WO2017088263A1 - Puncture planning path correction method and device - Google Patents

Puncture planning path correction method and device Download PDF

Info

Publication number
WO2017088263A1
WO2017088263A1 PCT/CN2015/099650 CN2015099650W WO2017088263A1 WO 2017088263 A1 WO2017088263 A1 WO 2017088263A1 CN 2015099650 W CN2015099650 W CN 2015099650W WO 2017088263 A1 WO2017088263 A1 WO 2017088263A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial
image
point
planning path
puncture
Prior art date
Application number
PCT/CN2015/099650
Other languages
French (fr)
Chinese (zh)
Inventor
贾富仓
肖德强
罗火灵
胡庆茂
方驰华
范应方
杨剑
Original Assignee
中国科学院深圳先进技术研究院
南方医科大学珠江医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院, 南方医科大学珠江医院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2017088263A1 publication Critical patent/WO2017088263A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A puncture planning path correction method and device, the method comprising: on the basis of an initial planning path, determine an initial entry point on the skin in a puncture region and set the initial entry point as a marker point (201); perform two successive CT scans of the puncture region to obtain an initial CT image and a second CT image (202); mark on the initial CT image an initial planning path; acquire position information of a mark point in the second CT image (203); perform registration on the initial CT image and the second CT image; on the basis of the position information of the marker point, determine the position of the marker point in the initial CT image after registration (204); obtain a distance vector of the marker point to the initial planning path (205); utilizing the distance vector of the marker point to the initial planning path, perform a translation transformation of the initial planning path, and set an intersection point of the transformed path and the puncture region on the skin as an actual entry point; on the basis of the actual entry point, and in accordance with the length of the initial planning path, determine a target point, and obtain a corrected puncture planning path (206). The puncture planning path correction device comprises: a marker point determining unit (401), a CT scanning unit (402), an initialization unit (403), a registration unit (404), a translation vector acquisition unit (405) and a correction unit (406).

