置検出部502は、検出した追尾者位置TPPを送信部503へ供給する。
 送信部503は、取得した追尾者位置TPPを示す情報を飛行経路情報生成装置4へ送信する。
 この一例では、飛行経路情報生成装置4と、追尾支援情報生成装置5とはネットワークを介して接続されており、情報の送受を行うことができる。
The control unit 500 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, a flight information generation unit 314, a reception unit 501, a position detection unit 502, and a transmission. Part 503.
The receiving unit 501 receives the inspection end determination result FJR from the flight path information generation device 4. The reception unit 501 supplies the received inspection end determination result FJR to the position detection unit 502.
The position detection unit 502 detects the tracker position TPP of the tracker TP when acquiring the inspection end determination result FJR. The position detection unit 502 is, for example, a GPS sensor. The position detection unit 502 supplies the detected tracker position TPP to the transmission unit 503.
The transmission unit 503 transmits information indicating the acquired tracker position TPP to the flight path information generation device 4.
In this example, the flight path information generation device 4 and the tracking support information generation device 5 are connected via a network and can transmit and receive information.
 図18に戻り、受信部404は、追尾支援情報生成装置5から追尾者位置TPPを示す情報を受信する。受信部404は、受信した追尾者位置TPPを示す情報を帰還経路情報生成部405へ供給する。
 帰還経路情報生成部405は、取得した追尾者位置TPPと、無人飛行体位置DPとに基づいて、無人飛行体位置DPから追尾者位置TPPまで無人飛行体Dが飛行する帰還経路情報RRを生成する。帰還経路情報RRとは、無人飛行体位置DPから追尾者位置TPPまで無人飛行体Dが帰還するに際して、自律飛行の制御に用いられる情報である。帰還経路情報生成部405は、生成した帰還経路情報RRを飛行制御部406へ供給する。
 飛行制御部406は、取得した帰還経路情報RRに基づいて、無人飛行体Dの飛行を制御する。これにより、無人飛行体Dは、予め定められた区間の飛行が完了した後、追尾者TPの位置まで帰還することができる。
Returning to FIG. 18, the receiving unit 404 receives information indicating the tracker position TPP from the tracking support information generating device 5. The receiving unit 404 supplies information indicating the received tracker position TPP to the return path information generating unit 405.
The return path information generation unit 405 generates return path information RR on which the unmanned air vehicle D flies from the unmanned air vehicle position DP to the tracker position TPP based on the acquired tracker position TPP and the unmanned air vehicle position DP. To do. The return route information RR is information used for autonomous flight control when the unmanned air vehicle D returns from the unmanned air vehicle position DP to the tracker position TPP. The return path information generation unit 405 supplies the generated return path information RR to the flight control unit 406.
The flight control unit 406 controls the flight of the unmanned air vehicle D based on the acquired return path information RR. Thereby, the unmanned air vehicle D can return to the position of the tracker TP after the flight in the predetermined section is completed.
 なお、上述では、無人飛行体Dが飛行経路情報生成装置4を備える場合について説明したが、これに限られない。飛行経路情報生成装置4は、追尾支援情報生成装置5が備えていてもよい。この場合、無人飛行体Dは、飛行経路情報FLと、無人飛行体位置DPとに基づいて、予め定められた区間の飛行が終了したことを示す情報を追尾支援情報生成装置5へ送信する。また、追尾支援情報生成装置5は、無人飛行体Dから受信した無人飛行体Dの無人飛行体位置DPと、無人飛行体Dが予め定められた区間の飛行が終了したことを示す情報とに基づいて、追尾者位置TPPから無人飛行体位置DPまでの帰還経路情報RRを生成してもよい。これにより、追尾支援情報生成装置5は、生成した帰還経路情報RRを無人飛行体Dへ送信してもよい。この場合、無人飛行体Dは、受信した帰還経路情報RRに基づいて自律飛行を制御することにより、追尾者TPの追尾者位置TPPまで帰還してもよい。 In addition, although the case where the unmanned air vehicle D includes the flight path information generation device 4 has been described above, the present invention is not limited thereto. The flight path information generation device 4 may be included in the tracking support information generation device 5. In this case, the unmanned air vehicle D transmits information indicating that the flight of the predetermined section has ended to the tracking support information generation device 5 based on the flight path information FL and the unmanned air vehicle position DP. In addition, the tracking support information generation device 5 receives the unmanned air vehicle position DP of the unmanned air vehicle D received from the unmanned air vehicle D and information indicating that the unmanned air vehicle D has finished flying in a predetermined section. Based on this, the return route information RR from the tracker position TPP to the unmanned air vehicle position DP may be generated. Thereby, the tracking support information generation device 5 may transmit the generated return route information RR to the unmanned air vehicle D. In this case, the unmanned air vehicle D may return to the tracker position TPP of the tracker TP by controlling autonomous flight based on the received return path information RR.
