WO2017088630A1 - 一种新型制导光缆及其制备方法 - Google Patents

一种新型制导光缆及其制备方法 Download PDF

Info

Publication number
WO2017088630A1
WO2017088630A1 PCT/CN2016/104315 CN2016104315W WO2017088630A1 WO 2017088630 A1 WO2017088630 A1 WO 2017088630A1 CN 2016104315 W CN2016104315 W CN 2016104315W WO 2017088630 A1 WO2017088630 A1 WO 2017088630A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical cable
liquid crystal
guided optical
cable
novel
Prior art date
Application number
PCT/CN2016/104315
Other languages
English (en)
French (fr)
Inventor
刘沛东
曹朋
张增强
尹纪成
轩传吴
吴俊雄
沈新华
李强
潘红舟
吴迪
王中凯
徐姗
孙丽华
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Priority to US15/557,571 priority Critical patent/US20180246288A1/en
Publication of WO2017088630A1 publication Critical patent/WO2017088630A1/zh
Priority to US15/848,530 priority patent/US10215942B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4436Heat resistant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Definitions

  • the invention relates to the technical field of a guided optical cable, and in particular to a novel guided optical cable and a preparation method thereof.
  • Metal wires are usually used as information transmission between torpedoes, missiles and other guided weapons and operating platforms.
  • optical cable guidance technology has become a major alternative to metal wires due to its many advantages.
  • Focus. Guided optical cable is a kind of guidance method for realizing information transmission between missile and operating platform by using optical cable as information transmission medium. It has the characteristics of high precision, good concealment, simple structure, strong anti-interference ability and flexible use.
  • the characteristic of cable guidance is that when the missile is sailing or underwater, the cable is to be released while releasing the information. This requires the cable to have a stable transmission channel during the release process, and the attenuation variation is small.
  • the factors that restrict the further development of the guided optical cable are as follows: optical cable manufacturing technology, optical cable winding and release technology, environmental adaptability of optical cable coils, and optical cable two-way transmission technology. Among them, how to prepare a fiber optic cable with good microbending performance, high tensile strength, long single length, low loss, fatigue resistance and long storage period is the most important.
  • the transmission properties, mechanical properties and environmental properties of optical fibers are mainly determined by the properties of the coating and the outer protective layer materials.
  • the traditional guided optical cable is woven or wrapped on glass fiber or aramid yarn, and is formed by thermal curing or ultraviolet (UV) curing.
  • the outer diameter of the cable prepared by this method is large, and the process is cumbersome. Practical applicability.
  • optical fiber outer protective layer materials such as polyethylene, polyvinyl chloride, etc.
  • the thickness is very thin (such as 0.1mm)
  • its anti-aging ability is poor, low temperature is brittle
  • nylon and other materials with strong anti-aging ability, although low temperature performance Improved, but because the coefficient of thermal expansion of nylon is as high as 10 -4 / ° C, it is two orders of magnitude higher than the thermal expansion coefficient of the fiber 10 -6 / ° C, resulting in a large microbending loss at the low temperature of the cable.
  • the inventors of the present invention need to conceive a new technique to improve the problem.
  • the invention aims to provide a novel guide optical cable and a preparation method thereof, and the optical cable prepared by the invention has the characteristics of small diameter, low loss, excellent mechanical property, simple preparation process and wide use temperature range.
  • the technical solution of the present invention is:
  • a novel guided optical cable comprises: an optical fiber, a coating and an outer protective layer, wherein the coating is an acrylic resin layer, and the outer protective layer is a liquid crystal polymer material PET/PHB liquid crystal copolyester layer.
  • the optical fiber is a G657B optical fiber having a diameter of 0.125 ⁇ 0.01 mm and a minimum bending radius of one of 10 mm, 7.5 mm, and 5 mm.
  • the coating has a thickness between 0.013 mm and 0.017 mm.
  • the novel guide optical cable has an outer diameter of between 0.31 mm and 0.33 mm.
  • the novel guided optical cable has a temperature range of -50 ° C to 200 ° C.
  • a method for preparing a novel guided optical cable as described above comprising the steps of:
  • the PET/PHB liquid crystal copolymer is dried in a drying oven before use, and has a drying temperature of 120 ° C and a drying time of 5 h.
