WO2017090320A1 - Fuel injection control device and fule injection system - Google Patents

Fuel injection control device and fule injection system Download PDF

Info

Publication number
WO2017090320A1
WO2017090320A1 PCT/JP2016/079377 JP2016079377W WO2017090320A1 WO 2017090320 A1 WO2017090320 A1 WO 2017090320A1 JP 2016079377 W JP2016079377 W JP 2016079377W WO 2017090320 A1 WO2017090320 A1 WO 2017090320A1
Authority
WO
WIPO (PCT)
Prior art keywords
target value
fuel injection
movable core
valve
fuel
Prior art date
Application number
PCT/JP2016/079377
Other languages
French (fr)
Japanese (ja)
Inventor
一 片岡
後藤 守康
辰介 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017090320A1 publication Critical patent/WO2017090320A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle

Definitions

  • the present disclosure relates to a fuel injection control device that controls the operation of a fuel injection valve and a fuel injection system including the fuel injection control device.
  • the fuel injection valve described in Patent Document 1 includes a fixed core that generates an electromagnetic attractive force when energized to a coil, a movable core that is attracted and moved by the fixed core, and a state that is movable relative to the movable core. And a valve body assembled to the movable core. When the coil is energized and the movable core is sucked into the fixed core, the valve element is engaged with the movable core that is moved by suction to open the valve, and fuel is injected from the nozzle hole.
  • control device described in Patent Document 1 starts the increase of the coil current flowing through the coil when the valve body is in the closed state, and executes the increase control for increasing the coil current to the target value. Increase suction power.
  • the valve body starts the valve opening operation together with the movable core.
  • the movable core attracted by energization collides with the fixed core, but when the collision speed is high, the collided movable core may rebound in the valve closing direction.
  • the valve element is fixed to the movable core against the above structure, the valve element also rebounds in the valve closing direction together with the movable core, and the opening degree by the valve element changes irregularly. As a result, the state of fuel injection from the nozzle hole becomes unstable, which hinders control of the fuel injection amount with high accuracy.
  • the valve body is moved in the valve opening direction by inertia force even when the movable core bounces back in the valve closing direction. It becomes an overshoot behavior that keeps moving. Thereby, the recoil of the valve body in the valve closing direction is suppressed, the fuel injection state can be stabilized, and deterioration in the accuracy of the fuel injection amount can be suppressed.
  • the overshoot amount can be reduced if the target value used for the ascent control is set low, there is a concern that if the target value is set too low, the electromagnetic attractive force does not increase sufficiently and the valve opening operation cannot be performed. Is done. Therefore, it is desirable to set the target value used for the lift control to the smallest possible value (that is, the optimum value) within the range in which the valve opening operation can be performed. However, such an optimum value varies due to deterioration of the fuel injection valve over time.
  • JP 2014-218976 A (corresponding to US2016 / 0061139A1)
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a fuel injection control device or a fuel injection system that suppresses deterioration in accuracy of the fuel injection amount.
  • a fixed core that generates an electromagnetic attraction force when the coil is energized, a movable core that is attracted and moved by the fixed core, and a movable core that is assembled relative to the movable core and engaged with the moving movable core
  • An ascending control unit for controlling the power supply to the coil so as to start an increase in the coil current flowing through the coil when the valve body is in a closed state and to raise the coil current to a target value
  • a target value setting unit for setting a target value; As a result of raising the coil current to the target value, the overshoot amount of the valve element appears when the valve body continues to move with inertia even after the movable core moves and contacts the fixed core.
  • An estimation unit for estimating With The target value setting unit provides a fuel injection control device that, when the overshoot amount
  • a fixed core that generates an electromagnetic attraction force when the coil is energized, a movable core that is attracted and moved by the fixed core, and a movable core that is assembled relative to the movable core and engaged with the moving movable core
  • a fuel injection valve for injecting fuel from the nozzle hole in accordance with the valve opening operation
  • a fuel injection system comprising a fuel injection control device that controls the operation of a fuel injection valve by controlling a coil current flowing in the coil, The fuel injection control device
  • An ascending control unit for controlling the power supply to the coil so as to start an increase in the coil current flowing through the coil when the valve body is in a closed state and to raise the coil current to a target value; As a result of raising the coil current to the target value, the overshoot amount of the valve element appears when the valve body continues to move with inertia even after the movable core moves and contacts the fixed core.
  • An estimation unit for estimating A target value setting unit that sets a target value so as to decrease
  • the target value used by the ascending control unit when setting the target value used by the ascending control unit, if the estimated overshoot amount is greater than or equal to the predetermined amount, the current and subsequent settings are The target value is lowered compared to the setting of. Therefore, the amount of overshoot can be reduced during the valve opening operation after the next time. Therefore, it can suppress that the opening degree by a valve body changes irregularly, and can suppress the precision deterioration of the fuel injection quantity resulting from an overshoot.
  • the coil current target is exceeded when the overshoot amount exceeds a predetermined amount. The value is lowered. Therefore, even if the above recurrence occurs, the amount of overshoot can be reduced, and the deterioration of the accuracy of the fuel injection amount can be suppressed.
  • the figure which shows the state which the needle of the fuel injection valve in 1st Embodiment has overshooted.
  • the flowchart which shows the process sequence which sets the target value of the coil current used for raise control by the microcomputer shown in FIG.
  • a fuel injection valve 1 shown in FIG. 1 is mounted on an ignition type internal combustion engine (gasoline engine) of a vehicle, and directly injects fuel into a combustion chamber of the internal combustion engine.
  • the fuel supplied to the fuel injection valve 1 is boosted by a high pressure pump (not shown).
  • the high-pressure pump operates using the power of the internal combustion engine as a drive source.
  • the fuel injection valve 1 includes a housing 20, a nozzle portion 10, a fixed core 60, a movable core 40, a needle 30 as a valve body, a movable plate 50, a first spring 80, a second spring 90, and A coil 70 and the like.
  • the housing 20 includes a first cylinder member 21, a second cylinder member 22, a third cylinder member 23, an outer peripheral member 25, and a resin mold portion 26.
  • the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23 are all formed in a substantially cylindrical shape, and are coaxial in the order of the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23. Arranged and connected to each other.
  • the outer peripheral member 25 is in contact with the outer peripheral surfaces of the first cylindrical member 21 and the third cylindrical member 23.
  • the 1st cylinder member 21, the 3rd cylinder member 23, and the outer periphery member 25 are formed, for example with magnetic materials, such as ferritic stainless steel.
  • the second cylindrical member 22 is formed of a nonmagnetic material such as austenitic stainless steel, for example.
  • the nozzle unit 10 is provided at the end of the first cylinder member 21 and is formed in a metal disk shape.
  • a nozzle hole 11 that penetrates the nozzle portion 10 in the plate thickness direction is formed in the center of the nozzle portion 10.
  • An annular valve seat 12 is formed on one surface of the nozzle portion 10 so as to surround the nozzle hole 11.
  • the nozzle portion 10 is connected to the first cylinder member 21 such that the side wall is fitted to the inner wall of the first cylinder member 21.
  • the fixed core 60 is provided at the end of the third cylindrical member 23, and is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel, for example.
  • the fixed core 60 is provided inside the housing 20. Note that the fixed core 60 and the nozzle portion 10 are fixed to the housing 20 by welding.
  • the needle 30 is formed in a rod shape from a metal such as martensitic stainless steel.
  • the needle 30 is accommodated in the housing 20 so as to be capable of reciprocating in the axial direction.
  • the needle 30 is formed at a rod-like main body 32 extending in the axial direction, a seal portion 31 formed at an end portion of the main body 32 on the nozzle portion 10 side, and an end portion of the main body 32 opposite to the nozzle portion 10 side. And a flange portion 33.
  • the needle 30 opens and closes the nozzle hole 11 when the seal portion 31 is separated from the valve seat 12 (that is, separated) or abuts (that is, seated) on the valve seat 12.
  • valve opening direction the direction in which the needle 30 is separated from the valve seat 12
  • valve closing direction the direction in which the needle 30 contacts the valve seat 12
  • the flange 33 side of the main body 32 is formed in a hollow cylindrical shape, and a hole 34 that connects the inner wall 321 and the outer wall 322 of the main body 32 is formed.
  • the flange portion 33 has a disk shape that expands toward the inner wall 24 of the housing 20.
  • the movable core 40 is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel.
  • the movable core 40 is accommodated in the housing 20 in a state where the movable core 40 can reciprocate between the fixed core 60 and the nozzle portion 10.
  • a through hole 44 is formed in the center of the movable core 40.
  • the inner wall of the through hole 44 of the movable core 40 and the outer wall 322 of the main body 32 of the needle 30 are slidable, and the outer wall 42 of the movable core 40 and the inner wall 24 of the housing 20 are slidable.
  • the movable core 40 can reciprocate inside the housing 20 while sliding with the needle 30 and the housing 20.
  • the movable core 40 has an accommodation recess 45 formed on the end surface 41 on the fixed core 60 side so as to expand annularly from the inner wall of the through hole 44 in the radially outward direction.
  • the movable core 40 has a fitting groove portion 46 formed on the end surface 41 on the fixed core 60 side so as to expand in an annular shape radially outward from the end portion on the opposite side of the bottom wall 452 of the housing recess 45.
  • the accommodating recess 45 accommodates the flange portion 33 of the needle 30, and a movable plate 50 described later is fitted into the fitting groove portion 46.
  • the movable plate 50 is formed in a disk shape having a diameter larger than that of the housing recess 45 by a metal such as martensitic stainless steel, and has a hole 51 in the center.
  • the movable plate 50 is provided on the opposite side of the movable core 40 from the nozzle portion 10 so as to be in contact with the movable core 40 and the flange portion 33 of the needle 30.
  • the movable plate 50 is provided so as to be fitted into the fitting groove 46.
  • the coil 70 is formed in a substantially cylindrical shape and is provided so as to surround the radially outer side of the second cylinder member 22 and the third cylinder member 23.
  • a resin mold portion 26 is filled between the first cylinder member 21, the second cylinder member 22, the third cylinder member 23, and the outer peripheral member 25.
  • the first spring 80 abuts on the movable plate 50 and applies an elastic force to urge the movable core 40 and the needle 30 in the valve closing direction.
  • the second spring 90 urges the movable plate 50 toward the fixed core 60 (that is, the valve opening direction) by contacting the movable core 40 and applying an elastic force.
  • the urging force of the first spring 80 is set larger than the urging force of the second spring 90. Therefore, in a state where power is not supplied to the coil 70, the needle 30 is in a closed state in which the seal portion 31 is in contact with the valve seat 12.
  • the movable plate 50 contacts the needle 30 and the movable core 40 by the urging force of the first spring 80 and the second spring 90.
  • the lower end surface 53 of the movable plate 50 contacts the end surface 331 of the flange portion 33 of the needle 30 and the bottom wall 461 of the insertion groove portion 46 of the movable core 40.
  • the axial length of the flange 33 is L1
  • the axial distance between the lower end surface 53 of the movable plate 50 and the bottom wall 452 of the housing recess 45 is L2.
  • the flange 33, the movable plate 50, the housing recess 45, and the fitting groove 46 are formed so as to satisfy the relationship L1 ⁇ L2.
  • the axial distance between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45 is G1
  • a substantially cylindrical fuel introduction pipe 62 is press-fitted and welded to the end of the third cylinder member 23.
  • the fuel that has flowed in from the fuel introduction pipe 62 flows in order through the fixed core 60, the hole 51 of the movable plate 50, the inside of the main body 32 of the needle 30, the hole 34 of the needle 30, and the first cylindrical member 21 and the needle 30. To do.
  • the fuel that has circulated as described above circulates between the seal portion 31 and the valve seat 12 and is then injected from the injection hole 11.
  • the first spring 80 biases the movable plate 50 to bias the needle 30 in the valve closing direction, and the second spring 90
  • the movable core 40 is urged toward the fixed core 60 side.
  • the lower end surface 53 of the movable plate 50 is in contact with the end surface 331 of the flange portion 33 of the needle 30 and the bottom wall 461 of the fitting groove portion 46 of the movable core 40, and as described above, L1 ⁇ L2 and G1 ⁇ G2. Yes.
  • it will be in the obstruction
  • the movable core 40 When energization of the coil 70 is turned on, the movable core 40 is attracted by the fixed core 60 and moved to the fixed core 60 side as shown in FIG.
  • the movable plate 50 is pushed by the movable core 40 and moves toward the first spring 80 against the urging force of the first spring 80. Further, the movable core 40 is accelerated by a predetermined distance G1 and collides with the lower end surface 332 of the collar portion 33 of the needle 30 with kinetic energy corresponding to the acceleration distance. Due to this collision, the needle 30 starts to move rapidly in the valve opening direction, the seal portion 31 is separated from the valve seat 12, and fuel is injected from the injection hole 11.
  • the movable core 40 continues to move after colliding with the needle 30 and collides with the fixed core 60 as shown in FIG. That is, the movement of the movable core 40 is restricted.
  • the needle 30 is urged in the valve opening direction by the movable core 40 in a state where the collar portion 33 is engaged with the bottom wall 452.
  • the period of biasing in this way is a period from when the movable core 40 collides with the needle 30 to when the movable core 40 collides with the fixed core 60.
  • the needle 30 moves away from the movable core 40 as shown in FIG. 5 and continues to move against the elastic force of the first spring 80 due to inertia.
  • the first spring 80 pressed against the needle 30 via the movable plate 50 contracts to the limit, and then moves the movable plate 50 and the needle 30 back to the valve closing direction.
  • the movable plate 50 and the needle 30 pushed back in this way stop moving in the state of FIG.
  • the overshoot amount L3 is a separation distance in the axial direction between the needle 30 and the movable core 40. Specifically, it is the distance in the axial direction from the lower end surface 332 of the flange 33 to the bottom wall 452 of the housing recess 45.
  • the electromagnetic attraction force decreases, and when the energization force falls below the valve opening holding force, the movable plate 50, the movable core 40, and the needle 30 move in the valve closing direction. Specifically, first, the movable plate 50 is urged toward the needle 30 by the first spring 80, thereby starting movement in the valve closing direction together with the movable core. Thereafter, the movable plate 50 comes into contact with the collar portion 33 of the needle 30 and urges the needle 30 in the valve closing direction. In other words, the elastic force of the first spring 80 is transmitted to the needle 30 via the movable plate 50, and the needle 30 starts the valve closing operation by the elastic force. The needle 30 moving in the valve closing direction stops moving when the seal portion 31 comes into contact with the valve seat 12.
  • the movable plate 50 While the movement of the needle 30 stops, the movable plate 50 also stops moving, while the movable core 40 moves away from the movable plate 50 and continues to move against the elastic force of the second spring 90 due to inertia.
  • the second spring 90 pressed against the movable core 40 contracts to the limit and then moves the movable core 40 back to the movable plate 50 side.
  • the movable core 40 pushed back in this way again comes into contact with the movable plate 50 and moves together with the movable plate 50 in the valve opening direction.
  • the needle 30 does not move in the valve opening direction.
  • the movable plate 50 is again pressed in the valve closing direction by the first spring 80, and the movable plate 50 moves in the valve closing direction together with the movable core 40. That is, the movable core 40 vibrates in the axial direction, and when the kinetic energy of the movable core 40 is lost, the movable plate 50 stops moving in the state of FIG. 2 where the movable plate 50 contacts the needle 30 and the movable core 40.
  • the movable plate 50 moves in the axial direction together with the movable core 40, but the movement start timing of the movable plate 50 is the same as the movement start timing of the movable core 40 regardless of whether the valve is closed or opened. .
  • the movement start timing of the needle 30 is delayed from the movement start timing of the movable core 40 regardless of whether the needle 30 is closed or opened.
  • the movable plate 50 is configured separately from the movable core 40 and provides a moving member that moves together with the movable core 40.
  • the movable plate 50 is pushed and moved by the movable core 40 in the valve opening direction and moved by the first spring 80 in the valve closing direction.
  • the movable plate 50 functions as a valve closing force transmission member that transmits the elastic force of the first spring 80 to the needle 30.
  • the fuel injection control device is provided by the ECU 100 which is an electronic control device.
  • a fuel injection system is provided by the fuel injection valve 1 and the ECU 100.
  • the ECU 100 includes a microcomputer (microcomputer 110), a booster circuit 120, and the like.
  • the microcomputer 110 includes a central processing unit (CPU), a non-volatile memory (ROM), a volatile memory (RAM), and the like. Based on the load and engine speed of the internal combustion engine, the required fuel injection quantity Qreq and The target injection start time is calculated.
  • a memory 130 of the microcomputer 110 in FIG. 1 is a memory including the above-described ROM and RAM. It should be noted that a characteristic line (see FIG. 7) showing the relationship between the energization time Ti and the injection amount Q is obtained by testing in advance, and the energization time Ti to the coil 70 is controlled according to the characteristic line. Control the quantity Q.
  • a Ti-Q map that is a map showing the relationship between the energization time Ti and the injection amount Q is created based on the above characteristic line, and the Ti-Q map is stored in the memory. Then, the energization time Ti suitable for the required injection amount Qreq is set with reference to the Ti-Q map.
  • supply fuel pressure Pf The higher the pressure of the fuel supplied to the fuel injection valve 1 (hereinafter referred to as supply fuel pressure Pf), the shorter the energization time Ti. Therefore, a Ti-Q map is created and stored for each supply fuel pressure Pf, and the Ti-Q map to be referred to is switched according to the supply fuel pressure Pf at the time of injection.
  • Supplied fuel pressure Pf is detected by a fuel pressure sensor 200 shown in FIG.
  • the fuel pressure sensor 200 is attached to the housing 20 and detects the pressure of the fuel flowing through the fuel passage inside the housing 20. Specifically, the fuel pressure sensor 200 is disposed at a portion downstream of the fuel introduction pipe 62 and upstream of the movable plate 50.
  • the microcomputer 110 calculates the supply fuel pressure Pf based on the detection signal output from the fuel pressure sensor 200. When executing this calculation, the microcomputer 110 functions as the fuel pressure acquisition unit 116 shown in FIG.
  • Booster circuit 120 boosts battery voltage Vbatt supplied from the vehicle battery to generate boost voltage Vboost (see FIG. 6A).
  • the ECU 100 includes a circuit that detects a coil current that is a current flowing through the coil 70. Specifically, when the microcomputer 110 detects a voltage drop due to the shunt resistor, the microcomputer 110 calculates and acquires the coil current. The microcomputer 110 switches between the boost voltage Vboost and the battery voltage Vbatt to be applied to the coil 70 according to the acquired coil current value.
  • the electromagnetic attractive force increases. That is, if the number of turns of the coil 70 is the same, the electromagnetic attraction force increases as the coil current increases and the ampere turn AT increases. However, it takes time for the suction force to reach a maximum value after energization is started.
  • the electromagnetic attractive force when saturated and reaches the maximum value is referred to as a static attractive force Fb.
  • the electromagnetic attraction force necessary for the needle 30 to start the valve opening operation is referred to as a necessary valve opening force Fa.
  • the valve opening start suction force increases according to various situations such as when the viscosity of the fuel is large. Therefore, the valve opening start suction force when the situation in which the valve opening start suction force is maximized is assumed is defined as the required valve opening force Fa.
  • FIG. 6A shows the waveform of the voltage applied to the coil 70 when the fuel injection is performed once.
  • the boost voltage Vboost is applied to start energization at the voltage application start time t0 commanded by the injection command signal, that is, the start time of the energization time Ti.
  • the coil current rises to the first target value I1 (see the first target value I1 indicated by the one-dot chain line in FIG. 6B).
  • the energization is turned off at time t1 when the detected coil current reaches the first target value I1.
  • control is performed so that the coil current is raised to the first target value I1 by applying the boost voltage Vboost by the first energization.
  • Control in which the coil current is increased by the boost voltage Vboos in this way is referred to as increase control, and the microcomputer 110 when executing the increase control functions as the increase control unit 111 illustrated in FIG.
  • energization with the battery voltage Vbatt is controlled so that the coil current is maintained at the second target value I2 set to a value lower than the first target value I1.
  • the average value of the fluctuating coil current becomes the second target value I2.
  • the duty is controlled so that The second target value I2 is set to a value such that the static suction force Fb is greater than or equal to the required valve opening force Fa.
  • pickup control in which the coil current is held at the second target value I2 at the battery voltage Vbatt in this way is called pickup control, and the microcomputer 110 when executing the pickup control functions as the pickup control unit 112 shown in FIG.
  • the electromagnetic attractive force increases.
  • the pick-up control improves the certainty that the electromagnetic attraction force rises to the required valve opening force Fa and starts the valve opening operation.
  • energization by the battery voltage Vbatt is controlled so that the coil current is maintained at the third target value I3 set to a value lower than the second target value I2.
  • the average value of the fluctuating coil current becomes the third target value I3.
  • the duty is controlled so that Control in which the coil current is held at the third target value I3 at the battery voltage Vbatt in this way is referred to as hold control, and the microcomputer 110 during the hold control functions as the hold control unit 113 shown in FIG.
  • the hold control is for maintaining the electromagnetic attraction force at or above the valve opening holding force Fc.
  • the electromagnetic attractive force continues to increase during a period from the start of energization, that is, from the increase control start time (t0) to the pickup control end time (t3).
  • the rate of increase of the electromagnetic attractive force is slower in the pickup control period (t2 to t3) than in the increase control period (t0 to t1).
  • the first target value I1, the second target value I2, and the pickup control period are set so that the suction force exceeds the required valve opening force Fa during the period (t0 to t3) during which the suction force increases. Yes.
  • the suction force is held at a predetermined value.
  • the third target value I3 is set so that the predetermined value is higher than the valve opening holding force Fc required to hold the valve open state.
  • the valve opening holding force Fc is smaller than the required valve opening force Fa.
  • the vertical axis in FIG. 6D indicates the lift amount that is the movement amount when the needle 30 is opened.
  • the movable core 40 starts the lift-up movement.
  • the needle 30 starts the valve opening operation, and fuel injection from the injection hole 11 is started.
  • the lift amount of the needle 30 increases as the lift amount of the movable core 40 increases.
  • the needle 30 leaves the movable core 40 and overshoots.
  • the movable core 40 starts the lift-down movement together with the movable plate 50 at the time when the attraction force decreases with the energization of the coil 70 and reaches the valve opening holding force Fc.
  • the needle 30 starts a lift-down movement together with the movable core 40.
  • time t14 when the needle 30 abuts on the seal portion 31, fuel injection from the nozzle hole 11 is stopped.
  • FIG. 7 shows a characteristic line representing the relationship between the energization time Ti and the injection amount Q.
  • the solid line in the figure is the characteristic line when the supply fuel pressure is 10 MPa
  • the dotted line is the characteristic line when the supply fuel pressure is 20 MPa.
  • the area indicated by reference numeral A1 is referred to as a partial area
  • the area indicated by reference numeral A2 is referred to as a full lift area.
  • the full lift position is a lift position of the needle 30 when the movable core 40 collides with the fixed core 60.
  • the valve 30 starts the valve closing operation after the needle 30 reaches the full lift position, so that compared with the case where fuel is injected in the partial region A1.
  • the injection amount increases.
  • the waveform of the characteristic line pulsates as shown by the alternate long and short dash line.
  • This pulsation waveform is generated in a region adjacent to the partial region A1 in the full lift region A2. Therefore, in such a region where a pulsation waveform can occur, the injection amount Q changes depending on the presence or absence of overshoot even if the energization time Ti and the supply fuel pressure are the same.
  • FIG. 8 shows a processing procedure for setting the first target value I1 used for the ascent control, which is repeatedly executed at a predetermined cycle by the microcomputer 110 during the operation period of the internal combustion engine.
  • the first target value I1 is set according to the supply fuel pressure Pf.
  • the supply fuel pressure Pf used for this setting is a value detected by the fuel pressure sensor 200 immediately before the start of injection.
  • the value of the first target value I1 suitable for the supply fuel pressure Pf is set in advance by a test or the like for each different supply fuel pressure Pf.
  • the collision speed is increased, the overshoot amount L3 becomes excessive, and a large pulsation is generated in the characteristic line shown in FIG. 7, making it difficult to control the injection amount with high accuracy.
  • the value of the first target value I1 suitable for the supply fuel pressure Pf is set, and the first target value I1 is set to a larger value as the supply fuel pressure Pf is higher.
  • step S10 referring to this map M, a first target value I1 is set based on the supplied fuel pressure Pf.
  • the overshoot amount L3 is estimated based on the change in pressure detected by the fuel pressure sensor 200.
  • the pressure detected by the fuel pressure sensor 200 starts to decrease with the start of fuel injection from the nozzle hole 11. Thereafter, the pressure drop stops as the needle 30 reaches the full lift position. Thereafter, the pressure starts to increase with the start of the valve closing operation of the needle 30 and returns to the pressure before the start of injection with the valve closing.
  • the pressure change detected by the fuel pressure sensor 200 that is, the waveform representing the pressure change is correlated with the behavior of the needle 30.
  • a pulsation caused by overshoot is superimposed on this pressure waveform.
  • the magnitude of the pulsation or the superposition period has a correlation with the overshoot amount L3.
  • the flange portion 33 of the needle 30 when overshooting pressurizes the fuel located in the upstream portion of the flange portion 33 in the fuel passage formed inside the housing 20, and locally The pressure will increase. As this pressure rise propagates to the fuel pressure sensor 200, pulsation caused by overshoot is superimposed on the pressure waveform.
  • the overshoot amount L3 is larger as the period of pressure increase due to overshoot is longer. Moreover, it can be said that the overshoot amount L3 is larger as the pressure increase amount due to the overshoot is larger.
  • the overshoot amount L3 can be estimated from the shape of the pulsation.
  • subsequent step S12 it is determined whether or not the overshoot amount L3 estimated in step S11 is equal to or larger than a predetermined amount Lth set in advance. If it is determined that the value is greater than or equal to the predetermined amount Lth, in subsequent step S13, a reduction correction is performed such that the value of the first target value I1 stored in the map M is corrected to a value reduced by a predetermined amount. In this reduction correction, all of the plurality of first target values I1 set for different supply fuel pressures Pf are corrected to values reduced by a predetermined amount. In the subsequent step S14, the first target value I1 stored in the map M is rewritten and updated with the value corrected in step S13.
  • the ECU 100 includes the increase control unit 111 that increases the coil current to the first target value I1, the target value setting unit 114 that sets the first target value I1, and the overshoot amount of the needle 30. And an estimation unit 115 that estimates L3. Then, when the overshoot amount L3 estimated by the estimation unit 115 is equal to or greater than the predetermined amount Lth, the target value setting unit 114 lowers the first target value I1 compared to the current setting in the subsequent settings. . Specifically, in step S13 of FIG. 8, the first target value I1 stored in the map M is reduced and corrected, and in the next setting, the increase control is performed using the first target value I1 after the reduction correction. .
  • the overshoot amount L3 can be reduced during the valve opening operation after the next time.
  • the first target value I1 indicated by the alternate long and short dash line in FIG. 6B is reduced to the first target value I1 indicated by the dotted line
  • the current indicated by the solid line in FIG. Of the waveform the portion corresponding to the ascending control period decreases as shown by the dotted line.
  • the lift amount waveform shown by the solid line in FIG. 6D becomes a waveform with a slow rising speed as shown by the dotted line, and the overshoot is reduced.
  • the opening degree by the needle 30 can be prevented from changing irregularly, the injection amount Q with respect to the energization time Ti can be prevented from changing due to overshoot, and the deterioration of the accuracy of the fuel injection amount due to overshoot can be suppressed.
  • the target value setting unit 114 sets the first target value I1 according to the supply fuel pressure Pf acquired by the fuel pressure acquisition unit 116. Further, the target value setting unit 114 decreases the first target value I1 corresponding to the supply fuel pressure Pf when at least the overshoot amount L3 is equal to or greater than the predetermined amount among the first target value I1 for each supply fuel pressure Pf.
  • examples of the fuel injection valve in which the needle 30 is configured to be movable relative to the movable core 40 include a core boost type and a normal type described below.
  • the fuel injection valve 1 according to the present embodiment is a core boost type, and the core boost type is more likely to overshoot than the normal type. Therefore, according to the present embodiment in which the fuel injection control device that executes the reduction correction is applied to the core boost type fuel injection valve 1, the effect of suppressing the overshoot by the reduction correction is more remarkably exhibited.
  • the core boost type fuel injection valve 1 has a structure in which the movable core 40 engages with the needle 30 and starts the valve opening operation after the movable core 40 is attracted to the fixed core 60 and moved by a predetermined amount. That is, in the valve closed state shown in FIG. 2, the engagement is not performed, and a gap of a predetermined distance G ⁇ b> 1 is formed between the needle 30 and the movable core 40 in the axial direction. As a result, when the movable core 40 is sucked and starts moving, the force for opening the needle 30 is unnecessary, and the movable core 40 is engaged with the needle 30 after moving by a predetermined distance G1 and gaining momentum. Then, the needle 30 starts the valve opening operation.
  • the normal type fuel injection valve has a structure in which the movable core is attracted to the fixed core and starts moving, and at the same time, the movable core engages with the needle to start the valve opening operation. That is, in the valve-closed state shown in FIG. 2, the above engagement has already been made, and no gap in the axial direction is formed between the needle and the movable core.
  • the first spring 80 that urges the needle 30 toward the valve closing side is brought into contact with the movable plate 50. Therefore, when the needle 30 is closed, the elastic force by the first spring 80 is transmitted to the needle 30 via the movable plate 50. However, in the valve open state shown in FIG. 4, the elastic force of the first spring 80 is not transmitted to the needle 30, and the needle 30 is not pressed against the valve closing side by the elastic force.
  • the movable plate 50 is unnecessary, so that the first spring comes into contact with the needle. Therefore, the needle is pressed toward the valve closing side by the elastic force not only during the valve closing operation but also during the valve opening operation.
  • the elastic force is always applied to the valve closing side during the valve opening operation of the needle, so that overshoot hardly occurs.
  • the elastic force to the valve closing side is not applied to the needle from the start of the valve opening operation of the needle 30 until the movable core 40 collides with the fixed core 60. Prone to occur.
  • the following effects are exhibited by adopting the above-described core boost type fuel injection valve 1. That is, the flange 33, the movable plate 50, the housing recess 45, and the fitting groove 46 are formed so as to satisfy the relationship L1 ⁇ L2 in a state where the movable core 40 and the movable plate 50 are in contact with each other. Thereby, a gap having a predetermined distance G1 in the axial direction is formed between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45.
  • the movable core 40 when the movable core 40 is attracted in the valve opening direction by the magnetic force of the coil 70 supplied with electric power, the movable core 40 is accelerated by a predetermined distance G1 and then collides with the collar portion 33 of the needle 30. Therefore, the needle 30 can be opened quickly using the energy at the time of the collision.
  • a gap of a predetermined distance G1 is formed between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45. Therefore, it can suppress that the movable core 40 pushed back by the 2nd spring 90 after pressing the 2nd spring 90 hits the collar part 33 of the needle 30 which is valve-closing. Therefore, the occurrence of secondary valve opening by the movable core 40 pushed back by the second spring 90 can be suppressed.
  • a flat plate-shaped movable plate 50 is employed as a moving member that moves together with the movable core 40.
  • a bottomed cylindrical cup-shaped moving member 50B is employed in the fuel injection valve 1A of the second embodiment shown in FIG. 9.
  • the moving member 50B includes a disc-shaped disc portion 501 and a cylindrical portion 502 having a cylindrical shape.
  • the disc portion 501 is disposed so as to face the end surface 331 of the flange portion 33 and be in contact with the end surface 331.
  • the cylindrical portion 502 has a shape extending from the outer peripheral end of the disc portion 501 toward the axial injection hole 11, and is disposed inside the accommodating recess 45 of the movable core 40 and the cylinder of the fixed core 60.
  • the outer peripheral surface of the cylindrical portion 502 is positioned in the radial direction by the inner wall 63 of the fixed core 60. That is, in the moving member 50 ⁇ / b> B, the cylindrical portion 502 can slide in the axial direction along the inner wall 63 of the fixed core 60.
  • the collar portion 33 is disposed inside the cylindrical portion 502.
  • the inner peripheral surface of the cylindrical portion 502 can slide in the axial direction with respect to the outer peripheral surface of the flange portion 33.
  • a hole 501 a penetrating in the axial direction is formed in the central portion of the disc portion 501.
  • the hole 501 a communicates with a passage inside the needle 30, that is, a passage formed by the inner wall 321.
  • a recess 451 that is further recessed toward the nozzle hole 11 is formed on the bottom wall portion of the housing recess 45.
  • a gap is formed between the lower end surface 332 of the flange 33 and the bottom wall 451 a of the recess 451.
  • the moving member 50B is guided by the inner wall 63 of the fixed core 60 and is provided so as to be capable of reciprocating along the axial direction.
  • the flange portion 33 of the needle 30 is guided by the inner peripheral surface 502a of the cylindrical portion 502, and is accommodated in the cylindrical portion 502 so as to be capable of reciprocating in the axial direction.
  • the needle 30 is guided to the inner wall 63 of the fixed core 60 via the moving member 50B.
  • Such a configuration is advantageous in improving the coaxiality of the fixed core 60, the moving member 50 ⁇ / b> B, and the needle 30 compared to a configuration in which the needle 30 is guided by the inner wall 24 of the housing 20 via the movable core 40, for example. It is. For this reason, in the reciprocating movement of the needle 30 in the axial direction, the needle 30 can be prevented from being inclined in the radial direction. Therefore, the stability of the reciprocating movement of the needle 30 in the axial direction can be improved.
  • the moving member 50B according to the second embodiment includes a disc portion 501 and a cylindrical portion 502, and the disc portion 501 and the cylindrical portion 502 are integrally formed of resin or metal.
  • the disc part 503 and the cylindrical part 504 which the moving member of the fuel injection valve 1B according to the third embodiment shown in FIG. 10 has are formed by separate members.
  • the disk part 503 has a disk-shaped plate part 503b and a cylindrical tube part 503c.
  • the plate portion 503b faces the end surface 331 of the flange portion 33 and is disposed so as to be able to contact the end surface 331.
  • a hole 503a penetrating in the axial direction is formed in the central portion of the plate portion 503b.
  • the cylindrical portion 503 c has a shape extending from the inner peripheral end of the plate portion 503 b to the axial anti-injection hole side, and is disposed inside the first spring 80.
  • the plate portion 503b faces the end surface 331 of the flange portion 33 and is disposed so as to be able to contact the end surface 331.
  • the cylindrical portion 504 is disposed between the end surface 40a of the movable core 40 and the plate portion 503b. In the present embodiment, the housing recess 45 and the recess 451 shown in FIG. 9 are eliminated.
  • the cylindrical portion 504 is sandwiched between the movable core 40 and the disc portion 503 by the elastic force of the first spring 80.
  • the outer peripheral surface of the cylindrical portion 504 is positioned in the radial direction by the inner wall 63 of the fixed core 60. That is, the cylindrical portion 504 is slidable in the axial direction along the inner wall 63 of the fixed core 60.
  • the collar portion 33 is disposed inside the cylindrical portion 504.
  • the inner peripheral surface of the cylindrical portion 504 is slidable in the axial direction with respect to the outer peripheral surface of the flange portion 33.
  • a gap is formed between the lower end surface 332 of the flange portion 33 and the end surface 40a of the movable core 40.
  • the needle 30B is guided to the inner wall 63 of the fixed core 60 via the moving member. Therefore, it is advantageous to improve the coaxiality of the fixed core 60, the moving member, and the needle 30B. For this reason, in the reciprocating movement of the needle 30B in the axial direction, the needle 30B can be prevented from being inclined in the radial direction. Therefore, the stability of the reciprocating movement of the needle 30B in the axial direction can be enhanced.
  • the target value setting unit 114 prohibits a decrease (that is, a reduction correction) of the target value for the first target value I1 corresponding to the supply fuel pressure Pf equal to or higher than the predetermined pressure. Therefore, when the supply fuel pressure Pf is high and the required valve opening force Fa is large, the electromagnetic attraction force does not decrease due to the reduction correction of the first target value I1, so that the electromagnetic attraction force exceeds the required valve opening force Fa. The certainty of rising can be improved.
  • step S12 of FIG. 8 when it is determined in step S12 of FIG. 8 that the overshoot amount L3 is equal to or greater than the predetermined amount Lth, in the next step S13, a plurality of second set fuel fuel pressures Pf are set. Reduction correction is performed on all the target values I1.
  • the first target value I1 corresponding to the supply fuel pressure Pf used for setting the first target value I1 in step S10 in FIG. 8 is reduced and corrected to correspond to other supply fuel pressures Pf. For the first target value I1, the reduction correction is not performed.
  • the first target value I1 in which the overshoot amount L3 actually becomes excessive is set as the target of reduction correction, and the other first target values I1 are reduced. Not subject to correction.
  • the fuel pressure supplied to the fuel injection valve 1 is detected by the fuel pressure sensor 200, and the overshoot is based on the detected pressure waveform, that is, the waveform of the pressure change caused by fuel injection from the injection hole 11.
  • the amount L3 is estimated.
  • the speed when the movable core 40 collides with the fixed core 60 may be detected, and the overshoot amount L3 may be estimated based on the detected speed.
  • the collision speed can be calculated based on the elapsed time by detecting the elapsed time from the energization start time to the coil 70 to the collision time of the movable core 40 to the fixed core 60.
  • the waveform of the coil current is disturbed.
  • the time when this disturbance appears may be regarded as the collision time.
  • a switch circuit that switches the energization on / off state when the movable core 40 collides with the fixed core 60 is mounted on the fuel injection valve 1, and the switching timing of the energization state of the switch circuit may be regarded as the collision timing.
  • step S13 of FIG. 8 all of the plurality of first target values I1 set for different supply fuel pressures Pf are uniformly reduced by a predetermined amount.
  • the correction amount may be decreased as the first target value I1 corresponding to the higher supply fuel pressure Pf.
  • the core boost type fuel injection valve 1 in which the needle 30 starts the valve opening operation after the movable core 40 moves by a predetermined amount is applied as a control target of the fuel injection control device.
  • a normal type fuel injection valve in which the needle starts the valve opening operation simultaneously with the start of the movement of the movable core 40 may be applied as a control target of the fuel injection control device.
  • the means and / or function provided by the ECU 100 can be provided by software recorded in a substantial storage medium and a computer that executes the software, only software, only hardware, or a combination thereof.
  • the controller is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