Description

一种穿刺规划路径纠正方法及装置Puncture planning path correction method and device
本申请要求2015年11月23日递交的申请号为201510816046.5、发明名称为“一种穿刺规划路径纠正方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。The present application claims priority to Chinese Patent Application Serial No. No. No. No. No. No. No. No. No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No
技术领域Technical field
本发明涉及生物医学图像技术领域,特别涉及一种穿刺规划路径纠正方法及装置。The present invention relates to the field of biomedical image technology, and in particular, to a method and apparatus for correcting a puncture planning path.
背景技术Background technique
衡量穿刺导航系统精度的一个主要指标是穿刺完成后肿瘤质心到穿刺针尖的距离即tip position error(TPE),且TPE可分解成两部分,如图1所示。沿着穿刺针体方向的分量为TPE径向分量,垂直于穿刺针体方向的分量为TPE横向分量。其中,TPE横向分量最为重要,若横向分量过大则必须重新穿刺以纠正此偏移,否则只需要调整穿刺针的插入深度来抵消TPE径向分量的误差。导航误差TPE的计算往往需要在穿刺完成后通过扫术后CT并在CT图像中定位肿瘤的位置及针尖位置,计算两者之间的距离确定TPE的大小及其横向、径向分量。若导航误差较大,特别是TPE横向分量较大时,首次穿刺之后才能发现穿刺失败,之后必须再做第二次穿刺以纠正导航偏差。多次穿刺必然会提高并发症发生的几率,且医生靠经验做导航偏差纠正会引入较大的手动误差,不能彻底的消除导航偏差。故而在导航误差较大的情况下,需要一种能够在穿刺前量化导航误差,并可做自动误差纠正的方法,用于提高穿刺导航精度,降低导航误差特别是TPE横向分量误差。One of the main indicators for measuring the accuracy of the puncture navigation system is the tip position error (TPE) of the tumor centroid to the tip of the puncture after the puncture is completed, and the TPE can be decomposed into two parts, as shown in Figure 1. The component along the direction of the puncture needle body is the radial component of the TPE, and the component perpendicular to the direction of the puncture needle body is the transverse component of the TPE. Among them, the lateral component of TPE is the most important. If the lateral component is too large, it must be re-pierced to correct the offset. Otherwise, only the insertion depth of the puncture needle needs to be adjusted to offset the error of the radial component of the TPE. Navigation error TPE calculation often needs to pass CT after the puncture and locate the position of the tumor and the position of the needle in the CT image, calculate the distance between the two to determine the size of the TPE and its lateral and radial components. If the navigation error is large, especially when the lateral component of the TPE is large, the puncture failure can be found after the first puncture, and then a second puncture must be performed to correct the navigation deviation. Multiple punctures will inevitably increase the chance of complications, and doctors rely on experience to make navigational deviation corrections will introduce large manual errors, and can not completely eliminate navigation bias. Therefore, in the case of large navigation error, a method for quantifying navigation error before puncture and automatic error correction is needed, which is used to improve the puncture navigation accuracy and reduce the navigation error, especially the TPE lateral component error.
目前,穿刺导航误差纠正仍是一个较为新颖的研究课题,传统误差纠正大多是在穿刺完成后,医生根据术后CT图像,肉眼观察穿刺效果并粗约估计穿刺偏差,然后靠经验做纠正并进行第二次穿刺。最近,Toporek等人将导航误差进行了量化并直观展示给医生做参考,其中包括TPE的横向与径向分量,但是在初次穿刺后根据术后CT图像中肿瘤和针尖位置做导航误差量化,仍未避免初次穿刺,且也未根据导航误差对规划路径做纠正来指导医生做二次穿刺。 At present, the correction of puncture navigation error is still a relatively new research topic. Most of the traditional error correction is after the puncture is completed. The doctor observes the puncture effect according to the postoperative CT image and roughly estimates the puncture deviation, and then relies on experience to correct and carry out the correction. The second puncture. Recently, Toporek et al. quantified the navigation error and visually presented it to the doctor for reference, including the lateral and radial components of the TPE, but after the initial puncture, the navigation error was quantified based on the location of the tumor and the tip of the CT image after the initial puncture. The initial puncture was not avoided, and the planning path was not corrected according to the navigation error to guide the doctor to perform the second puncture.
综上所述,现对穿刺导航误差纠正的研究大都停留在导航误差量化上,并未对误差纠正提出实质性的解决方案,且主要是在穿刺后发现导航误差较大时,医生根据经验对导航偏差做纠正并做二次穿刺。In summary, most of the research on the correction of puncture navigation error stays on the navigation error quantification, and does not propose a substantial solution to the error correction, and mainly when the navigation error is found after puncture, the doctor The navigation deviation is corrected and a second puncture is made.
