WO2017090129A1 - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
WO2017090129A1
WO2017090129A1 PCT/JP2015/083085 JP2015083085W WO2017090129A1 WO 2017090129 A1 WO2017090129 A1 WO 2017090129A1 JP 2015083085 W JP2015083085 W JP 2015083085W WO 2017090129 A1 WO2017090129 A1 WO 2017090129A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
power
particle beam
voltage
source
Prior art date
Application number
PCT/JP2015/083085
Other languages
French (fr)
Japanese (ja)
Inventor
猛 川▲崎▼
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/083085 priority Critical patent/WO2017090129A1/en
Publication of WO2017090129A1 publication Critical patent/WO2017090129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices

Definitions

  • the present invention relates to a charged particle beam apparatus.
  • the charged particle source or charged particle gun placed in the high potential part of the charged particle beam device includes a vacuum pump, a magnetic lens, an electrostatic lens, a deflector, a charged particle for heating the charged particle source or using the charged particle gun. Power supply is required to operate the fine movement device and the like of the source.
  • Patent Document 1 in a high voltage generator of a charged particle beam apparatus, in order to avoid the influence of noise due to a capacitive coupling current between a transformer and a shield of a power transmission circuit, an electric for charging / discharging a secondary battery or the like is performed.
  • a DC power supply using the element is installed, and the transmission switch is operated to the transmission ON / OFF switch arranged at the ground potential to switch to the conventional DC high voltage generation circuit using a transformer, and high resolution is required.
  • Data acquisition is performed using a DC power source using a secondary battery, and a technique is disclosed in which a secondary battery is charged by a charging circuit while a conventional DC high voltage generation circuit is used.
  • the electric power for heating the filament can be supplied from the ground potential portion to the filament in the high potential portion without using the motor direct-coupled generator device.
  • a cylindrical non-magnetic metal electrostatic shield body that is provided in the tank to relieve electric field concentration around the high voltage application section, a power transmission coil provided in the ground potential section in the tank, and a high frequency that supplies high frequency power thereto
  • An electron beam irradiation apparatus includes a power source and a power receiving coil that is provided in the body of the electrostatic shield and receives power transmitted from the power transmitting coil by electromagnetic induction and supplies the power to the filament.
  • an AC or pulse power source for instantaneously heating the field emission cathode is installed outside the relay tank, and the heating current from the power source is installed inside and outside the electron microscope body in an electromagnetic coupling relationship.
  • a field emission electron microscope that supplies FE-Tip through a heating insulating transformer composed of primary and secondary coils.
  • An object of the present invention is to provide a charged particle beam apparatus capable of continuous operation with low noise and high efficiency.
  • a high voltage power source and a charged particle source or a charged particle gun including a charged particle source are connected via a high voltage cable and generated from the charged particle source placed at a high potential.
  • a charged particle beam apparatus that accelerates and uses charged particles, The center of the high-voltage cable is a hollow portion, and a receiving coil for supplying power to be used in the charged particle gun placed in the high-potential portion is installed in the hollow portion, and power is supplied to the outside of the high-voltage cable.
  • a charged particle beam apparatus comprising: a power transmission coil for power transmission; a high frequency power source connected to the power transmission coil; and power transmission from a ground potential side to a high potential side power source by magnetic resonance coupling between the power transmission and reception coils And
  • a charged particle beam apparatus comprising: a charged particle gun including a charged particle source; a high voltage power source; and a high voltage cable having a hollow portion disposed between the high voltage power source and the charged particle gun.
  • the high-voltage cable incorporates a power transmission / reception device,
  • the power transmission / reception device is disposed in the hollow portion on the high potential side of the high-voltage cable and surrounds the outer periphery of the high-voltage cable on the ground potential side, and a power reception coil for supplying power used in the charged particle gun And a power transmission coil for transmitting power to the power reception coil.
  • FIG. 1 is a schematic configuration diagram (partially sectional view) of a charged particle beam apparatus (ultra-high voltage field emission electron microscope) according to a first embodiment of the present invention. It is a schematic block diagram of the power transmission / reception apparatus provided in the hollow resistance high voltage
  • the inventors decided to introduce a high voltage from a high voltage power source to the apparatus main body via a high voltage cable in the charged particle beam apparatus.
  • This high-voltage cable has a hollow structure inside the insulating layer, and a power receiving coil, a capacitor, and a rectifying / smoothing circuit for transmitting and receiving power from the ground potential side to the high potential side are provided in the hollow portion of the cable. Install and wrap the transmission coil around the corresponding location outside the high voltage cable. DC power that is rectified by transmitting high-frequency power between power transmission and reception coils is supplied to a charged particle source or a charged particle gun in a high potential portion of the apparatus body.
  • the side having a potential with respect to the ground potential is referred to as a high potential side.
  • the apparatus operating time is not limited. Further, by increasing or decreasing the number of the power transmission / reception coils or the coil length, it is possible to supply the necessary electric energy at the high potential portion.
  • the power transmission / reception coil and the rectifying / smoothing circuit incorporated in the high-voltage cable can be reduced in size, and the high-potential portion can be reduced in size and weight as compared with the prior art. Since there is no drive unit like a generator, there is no vibration.
  • the present invention is particularly effective for a high-voltage device exceeding 1 MV, but can be applied to a general-purpose device of 0.5 MV or several hundred KV or less.
  • the charged particles are electrons and the charged particle beam apparatus is an electron microscope will be described.
  • symbol shows the same component.
  • FIG. 1 is a schematic configuration diagram of a charged particle beam apparatus according to the present embodiment.
  • the charged particle beam apparatus described in this embodiment is an ultrahigh voltage field emission electron microscope having an acceleration voltage of 1 MV, and has three pressure tanks.
  • the right pressure tank 101 has Cockcroft Walton circuit 102 for high pressure generation, which is configured by combining the multistage is housed a condenser and the diode, the tank insulating gas SF 6 is filled.
  • the AC high voltage transferred from the high-voltage transformer 103 is boosted by the Cockcroft-Walton circuit 102 to obtain a DC high voltage ⁇ 1MV.
  • a terminal (one end) 104 of a high voltage cable 106 is inserted inside the pressure tank 101, and the DC high voltage ⁇ 1 MV is introduced into the central pressure tank 105.
  • the high-voltage cable 106 is a so-called CV cable, which is a high-voltage resistance cable having a semiconductive layer 170 having resistance inside an insulating layer 169 made of cross-linked polyethylene and having a hollow center (FIG. 2).
  • FE power supply 109 is a DC power supply for the electron gun driving is installed.
  • a potential of DC-1 MV is applied to the FE power source 109 on the insulating support base 108 from the terminal (the other end) 110 of the right high voltage cable 106.
  • the insulating support base 108 and the FE power source 109 are entirely covered with a plurality of hoops 111 and a discharge prevention shield 112 so that the acute angle portion is not exposed.
  • the FE power supply 109 supplies a direct current output for driving the field emission electron gun 114 and the acceleration lens electrostatic lens 115 inside the left pressure tank 113.
  • DC output of FE power supply 109 (voltage output for ion pump drive, output for electron source fine movement mechanism, deflection coil, astigmatism correction coil, current output for electron gun magnetic field lens, extraction voltage output, voltage output for acceleration tube electrostatic lens, etc. ) Is connected to the field emission electron gun 114 inside the left pressure tank 113 and the electrostatic lens 115 of the accelerating tube through the core of the high voltage multi-core cable 116.
  • a reference resistor 117 and a filter capacitor 118 are installed in the central pressure tank 105.
  • the current flowing through the reference resistor 117 is fed back to the drive power supply 180.
  • the drive power supply 180 incorporates an acceleration voltage stabilization circuit, detects the deviation from the AC noise component of the feedback current and the set acceleration voltage, and modulates the drive output to the high-voltage transformer 103 so that the acceleration voltage is stabilized. To stabilize the acceleration voltage.
  • the electromagnetic wave generated in the cockcroft Walton circuit 102 inside the right pressure tank 101 due to the division of the pressure tank is not directly exposed to the reference resistor 117 inside the central pressure tank 105, no noise is introduced into the feedback current and the acceleration voltage Does not adversely affect stabilization. Further, since the voltage ripple of the transfer frequency is attenuated by the high-voltage resistance cable 106, high voltage stability of 10 ⁇ 7 units can be obtained. At this time, the energy width of the accelerating electrons is almost equal to the energy width of the field emission electrons, and can be used without impairing the monochromatic high-brightness characteristics of the field emission electron gun.
  • a field emission electron gun 114 is installed on the acceleration tube 119.
  • the acceleration tube 119 has a multistage structure in which ceramics and electrodes are stacked, and the inside is evacuated to an ultrahigh vacuum of 10 ⁇ 8 Pa level.
  • a cylindrical suspension base 121 is coupled to the bottom plate 120 of the pressure tank 113 and is integrated with the bottom plate 120.
  • the mirror body 122 of the electron microscope is assembled using the bottom of the suspension base 121 as a base.
  • a vibration isolation mount 123 is placed on a concrete foundation (not shown) and supports the entire electron microscope at the four corners of the pressure tank bottom plate 120.
  • the electron beam exiting the field emission electron gun 114 is accelerated to an energy of 1 MeV by the acceleration tube 119.
  • the first stage potential of the acceleration tube 119 is V 1, which is the same potential as the field emission electron gun 114, and the potential V 2 is applied to the second stage of the acceleration tube 119 from the FE power source 109, and the static potential between the first stage and the second stage An electric lens 115 is formed. From the third stage of the acceleration tube to the final stage, a voltage obtained by equally dividing the remainder of the acceleration voltage with a resistor is applied to each stage.