 以上説明したように、本実施形態の無人飛行体Dは、飛行経路情報生成装置4を備える。飛行経路情報生成装置4は、制御部400と、記憶部410とを備える。記憶部410には、飛行経路情報FLが記憶される。
 制御部400は、位置検出部401と、検査終了判定部402と、送信部403と、受信部404と、帰還経路情報生成部405と、飛行制御部406とを備える。位置検出部401は、無人飛行体Dの無人飛行体位置DPを検出する。検査終了判定部402は、位置検出部401が検出した無人飛行体位置DPの検出結果である検査終了判定結果FJRが無人飛行体Dの位置が飛行経路情報FLの最終地点であることを示す場合、検査終了判定結果FJRを送信部403へ供給する。送信部403は、取得した検査終了判定結果FJRを追尾支援情報生成装置5へ送信する。
As described above, the unmanned air vehicle D of the present embodiment includes the flight path information generation device 4. The flight path information generation device 4 includes a control unit 400 and a storage unit 410. The storage unit 410 stores flight path information FL.
The control unit 400 includes a position detection unit 401, an examination end determination unit 402, a transmission unit 403, a reception unit 404, a return path information generation unit 405, and a flight control unit 406. The position detector 401 detects the unmanned air vehicle position DP of the unmanned air vehicle D. When the inspection end determination unit 402 indicates that the inspection end determination result FJR, which is the detection result of the unmanned air vehicle position DP detected by the position detection unit 401, indicates that the position of the unmanned air vehicle D is the final point of the flight path information FL. The inspection end determination result FJR is supplied to the transmission unit 403. The transmission unit 403 transmits the acquired examination end determination result FJR to the tracking support information generation device 5.
 追尾支援情報生成装置5は、記憶部120と、制御部500とを備える。制御部500は、敷設経路算出部101と、追尾経路算出部102と、出力部103と、飛行速度補正部310と、飛行情報生成部314と、受信部501と、位置検出部502と、送信部503とを備える。
 受信部501は、飛行経路情報生成装置4から検査終了判定結果FJRを受信する。受信部501は、受信した検査終了判定結果FJRを位置検出部502へ供給する。位置検出部502は、検査終了判定結果FJRが無人飛行体Dの位置が飛行経路情報FLの最終地点であることを示す場合、追尾者TPの追尾者位置TPPを示す情報を送信部503へ供給する。送信部503は、位置検出部502から取得した追尾者位置TPPを示す情報を飛行経路情報生成装置4へ送信する。
The tracking support information generation device 5 includes a storage unit 120 and a control unit 500. The control unit 500 includes a laying route calculation unit 101, a tracking route calculation unit 102, an output unit 103, a flight speed correction unit 310, a flight information generation unit 314, a reception unit 501, a position detection unit 502, and a transmission. Part 503.
The receiving unit 501 receives the inspection end determination result FJR from the flight path information generation device 4. The reception unit 501 supplies the received inspection end determination result FJR to the position detection unit 502. When the inspection end determination result FJR indicates that the position of the unmanned air vehicle D is the final point of the flight path information FL, the position detection unit 502 supplies information indicating the tracker position TPP of the tracker TP to the transmission unit 503. To do. The transmission unit 503 transmits information indicating the tracker position TPP acquired from the position detection unit 502 to the flight path information generation device 4.