As a fuel injection control device, an ECU (100) is equipped with an increase control unit (111), a target value setting unit (114), and an estimation unit (115). The increase control unit (111) controls the supply of electricity to a coil (70) so as to begin increasing the coil current when a needle (30) serving as a valve body is in the closed state, and to increase the coil current to a target value. The estimation unit (115) estimates the amount of overshoot when overshoot behavior occurs, wherein a movable core (40) moves as a result of the coil current reaching the target value and the needle (30) continues to move due to inertia even after the movable core makes contact with a stationary core (60). When the amount of overshoot estimated by the estimation unit (115) is equal to or exceeds a prescribed amount, the target value setting unit (114) lowers the target value in subsequent settings so as to be lower than the current setting.

Description

燃料噴射制御装置および燃料噴射システムFuel injection control device and fuel injection system 関連出願の相互参照Cross-reference of related applications
 本願は、2015年11月27日に出願された日本国特許出願第2015-231964号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This application is based on Japanese Patent Application No. 2015-231964 filed on Nov. 27, 2015, and the contents thereof are disclosed in this specification.
 本開示は、燃料噴射弁の作動を制御する燃料噴射制御装置および該燃料噴射制御装置を備える燃料噴射システムに関する。 The present disclosure relates to a fuel injection control device that controls the operation of a fuel injection valve and a fuel injection system including the fuel injection control device.
 特許文献1に記載の燃料噴射弁は、コイルへの通電に伴い電磁吸引力を生じさせる固定コアと、固定コアに吸引されて移動する可動コアと、可動コアに対して相対移動可能な状態で可動コアに組付けられた弁体と、を有する。コイルへ通電して可動コアを固定コアへ吸引させると、吸引により移動する可動コアに弁体が係合して開弁作動し、噴孔から燃料が噴射される。 The fuel injection valve described in Patent Document 1 includes a fixed core that generates an electromagnetic attractive force when energized to a coil, a movable core that is attracted and moved by the fixed core, and a state that is movable relative to the movable core. And a valve body assembled to the movable core. When the coil is energized and the movable core is sucked into the fixed core, the valve element is engaged with the movable core that is moved by suction to open the valve, and fuel is injected from the nozzle hole.
 また、特許文献1に記載の制御装置は、弁体が閉弁状態である時にコイルに流れるコイル電流の上昇を開始させ、コイル電流を目標値にまで上昇させる上昇制御を実行することで、電磁吸引力を増大させる。増大する電磁吸引力が、弁体に付与されている閉弁力にまで達すると、可動コアとともに弁体が開弁作動を開始する。 Further, the control device described in Patent Document 1 starts the increase of the coil current flowing through the coil when the valve body is in the closed state, and executes the increase control for increasing the coil current to the target value. Increase suction power. When the increasing electromagnetic attraction force reaches the valve closing force applied to the valve body, the valve body starts the valve opening operation together with the movable core.
 ここで、通電により吸引された可動コアは固定コアに衝突することとなるが、その衝突速度が速い場合には、衝突した可動コアが閉弁方向へ跳ね返ることがある。この場合、上記構造に反して弁体が可動コアに固定されていると、可動コアとともに弁体も閉弁方向へ跳ね返ることとなり、弁体による開度が不規則に変化する。その結果、噴孔からの燃料噴射状態が不安定となり、燃料噴射量を高精度で制御することの妨げとなる。 Here, the movable core attracted by energization collides with the fixed core, but when the collision speed is high, the collided movable core may rebound in the valve closing direction. In this case, if the valve element is fixed to the movable core against the above structure, the valve element also rebounds in the valve closing direction together with the movable core, and the opening degree by the valve element changes irregularly. As a result, the state of fuel injection from the nozzle hole becomes unstable, which hinders control of the fuel injection amount with high accuracy.
 これに対し、可動コアに対して弁体を相対移動可能にした上記構造によれば、可動コアが閉弁方向に跳ね返った場合であっても、弁体は、慣性力によって開弁方向への移動を継続するといったオーバーシュートの挙動となる。これにより、弁体の閉弁方向への跳ね返りが抑制され、燃料噴射状態を安定化させることができ、燃料噴射量の精度悪化を抑制できる。 On the other hand, according to the above structure in which the valve body is movable relative to the movable core, the valve body is moved in the valve opening direction by inertia force even when the movable core bounces back in the valve closing direction. It becomes an overshoot behavior that keeps moving. Thereby, the recoil of the valve body in the valve closing direction is suppressed, the fuel injection state can be stabilized, and deterioration in the accuracy of the fuel injection amount can be suppressed.
 先述した通り、上昇制御により増大する電磁吸引力が、弁体に付与されている閉弁力にまで増大した時点で、可動コアおよび弁体の開弁作動が開始される。しかしながら、燃料噴射弁へ供給される燃料の圧力(つまり供給燃圧)が小さい場合には、供給燃圧により弁体が閉弁側に押し付けられる力が弱くなるので、上記閉弁力が小さくなっている。この場合には、弁体の開弁作動の速度が速くなるので、弁体のオーバーシュート量が大きくなる。すると、オーバーシュート後にその反動で弁体が閉弁側へ移動する量が大きくなるので、弁体による開度が不規則に変化することを十分に抑制できなくなり、燃料噴射量の精度悪化を十分に抑制できなくなる。 As described above, when the electromagnetic attractive force increased by the ascent control increases to the valve closing force applied to the valve body, the opening operation of the movable core and the valve body is started. However, when the pressure of the fuel supplied to the fuel injection valve (that is, the supply fuel pressure) is small, the force with which the valve body is pressed against the valve closing side by the supply fuel pressure is weakened, so the valve closing force is small. . In this case, since the valve opening speed of the valve element is increased, the overshoot amount of the valve element is increased. Then, since the amount of movement of the valve body to the valve closing side due to the reaction after overshooting becomes large, it becomes impossible to sufficiently suppress the irregular opening of the valve body, and the accuracy of the fuel injection amount is sufficiently deteriorated. Can not be suppressed.
 なお、上昇制御に用いる目標値を低く設定すればオーバーシュート量を低減できるものの、目標値を過剰に低く設定してしまうと、電磁吸引力が十分に増大せず開弁作動できなくなることが懸念される。そこで、上昇制御に用いる上記目標値を、開弁作動できる範囲内のできるだけ小さい値(つまり最適値)に設定することが望ましい。しかしながら、そのような最適値は、燃料噴射弁の経年劣化等に起因して変化する。 Although the overshoot amount can be reduced if the target value used for the ascent control is set low, there is a concern that if the target value is set too low, the electromagnetic attractive force does not increase sufficiently and the valve opening operation cannot be performed. Is done. Therefore, it is desirable to set the target value used for the lift control to the smallest possible value (that is, the optimum value) within the range in which the valve opening operation can be performed. However, such an optimum value varies due to deterioration of the fuel injection valve over time.
特開2014-218976号公報(US2016/0061139A1に対応)JP 2014-218976 A (corresponding to US2016 / 0061139A1)
 本開示は、上記問題を鑑みてなされたもので、その目的は、燃料噴射量の精度悪化抑制を図った燃料噴射制御装置または燃料噴射システムを提供することにある。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a fuel injection control device or a fuel injection system that suppresses deterioration in accuracy of the fuel injection amount.
 本開示の第1の態様では、
 コイルへの通電に伴い電磁吸引力を生じさせる固定コアと、固定コアに吸引されて移動する可動コアと、可動コアに対して相対移動可能な状態で組付けられ、移動する可動コアに係合することで開弁作動する弁体とを有し、開弁作動に伴い噴孔から燃料を噴射する燃料噴射弁に適用される燃料噴射制御装置において、
 弁体が閉弁状態である時にコイルに流れるコイル電流の上昇を開始させ、コイル電流を目標値にまで上昇させるよう、コイルへの電力供給を制御する上昇制御部と、
 目標値を設定する目標値設定部と、
 コイル電流を目標値にまで上昇させた結果、可動コアが移動して固定コアに当接した以降も弁体が慣性で移動し続けるオーバーシュートの挙動が現れた場合に、弁体のオーバーシュート量を推定する推定部と、
を備え、
 目標値設定部は、推定部により推定されたオーバーシュート量が所定量以上であった場合に、次回以降の設定では今回の設定に比べて目標値を低下させる燃料噴射制御装置を提供する。
In a first aspect of the present disclosure,
A fixed core that generates an electromagnetic attraction force when the coil is energized, a movable core that is attracted and moved by the fixed core, and a movable core that is assembled relative to the movable core and engaged with the moving movable core In a fuel injection control device applied to a fuel injection valve that has a valve body that opens by valve opening and that injects fuel from an injection hole in accordance with the valve opening operation,
An ascending control unit for controlling the power supply to the coil so as to start an increase in the coil current flowing through the coil when the valve body is in a closed state and to raise the coil current to a target value;
A target value setting unit for setting a target value;
As a result of raising the coil current to the target value, the overshoot amount of the valve element appears when the valve body continues to move with inertia even after the movable core moves and contacts the fixed core. An estimation unit for estimating
With
The target value setting unit provides a fuel injection control device that, when the overshoot amount estimated by the estimation unit is equal to or greater than a predetermined amount, lowers the target value compared to the current setting in the subsequent settings.
 本開示の第2の態様では、
 コイルへの通電に伴い電磁吸引力を生じさせる固定コアと、固定コアに吸引されて移動する可動コアと、可動コアに対して相対移動可能な状態で組付けられ、移動する可動コアに係合することで開弁作動する弁体とを有し、開弁作動に伴い噴孔から燃料を噴射する燃料噴射弁と、
 コイルに流れるコイル電流を制御することで、燃料噴射弁の作動を制御する燃料噴射制御装置と、を備える燃料噴射システムにおいて、
 燃料噴射制御装置は、
 弁体が閉弁状態である時にコイルに流れるコイル電流の上昇を開始させ、コイル電流を目標値にまで上昇させるよう、コイルへの電力供給を制御する上昇制御部と、
 コイル電流を目標値にまで上昇させた結果、可動コアが移動して固定コアに当接した以降も弁体が慣性で移動し続けるオーバーシュートの挙動が現れた場合に、弁体のオーバーシュート量を推定する推定部と、
 推定部により推定されたオーバーシュート量が所定量以上であった場合に、次回以降に用いる目標値を低下させるように目標値を設定する目標値設定部と、
を備える燃料噴射システムを提供する。
In a second aspect of the present disclosure,
A fixed core that generates an electromagnetic attraction force when the coil is energized, a movable core that is attracted and moved by the fixed core, and a movable core that is assembled relative to the movable core and engaged with the moving movable core A fuel injection valve for injecting fuel from the nozzle hole in accordance with the valve opening operation,
In a fuel injection system comprising a fuel injection control device that controls the operation of a fuel injection valve by controlling a coil current flowing in the coil,
The fuel injection control device
An ascending control unit for controlling the power supply to the coil so as to start an increase in the coil current flowing through the coil when the valve body is in a closed state and to raise the coil current to a target value;
As a result of raising the coil current to the target value, the overshoot amount of the valve element appears when the valve body continues to move with inertia even after the movable core moves and contacts the fixed core. An estimation unit for estimating
A target value setting unit that sets a target value so as to decrease a target value to be used after the next time when the overshoot amount estimated by the estimation unit is equal to or greater than a predetermined amount;
A fuel injection system is provided.
 上述した第1の態様および第2の態様によれば、上昇制御部が用いる目標値を設定するにあたり、推定されたオーバーシュート量が所定量以上であった場合には、次回以降の設定では今回の設定に比べて目標値を低下させる。そのため、次回以降の開弁作動時には、オーバーシュート量を低減させることができる。よって、弁体による開度が不規則に変化することを抑制でき、オーバーシュートに起因した燃料噴射量の精度悪化を抑制できる。 According to the first aspect and the second aspect described above, when setting the target value used by the ascending control unit, if the estimated overshoot amount is greater than or equal to the predetermined amount, the current and subsequent settings are The target value is lowered compared to the setting of. Therefore, the amount of overshoot can be reduced during the valve opening operation after the next time. Therefore, it can suppress that the opening degree by a valve body changes irregularly, and can suppress the precision deterioration of the fuel injection quantity resulting from an overshoot.
 また、上述の如く目標値を低下させた後、燃料噴射弁の経年劣化等に起因してオーバーシュート量増大が再発した場合であっても、オーバーシュート量が所定量以上になるとコイル電流の目標値が低下される。よって、上記再発が生じてもオーバーシュート量の低減が可能であり、燃料噴射量の精度悪化を抑制できる。 In addition, even if the increase in the overshoot amount recurs due to deterioration of the fuel injector over time after the target value is reduced as described above, the coil current target is exceeded when the overshoot amount exceeds a predetermined amount. The value is lowered. Therefore, even if the above recurrence occurs, the amount of overshoot can be reduced, and the deterioration of the accuracy of the fuel injection amount can be suppressed.
本開示の第1実施形態における燃料噴射弁および燃料噴射制御装置を模式的に示す図。The figure which shows typically the fuel injection valve and fuel-injection control apparatus in 1st Embodiment of this indication. 第1実施形態における燃料噴射弁の、閉弁状態を示す図。The figure which shows the valve closing state of the fuel injection valve in 1st Embodiment. 第1実施形態における燃料噴射弁の、開弁途中の状態を示す図。The figure which shows the state in the middle of valve opening of the fuel injection valve in 1st Embodiment. 第1実施形態における燃料噴射弁の、開弁完了状態を示す図。The figure which shows the valve opening completion state of the fuel injection valve in 1st Embodiment. 第1実施形態における燃料噴射弁の、ニードルがオーバーシュートしている状態を示す図。The figure which shows the state which the needle of the fuel injection valve in 1st Embodiment has overshooted. 図1に示すECUが噴射制御を実施した場合における、コイルへの印加電圧、コイル電流、電磁吸引力およびリフト量の、時間経過に伴い生じる変化を示す図。The figure which shows the change which arises with the passage of time of the voltage applied to a coil, coil current, electromagnetic attraction force, and lift amount when ECU shown in FIG. 1 implements injection control. 図1に示す燃料噴射弁のTi-Q特性を示す図。The figure which shows the Ti-Q characteristic of the fuel injection valve shown in FIG. 図1に示すマイコンによる、上昇制御に用いるコイル電流の目標値を設定する処理手順を示すフローチャート。The flowchart which shows the process sequence which sets the target value of the coil current used for raise control by the microcomputer shown in FIG. 本開示の第2実施形態において、燃料噴射制御装置の制御対象となる燃料噴射弁を模式的に示す図。The figure which shows typically the fuel injection valve used as the control object of a fuel-injection control apparatus in 2nd Embodiment of this indication. 本開示の第3実施形態において、燃料噴射制御装置の制御対象となる燃料噴射弁を模式的に示す図。The figure which shows typically the fuel injection valve used as the control object of a fuel-injection control apparatus in 3rd Embodiment of this indication.
 以下、図面を参照しながら本開示の複数の実施形態を説明する。各実施形態において、先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を参照し適用することができる。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to those described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other embodiments described above can be applied to other parts of the configuration.
 (第1実施形態)
 図1に示す燃料噴射弁1は、車両の点火式の内燃機関(ガソリンエンジン)に搭載されており、内燃機関の燃焼室へ直接燃料を噴射するものである。燃料噴射弁1へ供給される燃料は、図示しない高圧ポンプにより昇圧されている。高圧ポンプは、内燃機関の動力を駆動源として作動する。
(First embodiment)
A fuel injection valve 1 shown in FIG. 1 is mounted on an ignition type internal combustion engine (gasoline engine) of a vehicle, and directly injects fuel into a combustion chamber of the internal combustion engine. The fuel supplied to the fuel injection valve 1 is boosted by a high pressure pump (not shown). The high-pressure pump operates using the power of the internal combustion engine as a drive source.
 図1に示すように、燃料噴射弁1は、ハウジング20、ノズル部10、固定コア60、可動コア40、弁体としてのニードル30、可動プレート50、第1スプリング80、第2スプリング90、および、コイル70等を備えている。 As shown in FIG. 1, the fuel injection valve 1 includes a housing 20, a nozzle portion 10, a fixed core 60, a movable core 40, a needle 30 as a valve body, a movable plate 50, a first spring 80, a second spring 90, and A coil 70 and the like.
 ハウジング20は、第1筒部材21、第2筒部材22、第3筒部材23、外周部材25および樹脂モールド部26を有する。第1筒部材21、第2筒部材22および第3筒部材23は、いずれも略円筒状に形成され、第1筒部材21、第2筒部材22、第3筒部材23の順に同軸となるよう配置され、互いに接続している。外周部材25は第1筒部材21と第3筒部材23の外周面に当接している。第1筒部材21、第3筒部材23および外周部材25は、例えばフェライト系ステンレス等の磁性材により形成されている。一方、第2筒部材22は、例えばオーステナイト系ステンレス等の非磁性材により形成されている。 The housing 20 includes a first cylinder member 21, a second cylinder member 22, a third cylinder member 23, an outer peripheral member 25, and a resin mold portion 26. The first cylinder member 21, the second cylinder member 22, and the third cylinder member 23 are all formed in a substantially cylindrical shape, and are coaxial in the order of the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23. Arranged and connected to each other. The outer peripheral member 25 is in contact with the outer peripheral surfaces of the first cylindrical member 21 and the third cylindrical member 23. The 1st cylinder member 21, the 3rd cylinder member 23, and the outer periphery member 25 are formed, for example with magnetic materials, such as ferritic stainless steel. On the other hand, the second cylindrical member 22 is formed of a nonmagnetic material such as austenitic stainless steel, for example.