  • the new cable-forming cable has a cable length of 10 km to 26 km.
  • the extruder is a screw extruder.
  • the present invention at least includes the following beneficial effects:
  • the novel guided optical cable and the preparation method thereof have the advantages of using acrylate as a coating material and PHB/PET liquid crystal copolyester as an outer protective layer material, and adopting an extrusion process to prepare a guiding optical cable, which is compared with a traditional guided optical cable. It has the characteristics of small diameter, low loss, good micro-bending performance, excellent mechanical properties, long cable length (10km ⁇ 26km), long storage time, simple preparation process and wide temperature range.
  • FIG. 1 is a schematic structural view of a novel guided optical cable according to the present invention.
  • FIG. 2 is a flow chart of a method for preparing a novel guided optical cable according to the present invention.
  • a novel guided optical cable includes: an optical fiber 1, a coating 2 and an outer protective layer 3, wherein the coating 2 is an acrylic resin layer, and the outer protective layer 3 is Liquid crystal polymer material PET/PHB liquid crystal copolyester layer.
  • the acrylic resin layer can protect the surface of the optical fiber 1 from the wet gas and external force, and can also provide the optical fiber 1 with improved microbend resistance and reduce the microbend additional loss function of the optical fiber 1.
  • the coating process is simple, the stability is good, and the compatibility with the PET/PHB liquid crystal copolymer of the optical fiber 1 and the outer protective layer 3 material is good, the bonding at the interface between the layers is firm, and the light is better protected.
  • Fiber 1 is simple, the stability is good, and the compatibility with the PET/PHB liquid crystal copolymer of the optical fiber 1 and the outer protective layer 3 material is good, the bonding at the interface between the layers is firm, and the light is better protected.
  • the outer protective layer 3 material is made of PET/PHB liquid crystal copolymer, which has high strength, high modulus, high heat resistance, minimal linear expansion coefficient, good melt processing property, and thin layer extrusion to prepare small diameter optical fiber on the surface of optical fiber 1. At the same time, the mechanical properties and temperature characteristics of the optical cable are guaranteed to meet the requirements of the guided optical cable.
  • the optical fiber 1 is a G657B optical fiber 1 having a diameter of 0.125 ⁇ 0.01 mm and a minimum bending radius of one of 10 mm, 7.5 mm, and 5 mm.
  • the coating 2 has a thickness between 0.013 mm and 0.017 mm.
  • the novel guide optical cable has an outer diameter of between 0.31 mm and 0.33 mm.
  • the novel guided optical cable has a temperature range of -50 ° C to 200 ° C.
  • liquid crystal polymer is a special polymer developed in recent years, which has excellent properties: 1, excellent mechanical properties, high strength and high modulus; 2, outstanding heat resistance, temperature range of use Width (-60 ° C ⁇ 80 ° C); 3, excellent combustion resistance, flame retardancy up to UL-94V-0 grade, is one of the best fire safety plastics; 4, excellent melt flow and excellent Molding processing performance; 5, very small coefficient of linear expansion and high dimensional accuracy, the coefficient of linear expansion is about 2 orders of magnitude smaller than nylon (liquid crystal polymer 5 ⁇ 10 -6 / ° C, nylon 5 ⁇ 10 -4 / °C), basically matched with the linear expansion coefficient of the optical fiber 1 itself, its water absorption rate is 0.02-0.08, which is lower in the thermoplastics; 6.
  • the liquid crystal polymer is an inactive substance and is hardly corroded by all industrial solvents, fuel oils, detergents, hot water, 90% acid and 50% alkali in a high temperature range, and does not occur under the action of a solvent. Stress cracking.
  • the inventors of the present application have found that liquid crystal polymers have the potential to become the outer layer material of the optical fiber 1, especially in the preparation of small diameter optical cables.
  • the PET/PHB liquid crystal copolymer is the first to report a thermotropic liquid crystal polymer, and has excellent properties such as high strength, high modulus, high heat resistance, extremely small coefficient of linear expansion, and good melt processability. Therefore, in this embodiment, the acrylate is used as the coating material 2, and the PHB/PET liquid crystal copolyester is the outer protective layer material 3, and the guiding optical cable is prepared by the extrusion process, and has a small diameter and strength compared with the conventional guided optical cable. High, high and low temperature deformation, good flame retardant performance, good microbending performance, low loss, wide temperature range and simple preparation process.