发明内容Summary of the invention
针对介入手术导航,导航误差在穿刺之前无法预知,只能在首次穿刺后,医生根据术后CT估算误差并靠经验纠正导航偏差,进而做第二次穿刺。为解决这一技术问题,本发明提出一种穿刺规划路径纠正方法及装置,无须穿刺即可对导航误差做预知量化,且根据此导航偏差对规划路径做纠正,最终按照纠正后的规划路径做穿刺可大幅度提高导航精度。For interventional navigation, the navigation error cannot be predicted before the puncture. Only after the first puncture, the doctor can correct the navigation deviation according to the postoperative CT estimation error and rely on experience, and then do the second puncture. In order to solve this technical problem, the present invention proposes a puncture planning path correction method and device, which can predict the navigation error without puncture, and correct the planning path according to the navigation deviation, and finally follow the corrected planning path. Puncture can greatly improve navigation accuracy.
为实现上述目的,本发明提供了一种穿刺规划路径纠正方法,包括:To achieve the above object, the present invention provides a method for correcting a puncture planning path, including:
根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;Determining an initial entry point on the skin of the puncture area according to the initial planning path, and setting the initial entry point as a marker point;
对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;Performing two CT scans on the puncture area to obtain an initial CT image and a second CT image;
在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息;Marking an initial planning path on the initial CT image; acquiring location information of the marking point in the second CT image;
将所述初始CT图像和所述第二CT图像进行配准;并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;Registering the initial CT image and the second CT image; and determining a position of the marker point in an initial CT image after registration according to position information of the marker point;
获得所述标记点到所述初始规划路径的距离向量;Obtaining a distance vector of the marked point to the initial planning path;
在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。In the initial CT image after the registration, the initial planned path is translated by using the distance vector of the marked point to the initial planning path, and the intersection of the transformed path and the skin of the puncture area is determined as the actual entry point. And determining a target point according to the length of the initial planning path according to the actual entry point, and obtaining a corrected puncture planning path.
为实现上述目的,本发明还提供了一种穿刺规划路径纠正装置,包括:To achieve the above object, the present invention also provides a puncture planning path correction device, comprising:
标记点确定单元,用于根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;a marking point determining unit, configured to determine an initial entry point on the skin of the puncture area according to the initial planning path, and set the initial entry point as a marking point;
CT扫描单元,用于对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;a CT scanning unit is configured to perform two CT scans on the puncture area in sequence to obtain an initial CT image and a second CT image;
初始化单元,用于在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息; An initializing unit, configured to mark an initial planning path on the initial CT image; and acquire location information of the marked point in the second CT image;
配准单元,用于将所述初始CT图像和所述第二CT图像进行配准,并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;a registration unit, configured to register the initial CT image and the second CT image, and determine a position of the marker point in an initial CT image after registration according to position information of the marker point;
平移向量获取单元,用于获得所述标记点到所述初始规划路径的距离向量;a translation vector acquisition unit, configured to obtain a distance vector of the marker point to the initial planning path;
纠正单元,用于在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。a correcting unit, configured to perform a translation transformation on the initial planning path by using a distance vector of the marked point to the initial planning path in an initial CT image after registration, and an intersection of the transformed path and the skin of the puncture area The actual entry point is determined, and according to the actual entry point, the target point is determined according to the length of the initial planned path, and the corrected puncture planning path is obtained.