  • the electron beam accelerated to an energy of 1 MeV with an acceleration voltage of ⁇ 1 MV enters the mirror body 122 and forms an appropriate irradiation condition with a condenser lens and is irradiated onto the sample.
  • a magnified image of the sample is formed by an objective lens, and further magnified up to about 1 million times by an intermediate lens and a projection lens, and an image with an atomic order resolution is recorded on a camera or film.
  • the amount of power supplied to the FE power source 109 inside the central pressure tank 105 is 50 W when a field emission electron gun or a field-emission electron gun equipped with an electron gun lens is driven as in this embodiment. A degree is required. A LaB 6 thermal electron gun or the like that heats the filament requires several watts, and about 10 W is required to operate the electron gun ion pump.
  • the FE power source 109 can supply a plurality of DC voltages and currents as described above.
  • FIG. 2 shows a longitudinal section and a transverse section of a schematic configuration of the power transmission / reception device 124 installed in the high-voltage resistance cable 106.
  • a high voltage CV cable has a semiconductive layer inside and outside an insulating layer.
  • the inner semiconductive layer functions to alleviate the surface potential gradient of the conductor, to form a uniform electric field, and to keep the conductor and the semiconductive layer at the same potential to prevent partial discharge.
  • the conductor of the high voltage CV cable is extracted and made hollow, and used as a resistance cable having an inner semiconductive layer as a resistor.
  • a power transmission coil 161 is wound around the high voltage resistance cable 106 to form a power transmitter 163 together with the resonance capacitor 162.
  • the power transmitter 163 is connected to a high frequency power supply 164 and supplied with high frequency power.
  • the frequency of the high frequency power supply 164 can be varied by an oscillator 165.
  • the high-voltage resistance cable 106 has a sheath 166 for protecting the cable on the outermost side, a shield 167 wound with metal tape on the inner side, an outer semiconductive layer 168 on the inner side, a cross-linked polyethylene (CV) insulating layer 169, and an inner semiconductive layer. 170 is provided and the center is hollow.
  • the hollow portion insulating gas SF 6 is filled.
  • a power receiver 174 including a power receiving coil 171, a resonant capacitor 172, and a rectifying / smoothing circuit 173 is installed at a position corresponding to the power transmitter 163 in the cable hollow portion.
  • the high frequency power received by the power receiving coil 171 is rectified by the rectifying / smoothing circuit 173 and becomes a direct current output, which is connected to the direct current input of the FE power source 109 inside the central pressure tank 105 via a conducting wire in the hollow cable.
  • the transmission distance between the power transmission coil and the power reception coil be 50 mm or less in consideration of transmission efficiency. Needless to say, the value should be equal to or higher than a value capable of withstanding a desired high voltage.
  • the capacities of the resonant capacitors C1 and C2 are selected so as to satisfy Equation (1).
  • the mutual inductance between the power transmitting and receiving coils is M, the load resistance R L of the FE power source 109 connected to the power receiver, the power transmitting side coil resistance R 1 , and the power receiving side coil resistance R 2 .
  • the diameter D 1 of the power transmission coil 161 140 mm
  • the number of turns N 1 50 turns
  • the diameter D 2 of the power receiving coil 171 35 mm
  • the number of turns N 2 50 turns
  • the coil length d 100 mm
  • the coil resistance has a resonance frequency of 100 kHz
  • the power transmission coil resistance R 1 is about 0.32 ⁇
  • the power reception coil resistance R 2 is about 0.08 ⁇ .
  • L 1 328 ⁇ H
  • L 2 48 ⁇ H
  • M 16 ⁇ H
  • the capacitance C 1 of the power transmission side resonance capacitor may be set to 7723 pF, and the capacitance C 2 of the power reception side resonance capacitor may be set to 0.053 ⁇ F.
  • the transmission efficiency ⁇ is expected to be 0.86, and the input / output voltage ratio of the received voltage / sending voltage is expected to be about 4.3.
  • the obtained DC power is slightly reduced by the efficiency of the rectifying and smoothing circuit, high-efficiency power transmission of about 0.8 can be expected as the overall power transmission efficiency.
  • a high frequency power supply of 100 kHz, AC15V, 5A is used, and the above power transmitter / receiver and rectifier are used, it is sufficiently possible to ensure the input of the FE power supply 109 of about 50 W at 48 VDC.
  • the FE power source 109 requires DC input of a plurality of voltages, for example, when DC 48V, 24V, 15V, and 5V inputs are required, four pairs of power transmitters and receivers can be independently installed on a high voltage cable ( FIG. 3). Or you may use the power transmitter which has the coil length of the grade which arranged four power receivers.
  • one set of the high-frequency power source 164 and the oscillator 165 may be used, and four different DC voltages are output by adjusting the constants and output resistance of the power receiving coil and the resonant capacitor on the power receiver side.
  • the resonance frequency can be from kHz to GHz if the capacitance of the resonance capacitor is selected, but a frequency as far as possible as the driving frequency of the cockcroft Walton circuit 102 is selected so that noise can be easily separated. Since the circuit design becomes complicated when the frequency becomes too high, the frequency is set to 100 kHz in this embodiment. However, it may be determined by calculating and considering the inductance from the dimensions of the installable power transmitting and receiving coils.
  • the power transmission / reception device 124 can be installed sufficiently far away from the electron microscope mirror 122 and the electron gun unit (field emission electron gun) 114, high-frequency noise generated by power transmission does not affect the observation of the electron microscope. It is easy to do so.
  • high-frequency noise becomes a problem, electromagnetically shield the coil on the power transmission side and the high-frequency power supply, and cut off the high-frequency noise by passing a stabilization circuit or storage battery between the DC output after rectifying and smoothing on the power receiving side and the power supply for the electron gun. can do.
  • a deflection coil, an astigmatism correction coil, an electron gun magnetic field lens current output, an extraction voltage output, and an acceleration tube electrostatic lens voltage output that require a highly stable DC output are supplied from a storage battery drive power source. Only the ion pump power supply that requires less power but consumes more power may be driven by the transmission power using the magnetic resonance coupling described in this embodiment.
  • the present embodiment it is possible to provide a charged particle beam device capable of continuous operation with low noise and high efficiency by attaching a power transmission / reception device using electromagnetic induction to a hollow high-voltage resistance cable. Further, the power transmission / reception coil and the rectifying / smoothing circuit incorporated in the high-voltage cable can be reduced in size, and the high potential portion can be reduced in size and weight.
  • a charged particle beam apparatus according to a second embodiment of the present invention will be described with reference to FIG. Note that the matters described in the first embodiment and not described in the present embodiment can be applied to the present embodiment as long as there is no special circumstances.
  • FIG. 4 is a front view of a schematic configuration of the charged particle beam apparatus.
  • the charged particle beam apparatus shown in FIG. 4 is a general-purpose field emission electron microscope of a class having an acceleration voltage of 300 kV or less.
  • the configuration of the electron microscope is basically the same as that of the first embodiment.
  • the electron microscope is roughly composed of three parts and is connected by two high-voltage cables.
  • the left electron microscope body 130 has a height of about 3 m or less, an electron gun housing 131 is installed at the top, a field emission electron gun is housed inside, and an insulating gas is enclosed.
  • a high voltage multi-core cable 132 is connected to the electron gun housing 131, and one is connected to the FE tank 133.
  • An FE power source is accommodated in the FE tank 133.
  • the high voltage power supply 134 that supplies the acceleration voltage and the FE tank 133 are connected by a hollow resistance cable 135.
  • the power transmission / reception device 124 is attached to a portion of the hollow resistance cable 135 close to the high voltage power supply 134 (distant from the FE tank 133 and the mirror body 130). Thereby, the same effect as Example 1 can be acquired.
  • an FE power supply is supplied using an insulating transformer.
  • the FE tank 133 is reduced to about 1/2. There is.
  • the acceleration voltage is lower than that of the first embodiment, the length of the acceleration tube is short, and even if the vacuum pump is installed at the ground potential below the acceleration tube and evacuated from below, the area around the field emission electron gun is required for field emission. A good vacuum of about -8 Pa can be maintained.
  • the electron gun deflector also has a short accelerating tube length, even if an electron gun magnetic field lens is mounted, the output of the FE power source of about several W smaller than that of the first embodiment is required, so the power transmission / reception device 124 is also small.
  • the same effects as those of the first embodiment can be obtained. Further, the charged particle beam apparatus including the FE tank can be downsized as compared with the case where an insulating transformer is used for the FE power source.
  • a charged particle beam apparatus according to a third embodiment of the present invention will be described with reference to FIG. Note that matters described in the first or second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
  • FIG. 5 is a high-frequency power source in the charged particle beam apparatus described in the first embodiment, and a modulation circuit is added to exchange information such as the current value of the ion pump and the current value of the deflector between the ground potential side and the high potential side. It is a block diagram which shows an example to make it do.
  • the CPU 140 on the ground potential side sends a control signal to the modulation circuit 142 in response to a control command to the FE power supply 141 on the high potential side, and applies amplitude modulation to the output of the high frequency power supply 143.
  • this modulation is read by the detection circuit 144, restored as a control signal, sent to the CPU 145 of the FE power supply 141, and the FE power supply 141 is controlled.
  • the CPU 145 sends a signal to the load fluctuation circuit 146 that changes the load resistance RL in accordance with the output state of the FE power supply 141, and modulates the load resistance RL on the power receiving side.
  • the output impedance changes due to the change of the load resistance RL and can be detected by the detection circuit 147 on the power transmission side (ground potential side), whereby the output state of the FE power supply 141 can be known on the ground potential side. Since the transmission voltage fluctuates slightly while data is being transmitted and received, a stabilization circuit 148 is provided on the input side of the FE power supply 141 so that input fluctuations do not affect the output of the FE power supply 141.