  • a method for preparing a novel guided optical cable according to Embodiment 1 includes the following steps:
  • S1 coating an outer surface of the optical fiber with an acrylic resin; specifically, in the process of pulling down the optical fiber, the surface of the bare optical fiber is coated with an acrylic resin layer having a thickness of 0.013 mm to 0.017 mm by a pressure coater.
  • the temperature of the acrylic resin and the mold in the pressure applicator is 45 ° C ⁇ 60 ° C, the whole set of mold is composed of a guide mold, a die and a sizing mold, and the processing precision of each mold is extremely high.
  • the acrylic resin is a fiber surface coating material, has a simple coating process, good stability, good compatibility with the optical fiber and the outer protective layer material PET/PHB liquid crystal copolymer, and the interface between the layers is firm and more Good protection of the fiber.
  • S2 Fiber optic payout, preferably fiber take-up by means of a pay-off device.
  • the pay-off device is composed of a pay-off reel, a pay-off tension adjusting wheel and a display.
  • the rotation speed of the pay-distribution disc is completely controlled by the tension wheel.
  • An air damping cylinder is connected behind the tension adjusting wheel.
  • the air pressure in the cylinder can be adjusted as needed, and the tension of the pay-off line is also changed. The value can be read in real time on the display.
  • the 12 pay-off tensions can be adjusted independently.
  • a static elimination device is installed at the exit of each pay-off unit to eliminate the static charge on the optical fiber, avoiding the attraction or mutual repulsion of the charges between the optical fibers, and ensuring that the optical fibers are aligned and then enter the mold. .
  • the preheating temperature is 150 ° C ⁇ 230 ° C; its main purpose is to improve the stability of the optical fiber, and enhance the combination with the outer protective layer material PET / PHB liquid crystal copolymer.
  • the outer protective layer is a liquid crystal polymer material PET/PHB liquid crystal copolyester layer; the outer protective layer material is a PET/PHB liquid crystal copolymer, which has high strength, high modulus, and high The heat resistance, the coefficient of linear expansion is very small, and the melt processing property is good.
  • the thin layer extrusion is used to prepare the small diameter optical cable on the surface of the optical fiber, the mechanical properties and temperature characteristics of the optical cable are ensured, and the requirements of the optical fiber cable are satisfied.
  • S6 Cable cooling; its function is to sufficiently cool, solidify and harden the cable jacket extruded from the die. It is realized by two-stage gradient heat, cold water and cooling. After the cable exits the mold, it is not completely cooled. If it is not cooled, it will cause the cable to be deformed. Therefore, it must be cooled by the cooling device to room temperature.
  • S7 Cable traction; traction speed is generally 1%-10% faster than extrusion speed, used to evenly lead out the extruded cable.
  • the speed of the traction speed can adjust the cross-sectional dimension of the cable sheath to a certain extent, and has a certain influence on the production efficiency.
  • the cable traction guide wheel is preferably used for traction.
  • S8 take-up; preferably, the take-up device performs the take-up, and the take-up device is composed of a take-up control interface (including an xy geometric measuring instrument), a take-up reel, a take-up tension adjuster, and a wire guide wheel. .
  • the take-up device has an independent control panel, which can set the size of the reel, the spacing of the cable, and the way of cable.
  • S9 Sample detection, including but not limited to appearance inspection and performance detection.
  • the PET/PHB liquid crystal copolymer is dried in a drying oven before use, and has a drying temperature of 120 ° C and a drying time of 5 h.
  • the new cable-forming cable has a cable length of 10 km to 26 km.
  • the extruder is a screw extruder.
  • the acrylate is used as the coating material
  • the PHB/PET liquid crystal copolyester is used as the outer protective layer material
  • the guiding optical cable is prepared by the extrusion process.
  • the diameter is small, the loss is low, and the micro-loss is low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