上述技术方案具有如下有益效果:本技术方案无须穿刺即可量化导航误差,且根据导航误差纠正初始规划路径,相对医生靠经验做导航偏移纠正更加精确直观。同时,本技术方案简单、通用,可适用于各种不同种类的穿刺导航系统。The above technical solution has the following beneficial effects: the technical solution can quantify the navigation error without puncture, and correct the initial planning path according to the navigation error, and the navigation offset correction by the doctor is more accurate and intuitive. At the same time, the technical solution is simple and versatile, and can be applied to various kinds of puncture navigation systems.
附图说明DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a certain embodiment of the present invention, and other drawings can be obtained from those skilled in the art without any creative work.
图1为穿刺导航误差TPE分解示意图;Figure 1 is a schematic diagram of the decomposition of the puncture navigation error TPE;
图2为本发明提出的一种穿刺规划路径纠正方法流程图;2 is a flow chart of a method for correcting a puncture planning path according to the present invention;
图3为TPE横向分量误差量化说明示意图;3 is a schematic diagram of quantitative description of TPE lateral component error;
图4为本发明提供的一种穿刺规划路径纠正装置框图;4 is a block diagram of a puncture planning path correction device provided by the present invention;
图5为穿刺规划路径纠正流程示意图;Figure 5 is a schematic diagram of a puncture planning path correction process;
图6为穿刺规划路径纠正装置中配准单元的功能框图;6 is a functional block diagram of a registration unit in a puncture planning path correction device;
图7a为本实施例初始规划路线示意图;7a is a schematic diagram of an initial planned route of the embodiment;
图7b为本实施例按照初始规划路线穿刺的结果示意图;Figure 7b is a schematic view showing the result of puncture according to the initial planned route of the embodiment;
图7c为本实施例纠正后的路线示意图;Figure 7c is a schematic diagram of the route after correction according to the embodiment;
图7d为本实施例按照纠正后的路线穿刺的结果示意图。Fig. 7d is a schematic view showing the result of puncture according to the corrected route of the embodiment.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. Base All other embodiments obtained by those skilled in the art without creative efforts are within the scope of the present invention.
本技术方案的工作原理:目前对穿刺导航误差纠正的研究大都停留在导航误差量化上,并未对误差纠正提出实质性的解决方案,且主要是在穿刺后发现导航误差较大时,医生根据经验对导航偏差做纠正并做二次穿刺。针对现存的问题,本技术方案解决了穿刺前做导航误差量化的问题,根据量化后的误差实现对规划路径的纠正,这样在穿刺之前即可纠正导航误差,使得根据修正后的规划路径精确指导医生穿刺。The working principle of the technical scheme: At present, most of the research on the correction of the puncture navigation error stays on the navigation error quantification, and does not propose a substantial solution to the error correction, and mainly when the navigation error is found after the puncture is large, the doctor according to the Experience corrects the navigation deviation and makes a second puncture. In view of the existing problems, the technical solution solves the problem of quantifying the navigation error before puncture, and corrects the planning path according to the quantized error, so that the navigation error can be corrected before the puncture, so that the precise planning path is corrected according to the revised planning path. Doctor puncture.
本技术方案是一种规划路径自动纠正方法,用于提高穿刺导航精度。在导航穿刺前按照初始规划路径找到入口点位置,并在病人身上贴上标记点,然后做二次CT扫描,之后提取标记点的位置并将其变换到初始CT图像中,在初始CT图像中计算标记点到初始规划路径的距离向量,然后利用该向量对初始规划路径做平移,根据平移后的路径及病人CT表面数据搜索新的穿刺路径入口点及终点,最终利用新的规划路径指导医生穿刺。The technical solution is an automatic correction method for the planning path, which is used for improving the precision of the puncture navigation. Find the entry point location according to the initial planning path before navigating the puncture, and mark the patient on the patient, then perform a secondary CT scan, then extract the position of the marker point and transform it into the initial CT image, in the initial CT image. Calculate the distance vector from the marker point to the initial planning path, then use the vector to translate the initial planning path, search for the new puncture path entry point and end point based on the translated path and patient CT surface data, and finally use the new planning path to guide the doctor. puncture.
基于上述工作原理,本发明提出一种穿刺规划路径纠正方法,如图2所示。包括:Based on the above working principle, the present invention proposes a puncture planning path correction method, as shown in FIG. 2 . include:
步骤201):根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;Step 201): determining an initial entry point on the skin of the puncture area according to the initial planning path, and setting the initial entry point as a mark point;