  • the rule of data exchange may be determined in advance, and for example, the high potential side may transmit the state of the FE power supply in the form of returning a request from the ground potential side.
  • control signals to the FE power source and data on the output state of the power source have been transmitted by spatial light transmission or optical fiber communication.
  • the use of optical fiber and spatial light transmission reduces the risk of high-voltage discharge, but increases the power consumption of the FE power supply due to the use of infrared rays and lasers.
  • control and status information can be transmitted simultaneously with power transmission, there is an advantage that the configuration of the communication mechanism of the FE power supply can be simplified and the power consumption can be reduced as compared with the conventional system.
  • the same effects as those of the first embodiment can be obtained.
  • the configuration of the communication mechanism of the FE power supply can be simplified and the power consumption can be reduced. can do.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • High frequency power supply 165 ... Oscillator, 166 ... Sheath, 167 ... Shield, 168 ... External semiconductive layer, 169 ... Insulating layer, 170 ... Internal semiconductive layer, 171 ... Receiving coil, 172 ... Resonant capacitor 173, a rectifying / smoothing circuit, 174, a power receiver, 180, a driving power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The purpose of the present invention is to provide a charged particle beam device capable of continuous stable operation with low noise and high efficiency. In the charged particle beam device, a high-voltage power source (103) and a charged particle gun (114) containing a charged particle source are connected through a high-voltage cable (106). The charged particle beam device comprises: a power-receiving coil of a power-send-receive device (124) installed in a hollow portion of the high-voltage cable (106) and supplying the power used in the charged particle gun (114); and a power-sending coil of the power-send-receive device (124) installed on the outer side of the high-voltage cable (106) and sending power. The power is transmitted by magnetic field resonance coupling between the power-sending coil and the power-receiving coil.

Description

荷電粒子線装置Charged particle beam equipment
 本発明は、荷電粒子線装置に関する。 The present invention relates to a charged particle beam apparatus.
 荷電粒子線装置の高電位部に置かれる荷電粒子源あるいは荷電粒子銃には、荷電粒子源を加熱したり、荷電粒子銃で使用する真空ポンプ、磁界レンズ、静電レンズ、偏向器、荷電粒子源の微動装置等を動作させるために電力供給が必要である。 The charged particle source or charged particle gun placed in the high potential part of the charged particle beam device includes a vacuum pump, a magnetic lens, an electrostatic lens, a deflector, a charged particle for heating the charged particle source or using the charged particle gun. Power supply is required to operate the fine movement device and the like of the source.
 特許文献1には、荷電粒子線ビーム装置の高電圧発生装置において、電力伝送回路のトランスとシールド間との容量結合電流によるノイズの影響を避けるために、二次電池等の充放電を行う電気素子を用いた直流電源を設け、接地電位に配置した伝送ON/OFFスイッチに降り切替えスイッチを動作させ、トランスを用いた従来の直流高電圧発生回路との切替えを行い、高分解能を必要とするデータの取得は二次電池を用いた直流電源を使用して行い、従来の直流高電圧発生回路を使用している間は、充電回路により二次電池を充電する技術が開示されている。 In Patent Document 1, in a high voltage generator of a charged particle beam apparatus, in order to avoid the influence of noise due to a capacitive coupling current between a transformer and a shield of a power transmission circuit, an electric for charging / discharging a secondary battery or the like is performed. A DC power supply using the element is installed, and the transmission switch is operated to the transmission ON / OFF switch arranged at the ground potential to switch to the conventional DC high voltage generation circuit using a transformer, and high resolution is required. Data acquisition is performed using a DC power source using a secondary battery, and a technique is disclosed in which a secondary battery is charged by a charging circuit while a conventional DC high voltage generation circuit is used.
 特許文献2には、電動機直結発電機装置を用いることなく、高電位部にあるフィラメントに大地電位部から当該フィラメント加熱用の電力を供給することができるようにするために、大地電位部にあるタンク内に設けられていて高電圧印加部周りの電界集中を緩和する筒状非磁性金属静電シールド体と、タンク内の大地電位部に設けられた送電コイルと、それに高周波電力を供給する高周波電源と、静電シールド体内に設けられていて、電磁誘導によって送電コイルから送られた電力を受けてそれをフィラメントに供給する受電コイルと、を備えた電子線照射装置が開示されている。 In Patent Document 2, the electric power for heating the filament can be supplied from the ground potential portion to the filament in the high potential portion without using the motor direct-coupled generator device. A cylindrical non-magnetic metal electrostatic shield body that is provided in the tank to relieve electric field concentration around the high voltage application section, a power transmission coil provided in the ground potential section in the tank, and a high frequency that supplies high frequency power thereto An electron beam irradiation apparatus is disclosed that includes a power source and a power receiving coil that is provided in the body of the electrostatic shield and receives power transmitted from the power transmitting coil by electromagnetic induction and supplies the power to the filament.
 また、特許文献3には、電界放射陰極を瞬時加熱するための交流またはパルス電源を中継タンク外に設置し、前記電源からの加熱電流を、電子顕微鏡鏡体の内外に、電磁結合関係に設置した1次および2次コイルから成る加熱用絶縁トランスを介してFE-Tipに供給する電界放射型電子顕微鏡が開示されている。 Further, in Patent Document 3, an AC or pulse power source for instantaneously heating the field emission cathode is installed outside the relay tank, and the heating current from the power source is installed inside and outside the electron microscope body in an electromagnetic coupling relationship. There is disclosed a field emission electron microscope that supplies FE-Tip through a heating insulating transformer composed of primary and secondary coils.
特開2006-156155号公報JP 2006-156155 A 特開2014-127296号公報JP 2014-127296 A 特開昭63-78440号公報JP-A 63-78440
 今後の荷電粒子線装置への要求に対しそれぞれ同時には解決できない上記従来技術の課題を纏めると次の通りである。
1)特許文献1の電力伝送回路の絶縁トランスを1つまたは複数個つないで電力伝送をおこなう方法では絶縁トランスの浮遊容量のためコモンモードノイズが伝播し高電圧の安定度を低下させる。
2)特許文献1の高電位部への電力供給を蓄電池によりおこなう方法は、得られる高電圧安定度については一番有利であるが、蓄電池の容量で装置の稼働時間が制限される。また蓄電池のメンテナンスコストが大きいことが課題である。また、充電しながらの連続使用では、ノイズが課題となる。
3)特許文献2や3のように荷電粒子源近傍において送受電コイルを用いて空間電力伝送をおこなう方法(電磁誘導)では、高圧絶縁タンク内で高周波を送受信するため高電圧側で電子回路へ影響が生じ高電圧安定度に影響を与える。電子回路にシールドを設けると渦電流による発熱が生じ、有効な高周波電磁シールドが難しい。
The problems of the above prior art that cannot be solved simultaneously for future demands for charged particle beam devices are summarized as follows.
1) In the method of transmitting power by connecting one or a plurality of insulating transformers in the power transmission circuit of Patent Document 1, common mode noise propagates due to the stray capacitance of the insulating transformer, and the stability of high voltage is lowered.
2) The method of supplying electric power to the high potential part of Patent Document 1 with a storage battery is most advantageous for the high voltage stability obtained, but the operation time of the apparatus is limited by the capacity of the storage battery. Moreover, the maintenance cost of a storage battery is a problem. Moreover, noise becomes a problem in continuous use while charging.
3) In the method of performing spatial power transmission using a power transmission / reception coil in the vicinity of a charged particle source as in Patent Documents 2 and 3 (electromagnetic induction), high-frequency signals are transmitted and received in a high-pressure insulating tank, so that an electronic circuit is connected on the high voltage side Affects the high voltage stability. When a shield is provided in an electronic circuit, heat is generated due to eddy current, and effective high-frequency electromagnetic shielding is difficult.
 本発明の目的は、低ノイズ、高効率で連続安定運転が可能な荷電粒子線装置を提供することにある。 An object of the present invention is to provide a charged particle beam apparatus capable of continuous operation with low noise and high efficiency.
 上記目的を達成するための一実施形態として、高電圧電源と荷電粒子源あるいは荷電粒子源を含む荷電粒子銃とを高圧ケーブルを介して接続し、高電位におかれた前記荷電粒子源から発生した荷電粒子を加速して利用する荷電粒子線装置であって、
  前記高圧ケーブルの中心が中空部であり、前記中空部に高電位部におかれた前記荷電粒子銃で使用する電力を供給するための受電コイルを設置し、前記高圧ケーブルの外側には電力を送電するための送電コイルを設置し、前記送電コイルに高周波電源を接続し、送受電コイル間の磁界共振結合によりアース電位側から高電位側電源に電力伝送することを特徴とする荷電粒子線装置とする。
As one embodiment for achieving the above object, a high voltage power source and a charged particle source or a charged particle gun including a charged particle source are connected via a high voltage cable and generated from the charged particle source placed at a high potential. A charged particle beam apparatus that accelerates and uses charged particles,
The center of the high-voltage cable is a hollow portion, and a receiving coil for supplying power to be used in the charged particle gun placed in the high-potential portion is installed in the hollow portion, and power is supplied to the outside of the high-voltage cable. A charged particle beam apparatus comprising: a power transmission coil for power transmission; a high frequency power source connected to the power transmission coil; and power transmission from a ground potential side to a high potential side power source by magnetic resonance coupling between the power transmission and reception coils And
 また、荷電粒子源を含む荷電粒子銃と、高電圧電源と、前記高圧電源と前記荷電粒子銃との間に配置され中心に中空部を有する高圧ケーブルと、を備えた荷電粒子線装置であって、
  前記高圧ケーブルには送受電装置が組み込まれており、
  前記送受電装置は、前記高圧ケーブルの高電位側となる前記中空部に配置され前記荷電粒子銃で使用する電力を供給するための受電コイルと、アース電位側となる前記高圧ケーブルの外周を取り巻くように配置され前記受電コイルに電力を送電するための送電コイルと、を有することを特徴とする荷電粒子線装置とする。
A charged particle beam apparatus comprising: a charged particle gun including a charged particle source; a high voltage power source; and a high voltage cable having a hollow portion disposed between the high voltage power source and the charged particle gun. And
The high-voltage cable incorporates a power transmission / reception device,
The power transmission / reception device is disposed in the hollow portion on the high potential side of the high-voltage cable and surrounds the outer periphery of the high-voltage cable on the ground potential side, and a power reception coil for supplying power used in the charged particle gun And a power transmission coil for transmitting power to the power reception coil.