制导光缆及其制备方法,采用丙烯酸酯为涂层材料,PHB/PET液晶共聚酯为外保护层材料,采用挤出工艺制备出制导光缆。与传统指导光缆相比,具有直径小,损耗低,微弯曲性能好,力学性能优异,一次成缆长度长,存储时间长,制备工艺简单,使用温度范围宽等特点。

Description

一种新型制导光缆及其制备方法 技术领域
本发明涉及制导光缆技术领域,具体地是涉及一种新型制导光缆及其制备方法。
背景技术
通常采用金属导线作为鱼雷,导弹等制导武器与操作平台之间的信息传递,随着光缆技术的快速发展,光缆制导技术因其多方面的优势,大有替代金属导线的趋势,成为各国研究的重点。制导光缆是以光缆为信息传输媒介,实现导弹和操作平台之间信息传递的一种制导方式,具有精度高、隐蔽性好、结构简单、抗干扰能力强、使用灵活等特点。
光缆制导的特点是导弹在飞行或是水下航行时,光缆要在释放的同时进行信息传递,这就要求光缆在释放的过程中具有稳定的传输信道,衰减变化小。目前,制约制导光缆的进一步发展的因素如下:光缆制造技术,光缆缠绕与释放技术,光缆线团的环境适应性以及光缆双向传输技术等。其中,如何制备出微弯性能好,抗拉强度高,单根长度长,损耗低,抗疲劳以及存储期长的光缆是最重要的。光纤的传输性能,力学性能和环境性能主要由涂覆层和外保护层材料的性质所决定,因此,选择一种合适的涂层和外保护层材料至关重要。传统的制导光缆是采用玻璃纱或者芳纶纱编织或是包裹在光纤表面,经过热固化或紫外光(UV)固化后形成,此种方法制备的光缆外径尺寸较大,且工艺繁琐,不具实际应用性。
常用的光缆外保护层材料如聚乙烯,聚氯乙烯等在厚度很薄时(如0.1mm),其抗老化能力差,低温易脆;而尼龙等抗老化能力强的材料,虽然低温性能有所改善,但是由于尼龙的热膨胀系数高达10-4/℃,比光纤的热膨胀系数10-6/℃高出2个数量级,造成光缆低温时产生很大的微弯曲损耗。
因此,本发明的发明人亟需构思一种新技术以改善其问题。
发明内容
本发明旨在提供一种新型制导光缆及其制备方法,其制备出的光缆具有直径小,损耗低,力学性能优异,制备工艺简单,使用温度范围宽等特点。
为解决上述技术问题,本发明的技术方案是:
一种新型制导光缆,包括:光纤、涂层和外保护层,其中所述涂层为丙烯酸树脂层,所述外保护层为液晶高分子材料PET/PHB液晶共聚酯层。
优选地,所述光纤为G657B光纤,其直径为0.125±0.01mm,最小弯曲半径为10mm、7.5mm和5mm中的一种。
优选地,所述涂层的厚度在0.013mm到0.017mm之间。
优选地,所述新型制导光缆的外径在0.31mm到0.33mm之间。
优选地,所述新型制导光缆的温度使用范围为-50℃~200℃。
一种如上述所述的新型制导光缆的制备方法,包括如下步骤:
S1:在光纤的外表面上涂覆一层丙烯酸树脂;
S2:光纤放线;
S3:对光纤进行预热处理,预热温度为150℃~230℃;
S4:通过挤出模具挤出成型,此时外保护层为液晶高分子材料PET/PHB液晶共聚酯层;
S5:光缆软化处理;
S6:光缆冷却;
S7:光缆牵引;
S8:收线;
S9:样品检测。
优选地,所述PET/PHB液晶共聚物在使用之前先放在干燥箱中进行烘干处理,其烘干温度为120℃,烘干时间为5h。
优选地,所述新型制导光缆的一次成缆长度为10km~26km。
优选地,所述挤出机为螺杆挤塑机。
采用上述技术方案,本发明至少包括如下有益效果:
本发明所述的新型制导光缆及其制备方法,采用丙烯酸酯为涂层材料,PHB/PET液晶共聚酯为外保护层材料,采用挤出工艺制备出制导光缆,与传统的制导光缆相比,具有直径小,损耗低,微弯曲性能好,力学性能优异,一次成缆长度长(10km~26km),存储时间长,制备工艺简单,使用温度范围宽等特点。
附图说明
图1为本发明所述的新型制导光缆的结构示意图;
图2为本发明所述的新型制导光缆制备方法的流程图。
其中:1.光纤,2.涂层,3.外保护层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,为符合本实施例的一种新型制导光缆,包括:光纤1、涂层2和外保护层3,其中所述涂层2为丙烯酸树脂层,所述外保护层3为液晶高分子材料PET/PHB液晶共聚酯层。丙烯酸树脂层既可以保护光纤1表面不受潮湿气体和外力擦伤,又可以赋予光纤1提高抗微弯性能,降低光纤1的微弯附加损耗功能。同时涂覆工艺简单,稳定性好,与光纤1和外保护层3材料PET/PHB液晶共聚物的相容性好,层间界面处结合牢固,更好的保护了光 纤1。外保护层3材料采用PET/PHB液晶共聚物,具有高强度、高模量、高耐热性、线膨胀系数极小、良好的溶融加工性,薄层挤出在光纤1表面制备小直径光缆时,保证了光缆的力学性能和温度特性,满足制导光缆的需求。
