WO2017090467A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2017090467A1
WO2017090467A1 PCT/JP2016/083554 JP2016083554W WO2017090467A1 WO 2017090467 A1 WO2017090467 A1 WO 2017090467A1 JP 2016083554 W JP2016083554 W JP 2016083554W WO 2017090467 A1 WO2017090467 A1 WO 2017090467A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
modulation
band
communication device
demodulation
Prior art date
Application number
PCT/JP2016/083554
Other languages
French (fr)
Japanese (ja)
Inventor
光彦 北島
智広 糸賀
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2017552363A priority Critical patent/JP6497825B2/en
Publication of WO2017090467A1 publication Critical patent/WO2017090467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a communication device and a communication method.
  • Patent Document 1 discloses an invention for reducing burst data errors caused by switching of a radio modulation frequency in a frequency hopping method.
  • the object of the present invention is to adapt the bandwidth and the power per subcarrier even if two waves of the transmission frequency including the subcarrier are close to each other, reduce mutual interference, and use frequency for anti-interception and anti-jamming.
  • a communication apparatus and a communication method capable of a frequency hopping communication scheme that guarantees that frequencies at the same time do not overlap are provided.
  • the communication device of the present invention is a communication device including a radio unit that performs frequency hopping communication and a modem unit, and the radio unit includes an antenna, a shared unit, a directional coupling unit, a filter unit, an amplifying unit, a combining unit, and a distributing unit.
  • the modulation / demodulation unit includes an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit, and a reference clock supplied to the OFDM modulation / demodulation unit and the local transmission unit is generated as a reference clock. It supplies only from a part.
  • the communication method of the present invention is a communication method in a communication device including a radio unit for frequency hopping communication and a modulation / demodulation unit, and the radio unit combines an antenna, a shared unit, a directional coupling unit, a filter unit, and an amplification unit.
  • the modulation / demodulation unit has an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit, and is supplied to the OFDM modulation / demodulation unit and the local transmission unit. Is supplied from a reference clock generator.
  • the communication apparatus of the present invention is the communication apparatus described above, wherein modulation of the OFDM modulation / demodulation unit increases or decreases a band or a sampling frequency.
  • the communication device of the present invention is the communication device described above, wherein the modulation of the OFDM modulation / demodulation unit is characterized in that subcarriers are arranged on both sides centering on the carrier frequency or no carrier wave is located in the band.
  • the communication device of the present invention is the above-described communication device in which the carrier wave is located at the center of the band (actually does not exist but remains due to hardware deterioration), the carrier wave of the quadrature modulation unit is hopped.
  • the baseband signal (IFFT baseband signal) input to the quadrature modulation unit is used when the carrier wave is not located in the band, and subcarriers corresponding to a predetermined bandwidth are used.
  • the communication device of the present invention is the communication device described above, and the carrier wave located within the band is made to have a different frequency in time, and the carrier wave not located within the band is the input signal after IFFT. Frequency hopping is performed by controlling the presence or absence.
  • the bandwidth and the power per subcarrier are adapted, the mutual interference is reduced, and the frequency is used for anti-interception and anti-jamming.
  • the frequency hopping method in which communication is performed with different frequencies, mutual interference is eliminated, so that it is possible to ensure that frequencies at the same time do not overlap.
  • FIG. 1 is a diagram showing a configuration example of a system according to an embodiment of the present invention.
  • transmission / reception stations 101, 102, and 103 are communication devices.
  • the transmission / reception stations 101, 102, and 103 include at least a radio unit 200 and a modem unit 300 or a modem unit 400.
  • the transmission / reception station 101 communicates with the transmission / reception station 102 using the frequency F1, and communicates with the transmission / reception station 103 using the frequency F3.
  • the transmitting / receiving station 102 communicates with the transmitting / receiving station 103 using the frequency F2.
  • the frequencies F1, F2, and F3 are different frequencies. That is, the transmission / reception stations 101, 102, and 103 can simultaneously communicate using two wave frequencies.
  • FIG. 2 is a block diagram of a radio unit according to an embodiment of the present invention.
  • the radio unit 200 includes an amplifying unit 201, a filter unit 202, a directional coupling unit 203, a shared unit 204, an antenna 205, a combining unit 206, and a distributing unit 207.
  • the combining unit 206 and the distributing unit 207 are not included in a normal communication device, but are characteristic functional blocks in an embodiment of the present invention. Therefore, the wireless unit 200 is a normal half-duplex communication device.
  • the directional coupling unit 203 switches the transmission signal and the reception signal in necessary directions.
  • the shared unit 204 shares the transmission and reception operations of the antenna 205 and the transmission and reception of each frequency.
  • the synthesizer 206 synthesizes high-frequency signals, and there are several types of input signals 211-1, 211-2,...
  • the distribution unit 207 distributes the received and amplified signal 217 of the amplification unit 201 to receive outputs 218-1, 218-2,.
  • FIG. 3 is a block diagram of a first modulation / demodulation unit according to an embodiment of the present invention.
  • the modem unit 300 includes an OFDM modem unit 301, an orthogonal modulation unit 302, an orthogonal demodulation unit 303, a local transmission unit 304, and a reference clock generation unit 305.
  • the reference clock generation unit 305 generates a reference clock for performing signal processing of the entire modulation / demodulation unit 300. For example, all the clock signals, radio frequencies (transmission carrier frequency, reception carrier frequency), hopping frequency, and the like necessary for digital processing are all generated from the reference clock.
  • the OFDM (Orthogonal Frequency Division Multiplexing) modulation of the OFDM modulation / demodulation unit 301 converts the digital signal 315 into a predetermined modulation method.
  • the OFDM modulation / demodulation unit 301 arranges necessary subcarriers at frequency intervals that are orthogonal to each other. For example, two-phase PSK (Phase Shift Keying), four-phase PSK, and multi-level QAM are respectively provided. (Quadrature Amplitude Modulation, quadrature amplitude modulation) etc. This processing is performed in the baseband region, and a signal for modulating to the next-stage radio frequency is generated.
  • the modulation input 311 of the quadrature modulation unit 302 is obtained.
  • the quadrature modulation unit 302 requires a SIN waveform and a COS waveform as modulation inputs, and generates them by processing such as IFFT based on the digital data 315.
  • the quadrature modulation unit 302 performs modulation with the high-frequency signal 316 generated by the local transmission unit 304, which is a radio signal, the SIN waveform and the COS waveform, and adds the two signals to obtain a predetermined modulation method.
  • the radio frequency 211 is output.
  • the orthogonal demodulator 303 receives an OFDM signal that is a received signal 218 from a communication partner, demodulates it using the local signal 316 output from the local transmitter 304, and outputs a SIN waveform and a COS waveform signal 314.
  • the OFDM modulation / demodulation unit 301 obtains digital data 315 by performing FFT on the signal 314.
  • the reference clock generation unit 305 is a clock necessary for the processing of the OFDM modulation / demodulation unit 301 and a reference clock necessary for the generation of the local transmission unit 314.
  • the reference clock generation unit 305 serves as a reference for generating all predetermined frequencies and is used in common. Therefore, the reference clock generation unit 305 generates a standard signal with compensated accuracy even if the necessary frequencies are different and the frequencies are different.
  • the reference clock generation unit 305 outputs, for example, a radio frequency (carrier frequency), a signal processing clock, a sampling frequency, a symbol synchronization clock, and the like.