 本発明によれば、低ノイズ、高効率で連続安定運転が可能な荷電粒子線装置を提供することができる。 According to the present invention, it is possible to provide a charged particle beam apparatus capable of continuous operation with low noise and high efficiency.
本発明の第1の実施例に係る荷電粒子線装置(超高圧電界放出型電子顕微鏡)の概略構成図(一部断面図)である。1 is a schematic configuration diagram (partially sectional view) of a charged particle beam apparatus (ultra-high voltage field emission electron microscope) according to a first embodiment of the present invention. 図1に示す荷電粒子線装置の中空抵抗高圧ケーブルに設けられた送受電装置の概略構成図であり、左図は縦断面図(一部ブロック図)、右図は横断面図である。It is a schematic block diagram of the power transmission / reception apparatus provided in the hollow resistance high voltage | pressure cable of the charged particle beam apparatus shown in FIG. 1, The left figure is a longitudinal cross-sectional view (partial block diagram), The right figure is a cross-sectional view. 図2に示す送受電装置における4つの直流出力を供給する送受電器の構成断面図である。3 is a cross-sectional view of a power transmitter / receiver that supplies four DC outputs in the power transmitter / receiver shown in FIG. 本発明の第2の実施例に係る荷電粒子線装置(汎用電子顕微鏡)の概略構成正面図である。It is a schematic structure front view of the charged particle beam apparatus (general purpose electron microscope) which concerns on 2nd Example of this invention. 本発明の第3の実施例に係る荷電粒子線装置におけるアース電位側と高電位側で、電力伝送と制御および状態情報の伝達を同時に行う場合の手順を説明するための概略ブロック図である。It is a schematic block diagram for demonstrating the procedure in the case of performing simultaneously power transmission, control, and transmission of status information on the ground potential side and the high potential side in the charged particle beam apparatus according to the third embodiment of the present invention.
 発明者らは、荷電粒子線装置において、高電圧電源から装置本体への高電圧導入を、高圧ケーブルを介して行うこととした。この高圧ケーブルは絶縁層の内側が中空の構造になっており、このケーブル中空部にアース電位側から高電位側に電力を送受電するための受電コイルとコンデンサーおよび整流平滑回路からなる受電器を設置し、高圧ケーブルの外側の対応する場所に送電コイルを巻きつける。送受電コイル間で高周波電力を伝送し整流した直流電力を装置本体の高電位部にある荷電粒子源、あるいは荷電粒子銃へ供給する。なお、ここではアース電位に対して電位を有する側(符号がプラスであってもマイナスであっても)を高電位側と呼ぶ。 The inventors decided to introduce a high voltage from a high voltage power source to the apparatus main body via a high voltage cable in the charged particle beam apparatus. This high-voltage cable has a hollow structure inside the insulating layer, and a power receiving coil, a capacitor, and a rectifying / smoothing circuit for transmitting and receiving power from the ground potential side to the high potential side are provided in the hollow portion of the cable. Install and wrap the transmission coil around the corresponding location outside the high voltage cable. DC power that is rectified by transmitting high-frequency power between power transmission and reception coils is supplied to a charged particle source or a charged particle gun in a high potential portion of the apparatus body. Here, the side having a potential with respect to the ground potential (whether the sign is positive or negative) is referred to as a high potential side.
 高圧ケーブルの途中に送受電部を設けることで本体高電位部と離れた場所で電力の送受電がなされ、荷電粒子源あるいは荷電粒子銃が高周波電磁波に直接暴露されることはなく、本体高電位部には直流電力が供給されるので、高安定が必要な高圧電源出力へのノイズ混入も防止でき、電磁ノイズによる装置の性能劣化がない。装置稼働中に電力伝送ができるので、装置稼働時間も制約されることがない。また送受電コイルの個数あるいはコイル長を増減することにより高電位部で必要な電力量を供給することができる。更に高圧ケーブルに組み込む送受電コイルや整流平滑回路は小型化が可能で結局前記従来技術に比べ高電位部を小型軽量化することができる。発電機のような駆動部がないので振動の発生がない。 By providing a power transmission / reception unit in the middle of the high-voltage cable, power is transmitted and received at a location away from the main high potential unit, and the charged particle source or charged particle gun is not directly exposed to high frequency electromagnetic waves, and the main unit high potential Since DC power is supplied to the unit, noise can be prevented from being mixed into the high-voltage power supply output that requires high stability, and there is no deterioration in the performance of the device due to electromagnetic noise. Since power can be transmitted while the apparatus is operating, the apparatus operating time is not limited. Further, by increasing or decreasing the number of the power transmission / reception coils or the coil length, it is possible to supply the necessary electric energy at the high potential portion. Furthermore, the power transmission / reception coil and the rectifying / smoothing circuit incorporated in the high-voltage cable can be reduced in size, and the high-potential portion can be reduced in size and weight as compared with the prior art. Since there is no drive unit like a generator, there is no vibration.
 本発明は、特に1MVを超える高電圧装置で効果大だが、0.5MV或いは数百KV以下の汎用装置への適用も可能である。 The present invention is particularly effective for a high-voltage device exceeding 1 MV, but can be applied to a general-purpose device of 0.5 MV or several hundred KV or less.
 以下荷電粒子が電子、荷電粒子線装置が電子顕微鏡の場合について説明するが、電子をイオンに置き換え、電子顕微鏡をビーム照射装置等に置き換えても同様の議論が成り立つことは明らかである。なお、同一符号は同一構成要素を示す。 Hereinafter, the case where the charged particles are electrons and the charged particle beam apparatus is an electron microscope will be described. However, it is clear that the same argument holds even if the electrons are replaced with ions and the electron microscope is replaced with a beam irradiation apparatus or the like. In addition, the same code | symbol shows the same component.
 本発明の第1の実施例について図1から図3を用いて説明する。図1は本実施例に係る荷電粒子線装置の概略構成図である。本実施例で説明する荷電粒子線装置は加速電圧1MVの超高圧電界放出型電子顕微鏡であり、3つの圧力タンクを有している。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a charged particle beam apparatus according to the present embodiment. The charged particle beam apparatus described in this embodiment is an ultrahigh voltage field emission electron microscope having an acceleration voltage of 1 MV, and has three pressure tanks.
 右の圧力タンク101にはコンデンサーとダイオードを多段式に組み合わせて構成された高圧発生用のコッククロフトウォルトン回路102が納められており、タンク内には絶縁ガスSFが充填されている。高圧トランス103より振り込まれた交流高電圧からコッククロフトウォルトン回路102で昇圧して直流高電圧-1MVを得る。 The right pressure tank 101 has Cockcroft Walton circuit 102 for high pressure generation, which is configured by combining the multistage is housed a condenser and the diode, the tank insulating gas SF 6 is filled. The AC high voltage transferred from the high-voltage transformer 103 is boosted by the Cockcroft-Walton circuit 102 to obtain a DC high voltage −1MV.
 圧力タンク101の内部には高圧ケーブル106の端末(一端)104が挿入されていて、直流高電圧-1MVは中央の圧力タンク105に導入される。この高圧ケーブル106はいわゆるCVケーブルで、架橋ポリエチレンでできた絶縁層169の内側に抵抗をもった半導電層170があり中心部は中空の高圧抵抗ケーブルである(図2)。 A terminal (one end) 104 of a high voltage cable 106 is inserted inside the pressure tank 101, and the DC high voltage −1 MV is introduced into the central pressure tank 105. The high-voltage cable 106 is a so-called CV cable, which is a high-voltage resistance cable having a semiconductive layer 170 having resistance inside an insulating layer 169 made of cross-linked polyethylene and having a hollow center (FIG. 2).
 圧力タンク105の内部には、複数個の絶縁碍子107で支持された絶縁支持架台108の上に電界放出(Field Emission;FE)電子銃駆動用の直流電源であるFE電源109が設置され、右の高圧ケーブル106の端末(他端)110から絶縁支持架台108の上のFE電源109にDC-1MVの電位が与えられる。絶縁支持架台108およびFE電源109は、鋭角部分が露出しないように複数のフープ111と放電防止用シールド112により全体が覆われている。 Inside the pressure tank 105, the field emission on the insulating support cradle 108 which is supported by a plurality of insulator 107 (F ield E mission; FE ) FE power supply 109 is a DC power supply for the electron gun driving is installed A potential of DC-1 MV is applied to the FE power source 109 on the insulating support base 108 from the terminal (the other end) 110 of the right high voltage cable 106. The insulating support base 108 and the FE power source 109 are entirely covered with a plurality of hoops 111 and a discharge prevention shield 112 so that the acute angle portion is not exposed.