 飛行経路情報生成装置4が備える受信部404は、追尾支援情報生成装置5から追尾者位置TPPを示す情報を受信する。
 帰還経路情報生成部405は、無人飛行体Dが飛行経路の終了位置に到達したことを示す検査終了判定結果FJRと、追尾者TPの追尾者位置TPPを示す情報とに基づいて帰還経路情報RRを生成する。帰還経路情報RRとは、無人飛行体Dの飛行の制御に用いられる終了位置から追尾者TPの追尾者位置TPPまでの飛行経路を示す経路である。帰還経路情報生成部405は、生成した帰還経路情報RRを飛行制御部406へ供給する。飛行制御部406は、取得した帰還経路情報RRに基づいて、無人飛行体Dの飛行を制御する。
The receiving unit 404 included in the flight path information generation device 4 receives information indicating the tracker position TPP from the tracking support information generation device 5.
The return path information generation unit 405 returns the return path information RR based on the inspection end determination result FJR indicating that the unmanned air vehicle D has reached the end position of the flight path and the information indicating the tracker position TPP of the tracker TP. Is generated. The return path information RR is a path indicating a flight path from the end position used for controlling the flight of the unmanned air vehicle D to the tracker position TPP of the tracker TP. The return path information generation unit 405 supplies the generated return path information RR to the flight control unit 406. The flight control unit 406 controls the flight of the unmanned air vehicle D based on the acquired return path information RR.
 これにより、追尾支援情報生成システムSYSは、無人飛行体Dが飛行経路の終了位置に到達した場合、無人飛行体Dの無人飛行体位置DPから、追尾者TPの追尾者位置TPPまで無人飛行体Dの飛行を制御することができる。すなわち、無人飛行体Dが飛行経路の終了位置に到達した場合、無人飛行体Dは、追尾者TPまで自律飛行することができる。つまり、本実施形態の追尾支援情報生成システムSYSによれば、無人飛行体Dが飛行経路の終了位置に到達した場合、追尾者TPが無人飛行体Dを回収する手間を低減することができる。 Thereby, the tracking support information generation system SYS, when the unmanned air vehicle D reaches the end position of the flight path, the unmanned air vehicle from the unmanned air vehicle position DP of the unmanned air vehicle D to the tracker position TPP of the tracker TP. D's flight can be controlled. That is, when the unmanned air vehicle D reaches the end position of the flight path, the unmanned air vehicle D can autonomously fly to the tracker TP. That is, according to the tracking support information generation system SYS of this embodiment, when the unmanned air vehicle D reaches the end position of the flight path, it is possible to reduce the trouble of the tracker TP collecting the unmanned air vehicle D.
 なお、上記の各実施形態における追尾支援情報生成装置1、追尾支援情報生成装置2、追尾支援情報生成装置3、飛行経路情報生成装置4、および追尾支援情報生成装置5が備える各部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。 In addition, each part with which the tracking assistance information generation apparatus 1, the tracking assistance information generation apparatus 2, the tracking assistance information generation apparatus 3, the flight route information generation apparatus 4, and the tracking assistance information generation apparatus 5 in each of the above embodiments is dedicated It may be realized by hardware, or may be realized by a memory and a microprocessor.
 なお、追尾支援情報生成装置1、追尾支援情報生成装置2、追尾支援情報生成装置3、飛行経路情報生成装置4、および追尾支援情報生成装置5が備える各部は、メモリおよびCPU(中央演算装置)により構成され、追尾支援情報生成装置1、追尾支援情報生成装置2、追尾支援情報生成装置3、飛行経路情報生成装置4、および追尾支援情報生成装置5が備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。 The tracking support information generation device 1, the tracking support information generation device 2, the tracking support information generation device 3, the flight path information generation device 4, and the tracking support information generation device 5 each include a memory and a CPU (central processing unit). , A tracking support information generation device 1, a tracking support information generation device 2, a tracking support information generation device 3, a flight path information generation device 4, and a program for realizing the functions of the units included in the tracking support information generation device 5 The function may be realized by loading the program into a memory and executing it.