  • FIG. 4 is a block diagram of a second modem according to an embodiment of the present invention.
  • the modem unit 400 includes an OFDM modem unit 401, an orthogonal modulation unit 402, an orthogonal demodulation unit 403, local transmission units 404 and 405, a reference clock generation unit 406, and a frequency setting unit 407.
  • the reference clock generation unit 406 generates a signal serving as a reference for performing processing of the modem unit 400 as a whole. For example, an integer multiple of the sampling frequency, FFT clock, IFFT clock, radio frequency (transmission carrier frequency, reception carrier frequency), hopping frequency, etc. are all generated from this reference clock.
  • the main difference between the modulation / demodulation unit 400 and the modulation / demodulation unit 300 is that the local transmission unit has two systems of the local transmission unit 404 and the local transmission unit 405, the frequency setting unit 407 is controlled by the signal 419, and the local transmission unit for transmission and reception
  • the frequencies of 404 and 405 are set by signals 420 and 421. If there is a delay in the radio wave between the transmitting station and the receiving station, the receiving station must synchronize with the change from the transmitting station based on the received wave. Obtain and control the required delay time difference.
  • FIG. 5 is a diagram for explaining a first band changing method of the communication apparatus according to the embodiment of the present invention.
  • FIG. 5 shows a case where the bandwidth of one subcarrier is the same and the number of the subcarriers is changed.
  • 5A is twice as many as the number in FIG. 5B, and the bandwidth is twice that in FIG. 5B.
  • subcarriers are not generated in the right region by putting “0” in the real part and imaginary part of the complex number as the input of the subcarrier during OFDM modulation.
  • the bandwidth is doubled as an example, but may be multiple times.
  • FIG. 6 is a diagram for explaining a second band changing method of the communication apparatus according to the embodiment of the present invention.
  • FIG. 6 shows an example in which one bandwidth is doubled
  • FIG. 6A generates an OFDM signal with a subcarrier having a half bandwidth compared to FIG. 6B.
  • This generation method is implemented by changing the sampling pulse which is the operating frequency of IFFT and the number of points of IFFT.
  • the subcarrier interval is changed by a combination of a clock obtained by dividing the sampling frequency at the time of IFFT (1 / N, N is an integer) and the number of FFT conversion points.
  • FIG. 7 is a diagram for explaining the signal form of the communication apparatus according to the embodiment of the present invention.
  • FIG. 7A shows a first mode. That is, the subcarrier is arranged as a lower sideband and an upper sideband around the carrier (center dotted arrow).
  • FIG. 7B shows a second form. Increase the number of IFFT conversion points and sampling frequency to generate more subcarriers and use only where necessary. (The IFFT input is set to zero for both the real part and the imaginary part except where necessary.) However, at the time of demodulation, a dotted line arrow is used as a carrier wave, quadrature demodulation is performed, and the output is subjected to FFT and taken out as a received signal only when necessary.
  • IF input
  • a + jB complex signal input
  • FIG. 8 is a diagram for explaining the first frequency hopping of the communication apparatus according to the embodiment of the present invention.
  • the vertical axis represents time
  • the horizontal axis represents frequency
  • the center of each represents the position of the carrier frequency.
  • the signal waveform is generated in the state of the lower sideband and the upper sideband centering on the carrier wave (indicated by the dotted arrow in the center. As in the past, it does not exist theoretically, but due to hard degradation, it actually shows an attenuation state)
  • the transmission frequency is generated as a local transmission frequency using an orthogonal modulation unit, and the transmission frequency is changed (hopped) with time.
  • FIG. 9 is a diagram for explaining the second frequency hopping of the communication apparatus according to the embodiment of the present invention.
  • the communication apparatus performs IFFT over a wide range and realizes frequency hopping by controlling the complex input of IFFT.
  • FIG. 9 only the portions of time 1, time 2, time 3,... Enclosed by a square are input, and the others are performed by setting the complex input to “0”. It is also possible to hop by changing the number of subcarriers depending on the time. Usually, the in-band hopping method is enabled.
  • the filter corresponding to each channel is switched and used, but especially on the transmission side (compared to reception), it is an operation at a place where the power is large, and it is a heavy burden on the filter and its switching. Will be called.
  • the types of filters need to be different in frequency and steeply attenuated.
  • the switching time of the switching unit affects the hopping speed. Insertion of the switching unit causes insertion loss and heat loss.
  • the type of transmission amplifying unit requires heat dissipation measures due to power loss, which affects the size and weight.
  • the filter characteristic needs to use a wide band and a wide band power amplifying unit (a common amplifying unit can be used).
  • a wideband filter and a wideband amplifier it is essential that the frequency is different at the same time (same symbol).
  • FIG. 10 is a diagram for explaining channel frequency allocation to symbol time when frequency hopping is performed by a communication apparatus according to an embodiment of the present invention.
  • FIG. 10 shows an example of using CH1 (channel 1) to CH4. Basically, OCC (One Coincidence Code) is used. However, since the type of OCC is limited, FIG. 11 shows a method for increasing the number.
  • CH1 channel 1
  • OCC One Coincidence Code
  • FIG. 10 shows the case of 4 channels. Since control is performed so that different frequencies are within one symbol and the frequency is OFDM between each frequency, the attenuation outside the band is large, and it can be easily realized with a wider band of the filter and a wide band of the power amplification unit. If signals overlap at the same time and frequency, so-called interference occurs, so it is essential to control so that they do not overlap at any time, and IM (Inter Modulation), which is important as a transmitter, is also reduced. Easy.
  • CH1 is F1
  • CH2 is F2
  • CH3 CH4 is F4 at time t1 (within t1 symbol)
  • FIG. 11 is a diagram for explaining channel frequency assignment when the channel is increased with respect to the symbol time when frequency hopping is performed by the communication apparatus according to the embodiment of the present invention.
  • FIG. 11 shows a method of using a frequency of 4 channels in the channel increasing method and doubling the frequency.
  • F is created by adding 4 to the F numbers of t1, t2, t3, and t4. That is, at t5, 4 is added to “F1” of t1 to obtain F5.
  • At t6, 4 is added to “F2” of t2 to obtain F6.
  • F7 at t7 and F8 at t8 is a diagram for explaining channel frequency assignment when the channel is increased with respect to the symbol time when frequency hopping is performed by the communication apparatus according to the embodiment of the present invention.
  • FIG. 11 shows a method of using a frequency of 4 channels in the channel increasing method and doubling the frequency.
  • F is created by adding 4 to the F numbers of t1, t2, t3, and t4. That is, at
  • t1 to t8 are created with CH2, CH3, and CH4.
  • the areas CH5 to CH8 and t1 to t4 are created by copying the areas CH1 to CH4 and t5 to t8 created above as they are.
  • the CH5 to CH8 and t5 to t8 regions are created by copying the CH1 to CH4 and t1 to t4 regions as they are.
  • FIG. 11 shows a method of increasing the hopping pattern from FIG.
  • the hopping pattern can be increased in the same manner as described above in the same manner as described above by ⁇ 2.
  • FIG. 12 is a diagram for explaining a method of directly creating an allocation of channel frequency at the time of channel increase with respect to a symbol time when frequency hopping is performed by a communication apparatus according to an embodiment of the present invention.
  • FIG. 12 shows a case where the number of channels is increased to six.
  • the frequency F is directly assigned so that channel numbers do not overlap each symbol time.
  • the communication apparatus reduces mutual interference due to orthogonality of subcarriers corresponding to the bandwidth even if two waves of transmission frequencies including subcarriers are close to each other.
  • This is a frequency hopping method in which the frequency is changed for communication, and it is guaranteed that the frequencies at the same time do not overlap.
  • 101, 102, 103, 131, 132 transmitting / receiving station
  • 200 wireless unit
  • 201 amplification unit
  • 203 directional coupling unit
  • 204 shared unit
  • 205 antenna
  • 206 combining unit
  • 207 Distribution unit