 ノズル部10は、第1筒部材21の端部に設けられており、金属製の円板形状に形成されている。ノズル部10の中央には、ノズル部10を板厚方向に貫く噴孔11が形成されている。また、ノズル部10の一方の面には、噴孔11を囲むようにして環状の弁座12が形成されている。ノズル部10は、側壁が第1筒部材21の内壁に嵌合するようにして第1筒部材21に接続している。 The nozzle unit 10 is provided at the end of the first cylinder member 21 and is formed in a metal disk shape. A nozzle hole 11 that penetrates the nozzle portion 10 in the plate thickness direction is formed in the center of the nozzle portion 10. An annular valve seat 12 is formed on one surface of the nozzle portion 10 so as to surround the nozzle hole 11. The nozzle portion 10 is connected to the first cylinder member 21 such that the side wall is fitted to the inner wall of the first cylinder member 21.
 固定コア60は、第3筒部材23の端部に設けられており、例えばフェライト系ステンレス等の磁性材により略円筒状に形成されている。固定コア60は、ハウジング20の内側に設けられている。なお、固定コア60およびノズル部10は、溶接によりハウジング20に固定されている。 The fixed core 60 is provided at the end of the third cylindrical member 23, and is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel, for example. The fixed core 60 is provided inside the housing 20. Note that the fixed core 60 and the nozzle portion 10 are fixed to the housing 20 by welding.
 ニードル30は、例えばマルテンサイト系ステンレス等の金属により棒状に形成されている。ニードル30は、ハウジング20内に軸方向へ往復移動可能に収容されている。ニードル30は、軸方向に延びる棒状の本体32と、本体32のノズル部10側の端部に形成されたシール部31と、本体32のノズル部10側とは反対側の端部に形成された鍔部33と、を有する。ニードル30は、シール部31が弁座12から離間(つまり離座)または弁座12に当接(つまり着座)することで噴孔11を開閉する。以下、適宜、ニードル30が弁座12から離間する方向を開弁方向といい、ニードル30が弁座12に当接する方向を閉弁方向という。本体32の鍔部33側は、中空筒状に形成され、本体32の内壁321と外壁322とを接続する孔34が形成されている。鍔部33は、ハウジング20の内壁24に向けて拡がる円板形状である。 The needle 30 is formed in a rod shape from a metal such as martensitic stainless steel. The needle 30 is accommodated in the housing 20 so as to be capable of reciprocating in the axial direction. The needle 30 is formed at a rod-like main body 32 extending in the axial direction, a seal portion 31 formed at an end portion of the main body 32 on the nozzle portion 10 side, and an end portion of the main body 32 opposite to the nozzle portion 10 side. And a flange portion 33. The needle 30 opens and closes the nozzle hole 11 when the seal portion 31 is separated from the valve seat 12 (that is, separated) or abuts (that is, seated) on the valve seat 12. Hereinafter, the direction in which the needle 30 is separated from the valve seat 12 is referred to as a valve opening direction, and the direction in which the needle 30 contacts the valve seat 12 is referred to as a valve closing direction. The flange 33 side of the main body 32 is formed in a hollow cylindrical shape, and a hole 34 that connects the inner wall 321 and the outer wall 322 of the main body 32 is formed. The flange portion 33 has a disk shape that expands toward the inner wall 24 of the housing 20.
 可動コア40は、例えばフェライト系ステンレス等の磁性材により略円筒状に形成されている。可動コア40は、固定コア60とノズル部10との間を往復移動可能な状態で、ハウジング20の内部に収容される。可動コア40の中央には、貫通孔44が形成される。可動コア40の貫通孔44の内壁とニードル30の本体32の外壁322とは摺動可能であり、可動コア40の外壁42とハウジング20の内壁24とは摺動可能である。これにより、可動コア40は、ニードル30およびハウジング20と摺動しながらハウジング20の内側で往復移動可能である。 The movable core 40 is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel. The movable core 40 is accommodated in the housing 20 in a state where the movable core 40 can reciprocate between the fixed core 60 and the nozzle portion 10. A through hole 44 is formed in the center of the movable core 40. The inner wall of the through hole 44 of the movable core 40 and the outer wall 322 of the main body 32 of the needle 30 are slidable, and the outer wall 42 of the movable core 40 and the inner wall 24 of the housing 20 are slidable. Thereby, the movable core 40 can reciprocate inside the housing 20 while sliding with the needle 30 and the housing 20.
 可動コア40は、固定コア60側の端面41に、貫通孔44の内壁から径外方向へ環状に拡がるよう形成される収容凹部45を有する。また、可動コア40は、固定コア60側の端面41に、収容凹部45の底壁452とは反対側の端部から径外方向へ環状に拡がるよう形成される嵌入溝部46を有する。収容凹部45にはニードル30の鍔部33が収容され、嵌入溝部46には後で説明する可動プレート50が嵌入される。 The movable core 40 has an accommodation recess 45 formed on the end surface 41 on the fixed core 60 side so as to expand annularly from the inner wall of the through hole 44 in the radially outward direction. In addition, the movable core 40 has a fitting groove portion 46 formed on the end surface 41 on the fixed core 60 side so as to expand in an annular shape radially outward from the end portion on the opposite side of the bottom wall 452 of the housing recess 45. The accommodating recess 45 accommodates the flange portion 33 of the needle 30, and a movable plate 50 described later is fitted into the fitting groove portion 46.
 可動プレート50は、例えばマルテンサイト系ステンレス等の金属により収容凹部45よりも径が大きい円盤状に形成され、中央に孔51を有する。可動プレート50は、可動コア40のノズル部10とは反対側に、可動コア40およびニードル30の鍔部33に当接可能に設けられる。可動プレート50は、嵌入溝部46に嵌入可能に設けられる。 The movable plate 50 is formed in a disk shape having a diameter larger than that of the housing recess 45 by a metal such as martensitic stainless steel, and has a hole 51 in the center. The movable plate 50 is provided on the opposite side of the movable core 40 from the nozzle portion 10 so as to be in contact with the movable core 40 and the flange portion 33 of the needle 30. The movable plate 50 is provided so as to be fitted into the fitting groove 46.
 コイル70は、略円筒状に形成され、第2筒部材22および第3筒部材23の径方向外側を囲むようにして設けられている。第1筒部材21、第2筒部材22、第3筒部材23および外周部材25との間には、樹脂モールド部26が充填されている。 The coil 70 is formed in a substantially cylindrical shape and is provided so as to surround the radially outer side of the second cylinder member 22 and the third cylinder member 23. A resin mold portion 26 is filled between the first cylinder member 21, the second cylinder member 22, the third cylinder member 23, and the outer peripheral member 25.
 コイル70に電力が供給されてコイル70に磁力が生じると、固定コア60、可動コア40、第1筒部材21、第3筒部材23および外周部材25に磁気回路が形成される。これにより、電磁吸引力が可動コア40に作用して、可動コア40は固定コア60に吸引される。このとき、収容凹部45の底壁452はニードル30の鍔部33に当接するため、ニードル30は、可動コア40とともに固定コア60側、すなわち開弁方向へ移動する。これにより、シール部31が弁座12から離間し、噴孔11が開放される。また、可動コア40は、端面41が固定コア60に当接することにより、開弁方向への移動が規制される。 When electric power is supplied to the coil 70 and a magnetic force is generated in the coil 70, a magnetic circuit is formed in the fixed core 60, the movable core 40, the first cylindrical member 21, the third cylindrical member 23, and the outer peripheral member 25. Thereby, the electromagnetic attractive force acts on the movable core 40, and the movable core 40 is attracted to the fixed core 60. At this time, since the bottom wall 452 of the housing recess 45 abuts against the flange 33 of the needle 30, the needle 30 moves together with the movable core 40 toward the fixed core 60, that is, in the valve opening direction. Thereby, the seal part 31 is separated from the valve seat 12, and the nozzle hole 11 is opened. In addition, the movable core 40 is restricted from moving in the valve opening direction when the end surface 41 abuts against the fixed core 60.
 第1スプリング80は、可動プレート50に当接して弾性力を付与することで、可動コア40およびニードル30を閉弁方向に付勢している。第2スプリング90は、可動コア40に当接して弾性力を付与することで、可動プレート50を固定コア60側(つまり開弁方向)に付勢している。第1スプリング80の付勢力は、第2スプリング90の付勢力よりも大きく設定されている。そのため、コイル70に電力が供給されていない状態では、ニードル30は、シール部31が弁座12に当接した閉弁状態となる。 The first spring 80 abuts on the movable plate 50 and applies an elastic force to urge the movable core 40 and the needle 30 in the valve closing direction. The second spring 90 urges the movable plate 50 toward the fixed core 60 (that is, the valve opening direction) by contacting the movable core 40 and applying an elastic force. The urging force of the first spring 80 is set larger than the urging force of the second spring 90. Therefore, in a state where power is not supplied to the coil 70, the needle 30 is in a closed state in which the seal portion 31 is in contact with the valve seat 12.
 図2に示すように、コイル70への通電オフ時には、第1スプリング80および第2スプリング90の付勢力によって、可動プレート50は、ニードル30および可動コア40に当接する。具体的には、可動プレート50の下端面53が、ニードル30の鍔部33の端面331、および可動コア40の嵌入溝部46の底壁461に当接する。ここで、鍔部33の軸方向の長さをL1とし、可動プレート50の下端面53と収容凹部45の底壁452との軸方向の距離をL2とする。鍔部33、可動プレート50、収容凹部45および嵌入溝部46は、L1<L2の関係を満たすよう形成されている。 As shown in FIG. 2, when energization of the coil 70 is turned off, the movable plate 50 contacts the needle 30 and the movable core 40 by the urging force of the first spring 80 and the second spring 90. Specifically, the lower end surface 53 of the movable plate 50 contacts the end surface 331 of the flange portion 33 of the needle 30 and the bottom wall 461 of the insertion groove portion 46 of the movable core 40. Here, the axial length of the flange 33 is L1, and the axial distance between the lower end surface 53 of the movable plate 50 and the bottom wall 452 of the housing recess 45 is L2. The flange 33, the movable plate 50, the housing recess 45, and the fitting groove 46 are formed so as to satisfy the relationship L1 <L2.
 また、鍔部33の下端面332と収容凹部45の底壁452との軸方向の距離をG1とし、可動コア40の端面41と固定コア60の可動コア40側の端面との軸方向の距離をG2とする。鍔部33、可動プレート50、収容凹部45、嵌入溝部46、可動コア40および固定コア60は、G1<G2、および、G1=L2-L1の関係を満たすよう設けられている。 Further, the axial distance between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45 is G1, and the axial distance between the end surface 41 of the movable core 40 and the end surface of the fixed core 60 on the movable core 40 side. Is G2. The flange 33, the movable plate 50, the housing recess 45, the fitting groove 46, the movable core 40, and the fixed core 60 are provided so as to satisfy the relationship of G1 <G2 and G1 = L2-L1.
 第3筒部材23の端部には、略円筒状の燃料導入パイプ62が圧入および溶接されている。燃料導入パイプ62から流入した燃料は、固定コア60、可動プレート50の孔51、ニードル30の本体32の内側、ニードル30の孔34、および第1筒部材21とニードル30との間を順に流通する。コイル70への通電オンによりニードル30が開弁している状態では、上述の如く流通した燃料は、シール部31と弁座12との間を流通した後、噴孔11から噴射される。 A substantially cylindrical fuel introduction pipe 62 is press-fitted and welded to the end of the third cylinder member 23. The fuel that has flowed in from the fuel introduction pipe 62 flows in order through the fixed core 60, the hole 51 of the movable plate 50, the inside of the main body 32 of the needle 30, the hole 34 of the needle 30, and the first cylindrical member 21 and the needle 30. To do. In a state where the needle 30 is opened by energization of the coil 70, the fuel that has circulated as described above circulates between the seal portion 31 and the valve seat 12 and is then injected from the injection hole 11.
 次に、本実施形態の燃料噴射弁1の作動を図2~4に基づいて説明する。 Next, the operation of the fuel injection valve 1 of this embodiment will be described with reference to FIGS.
 コイル70への通電をオフさせた状態では、図2に示すように、第1スプリング80は、可動プレート50を付勢することでニードル30を閉弁方向に付勢し、第2スプリング90は、可動コア40を固定コア60側に付勢している。可動プレート50の下端面53は、ニードル30の鍔部33の端面331、および可動コア40の嵌入溝部46の底壁461に当接し、先述した通りL1<L2かつG1<G2の状態となっている。これにより、ニードル30のシール部31が弁座12に着座した閉塞状態となり、噴孔11は閉弁された状態となる。 In a state where the power supply to the coil 70 is turned off, as shown in FIG. 2, the first spring 80 biases the movable plate 50 to bias the needle 30 in the valve closing direction, and the second spring 90 The movable core 40 is urged toward the fixed core 60 side. The lower end surface 53 of the movable plate 50 is in contact with the end surface 331 of the flange portion 33 of the needle 30 and the bottom wall 461 of the fitting groove portion 46 of the movable core 40, and as described above, L1 <L2 and G1 <G2. Yes. Thereby, it will be in the obstruction | occlusion state in which the seal part 31 of the needle 30 was seated on the valve seat 12, and the injection hole 11 will be in the closed state.
 コイル70への通電をオンさせると、図3に示すように、可動コア40は、固定コア60に吸引されて固定コア60側へ移動する。可動プレート50は、可動コア40に押されて第1スプリング80の付勢力に抗して第1スプリング80側へ移動する。また、可動コア40は、所定距離G1分加速し、加速距離分の運動エネルギーを持った状態でニードル30の鍔部33の下端面332に衝突する。この衝突により、ニードル30は急速に開弁方向へ移動を開始し、シール部31が弁座12から離間して、噴孔11から燃料が噴射される。 When energization of the coil 70 is turned on, the movable core 40 is attracted by the fixed core 60 and moved to the fixed core 60 side as shown in FIG. The movable plate 50 is pushed by the movable core 40 and moves toward the first spring 80 against the urging force of the first spring 80. Further, the movable core 40 is accelerated by a predetermined distance G1 and collides with the lower end surface 332 of the collar portion 33 of the needle 30 with kinetic energy corresponding to the acceleration distance. Due to this collision, the needle 30 starts to move rapidly in the valve opening direction, the seal portion 31 is separated from the valve seat 12, and fuel is injected from the injection hole 11.
 可動コア40は、ニードル30に衝突した後さらに移動を継続し、図4に示すように固定コア60と衝突する。つまり、可動コア40の移動が規制される。ニードル30は、鍔部33が底壁452に係合した状態で、可動コア40により開弁方向へ付勢される。このように付勢される期間は、可動コア40がニードル30に衝突してから、可動コア40が固定コア60に衝突するまでの期間である。 The movable core 40 continues to move after colliding with the needle 30 and collides with the fixed core 60 as shown in FIG. That is, the movement of the movable core 40 is restricted. The needle 30 is urged in the valve opening direction by the movable core 40 in a state where the collar portion 33 is engaged with the bottom wall 452. The period of biasing in this way is a period from when the movable core 40 collides with the needle 30 to when the movable core 40 collides with the fixed core 60.
 可動コア40が移動停止する一方で、ニードル30は、図5に示すように可動コア40から離れ、慣性によって第1スプリング80の弾性力に抗して移動を継続する。可動プレート50を介してニードル30に押し付けられた第1スプリング80は、限界まで縮んだ後、可動プレート50およびニードル30を閉弁方向の側へ押し戻して移動させる。このように押し戻される可動プレート50およびニードル30は、再び可動コア40に当接した図4の状態で移動停止する。 While the movable core 40 stops moving, the needle 30 moves away from the movable core 40 as shown in FIG. 5 and continues to move against the elastic force of the first spring 80 due to inertia. The first spring 80 pressed against the needle 30 via the movable plate 50 contracts to the limit, and then moves the movable plate 50 and the needle 30 back to the valve closing direction. The movable plate 50 and the needle 30 pushed back in this way stop moving in the state of FIG.
 このように、可動コア40が移動して固定コア60に当接した以降もニードル30が慣性で移動し続ける挙動をオーバーシュートと呼ぶ。図5に示すように、オーバーシュート量L3は、ニードル30と可動コア40との軸方向における離間距離である。具体的には、鍔部33の下端面332から収容凹部45の底壁452までの軸方向における距離である。 In this way, the behavior in which the needle 30 continues to move due to inertia even after the movable core 40 moves and contacts the fixed core 60 is called overshoot. As shown in FIG. 5, the overshoot amount L3 is a separation distance in the axial direction between the needle 30 and the movable core 40. Specifically, it is the distance in the axial direction from the lower end surface 332 of the flange 33 to the bottom wall 452 of the housing recess 45.
 コイル70への通電をオフさせると、電磁吸引力は低下していき、開弁保持力を下回ると、可動プレート50、可動コア40およびニードル30は閉弁方向へ移動する。具体的には、先ず、可動プレート50が、第1スプリング80によりニードル30側に付勢されることで、可動コアとともに閉弁方向への移動を開始する。その後、可動プレート50がニードル30の鍔部33に当接して、閉弁方向へニードル30を付勢する。換言すれば、第1スプリング80の弾性力が、可動プレート50を介してニードル30へ伝達され、その弾性力によりニードル30が閉弁作動を開始する。閉弁方向へ移動するニードル30は、シール部31が弁座12に当接することで移動停止する。 When the power supply to the coil 70 is turned off, the electromagnetic attraction force decreases, and when the energization force falls below the valve opening holding force, the movable plate 50, the movable core 40, and the needle 30 move in the valve closing direction. Specifically, first, the movable plate 50 is urged toward the needle 30 by the first spring 80, thereby starting movement in the valve closing direction together with the movable core. Thereafter, the movable plate 50 comes into contact with the collar portion 33 of the needle 30 and urges the needle 30 in the valve closing direction. In other words, the elastic force of the first spring 80 is transmitted to the needle 30 via the movable plate 50, and the needle 30 starts the valve closing operation by the elastic force. The needle 30 moving in the valve closing direction stops moving when the seal portion 31 comes into contact with the valve seat 12.
 ニードル30の移動停止とともに可動プレート50も移動停止する一方で、可動コア40は可動プレート50から離れ、慣性によって第2スプリング90の弾性力に抗して移動を継続する。可動コア40に押し付けられた第2スプリング90は、限界まで縮んだ後、可動コア40を可動プレート50側へ押し戻して移動させる。このように押し戻される可動コア40は、再び可動プレート50に当接し、可動プレート50とともに開弁方向へ移動する。この時、可動コア40はニードル30には当接していないので、上述の如く可動コア40が押し戻されて移動しても、ニードル30は開弁方向に移動しない。その後、可動プレート50が再び第1スプリング80により閉弁方向へ押し付けられ、可動プレート50は可動コア40とともに閉弁方向へ移動する。つまり、可動コア40は軸方向に振動し、可動コア40の運動エネルギーが無くなると、可動プレート50がニードル30および可動コア40に当接した図2の状態で移動停止する。 While the movement of the needle 30 stops, the movable plate 50 also stops moving, while the movable core 40 moves away from the movable plate 50 and continues to move against the elastic force of the second spring 90 due to inertia. The second spring 90 pressed against the movable core 40 contracts to the limit and then moves the movable core 40 back to the movable plate 50 side. The movable core 40 pushed back in this way again comes into contact with the movable plate 50 and moves together with the movable plate 50 in the valve opening direction. At this time, since the movable core 40 is not in contact with the needle 30, even if the movable core 40 is pushed back and moved as described above, the needle 30 does not move in the valve opening direction. Thereafter, the movable plate 50 is again pressed in the valve closing direction by the first spring 80, and the movable plate 50 moves in the valve closing direction together with the movable core 40. That is, the movable core 40 vibrates in the axial direction, and when the kinetic energy of the movable core 40 is lost, the movable plate 50 stops moving in the state of FIG. 2 where the movable plate 50 contacts the needle 30 and the movable core 40.