 また、追尾支援情報生成装置1、追尾支援情報生成装置2、追尾支援情報生成装置3、飛行経路情報生成装置4、および追尾支援情報生成装置5が備える各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In addition, a program for realizing the functions of the respective units included in the tracking support information generation device 1, the tracking support information generation device 2, the tracking support information generation device 3, the flight path information generation device 4, and the tracking support information generation device 5 is a computer. Processing may be performed by recording the program on a readable recording medium, reading the program recorded on the recording medium into a computer system, and executing the program. Here, the “computer system” includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can. You may combine the structure as described in each embodiment mentioned above.
1、2、3、5…追尾支援情報生成装置、4…飛行経路情報生成装置、100、200、300、400、500…制御部、101…敷設経路算出部、102、102-1…追尾経路算出部、103…出力部、120、410…記憶部、210…追尾経路候補算出部、211…追尾経路選択部、310…飛行速度補正部、311…位置算出部、312…離隔距離算出部、313…離隔距離判定部、314…飛行情報生成部、401、502…位置検出部、402…検査終了判定部、405…帰還経路情報生成部、406…飛行制御部、404、501…受信部、403、503…送信部、BP…追尾開始地点、CP、CP1、CP10、CP2、CP3、CP4、CP5、CP6…交差点、CR、CR1、CR2、CR3、CR4、CR5、CR6、CR7、CR8、CR9…追尾経路、CS、CS1
、CS10、CS11、CS14、CS15、CS2、CS3、CS4、CS5、CS6、CS7、CS8、CS9…進路、CW…車道、D…無人飛行体、DP、DP1、DP2、DP5、DP6…無人飛行体位置、E…設備情報、EP…追尾終了地点、ERA、ERA1…離隔可能領域、ERD…距離情報、FC…飛行情報、FJR…検査終了判定結果、FL…飛行経路情報、FV…飛行速度、GP…地上位置、LC…範囲、LR、LR1、LR2…敷設経路、M…地図情報、OD、OD1、OD2、OD5、OD6…離隔距離、P、P1、P2、P3…位置情報、RR…帰還経路情報、ST、ST1、ST2、ST3…鉄塔、SYS…追尾支援情報生成システム、t、t1、t2、t4、t5、t6…時刻、TP…追尾者、TPP、TPP1、TPP2、TPP5、TPP6…追尾者位置、TPV…追尾速度、V…車両、WR、WR1、WR2…送電線
1, 2, 3, 5 ... tracking support information generating device, 4 ... flight route information generating device, 100, 200, 300, 400, 500 ... control unit, 101 ... laying route calculating unit, 102, 102-1 ... tracking route Calculation unit 103 ... Output unit 120, 410 ... Storage unit 210 ... Tracking route candidate calculation unit 211 ... Tracking route selection unit 310 ... Flight speed correction unit 311 ... Position calculation unit 312 ... Separation distance calculation unit, 313: Separation distance determination unit, 314 ... Flight information generation unit, 401, 502 ... Position detection unit, 402 ... Examination end determination unit, 405 ... Return path information generation unit, 406 ... Flight control unit, 404, 501 ... Reception unit, 403, 503 ... Transmitter, BP ... Tracking start point, CP, CP1, CP10, CP2, CP3, CP4, CP5, CP6 ... Intersection, CR, CR1, CR2, CR3, CR4, CR5, R6, CR7, CR8, CR9 ... tracking route, CS, CS1
, CS10, CS11, CS14, CS15, CS2, CS3, CS4, CS5, CS6, CS7, CS8, CS9 ... course, CW ... roadway, D ... unmanned air vehicle, DP, DP1, DP2, DP5, DP6 ... unmanned air vehicle Position, E ... Equipment information, EP ... Tracking end point, ERA, ERA1 ... Separable area, ERD ... Distance information, FC ... Flight information, FJR ... Examination end judgment result, FL ... Flight path information, FV ... Flight speed, GP ... ground position, LC ... range, LR, LR1, LR2 ... laying route, M ... map information, OD, OD1, OD2, OD5, OD6 ... separation distance, P, P1, P2, P3 ... position information, RR ... return route Information, ST, ST1, ST2, ST3 ... Steel tower, SYS ... Tracking support information generation system, t, t1, t2, t4, t5, t6 ... Time, TP ... Tracker, TPP, TP 1, TPP2, TPP5, TPP6 ... tracking's position, TPV ... tracking speed, V ... vehicle, WR, WR1, WR2 ... transmission line