步骤202):对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;Step 202): performing two CT scans on the puncture area in sequence to obtain an initial CT image and a second CT image;
步骤203):在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息;Step 203): marking an initial planning path on the initial CT image; acquiring location information of the marking point in the second CT image;
在步骤201、步骤202、步骤203中,在穿刺导航开始之前,根据初始规划路径在病人身上找到入口点,并在此处粘贴标记点,然后对病人做第二次CT扫描,最后从第二CT图像中手动提取标记点的位置信息。In step 201, step 202, step 203, before the puncture navigation starts, the entry point is found on the patient according to the initial planning path, and the marker point is pasted here, then the patient is subjected to a second CT scan, and finally from the second The position information of the marker points is manually extracted in the CT image.
步骤204):将所述初始CT图像和所述第二CT图像进行配准;并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;Step 204): registering the initial CT image and the second CT image; and determining a position of the marker point in an initial CT image after registration according to position information of the marker point;
步骤205):获得所述标记点到所述初始规划路径的距离向量;Step 205): obtaining a distance vector of the marked point to the initial planning path;
在步骤204、步骤205中,首先,做初始CT图像和第二CT图像之间配准,然后,将第二CT图像中的标记点变换到初始CT图像中。这里CT图像配准是通过使用标志点做刚体配准实现的,即分别在两幅图像中的标记点附近区域选择多组对应的解剖结构标志点做刚体匹配。 In step 204 and step 205, first, registration is performed between the initial CT image and the second CT image, and then the marker points in the second CT image are transformed into the initial CT image. Here, the CT image registration is realized by using the marker points for rigid body registration, that is, selecting a plurality of corresponding anatomical landmark points in the vicinity of the marker points in the two images to perform rigid body matching.
刚体配准或刚体匹配指的是利用刚体变换做两幅图像之间的配准,本发明利用刚体变换将第二CT图像变换到初始CT图像空间中,变换后的第二CT图像中各个像素点之间的相对距离在初始CT图像中没有发生改变,即第二CT图像经过变换后整体拓扑结构没有发生改变。Rigid body registration or rigid body matching refers to the registration between two images by rigid body transformation. The present invention transforms the second CT image into the initial CT image space by using rigid body transformation, and each pixel in the transformed second CT image. The relative distance between the points does not change in the initial CT image, that is, the overall topology does not change after the second CT image is transformed.
之后在初始CT图像中计算标记点到初始规划路径的距离向量,即为消除导航误差的平移向量。如图3所示,为TPE横向分量误差量化说明示意图。该平移向量的大小等于导航误差TPE的横向分量的大小,且对初始路径施加此平移向量后可有效减小TPE的横向分量误差,从而大大提高导航精度。The distance vector from the marker point to the initial planning path is then calculated in the initial CT image, ie the translation vector to eliminate the navigation error. As shown in FIG. 3, it is a schematic diagram for quantifying the TPE lateral component error. The size of the translation vector is equal to the magnitude of the lateral component of the navigation error TPE, and the application of the translation vector to the initial path can effectively reduce the lateral component error of the TPE, thereby greatly improving the navigation accuracy.
步骤206):在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。Step 206): in the initial CT image after registration, using the distance vector of the marker point to the initial planning path, performing translation transformation on the initial planning path, and the intersection of the transformed path and the skin of the puncture area For the actual entry point, according to the actual entry point, the target point is determined according to the length of the initial planned path, and the corrected puncture planning path is obtained.
在步骤206中,对导航误差(TPE横向误差)量化后,利用得到的平移向量对初始规划路径做平移变换,根据变换后的路径在穿刺区域表皮上搜索新的入口点,该点为平移后的路径入口点,一旦确定该入口点,即可按照初始规划路径的长度确定新路径的靶点,最终得到纠正后的穿刺规划路径。In step 206, after the navigation error (TPE lateral error) is quantized, the initial translation path is translated by using the obtained translation vector, and a new entry point is searched on the skin of the puncture area according to the transformed path, and the point is after translation. The path entry point, once the entry point is determined, the target of the new path can be determined according to the length of the initial planned path, and finally the corrected puncture planning path is obtained.