 要するに、可動プレート50は可動コア40とともに軸方向に移動するが、閉弁および開弁のいずれの場合であっても、可動プレート50の移動開始タイミングは可動コア40の移動開始タイミングと同じである。これに対し、ニードル30の移動開始タイミングは、閉弁および開弁のいずれの場合であっても、可動コア40の移動開始タイミングよりも遅れる。 In short, the movable plate 50 moves in the axial direction together with the movable core 40, but the movement start timing of the movable plate 50 is the same as the movement start timing of the movable core 40 regardless of whether the valve is closed or opened. . On the other hand, the movement start timing of the needle 30 is delayed from the movement start timing of the movable core 40 regardless of whether the needle 30 is closed or opened.
 可動プレート50は、可動コア40とは別体に構成され、かつ、可動コア40とともに移動する移動部材を提供する。可動プレート50は、開弁方向には可動コア40に押されて移動し、閉弁方向には第1スプリング80に押されて移動する。また、第1スプリング80に押されて移動する際には、第1スプリング80の弾性力をニードル30に伝達する閉弁力伝達部材として可動プレート50は機能する。 The movable plate 50 is configured separately from the movable core 40 and provides a moving member that moves together with the movable core 40. The movable plate 50 is pushed and moved by the movable core 40 in the valve opening direction and moved by the first spring 80 in the valve closing direction. When the first spring 80 moves while being pushed, the movable plate 50 functions as a valve closing force transmission member that transmits the elastic force of the first spring 80 to the needle 30.
 次に、コイル70への通電状態を制御する燃料噴射制御装置のハード構成について、図1を用いて説明する。燃料噴射制御装置は、電子制御装置であるECU100により提供される。また、燃料噴射弁1およびECU100により燃料噴射システムが提供される。ECU100は、マイクロコンピュータ(マイコン110)および昇圧回路120等を備える。 Next, the hardware configuration of the fuel injection control device that controls the energization state of the coil 70 will be described with reference to FIG. The fuel injection control device is provided by the ECU 100 which is an electronic control device. A fuel injection system is provided by the fuel injection valve 1 and the ECU 100. The ECU 100 includes a microcomputer (microcomputer 110), a booster circuit 120, and the like.
 マイコン110は、中央演算装置(CPU)、不揮発性メモリ(ROM)および揮発性メモリ(RAM)等を有して構成され、内燃機関の負荷および機関回転速度に基づき、燃料の要求噴射量Qreqおよび目標噴射開始時期を算出する。図1のマイコン110のメモリ130は、上記のROMおよびRAMを備えるメモリである。なお、通電時間Tiと噴射量Qとの関係を示す特性線(図7参照)を予め試験して取得しておき、その特性線にしたがってコイル70への通電時間Tiを制御することで、噴射量Qを制御する。 The microcomputer 110 includes a central processing unit (CPU), a non-volatile memory (ROM), a volatile memory (RAM), and the like. Based on the load and engine speed of the internal combustion engine, the required fuel injection quantity Qreq and The target injection start time is calculated. A memory 130 of the microcomputer 110 in FIG. 1 is a memory including the above-described ROM and RAM. It should be noted that a characteristic line (see FIG. 7) showing the relationship between the energization time Ti and the injection amount Q is obtained by testing in advance, and the energization time Ti to the coil 70 is controlled according to the characteristic line. Control the quantity Q.
 例えば、上記特性線に基づき、通電時間Tiと噴射量Qとの関係を示すマップであるTi-Qマップを作成しておき、そのTi-Qマップをメモリに記憶させておく。そして、要求噴射量Qreqに適合する通電時間Tiを、Ti-Qマップを参照して設定する。なお、燃料噴射弁1に供給される燃料の圧力(以下、供給燃圧Pfと記載)が高いほど、通電時間Tiは短くて済む。そこで、供給燃圧Pf毎にTi-Qマップを作成して記憶させておき、噴射時の供給燃圧Pfに応じて参照するTi-Qマップを切り替える。 For example, a Ti-Q map that is a map showing the relationship between the energization time Ti and the injection amount Q is created based on the above characteristic line, and the Ti-Q map is stored in the memory. Then, the energization time Ti suitable for the required injection amount Qreq is set with reference to the Ti-Q map. The higher the pressure of the fuel supplied to the fuel injection valve 1 (hereinafter referred to as supply fuel pressure Pf), the shorter the energization time Ti. Therefore, a Ti-Q map is created and stored for each supply fuel pressure Pf, and the Ti-Q map to be referred to is switched according to the supply fuel pressure Pf at the time of injection.
 供給燃圧Pfは図1に示す燃圧センサ200により検出される。燃圧センサ200は、ハウジング20に取り付けられており、ハウジング20内部の燃料通路を流通する燃料の圧力を検出する。具体的には、燃料導入パイプ62の下流側かつ可動プレート50の上流側の部分に燃圧センサ200は配置されている。マイコン110は、燃圧センサ200から出力されてくる検出信号に基づき供給燃圧Pfを算出する。この算出を実行している時のマイコン110は、図1に示す燃圧取得部116として機能する。 Supplied fuel pressure Pf is detected by a fuel pressure sensor 200 shown in FIG. The fuel pressure sensor 200 is attached to the housing 20 and detects the pressure of the fuel flowing through the fuel passage inside the housing 20. Specifically, the fuel pressure sensor 200 is disposed at a portion downstream of the fuel introduction pipe 62 and upstream of the movable plate 50. The microcomputer 110 calculates the supply fuel pressure Pf based on the detection signal output from the fuel pressure sensor 200. When executing this calculation, the microcomputer 110 functions as the fuel pressure acquisition unit 116 shown in FIG.
 昇圧回路120は、車両のバッテリから供給されるバッテリ電圧Vbattを昇圧してブースト電圧Vboostを生成する(図6(a)参照)。ECU100は、コイル70を流れる電流であるコイル電流を検出する回路を有する。具体的には、シャント抵抗による電圧降下をマイコン110が検出することで、マイコン110がコイル電流を演算して取得する。マイコン110は、取得したコイル電流の値に応じて、ブースト電圧Vboostおよびバッテリ電圧Vbattのいずれをコイル70へ印加させるかを切り替える。 Booster circuit 120 boosts battery voltage Vbatt supplied from the vehicle battery to generate boost voltage Vboost (see FIG. 6A). The ECU 100 includes a circuit that detects a coil current that is a current flowing through the coil 70. Specifically, when the microcomputer 110 detects a voltage drop due to the shunt resistor, the microcomputer 110 calculates and acquires the coil current. The microcomputer 110 switches between the boost voltage Vboost and the battery voltage Vbatt to be applied to the coil 70 according to the acquired coil current value.
 次に、コイル電流を流すことにより生じる電磁吸引力(つまり開弁力)について、詳細に説明する。 Next, the electromagnetic attractive force (that is, valve opening force) generated by flowing the coil current will be described in detail.
 固定コア60で生じさせる起磁力であるアンペアターンATが大きいほど、電磁吸引力は大きくなる。つまり、コイル70の巻き数が同じであれば、コイル電流を多くしてアンペアターンATを大きくするほど、電磁吸引力は大きくなる。但し、通電を開始してから吸引力が飽和して最大値になるまでには時間がかかる。本実施形態では、このように飽和して最大値になった時の電磁吸引力を、静的吸引力Fbと呼ぶ。 As the ampere turn AT, which is the magnetomotive force generated by the fixed core 60, increases, the electromagnetic attractive force increases. That is, if the number of turns of the coil 70 is the same, the electromagnetic attraction force increases as the coil current increases and the ampere turn AT increases. However, it takes time for the suction force to reach a maximum value after energization is started. In the present embodiment, the electromagnetic attractive force when saturated and reaches the maximum value is referred to as a static attractive force Fb.
 また、ニードル30が開弁作動を開始するのに必要な電磁吸引力を、必要開弁力Faと呼ぶ。なお、燃料噴射弁1への供給燃圧が高いほど、ニードル30が開弁作動を開始するのに必要な電磁吸引力(つまり開弁開始吸引力)は大きくなる。また、燃料の粘性が大きい場合等、各種状況に応じて開弁開始吸引力は大きくなる。そこで、開弁開始吸引力が最も大きくなる状況を想定した場合の開弁開始吸引力を、必要開弁力Faと定義する。 Further, the electromagnetic attraction force necessary for the needle 30 to start the valve opening operation is referred to as a necessary valve opening force Fa. Note that the higher the fuel pressure supplied to the fuel injection valve 1 is, the larger the electromagnetic suction force (that is, the valve opening start suction force) necessary for the needle 30 to start the valve opening operation. Further, the valve opening start suction force increases according to various situations such as when the viscosity of the fuel is large. Therefore, the valve opening start suction force when the situation in which the valve opening start suction force is maximized is assumed is defined as the required valve opening force Fa.
 図6(a)は、燃料噴射を1回実施する場合における、コイル70への印加電圧の波形を示す。図示されるように、噴射指令信号により指令される電圧印加開始時期t0、つまり通電時間Tiの開始時期)に、ブースト電圧Vboostを印加して通電を開始させている。すると、通電開始に伴いコイル電流が第1目標値I1まで上昇する(図6(b)の一点鎖線で示す第1目標値I1参照)。そして、検出されたコイル電流が、第1目標値I1に達したt1時点で、通電をオフさせている。要するに、初回の通電によるブースト電圧Vboostの印加により、第1目標値I1までコイル電流を上昇させるように制御する。このようにコイル電流をブースト電圧Vboostで上昇させる制御を上昇制御と呼び、上昇制御を実行している時のマイコン110は、図1に示す上昇制御部111として機能する。 FIG. 6A shows the waveform of the voltage applied to the coil 70 when the fuel injection is performed once. As shown in the figure, the boost voltage Vboost is applied to start energization at the voltage application start time t0 commanded by the injection command signal, that is, the start time of the energization time Ti. Then, with the start of energization, the coil current rises to the first target value I1 (see the first target value I1 indicated by the one-dot chain line in FIG. 6B). The energization is turned off at time t1 when the detected coil current reaches the first target value I1. In short, control is performed so that the coil current is raised to the first target value I1 by applying the boost voltage Vboost by the first energization. Control in which the coil current is increased by the boost voltage Vboos in this way is referred to as increase control, and the microcomputer 110 when executing the increase control functions as the increase control unit 111 illustrated in FIG.
 その後、第1目標値I1よりも低い値に設定された第2目標値I2にコイル電流が維持されるように、バッテリ電圧Vbattによる通電を制御する。具体的には、コイル電流検出値と第2目標値I2との乖離が所定幅以内となるよう、バッテリ電圧Vbattによる通電オンオフを繰り返すことで、変動するコイル電流の平均値が第2目標値I2に保持されるようにデューティ制御する。そして、第2目標値I2は、静的吸引力Fbが必要開弁力Fa以上となるような値に設定されている。このようにコイル電流をバッテリ電圧Vbattで第2目標値I2に保持させる制御をピックアップ制御と呼び、ピックアップ制御を実行している時のマイコン110は、図1に示すピックアップ制御部112として機能する。ピックアップ制御では電磁吸引力が上昇する。ピックアップ制御は、電磁吸引力が必要開弁力Faにまで上昇して開弁作動を開始することの確実性を向上させるものである。 Thereafter, energization with the battery voltage Vbatt is controlled so that the coil current is maintained at the second target value I2 set to a value lower than the first target value I1. Specifically, by repeatedly turning on and off the battery voltage Vbatt so that the deviation between the coil current detection value and the second target value I2 is within a predetermined range, the average value of the fluctuating coil current becomes the second target value I2. The duty is controlled so that The second target value I2 is set to a value such that the static suction force Fb is greater than or equal to the required valve opening force Fa. Control in which the coil current is held at the second target value I2 at the battery voltage Vbatt in this way is called pickup control, and the microcomputer 110 when executing the pickup control functions as the pickup control unit 112 shown in FIG. In the pickup control, the electromagnetic attractive force increases. The pick-up control improves the certainty that the electromagnetic attraction force rises to the required valve opening force Fa and starts the valve opening operation.
 その後、第2目標値I2よりも低い値に設定された第3目標値I3にコイル電流が維持されるように、バッテリ電圧Vbattによる通電を制御する。具体的には、コイル電流検出値と第3目標値I3との乖離が所定幅以内となるよう、バッテリ電圧Vbattによる通電オンオフを繰り返すことで、変動するコイル電流の平均値が第3目標値I3に保持されるようにデューティ制御する。このようにコイル電流をバッテリ電圧Vbattで第3目標値I3に保持させる制御をホールド制御と呼び、ホールド制御を実行している時のマイコン110は、図1に示すホールド制御部113として機能する。ホールド制御は、電磁吸引力を開弁保持力Fc以上に維持させるためのものである。 Thereafter, energization by the battery voltage Vbatt is controlled so that the coil current is maintained at the third target value I3 set to a value lower than the second target value I2. Specifically, by repeatedly turning on and off the battery voltage Vbatt so that the deviation between the coil current detection value and the third target value I3 is within a predetermined range, the average value of the fluctuating coil current becomes the third target value I3. The duty is controlled so that Control in which the coil current is held at the third target value I3 at the battery voltage Vbatt in this way is referred to as hold control, and the microcomputer 110 during the hold control functions as the hold control unit 113 shown in FIG. The hold control is for maintaining the electromagnetic attraction force at or above the valve opening holding force Fc.
 図6(c)に示すように、電磁吸引力は、通電開始時点、つまり上昇制御開始時点(t0)から、ピックアップ制御終了時点(t3)までの期間に上昇し続ける。なお、電磁吸引力の上昇速度は、上昇制御期間(t0~t1)よりもピックアップ制御期間(t2~t3)の方が遅い。そして、吸引力が上昇する期間(t0~t3)のうちに吸引力が必要開弁力Faを超えることとなるよう、第1目標値I1、第2目標値I2およびピックアップ制御期間は設定されている。 As shown in FIG. 6 (c), the electromagnetic attractive force continues to increase during a period from the start of energization, that is, from the increase control start time (t0) to the pickup control end time (t3). The rate of increase of the electromagnetic attractive force is slower in the pickup control period (t2 to t3) than in the increase control period (t0 to t1). The first target value I1, the second target value I2, and the pickup control period are set so that the suction force exceeds the required valve opening force Fa during the period (t0 to t3) during which the suction force increases. Yes.
 ホールド制御期間(t4~t5)では吸引力が所定値に保持される。開弁状態を保持するのに必要な開弁保持力Fcよりも上記所定値が高くなるよう、第3目標値I3は設定されている。なお、開弁保持力Fcは必要開弁力Faよりも小さい。 During the hold control period (t4 to t5), the suction force is held at a predetermined value. The third target value I3 is set so that the predetermined value is higher than the valve opening holding force Fc required to hold the valve open state. The valve opening holding force Fc is smaller than the required valve opening force Fa.
 図6(d)中の縦軸は、ニードル30の開弁時の移動量であるリフト量を示す。吸引力が上昇して必要開弁力Faに達したt10時点で、可動コア40はリフトアップ移動を開始する。その後、可動コア40がニードル30に衝突したt11時点で、ニードル30は開弁作動を開始し、噴孔11からの燃料噴射が開始される。その後、図中の実線に示すように、可動コア40のリフト量上昇に伴いニードル30のリフト量も上昇する。その後、可動コア40が固定コア60に衝突したt12時点で、ニードル30は可動コア40から離れてオーバーシュートする。 The vertical axis in FIG. 6D indicates the lift amount that is the movement amount when the needle 30 is opened. At time t10 when the suction force increases and reaches the required valve opening force Fa, the movable core 40 starts the lift-up movement. Thereafter, at time t11 when the movable core 40 collides with the needle 30, the needle 30 starts the valve opening operation, and fuel injection from the injection hole 11 is started. Thereafter, as shown by the solid line in the figure, the lift amount of the needle 30 increases as the lift amount of the movable core 40 increases. Thereafter, at time t12 when the movable core 40 collides with the fixed core 60, the needle 30 leaves the movable core 40 and overshoots.
 その後、コイル70への通電オフに伴い吸引力が低下して開弁保持力Fcに達した時点で、可動コア40は可動プレート50とともにリフトダウン移動を開始する。その後、可動プレート50がニードル30に当接したt13時点で、ニードル30は可動コア40とともにリフトダウン移動を開始する。その後、ニードル30がシール部31に当接したt14時点で、噴孔11からの燃料噴射が停止される。 Thereafter, the movable core 40 starts the lift-down movement together with the movable plate 50 at the time when the attraction force decreases with the energization of the coil 70 and reaches the valve opening holding force Fc. Thereafter, at time t <b> 13 when the movable plate 50 contacts the needle 30, the needle 30 starts a lift-down movement together with the movable core 40. Thereafter, at time t14 when the needle 30 abuts on the seal portion 31, fuel injection from the nozzle hole 11 is stopped.
 図7は、通電時間Tiと噴射量Qとの関係を表した特性線を示しており、図中の実線は供給燃圧が10MPaの場合、点線は供給燃圧が20MPaの場合の特性線である。特性線のうち符号A1に示す領域をパーシャル領域、符号A2に示す領域をフルリフト領域と呼ぶ。パーシャル領域A1の通電時間Tiで燃料を噴射(つまりパーシャル噴射)した場合には、可動コア40が固定コア60に衝突する前、つまりニードル30がフルリフト位置に達する前に閉弁作動を開始して、微少量の燃料が噴射される。フルリフト位置とは、可動コア40が固定コア60に衝突した時点におけるニードル30のリフト位置のことである。一方、フルリフト領域A2の通電時間Tiで燃料を噴射(つまりフルリフト噴射)した場合には、ニードル30がフルリフト位置に達した後に閉弁作動を開始するので、パーシャル領域A1で噴射した場合に比べて噴射量は多くなる。 FIG. 7 shows a characteristic line representing the relationship between the energization time Ti and the injection amount Q. The solid line in the figure is the characteristic line when the supply fuel pressure is 10 MPa, and the dotted line is the characteristic line when the supply fuel pressure is 20 MPa. Of the characteristic lines, the area indicated by reference numeral A1 is referred to as a partial area, and the area indicated by reference numeral A2 is referred to as a full lift area. When fuel is injected during the energizing time Ti in the partial region A1 (that is, partial injection), the valve closing operation is started before the movable core 40 collides with the fixed core 60, that is, before the needle 30 reaches the full lift position. A small amount of fuel is injected. The full lift position is a lift position of the needle 30 when the movable core 40 collides with the fixed core 60. On the other hand, when fuel is injected during the energization time Ti in the full lift region A2 (that is, full lift injection), the valve 30 starts the valve closing operation after the needle 30 reaches the full lift position, so that compared with the case where fuel is injected in the partial region A1. The injection amount increases.