 このFE電源109は左の圧力タンク113の内部の電界放出電子銃114および加速管の静電レンズ115を駆動するための直流出力を供給する。FE電源109の直流出力(イオンポンプ駆動用電圧出力、電子源微動機構用出力、偏向コイル、非点補正コイル、電子銃磁界レンズ用電流出力、引き出し電圧出力、加速管静電レンズ用電圧出力など)は高圧多心ケーブル116の芯線を介して左の圧力タンク113の内部の電界放出電子銃114および加速管の静電レンズ115に接続される。 The FE power supply 109 supplies a direct current output for driving the field emission electron gun 114 and the acceleration lens electrostatic lens 115 inside the left pressure tank 113. DC output of FE power supply 109 (voltage output for ion pump drive, output for electron source fine movement mechanism, deflection coil, astigmatism correction coil, current output for electron gun magnetic field lens, extraction voltage output, voltage output for acceleration tube electrostatic lens, etc. ) Is connected to the field emission electron gun 114 inside the left pressure tank 113 and the electrostatic lens 115 of the accelerating tube through the core of the high voltage multi-core cable 116.
 また中央の圧力タンク105には基準抵抗器117およびフィルターコンデンサー118も設置されている。基準抵抗器117を流れる電流は駆動電源180にフィードバックされる。駆動電源180には加速電圧安定化回路が組み込まれ、フィードバック電流の交流ノイズ成分および設定加速電圧とのずれを検出して、加速電圧が安定化するよう高圧トランス103への駆動出力に変調をかけて加速電圧を安定化させる。 Also, a reference resistor 117 and a filter capacitor 118 are installed in the central pressure tank 105. The current flowing through the reference resistor 117 is fed back to the drive power supply 180. The drive power supply 180 incorporates an acceleration voltage stabilization circuit, detects the deviation from the AC noise component of the feedback current and the set acceleration voltage, and modulates the drive output to the high-voltage transformer 103 so that the acceleration voltage is stabilized. To stabilize the acceleration voltage.
 圧力タンクを分けたことにより右圧力タンク101の内部のコッククロフトウォルトン回路102で発生する電磁波は中央の圧力タンク105の内部の基準抵抗器117に直接暴露されないので、フィードバック電流にノイズが入らず加速電圧安定化に悪影響を及ぼすことがない。さらに高圧抵抗ケーブル106により振込み周波数の電圧リップルが減衰するので10-7台の高電圧安定度を得ることができる。このとき加速電子のエネルギー幅は電界放出電子のエネルギー幅とほぼ同等になり電界放出電子銃の単色高輝度の特性を損なわずに利用できる。 Since the electromagnetic wave generated in the cockcroft Walton circuit 102 inside the right pressure tank 101 due to the division of the pressure tank is not directly exposed to the reference resistor 117 inside the central pressure tank 105, no noise is introduced into the feedback current and the acceleration voltage Does not adversely affect stabilization. Further, since the voltage ripple of the transfer frequency is attenuated by the high-voltage resistance cable 106, high voltage stability of 10 −7 units can be obtained. At this time, the energy width of the accelerating electrons is almost equal to the energy width of the field emission electrons, and can be used without impairing the monochromatic high-brightness characteristics of the field emission electron gun.
 左の圧力タンク113の内部では、電界放出電子銃114が加速管119の上に設置される。加速管119はセラミックと電極を積み重ねた多段構造で、内部は10-8Pa台の超高真空に排気されている。圧力タンク113の底板120には円筒状のつり架台121が結合され底板120と一体化される。電子顕微鏡の鏡体122はこのつり架台121の底部を基盤として組み立てられる。電子顕微鏡への外部振動を遮断するために、除振マウント123がコンクリート基礎(図示せず)の上に置かれ、圧力タンク底板120の四隅で電子顕微鏡全体を支える。 Inside the left pressure tank 113, a field emission electron gun 114 is installed on the acceleration tube 119. The acceleration tube 119 has a multistage structure in which ceramics and electrodes are stacked, and the inside is evacuated to an ultrahigh vacuum of 10 −8 Pa level. A cylindrical suspension base 121 is coupled to the bottom plate 120 of the pressure tank 113 and is integrated with the bottom plate 120. The mirror body 122 of the electron microscope is assembled using the bottom of the suspension base 121 as a base. In order to block external vibration to the electron microscope, a vibration isolation mount 123 is placed on a concrete foundation (not shown) and supports the entire electron microscope at the four corners of the pressure tank bottom plate 120.
 電界放出電子銃114を出た電子ビームは加速管119で1MeVのエネルギーまで加速される。加速管119の初段電位は電界放出電子銃114と同電位のVで、加速管119の第2段目にはFE電源109から電位Vが与えられ、初段と第2段の間で静電レンズ115を形成している。加速管第3段目以降、最終段までは加速電圧の残りを抵抗で等分割した電圧が各段に印加される。 The electron beam exiting the field emission electron gun 114 is accelerated to an energy of 1 MeV by the acceleration tube 119. The first stage potential of the acceleration tube 119 is V 1, which is the same potential as the field emission electron gun 114, and the potential V 2 is applied to the second stage of the acceleration tube 119 from the FE power source 109, and the static potential between the first stage and the second stage An electric lens 115 is formed. From the third stage of the acceleration tube to the final stage, a voltage obtained by equally dividing the remainder of the acceleration voltage with a resistor is applied to each stage.
 加速電圧-1MVで1MeVのエネルギーまで加速された電子ビームは鏡体122に入りコンデンサーレンズで適当な照射条件を形成して試料に照射される。試料の拡大像が対物レンズで形成され、さらに中間レンズ、投射レンズで最大100万倍程度にまで拡大され、原子オーダーの分解能の像がカメラあるいはフィルムに記録される。 The electron beam accelerated to an energy of 1 MeV with an acceleration voltage of −1 MV enters the mirror body 122 and forms an appropriate irradiation condition with a condenser lens and is irradiated onto the sample. A magnified image of the sample is formed by an objective lens, and further magnified up to about 1 million times by an intermediate lens and a projection lens, and an image with an atomic order resolution is recorded on a camera or film.
 中央の圧力タンク105の内部のFE電源109への供給電力量は、本実施例のように電界放出電子銃あるいは電子銃レンズを搭載した磁界重畳型電界放出電子銃等を駆動する場合には50W程度必要になる。フィラメントを加熱するLaB熱電子銃などでは数W、さらに電子銃イオンポンプを稼動させるには10W程度が必要になる。FE電源109は上記のように複数の直流電圧、電流を供給することができる。 The amount of power supplied to the FE power source 109 inside the central pressure tank 105 is 50 W when a field emission electron gun or a field-emission electron gun equipped with an electron gun lens is driven as in this embodiment. A degree is required. A LaB 6 thermal electron gun or the like that heats the filament requires several watts, and about 10 W is required to operate the electron gun ion pump. The FE power source 109 can supply a plurality of DC voltages and currents as described above.
 このFE電源109へは高圧抵抗ケーブル106に設置された送受電装置124からの直流出力を供給する。図2に高圧抵抗ケーブル106に設置された送受電装置124の概略構成の縦断面および横断面を示す。通常、高電圧CVケーブルは絶縁層の内外に半導電層を設けている。内側半導電層は導体の表面電位傾度を緩和し、均一電界とするとともに導体と半導電層を等電位に保ち部分放電を防ぐ働きをする。本実施例では高電圧CVケーブルの導体を抜き取って中空とし、内側半導電層を抵抗体とした抵抗ケーブルとして使用する。 The DC output from the power transmission / reception device 124 installed in the high-voltage resistance cable 106 is supplied to the FE power source 109. FIG. 2 shows a longitudinal section and a transverse section of a schematic configuration of the power transmission / reception device 124 installed in the high-voltage resistance cable 106. Usually, a high voltage CV cable has a semiconductive layer inside and outside an insulating layer. The inner semiconductive layer functions to alleviate the surface potential gradient of the conductor, to form a uniform electric field, and to keep the conductor and the semiconductive layer at the same potential to prevent partial discharge. In this embodiment, the conductor of the high voltage CV cable is extracted and made hollow, and used as a resistance cable having an inner semiconductive layer as a resistor.