对应地,基于上述工作原理,本发明还提供了一种穿刺规划路径纠正装置,如图4所示。根据图5描述穿刺规划路径纠正装置的各功能模块的功能。该穿刺规划路径纠正装置包括:Correspondingly, based on the above working principle, the present invention also provides a puncture planning path correcting device, as shown in FIG. The function of each functional module of the puncture planning path correction device will be described with reference to FIG. The puncture planning path correction device comprises:
标记点确定单元401,用于根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;a marker point determining unit 401, configured to determine an initial entry point on the skin of the puncture region according to the initial planning path, and set the initial entry point as a marker point;
CT扫描单元402,用于对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;The CT scanning unit 402 is configured to perform two CT scans on the puncture area in sequence to obtain an initial CT image and a second CT image;
初始化单元403,用于在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息;An initializing unit 403, configured to mark an initial planning path on the initial CT image, and acquire location information of the marked point in the second CT image;
配准单元404,用于将所述初始CT图像和所述第二CT图像进行配准,并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;a registration unit 404, configured to register the initial CT image and the second CT image, and determine a position of the marker point in an initial CT image after registration according to position information of the marker point ;
平移向量获取单元405,用于获得所述标记点到所述初始规划路径的距离向量;a translation vector obtaining unit 405, configured to obtain a distance vector of the marked point to the initial planning path;
纠正单元406,用于在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交 点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。a correcting unit 406, configured to perform a translation transformation on the initial planned path by using a distance vector of the marked point to the initial planning path in an initial CT image after registration, and the transformed path and the skin of the puncture area Pay The point is determined as an actual entry point, and according to the actual entry point, the target point is determined according to the length of the initial planned path, and the corrected puncture planning path is obtained.
其中,如图6所示,为穿刺规划路径纠正装置重配准单元的功能框图。所述配准单元404包括:Among them, as shown in FIG. 6, it is a functional block diagram of the re-alignment unit of the puncture planning path correction device. The registration unit 404 includes:
解剖结构标志点确定模块4041,用于分别在两幅CT图像中的标记点附近区域确定多个解剖结构标志点;An anatomical landmark point determining module 4041, configured to determine a plurality of anatomical landmarks in regions near the marked points in the two CT images, respectively;
刚体匹配模块4042,用于将所述初始CT图像的解剖结构标志点对应的与所述第二CT图像的解剖结构标志点做刚体匹配。The rigid body matching module 4042 is configured to match the anatomical landmarks of the initial CT image with the anatomical landmarks of the second CT image.
采用上述技术方案,通过体模穿刺实验进行验证。如图7a~图7d所示。在图7a中,深色线条为初始规划路径。图7b展示了按照图7a显示的初始规划路径进行穿刺的结果。在图7b中,黑色小球为肿瘤靶点。在图7c中,深色线条为初始规划路径,浅色线条为纠正后的路径。图7d展示了按照纠正后的路径进行穿刺的结果。实验表明在原有穿刺导航系统基础上,引入本方案做规划路径自动纠正可有效的提高穿刺导航精度。并且,再前期,无需进行穿刺尝试。给病人不会带来额外的创伤。Using the above technical solution, verification was carried out by a phantom puncture experiment. As shown in Figures 7a to 7d. In Figure 7a, the dark lines are the initial planning paths. Figure 7b shows the results of the puncture according to the initial planning path shown in Figure 7a. In Figure 7b, the black globules are tumor targets. In Figure 7c, the dark lines are the initial planning paths and the light lines are the corrected paths. Figure 7d shows the results of puncture according to the corrected path. Experiments show that based on the original puncture navigation system, the introduction of this scheme to automatically correct the planning path can effectively improve the accuracy of puncture navigation. And, in the early stage, there is no need to perform a puncture attempt. No additional trauma to the patient.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The specific embodiments of the present invention have been described in detail with reference to the preferred embodiments of the present invention. All modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the invention.