优选地,所述光纤1为G657B光纤1,其直径为0.125±0.01mm,最小弯曲半径为10mm、7.5mm和5mm中的一种。
优选地,所述涂层2的厚度在0.013mm到0.017mm之间。
优选地,所述新型制导光缆的外径在0.31mm到0.33mm之间。
优选地,所述新型制导光缆的温度使用范围为-50℃~200℃。
众所周知,液晶高分子是近些年发展起来的一种特殊性质的聚合物,它具有优异性能:1、优异的机械性能,高强度和高模量;2、突出的耐热性,使用温度范围宽(-60℃~80℃);3、优异的助燃性,阻燃性可达UL-94V-0级,是防火安全性最好的塑料之一;4、极好的熔融流动性和优良的成型加工性能;5、极小的线膨胀系数和很高的尺寸精度,其线胀系数比尼龙约小2个数量级(液晶高分子5×10-6/℃,尼龙5×10-4/℃),基本上跟光纤1本身线胀系数相匹配,其吸水率为0.02~0.08,在热塑料中属较低之列;6、突出的耐化学腐蚀性。液晶聚合物是非活性物质,在很高的温度范围内几乎不受所有工业溶剂、燃料油、洗涤剂、热水、浓度为90%的酸和50%碱的腐蚀,在溶剂作用下也不发生应力开裂。鉴于所有以上特性,本申请发明人发现液晶高分子有成为光纤1外层材料的可能,尤其是在制备小直径光缆方面。
PET/PHB液晶共聚物是最早报道具的热致液晶性的高分子,具有高强度、高模量、高耐热性、线膨胀系数极小、良好的溶融加工性等优异性能。因此,本实施例采用丙烯酸酯为涂层2材料,PHB/PET液晶共聚酯为外保护层3材料,采用挤出工艺制备出制导光缆,与传统的制导光缆相比,具有直径小,强度高,高低温形变小,阻燃性能良好,微弯曲性能好,损耗低,使用温度范围广,制备工艺简单。
实施例2
如图2所示,一种如实施例1所述的新型制导光缆的制备方法,包括如下步骤:
S1:在光纤的外表面上涂覆一层丙烯酸树脂;具体地是在光纤向下拉制过程中,通过压力涂覆器,在裸光纤表面涂覆有0.013mm到0.017mm厚度的丙烯酸树脂层。其中压力涂覆器中丙烯酸树脂和模具温度为45℃~60℃,整套模具由导向模、口模、定径模组合而成,每个模具的加工精度要求极高。所述丙烯酸树脂,是一种光纤表面涂覆材料,涂覆工艺简单,稳定性好,与光纤和外保护层材料PET/PHB液晶共聚物的相容性好,层间界面处结合牢固,更好的保护了光纤。
S2:光纤放线,优选地通过放线装置进行光纤放线。所述放线装置由放线盘,放线张力调节轮,显示器组成。放线盘的转速完全由张力轮驱动控制,张力调节轮后面联接一个空气阻尼缸,缸内的空气压力可以根据需要即时调节,放线张力也随之改变,数值可在显示器上实时读出,12个放线张力均可独立的调整,在各个放线单元出口处均设立一个除静电装置,消除光纤上的静电荷,避免光纤之间电荷相互吸引或相互排斥,保证光纤整齐排列后进入模具。
S3:对光纤进行预热处理,预热温度为150℃~230℃;其主要的目的是提高光纤的稳定性,增强与外保护层材料PET/PHB液晶共聚物的结合。
S4:通过挤出模具挤出成型,此时外保护层为液晶高分子材料PET/PHB液晶共聚酯层;外保护层材料采用PET/PHB液晶共聚物,具有高强度、高模量、高耐热性、线膨胀系数极小、良好的溶融加工性,薄层挤出在光纤表面制备小直径光缆时,保证了光缆的力学性能和温度特性,满足制导光缆的需求。
S5:光缆软化处理;
S6:光缆冷却;其作用是使从模具挤出的光缆护套充分冷却、凝固并硬化。采用二级梯度热、冷水配合冷却等方法实现。光缆从模具出来后,并没有完全冷却,如不继续冷却,将引起光缆变形,因此,必须经过冷却装置,尽可能使之冷却到室温。冷却装置有两种:一种是浸浴式冷却法,用于小口径管;另一种是喷淋式冷却法,用于大截面管。本实施例是采用第一种方法。
S7:光缆牵引;牵引速度一般比挤出速度快1%-10%,用于将挤出的光缆均匀地引出。牵引速度的快慢在一定程度上可以调节光缆护套断面尺寸,对生产效率也有一定影响,本实施例优选采用光缆牵引导轮进行牵引。
S8:收线;优选地通过收线装置进行收线,所述收线装置由收线控制界面(包括x-y几何测量仪)、收线盘具、收线张力调节器和排线导轮等组成。收线装置带有独立的控制面板,可设定线盘的尺寸、排线节距、排线方式等。
S9:样品检测,所述样品检测包括但不限于外观检测和性能检测。
优选地,所述PET/PHB液晶共聚物在使用之前先放在干燥箱中进行烘干处理,其烘干温度为120℃,烘干时间为5h。