Abstract

The purpose of the present invention is to provide a communication device capable of a frequency hopping communication system which ensures that there is no overlap of frequencies at the same time in order to, even if two waves of a transmission frequency including a subcarrier (that are disposed to have an orthogonal relation therebetween) are close to each other, eliminate mutual interference by a bandwidth and the orthogonality of subcarriers corresponding to the bandwidth. This communication device performs frequency hopping communication and is provided with a wireless unit and a modulation/demodulation unit, the communication device being characterized in that the wireless unit comprises an antenna, a sharing unit, a directional coupling unit, a filter unit, an amplification unit, a synthesis unit, and a division unit, the modulation/demodulation unit comprises an OFDM modulation/demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit, and the reference clock generation unit supplies a reference clock to the OFDM modulation/demodulation unit and the local transmission unit.

Description

通信装置及び通信方法Communication apparatus and communication method
 本発明は、通信装置及び通信方法に関するものである。 The present invention relates to a communication device and a communication method.
 従来、異なる周波数を使用した通信装置で構成する通信系で、同時に送信する場合は、互いの干渉を避けるため、その2波が特に近接した場合は、互いの干渉で、本来の特性を得ることができない。そのため、送信出力に送信フィルタを使用する。
 また、それらの通信系で、周波数ホッピング通信等を実施する場合は、送信系に性能の厳しいフィルタを備える必要があり、その上、周波数ホッピン通信を行う場合は、中心周波数の異なるフィルターバンクを必要とし、ホッピング速度の向上も困難で、装置の大型化を伴うことになる。
Conventionally, in a communication system composed of communication devices using different frequencies, when transmitting simultaneously, in order to avoid mutual interference, when the two waves are particularly close to each other, the original characteristics can be obtained by mutual interference. I can't. Therefore, a transmission filter is used for the transmission output.
In addition, when performing frequency hopping communication, etc., in these communication systems, it is necessary to provide filters with strict performance in the transmission system. In addition, when performing frequency hopping communication, filter banks with different center frequencies are required. In addition, it is difficult to improve the hopping speed, which increases the size of the apparatus.
 先行技術文献としては、例えば、特許文献1に、周波数ホッピング方式における無線変調周波数の切り替えに起因するバースト状データ誤りを低減する発明が開示されている。 As a prior art document, for example, Patent Document 1 discloses an invention for reducing burst data errors caused by switching of a radio modulation frequency in a frequency hopping method.
特開2003-229789号公報JP 2003-229789 A
 本発明の目的は、副搬送波を含む送信周波数の2波が近接していても、帯域幅および副搬送波当たりの電力を適応化させ、互いの干渉を低減し、耐傍受および耐妨害用として周波数を変化させて通信する周波数ホッピング方式で、互いの干渉をなくすため、同一時刻での周波数が重ならないことを保証する周波数ホッピング通信方式が可能な通信装置及び通信方法を提供することである。 The object of the present invention is to adapt the bandwidth and the power per subcarrier even if two waves of the transmission frequency including the subcarrier are close to each other, reduce mutual interference, and use frequency for anti-interception and anti-jamming. In order to eliminate mutual interference in a frequency hopping scheme in which communication is performed by changing the frequency, a communication apparatus and a communication method capable of a frequency hopping communication scheme that guarantees that frequencies at the same time do not overlap are provided.
 本発明の通信装置は、周波数ホッピング通信を行う無線部と変復調部を備えた通信装置であって、無線部はアンテナと共用部と方向性結合部とフィルタ部と増幅部と合成部と分配部とを有し、変復調部はOFDM変復調部と直交変調部と直交復調部と局部発信部と基準クロック発生部とを有し、OFDM変復調部と局部発信部に供給される基準クロックは基準クロック発生部からのみ供給することを特徴とする。
 また本発明の通信方法は、周波数ホッピング通信を行う無線部と変復調部を備えた通信装置における通信方法であって、無線部はアンテナと共用部と方向性結合部とフィルタ部と増幅部と合成部と分配部とを有し、変復調部はOFDM変復調部と直交変調部と直交復調部と局部発信部と基準クロック発生部とを有し、OFDM変復調部と局部発信部に供給される基準クロックは基準クロック発生部から供給することを特徴とする。
The communication device of the present invention is a communication device including a radio unit that performs frequency hopping communication and a modem unit, and the radio unit includes an antenna, a shared unit, a directional coupling unit, a filter unit, an amplifying unit, a combining unit, and a distributing unit. The modulation / demodulation unit includes an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit, and a reference clock supplied to the OFDM modulation / demodulation unit and the local transmission unit is generated as a reference clock. It supplies only from a part.
The communication method of the present invention is a communication method in a communication device including a radio unit for frequency hopping communication and a modulation / demodulation unit, and the radio unit combines an antenna, a shared unit, a directional coupling unit, a filter unit, and an amplification unit. The modulation / demodulation unit has an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit, and is supplied to the OFDM modulation / demodulation unit and the local transmission unit. Is supplied from a reference clock generator.
 また、本発明の通信装置は、上述の通信装置であって、OFDM変復調部の変調は帯域の増減またはサンプリング周波数を増減することを特徴とする。 The communication apparatus of the present invention is the communication apparatus described above, wherein modulation of the OFDM modulation / demodulation unit increases or decreases a band or a sampling frequency.
 また、本発明の通信装置は、上述の通信装置であって、OFDM変復調部の変調は搬送波周波数を中心に両側に副搬送波を配置または帯域内に搬送波が位置しないことを特徴とする。 Also, the communication device of the present invention is the communication device described above, wherein the modulation of the OFDM modulation / demodulation unit is characterized in that subcarriers are arranged on both sides centering on the carrier frequency or no carrier wave is located in the band.
 また、本発明の通信装置は、上述の通信装置であって、帯域の中心に搬送波が位置する(実際は実在しない、しかしハード劣化で残留している状態)ものは直交変調部の搬送波をホッピングさせ、帯域内に搬送波が位置しないものは直交変調部に入力するベースバンド信号を(IFFTしたベースバンド信号)、所定の帯域幅に相当する分だけの副搬送波を使用することを特徴とする。 Further, the communication device of the present invention is the above-described communication device in which the carrier wave is located at the center of the band (actually does not exist but remains due to hardware deterioration), the carrier wave of the quadrature modulation unit is hopped. The baseband signal (IFFT baseband signal) input to the quadrature modulation unit is used when the carrier wave is not located in the band, and subcarriers corresponding to a predetermined bandwidth are used.
 さらに、本発明の通信装置は、上述の通信装置であって、帯域内に搬送波が位置するものはその周波数を時間的に異なるようにし、帯域内に搬送波が位置しないものはIFFT後入力信号の有無を制御して周波数ホッピングを行うことを特徴とする。 Furthermore, the communication device of the present invention is the communication device described above, and the carrier wave located within the band is made to have a different frequency in time, and the carrier wave not located within the band is the input signal after IFFT. Frequency hopping is performed by controlling the presence or absence.
 本発明によれば、副搬送波を含む送信周波数の2波が近接していても、帯域幅および副搬送波当たりの電力を適応化させ、互いの干渉を低減し、耐傍受および耐妨害用として周波数を変化させて通信する周波数ホッピング方式で、互いの干渉をなくすため、同一時刻での周波数が重ならないことを保証することができる。 According to the present invention, even if two transmission frequency waves including a subcarrier are close to each other, the bandwidth and the power per subcarrier are adapted, the mutual interference is reduced, and the frequency is used for anti-interception and anti-jamming. In the frequency hopping method in which communication is performed with different frequencies, mutual interference is eliminated, so that it is possible to ensure that frequencies at the same time do not overlap.