 ニードル30の挙動にオーバーシュートが生じると、一点鎖線に示すように特性線が脈動した波形になる。この脈動波形は、フルリフト領域A2のうちパーシャル領域A1に隣接する領域で生じる。したがって、このように脈動波形が生じ得る領域では、通電時間Tiおよび供給燃圧が同じであっても、オーバーシュートの有無に応じて噴射量Qが変化する。 When an overshoot occurs in the behavior of the needle 30, the waveform of the characteristic line pulsates as shown by the alternate long and short dash line. This pulsation waveform is generated in a region adjacent to the partial region A1 in the full lift region A2. Therefore, in such a region where a pulsation waveform can occur, the injection amount Q changes depending on the presence or absence of overshoot even if the energization time Ti and the supply fuel pressure are the same.
 図8は、上昇制御に用いる第1目標値I1を設定する処理手順であり、内燃機関の作動期間中、マイコン110により所定周期で繰り返し実行される。先ず、図8のステップS10において、供給燃圧Pfに応じて第1目標値I1を設定する。この設定に用いる供給燃圧Pfは、噴射開始直前に燃圧センサ200で検出された値である。供給燃圧Pfに適した第1目標値I1の値は、異なる供給燃圧Pf毎に予め試験等により設定しておいたものである。 FIG. 8 shows a processing procedure for setting the first target value I1 used for the ascent control, which is repeatedly executed at a predetermined cycle by the microcomputer 110 during the operation period of the internal combustion engine. First, in step S10 of FIG. 8, the first target value I1 is set according to the supply fuel pressure Pf. The supply fuel pressure Pf used for this setting is a value detected by the fuel pressure sensor 200 immediately before the start of injection. The value of the first target value I1 suitable for the supply fuel pressure Pf is set in advance by a test or the like for each different supply fuel pressure Pf.
 この設定の考え方について説明すると、第1目標値I1が過小であると、電磁吸引力が必要開弁力Faにまで上昇できなくなることが懸念される。また、必要開弁力Faにまで上昇できたとしても、その上昇速度が極めて遅くなり、通電開始から開弁作動を開始するまでの遅延時間が長くなる。一方、第1目標値I1が過大であると、電磁吸引力が過剰に大きくなり、可動コア40が固定コア60に衝突する速度が速くなる。すると、可動コア40および固定コア60の当接面の摩耗促進が懸念される。また、上記衝突速度が速くなることにより、オーバーシュート量L3が過大になり、図7に示す特性線に大きな脈動が生じて噴射量を高精度で制御することが困難になる。これらの点を鑑みて、供給燃圧Pfに適した第1目標値I1の値は設定されており、供給燃圧Pfが高いほど第1目標値I1は大きい値に設定される。 Describing the concept of this setting, if the first target value I1 is too small, there is a concern that the electromagnetic attractive force cannot be increased to the required valve opening force Fa. Even if the valve opening force Fa can be increased, the rising speed becomes extremely slow, and the delay time from the start of energization to the start of the valve opening operation becomes long. On the other hand, if the first target value I1 is excessive, the electromagnetic attractive force is excessively increased, and the speed at which the movable core 40 collides with the fixed core 60 is increased. Then, there is a concern about accelerated wear of the contact surfaces of the movable core 40 and the fixed core 60. Further, since the collision speed is increased, the overshoot amount L3 becomes excessive, and a large pulsation is generated in the characteristic line shown in FIG. 7, making it difficult to control the injection amount with high accuracy. In view of these points, the value of the first target value I1 suitable for the supply fuel pressure Pf is set, and the first target value I1 is set to a larger value as the supply fuel pressure Pf is higher.
 そして、供給燃圧Pfと第1目標値I1との関係を表した情報が、図8に示すマップM等の形式でECU100に記憶されている。ステップS10では、このマップMを参照して、供給燃圧Pfに基づき第1目標値I1を設定する。 And the information showing the relationship between the supply fuel pressure Pf and the first target value I1 is stored in the ECU 100 in the form of a map M shown in FIG. In step S10, referring to this map M, a first target value I1 is set based on the supplied fuel pressure Pf.
 続くステップS11では、燃圧センサ200で検出される圧力の変化に基づき、オーバーシュート量L3を推定する。以下、その推定手法について説明する。燃圧センサ200で検出される圧力は、噴孔11からの燃料噴射開始に伴い低下を開始する。その後、ニードル30がフルリフト位置に達したことに伴い圧力低下が停止する。その後、ニードル30が閉弁作動を開始したことに伴い圧力が上昇を開始し、閉弁に伴い噴射開始前の圧力に戻る。 In the subsequent step S11, the overshoot amount L3 is estimated based on the change in pressure detected by the fuel pressure sensor 200. Hereinafter, the estimation method will be described. The pressure detected by the fuel pressure sensor 200 starts to decrease with the start of fuel injection from the nozzle hole 11. Thereafter, the pressure drop stops as the needle 30 reaches the full lift position. Thereafter, the pressure starts to increase with the start of the valve closing operation of the needle 30 and returns to the pressure before the start of injection with the valve closing.
 このように、燃圧センサ200で検出される圧力の変化、つまり圧力変化を表した波形は、ニードル30の挙動と相関がある。この圧力波形には、オーバーシュートに伴い生じる脈動が重畳する。そして、その脈動の大きさまたは重畳期間は、オーバーシュート量L3と相関がある。具体的には、オーバーシュートしている時のニードル30の鍔部33は、ハウジング20の内部に形成された燃料通路のうち、鍔部33の上流側部分に位置する燃料を加圧し、局部的に圧力上昇することとなる。この圧力上昇が燃圧センサ200にまで伝播することで、圧力波形に、オーバーシュートに伴い生じる脈動が重畳することとなる。よって、オーバーシュートに起因した圧力上昇の期間が長いほど、オーバーシュート量L3が大きいと言える。また、オーバーシュートに起因した圧力上昇量が大きいほど、オーバーシュート量L3が大きいと言える。 Thus, the pressure change detected by the fuel pressure sensor 200, that is, the waveform representing the pressure change is correlated with the behavior of the needle 30. A pulsation caused by overshoot is superimposed on this pressure waveform. The magnitude of the pulsation or the superposition period has a correlation with the overshoot amount L3. Specifically, the flange portion 33 of the needle 30 when overshooting pressurizes the fuel located in the upstream portion of the flange portion 33 in the fuel passage formed inside the housing 20, and locally The pressure will increase. As this pressure rise propagates to the fuel pressure sensor 200, pulsation caused by overshoot is superimposed on the pressure waveform. Therefore, it can be said that the overshoot amount L3 is larger as the period of pressure increase due to overshoot is longer. Moreover, it can be said that the overshoot amount L3 is larger as the pressure increase amount due to the overshoot is larger.
 したがって、ステップS11において、燃圧センサ200で検出される圧力波形に重畳する、オーバーシュートに伴い生じた脈動を取得すれば、その脈動の形状からオーバーシュート量L3を推定できる。 Therefore, if the pulsation caused by the overshoot that is superimposed on the pressure waveform detected by the fuel pressure sensor 200 is acquired in step S11, the overshoot amount L3 can be estimated from the shape of the pulsation.
 続くステップS12では、ステップS11で推定したオーバーシュート量L3が、予め設定しておいた所定量Lth以上であるか否かを判定する。所定量Lth以上であると判定された場合、続くステップS13において、マップMに記憶されている第1目標値I1の値を所定量だけ低減した値に補正するといった低減補正を行う。この低減補正では、異なる供給燃圧Pf毎に設定されている複数の第1目標値I1の全てを、所定量だけ低減した値に補正する。続くステップS14では、マップM中に記憶されている第1目標値I1を、ステップS13で補正した値に書き換えて更新する。 In subsequent step S12, it is determined whether or not the overshoot amount L3 estimated in step S11 is equal to or larger than a predetermined amount Lth set in advance. If it is determined that the value is greater than or equal to the predetermined amount Lth, in subsequent step S13, a reduction correction is performed such that the value of the first target value I1 stored in the map M is corrected to a value reduced by a predetermined amount. In this reduction correction, all of the plurality of first target values I1 set for different supply fuel pressures Pf are corrected to values reduced by a predetermined amount. In the subsequent step S14, the first target value I1 stored in the map M is rewritten and updated with the value corrected in step S13.
 以上により、本実施形態に係るECU100は、コイル電流を第1目標値I1にまで上昇させる上昇制御部111と、第1目標値I1を設定する目標値設定部114と、ニードル30のオーバーシュート量L3を推定する推定部115と、を備える。そして、推定部115により推定されたオーバーシュート量L3が所定量Lth以上であった場合に、目標値設定部114は、次回以降の設定では今回の設定に比べて第1目標値I1を低下させる。具体的には、図8のステップS13において、マップMに記憶されている第1目標値I1を低減補正し、次回の設定では、低減補正後の第1目標値I1を用いて上昇制御を行う。そのため、次回以降の開弁作動時には、オーバーシュート量L3を低減させることができる。図6の例で説明すると、図6(b)の一点鎖線で示す第1目標値I1を点線で示す第1目標値I1まで低下させた場合、図6(b)中の実線で示す電流の波形のうち上昇制御期間に対応する部分は、点線で示す波形のように低下する。その結果、図6(d)中の実線で示すリフト量の波形は、点線で示すように上昇速度が緩やかな波形になり、オーバーシュートが低減される。よって、ニードル30による開度が不規則に変化することを抑制できるので、通電時間Tiに対する噴射量Qがオーバーシュートにより変化することを抑制でき、オーバーシュートによる燃料噴射量の精度悪化を抑制できる。 As described above, the ECU 100 according to this embodiment includes the increase control unit 111 that increases the coil current to the first target value I1, the target value setting unit 114 that sets the first target value I1, and the overshoot amount of the needle 30. And an estimation unit 115 that estimates L3. Then, when the overshoot amount L3 estimated by the estimation unit 115 is equal to or greater than the predetermined amount Lth, the target value setting unit 114 lowers the first target value I1 compared to the current setting in the subsequent settings. . Specifically, in step S13 of FIG. 8, the first target value I1 stored in the map M is reduced and corrected, and in the next setting, the increase control is performed using the first target value I1 after the reduction correction. . Therefore, the overshoot amount L3 can be reduced during the valve opening operation after the next time. In the example of FIG. 6, when the first target value I1 indicated by the alternate long and short dash line in FIG. 6B is reduced to the first target value I1 indicated by the dotted line, the current indicated by the solid line in FIG. Of the waveform, the portion corresponding to the ascending control period decreases as shown by the dotted line. As a result, the lift amount waveform shown by the solid line in FIG. 6D becomes a waveform with a slow rising speed as shown by the dotted line, and the overshoot is reduced. Therefore, since the opening degree by the needle 30 can be prevented from changing irregularly, the injection amount Q with respect to the energization time Ti can be prevented from changing due to overshoot, and the deterioration of the accuracy of the fuel injection amount due to overshoot can be suppressed.
 さらに本実施形態では、目標値設定部114は、燃圧取得部116により取得された供給燃圧Pfに応じて第1目標値I1を設定する。さらに目標値設定部114は、供給燃圧Pf毎の第1目標値I1のうち、少なくともオーバーシュート量L3が所定量以上であった時の供給燃圧Pfに対応する第1目標値I1を低下させる。 Furthermore, in the present embodiment, the target value setting unit 114 sets the first target value I1 according to the supply fuel pressure Pf acquired by the fuel pressure acquisition unit 116. Further, the target value setting unit 114 decreases the first target value I1 corresponding to the supply fuel pressure Pf when at least the overshoot amount L3 is equal to or greater than the predetermined amount among the first target value I1 for each supply fuel pressure Pf.
 例えば図8に示すマップMに記憶されている供給燃圧Pf毎の第1目標値I1のうち、Pf=5MPaに対応する第1目標値を用いて上昇制御を行い燃料噴射させた結果、オーバーシュート量L3が所定量Lth以上になった場合を想定する。この想定の場合、マップMに記憶されている供給燃圧Pf毎の第1目標値I1のうち、少なくともPf=5MPaに対応する第1目標値について低減補正を行う。これによれば、次回以降にPf=5MPaの状況で燃料を噴射させる場合に、オーバーシュート量L3が所定量Lth以上になることの再発を防止する確実性を向上できる。 For example, of the first target value I1 for each supply fuel pressure Pf stored in the map M shown in FIG. 8, as a result of performing the increase control using the first target value corresponding to Pf = 5 MPa and performing fuel injection, the overshoot Assume that the amount L3 is equal to or greater than a predetermined amount Lth. In the case of this assumption, among the first target values I1 for each supply fuel pressure Pf stored in the map M, reduction correction is performed for at least the first target value corresponding to Pf = 5 MPa. According to this, when the fuel is injected in the situation of Pf = 5 MPa after the next time, it is possible to improve the reliability of preventing the recurrence that the overshoot amount L3 becomes equal to or greater than the predetermined amount Lth.
 ここで、ニードル30を可動コア40に対して相対移動可能に構成した燃料噴射弁には、以下に説明するコアブースト型とノーマル型が挙げられる。本実施形態に係る燃料噴射弁1はコアブースト型であり、コアブースト型はノーマル型に比べてオーバーシュートが生じやすい。よって、コアブースト型の燃料噴射弁1に、低減補正を実行する燃料噴射制御装置を適用した本実施形態によれば、低減補正によるオーバーシュート抑制の効果が、より顕著に発揮される。 Here, examples of the fuel injection valve in which the needle 30 is configured to be movable relative to the movable core 40 include a core boost type and a normal type described below. The fuel injection valve 1 according to the present embodiment is a core boost type, and the core boost type is more likely to overshoot than the normal type. Therefore, according to the present embodiment in which the fuel injection control device that executes the reduction correction is applied to the core boost type fuel injection valve 1, the effect of suppressing the overshoot by the reduction correction is more remarkably exhibited.
 コアブースト型の燃料噴射弁1は、可動コア40が固定コア60に吸引されて所定量移動した後に、可動コア40がニードル30に係合して開弁作動を開始させる構造である。つまり、図2に示す閉弁状態では上記係合が為されておらず、軸方向においてニードル30と可動コア40との間に所定距離G1の隙間が形成されている。これにより、可動コア40が吸引されて移動を開始する時には、ニードル30を開弁作動させる力は不要であり、所定距離G1移動して勢いがついた後に、可動コア40がニードル30に係合してニードル30が開弁作動を開始する。 The core boost type fuel injection valve 1 has a structure in which the movable core 40 engages with the needle 30 and starts the valve opening operation after the movable core 40 is attracted to the fixed core 60 and moved by a predetermined amount. That is, in the valve closed state shown in FIG. 2, the engagement is not performed, and a gap of a predetermined distance G <b> 1 is formed between the needle 30 and the movable core 40 in the axial direction. As a result, when the movable core 40 is sucked and starts moving, the force for opening the needle 30 is unnecessary, and the movable core 40 is engaged with the needle 30 after moving by a predetermined distance G1 and gaining momentum. Then, the needle 30 starts the valve opening operation.
 一方、ノーマル型の燃料噴射弁は、可動コアが固定コアに吸引されて移動を開始すると同時に、可動コアがニードルに係合して開弁作動を開始させる構造である。つまり、図2に示す閉弁状態において、上記係合が既に為されており、ニードルと可動コアとの間に軸方向における隙間は形成されていない。 On the other hand, the normal type fuel injection valve has a structure in which the movable core is attracted to the fixed core and starts moving, and at the same time, the movable core engages with the needle to start the valve opening operation. That is, in the valve-closed state shown in FIG. 2, the above engagement has already been made, and no gap in the axial direction is formed between the needle and the movable core.
 そして、コアブースト型の場合、ニードル30を閉弁側に付勢する第1スプリング80を可動プレート50に接触させる構造である。よって、ニードル30の閉弁作動時には、第1スプリング80による弾性力が可動プレート50を介してニードル30へ伝達される。しかし、図4に示す開弁状態では、第1スプリング80の弾性力はニードル30に伝達されず、ニードル30が弾性力により閉弁側へ押し付けられることはない。 In the case of the core boost type, the first spring 80 that urges the needle 30 toward the valve closing side is brought into contact with the movable plate 50. Therefore, when the needle 30 is closed, the elastic force by the first spring 80 is transmitted to the needle 30 via the movable plate 50. However, in the valve open state shown in FIG. 4, the elastic force of the first spring 80 is not transmitted to the needle 30, and the needle 30 is not pressed against the valve closing side by the elastic force.
 これに対し、ノーマル型の場合、可動プレート50が不要であるため、第1スプリングをニードルに接触させる構造となる。よって、閉弁作動時に加えて開弁作動時にも、ニードルは弾性力により閉弁側へ押し付けられることとなる。 On the other hand, in the case of the normal type, the movable plate 50 is unnecessary, so that the first spring comes into contact with the needle. Therefore, the needle is pressed toward the valve closing side by the elastic force not only during the valve closing operation but also during the valve opening operation.
 以上により、ノーマル型の場合、ニードルの開弁作動中には常に弾性力が閉弁側へ付与されているのでオーバーシュートが生じにくい。これに対し、コアブースト型の場合、ニードル30の開弁作動開始から、可動コア40が固定コア60に衝突するまでの間、ニードルに閉弁側への弾性力が付与されないので、オーバーシュートが生じやすい。 As described above, in the case of the normal type, the elastic force is always applied to the valve closing side during the valve opening operation of the needle, so that overshoot hardly occurs. On the other hand, in the case of the core boost type, the elastic force to the valve closing side is not applied to the needle from the start of the valve opening operation of the needle 30 until the movable core 40 collides with the fixed core 60. Prone to occur.
 さらに本実施形態では、上述したコアブースト型の燃料噴射弁1を採用することで、以下の効果が発揮される。すなわち、鍔部33、可動プレート50、収容凹部45および嵌入溝部46は、可動コア40と可動プレート50とが当接した状態において、L1<L2の関係を満たすよう形成されている。これにより、鍔部33の下端面332と収容凹部45の底壁452との間には、軸方向の所定距離G1を有する隙間が形成される。このため、電力が供給されたコイル70の磁力によって、可動コア40が開弁方向に吸引されると、可動コア40は所定距離G1分加速してからニードル30の鍔部33に衝突する。したがって、衝突時のエネルギーを利用してニードル30を早く開弁させることができる。 Furthermore, in this embodiment, the following effects are exhibited by adopting the above-described core boost type fuel injection valve 1. That is, the flange 33, the movable plate 50, the housing recess 45, and the fitting groove 46 are formed so as to satisfy the relationship L1 <L2 in a state where the movable core 40 and the movable plate 50 are in contact with each other. Thereby, a gap having a predetermined distance G1 in the axial direction is formed between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45. For this reason, when the movable core 40 is attracted in the valve opening direction by the magnetic force of the coil 70 supplied with electric power, the movable core 40 is accelerated by a predetermined distance G1 and then collides with the collar portion 33 of the needle 30. Therefore, the needle 30 can be opened quickly using the energy at the time of the collision.
 また、本実施形態では、鍔部33の下端面332と収容凹部45の底壁452との間に所定距離G1の隙間が形成される。そのため、第2スプリング90を押し付けた後第2スプリング90により押し戻される可動コア40が、閉弁しているニードル30の鍔部33に当たることを抑制することができる。したがって、第2スプリング90により押し戻された可動コア40による二次開弁の発生を抑制することができる。 Further, in the present embodiment, a gap of a predetermined distance G1 is formed between the lower end surface 332 of the flange 33 and the bottom wall 452 of the housing recess 45. Therefore, it can suppress that the movable core 40 pushed back by the 2nd spring 90 after pressing the 2nd spring 90 hits the collar part 33 of the needle 30 which is valve-closing. Therefore, the occurrence of secondary valve opening by the movable core 40 pushed back by the second spring 90 can be suppressed.
 (第2実施形態)
 上記第1実施形態の燃料噴射弁1では、可動コア40とともに移動する移動部材に、平板形状の可動プレート50が採用されている。これに対し図9に示す第2実施形態の燃料噴射弁1Aでは、有底円筒のカップ形状の移動部材50Bが採用されている。この移動部材50Bは、円板形状の円板部501および円筒形状の円筒部502を有する。
(Second Embodiment)
In the fuel injection valve 1 of the first embodiment, a flat plate-shaped movable plate 50 is employed as a moving member that moves together with the movable core 40. In contrast, in the fuel injection valve 1A of the second embodiment shown in FIG. 9, a bottomed cylindrical cup-shaped moving member 50B is employed. The moving member 50B includes a disc-shaped disc portion 501 and a cylindrical portion 502 having a cylindrical shape.
 円板部501は、鍔部33の端面331に対向し、その端面331に当接可能に配置されている。円筒部502は、円板部501の外周端から軸方向の噴孔11側に延出する形状であり、可動コア40の収容凹部45および固定コア60の円筒内部に配置されている。円筒部502の外周面は、固定コア60の内壁63により径方向に位置決めされる。つまり、移動部材50Bは、固定コア60の内壁63に沿って円筒部502が軸方向に摺動可能である。 The disc portion 501 is disposed so as to face the end surface 331 of the flange portion 33 and be in contact with the end surface 331. The cylindrical portion 502 has a shape extending from the outer peripheral end of the disc portion 501 toward the axial injection hole 11, and is disposed inside the accommodating recess 45 of the movable core 40 and the cylinder of the fixed core 60. The outer peripheral surface of the cylindrical portion 502 is positioned in the radial direction by the inner wall 63 of the fixed core 60. That is, in the moving member 50 </ b> B, the cylindrical portion 502 can slide in the axial direction along the inner wall 63 of the fixed core 60.
 円筒部502の内部には鍔部33が配置されている。円筒部502の内周面は、鍔部33の外周面に対して軸方向に摺動可能である。円板部501の中央部分には、軸方向に貫通する孔501aが形成されている。孔501aは、ニードル30内部の通路つまり内壁321により形成される通路と連通する。 The collar portion 33 is disposed inside the cylindrical portion 502. The inner peripheral surface of the cylindrical portion 502 can slide in the axial direction with respect to the outer peripheral surface of the flange portion 33. A hole 501 a penetrating in the axial direction is formed in the central portion of the disc portion 501. The hole 501 a communicates with a passage inside the needle 30, that is, a passage formed by the inner wall 321.
 可動コア40のうち、収容凹部45の底壁部分には、さらに噴孔11側へ凹む凹部451が形成されている。図9に示す閉弁状態では、鍔部33の下端面332と凹部451の底壁451aの間には隙間が形成されている。この隙間の軸方向の距離は、図2に示す距離G1に相当し、図2と同様にして、G1<G2、および、G1=L2-L1の関係を満たすよう、各種寸法は設定されている。 In the movable core 40, a recess 451 that is further recessed toward the nozzle hole 11 is formed on the bottom wall portion of the housing recess 45. In the valve-closed state shown in FIG. 9, a gap is formed between the lower end surface 332 of the flange 33 and the bottom wall 451 a of the recess 451. The axial distance of this gap corresponds to the distance G1 shown in FIG. 2, and various dimensions are set so as to satisfy the relationship of G1 <G2 and G1 = L2-L1 as in FIG. .
 本実施形態によれば、移動部材50Bは、固定コア60の内壁63にガイドされ、軸方向に沿って往復移動可能に設けられている。また、ニードル30の鍔部33は、円筒部502の内周面502aにガイドされ、軸方向の往復移動可能に円筒部502内に収容される。これにより、ニードル30は、移動部材50Bを介して固定コア60の内壁63にガイドされる。このような構成は、例えば、ニードル30が可動コア40を介してハウジング20の内壁24によりガイドされる構成に比べ、固定コア60と移動部材50Bとニードル30との同軸度を向上させるのに有利である。このため、ニードル30の軸方向の往復移動において、ニードル30が径方向に傾くことを抑制できる。よって、ニードル30の軸方向の往復移動の安定性を高めることができる。 According to the present embodiment, the moving member 50B is guided by the inner wall 63 of the fixed core 60 and is provided so as to be capable of reciprocating along the axial direction. The flange portion 33 of the needle 30 is guided by the inner peripheral surface 502a of the cylindrical portion 502, and is accommodated in the cylindrical portion 502 so as to be capable of reciprocating in the axial direction. Thereby, the needle 30 is guided to the inner wall 63 of the fixed core 60 via the moving member 50B. Such a configuration is advantageous in improving the coaxiality of the fixed core 60, the moving member 50 </ b> B, and the needle 30 compared to a configuration in which the needle 30 is guided by the inner wall 24 of the housing 20 via the movable core 40, for example. It is. For this reason, in the reciprocating movement of the needle 30 in the axial direction, the needle 30 can be prevented from being inclined in the radial direction. Therefore, the stability of the reciprocating movement of the needle 30 in the axial direction can be improved.
 (第3実施形態)
 上記第2実施形態に係る移動部材50Bは円板部501および円筒部502を有し、これらの円板部501および円筒部502は、樹脂または金属で一体に形成されている。これに対し、図10に示す第3実施形態に係る燃料噴射弁1Bの移動部材が有する円板部503および円筒部504は、別部材で各々形成されている。
(Third embodiment)
The moving member 50B according to the second embodiment includes a disc portion 501 and a cylindrical portion 502, and the disc portion 501 and the cylindrical portion 502 are integrally formed of resin or metal. On the other hand, the disc part 503 and the cylindrical part 504 which the moving member of the fuel injection valve 1B according to the third embodiment shown in FIG. 10 has are formed by separate members.
 円板部503は、円板形状の板部503bおよび円筒形状の筒部503cを有する。板部503bは、鍔部33の端面331に対向し、その端面331に当接可能に配置されている。板部503bの中央部分には、軸方向に貫通する孔503aが形成されている。筒部503cは、板部503bの内周端から軸方向の反噴孔側に延出する形状であり、第1スプリング80の内部に配置されている。 The disk part 503 has a disk-shaped plate part 503b and a cylindrical tube part 503c. The plate portion 503b faces the end surface 331 of the flange portion 33 and is disposed so as to be able to contact the end surface 331. A hole 503a penetrating in the axial direction is formed in the central portion of the plate portion 503b. The cylindrical portion 503 c has a shape extending from the inner peripheral end of the plate portion 503 b to the axial anti-injection hole side, and is disposed inside the first spring 80.
 板部503bは、鍔部33の端面331に対向し、その端面331に当接可能に配置されている。円筒部504は、可動コア40の端面40aと板部503bとの間に配置されている。なお、本実施形態では、図9に示す収容凹部45および凹部451が廃止されている。第1スプリング80の弾性力により、円筒部504は可動コア40と円板部503との間に挟み付けられている。円筒部504の外周面は、固定コア60の内壁63により径方向に位置決めされる。つまり、円筒部504は、固定コア60の内壁63に沿って軸方向に摺動可能である。 The plate portion 503b faces the end surface 331 of the flange portion 33 and is disposed so as to be able to contact the end surface 331. The cylindrical portion 504 is disposed between the end surface 40a of the movable core 40 and the plate portion 503b. In the present embodiment, the housing recess 45 and the recess 451 shown in FIG. 9 are eliminated. The cylindrical portion 504 is sandwiched between the movable core 40 and the disc portion 503 by the elastic force of the first spring 80. The outer peripheral surface of the cylindrical portion 504 is positioned in the radial direction by the inner wall 63 of the fixed core 60. That is, the cylindrical portion 504 is slidable in the axial direction along the inner wall 63 of the fixed core 60.
 円筒部504の内部には鍔部33が配置されている。円筒部504の内周面は、鍔部33の外周面に対して軸方向に摺動可能である。 The collar portion 33 is disposed inside the cylindrical portion 504. The inner peripheral surface of the cylindrical portion 504 is slidable in the axial direction with respect to the outer peripheral surface of the flange portion 33.
 図10に示す閉弁状態では、鍔部33の下端面332と可動コア40の端面40aとの間には隙間が形成されている。この隙間の軸方向の距離は、図2に示す距離G1に相当し、図2と同様にして、G1<G2、および、G1=L2-L1の関係を満たすよう、各種寸法は設定されている。 10, a gap is formed between the lower end surface 332 of the flange portion 33 and the end surface 40a of the movable core 40. The axial distance of this gap corresponds to the distance G1 shown in FIG. 2, and various dimensions are set so as to satisfy the relationship of G1 <G2 and G1 = L2-L1 as in FIG. .
 本実施形態によっても、上記第2実施形態と同様にして、ニードル30Bは、移動部材を介して固定コア60の内壁63にガイドされる。よって、固定コア60と移動部材とニードル30Bとの同軸度を向上させるのに有利である。このため、ニードル30Bの軸方向の往復移動において、ニードル30Bが径方向に傾くことを抑制できる。よって、ニードル30Bの軸方向の往復移動の安定性を高めることができる。 Also in this embodiment, similarly to the second embodiment, the needle 30B is guided to the inner wall 63 of the fixed core 60 via the moving member. Therefore, it is advantageous to improve the coaxiality of the fixed core 60, the moving member, and the needle 30B. For this reason, in the reciprocating movement of the needle 30B in the axial direction, the needle 30B can be prevented from being inclined in the radial direction. Therefore, the stability of the reciprocating movement of the needle 30B in the axial direction can be enhanced.
 (第4実施形態)
 上記第1実施形態に係る図8の処理では、オーバーシュート量L3が所定量Lth以上であると判定された場合、異なる供給燃圧Pf毎に設定されている複数の第1目標値I1の全てに対して低減補正を行う。これに対し、本実施形態では、所定圧以上の供給燃圧Pfに対応する第1目標値I1については、低減補正することを禁止する。例えば、5MPaに対応する第1目標値I1で燃料を噴射した際に、オーバーシュート量L3が所定量Lth以上になった場合、5MPaと10MPaに対応する第1目標値I1を低減補正する。一方、所定圧以上である20MPaに対応する第1目標値I1については、低減補正を禁止する。
(Fourth embodiment)
In the process of FIG. 8 according to the first embodiment, when it is determined that the overshoot amount L3 is equal to or greater than the predetermined amount Lth, all of the plurality of first target values I1 set for different supply fuel pressures Pf are included. The reduction correction is performed for this. On the other hand, in the present embodiment, the first target value I1 corresponding to the supply fuel pressure Pf that is equal to or higher than the predetermined pressure is prohibited from being corrected for reduction. For example, when the fuel is injected at the first target value I1 corresponding to 5 MPa, and the overshoot amount L3 is equal to or greater than the predetermined amount Lth, the first target value I1 corresponding to 5 MPa and 10 MPa is reduced and corrected. On the other hand, the reduction correction is prohibited for the first target value I1 corresponding to 20 MPa which is equal to or higher than the predetermined pressure.
 さて、オーバーシュートは供給燃圧Pfが低いほど生じやすいとの知見を本発明者らは得ている。この知見を鑑みた本実施形態では、目標値設定部114は、所定圧以上の供給燃圧Pfに対応する第1目標値I1については、目標値の低下(つまり低減補正)を禁止する。よって、供給燃圧Pfが高く、必要開弁力Faが大きい場合には、第1目標値I1の低減補正による電磁吸引力の低減が生じなくなるので、電磁吸引力が必要開弁力Fa以上にまで上昇することの確実性を向上できる。 The present inventors have found that overshoot is more likely to occur as the supply fuel pressure Pf is lower. In the present embodiment in view of this knowledge, the target value setting unit 114 prohibits a decrease (that is, a reduction correction) of the target value for the first target value I1 corresponding to the supply fuel pressure Pf equal to or higher than the predetermined pressure. Therefore, when the supply fuel pressure Pf is high and the required valve opening force Fa is large, the electromagnetic attraction force does not decrease due to the reduction correction of the first target value I1, so that the electromagnetic attraction force exceeds the required valve opening force Fa. The certainty of rising can be improved.
 (第5実施形態)
 上記第1実施形態では、図8のステップS12にてオーバーシュート量L3が所定量Lth以上であると判定された場合、次のステップS13において、異なる供給燃圧Pf毎に設定されている複数の第1目標値I1の全てに対して低減補正を行う。これに対し、本実施形態では、図8のステップS10で第1目標値I1の設定に用いた供給燃圧Pfに対応する第1目標値I1については低減補正を行い、他の供給燃圧Pfに対応する第1目標値I1については低減補正を行わない。つまり、供給燃圧Pf毎の複数の第1目標値I1のうち、実際にオーバーシュート量L3が過大になった第1目標値I1を低減補正の対象とし、他の第1目標値I1については低減補正の対象としない。
(Fifth embodiment)
In the first embodiment, when it is determined in step S12 of FIG. 8 that the overshoot amount L3 is equal to or greater than the predetermined amount Lth, in the next step S13, a plurality of second set fuel fuel pressures Pf are set. Reduction correction is performed on all the target values I1. On the other hand, in the present embodiment, the first target value I1 corresponding to the supply fuel pressure Pf used for setting the first target value I1 in step S10 in FIG. 8 is reduced and corrected to correspond to other supply fuel pressures Pf. For the first target value I1, the reduction correction is not performed. That is, among the plurality of first target values I1 for each supply fuel pressure Pf, the first target value I1 in which the overshoot amount L3 actually becomes excessive is set as the target of reduction correction, and the other first target values I1 are reduced. Not subject to correction.
 (他の実施形態)
 以上、好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
Although the preferred embodiments have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made as illustrated below. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 図1に示す実施形態では、燃料噴射弁1への供給燃圧を燃圧センサ200で検出し、検出された圧力波形、つまり噴孔11からの燃料噴射に伴い生じる圧力変化の波形に基づき、オーバーシュート量L3を推定している。これに対し、可動コア40が固定コア60に衝突した時の速度を検出し、その検出速度に基づきオーバーシュート量L3を推定してもよい。可動コア40の衝突速度とオーバーシュート量L3とは相関が有り、衝突速度が速いほどオーバーシュート量L3が大きくなるので、上述の如く衝突速度を検出すれば、オーバーシュート量を推定できる。上記衝突速度は、コイル70への通電開始時期から、可動コア40の固定コア60への衝突時期までの経過時間を検出することで、その経過時間に基づき算出できる。 In the embodiment shown in FIG. 1, the fuel pressure supplied to the fuel injection valve 1 is detected by the fuel pressure sensor 200, and the overshoot is based on the detected pressure waveform, that is, the waveform of the pressure change caused by fuel injection from the injection hole 11. The amount L3 is estimated. On the other hand, the speed when the movable core 40 collides with the fixed core 60 may be detected, and the overshoot amount L3 may be estimated based on the detected speed. There is a correlation between the collision speed of the movable core 40 and the overshoot amount L3. Since the overshoot amount L3 increases as the collision speed increases, the overshoot amount can be estimated by detecting the collision speed as described above. The collision speed can be calculated based on the elapsed time by detecting the elapsed time from the energization start time to the coil 70 to the collision time of the movable core 40 to the fixed core 60.
 可動コア40が固定コア60に衝突して移動停止することに伴い、コイル電流の波形に乱れが生じる。この乱れが出現する時期を上記衝突時期とみなせばよい。或いは、可動コア40が固定コア60に衝突することで通電オンオフ状態が切り替わるスイッチ回路を燃料噴射弁1に搭載し、そのスイッチ回路の通電状態の切替わり時期を上記衝突時期とみなせばよい。 As the movable core 40 collides with the fixed core 60 and stops moving, the waveform of the coil current is disturbed. The time when this disturbance appears may be regarded as the collision time. Alternatively, a switch circuit that switches the energization on / off state when the movable core 40 collides with the fixed core 60 is mounted on the fuel injection valve 1, and the switching timing of the energization state of the switch circuit may be regarded as the collision timing.
 上記第1実施形態に係る低減補正では、図8のステップS13において、異なる供給燃圧Pf毎に設定されている複数の第1目標値I1の全てを、所定量だけ一律に低減させる。これに対し、供給燃圧Pfに応じて低減補正する補正量を異ならせてもよい。例えば、高い供給燃圧Pfに対応する第1目標値I1であるほど補正量を少なくしてもよい。 In the reduction correction according to the first embodiment, in step S13 of FIG. 8, all of the plurality of first target values I1 set for different supply fuel pressures Pf are uniformly reduced by a predetermined amount. On the other hand, you may vary the correction amount which carries out reduction correction according to supply fuel pressure Pf. For example, the correction amount may be decreased as the first target value I1 corresponding to the higher supply fuel pressure Pf.
 上記各実施形態では、可動コア40が所定量移動した後にニードル30が開弁作動を開始するコアブースト型の燃料噴射弁1を、燃料噴射制御装置の制御対象として適用させている。これに対し、可動コア40の移動開始と同時にニードルが開弁作動を開始するノーマル型の燃料噴射弁を、燃料噴射制御装置の制御対象として適用させてもよい。 In each of the above embodiments, the core boost type fuel injection valve 1 in which the needle 30 starts the valve opening operation after the movable core 40 moves by a predetermined amount is applied as a control target of the fuel injection control device. On the other hand, a normal type fuel injection valve in which the needle starts the valve opening operation simultaneously with the start of the movement of the movable core 40 may be applied as a control target of the fuel injection control device.
 ECU100(制御装置)が提供する手段および/または機能は、実体的な記憶媒体に記録されたソフトウェアおよびそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、またはアナログ回路によって提供することができる。 The means and / or function provided by the ECU 100 (control device) can be provided by software recorded in a substantial storage medium and a computer that executes the software, only software, only hardware, or a combination thereof. For example, if the controller is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a number of logic circuits, or an analog circuit.

Claims (6)

  1.  コイル(70)への通電に伴い電磁吸引力を生じさせる固定コア(60)と、前記固定コア(60)に吸引されて移動する可動コア(40)と、前記可動コア(40)に対して相対移動可能な状態で組付けられ、移動する前記可動コア(40)に係合することで開弁作動する弁体(30、30B)とを有し、前記開弁作動に伴い噴孔(11)から燃料を噴射する燃料噴射弁(1、1A、1B)に適用される燃料噴射制御装置において、
     前記弁体(30、30B)が閉弁状態である時に前記コイル(70)に流れるコイル電流の上昇を開始させ、前記コイル電流を目標値にまで上昇させるよう、前記コイル(70)への電力供給を制御する上昇制御部(111)と、
     前記目標値を設定する目標値設定部(114)と、
     前記コイル電流を前記目標値にまで上昇させた結果、前記可動コア(40)が移動して前記固定コア(60)に当接した以降も前記弁体(30、30B)が慣性で移動し続けるオーバーシュートの挙動が現れた場合に、前記弁体(30、30B)のオーバーシュート量を推定する推定部(115)と、
    を備え、
     前記目標値設定部(114)は、前記推定部(115)により推定された前記オーバーシュート量が所定量以上であった場合に、次回以降の設定では今回の設定に比べて前記目標値を低下させる燃料噴射制御装置。
    With respect to the fixed core (60) that generates an electromagnetic attraction force when energized to the coil (70), the movable core (40) that is attracted and moved by the fixed core (60), and the movable core (40) And a valve body (30, 30B) that is assembled in a relatively movable state and engages with the movable core (40) that moves to open the nozzle (11). In the fuel injection control device applied to the fuel injection valve (1, 1A, 1B) for injecting fuel from
    When the valve body (30, 30B) is in a closed state, the coil current (70) is started to increase, and the coil (70) is supplied with electric power so as to increase the coil current to a target value. A rise control unit (111) for controlling the supply;
    A target value setting unit (114) for setting the target value;
    As a result of increasing the coil current to the target value, the valve body (30, 30B) continues to move with inertia even after the movable core (40) moves and contacts the fixed core (60). An estimation unit (115) for estimating an overshoot amount of the valve body (30, 30B) when an overshoot behavior appears;
    With
    When the overshoot amount estimated by the estimation unit (115) is equal to or greater than a predetermined amount, the target value setting unit (114) lowers the target value compared to the current setting in the subsequent settings. A fuel injection control device.
  2.  前記燃料噴射弁(1、1A、1B)へ供給される燃料の圧力である供給燃圧を取得する燃圧取得部(116)を備え、
     前記目標値設定部(114)は、
     取得された前記供給燃圧に応じて前記目標値を設定するとともに、
     前記供給燃圧毎の前記目標値のうち、少なくとも前記オーバーシュート量が所定量以上であった時の前記供給燃圧に対応する前記目標値について前記目標値を低下させる請求項1に記載の燃料噴射制御装置。
    A fuel pressure acquisition unit (116) for acquiring a supply fuel pressure that is a pressure of fuel supplied to the fuel injection valve (1, 1A, 1B);
    The target value setting unit (114)
    While setting the target value according to the acquired supply fuel pressure,
    2. The fuel injection control according to claim 1, wherein among the target values for each of the supply fuel pressures, at least the target value corresponding to the supply fuel pressure when the overshoot amount is equal to or greater than a predetermined amount is decreased. apparatus.
  3.  前記目標値設定部(114)は、所定圧以上の前記供給燃圧に対応する前記目標値については、前記目標値の低下を禁止する請求項2に記載の燃料噴射制御装置。 The fuel injection control device according to claim 2, wherein the target value setting unit (114) prohibits a decrease in the target value for the target value corresponding to the supply fuel pressure equal to or higher than a predetermined pressure.
  4.  前記可動コア(40)が前記固定コア(60)に吸引されて所定量移動した後に、前記可動コア(40)が前記弁体(30、30B)に係合して前記開弁作動を開始させる構造の前記燃料噴射弁(1、1A、1B)に適用されている請求項1~3のいずれか1つに記載の燃料噴射制御装置。 After the movable core (40) is sucked by the fixed core (60) and moved by a predetermined amount, the movable core (40) engages with the valve body (30, 30B) to start the valve opening operation. The fuel injection control device according to any one of claims 1 to 3, wherein the fuel injection control device is applied to the fuel injection valve (1, 1A, 1B) having a structure.
  5.  コイル(70)への通電に伴い電磁吸引力を生じさせる固定コア(60)と、前記固定コア(60)に吸引されて移動する可動コア(40)と、前記可動コア(40)に対して相対移動可能な状態で組付けられ、移動する前記可動コア(40)に係合することで開弁作動する弁体(30、30B)とを有し、前記開弁作動に伴い噴孔(11)から燃料を噴射する燃料噴射弁(1、1A、1B)と、
     前記コイル(70)に流れるコイル電流を制御することで、前記燃料噴射弁(1、1A、1B)の作動を制御する燃料噴射制御装置(100)と、
    を備える燃料噴射システムにおいて、
     前記燃料噴射制御装置(100)は、
     前記弁体(30、30B)が閉弁状態である時に前記コイル(70)に流れるコイル電流の上昇を開始させ、前記コイル電流を目標値にまで上昇させるよう、前記コイル(70)への電力供給を制御する上昇制御部(111)と、
     前記コイル電流を前記目標値にまで上昇させた結果、前記可動コア(40)が移動して前記固定コア(60)に当接した以降も前記弁体(30、30B)が慣性で移動し続けるオーバーシュートの挙動が現れた場合に、前記弁体(30、30B)のオーバーシュート量を推定する推定部(115)と、
     前記推定部(115)により推定された前記オーバーシュート量が所定量以上であった場合に、次回以降に用いる前記目標値を低下させるように前記目標値を設定する目標値設定部(114)と、
    を備える燃料噴射システム。
    With respect to the fixed core (60) that generates an electromagnetic attraction force when energized to the coil (70), the movable core (40) that is attracted and moved by the fixed core (60), and the movable core (40) And a valve body (30, 30B) that is assembled in a relatively movable state and engages with the movable core (40) that moves to open the nozzle (11). Fuel injection valves (1, 1A, 1B) for injecting fuel from
    A fuel injection control device (100) for controlling the operation of the fuel injection valve (1, 1A, 1B) by controlling a coil current flowing through the coil (70);
    A fuel injection system comprising:
    The fuel injection control device (100)
    When the valve body (30, 30B) is in a closed state, the coil current (70) is started to increase, and the coil (70) is supplied with electric power so as to increase the coil current to a target value. A rise control unit (111) for controlling the supply;
    As a result of increasing the coil current to the target value, the valve body (30, 30B) continues to move with inertia even after the movable core (40) moves and contacts the fixed core (60). An estimation unit (115) for estimating an overshoot amount of the valve body (30, 30B) when an overshoot behavior appears;
    A target value setting unit (114) for setting the target value so as to decrease the target value to be used next time when the overshoot amount estimated by the estimation unit (115) is a predetermined amount or more; ,
    A fuel injection system comprising:
  6.  前記燃料噴射弁(1、1A、1B)は、前記可動コア(40)が前記固定コア(60)に吸引されて所定量移動した後に、前記可動コア(40)が前記弁体(30、30B)に係合して前記開弁作動を開始させる構造である請求項5に記載の燃料噴射システム。