优选地,所述新型制导光缆的一次成缆长度为10km~26km。
优选地,所述挤出机为螺杆挤塑机。
本实施例是采用丙烯酸酯为涂层材料,PHB/PET液晶共聚酯为外保护层材料,采用挤出工艺制备出制导光缆,与传统的制导光缆相比,具有直径小,损耗低,微弯曲性能好,力学性能优异,一次成缆长度长(10km~26km),存储时间长,制备工艺简单,使用温度范围宽等特点。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种新型制导光缆,其特征在于,包括:光纤、涂层和外保护层,其中所述涂层为丙烯酸树脂层,所述外保护层为液晶高分子材料PET/PHB液晶共聚酯层。
  2. 如权利要求1所述的新型制导光缆,其特征在于:所述光纤为G657B光纤,其直径为0.125±0.01mm,最小弯曲半径为10mm、7.5mm和5mm中的一种。
  3. 如权利要求1或2所述的新型制导光缆,其特征在于:所述涂层的厚度在0.013mm到0.017mm之间。
  4. 如权利要求1-3任一所述的新型制导光缆,其特征在于:所述新型制导光缆的外径在0.31mm到0.33mm之间。
  5. 如权利要求1-4任一所述的新型制导光缆,其特征在于:所述新型制导光缆的温度使用范围为-50℃~200℃。
  6. 一种如权利要求1-5任一所述的新型制导光缆的制备方法,其特征在于,包括如下步骤:
    S1:在光纤的外表面上涂覆一层丙烯酸树脂;
    S2:光纤放线;
    S3:对光纤进行预热处理,预热温度为150℃~230℃;
    S4:通过挤出模具挤出成型,此时外保护层为液晶高分子材料PET/PHB液晶共聚酯层;
    S5:光缆软化处理;
    S6:光缆冷却;
    S7:光缆牵引;
    S8:收线;
    S9:样品检测。
  7. 如权利要求6所述的新型制导光缆的制备方法,其特征在于:所述 PET/PHB液晶共聚物在使用之前先放在干燥箱中进行烘干处理,其烘干温度为120℃,烘干时间为5h。
  8. 如权利要求6或7所述的新型制导光缆的制备方法,其特征在于:所述新型制导光缆的一次成缆长度为10km~26km。
  9. 如权利要求6-8任一所述的新型制导光缆的制备方法,其特征在于:所述挤出机为螺杆挤塑机。
PCT/CN2016/104315 2015-11-23 2016-11-02 一种新型制导光缆及其制备方法 WO2017088630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/557,571 US20180246288A1 (en) 2015-11-23 2016-11-02 High-temperature Resistant and Small-diameter Optical Cable and Preparation Method Thereof
US15/848,530 US10215942B2 (en) 2015-11-23 2017-12-20 High-temperature resistant and small-diameter optical cable and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510817681.5 2015-11-23
CN201510817681.5A CN105242368A (zh) 2015-11-23 2015-11-23 一种新型制导光缆及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/557,571 A-371-Of-International US20180246288A1 (en) 2015-11-23 2016-11-02 High-temperature Resistant and Small-diameter Optical Cable and Preparation Method Thereof
US15/848,530 Continuation US10215942B2 (en) 2015-11-23 2017-12-20 High-temperature resistant and small-diameter optical cable and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2017088630A1 true WO2017088630A1 (zh) 2017-06-01