本発明の一実施例であるシステムの構成例を示す図である。It is a figure which shows the structural example of the system which is one Example of this invention. 本発明の一実施例である無線部のブロック図である。It is a block diagram of the radio | wireless part which is one Example of this invention. 本発明の一実施例である第1の変復調部のブロック図である。It is a block diagram of the 1st modulation / demodulation part which is one Example of this invention. 本発明の一実施例である第2の変復調部のブロック図である。It is a block diagram of the 2nd modulation / demodulation part which is one Example of this invention. 本発明の一実施例である通信装置の第1の帯域変更方法について説明するための図である。It is a figure for demonstrating the 1st band change method of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の第2の帯域変更方法について説明するための図である。It is a figure for demonstrating the 2nd zone | band change method of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の信号形態について説明するための図である。It is a figure for demonstrating the signal form of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の第1の周波数ホッピングについて説明するための図である。It is a figure for demonstrating the 1st frequency hopping of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の第2の周波数ホッピングについて説明するための図である。It is a figure for demonstrating the 2nd frequency hopping of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル周波数の割り当てを直接作成する方法について説明するための図である。It is a figure for demonstrating the method to create directly the allocation of the channel frequency with respect to the symbol time in the case of performing frequency hopping of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル増加時のチャネル周波数の割り当てについて説明するための図である。It is a figure for demonstrating allocation of the channel frequency at the time of the channel increase with respect to the symbol time in the case of performing frequency hopping of the communication apparatus which is one Example of this invention. 本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル増加時のチャネル周波数の割り当てを直接作成する方法について説明するための図である。It is a figure for demonstrating the method of creating directly the allocation of the channel frequency at the time of the channel increase with respect to the symbol time in the case of performing frequency hopping of the communication apparatus which is one Example of this invention.
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1は本発明の一実施例であるシステムの構成例を示す図である。
 図1において、送受信局101,102,103は、通信装置である。
 送受信局101,102,103は、少なくとも無線部200と、変復調部300または変復調部400で構成されている。
 送受信局101は、送受信局102と周波数F1を使用して通信を行い、送受信局103と周波数F3を使用して通信を行う。
 また、送受信局102は、送受信局103と周波数F2を使用して通信を行う。
 なお、周波数F1,F2,F3は、異なる周波数である。
 すなわち、送受信局101,102,103は、2波の周波数を使用して同時に通信を行うことができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of a system according to an embodiment of the present invention.
In FIG. 1, transmission / reception stations 101, 102, and 103 are communication devices.
The transmission / reception stations 101, 102, and 103 include at least a radio unit 200 and a modem unit 300 or a modem unit 400.
The transmission / reception station 101 communicates with the transmission / reception station 102 using the frequency F1, and communicates with the transmission / reception station 103 using the frequency F3.
The transmitting / receiving station 102 communicates with the transmitting / receiving station 103 using the frequency F2.
The frequencies F1, F2, and F3 are different frequencies.
That is, the transmission / reception stations 101, 102, and 103 can simultaneously communicate using two wave frequencies.
 図2は本発明の一実施例である無線部のブロック図である。
 図2において、無線部200は、増幅部201、フィルタ部202、方向性結合部203、共用部204、アンテナ205、合成部206、分配部207で構成されている。
 なお、合成部206と分配部207は通常の通信装置にはなく、本発明の一実施例における特徴的な機能ブロックである。したがって、無線部200は通常の半2重の通信装置である。
 方向性結合部203は送信信号と受信信号をそれぞれ必要な方向に切り替える。共用部204はアンテナ205での送信と受信動作と、それぞれの周波数の送信と受信を共用するものである。
 合成部206は高周波信号の合成を行うもので、入力信号211-1,211-2,・・・が数種類になり、それらを合成して、送信信号212とするものである。一方、分配部207は増幅部201の受信増幅された信号217を分配し、受信出力218-1,218-2,・・・とするものである。
FIG. 2 is a block diagram of a radio unit according to an embodiment of the present invention.
In FIG. 2, the radio unit 200 includes an amplifying unit 201, a filter unit 202, a directional coupling unit 203, a shared unit 204, an antenna 205, a combining unit 206, and a distributing unit 207.
Note that the combining unit 206 and the distributing unit 207 are not included in a normal communication device, but are characteristic functional blocks in an embodiment of the present invention. Therefore, the wireless unit 200 is a normal half-duplex communication device.
The directional coupling unit 203 switches the transmission signal and the reception signal in necessary directions. The shared unit 204 shares the transmission and reception operations of the antenna 205 and the transmission and reception of each frequency.
The synthesizer 206 synthesizes high-frequency signals, and there are several types of input signals 211-1, 211-2,... On the other hand, the distribution unit 207 distributes the received and amplified signal 217 of the amplification unit 201 to receive outputs 218-1, 218-2,.
 図3は本発明の一実施例である第1の変復調部のブロック図である。
 図3において、変復調部300は、OFDM変復調部301、直交変調部302、直交復調部303、局部発信部304、基準クロック発生部305で構成されている。
 基準クロック発生部305は、変復調部300全体の信号処理を行うための基準となるクロックを発生するものである。例えば、デジタル処理に必要なすべてのクロックの原信、無線周波数(送信の搬送波周波数、受信の搬送波周波数)、ホッピングの周波数等のすべてが基準クロックから生成されている。
FIG. 3 is a block diagram of a first modulation / demodulation unit according to an embodiment of the present invention.
In FIG. 3, the modem unit 300 includes an OFDM modem unit 301, an orthogonal modulation unit 302, an orthogonal demodulation unit 303, a local transmission unit 304, and a reference clock generation unit 305.
The reference clock generation unit 305 generates a reference clock for performing signal processing of the entire modulation / demodulation unit 300. For example, all the clock signals, radio frequencies (transmission carrier frequency, reception carrier frequency), hopping frequency, and the like necessary for digital processing are all generated from the reference clock.
 次に、変復調部300の動作について、図3を用いて説明する。
 OFDM変復調部301のOFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重方式)変調はデジタル信号315を所定の変調方式に変換するものである。
 OFDM変復調部301は、まず、必要な副搬送波を互いが直交するような周波間隔に配置し、それぞれに、例えば2相PSK(Phase Shift Keying、位相偏移変調)、4相PSK、多値QAM(Quadrature Amplitude Modulation、直角位相振幅変調)等の方式で変調する。この処理はベースバンド領域で行い、次段の無線周波数に変調するための信号を発生する。本例では直交変調部302の変調入力311を得る。直交変調部302は、変調入力としてSIN波形、COS波形が必要であり、デジタルデータ315をもとに、IFFT等の処理で生成する。
Next, the operation of the modem unit 300 will be described with reference to FIG.
The OFDM (Orthogonal Frequency Division Multiplexing) modulation of the OFDM modulation / demodulation unit 301 converts the digital signal 315 into a predetermined modulation method.
First, the OFDM modulation / demodulation unit 301 arranges necessary subcarriers at frequency intervals that are orthogonal to each other. For example, two-phase PSK (Phase Shift Keying), four-phase PSK, and multi-level QAM are respectively provided. (Quadrature Amplitude Modulation, quadrature amplitude modulation) etc. This processing is performed in the baseband region, and a signal for modulating to the next-stage radio frequency is generated. In this example, the modulation input 311 of the quadrature modulation unit 302 is obtained. The quadrature modulation unit 302 requires a SIN waveform and a COS waveform as modulation inputs, and generates them by processing such as IFFT based on the digital data 315.
 直交変調部302は、無線信号である局部発信部304で発生された高周波信号316と上記のSIN波形とCOS波形で変調を行い、その二つの信号を加算することで、所定の変調方式となり、無線周波数211として出力する。 The quadrature modulation unit 302 performs modulation with the high-frequency signal 316 generated by the local transmission unit 304, which is a radio signal, the SIN waveform and the COS waveform, and adds the two signals to obtain a predetermined modulation method. The radio frequency 211 is output.
 次に、変復調部300の受信動作について説明する。
 直交復調部303は、通信相手からの受信信号218であるOFDM信号を入力し、局部発信部304から出力されるローカル信号316を使用して復調し、SIN波形およびCOS波形信号314を出力する。
 OFDM変復調部301は、信号314をFFTすることにより、デジタルデータ315を得る。
Next, the reception operation of the modem unit 300 will be described.
The orthogonal demodulator 303 receives an OFDM signal that is a received signal 218 from a communication partner, demodulates it using the local signal 316 output from the local transmitter 304, and outputs a SIN waveform and a COS waveform signal 314.
The OFDM modulation / demodulation unit 301 obtains digital data 315 by performing FFT on the signal 314.
 なお、基準クロック発生部305はOFDM変復調部301の処理に必要なクロック、局部発信部314の発生に必要な基準クロックで、すべての所定の周波数発生の基準となるもので、共通で使用する。したがって、基準クロック発生部305は、必要な使用周波数がすべて同期の取れた状態で、周波数は異なっても、精度の補償された標準信号を生成する。