Claims (6)

  1. 一种穿刺规划路径纠正方法,其特征在于,包括:A puncture planning path correction method, comprising:
    根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;Determining an initial entry point on the skin of the puncture area according to the initial planning path, and setting the initial entry point as a marker point;
    对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;Performing two CT scans on the puncture area to obtain an initial CT image and a second CT image;
    在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息;Marking an initial planning path on the initial CT image; acquiring location information of the marking point in the second CT image;
    将所述初始CT图像和所述第二CT图像进行配准;并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;Registering the initial CT image and the second CT image; and determining a position of the marker point in an initial CT image after registration according to position information of the marker point;
    获得所述标记点到所述初始规划路径的距离向量;Obtaining a distance vector of the marked point to the initial planning path;
    在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。In the initial CT image after the registration, the initial planned path is translated by using the distance vector of the marked point to the initial planning path, and the intersection of the transformed path and the skin of the puncture area is determined as the actual entry point. And determining a target point according to the length of the initial planning path according to the actual entry point, and obtaining a corrected puncture planning path.
  2. 如权利要求1所述的方法,其特征在于,所述配准的步骤包括:The method of claim 1 wherein said step of registering comprises:
    分别在两幅CT图像中的标记点附近区域确定多个解剖结构标志点;Determining a plurality of anatomical landmarks in the vicinity of the marked points in the two CT images;
    将所述初始CT图像的解剖结构标志点对应的与所述第二CT图像的解剖结构标志点做刚体匹配。An anatomical landmark corresponding to the initial CT image is matched with an anatomical landmark of the second CT image.
  3. 如权利要求1所述的方法,其特征在于,所述距离向量的大小与导航误差的横向分量的大小相等。The method of claim 1 wherein the magnitude of the distance vector is equal to the magnitude of the lateral component of the navigation error.
  4. 一种穿刺规划路径纠正装置,其特征在于,包括:A puncture planning path correction device, comprising:
    标记点确定单元,用于根据初始规划路径,在穿刺区域表皮上确定初始入口点,并将所述初始入口点设置为标记点;a marking point determining unit, configured to determine an initial entry point on the skin of the puncture area according to the initial planning path, and set the initial entry point as a marking point;
    CT扫描单元,用于对穿刺区域先后进行两次CT扫描,获得初始CT图像和第二CT图像;a CT scanning unit is configured to perform two CT scans on the puncture area in sequence to obtain an initial CT image and a second CT image;
    初始化单元,用于在所述初始CT图像上标出初始规划路径;在所述第二CT图像中获取所述标记点的位置信息;An initializing unit, configured to mark an initial planning path on the initial CT image; and acquire location information of the marked point in the second CT image;
    配准单元,用于将所述初始CT图像和所述第二CT图像进行配准,并根据所述标记点的位置信息,确定所述标记点在配准之后的初始CT图像中的位置;a registration unit, configured to register the initial CT image and the second CT image, and determine a position of the marker point in an initial CT image after registration according to position information of the marker point;
    平移向量获取单元,用于获得所述标记点到所述初始规划路径的距离向量; a translation vector acquisition unit, configured to obtain a distance vector of the marker point to the initial planning path;
    纠正单元,用于在配准之后的初始CT图像中,利用所述标记点到所述初始规划路径的距离向量,对所述初始规划路径做平移变换,变换后的路径与穿刺区域表皮的交点定为实际入口点,根据所述实际入口点,按照所述初始规划路径的长度确定靶点,获得纠正后的穿刺规划路径。a correcting unit, configured to perform a translation transformation on the initial planning path by using a distance vector of the marked point to the initial planning path in an initial CT image after registration, and an intersection of the transformed path and the skin of the puncture area The actual entry point is determined, and according to the actual entry point, the target point is determined according to the length of the initial planned path, and the corrected puncture planning path is obtained.
  5. 如权利要求4所述的装置,其特征在于,所述配准单元包括:The apparatus of claim 4 wherein said registration unit comprises:
    解剖结构标志点确定模块,用于分别在两幅CT图像中的标记点附近区域确定多个解剖结构标志点;An anatomical landmark point determining module for determining a plurality of anatomical landmarks in the vicinity of the marked points in the two CT images;
    刚体匹配模块,用于将所述初始CT图像的解剖结构标志点对应的与所述第二CT图像的解剖结构标志点做刚体匹配。The rigid body matching module is configured to match the anatomical landmarks of the initial CT image with the anatomical landmarks of the second CT image.
  6. 如权利要求4所述的装置,其特征在于,所述平移向量获取单元获得的距离向量的大小与导航误差的横向分量的大小相等。 The apparatus according to claim 4, wherein the magnitude of the distance vector obtained by the translation vector acquisition unit is equal to the magnitude of the lateral component of the navigation error.
PCT/CN2015/099650 2015-11-23 2015-12-30 Puncture planning path correction method and device WO2017088263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510816046.5A CN105411679B (en) 2015-11-23 2015-11-23 One kind punctures path planning method and device for correcting
CN201510816046.5 2015-11-23