Family

ID=55040063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104315 WO2017088630A1 (zh) 2015-11-23 2016-11-02 一种新型制导光缆及其制备方法

Country Status (3)

Country Link
US (1) US20180246288A1 (zh)
CN (1) CN105242368A (zh)
WO (1) WO2017088630A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242368A (zh) * 2015-11-23 2016-01-13 江苏亨通光电股份有限公司 一种新型制导光缆及其制备方法
CN106094140A (zh) * 2016-08-22 2016-11-09 中国电子科技集团公司第八研究所 一种新型液晶紧包光纤的制作方法
CN107577020A (zh) * 2017-10-27 2018-01-12 江苏法尔胜光通有限公司 加强微型气吹光纤单元及制造方法
CN108761680B (zh) * 2018-05-23 2020-10-02 长飞光纤光缆股份有限公司 一种双层紧套稳相光缆及其制备方法
CN108646364A (zh) * 2018-06-01 2018-10-12 江苏亨通海洋光网系统有限公司 一种用超细lcp纤维被覆增强的制导光缆及其制备方法
CN109390110A (zh) * 2018-11-21 2019-02-26 江苏亨通高压海缆有限公司 一种铝塑纵包综合护套生产工艺
CN112904508B (zh) * 2021-01-29 2024-04-16 上海交通大学 一种全海深自退扭微细光缆布放装置的操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553815A (en) * 1983-02-04 1985-11-19 Westinghouse Electric Corp. Optical fiber cable construction
CN201477251U (zh) * 2009-08-31 2010-05-19 常州南方通信科技有限公司 一种紧包光纤光缆
CN102756478A (zh) * 2012-07-24 2012-10-31 武汉东兴科技发展有限公司 热致性液晶聚合物/pet原位复合薄膜材料制备方法
CN103257422A (zh) * 2013-05-20 2013-08-21 江苏南方通信科技有限公司 新型制导光纤
CN203444134U (zh) * 2013-05-20 2014-02-19 江苏南方通信科技有限公司 新型制导光纤
CN104944802A (zh) * 2015-05-29 2015-09-30 成都亨通光通信有限公司 一种套紧光纤生产系统
CN105242368A (zh) * 2015-11-23 2016-01-13 江苏亨通光电股份有限公司 一种新型制导光缆及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718747A (en) * 1984-04-27 1988-01-12 Societa Cavi Pirelli S.P.A. Optical fiber and cable with hydrogen combining layer
JPS61215236A (ja) * 1985-03-15 1986-09-25 Nippon Paint Co Ltd 光フアイバ−被覆組成物
US6173102B1 (en) * 1997-01-20 2001-01-09 Sumitomo Electric Industries, Ltd. Coated optical fiber and its manufacturing method
WO2012084200A1 (en) * 2010-12-21 2012-06-28 Stichting Dutch Polymer Institute Process for coating a curved article
US10215942B2 (en) * 2015-11-23 2019-02-26 HengTong Optic-Electric Co., Ltd. High-temperature resistant and small-diameter optical cable and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553815A (en) * 1983-02-04 1985-11-19 Westinghouse Electric Corp. Optical fiber cable construction
CN201477251U (zh) * 2009-08-31 2010-05-19 常州南方通信科技有限公司 一种紧包光纤光缆