 基準クロック発生部305は、例えば、無線周波数(搬送周波数)、信号処理用のクロック、サンプリング周波数、シンボル同期用クロック等を出力する。
The reference clock generation unit 305 is a clock necessary for the processing of the OFDM modulation / demodulation unit 301 and a reference clock necessary for the generation of the local transmission unit 314. The reference clock generation unit 305 serves as a reference for generating all predetermined frequencies and is used in common. Therefore, the reference clock generation unit 305 generates a standard signal with compensated accuracy even if the necessary frequencies are different and the frequencies are different.
The reference clock generation unit 305 outputs, for example, a radio frequency (carrier frequency), a signal processing clock, a sampling frequency, a symbol synchronization clock, and the like.
 次に、変復調部400の動作について図4を用いて説明する。
 図4は本発明の一実施例である第2の変復調部のブロック図である。
 図4において、変復調部400は、OFDM変復調部401、直交変調部402、直交復調部403、局部発信部404,405、基準クロック発生部406、周波数設定部407で構成されている。
 基準クロック発生部406は、変復調部400全体の処理を行うための基準となる信号を発生するものである。例えば、サンプリング周波数の整数倍、FFTのクロック、IFFTのクロック、無線周波数(送信の搬送波周波数、受信の搬送波周波数)、ホッピングの周波数等すべてが本基準クロックから生成される。
Next, the operation of the modem unit 400 will be described with reference to FIG.
FIG. 4 is a block diagram of a second modem according to an embodiment of the present invention.
4, the modem unit 400 includes an OFDM modem unit 401, an orthogonal modulation unit 402, an orthogonal demodulation unit 403, local transmission units 404 and 405, a reference clock generation unit 406, and a frequency setting unit 407.
The reference clock generation unit 406 generates a signal serving as a reference for performing processing of the modem unit 400 as a whole. For example, an integer multiple of the sampling frequency, FFT clock, IFFT clock, radio frequency (transmission carrier frequency, reception carrier frequency), hopping frequency, etc. are all generated from this reference clock.
 変復調部400の変復調部300との主な違いは、局部発信部が局部発信部404と局部発信部405の2系統あり、周波数設定部407が信号419で制御され、送信、受信の局部発信部404,405が信号420,421で周波数が設定される。なお、送信局と受信局間での電波に遅延が発生する場合は、受信局は受信波をもとに、送信局との変化との間で同期をとる必要があり、遅延時間の補正に必要な遅延時間差を取得して、制御する。 The main difference between the modulation / demodulation unit 400 and the modulation / demodulation unit 300 is that the local transmission unit has two systems of the local transmission unit 404 and the local transmission unit 405, the frequency setting unit 407 is controlled by the signal 419, and the local transmission unit for transmission and reception The frequencies of 404 and 405 are set by signals 420 and 421. If there is a delay in the radio wave between the transmitting station and the receiving station, the receiving station must synchronize with the change from the transmitting station based on the received wave. Obtain and control the required delay time difference.
 次に、本発明の一実施例である帯域変更方法について説明する。
 図5は本発明の一実施例である通信装置の第1の帯域変更方法について説明するための図である。
 図5は、一本の副搬送波の帯域幅は同じで、その本数を変更する場合である。図5(A)は図5(B)に比べ本数で2倍あり、帯域幅は図5(B)に比べ、2倍の帯域になる。
 図5(B)は、OFDM変調時に副搬送波の入力として、複素数の実数部と虚数部にそれぞれ“0”を入れることで、右側の領域は副搬送波が生成されない。
 なお、図5(A)は、例として帯域幅を2倍としているが、複数倍でもよい。
Next, a band changing method according to an embodiment of the present invention will be described.
FIG. 5 is a diagram for explaining a first band changing method of the communication apparatus according to the embodiment of the present invention.
FIG. 5 shows a case where the bandwidth of one subcarrier is the same and the number of the subcarriers is changed. 5A is twice as many as the number in FIG. 5B, and the bandwidth is twice that in FIG. 5B.
In FIG. 5B, subcarriers are not generated in the right region by putting “0” in the real part and imaginary part of the complex number as the input of the subcarrier during OFDM modulation.
In FIG. 5A, the bandwidth is doubled as an example, but may be multiple times.
 図6は本発明の一実施例である通信装置の第2の帯域変更方法について説明するための図である。
 図6は、一本の帯域幅を2倍にした一例であり、図6(A)は図6(B)に比べて、1/2の帯域幅の副搬送波でOFDM信号を生成する。この生成方法はIFFTの動作周波数であるサンプリングパルスとIFFTのポイント数を変更することにより実施する。
 なお、副搬送波の間隔変更は、IFFTの際のサンプリング周波数を分周(1/N、Nは整数)したクロックと、FFTの変換ポイント数の組み合わせで変更する。
FIG. 6 is a diagram for explaining a second band changing method of the communication apparatus according to the embodiment of the present invention.
FIG. 6 shows an example in which one bandwidth is doubled, and FIG. 6A generates an OFDM signal with a subcarrier having a half bandwidth compared to FIG. 6B. This generation method is implemented by changing the sampling pulse which is the operating frequency of IFFT and the number of points of IFFT.
The subcarrier interval is changed by a combination of a clock obtained by dividing the sampling frequency at the time of IFFT (1 / N, N is an integer) and the number of FFT conversion points.
 図7は本発明の一実施例である通信装置の信号形態について説明するための図である。
 図7(A)は第1の形態を示す。
 すなわち、搬送波(中央の点線矢印)を中心に、副搬送波を下側波帯、上側波帯として配置したものである。
 一方、図7(B)は第2の形態を示す。
 IFFTの変換ポイント数とサンプリング周波数を上げて、副搬送波を多く発生し、必要なところのみ使用する。(必要なところ以外はIFFTの入力を実数部、虚数部ともゼロにする)。但し、復調時は点線矢印を搬送波とし、直交復調し、その出力をFFTして、必要なところのみ受信信号として取り出す。
 なお、副搬送波の増減は、IFFTの入力で、複素信号入力A+jBでA=±1(多値変調の場合は少数点を含む値)とし、使用しない副搬送はA=B=0とする指定する。
 この方法では、図7(A)、図7(B)とも局部発信部、直交変調部、直交復調部は共通で使用し、使用しない副搬送波はA=B=0とするのみなので、回路の簡素化が可能である。
FIG. 7 is a diagram for explaining the signal form of the communication apparatus according to the embodiment of the present invention.
FIG. 7A shows a first mode.
That is, the subcarrier is arranged as a lower sideband and an upper sideband around the carrier (center dotted arrow).
On the other hand, FIG. 7B shows a second form.
Increase the number of IFFT conversion points and sampling frequency to generate more subcarriers and use only where necessary. (The IFFT input is set to zero for both the real part and the imaginary part except where necessary.) However, at the time of demodulation, a dotted line arrow is used as a carrier wave, quadrature demodulation is performed, and the output is subjected to FFT and taken out as a received signal only when necessary.
In addition, increase / decrease of the subcarrier is designated as IF = input, complex signal input A + jB, A = ± 1 (a value including a decimal point in the case of multilevel modulation), and unused subcarrier A = B = 0. To do.
In this method, the local transmission unit, the quadrature modulation unit, and the quadrature demodulation unit are used in common in FIGS. 7A and 7B, and the unused subcarrier is only set to A = B = 0. Simplification is possible.
 図8は本発明の一実施例である通信装置の第1の周波数ホッピングについて説明するための図である。
 図8において、縦軸は時刻、横軸は周波数を表し、それぞれの中央は搬送波周波数の位置を示す。
 信号波形は、搬送波(中央点線矢印で示す。これまでと同様、理論上は存在しないが、ハード劣化のため、実際は減衰状態を示す)を中心に下側波帯、上側波帯の状態で発生し、送信周波数を局部発信周波数として、直交変調部を使用して生成し、時刻と共に、送信周波数を変化(ホッピング)させる。
FIG. 8 is a diagram for explaining the first frequency hopping of the communication apparatus according to the embodiment of the present invention.
In FIG. 8, the vertical axis represents time, the horizontal axis represents frequency, and the center of each represents the position of the carrier frequency.
The signal waveform is generated in the state of the lower sideband and the upper sideband centering on the carrier wave (indicated by the dotted arrow in the center. As in the past, it does not exist theoretically, but due to hard degradation, it actually shows an attenuation state) Then, the transmission frequency is generated as a local transmission frequency using an orthogonal modulation unit, and the transmission frequency is changed (hopped) with time.
 図9は本発明の一実施例である通信装置の第2の周波数ホッピングについて説明するための図である。
 通信装置は、IFFTを広範囲に行い、IFFTの複素入力を制御することにより周波数ホッピングを実現する。図9では、四角で囲った、時刻1、時刻2、時刻3、・・の部分だけ入力し、それ以外は複素入力を“0”にすることにより行う。
 尚、時刻によって、副搬送波の数を変えてホッピンすることも可能である。
 通常は、帯域内のホッピング方式を有効にする。
FIG. 9 is a diagram for explaining the second frequency hopping of the communication apparatus according to the embodiment of the present invention.
The communication apparatus performs IFFT over a wide range and realizes frequency hopping by controlling the complex input of IFFT. In FIG. 9, only the portions of time 1, time 2, time 3,... Enclosed by a square are input, and the others are performed by setting the complex input to “0”.