Claims (4)

  1.  電線の敷設経路に基づく飛行経路を飛行する無人飛行体と前記無人飛行体を追尾する追尾者とが離隔可能な距離を示す距離情報と、前記電線の位置を示す位置情報と、道路の位置を示す地図情報とに基づいて、前記追尾者が前記無人飛行体の飛行を追尾する前記道路上の追尾経路を算出する追尾経路算出部
     を備える追尾支援情報生成装置。
    Distance information indicating the distance that the unmanned air vehicle flying along the flight route based on the route of the electric wire and the tracker tracking the unmanned air vehicle can be separated, positional information indicating the position of the electric wire, and road position. A tracking support information generating device comprising: a tracking route calculating unit that calculates a tracking route on the road on which the tracker tracks the flight of the unmanned air vehicle based on map information to be displayed.
  2.  前記追尾経路算出部は、
     前記追尾者が追尾する速度である追尾速度と、前記無人飛行体が前記飛行経路を飛行する速度である飛行速度との相対速度に更に基づいて前記追尾経路を算出する
     ことを特徴とする請求項1に記載の追尾支援情報生成装置。
    The tracking route calculation unit
    The tracking path is calculated based on a relative speed between a tracking speed that is a speed that the tracker tracks and a flight speed that is a speed at which the unmanned air vehicle flies through the flight path. The tracking support information generation device according to 1.
  3.  前記追尾者が追尾する速度である追尾速度と、前記無人飛行体が前記飛行経路を飛行する速度である飛行速度との相対速度に基づいて、前記無人飛行体の前記飛行速度の制御に用いられる飛行情報を生成する飛行情報生成部
     を更に備える
     ことを特徴とする請求項2に記載の追尾支援情報生成装置。
    Used for controlling the flight speed of the unmanned air vehicle based on the relative speed between the tracking speed, which is the speed that the tracker tracks, and the flight speed, which is the speed at which the unmanned air vehicle flies through the flight path. The tracking support information generation device according to claim 2, further comprising: a flight information generation unit that generates flight information.
  4.  請求項1から請求項3のいずれか一項に記載の追尾支援情報生成装置と、
     前記無人飛行体が前記飛行経路の終了位置に到達したことを示す情報と、前記追尾者の位置を示す情報とに基づいて、前記無人飛行体の飛行の制御に用いられる前記終了位置から前記追尾者の位置までの飛行経路を示す飛行経路情報を生成する飛行経路情報生成装置と
     を備えることを特徴とする追尾支援情報生成システム。
    The tracking support information generation device according to any one of claims 1 to 3,
    Based on the information indicating that the unmanned air vehicle has reached the end position of the flight path and the information indicating the position of the tracker, the tracking from the end position used for controlling the flight of the unmanned air vehicle is performed. A tracking support information generation system comprising: a flight path information generation device that generates flight path information indicating a flight path to a person's position.