CN102756478A (zh) * 2012-07-24 2012-10-31 武汉东兴科技发展有限公司 热致性液晶聚合物/pet原位复合薄膜材料制备方法
CN103257422A (zh) * 2013-05-20 2013-08-21 江苏南方通信科技有限公司 新型制导光纤
CN203444134U (zh) * 2013-05-20 2014-02-19 江苏南方通信科技有限公司 新型制导光纤
CN104944802A (zh) * 2015-05-29 2015-09-30 成都亨通光通信有限公司 一种套紧光纤生产系统
CN105242368A (zh) * 2015-11-23 2016-01-13 江苏亨通光电股份有限公司 一种新型制导光缆及其制备方法

Also Published As

Publication number Publication date
US20180246288A1 (en) 2018-08-30
CN105242368A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017088630A1 (zh) 一种新型制导光缆及其制备方法
US5627932A (en) Reduced diameter indoor fiber optic cable
US5148509A (en) Composite buffer optical fiber cables
US7403687B2 (en) Reinforced tight-buffered optical fiber and cables made with same
US5917978A (en) Buffered optical fiber having improved low temperature performance and stripability
AU2016100968A4 (en) Fiber optic cable with sleeve
US11079561B2 (en) Fire retardant and low-smoke optical communications cable
US8374473B2 (en) Tight-buffered optical fiber having improved fiber access
CN102313945B (zh) 圆形皮线光缆及其制作方法
EP3454102B1 (en) Fiberoptic loose tube manufacturing and post extrusion shrinkage mitigation
US11175471B2 (en) Predefined cylindrical enclosure for optical waveguide cable
US10215942B2 (en) High-temperature resistant and small-diameter optical cable and preparation method thereof
JP2004029815A (ja) バッファされた光ファイバとその作製方法
JP2014525052A (ja) 光ファイバのためのuv硬化アクリレート・バッファ被覆
KANEKO et al. Innovative solution using SWR/WTC for data centers
CN105259628A (zh) 一种利用peek材料制备的制导光缆及其制备方法
Sohma et al. Heat-resistant thin optical fiber for sensing in high-temperature environments
CN103399384A (zh) 位移传感光缆及其制作方法
CN103278881A (zh) 一种耐高温光纤的制造工艺
CN203376502U (zh) 一种防火阻燃塑料光缆
US11960132B2 (en) Multilayer low attenuation drop cable
RU2782677C1 (ru) Оптическое волокно в плотном буферном покрытии, волоконно-оптические кабели и способы наложения плотного буферного покрытия на оптическое волокно (варианты)
KR100547795B1 (ko) 공기압 포설용 케이블 및 그 제조 장치
JP3495221B2 (ja) 光ファイバコ−ドの製造方法
JP2010079273A (ja) プラスチック光ファイバコード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557571

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867855

Country of ref document: EP

Kind code of ref document: A1