It is also possible to hop by changing the number of subcarriers depending on the time.
Usually, the in-band hopping method is enabled.
 通常、周波数ホッピング通信方式においては、各チャネルに相当するフィルタを切り替えて使用するが、特に送信側では(受信に比較し)電力が大きい箇所での動作であり、フィルタとその切り替えに大変な負担とかけることになる。
 例えば、フィルタの種類は周波数が異なり、減衰急峻なものが必要となる。
 切替部の切り替え時間はホッピンク速度に影響する。
 切替部の挿入は挿入損失、熱損失を生じる。
 送信増幅部の種類は電力損失による放熱対策が必要であり、寸法や重量に影響する。
 従って、信号そのものが、帯域外では急峻な減衰特性をもつことにより、フィルタの特性に対する要求は広帯域、広帯域電力増幅部使用(共通増幅部の使用が可)とすることを必要とする。
 そのためには、広帯域のフィルタ、広帯域増幅部を使用する場合に同一時刻(同一シンボル)では異なる周波数であることが必須である。
Normally, in frequency hopping communication systems, the filter corresponding to each channel is switched and used, but especially on the transmission side (compared to reception), it is an operation at a place where the power is large, and it is a heavy burden on the filter and its switching. Will be called.
For example, the types of filters need to be different in frequency and steeply attenuated.
The switching time of the switching unit affects the hopping speed.
Insertion of the switching unit causes insertion loss and heat loss.
The type of transmission amplifying unit requires heat dissipation measures due to power loss, which affects the size and weight.
Therefore, since the signal itself has a steep attenuation characteristic outside the band, the requirement for the filter characteristic needs to use a wide band and a wide band power amplifying unit (a common amplifying unit can be used).
For that purpose, when using a wideband filter and a wideband amplifier, it is essential that the frequency is different at the same time (same symbol).
 次に、本発明の一実施例である通信方式として周波数ホッピングを行う場合のチャネルの割り当て方法について、図10~図12を用いて説明する。
 図10は本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル周波数の割り当てについて説明するための図である。
 図10はCH1(チャネル1)~CH4の使用例を示す。
 基本的にはOCC(One Coincidence Code)を使用するが、OCCではその種類が制限されるので、増加させる方法を示したものを図11に示す。
Next, a channel assignment method when frequency hopping is performed as a communication method according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 10 is a diagram for explaining channel frequency allocation to symbol time when frequency hopping is performed by a communication apparatus according to an embodiment of the present invention.
FIG. 10 shows an example of using CH1 (channel 1) to CH4.
Basically, OCC (One Coincidence Code) is used. However, since the type of OCC is limited, FIG. 11 shows a method for increasing the number.
 図10は4チャネルの場合を示す。1シンボル内では異なる周波数になるように制御し、互いの周波数間はOFDMのため、帯域外の減衰は大きく、フィルタの広帯域化、電力増幅部の広帯域で容易に実現可能である。
 同一時刻、同一周波数になると信号が重なるといわゆる混信状態になるので、いかなる時も重ならないように制御することが必須であり、送信装置として重要なIM(Inter Modulation、相互変調歪)の低減も容易である。
 図10は、例えば、t1時刻(t1シンボル内)ではCH1がF1、CH2がF2、CH3がF3、CH4がF4となり、t2時刻ではCH1がF2、CH2がF4、CH3がF1、CH4がF3となり、t3時刻ではCH1がF3、CH2がF1、CH3がF4、CH4がF2となり、t4時刻ではCH1がF4、CH2がF3、CH3がF2、CH4がF1となり、すべての組み合わせで重なることがない。
FIG. 10 shows the case of 4 channels. Since control is performed so that different frequencies are within one symbol and the frequency is OFDM between each frequency, the attenuation outside the band is large, and it can be easily realized with a wider band of the filter and a wide band of the power amplification unit.
If signals overlap at the same time and frequency, so-called interference occurs, so it is essential to control so that they do not overlap at any time, and IM (Inter Modulation), which is important as a transmitter, is also reduced. Easy.
In FIG. 10, for example, CH1 is F1, CH2 is F2, CH3 is F3, CH4 is F4 at time t1 (within t1 symbol), and CH1 is F2, CH2 is F4, CH3 is F1, and CH4 is F3 at time t2. At time t3, CH1 is F3, CH2 is F1, CH3 is F4, and CH4 is F2, and at time t4, CH1 is F4, CH2 is F3, CH3 is F2, and CH4 is F1, and all combinations do not overlap.
 図11は本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル増加時のチャネル周波数の割り当てについて説明するための図である。
 図11はチャネル増加方法で周波数4チャネルを使用し、2倍にする方法である。
 図11において、CH1のt5、t6、t7、t8においては、t1、t2、t3、t4のFの番号にそれぞれ4を加算したFを作る。
 すなわち、t5ではt1の「F1」に対して4を加算してF5とする。t6ではt2の「F2」に対して4を加算してF6とする。以下、同様にしてt7ではF7、t8ではF8となる。
 さらに、CH2、CH3、CH4でt1からt8を作成する。
 そして、CH5~CH8とt1~t4の領域は、上記で作成したCH1~CH4とt5~t8の領域をそのままコピーして作成する。
 次に、CH5~CH8とt5~t8の領域は、CH1~CH4とt1~t4の領域をそのままコピーして作成する。
 図11は図10からホッピンパターンを増加させる方法である。ホッピンパターンは図11を基本に×2も上述と同様のやり方で同様に増加させることができる。
FIG. 11 is a diagram for explaining channel frequency assignment when the channel is increased with respect to the symbol time when frequency hopping is performed by the communication apparatus according to the embodiment of the present invention.
FIG. 11 shows a method of using a frequency of 4 channels in the channel increasing method and doubling the frequency.
In FIG. 11, at t5, t6, t7, and t8 of CH1, F is created by adding 4 to the F numbers of t1, t2, t3, and t4.
That is, at t5, 4 is added to “F1” of t1 to obtain F5. At t6, 4 is added to “F2” of t2 to obtain F6. In the same manner, F7 at t7 and F8 at t8.
Further, t1 to t8 are created with CH2, CH3, and CH4.
The areas CH5 to CH8 and t1 to t4 are created by copying the areas CH1 to CH4 and t5 to t8 created above as they are.
Next, the CH5 to CH8 and t5 to t8 regions are created by copying the CH1 to CH4 and t1 to t4 regions as they are.
FIG. 11 shows a method of increasing the hopping pattern from FIG. The hopping pattern can be increased in the same manner as described above in the same manner as described above by × 2.
 図12は本発明の一実施例である通信装置の周波数ホッピングを行う場合のシンボル時刻に対するチャネル増加時のチャネル周波数の割り当てを直接作成する方法について説明するための図である。
 図12はチャネルを6個に増加させた場合であり、OCCを使用した場合で、各シンボル時刻にチャネル番号が重ならないように周波数Fを直接割り当てる。
FIG. 12 is a diagram for explaining a method of directly creating an allocation of channel frequency at the time of channel increase with respect to a symbol time when frequency hopping is performed by a communication apparatus according to an embodiment of the present invention.
FIG. 12 shows a case where the number of channels is increased to six. When OCC is used, the frequency F is directly assigned so that channel numbers do not overlap each symbol time.
 本発明の実施形態である通信装置は、副搬送波を含む送信周波数の2波が近接していても、帯域幅に相当した副搬送波の直交性でお互いの干渉を低減し、耐傍受および耐妨害用として周波数を変化させて通信する周波数ホッピング方式で、同一時刻での周波数が重ならないことを保証する。 The communication apparatus according to the embodiment of the present invention reduces mutual interference due to orthogonality of subcarriers corresponding to the bandwidth even if two waves of transmission frequencies including subcarriers are close to each other. This is a frequency hopping method in which the frequency is changed for communication, and it is guaranteed that the frequencies at the same time do not overlap.
  以上、本発明の一実施形態について詳細に説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。 As mentioned above, although one embodiment of the present invention was described in detail, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 複数の周波数による周波数ホッピング通信によって、複数の信号を同時送受信する用途に適用できる。この出願は、2015年11月25日に出願された日本出願特願2015-229614を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 ・ It can be applied to the use of simultaneous transmission and reception of multiple signals by frequency hopping communication using multiple frequencies. This application claims the benefit of priority based on Japanese Patent Application No. 2015-229614 filed on November 25, 2015, the entire disclosure of which is incorporated herein by reference.
 101,102,103,131,132:送受信局、200:無線部、201:増幅部、202、フィルタ部、203:方向性結合部、204:共用部、205:アンテナ、206:合成部、207:分配部、300,400:変復調部、301,401:OFDM変復調部、302,402:直交変調部、303,403:直交復調部、304,404,405:局部発信部、305,406:基準クロック発生部、407:周波数設定部。 101, 102, 103, 131, 132: transmitting / receiving station, 200: wireless unit, 201: amplification unit, 202, filter unit, 203: directional coupling unit, 204: shared unit, 205: antenna, 206: combining unit, 207 : Distribution unit, 300, 400: modulation / demodulation unit, 301, 401: OFDM modulation / demodulation unit, 302, 402: orthogonal modulation unit, 303, 403: orthogonal demodulation unit, 304, 404, 405: local transmission unit, 305, 406: reference Clock generation unit 407: Frequency setting unit.

Claims (8)

  1.  周波数ホッピング通信を行う無線部と変復調部を備えた通信装置において、
     前記無線部は、アンテナと共用部と方向性結合部とフィルタ部と増幅部と合成部と分配部とを有し、
     前記変復調部は、OFDM変復調部と直交変調部と直交復調部と局部発信部と基準クロック発生部とを有し、
     前記OFDM変復調部と前記局部発信部に供給される基準クロックは前記基準クロック発生部からのみ供給することを特徴とする通信装置。
    In a communication device including a radio unit and a modem unit for performing frequency hopping communication,
    The radio unit includes an antenna, a shared unit, a directional coupling unit, a filter unit, an amplification unit, a synthesis unit, and a distribution unit,
    The modulation / demodulation unit includes an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit,
    The communication apparatus according to claim 1, wherein the reference clock supplied to the OFDM modulation / demodulation unit and the local transmission unit is supplied only from the reference clock generation unit.
  2.  請求項1に記載の通信装置において、
     前記OFDM変復調部の変調は、帯域の増減またはサンプリング周波数を増減することを特徴とする通信装置。
    The communication device according to claim 1,
    The OFDM modulation / demodulation unit modulates a band or increases or decreases a sampling frequency.
  3.  請求項1または請求項2に記載の通信装置において、
     前記OFDM変復調部の変調は、搬送波周波数を中心に両側に副搬送波を配置または帯域内に搬送波が位置しないことを特徴とする通信装置。
    The communication device according to claim 1 or 2,
    The modulation of the OFDM modulation / demodulation unit is a communication apparatus characterized in that subcarriers are arranged on both sides centering on a carrier frequency or no carrier is located in a band.
  4.  請求項1から請求項3に記載の通信装置において、
     前記帯域の中心に搬送波が位置するものは、前記直交変調部が搬送波をホッピングさせ、
     前記帯域内に搬送波が位置しないものは、前記直交変調部がIFFTを広範囲に行い、その中から、所定の帯域幅に相当する分だけ副搬送波抜を使用する(使用しないところは“0”にする)ことを特徴とする通信装置。
    The communication device according to claim 1, wherein
    In the case where the carrier wave is located in the center of the band, the orthogonal modulation unit hops the carrier wave,
    When the carrier wave is not located in the band, the quadrature modulation unit performs IFFT over a wide range, and uses the sub-carrier elimination corresponding to a predetermined bandwidth (the value is not used when the carrier wave is not used). A communication device.
  5.  請求項4に記載の通信装置において、
     前記帯域内に搬送波が位置するものは、前記増幅部が周波数ホッピングの周波数を時間的に異なるようにし、
     前記帯域内に搬送波が位置しないものは、前記増幅部がIFFTの入力信号の有無(無しは“0”にする)で周波数ホッピングを行うことを特徴とする通信装置。
    The communication device according to claim 4, wherein
    In the case where the carrier wave is located within the band, the amplification unit makes the frequency hopping frequency different in time,
    In the case where the carrier wave is not located within the band, the amplifying unit performs frequency hopping by the presence or absence of an IFFT input signal (absence is set to “0”).
  6.  周波数ホッピング通信を行う無線部と変復調部を備えた通信装置における通信方法において、
     前記無線部は、アンテナと共用部と方向性結合部とフィルタ部と増幅部と合成部と分配部とを有し、
     前記変復調部は、OFDM変復調部と直交変調部と直交復調部と局部発信部と基準クロック発生部とを有し、
     前記OFDM変復調部と前記局部発信部に供給される基準クロックは前記基準クロック発生部から供給され、
     前記OFDM変復調部の変調は、帯域の増減またはサンプリング周波数を増減することを特徴とする通信方法。
    In a communication method in a communication device including a wireless unit that performs frequency hopping communication and a modem unit,
    The radio unit includes an antenna, a shared unit, a directional coupling unit, a filter unit, an amplification unit, a synthesis unit, and a distribution unit,
    The modulation / demodulation unit includes an OFDM modulation / demodulation unit, an orthogonal modulation unit, an orthogonal demodulation unit, a local transmission unit, and a reference clock generation unit,
    The reference clock supplied to the OFDM modulation / demodulation unit and the local transmission unit is supplied from the reference clock generation unit,
    A modulation method of the OFDM modulation / demodulation unit is to increase / decrease a band or increase / decrease a sampling frequency.
  7.  請求項6に記載の通信装置の通信方法において、
     前記帯域の中心に搬送波が位置するものは、前記直交変調部が搬送波をホッピングさせ、
     前記帯域内に搬送波が位置しないものは、前記直交変調部がIFFTを広範囲に行い、その中から、所定の帯域幅に相当する分だけ副搬送波抜を使用する(使用しないところは“0”にする)ことを特徴とする通信方法。
    The communication method of the communication device according to claim 6,
    In the case where the carrier wave is located in the center of the band, the orthogonal modulation unit hops the carrier wave,
    When the carrier wave is not located in the band, the quadrature modulation unit performs IFFT over a wide range, and uses the sub-carrier elimination corresponding to a predetermined bandwidth (the value is not used when the carrier wave is not used). A communication method characterized by the above.
  8.  請求項7に記載の通信装置の通信方法において、
     前記帯域内に搬送波が位置するものは、前記増幅部が周波数ホッピングの周波数を時間的に異なるようにし、
     前記帯域内に搬送波が位置しないものは、前記増幅部がIFFTの入力信号の有無(無しは“0”にする)で周波数ホッピングを行うことを特徴とする通信方法。
    The communication method of the communication device according to claim 7,
    In the case where the carrier wave is located within the band, the amplification unit makes the frequency hopping frequency different in time,
    In the case where the carrier wave is not located in the band, the amplifying unit performs frequency hopping according to the presence or absence of an IFFT input signal (absence is set to “0”).
PCT/JP2016/083554 2015-11-25 2016-11-11 Communication device and communication method WO2017090467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552363A JP6497825B2 (en) 2015-11-25 2016-11-11 Communication apparatus and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015229614 2015-11-25
JP2015-229614 2015-11-25

Publications (1)

Publication Number Publication Date
WO2017090467A1 true WO2017090467A1 (en) 2017-06-01

Family

ID=58764078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083554 WO2017090467A1 (en) 2015-11-25 2016-11-11 Communication device and communication method

Country Status (2)

Country Link
JP (1) JP6497825B2 (en)
WO (1) WO2017090467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017130298A1 (en) * 2016-01-26 2018-11-22 株式会社日立国際電気 Relay / communication station equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269923A (en) * 1999-03-19 2000-09-29 Toshiba Corp Ofdm modulator with synchronizing function for external device
JP2009111626A (en) * 2007-10-29 2009-05-21 Softbank Telecom Corp Interference reduction device of ip data wireless communication system for movable body; and wireless communication base station device and movable body terminal device using it
JP2010252178A (en) * 2009-04-17 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Digital wireless communication device
JP2010279041A (en) * 2009-05-29 2010-12-09 Samsung Electronics Co Ltd Base-band processor, and communicating apparatus including the same base-band processor
JP2013501413A (en) * 2009-07-29 2013-01-10 マーベル ワールド トレード リミテッド Method and apparatus for WLAN transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2014122848A (en) * 2011-11-07 2015-12-20 Тейджин Арамид Б.В. BALLISTICALLY RESISTANT PRODUCT INCLUDING POLYETHYLENE TAPES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269923A (en) * 1999-03-19 2000-09-29 Toshiba Corp Ofdm modulator with synchronizing function for external device
JP2009111626A (en) * 2007-10-29 2009-05-21 Softbank Telecom Corp Interference reduction device of ip data wireless communication system for movable body; and wireless communication base station device and movable body terminal device using it
JP2010252178A (en) * 2009-04-17 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Digital wireless communication device
JP2010279041A (en) * 2009-05-29 2010-12-09 Samsung Electronics Co Ltd Base-band processor, and communicating apparatus including the same base-band processor
JP2013501413A (en) * 2009-07-29 2013-01-10 マーベル ワールド トレード リミテッド Method and apparatus for WLAN transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017130298A1 (en) * 2016-01-26 2018-11-22 株式会社日立国際電気 Relay / communication station equipment

Also Published As

Publication number Publication date
JP6497825B2 (en) 2019-04-10
JPWO2017090467A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US6510133B1 (en) Multi-carrier transmission method and data transmitter
US10785827B2 (en) Master unit, remote unit and multiband transmission system
CN101179548B (en) Methods and apparatuses for orthogonal frequency division multiplexing communication
US7697624B2 (en) Communication apparatus and communication method utilizing multiple carrier waves for overcoming interference
US20100142598A1 (en) Wireless Frequency-Domain Multi-Channel Communications
KR20090124968A (en) Improved pilot allocation in multi-carrier systems with frequency notching
JP4978942B2 (en) Wireless communication system
JPH07283806A (en) Orthogonal frequency division multiplex modulation signal transmission system
JP2005304029A (en) Frequency staggered frequency deviation modulation
CN101326784A (en) Windowed orthogonal frequency division multiplexing for spectrum agile radios
JP2002290367A (en) Band division demodulation method and ofdm receiver
JP4488190B2 (en) Method for generating FSK symbols in a communication network and OFDM transmitter
JP6497825B2 (en) Communication apparatus and communication method
JP4703171B2 (en) Mobile satellite communication system and radio resource allocation apparatus
KR20120071951A (en) Apparatus and method for transmitting and receiving
JPH05130191A (en) Peak/average value ratio reduction method by phase control of a multi-subchannel signal
US8693307B2 (en) Wireless communication system, transmitter, receiver and wireless communication method
JP2001156739A (en) Multi-carrier transmission system and multi-carrier transmission reception system
EP3111583B1 (en) Method and apparatus for high data rate communication
JP3545217B2 (en) Earth station equipment for FDMA satellite communication
KR101400926B1 (en) Apparatus and method for transmitting/receiving signal
RU2293443C2 (en) Method and device for exchanging data between communication system with one carrying frequency and communication system with many carrying frequencies, transmitter for signals with one carrier and many carriers and receiver for signals with one carrier and many carriers
FI112416B (en) Method and apparatus for transmitting information by radio
RU2647633C2 (en) Method of discrete binary information transmission by phase-modulated signals in multi-channel radiocommunic systems with frequency sealing of phase-modulated channels subcarriers
JP2016054467A (en) High-speed digital communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868415

Country of ref document: EP

Kind code of ref document: A1