 図2に示すように、高圧抵抗ケーブル106の外側には送電コイル161が巻かれ共振コンデンサー162とともに送電器163を形成する。送電器163は高周波電源164と接続され、高周波電力が供給される。高周波電源164は発振器165により周波数を可変にできる。高圧抵抗ケーブル106は一番外側にケーブル保護のためのシース166、その内側に金属テープを巻いたシールド167、その内側に外部半導電層168、架橋ポリエチレン(CV)絶縁層169、内部半導電層170が設けられ、中心は中空になっている。中空部には絶縁ガスSFが充填される。受電コイル171と共振コンデンサー172と整流平滑回路173からなる受電器174をケーブル中空部の送電器163と対応する位置に設置する。受電コイル171で受電した高周波電力は整流平滑回路173で整流されて直流出力となり中空ケーブル内の導線を介して中央の圧力タンク105の内部のFE電源109の直流入力に接続される。なお、送電コイルと受電コイルとの間の伝送距離は伝送効率を考慮して50mm以下とすることが望ましい。所望の高電圧に耐えられる値以上とすることは言うまでもない。送電コイル161の自己インダクタンスをL、受電コイル171の自己インダクタンスをL、送電器側共振コンデンサー162の容量C、受電器側の共振コンデンサー172の容量Cとする。角振動数ωで送受電器を磁界共振させるために、式(1)となるように共振コンデンサーC1、C2の容量を選ぶ。 As shown in FIG. 2, a power transmission coil 161 is wound around the high voltage resistance cable 106 to form a power transmitter 163 together with the resonance capacitor 162. The power transmitter 163 is connected to a high frequency power supply 164 and supplied with high frequency power. The frequency of the high frequency power supply 164 can be varied by an oscillator 165. The high-voltage resistance cable 106 has a sheath 166 for protecting the cable on the outermost side, a shield 167 wound with metal tape on the inner side, an outer semiconductive layer 168 on the inner side, a cross-linked polyethylene (CV) insulating layer 169, and an inner semiconductive layer. 170 is provided and the center is hollow. The hollow portion insulating gas SF 6 is filled. A power receiver 174 including a power receiving coil 171, a resonant capacitor 172, and a rectifying / smoothing circuit 173 is installed at a position corresponding to the power transmitter 163 in the cable hollow portion. The high frequency power received by the power receiving coil 171 is rectified by the rectifying / smoothing circuit 173 and becomes a direct current output, which is connected to the direct current input of the FE power source 109 inside the central pressure tank 105 via a conducting wire in the hollow cable. In addition, it is desirable that the transmission distance between the power transmission coil and the power reception coil be 50 mm or less in consideration of transmission efficiency. Needless to say, the value should be equal to or higher than a value capable of withstanding a desired high voltage. The self-inductance of the power transmission coil 161 L 1, the self-inductance of the power receiving coil 171 L 2, the capacitance C 1 of the transmission-side resonant capacitor 162, a capacitance C 2 of the power receiving-side resonance capacitor 172. In order to magnetically resonate the power transmitter / receiver at the angular frequency ω 0 , the capacities of the resonant capacitors C1 and C2 are selected so as to satisfy Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
このとき送受電の伝送効率ηは、式(2)で表される。 At this time, the transmission efficiency η of power transmission / reception is expressed by Expression (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここに送受電コイル間の相互インダクタンスをM、受電器に接続されるFE電源109の負荷抵抗R、送電側コイル抵抗R、受電側コイル抵抗Rとした。例えば送電コイル161の直径D=140mm、巻き数N=50ターン、線径2mm、コイル長d=100mm、受電コイル171の直径D=35mm、巻き数N=50ターン、コイル長d=100mmとすると、コイル抵抗は表皮効果を考えると共振周波数100kHzで送電コイル抵抗Rが0.32Ω、受電コイル抵抗Rが0.08Ω程度になる。 Here, the mutual inductance between the power transmitting and receiving coils is M, the load resistance R L of the FE power source 109 connected to the power receiver, the power transmitting side coil resistance R 1 , and the power receiving side coil resistance R 2 . For example, the diameter D 1 of the power transmission coil 161 = 140 mm, the number of turns N 1 = 50 turns, the wire diameter 2 mm, the coil length d = 100 mm, the diameter D 2 of the power receiving coil 171 = 35 mm, the number of turns N 2 = 50 turns, and the coil length d Assuming that = 100 mm, considering the skin effect, the coil resistance has a resonance frequency of 100 kHz, the power transmission coil resistance R 1 is about 0.32Ω, and the power reception coil resistance R 2 is about 0.08Ω.
 送電コイル161の自己インダクタンスLは長岡係数をkとして、式(3)で表される。 Self-inductance L 1 of the power transmission coil 161 Nagaoka coefficient as k N, represented by formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 同心2重巻きコイル間の相互インダクタンスMは、式(4)で表される。 The mutual inductance M between the concentric double-winding coils is expressed by Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
これより、L=328μH、L=48μH、また相互インダクタンスはM=16μH程度となる。 Thus, L 1 = 328 μH, L 2 = 48 μH, and the mutual inductance is about M = 16 μH.
 共振周波数を100kHzにするには送電側共振コンデンサーの容量Cを7723pF、受電側共振コンデンサーの容量Cを0.053μFとすればよい。実際にはこれらの数値に近い規格の部品を使用し、周波数をスキャンして共振周波数を決めてその近辺で使用することができる。 In order to set the resonance frequency to 100 kHz, the capacitance C 1 of the power transmission side resonance capacitor may be set to 7723 pF, and the capacitance C 2 of the power reception side resonance capacitor may be set to 0.053 μF. In practice, it is possible to use a component having a standard close to these values, scan the frequency, determine the resonance frequency, and use it in the vicinity.
 負荷抵抗Rを50Ωとすると伝送効率ηは0.86、受電圧/送電圧の入出力電圧比は4.3程度が見込まれる。得られる直流電力は整流平滑回路の効率により若干減じるが全体の電力伝送効率として0.8程度の高効率な電力伝送が期待できる。 When the load resistance RL is 50Ω, the transmission efficiency η is expected to be 0.86, and the input / output voltage ratio of the received voltage / sending voltage is expected to be about 4.3. Although the obtained DC power is slightly reduced by the efficiency of the rectifying and smoothing circuit, high-efficiency power transmission of about 0.8 can be expected as the overall power transmission efficiency.
 高周波電源として100kHz、AC15V、5A程度のものを使い、上記送受電器および整流器を使えば、DC48Vで、50W程度のFE電源109の入力を確保することが十分可能である。FE電源109が複数電圧のDC入力を必要とする場合、例えばDC48V、24V、15V、5Vの入力を必要とする場合、送受電器の対を4つ独立に高圧ケーブル上に設置することができる(図3)。或いは、4つの受電器をならべた程度のコイル長をもつ送電器を使用してもよい。 If a high frequency power supply of 100 kHz, AC15V, 5A is used, and the above power transmitter / receiver and rectifier are used, it is sufficiently possible to ensure the input of the FE power supply 109 of about 50 W at 48 VDC. When the FE power source 109 requires DC input of a plurality of voltages, for example, when DC 48V, 24V, 15V, and 5V inputs are required, four pairs of power transmitters and receivers can be independently installed on a high voltage cable ( FIG. 3). Or you may use the power transmitter which has the coil length of the grade which arranged four power receivers.
 このとき高周波電源164および発振器165は1セットでよく、受電器側の受電コイルと共振コンデンサーの定数および出力抵抗を調整して4種類の異なる直流電圧を出力する。共振周波数は共振コンデンサーの容量を選べばkHzからGHzまで可能だが、ノイズの切り分けがしやすいようコッククロフトウォルトン回路102の駆動周波数となるべく離れた周波数を選ぶ。あまり高周波になると回路の設計が複雑になるので本実施例では100kHzとしたが、設置可能な送受電コイルの寸法からインダクタンスを計算し勘案して決めればよい。 At this time, one set of the high-frequency power source 164 and the oscillator 165 may be used, and four different DC voltages are output by adjusting the constants and output resistance of the power receiving coil and the resonant capacitor on the power receiver side. The resonance frequency can be from kHz to GHz if the capacitance of the resonance capacitor is selected, but a frequency as far as possible as the driving frequency of the cockcroft Walton circuit 102 is selected so that noise can be easily separated. Since the circuit design becomes complicated when the frequency becomes too high, the frequency is set to 100 kHz in this embodiment. However, it may be determined by calculating and considering the inductance from the dimensions of the installable power transmitting and receiving coils.
 送受電装置124は電子顕微鏡鏡体122、電子銃部(電界放出電子銃)114から十分遠く離して設置することができるので、電力伝送にともない発生する高周波ノイズが電子顕微鏡観察に影響を及ぼさないようにすることは容易である。高周波ノイズが問題になる場合は送電側コイルと高周波電源を電磁遮蔽し、受電側の整流平滑後の直流出力と電子銃電源入力の間に、安定化回路や蓄電池を介することにより高周波ノイズを遮断することができる。 Since the power transmission / reception device 124 can be installed sufficiently far away from the electron microscope mirror 122 and the electron gun unit (field emission electron gun) 114, high-frequency noise generated by power transmission does not affect the observation of the electron microscope. It is easy to do so. When high-frequency noise becomes a problem, electromagnetically shield the coil on the power transmission side and the high-frequency power supply, and cut off the high-frequency noise by passing a stabilization circuit or storage battery between the DC output after rectifying and smoothing on the power receiving side and the power supply for the electron gun. can do.
 あるいは特に高安定な直流出力を必要とする偏向コイル、非点補正コイル、電子銃磁界レンズ用電流出力、引き出し電圧出力、加速管静電レンズ用電圧出力を蓄電池駆動の電源から供給し、これらに比して安定度が低くてすむが消費電力の大きいイオンポンプ電源のみを、本実施例で説明した磁界共振結合を利用した伝送電力で駆動してもよい。 Alternatively, a deflection coil, an astigmatism correction coil, an electron gun magnetic field lens current output, an extraction voltage output, and an acceleration tube electrostatic lens voltage output that require a highly stable DC output are supplied from a storage battery drive power source. Only the ion pump power supply that requires less power but consumes more power may be driven by the transmission power using the magnetic resonance coupling described in this embodiment.
 以上、本実施例によれば、電磁誘導を用いた送受電装置を中空の高圧抵抗ケーブルに取り付けることにより、低ノイズ、高効率で連続安定運転が可能な荷電粒子線装置を提供することができる。また、高圧ケーブルに組み込む送受電コイルや整流平滑回路は小型化が可能であり、高電位部を小型軽量化することができる。 As described above, according to the present embodiment, it is possible to provide a charged particle beam device capable of continuous operation with low noise and high efficiency by attaching a power transmission / reception device using electromagnetic induction to a hollow high-voltage resistance cable. . Further, the power transmission / reception coil and the rectifying / smoothing circuit incorporated in the high-voltage cable can be reduced in size, and the high potential portion can be reduced in size and weight.
 本発明の第2の実施例に係る荷電粒子線装置ついて、図4を用いて説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。 A charged particle beam apparatus according to a second embodiment of the present invention will be described with reference to FIG. Note that the matters described in the first embodiment and not described in the present embodiment can be applied to the present embodiment as long as there is no special circumstances.
 図4は、荷電粒子線装置の概略構成正面図である。図4に示す荷電粒子線装置は、加速電圧300kV以下のクラスの汎用電界放出型電子顕微鏡である。電子顕微鏡の構成は実施例1と基本的に同じで、大きく3つの部分からなり、2本の高圧ケーブルで接続されている。 FIG. 4 is a front view of a schematic configuration of the charged particle beam apparatus. The charged particle beam apparatus shown in FIG. 4 is a general-purpose field emission electron microscope of a class having an acceleration voltage of 300 kV or less. The configuration of the electron microscope is basically the same as that of the first embodiment. The electron microscope is roughly composed of three parts and is connected by two high-voltage cables.