PCT/JP2016/083924 2015-11-27 2016-11-16 Tracking-assist-information generating device and tracking-assist-information generating system WO2017090493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015232283A JP2017096891A (en) 2015-11-27 2015-11-27 Tracking support information generation apparatus and tracking support information generation system
JP2015-232283 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090493A1 true WO2017090493A1 (en) 2017-06-01

Family

ID=58763110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083924 WO2017090493A1 (en) 2015-11-27 2016-11-16 Tracking-assist-information generating device and tracking-assist-information generating system

Country Status (2)

Country Link
JP (1) JP2017096891A (en)
WO (1) WO2017090493A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579853A (en) * 2019-01-24 2019-04-05 燕山大学 Inertial navigation indoor orientation method based on BP neural network
CN110764526A (en) * 2018-07-25 2020-02-07 杭州海康机器人技术有限公司 Unmanned aerial vehicle flight control method and device
WO2023184086A1 (en) * 2022-03-28 2023-10-05 深圳市大疆创新科技有限公司 Method and apparatus for controlling unmanned aerial vehicle, unmanned aerial vehicle, and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506650B (en) * 2018-09-12 2020-12-04 广东嘉腾机器人自动化有限公司 AGV navigation travel deviation correction method based on BP network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274284A (en) * 2004-03-24 2005-10-06 Chugoku Electric Power Co Inc:The Inspection course monitoring method and inspection course monitoring device
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body
JP2008247293A (en) * 2007-03-30 2008-10-16 Shikoku Air Service Co Ltd Aviation inspection assistant device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274284A (en) * 2004-03-24 2005-10-06 Chugoku Electric Power Co Inc:The Inspection course monitoring method and inspection course monitoring device
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body
JP2008247293A (en) * 2007-03-30 2008-10-16 Shikoku Air Service Co Ltd Aviation inspection assistant device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764526A (en) * 2018-07-25 2020-02-07 杭州海康机器人技术有限公司 Unmanned aerial vehicle flight control method and device
CN110764526B (en) * 2018-07-25 2023-04-07 杭州海康机器人技术有限公司 Unmanned aerial vehicle flight control method and device
CN109579853A (en) * 2019-01-24 2019-04-05 燕山大学 Inertial navigation indoor orientation method based on BP neural network
CN109579853B (en) * 2019-01-24 2021-02-26 燕山大学 Inertial navigation indoor positioning method based on BP neural network
WO2023184086A1 (en) * 2022-03-28 2023-10-05 深圳市大疆创新科技有限公司 Method and apparatus for controlling unmanned aerial vehicle, unmanned aerial vehicle, and storage medium

Also Published As

Publication number Publication date
JP2017096891A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017090493A1 (en) Tracking-assist-information generating device and tracking-assist-information generating system
JP6388968B2 (en) Valley parking method and valley parking system
CN104520675B (en) Camera parameters arithmetic unit, navigation system and camera parameters operation method
JP6462146B2 (en) Moving body moving system and moving path selection method
JP6761854B2 (en) How to distribute vehicle position points for autonomous vehicles
JP6235243B2 (en) Systems and methods for detecting and sharing hazardous situations
EP3252432A1 (en) Information-attainment system based on monitoring an occupant
US20060173577A1 (en) Robot control device, robot control method, and robot control program
US10477159B1 (en) Augmented reality display for identifying vehicles to preserve user privacy
JP2012118909A (en) Travel support device
JP6247704B2 (en) Instructor apparatus, lesson support system, lesson support program, recording medium, and lesson support method
US20200327811A1 (en) Devices for autonomous vehicle user positioning and support
WO2019188391A1 (en) Control device, control method, and program
WO2020054625A1 (en) Pedestrian device, vehicle-mounted device, mobile body guidance system, and mobile body guidance method
JP2019211961A (en) Map information update system
JP2019056674A (en) Display system, electronic apparatus and method for displaying map information
JP2020135113A (en) Travel controller and travel control method
JP6609588B2 (en) Autonomous mobility system and autonomous mobility control method
JP7147142B2 (en) CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND MOVING OBJECT
JP6740170B2 (en) Mobile body control system, program, and control method
WO2016017332A1 (en) Train composition recognition device and train composition recognition system
CN116088538B (en) Vehicle track information generation method, device, equipment and computer readable medium
WO2019208479A1 (en) Safe-driving assistance device
WO2022091787A1 (en) Communication system, robot, and storage medium
JP7279656B2 (en) Information processing device, system, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868441

Country of ref document: EP

Kind code of ref document: A1