     
    In the fuel injection valve (1, 1A, 1B), after the movable core (40) is sucked by the fixed core (60) and moved by a predetermined amount, the movable core (40) is moved to the valve body (30, 30B). The fuel injection system according to claim 5, wherein the valve opening operation is started by engaging with ().

PCT/JP2016/079377 2015-11-27 2016-10-04 Fuel injection control device and fule injection system WO2017090320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231964 2015-11-27
JP2015231964A JP2017096233A (en) 2015-11-27 2015-11-27 Fuel injection control device and fuel injection system

Publications (1)

Publication Number Publication Date
WO2017090320A1 true WO2017090320A1 (en) 2017-06-01

Family

ID=58763403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079377 WO2017090320A1 (en) 2015-11-27 2016-10-04 Fuel injection control device and fule injection system

Country Status (2)

Country Link
JP (1) JP2017096233A (en)
WO (1) WO2017090320A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720935B2 (en) * 2017-07-28 2020-07-08 株式会社Soken Fuel injection control device and fuel injection control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163278A (en) * 2013-02-25 2014-09-08 Denso Corp Fuel injection control device and fuel injection system
JP2015124612A (en) * 2013-12-25 2015-07-06 スズキ株式会社 Fuel injection valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163278A (en) * 2013-02-25 2014-09-08 Denso Corp Fuel injection control device and fuel injection system
JP2015124612A (en) * 2013-12-25 2015-07-06 スズキ株式会社 Fuel injection valve

Also Published As

Publication number Publication date
JP2017096233A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US10598114B2 (en) Fuel injection controller and fuel injection system
CN109328261B (en) Fuel injection control device
JP6520814B2 (en) Fuel injection control device
KR101887345B1 (en) Modified electrical actuation of an actuator for determining the time at which an armature stops
CN109328262B (en) Fuel injection control device
US11060475B2 (en) Valve body operation estimation device
WO2015118854A1 (en) Fuel injection control device
CN110192018B (en) Control device for fuel injection device
CN109328265B (en) Fuel injection control device
CN109328264B (en) Fuel injection control device
CN109072808B (en) Fuel injection control device
JP6457908B2 (en) Control device and fuel injection system
US11149598B2 (en) Fuel injection control device and fuel injection control method
JP2010512485A (en) Injection valve drive method
JP2019210933A (en) Method for determining closing point of electromagnetic fuel injector
JP7330759B2 (en) How to Determine the Rise Time of an Electromagnetic Fuel Injector
WO2017090320A1 (en) Fuel injection control device and fule injection system
US20130341421A1 (en) Fuel injector
US9249766B2 (en) Fuel injector and fuel injection device using the same
US20210388790A1 (en) Control Device for Vehicle Fuel Injection Control Method for Vehicle and Fuel Injection Control Program for Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868269

Country of ref document: EP

Kind code of ref document: A1