 左側の電子顕微鏡鏡体130は高さ3m以下程度で、上部には電子銃ハウジング131が設置され内部には電界放出電子銃が収めらており、絶縁ガスが封入されている。電子銃ハウジング131には高圧多心ケーブル132が接続され、一方はFEタンク133と接続される。FEタンク133の内部にはFE電源が納められている。加速電圧を供給する高電圧電源134とFEタンク133は中空抵抗ケーブル135で接続されている。 The left electron microscope body 130 has a height of about 3 m or less, an electron gun housing 131 is installed at the top, a field emission electron gun is housed inside, and an insulating gas is enclosed. A high voltage multi-core cable 132 is connected to the electron gun housing 131, and one is connected to the FE tank 133. An FE power source is accommodated in the FE tank 133. The high voltage power supply 134 that supplies the acceleration voltage and the FE tank 133 are connected by a hollow resistance cable 135.
 中空抵抗ケーブル135の高電圧電源134に近い(FEタンク133、および鏡体130から遠い)部分に、送受電装置124を取り付ける。これにより、実施例1と同様の効果を得ることができる。また、従来のこのクラスの汎用電界放出型電子顕微鏡では絶縁トランスを使ってFE電源の電力供給をしていたが、絶縁トランスが不要になるのでFEタンク133が1/2程度に小型になるメリットがある。また、加速電圧が実施例1より低いので、加速管長も短く、真空ポンプを加速管下のアース電位に設置して下から真空排気しても、電界放出電子銃周りを電界放出に必要な10-8Pa程度のよい真空に保つことができる。電子銃偏向器も加速管長が短く不要なので、電子銃磁界レンズを搭載したとしても実施例1より小さい数W程度のFE電源の出力ですむので送受電装置124も小型になる。 The power transmission / reception device 124 is attached to a portion of the hollow resistance cable 135 close to the high voltage power supply 134 (distant from the FE tank 133 and the mirror body 130). Thereby, the same effect as Example 1 can be acquired. In addition, in the conventional general-purpose field emission electron microscope of this class, an FE power supply is supplied using an insulating transformer. However, since an insulating transformer is not necessary, the FE tank 133 is reduced to about 1/2. There is. Further, since the acceleration voltage is lower than that of the first embodiment, the length of the acceleration tube is short, and even if the vacuum pump is installed at the ground potential below the acceleration tube and evacuated from below, the area around the field emission electron gun is required for field emission. A good vacuum of about -8 Pa can be maintained. Since the electron gun deflector also has a short accelerating tube length, even if an electron gun magnetic field lens is mounted, the output of the FE power source of about several W smaller than that of the first embodiment is required, so the power transmission / reception device 124 is also small.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、FE電源に絶縁トランスを用いた場合に比べFEタンクを含む荷電粒子線装置の小型化を図ることができる。 As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, the charged particle beam apparatus including the FE tank can be downsized as compared with the case where an insulating transformer is used for the FE power source.
 本発明の第3の実施例に係る荷電粒子線装置ついて、図5を用いて説明する。なお、実施例1又は2に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。 A charged particle beam apparatus according to a third embodiment of the present invention will be described with reference to FIG. Note that matters described in the first or second embodiment but not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
 図5は、実施例1で説明した荷電粒子線装置における高周波電源に、変調回路を付け加えてアース電位側と高電位側でイオンポンプの電流値や偏向器の電流値などの情報のやりとりができるようにする一例を示すブロック図である。アース電位側のCPU 140では高電位側のFE電源141への制御コマンドに応じて変調回路142に制御信号を送り、高周波電源143の出力に振幅変調をかける。受電側(高電位側)では検出回路144によりこの変調を読み取り、制御信号として復元してFE電源141のCPU 145に送り、FE電源141を制御する。一方FE電源141の出力状態に応じてCPU 145は負荷抵抗Rを変化させる負荷変動回路146に信号を送り、受電側で負荷抵抗Rに変調をかける。負荷抵抗Rの変化により出力インピーダンスが変化し送電側(アース電位側)の検出回路147で検出することができ、これによりFE電源141の出力状態をアース電位側で知ることができる。データを送受信している間は送電電圧が少し振れるのでFE電源141の入力側には安定化回路148をつけて入力変動がFE電源141の出力に影響しないようにする。 FIG. 5 is a high-frequency power source in the charged particle beam apparatus described in the first embodiment, and a modulation circuit is added to exchange information such as the current value of the ion pump and the current value of the deflector between the ground potential side and the high potential side. It is a block diagram which shows an example to make it do. The CPU 140 on the ground potential side sends a control signal to the modulation circuit 142 in response to a control command to the FE power supply 141 on the high potential side, and applies amplitude modulation to the output of the high frequency power supply 143. On the power reception side (high potential side), this modulation is read by the detection circuit 144, restored as a control signal, sent to the CPU 145 of the FE power supply 141, and the FE power supply 141 is controlled. On the other hand, the CPU 145 sends a signal to the load fluctuation circuit 146 that changes the load resistance RL in accordance with the output state of the FE power supply 141, and modulates the load resistance RL on the power receiving side. The output impedance changes due to the change of the load resistance RL and can be detected by the detection circuit 147 on the power transmission side (ground potential side), whereby the output state of the FE power supply 141 can be known on the ground potential side. Since the transmission voltage fluctuates slightly while data is being transmitted and received, a stabilization circuit 148 is provided on the input side of the FE power supply 141 so that input fluctuations do not affect the output of the FE power supply 141.
 データのやりとりのルールをあらかじめ決めておき、たとえばアース電位側からの要求に返信する形で高電位側がFE電源の状態を送信するようにすればよい。従来FE電源への制御信号や電源の出力状態のデータは空間光伝送あるいは光ファイバー通信によりおこなっていた。光ファイバーや空間光伝送を使うことで高電圧の放電の危険性は少なくなるが赤外線やレーザーを使うためにFE電源の消費電力が増える。本実施例では電力伝送と同時に制御、状態情報の伝送もできるのでFE電源の通信機構の構成を簡略化でき消費電力も従来方式より少なくできるメリットがある。 The rule of data exchange may be determined in advance, and for example, the high potential side may transmit the state of the FE power supply in the form of returning a request from the ground potential side. Conventionally, control signals to the FE power source and data on the output state of the power source have been transmitted by spatial light transmission or optical fiber communication. The use of optical fiber and spatial light transmission reduces the risk of high-voltage discharge, but increases the power consumption of the FE power supply due to the use of infrared rays and lasers. In the present embodiment, since control and status information can be transmitted simultaneously with power transmission, there is an advantage that the configuration of the communication mechanism of the FE power supply can be simplified and the power consumption can be reduced as compared with the conventional system.
 以上、本実施例によれば、実施例1と同様の効果を得ることができる。また、変調回路を付け加えてアース電位側と高電位側でイオンポンプの電流値や偏向器の電流値などの情報のやりとりすることにより、FE電源の通信機構の構成を簡略化でき消費電力を低減することができる。 As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained. In addition, by adding a modulation circuit and exchanging information such as the current value of the ion pump and the current value of the deflector between the ground potential side and the high potential side, the configuration of the communication mechanism of the FE power supply can be simplified and the power consumption can be reduced. can do.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101…圧力タンク、102…コッククロフトウォルトン回路、103…高圧トランス、104…高圧ケーブル端末、105…圧力タンク、106…高圧抵抗ケーブル、107…絶縁碍子、108…絶縁支持架台、109…FE電源、110…高圧ケーブル端末、111…フープ、112…シールド、113…圧力タンク、114…電界放出電子銃、115…静電レンズ、116…高圧多心ケーブル、117…基準抵抗器、118…フィルターコンデンサー、119…加速管、120…底板、121…つり架台、122…鏡体、123…除振マウント、124…送受電装置、130…鏡体、131…電子銃ハウジング、132…高圧多心ケーブル、133…FEタンク、134…高圧電源、135…中空抵抗ケーブル、140…CPU、141…FE電源、142…変調回路、143…高周波電源、144…検出回路、145…CPU、146…負荷変動回路、147…検出回路、148…安定化回路、161…送電コイル、162…共振コンデンサー、163…送電器、164…高周波電源、165…発振器、166…シース、167…シールド、168…外部半導電層、169…絶縁層、170…内部半導電層、171…受電コイル、172…共振コンデンサー、173…整流平滑回路、174…受電器、180…駆動電源。 DESCRIPTION OF SYMBOLS 101 ... Pressure tank, 102 ... Cockcroft-Walton circuit, 103 ... High pressure transformer, 104 ... High pressure cable terminal, 105 ... Pressure tank, 106 ... High pressure resistance cable, 107 ... Insulator, 108 ... Insulation support stand, 109 ... FE power supply, 110 DESCRIPTION OF SYMBOLS ... High voltage cable terminal, 111 ... Hoop, 112 ... Shield, 113 ... Pressure tank, 114 ... Field emission electron gun, 115 ... Electrostatic lens, 116 ... High voltage multi-core cable, 117 ... Reference resistor, 118 ... Filter capacitor, 119 DESCRIPTION OF SYMBOLS ... Acceleration tube, 120 ... Bottom plate, 121 ... Suspension mount, 122 ... Mirror body, 123 ... Anti-vibration mount, 124 ... Power transmission / reception device, 130 ... Mirror body, 131 ... Electron gun housing, 132 ... High-voltage multi-core cable, 133 ... FE tank, 134 ... high-voltage power supply, 135 ... hollow resistance cable, 140 ... CPU, 14 ... FE power supply, 142 ... modulation circuit, 143 ... high frequency power supply, 144 ... detection circuit, 145 ... CPU, 146 ... load fluctuation circuit, 147 ... detection circuit, 148 ... stabilization circuit, 161 ... power transmission coil, 162 ... resonance capacitor, 163 ... Power transmitter, 164 ... High frequency power supply, 165 ... Oscillator, 166 ... Sheath, 167 ... Shield, 168 ... External semiconductive layer, 169 ... Insulating layer, 170 ... Internal semiconductive layer, 171 ... Receiving coil, 172 ... Resonant capacitor 173, a rectifying / smoothing circuit, 174, a power receiver, 180, a driving power source.