Publications (1)

Publication Number Publication Date
WO2017088263A1 true WO2017088263A1 (en) 2017-06-01

Family

ID=55490547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099650 WO2017088263A1 (en) 2015-11-23 2015-12-30 Puncture planning path correction method and device

Country Status (2)

Country Link
CN (1) CN105411679B (en)
WO (1) WO2017088263A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413189A (en) * 2019-04-12 2021-09-21 北京诺亦腾科技有限公司 Punching control method based on virtual reality technology
CN114454172A (en) * 2020-09-25 2022-05-10 武汉联影智融医疗科技有限公司 Control method for end adapter of mechanical arm

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021935B (en) * 2016-05-24 2018-09-28 深圳先进技术研究院 A kind of flexible needle puncture path appraisal procedure and system
CN106137394B (en) * 2016-06-15 2019-09-24 苏州铸正机器人有限公司 A method of obtaining pedicle of vertebral arch standard axle bitmap
CN106236258B (en) * 2016-08-17 2019-03-12 北京柏惠维康科技有限公司 The method and device for planning of abdominal-cavity minimal-invasion surgery puncture path
EP3566669A1 (en) * 2018-05-10 2019-11-13 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
CN109893247B (en) * 2019-04-11 2021-01-01 艾瑞迈迪科技石家庄有限公司 Navigation and display method and device for operation path of surgical instrument
CN110123447A (en) * 2019-05-07 2019-08-16 艾瑞迈迪科技石家庄有限公司 Applied to image-guided path of navigation method and device for planning
CN115137453A (en) * 2019-07-05 2022-10-04 湖南卓世创思科技有限公司 Continuous scanning cross section dimension-increasing space positioning system
US20240025053A1 (en) * 2020-09-25 2024-01-25 Wuhan United Imaging Healthcare Surgical Technology Co., Ltd. Surgical robot control method, computer device, and surgical robot system
CN112932546A (en) * 2021-01-26 2021-06-11 溥熵微创医疗科技(辽宁)有限公司 Throat swab sampling method based on visual analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102920510A (en) * 2012-10-29 2013-02-13 清华大学 Path planning method for flexible puncture needle
CN102961187A (en) * 2012-10-26 2013-03-13 深圳市旭东数字医学影像技术有限公司 Surgical planning method and system for percutaneous puncture
CN103181764A (en) * 2011-12-30 2013-07-03 上海爱立峰医疗科技有限公司 Magnetic resonance scanning positioning system and directivity positioning scanning method
JP2013220132A (en) * 2012-04-13 2013-10-28 Ge Medical Systems Global Technology Co Llc Puncture scheme support apparatus, medical image apparatus and ultrasonic diagnostic apparatus
CN105054999A (en) * 2015-08-18 2015-11-18 浙江工业大学 Improved encephalic puncture guiding method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100493471C (en) * 2006-01-26 2009-06-03 清华大学深圳研究生院 Puncture guiding system of computer aided PCNL
CN101564289A (en) * 2009-06-03 2009-10-28 南京航空航天大学 Method for real-time error correction of neurosurgery navigation puncture path based on near infrared spectrum
JP6120497B2 (en) * 2012-06-26 2017-04-26 キヤノン株式会社 Puncture control device and method
CN102999902B (en) * 2012-11-13 2016-12-21 上海交通大学医学院附属瑞金医院 Optical guidance positioning navigation method based on CT registration result
CN103892912B (en) * 2012-12-27 2016-06-01 上海西门子医疗器械有限公司 The Needle localization method that X line is auxiliary and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103181764A (en) * 2011-12-30 2013-07-03 上海爱立峰医疗科技有限公司 Magnetic resonance scanning positioning system and directivity positioning scanning method
JP2013220132A (en) * 2012-04-13 2013-10-28 Ge Medical Systems Global Technology Co Llc Puncture scheme support apparatus, medical image apparatus and ultrasonic diagnostic apparatus
CN102961187A (en) * 2012-10-26 2013-03-13 深圳市旭东数字医学影像技术有限公司 Surgical planning method and system for percutaneous puncture
CN102920510A (en) * 2012-10-29 2013-02-13 清华大学 Path planning method for flexible puncture needle
CN105054999A (en) * 2015-08-18 2015-11-18 浙江工业大学 Improved encephalic puncture guiding method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413189A (en) * 2019-04-12 2021-09-21 北京诺亦腾科技有限公司 Punching control method based on virtual reality technology
CN113413189B (en) * 2019-04-12 2022-07-19 北京诺亦腾科技有限公司 Non-treatment purpose punching control method based on virtual reality technology
CN114454172A (en) * 2020-09-25 2022-05-10 武汉联影智融医疗科技有限公司 Control method for end adapter of mechanical arm
CN114454172B (en) * 2020-09-25 2024-04-23 武汉联影智融医疗科技有限公司 Control method of tail end adapter of mechanical arm

Also Published As

Publication number Publication date
CN105411679B (en) 2017-07-14
CN105411679A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017088263A1 (en) Puncture planning path correction method and device
US11798178B2 (en) Fluoroscopic pose estimation
CN110946654B (en) Bone surgery navigation system based on multimode image fusion
US20200323463A1 (en) Method of using lung airway carina locations to improve enb registration
US10307079B2 (en) Method and system for surgical instrument guidance and tracking with position and orientation correction
US10548815B2 (en) Insertion device positioning guidance system and method
AU2017202738B2 (en) System and method to access lung tissue
US20100179418A1 (en) Instrument aligning method using a free reference
US20110274324A1 (en) System and method for abdominal surface matching using pseudo-features
EP3753507A1 (en) Surgical navigation method and system
CN205215354U (en) A needle point calibration device for optics operation navigation
Wallach et al. Comparison of freehand‐navigated and aiming device‐navigated targeting of liver lesions
US20180049810A1 (en) Insertion device positioning guidance system and method
EP1769768A1 (en) Surgical instrument calibration
US20180140359A1 (en) Electromagnetic navigation registration using ultrasound
CN109620303B (en) Lung auxiliary diagnosis method and device
US20190374290A1 (en) System and methods for navigating interventional instrumentation
KR20190096575A (en) Medical imaging system
US9514384B2 (en) Image display apparatus, image display method and storage medium storing image display program
CN105232161A (en) Surgical robot mark point recognition and location method
CN114246635B (en) Osteotomy plane positioning method, system and device
CN111603240B (en) Registration method and device for medical image guidance
CN106725853A (en) Navigation path planning device
Fan et al. Automatic surface-matching spatial registration method for neuronavigation using globally optimal iterative closest point
US10984585B2 (en) Systems, methods, and computer-readable media for automatic computed tomography to computed tomography registration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2018)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15909174

Country of ref document: EP

Kind code of ref document: A1