Claims (9)

  1.  高電圧電源と荷電粒子源あるいは荷電粒子源を含む荷電粒子銃とを高圧ケーブルを介して接続し、高電位におかれた前記荷電粒子源から発生した荷電粒子を加速して利用する荷電粒子線装置であって、
      前記高圧ケーブルの中心が中空部であり、前記中空部に高電位部におかれた前記荷電粒子銃で使用する電力を供給するための受電コイルを設置し、前記高圧ケーブルの外側には電力を送電するための送電コイルを設置し、前記送電コイルに高周波電源を接続し、送受電コイル間の磁界共振結合によりアース電位側から高電位側電源に電力伝送することを特徴とする荷電粒子線装置。
    A charged particle beam that uses a high voltage power source and a charged particle source or a charged particle gun including a charged particle source via a high voltage cable to accelerate and use charged particles generated from the charged particle source at a high potential. A device,
    The center of the high-voltage cable is a hollow portion, and a receiving coil for supplying power to be used in the charged particle gun placed in the high-potential portion is installed in the hollow portion, and power is supplied to the outside of the high-voltage cable. A charged particle beam apparatus comprising: a power transmission coil for power transmission; a high frequency power source connected to the power transmission coil; and power transmission from a ground potential side to a high potential side power source by magnetic resonance coupling between the power transmission and reception coils .
  2.  前記高圧ケーブルの前記中空部に前記受電コイルと整流平滑回路を一緒に設置し、高電位側に直流電力を供給することを特徴とする請求項1に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 1, wherein the power receiving coil and a rectifying / smoothing circuit are installed together in the hollow portion of the high-voltage cable, and DC power is supplied to a high potential side.
  3.  前記高電位側電源のアース電位側からの制御を、前記高周波電源の出力に変調をかけることにより行い、前記高電位側電源の出力状態の検出を高電位側の負荷抵抗を変調することにより行うことを特徴とする請求項1に記載の荷電粒子線装置。 Control from the ground potential side of the high potential power source is performed by modulating the output of the high frequency power source, and detection of the output state of the high potential power source is performed by modulating the load resistance on the high potential side. The charged particle beam apparatus according to claim 1.
  4.  前記荷電粒子源から発生した荷電粒子は、1MV以上に加速されることを特徴とする請求項1に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 1, wherein charged particles generated from the charged particle source are accelerated to 1 MV or more.
  5.  前記送電コイルと前記受電コイルとの間の距離は、所望の高電圧に耐えられる値以上、50mm以下であることを特徴とする請求項1に記載の荷電粒子線装置。 The charged particle beam device according to claim 1, wherein a distance between the power transmission coil and the power reception coil is not less than a value capable of withstanding a desired high voltage and not more than 50 mm.
  6.  荷電粒子源を含む荷電粒子銃と、高電圧電源と、前記高圧電源と前記荷電粒子銃との間に配置され中心に中空部を有する高圧ケーブルとを備えた荷電粒子線装置であって、
      前記高圧ケーブルには送受電装置が組み込まれており、
      前記送受電装置は、前記高圧ケーブルの高電位側となる前記中空部に配置され前記荷電粒子銃で使用する電力を供給するための受電コイルと、アース電位側となる前記高圧ケーブルの外周を取り巻くように配置され前記受電コイルに電力を送電するための送電コイルと、を有することを特徴とする荷電粒子線装置。
    A charged particle beam apparatus comprising a charged particle gun including a charged particle source, a high voltage power source, and a high voltage cable having a hollow portion disposed between the high voltage power source and the charged particle gun,
    The high-voltage cable incorporates a power transmission / reception device,
    The power transmission / reception device is disposed in the hollow portion on the high potential side of the high-voltage cable and surrounds the outer periphery of the high-voltage cable on the ground potential side, and a power reception coil for supplying power used in the charged particle gun And a power transmission coil for transmitting electric power to the power reception coil.
  7.  前記送受電装置は、磁界共振結合によりアース電位側から高電位側に電力を伝送するものであることを特徴とする請求項6に記載の荷電粒子線装置。 The charged particle beam device according to claim 6, wherein the power transmitting / receiving device transmits electric power from the ground potential side to the high potential side by magnetic resonance coupling.
  8.  前記送受電装置により高電位側に伝送された電力は、前記荷電粒子銃で使用する真空ポンプ、磁界レンズ、静電レンズ、偏向器および前記荷電粒子源の微動装置の少なくとも一者に用いられるものであることを特徴とする請求項6に記載の荷電粒子線装置。 The power transmitted to the high potential side by the power transmission / reception device is used by at least one of a vacuum pump, a magnetic lens, an electrostatic lens, a deflector and a fine movement device of the charged particle source used in the charged particle gun. The charged particle beam apparatus according to claim 6, wherein:
  9.  前記送受電装置により高電位側に伝送された電力は、高圧多芯ケーブルを用いて前記荷電粒子銃で使用する真空ポンプ、磁界レンズ、静電レンズ、偏向器および前記荷電粒子源の微動装置に供給されることを特徴とする請求項8に記載の荷電粒子線装置。 The electric power transmitted to the high potential side by the power transmission / reception device is sent to a vacuum pump, a magnetic lens, an electrostatic lens, a deflector and a fine movement device of the charged particle source used in the charged particle gun using a high-voltage multicore cable. The charged particle beam device according to claim 8, wherein the charged particle beam device is supplied.
PCT/JP2015/083085 2015-11-25 2015-11-25 Charged particle beam device WO2017090129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083085 WO2017090129A1 (en) 2015-11-25 2015-11-25 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083085 WO2017090129A1 (en) 2015-11-25 2015-11-25 Charged particle beam device

Publications (1)

Publication Number Publication Date
WO2017090129A1 true WO2017090129A1 (en) 2017-06-01

Family

ID=58763811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083085 WO2017090129A1 (en) 2015-11-25 2015-11-25 Charged particle beam device

Country Status (1)

Country Link
WO (1) WO2017090129A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378440A (en) * 1986-09-19 1988-04-08 Hitachi Ltd Electric field emission type electron microscope
JPH11273611A (en) * 1998-03-19 1999-10-08 Japan Science & Technology Corp Electron microscope
JP2011211779A (en) * 2010-03-29 2011-10-20 Panasonic Corp Power transmitting device and waveform monitoring circuit used in same
JP2012110085A (en) * 2010-11-15 2012-06-07 Sanyo Electric Co Ltd Built-in battery apparatus, and built-in battery apparatus and charger
JP2012182985A (en) * 2012-04-16 2012-09-20 Yamaha Corp Flexible electronic device
JP2014127296A (en) * 2012-12-26 2014-07-07 Nissin Electric Co Ltd Electron beam irradiation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378440A (en) * 1986-09-19 1988-04-08 Hitachi Ltd Electric field emission type electron microscope
JPH11273611A (en) * 1998-03-19 1999-10-08 Japan Science & Technology Corp Electron microscope
JP2011211779A (en) * 2010-03-29 2011-10-20 Panasonic Corp Power transmitting device and waveform monitoring circuit used in same
JP2012110085A (en) * 2010-11-15 2012-06-07 Sanyo Electric Co Ltd Built-in battery apparatus, and built-in battery apparatus and charger
JP2012182985A (en) * 2012-04-16 2012-09-20 Yamaha Corp Flexible electronic device
JP2014127296A (en) * 2012-12-26 2014-07-07 Nissin Electric Co Ltd Electron beam irradiation device

Similar Documents

Publication Publication Date Title
US7298091B2 (en) Matching network for RF plasma source
JP5919402B2 (en) Plasma source
US5541482A (en) Electrodeless discharge lamp including impedance matching and filter network
JP5172154B2 (en) Magnetically amplified inductively coupled plasma source for focused ion beam systems
US20110248575A1 (en) Television system with wireless power transmission function, television set, and set-top box
Budker et al. The Gyrocon: An Efficient Relativistic High Power VHF Generator
JP5698271B2 (en) DC high voltage source
KR100604107B1 (en) Plasma etching installation
KR20130036071A (en) Resonant antenna system with high q factor
JPS63184233A (en) Inductive excitation type iron source
JP2011087433A (en) Wireless power-supply device, wireless power-receiving device, and wireless power transmission system
CN107770938B (en) Cylindrical high voltage arrangement for miniature X-ray systems
CN104520961A (en) Plasma source apparatus and methods for generating charged particle beams
CN102386684A (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
US10204731B2 (en) Transmitting coil structure and wireless power transmitting terminal using the same
KR20150029799A (en) Method and apparatus of wireless power transmission for cancelling harmonics noise
US20170063098A1 (en) Inductive and capacitive wireless power transfer
CN115552764A (en) Wireless power transfer transmitter, system and method for wirelessly transferring power
WO2017090129A1 (en) Charged particle beam device
JP2019170017A (en) Wireless power transmission system
JP6284055B2 (en) Power transmission equipment
CN110391073A (en) Circuit device, X-ray apparatus and computed tomographic scanner
JP3989591B2 (en) X-ray equipment
EP0641510B1 (en) Electrodeless discharge lamp including impedance matching and filter network
JP2017093141A (en) Non-contact power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP