WO2017086558A1 - Solar power generation apparatus for increasing light collection efficiency through reflection tap - Google Patents

Solar power generation apparatus for increasing light collection efficiency through reflection tap Download PDF

Info

Publication number
WO2017086558A1
WO2017086558A1 PCT/KR2016/005359 KR2016005359W WO2017086558A1 WO 2017086558 A1 WO2017086558 A1 WO 2017086558A1 KR 2016005359 W KR2016005359 W KR 2016005359W WO 2017086558 A1 WO2017086558 A1 WO 2017086558A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
reflective
module
sunlight
tab
Prior art date
Application number
PCT/KR2016/005359
Other languages
French (fr)
Korean (ko)
Inventor
이종조
장진원
김생수
이우진
Original Assignee
주식회사 금강이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금강이엔지 filed Critical 주식회사 금강이엔지
Publication of WO2017086558A1 publication Critical patent/WO2017086558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention provides a photovoltaic device having a photovoltaic module for condensing sunlight, the edge of the photovoltaic module is coupled to a reflective tab including a triangular solar reflector for reflecting the incident sunlight
  • the present invention relates to a photovoltaic device having increased light collecting efficiency through a reflective tab, wherein the light collecting efficiency is increased by reflecting sunlight incident to the periphery of the photovoltaic module toward the photovoltaic module.
  • renewable energy is being applied globally due to changes in the energy environment such as depletion of fossil fuels, increased volatility in existing energy prices, increased demand for energy due to high growth in emerging economies, and the activation of greenhouse gas reduction obligations to respond to climate change.
  • the solar market grew rapidly.
  • the new renewable energy installation capacity is expected to be 728GW by 2020, of which more than 50% is estimated to be solar and wind power generation.
  • non-OECD countries account for 65% of the installed capacity of renewable energy, and China estimates that 40% of this capacity will be spent.
  • the present invention has been invented to solve the above problems, by combining a reflection tab with a reflective surface for reflecting the incident sunlight to the solar module to minimize the loss by reflecting the sunlight to the solar module side
  • the purpose is to provide a photovoltaic device that can increase the light collecting efficiency.
  • the present invention provides a photovoltaic device having a photovoltaic module for condensing sunlight, wherein the edge of the photovoltaic module includes a triangular sun light reflector for reflecting incident sunlight.
  • the reflective tab is coupled, and reflects the sunlight incident to the periphery of the solar module to the solar module side, characterized in that to increase the condensing efficiency.
  • the reflective tab is characterized in that the inner angle of 30 ⁇ 60 °.
  • the lower end of the reflective tab in the present invention is characterized in that the coupling portion for coupling to the outer peripheral surface of the solar module is extended.
  • the reflective tab is installed in a plurality of solar modules that are arranged in a continuous arrangement, is formed of an isosceles triangle or installed on the outermost side so as to be installed between two adjacent solar modules, the outermost of the solar modules Characterized in that formed in a right triangle to be installed on the outer edge.
  • the coupling portion is formed in the first coupling portion extending in a "-" shape in the horizontal direction in the horizontal direction from the lower end of the solar light reflecting portion, extends in a " ⁇ " shape vertically from the lower end of the solar reflection portion Characterized in that it is any one of the third coupling portion is formed extending in the shape of the "T" from the lower end of the second coupling portion or the solar reflection portion to be formed.
  • the solar cell apparatus according to the present invention made as described above is coupled to the reflection tab including a triangular solar reflector for reflecting the sunlight incident on the edge of the solar module, the sun incident to the periphery of the solar module There is an advantage to improve the light collecting efficiency by reflecting light to the solar module side.
  • the reflective tab according to the present invention has the advantage that can be installed in both the existing fixed solar power generator or tracking type photovoltaic device, easy to manufacture, low cost, and can be quickly and easily installed.
  • 1 to 3 is an exemplary view of a photovoltaic device for increasing the light collecting efficiency through the reflective tab according to the present invention.
  • FIG. 5 is an outdoor test photograph and a result graph of the crystalline silicon solar module according to an embodiment of the present invention.
  • the photovoltaic module 1 is a conventional one having a frame 2 having a strength and having a square or rectangular shape.
  • the solar module 1 is installed to be inclined at a predetermined angle toward the south side in order to increase the light collection efficiency according to the altitude or direction of movement of the sun, and absorbs sunlight smoothly in the entire module before and after the highest noon of the sun. For example, since the sun moves at sunrise or sunset, the sunlight is incident on the edge 2 as well as the solar module, and a considerable amount of solar energy is lost.
  • the present invention is coupled to the edge (2) of the photovoltaic module (1) by combining a reflective tab 10 including a solar reflector (11) consisting of a triangular shape to reflect the incident sunlight, It is characterized by preventing the loss of solar energy and increasing the light collecting efficiency by reflecting the sunlight to the sunlight side.
  • Reflective tab 10 is installed in a plurality of solar modules that are arranged in a continuous arrangement, formed of an isosceles triangle or installed on the outermost side so as to be installed between two adjacent solar modules of the solar module It is formed as a right triangle so that it can be installed on the outermost edge.
  • a coupling portion for coupling to the outer peripheral surface of the solar module is formed at the lower end of the reflective tab 10, the coupling portion extends in the shape of "-" in the horizontal direction inward from the bottom of the solar reflective portion
  • the first coupling portion 12 is formed
  • the second coupling portion 13 is formed to extend in the shape of " ⁇ " perpendicularly from the lower end of the sunlight reflecting portion or the second extending portion formed in the shape of "T" from the lower end of the sunlight reflecting portion It is formed of any one selected from the three coupling parts 14.
  • 1 to 3 are exemplary views of reflective tabs according to the present invention.
  • FIGS. 2 to 3 illustrate a photovoltaic device in which photovoltaic modules are arranged in a 1x2 form.
  • the spacing between the photovoltaic module and the photovoltaic module is on average 10 to 100 mm due to the thermal expansion coefficient of the aluminum frame.
  • the attached FIG. 1 shows a narrow spacing between the photovoltaic module and the photovoltaic module.
  • Figures 2 to 3 illustrate a state in which there is a gap between the solar module and the solar module.
  • Reflective tab 10 is formed as an isosceles triangle so that it can be installed between two photovoltaic modules (1) with a narrow gap as shown in Figure 1, wherein the coupling portion is the upper edge of each solar module
  • the first coupling part 12 is formed to extend in a "-" shape in the horizontal direction from the lower end of the solar light reflecting portion to be coupled to the.
  • the reflective tab 10 is formed in an isosceles triangle so that it can be installed between two photovoltaic modules 1 spaced apart as shown in Figures 2 to 3, wherein the coupling portion is a gap between the two modules
  • the coupling portion is a gap between the two modules
  • the " ⁇ " shape of the second coupling portion 13 or "T" shape of the third coupling portion 14 may be made of either.
  • the reflective tab 10 ' is formed in a right triangle so as to be installed on the outermost edge of the solar module is installed on the outermost, wherein the coupling portion is the outermost edge of the outermost solar module It is preferable that the first coupling portion 12 is formed to extend in the "-" shape to be coupled to.
  • the reflective tab 10 having a coupling portion having a corresponding shape can be coupled to the edge 2 of the photovoltaic module according to the site situation (the distance between the module and the module). Construction) is possible.
  • the reflective tab including the solar reflector formed by an isosceles triangle is coupled between two adjacent solar modules, the solar reflector may reflect sunlight toward the opposite solar module, so that the purchase of the reflective tab may be performed. There is an advantage that can significantly reduce the manufacturing cost.
  • the reflective tab 10 may be coupled to the edge of the photovoltaic module in various forms or methods, for example, may be attached to the photovoltaic module using a tape having excellent adhesion.
  • Reflective tab 10 can be effectively used in a fixed system, in particular, the fixed photovoltaic device does not move along the sun like a tracked photovoltaic system, the difference in incident light with time occurs and the incident angle Since the amount of reflection is increased, power generation efficiency can be improved by coupling the reflective tab to the edge of the solar module to reflect and collect the lost solar light generated by the sun's altitude or direction of movement toward the solar module.
  • the reflective tab 10 may be made of a metal material such as a super stainless steel (SS) material having excellent reflectivity or a reflective tab of an aluminum powder coating method, and may be coated with a reflective metal material to improve reflectance.
  • SS super stainless steel
  • the inner angle of the reflective tab 10 according to the present invention is characterized in that 30 ⁇ 60 °.
  • the electrical characteristics of the solar module according to the change of the incident area according to the change of the angle of the reflective tab 10 is examined, and the incidence angle of the sunlight is 0 °, 30 °, 60 °, 90 °, respectively.
  • the characteristics of the light position were analyzed.
  • electrical characteristics were measured with an I-V checker (EKO MP-170) and the first experiment using a two-axis tracker as shown in Figure 5 to change the incident angle.
  • the peak time of photovoltaic power generation is about two hours before and after the noon. This means that the solar radiation is the best time zone.
  • the analysis time zone was performed from 11:30 am to 12:30 pm in order to analyze I-V with solar light in the south. The south direction and the amount of insolation and temperature were measured and measured 5 times for each sample at about 1 minute intervals.
  • Time is the measurement time
  • PV Area is the module area
  • Solar Irradiance is the incident amount
  • PV Temp is the module temperature
  • Isc is the short-circuit current
  • Voc is the open voltage
  • pm is The maximum generation amount
  • Eta is the generation efficiency.
  • Table 1 shows the IV measurement results according to the time change of the photovoltaic module without the reflective tab in the south-south direction.
  • Group Time PV Area m 2
  • Solar Irradiance W / m 2
  • PV Temp °C
  • Isc A
  • Voc V
  • Pm W
  • Eta % Ref.
  • Table 2 shows the IV measurement results with time variation of a reflective tap with an internal angle of 30 ° in the true south direction.
  • Table 3 shows the IV measurement results with time variation of a reflective tap with an internal angle of 45 ° in the true south direction.
  • Table 4 shows the results of the IV measurement with the change of time of the reflective tap with the internal angle of 60 ° in the true south direction.
  • the Voc (opening voltage) and efficiency average values for each sample show that the values increase as the angle increases from 30 ° to 45 ° to 60 ° from the reference sample.
  • the measurement time is constant at 1 minute intervals, but the climatic conditions were not the same at the time of data measurement, so the solar irradiance value was 735 ⁇ 772W / m2 and the PV temp was also 28.3 ⁇ At 30.9 ° C, it can be said that the width of environmental factors between samples influenced the result data.
  • Table 5 shows IV measurement results according to the angle of the reflecting tap under the condition of solar irradiance 750W / m2 and module temperature of 28.5 ° C.
  • the maximum amount of power generated when there is no reflective tab is about 61.5W, and the reflective tab having an internal angle of 30 ° is about 62.9W (2% increase).
  • the reflection tab at 45 ° is about 63.4W (3% increase), and the reflection tab at 60 ° is about 64.6W (5% increase). This is because additional reflected light is incident on the curved surface of the reflective tab in the module when sunlight is perpendicular to the module surface.
  • FIG. 7 shows the data of the first and second experiments as IV curves.
  • the curve area becomes wider as the angle of the reflective tap increases in comparison with the first experiment where the environmental factors were not uniform. Can be.
  • the Republic of Korea is predicted to have an average amount of insolation of about 3 to 4 hours per day, and shows the highest generation efficiency from about noon to about 1 pm in terms of sunrise time.
  • the time of incidence of sunlight is low at other times, resulting in inadequate power generation.
  • the third experiment was conducted with this sample in preparation for the low power generation at sunrise / sunset time, and the results are shown in Tables 7 to 9 below.
  • Table 7 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 0 °.
  • Table 8 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 30 °.
  • Table 9 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 60 °.
  • the present invention made as described above can minimize the loss of sunlight and increase the light collection efficiency by combining the reflective tab 10 to the edge 2 of the solar module 1 to reflect the incident sunlight toward the solar module side.
  • the reflective tab according to the present invention can be manufactured at low cost, and can be quickly installed with appropriate measures according to the site situation, and is applied to not only the conventional fixed solar power generator but also the tracking solar power generator. As it can be done, it is economic, practical and efficient.

Abstract

The present invention relates to a solar power generation apparatus having a solar module for collecting sunlight. Disclosed is a solar power generation apparatus for increasing light collection efficiency through a reflection tap, the apparatus having the reflection tap, which includes a triangular sunlight reflection part for reflecting incident sunlight, coupled to the edge of the solar module so as to reflect the sunlight, which is incident to the periphery of the solar module, toward the solar module, thereby increasing light collection efficiency.

Description

반사탭을 통해 집광효율을 증대시킨 태양광 발전장치Photovoltaic device that increases condensing efficiency through reflective tab
본 발명은 태양광을 집광하기 위한 태양광 모듈이 구비되는 태양광 발전장치에 있어서, 상기 태양광 모듈의 테두리에는 입사되는 태양광을 반사시키기 위한 삼각형상의 태양광 반사부를 포함하는 반사탭이 결합되어, 태양광 모듈의 주변으로 입사되는 태양광을 태양광 모듈 측으로 반사시켜 집광효율을 증대시킨 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치에 관한 것이다.The present invention provides a photovoltaic device having a photovoltaic module for condensing sunlight, the edge of the photovoltaic module is coupled to a reflective tab including a triangular solar reflector for reflecting the incident sunlight In addition, the present invention relates to a photovoltaic device having increased light collecting efficiency through a reflective tab, wherein the light collecting efficiency is increased by reflecting sunlight incident to the periphery of the photovoltaic module toward the photovoltaic module.
최근에는 화석 연료의 고갈, 환경 오염 등으로 인해서 화석 연료를 대체할 수 있는 다양한 종류의 대체 에너지원, 클린 에너지원, 친환경 에너지원의 개발이 대두되고 있다. 그 중 하나가 태양 에너지를 이용하는 방법이다.Recently, due to the depletion of fossil fuels and environmental pollution, the development of various kinds of alternative energy sources, clean energy sources, and environmentally friendly energy sources that can replace fossil fuels are emerging. One way is to use solar energy.
더욱이 2010년부터 화석연료 고갈, 기존에너지 가격의 변동성 심화, 신흥개도국의 고도성장에 따른 에너지 수요 급증 및 기후변화 대응을 위한 온실가스 감축의무 활성화 등 여러 에너지 환경의 변화로 전 세계적으로 재생에너지에 대한 관심과 필요성이 고조되면서 태양광 시장은 급속도로 성장하였다. Furthermore, from 2010 onwards, renewable energy is being applied globally due to changes in the energy environment such as depletion of fossil fuels, increased volatility in existing energy prices, increased demand for energy due to high growth in emerging economies, and the activation of greenhouse gas reduction obligations to respond to climate change. As the interest and necessity rose, the solar market grew rapidly.
최근 신재생에너지 시장 전망 보고서에 따르면 2020년까지 신규 신재생에너지 설치용량을 728GW로 전망하고 있으며 이중 50% 이상이 태양광 및 풍력발전으로 예측되고 있다. 설치국가별로 보면 비OECD국가의 신재생에너지 설치용량 비중이 65%이고, 이 신재생에너지 설치 용량의 40%를 중국이 소요한다고 전망하였다. According to the report of the new renewable energy market forecast, the new renewable energy installation capacity is expected to be 728GW by 2020, of which more than 50% is estimated to be solar and wind power generation. By installation countries, non-OECD countries account for 65% of the installed capacity of renewable energy, and China estimates that 40% of this capacity will be spent.
이와 같이 활발한 시장전망에 따른 태양광분야 R&D도 매년 활발히 진행되고 있다. 이중 결정질실리콘태양광 기술에서는 소재, 공정 및 장비 등 다양한 분야에서 태양전지/모듈의 초고효율화 및 저가화 연구에 초점을 맞추고 있고 세계적으로 많은 기업, 기관 및 연구소에서 신기술개발을 위한 연구사업이 다양하게 진행되고 있다. As such, the R & D in the photovoltaic field is actively progressing every year. In double crystalline silicon solar technology, we focus on research on ultra-high efficiency and low cost of solar cells / modules in various fields such as materials, processes, and equipment, and various research projects for new technology development have been conducted by many companies, institutions, and research institutes around the world. It is becoming.
하지만 기존 발전중인 가정용 또는 발전소의 효율 향상을 위한 소재연구분야는 아직까지 미흡한 실정이며, 기존에 설치된 모듈을 위한 효율향상 연구에 대해서는 유지보수를 위한 전략만 마련되고 있다. However, the field of material research for improving the efficiency of existing households or power plants is still insufficient, and only a strategy for maintenance is being prepared for efficiency improvement studies for existing installed modules.
한편, 태양광의 집광효율을 증대시키기 위하여 태양을 추적하는 프로그램 및 장치(태양광 추적장치 또는 트래킹 장치)로서 대한민국 공개특허 제83-2206호(공개일자:1983.5.23),제93-978호(공개일자:1993.1.16),제97-16643호(공개일자:1997.4.28), 제01-25541호(공개일자:2001.4.6) 등이 다수 제안되었다. 그런데, 이러한 종래 태양 추적방법은 그 구성이 매우 복잡하고, 제작 및 시공시 막대한 비용과 시간이 소모되는 문제점이 있으며, 기존에 시공된 고정형 타입의 태양광 집열판에는 적용할 수 없어 실용적이지 못한 문제점이 있었다. On the other hand, in order to increase the condensing efficiency of sunlight, the sun tracking program and apparatus (solar tracking device or tracking device) as Republic of Korea Patent Publication No. 83-2206 (published: 1983.5.23), 93-978 ( Publication date: 1993.1.16), 97-16643 (published April 28, 1997), and 01-25541 (published date: April 16, 2001). However, such a conventional solar tracking method has a problem that the configuration is very complicated, a huge cost and time is consumed during manufacturing and construction, and can not be applied to the conventional fixed type solar heat collecting plate, which is not practical. there was.
본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로, 입사되는 태양광을 반사시키기 위한 반사면이 형성되는 반사탭을 태양광 모듈에 결합하여 태양광을 태양광 모듈 측으로 반사시킴으로써 손실을 최소화하고 집광효율을 증대시킬 수 있는 태양광 발전장치를 제공하는데 그 목적이 있다. The present invention has been invented to solve the above problems, by combining a reflection tab with a reflective surface for reflecting the incident sunlight to the solar module to minimize the loss by reflecting the sunlight to the solar module side The purpose is to provide a photovoltaic device that can increase the light collecting efficiency.
상기와 같은 목적을 위하여 본 발명은 태양광을 집광하기 위한 태양광 모듈이 구비되는 태양광 발전장치에 있어서, 상기 태양광 모듈의 테두리에는 입사되는 태양광을 반사시키기 위한 삼각형상의 태양광 반사부를 포함하는 반사탭이 결합되어, 태양광 모듈의 주변으로 입사되는 태양광을 태양광 모듈 측으로 반사시켜 집광효율을 증대시킨 것을 특징으로 한다. In order to achieve the above object, the present invention provides a photovoltaic device having a photovoltaic module for condensing sunlight, wherein the edge of the photovoltaic module includes a triangular sun light reflector for reflecting incident sunlight. The reflective tab is coupled, and reflects the sunlight incident to the periphery of the solar module to the solar module side, characterized in that to increase the condensing efficiency.
또한, 본 발명에서 상기 반사탭은 내각이 30~60°인 것을 특징으로 한다. In the present invention, the reflective tab is characterized in that the inner angle of 30 ~ 60 °.
또한, 본 발명에서 상기 반사탭의 하단에는 태양광 모듈의 외주면에 결합하기 위한 결합부가 연장형성되는 것을 특징으로 한다. In addition, the lower end of the reflective tab in the present invention is characterized in that the coupling portion for coupling to the outer peripheral surface of the solar module is extended.
또한, 본 발명에서 상기 반사탭은 연속적으로 배열설치되는 복수의 태양광 모듈에 설치되되, 인접한 두 개의 태양광 모듈 사이에 설치될 수 있도록 이등변 삼각형으로 형성되거나 최외측에 설치되는 태양광 모듈의 최외측 테두리에 설치될 수 있도록 직각 삼각형으로 형성되는 것을 특징으로 한다. In addition, in the present invention, the reflective tab is installed in a plurality of solar modules that are arranged in a continuous arrangement, is formed of an isosceles triangle or installed on the outermost side so as to be installed between two adjacent solar modules, the outermost of the solar modules Characterized in that formed in a right triangle to be installed on the outer edge.
또한, 본 발명에서 상기 결합부는 상기 태양광 반사부의 하단으로부터 수평방향으로 내측 방향으로 "─"자 형상으로 연장형성되는 제1결합부, 태양광 반사부의 하단으로부터 수직으로 "│"자 형상으로 연장형성되는 제2결합부 또는 태양광 반사부의 하단으로부터 "T"자 형상으로 연장형성되는 제3결합부 중 어느 하나인 것을 특징으로 한다. In addition, in the present invention, the coupling portion is formed in the first coupling portion extending in a "-" shape in the horizontal direction in the horizontal direction from the lower end of the solar light reflecting portion, extends in a "│" shape vertically from the lower end of the solar reflection portion Characterized in that it is any one of the third coupling portion is formed extending in the shape of the "T" from the lower end of the second coupling portion or the solar reflection portion to be formed.
상기와 같이 이루어지는 본 발명에 따른 태양광 발전장치는 태양광 모듈의 테두리에 입사되는 태양광을 반사시키기 위한 삼각형상의 태양광 반사부를 포함하는 반사탭이 결합되어, 태양광 모듈의 주변으로 입사되는 태양광을 태양광 모듈 측으로 반사시켜 집광효율을 향상시킬 수 있는 장점이 있다. The solar cell apparatus according to the present invention made as described above is coupled to the reflection tab including a triangular solar reflector for reflecting the sunlight incident on the edge of the solar module, the sun incident to the periphery of the solar module There is an advantage to improve the light collecting efficiency by reflecting light to the solar module side.
또한, 본 발명에 따른 반사탭은 기존에 설치된 고정형 태양광 발전장치 또는 추적형 태양광 발전장치 모두에 설치 가능하고, 제작이 용이하며 단가가 저렴하고, 신속용이하게 시공할 수 있는 장점이 있다. In addition, the reflective tab according to the present invention has the advantage that can be installed in both the existing fixed solar power generator or tracking type photovoltaic device, easy to manufacture, low cost, and can be quickly and easily installed.
도 1 내지 3은 본 발명에 따른 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치의 예시도.1 to 3 is an exemplary view of a photovoltaic device for increasing the light collecting efficiency through the reflective tab according to the present invention.
도 4는 반사탭의 원리를 설명하기 위한 예시도.4 is an exemplary view for explaining the principle of the reflective tab.
도 5는 본 발명의 실시예에 따라 결정질실리콘태양광모듈의 옥외테스트 촬영사진 및 결과 그래프.5 is an outdoor test photograph and a result graph of the crystalline silicon solar module according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 태양광 입사각이 90°일 경우 반사탭의 I-V curve 분석결과.6 is an I-V curve analysis result of the reflective tab when the incident angle of sunlight is 90 ° according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 태양광 입사각에 따른 반사탭들의 I-V 특성분석.7 is an I-V characteristic analysis of the reflective tabs according to the incident angle of sunlight according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치에 대하여 더욱 상세하게 설명하도록 한다. Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the photovoltaic device for increasing the light collecting efficiency through the reflective tab according to the present invention.
본 발명을 설명함에 있어서 태양광 모듈(1)이라 함은 강도를 갖는 재질의 테두리(2)가 구비되며 사각 또는 직사각 형상으로 이루어지는 통상의 것을 말한다. In describing the present invention, the photovoltaic module 1 is a conventional one having a frame 2 having a strength and having a square or rectangular shape.
이러한 태양광 모듈(1)은 태양의 고도나 이동방향에 따른 집광효율을 높이기 위하여 남측을 향해 소정각도로 경사지게 설치되며, 태양의 고도가 가장 높은 정오를 전후로는 모듈 전체에 원활하게 태양광을 흡수할 수 있으나, 예를 들어 일출이나 일몰시에는 태양이 이동하기 때문에 태양광이 태양광 모듈뿐만 아니라 테두리(2)로도 입사되어 상당량의 태양 에너지가 손실된다. The solar module 1 is installed to be inclined at a predetermined angle toward the south side in order to increase the light collection efficiency according to the altitude or direction of movement of the sun, and absorbs sunlight smoothly in the entire module before and after the highest noon of the sun. For example, since the sun moves at sunrise or sunset, the sunlight is incident on the edge 2 as well as the solar module, and a considerable amount of solar energy is lost.
본 발명은 입사되는 태양광을 반사시킬 수 있도록 삼각형상으로 이루어지는 태양광 반사부(11)를 포함하는 반사탭(10)을 상기 태양광 모듈(1)의 테두리(2)에 결합하여, 입사되는 태양광을 태양광 측으로 반사시킴으로써 태양 에너지의 손실을 방지하고 집광효율을 증대시킨 것을 특징으로 한다. The present invention is coupled to the edge (2) of the photovoltaic module (1) by combining a reflective tab 10 including a solar reflector (11) consisting of a triangular shape to reflect the incident sunlight, It is characterized by preventing the loss of solar energy and increasing the light collecting efficiency by reflecting the sunlight to the sunlight side.
본 발명에 따른 반사탭(10)은 연속적으로 배열설치되는 복수의 태양광 모듈에 설치되되, 인접한 두 개의 태양광 모듈 사이에 설치될 수 있도록 이등변 삼각형으로 형성되거나 최외측에 설치되는 태양광 모듈의 최외측 테두리에 설치될 수 있도록 직각 삼각형으로 형성된다. Reflective tab 10 according to the present invention is installed in a plurality of solar modules that are arranged in a continuous arrangement, formed of an isosceles triangle or installed on the outermost side so as to be installed between two adjacent solar modules of the solar module It is formed as a right triangle so that it can be installed on the outermost edge.
또한, 상기 반사탭(10)의 하단에는 태양광 모듈의 외주면에 결합하기 위한 결합부가 연장형성되며, 상기 결합부는 상기 태양광 반사부의 하단으로부터 수평방향으로 내측 방향으로 "─"자 형상으로 연장형성되는 제1결합부(12), 태양광 반사부의 하단으로부터 수직으로 "│"자 형상으로 연장형성되는 제2결합부(13) 또는 태양광 반사부의 하단으로부터 "T"자 형상으로 연장형성되는 제3결합부(14) 중 선택된 어느 하나의 것으로 형성된다.In addition, a coupling portion for coupling to the outer peripheral surface of the solar module is formed at the lower end of the reflective tab 10, the coupling portion extends in the shape of "-" in the horizontal direction inward from the bottom of the solar reflective portion The first coupling portion 12 is formed, the second coupling portion 13 is formed to extend in the shape of "│" perpendicularly from the lower end of the sunlight reflecting portion or the second extending portion formed in the shape of "T" from the lower end of the sunlight reflecting portion It is formed of any one selected from the three coupling parts 14.
도 1 내지 3은 본 발명에 따른 반사탭의 예시도이다. 1 to 3 are exemplary views of reflective tabs according to the present invention.
도 1에는 2x3 형태로 태양광 모듈이 배열설치된 태양광 발전장치가 도시되어 있고, 도 2 내지 3에는 1x2 형태로 태양광 모듈이 배열설치된 태양광 발전장치가 도시되어 있다.1 illustrates a photovoltaic device in which photovoltaic modules are arranged in a 2x3 form, and FIGS. 2 to 3 illustrate a photovoltaic device in which photovoltaic modules are arranged in a 1x2 form.
일반적으로, 태양광 발전장치는 태양광 모듈과 태양광 모듈 사이의 간격이 알루미늄 프레임의 열팽창계수로 인해 평균적으로 10~100mm로써, 첨부된 도 1은 태양광 모듈과 태양광 모듈 사이의 간격이 협소한 상태이고, 도 2 내지 3은 태양광 모듈과 태양광 모듈 사이에 간격이 있는 상태를 도시하였다. In general, in the photovoltaic device, the spacing between the photovoltaic module and the photovoltaic module is on average 10 to 100 mm due to the thermal expansion coefficient of the aluminum frame. The attached FIG. 1 shows a narrow spacing between the photovoltaic module and the photovoltaic module. One state, Figures 2 to 3 illustrate a state in which there is a gap between the solar module and the solar module.
본 발명에 따른 반사탭(10)은 도 1과 같이 간격이 협소한 두 개의 태양광 모듈 사이(1)에 설치될 수 있도록 이등변 삼각형으로 형성되며, 이때 상기 결합부는 각 태양광 모듈의 상부면 테두리에 결합될 수 있도록 상기 태양광 반사부의 하단으로부터 수평방향으로 내측 방향으로 "─"자 형상으로 연장형성되는 제1결합부(12)로 이루어진다. Reflective tab 10 according to the present invention is formed as an isosceles triangle so that it can be installed between two photovoltaic modules (1) with a narrow gap as shown in Figure 1, wherein the coupling portion is the upper edge of each solar module The first coupling part 12 is formed to extend in a "-" shape in the horizontal direction from the lower end of the solar light reflecting portion to be coupled to the.
또한, 본 발명에 따른 반사탭(10)은 도 2 내지 3과 같이 간격이 있는 두 개의 태양광 모듈(1) 사이에 설치될 수 있도록 이등변 삼각형으로 형성되며, 이때 상기 결합부는 두 모듈 사이의 간격에 따라 "│"자 형상의 제2결합부(13) 또는 "T"자 형상의 제3결합부(14) 중 어느 하나의 것으로 이루어질 수 있다. In addition, the reflective tab 10 according to the present invention is formed in an isosceles triangle so that it can be installed between two photovoltaic modules 1 spaced apart as shown in Figures 2 to 3, wherein the coupling portion is a gap between the two modules In accordance with the "│" shape of the second coupling portion 13 or "T" shape of the third coupling portion 14 may be made of either.
또한, 본 발명에 따른 반사탭(10′)은 최외측에 설치되는 태양광 모듈의 최외측 테두리에 설치될 수 있도록 직각 삼각형으로 형성되며, 이때 상기 결합부는 최외측의 태양광 모듈의 최외측 테두리에 결합될 수 있도록 "─"자 형상으로 연장형성되는 제1결합부(12)로 이루어지는 것이 바람직하다. In addition, the reflective tab 10 'according to the present invention is formed in a right triangle so as to be installed on the outermost edge of the solar module is installed on the outermost, wherein the coupling portion is the outermost edge of the outermost solar module It is preferable that the first coupling portion 12 is formed to extend in the "-" shape to be coupled to.
상기와 같이 본 발명은 현장상황(모듈과 모듈 사이의 간격)에 따라 대응되는 형상의 결합부를 갖는 반사탭(10)을 태양광 모듈의 테두리(2)에 결합할 수 있으므로 현장시공시 신속한 대처(시공)가 가능하다. 또한, 이등변 삼각형으로 형성된 태양광 반사부를 포함하는 반사탭을 인접한 두 개의 태양광 모듈 사이에 결합하면 상기 태양광 반사부가 대향하는 태양광 모듈을 향해 각각 태양광을 반사시킬 수 있으므로 반사탭의 구매 또는 제작비용을 현저하게 줄일 수 있는 장점이 있다. As described above, according to the present invention, the reflective tab 10 having a coupling portion having a corresponding shape can be coupled to the edge 2 of the photovoltaic module according to the site situation (the distance between the module and the module). Construction) is possible. In addition, when the reflective tab including the solar reflector formed by an isosceles triangle is coupled between two adjacent solar modules, the solar reflector may reflect sunlight toward the opposite solar module, so that the purchase of the reflective tab may be performed. There is an advantage that can significantly reduce the manufacturing cost.
상기 반사탭(10)은 태양광 모듈의 테두리에 다양한 형태나 방법으로 결합할 수 있으며, 예를 들어 접착력이 우수한 테이프를 사용하여 태양광 모듈에 부착할 수 있다. The reflective tab 10 may be coupled to the edge of the photovoltaic module in various forms or methods, for example, may be attached to the photovoltaic module using a tape having excellent adhesion.
본 발명에 따른 반사탭(10)은 특히 고정식 시스템에서 효율적으로 사용될 수 는데, 고정식 태양광 발전장치는 추적식 태양광 발전 시스템과 같이 태양을 따라 움직이지 않아 시간에 따른 입사광의 차이가 발생하고 입사각에 의해 반사량이 커지므로, 상기 반사탭을 태양광 모듈의 테두리에 결합하여 태양의 고도나 이동방향에 따라 발생하는 손실되는 태양광을 태양광 모듈 측으로 반사시켜 집광함으로써 발전효율을 향상시킬 수 있다. Reflective tab 10 according to the present invention can be effectively used in a fixed system, in particular, the fixed photovoltaic device does not move along the sun like a tracked photovoltaic system, the difference in incident light with time occurs and the incident angle Since the amount of reflection is increased, power generation efficiency can be improved by coupling the reflective tab to the edge of the solar module to reflect and collect the lost solar light generated by the sun's altitude or direction of movement toward the solar module.
상기 반사탭(10)은 반사율이 뛰어난 슈퍼스테인레스스틸(SS) 재질, 또는 알루미늄분체도장 방식의 반사탭 등과 같은 금속물질로 제작될 수 있고, 반사율을 향상시키기 위해 반사성 금속물질이 코팅될 수도 있다.The reflective tab 10 may be made of a metal material such as a super stainless steel (SS) material having excellent reflectivity or a reflective tab of an aluminum powder coating method, and may be coated with a reflective metal material to improve reflectance.
다음으로, 본 발명에 따른 상기 반사탭(10)의 내각은 30~60°인 것을 특징으로 한다. Next, the inner angle of the reflective tab 10 according to the present invention is characterized in that 30 ~ 60 °.
도 4와 같이 수직으로 태양광을 받는 경우 반사탭(10)의 각도에 따라 입사면적이 달라지게 된다. When receiving sunlight vertically as shown in FIG. 4, the incident area is changed according to the angle of the reflective tab 10.
본 발명에서는 이와 같이 반사탭(10)의 각도변화에 따른 입사면적의 변화에 따라 태양광모듈의 전기적 특성을 살펴보고, 태양광의 입사 각도를 0°, 30°, 60°, 90°로 각각 태양광의 위치에 따른 특성을 분석하였다. In the present invention, the electrical characteristics of the solar module according to the change of the incident area according to the change of the angle of the reflective tab 10 is examined, and the incidence angle of the sunlight is 0 °, 30 °, 60 °, 90 °, respectively. The characteristics of the light position were analyzed.
본 발명에서 사용된 태양광 모듈은 단결정태양광모듈로 Pmax(최대 발전량) 116.2W에 Voc(개방전압)=17.059V, Isc(단락전류)=8.829A, 그리고 효율 17.367%의 특성을 가지고 있다. 또한, 전기적인 특성분석은 I-V checker(EKO社 MP-170)로 측정하였고 입사각을 변화시키기 위해 도 5와 같이 2축 트랙커를 사용하여 1차 실험을 하였다. The solar module used in the present invention is a single crystal solar module having Pmax (maximum power generation) 116.2W, Voc (opening voltage) = 17.059V, Isc (short circuit current) = 8.829A, and efficiency of 17.367%. In addition, electrical characteristics were measured with an I-V checker (EKO MP-170) and the first experiment using a two-axis tracker as shown in Figure 5 to change the incident angle.
일반적으로 대한민국에서는 정오를 기준으로 전후 2시간 정도를 태양광발전의 피크타임이라고 볼 수 있다. 이는 이때가 일사량이 가장 좋은 시간대임을 의미한다. 본 발명에서도 정남쪽의 태양광으로 I-V를 분석하기 위해 분석 시간대를 오전11시30분부터 오후 12시 30분까지 실시하였다. 정남쪽방향과 일사량 및 온도를 측정하고 약 1분 간격으로 각 샘플당 5회씩 측정하였다. In general, the peak time of photovoltaic power generation is about two hours before and after the noon. This means that the solar radiation is the best time zone. In the present invention, the analysis time zone was performed from 11:30 am to 12:30 pm in order to analyze I-V with solar light in the south. The south direction and the amount of insolation and temperature were measured and measured 5 times for each sample at about 1 minute intervals.
하기의 표 1 내지 4는 그 결과이며, 하기의 표에서 Time은 측정시간, PV Area는 모듈면적, Solar Irradiance는 입사량, PV Temp는 모듈온도, Isc는 단락전류, Voc는 개방전압, pm은 최대발전량, Eta는 발전효율이다.Tables 1 to 4 below show the results. In the following table, Time is the measurement time, PV Area is the module area, Solar Irradiance is the incident amount, PV Temp is the module temperature, Isc is the short-circuit current, Voc is the open voltage, pm is The maximum generation amount, Eta, is the generation efficiency.
표 1 표 1은 정남쪽 방향에서 반사탭이 구비되지 않은 태양광 모듈의 시간변화에 따른 I-V 측정결과.
Group Time PV Area(m2) Solar Irradiance (W/m2) PV Temp(℃) Isc(A) Voc(V) Pm(W) Eta(%)
Ref. 11:36(am) 0.681 772.156 29.554 6.294 15.914 63.551 12.078
11:37(am) 0.681 764.826 29.508 6.318 15.931 63.254 12.137
11:39(am) 0.681 760.889 29.521 6.282 15.875 62.408 12.307
11:40(am) 0.681 765.504 29.513 6.317 15.923 63.177 12.112
11:41(am) 0.681 735.503 29.293 6.271 15.900 62.575 12.485
Average 759.775 29.478 6.296 15.909 62.993 12.170
Table 1 Table 1 shows the IV measurement results according to the time change of the photovoltaic module without the reflective tab in the south-south direction.
Group Time PV Area (m 2 ) Solar Irradiance (W / m 2) PV Temp (℃) Isc (A) Voc (V) Pm (W) Eta (%)
Ref. 11:36 (am) 0.681 772.156 29.554 6.294 15.914 63.551 12.078
11:37 (am) 0.681 764.826 29.508 6.318 15.931 63.254 12.137
11:39 (am) 0.681 760.889 29.521 6.282 15.875 62.408 12.307
11:40 (am) 0.681 765.504 29.513 6.317 15.923 63.177 12.112
11:41 (am) 0.681 735.503 29.293 6.271 15.900 62.575 12.485
Average 759.775 29.478 6.296 15.909 62.993 12.170
표 2 표 2는 정남쪽 방향에서 내각이 30°인 반사탭의 시간변화에 따른 I-V 측정결과.
Group Time PV Area(m2) Solar Irradiance (W/m2) PV Temp(℃) Isc(A) Voc(V) Pm(W) Eta(%)
30° 11:53(am) 0.681 760.889 30.909 6.401 15.931 62.850 12.122
11:54(am) 0.681 749.893 29.213 6.280 15.919 61.801 12.095
11:55(am) 0.681 753.423 29.062 6.313 15.907 62.015 12.080
11:56(am) 0.681 753.423 29.153 6.188 15.901 62.161 12.108
11:57(am) 0.681 751.521 29.131 6.219 15.920 62.637 12.231
Average 753.830 29.493 6.280 15.915 62.293 12.127
TABLE 2 Table 2 shows the IV measurement results with time variation of a reflective tap with an internal angle of 30 ° in the true south direction.
Group Time PV Area (m 2 ) Solar Irradiance (W / m 2) PV Temp (℃) Isc (A) Voc (V) Pm (W) Eta (%)
30 ° 11:53 (am) 0.681 760.889 30.909 6.401 15.931 62.850 12.122
11:54 (am) 0.681 749.893 29.213 6.280 15.919 61.801 12.095
11:55 (am) 0.681 753.423 29.062 6.313 15.907 62.015 12.080
11:56 (am) 0.681 753.423 29.153 6.188 15.901 62.161 12.108
11:57 (am) 0.681 751.521 29.131 6.219 15.920 62.637 12.231
Average 753.830 29.493 6.280 15.915 62.293 12.127
표 3 표 3은 정남쪽 방향에서 내각이 45°인 반사탭의 시간변화에 따른 I-V 측정결과.
Group Time PV Area(m2) Solar Irradiance (W/m2) PV Temp(℃) Isc(A) Voc(V) Pm(W) Eta(%)
45° 12:09(pm) 0.681 766.997 28.754 6.460 16.051 64.798 12.398
12:10(pm) 0.681 767.133 28.520 6.444 16.092 64.810 12.398
12:11(pm) 0.681 765.911 28.587 6.433 16.088 64.663 12.390
12:12(pm) 0.681 766.319 28.389 6.445 16.093 64.754 12.401
12:14(pm) 0.681 761.974 28.445 6.414 16.012 63.931 12.313
Average 28.539 6.439 16.067 64.591 12.380
TABLE 3 Table 3 shows the IV measurement results with time variation of a reflective tap with an internal angle of 45 ° in the true south direction.
Group Time PV Area (m 2) Solar Irradiance (W / m 2) PV Temp (℃) Isc (A) Voc (V) Pm (W) Eta (%)
45 ° 12:09 (pm) 0.681 766.997 28.754 6.460 16.051 64.798 12.398
12:10 (pm) 0.681 767.133 28.520 6.444 16.092 64.810 12.398
12:11 (pm) 0.681 765.911 28.587 6.433 16.088 64.663 12.390
12:12 (pm) 0.681 766.319 28.389 6.445 16.093 64.754 12.401
12:14 (pm) 0.681 761.974 28.445 6.414 16.012 63.931 12.313
Average 28.539 6.439 16.067 64.591 12.380
표 4 표 4는 정남쪽 방향에서 내각이 60°인 반사탭의 시간변화에 따른 I-V 측정결과.
Group Time PV Area(m2) Solar Irradiance (W/m2) PV Temp(℃) Isc(A) Voc(V) Pm(W) Eta(%)
60° 12:21(pm) 0.681 754.644 28.990 6.243 16.111 64.678 12.578
12:21(pm) 0.681 743.784 28.573 6.139 16.102 63.996 12.627
12:22(pm) 0.681 751.250 28.759 6.194 16.072 64.163 12.534
12:24(pm) 0.681 754.509 28.775 6.236 16.075 64.511 12.548
12:25(pm) 0.681 753.559 28.982 6.229 16.054 64.148 12.493
Average 751.549 28.818 6.208 16.083 64.299 12.556
Table 4 Table 4 shows the results of the IV measurement with the change of time of the reflective tap with the internal angle of 60 ° in the true south direction.
Group Time PV Area (m 2 ) Solar Irradiance (W / m 2) PV Temp (℃) Isc (A) Voc (V) Pm (W) Eta (%)
60 ° 12:21 (pm) 0.681 754.644 28.990 6.243 16.111 64.678 12.578
12:21 (pm) 0.681 743.784 28.573 6.139 16.102 63.996 12.627
12:22 (pm) 0.681 751.250 28.759 6.194 16.072 64.163 12.534
12:24 (pm) 0.681 754.509 28.775 6.236 16.075 64.511 12.548
12:25 (pm) 0.681 753.559 28.982 6.229 16.054 64.148 12.493
Average 751.549 28.818 6.208 16.083 64.299 12.556
상기 표 1 내지 4와 같이 각 샘플별 Voc(개방전압)와 효율 평균값을 보면 Reference 샘플부터 내각이 30°,45°,60°로 각도가 높아질수록 값이 증가됨을 알 수 있다. 하지만 전반적인 데이터를 볼 때 상반된 부분이 많다. 이러한 이유는 표에서 나타나 있는 것과 같이, 측정시간은 1분간격으로 일정하나 데이터 측정 당시 기후조건이 동일하지 못해 solar irradiance(일사량) 값이 735~772W/㎡ 이었고 PV temp(모듈 온도) 또한 28.3~30.9℃ 로 각 샘플간 환경인자의 폭이 결과데이터에 영향을 미쳤다고 볼 수 있다. As shown in Tables 1 to 4, the Voc (opening voltage) and efficiency average values for each sample show that the values increase as the angle increases from 30 ° to 45 ° to 60 ° from the reference sample. However, when looking at the overall data, there are many contradictions. The reason for this is that as shown in the table, the measurement time is constant at 1 minute intervals, but the climatic conditions were not the same at the time of data measurement, so the solar irradiance value was 735 ~ 772W / ㎡ and the PV temp was also 28.3 ~ At 30.9 ° C, it can be said that the width of environmental factors between samples influenced the result data.
위와 같은 이유로 하기의 2차 테스트에서는 solar irradiance(일사량) 값과 온도를 일정하게(750W/㎡, 28.5℃) 유지하면서 샘플별로 측정하였으며, 그 결과를 표 5에 나타내었다. In the following second test, the solar irradiance value and temperature were measured for each sample while maintaining a constant temperature (750 W / m 2 and 28.5 ° C.), and the results are shown in Table 5 below.
표 5 표 5는 solar irradiance(일사량) 750W/㎡, 모듈 온도 28.5℃인 조건에서 반사탭의 각도에 따른 I-V 측정결과.
Sample Isc(A) Voc(V) Pm(W) Eta(%)
Ref. 6.0150 16.0776 61.5646 9.0350
30° 6.1092 16.1671 62.9421 9.2372
Yield(%) 1.56 0.56 2.24 2.24
45° 6.1042 16.2133 63.3603 9.2986
Yield(%) 1.48 0.84 2.92 2.92
60° 6.1331 16.2445 64.5930 9.4795
Yield(%) 1.96 1.04 4.92 4.92
Table 5 Table 5 shows IV measurement results according to the angle of the reflecting tap under the condition of solar irradiance 750W / ㎡ and module temperature of 28.5 ° C.
Sample Isc (A) Voc (V) Pm (W) Eta (%)
Ref. 6.0150 16.0776 61.5646 9.0350
30 ° 6.1092 16.1671 62.9421 9.2372
Yield (%) 1.56 0.56 2.24 2.24
45 ° 6.1042 16.2133 63.3603 9.2986
Yield (%) 1.48 0.84 2.92 2.92
60 ° 6.1331 16.2445 64.5930 9.4795
Yield (%) 1.96 1.04 4.92 4.92
상기 표 5에서 보는 바와 같이 본 발명은 정남쪽으로 태양광이 비추고 있을 경우 반사탭이 없을 때 최대 발전량은 약 61.5W이고, 내각이 30°인 반사탭은 약 62.9W(2% 증가), 내각이 45°인 반사탭은 약 63.4W(3% 증가), 내각이 60°인 반사탭은 약 64.6W(5% 증가)로써 반사탭의 내각이 높을수록 발전량이 증가함을 알 수 있다. 이는 태양광이 모듈면에 수직으로 비춰질 경우 모듈에 있는 반사탭의 곡면에 추가적인 반사광이 태양광 모듈 내부로 입사되어 지기 때문이다. As shown in Table 5, in the present invention, when the sunlight is shining toward the south, the maximum amount of power generated when there is no reflective tab is about 61.5W, and the reflective tab having an internal angle of 30 ° is about 62.9W (2% increase). The reflection tab at 45 ° is about 63.4W (3% increase), and the reflection tab at 60 ° is about 64.6W (5% increase). This is because additional reflected light is incident on the curved surface of the reflective tab in the module when sunlight is perpendicular to the module surface.
첨부된 도 7은 상기 1차 및 2차 실험의 데이터를 I-V curve 로 도시한 것으로 환경적 요인이 균일하지 못했던 1차실험에 비해 2차실험에서는 반사탭의 각도가 높아질수록 커브면적이 넓어짐을 확인할 수 있다.FIG. 7 shows the data of the first and second experiments as IV curves. In the second experiment, the curve area becomes wider as the angle of the reflective tap increases in comparison with the first experiment where the environmental factors were not uniform. Can be.
한편, 대한민국은 하루 평균 일사량을 약 3~4시간으로 예측되고 있고, 일출시간 기준으로 약 정오에서 오후 1시경에 가장 높은 발전효율을 보여주고 있다. 하지만 맑은 날 일지라도 그 외에 시간에서는 태양광의 입사각이 낮아서 발전량이 미비하게 측정된다. 이를 감안해 본 발명에서는 일출/일몰시간대의 낮은 발전량을 대비하여 본 샘플로 3차 실험을 실시하였고, 결과는 하기의 표 7 내지 9와 같다.Meanwhile, the Republic of Korea is predicted to have an average amount of insolation of about 3 to 4 hours per day, and shows the highest generation efficiency from about noon to about 1 pm in terms of sunrise time. However, even on sunny days, the time of incidence of sunlight is low at other times, resulting in inadequate power generation. In view of this, in the present invention, the third experiment was conducted with this sample in preparation for the low power generation at sunrise / sunset time, and the results are shown in Tables 7 to 9 below.
표 7 표 7은 태양광의 입사각이 0°일 때 반사탭의 각도변화별 I-V 측정결과.
Sample Solar Irradiance(°) Voc(V) Isc(A) Pm(W) Eta(%)
Ref 0 14.81 1.07 11.49 2.21
30° 0 15.01 1.06 11.54 2.24
45° 0 14.95 1.04 11.27 2.19
60° 0 15.16 1.02 11.36 2.27
TABLE 7 Table 7 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 0 °.
Sample Solar Irradiance (°) Voc (V) Isc (A) Pm (W) Eta (%)
Ref 0 14.81 1.07 11.49 2.21
30 ° 0 15.01 1.06 11.54 2.24
45 ° 0 14.95 1.04 11.27 2.19
60 ° 0 15.16 1.02 11.36 2.27
표 8 표 8은 태양광의 입사각이 30°일 때 반사탭의 각도변화별 I-V 측정결과.
Sample Solar Irradiance(°) Voc(V) Isc(A) Pm(W) Eta(%)
Ref 30 15.22 2.75 31.44 4.98
30° 30 15.98 2.88 33.49 5.03
45° 30 15.74 2.27 27.75 4.87
60° 30 16.30 4.04 48.72 10.69
Table 8 Table 8 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 30 °.
Sample Solar Irradiance (°) Voc (V) Isc (A) Pm (W) Eta (%)
Ref 30 15.22 2.75 31.44 4.98
30 ° 30 15.98 2.88 33.49 5.03
45 ° 30 15.74 2.27 27.75 4.87
60 ° 30 16.30 4.04 48.72 10.69
표 9 표 9는 태양광의 입사각이 60°일 때 반사탭의 각도변화별 I-V 측정결과.
Sample Solar Irradiance(°) Voc(V) Isc(A) Pm(W) Eta(%)
Ref 60 16.25 4.18 48.24 7.70
30° 60 16.32 4.43 51.06 8.18
45° 60 16.18 4.43 50.13 9.70
60° 60 17.01 4.24 58.08 11.21
Table 9 Table 9 shows the IV measurement results for each angle change of the reflective tap when the incident angle of sunlight is 60 °.
Sample Solar Irradiance (°) Voc (V) Isc (A) Pm (W) Eta (%)
Ref 60 16.25 4.18 48.24 7.70
30 ° 60 16.32 4.43 51.06 8.18
45 ° 60 16.18 4.43 50.13 9.70
60 ° 60 17.01 4.24 58.08 11.21
상기 표 7 내지 9와 같이 태양광의 입사각이 O°인 경우 일출/일몰인 때로써 태양광이 모듈과 거의 평행인 상황으로 발전량이 미비한 시간대이다. 그 다음 입사각이 30°인 경우, 이때는 태양이 1시간에 약 15°움직이므로 일출 후 2시간 또는 일몰 전 2시간 정도로 예측되며, 분석결과에서 보면 전반적으로 ref. 에 비해 내각이 60°인 반사탭도 모듈의 발전량이 증가했음을 알 수 있다. 다음으로 태양광 입사각이 60°인 경우, 이때는 정오를 기준으로 2시간 전후인 위치로써 이 지점에서도 반사탭의 각도가 클수록 발전량의 증가함을 알 수 있다.As shown in Tables 7 to 9, when the incident angle of solar light is O °, it is a time when sunrise / sunset is insufficient and the amount of power generation is due to the situation that the solar light is substantially parallel to the module. If the angle of incidence is 30 °, then the sun moves about 15 ° per hour, so it is predicted to be about 2 hours after sunrise or 2 hours before sunset. Compared to the reflective tap with the internal angle of 60 °, the amount of power generated by the module is increased. Next, in the case where the incident angle of sunlight is 60 °, the power generation amount is increased as the angle of the reflective tab increases even at this point as the position which is about 2 hours around noon.
상기와 같이 이루어지는 본 발명은 태양광 모듈(1)의 테두리(2)에 반사탭(10)을 결합하여 입사되는 태양광을 태양광 모듈 측으로 반사시킴으로써 태양광의 손실을 최소화하고 집광효율을 증대시킬 수 있으며, 본 발명에 따른 반사탭은 저렴한 비용으로 제조가 가능하고, 현장상황에 따라 적절한 대처와 함께 신속하게 시공이 가능하며, 기존에 설치된 고정식 태양광 발전장치 뿐만 아니라 추적식 태양광 발전장치에도 적용할 수 있으므로 경제성과 실용성, 효율성이 우수한 장점이 있다. The present invention made as described above can minimize the loss of sunlight and increase the light collection efficiency by combining the reflective tab 10 to the edge 2 of the solar module 1 to reflect the incident sunlight toward the solar module side. In addition, the reflective tab according to the present invention can be manufactured at low cost, and can be quickly installed with appropriate measures according to the site situation, and is applied to not only the conventional fixed solar power generator but also the tracking solar power generator. As it can be done, it is economic, practical and efficient.
부호의설명Explanation of Signs
1 : 태양광 모듈 1: solar module
2 : 테두리2: border
10,10′ : 반사탭10,10 ′: Reflective tap
11 : 태양광 반사부11: solar reflector
12 : 제1결합부12: first coupling part
13 : 제2결합부13: second coupling part
14 : 제3결합부14: third coupling part

Claims (5)

  1. 태양광을 집광하기 위한 태양광 모듈이 구비되는 태양광 발전장치에 있어서, In the photovoltaic device provided with a solar module for condensing sunlight,
    상기 태양광 모듈(1)의 테두리에는 입사되는 태양광을 반사시키기 위한 삼각형상의 태양광 반사부(11)를 포함하는 반사탭(10)이 결합되어, The edge of the photovoltaic module 1 is coupled to a reflective tab 10 including a triangular sun light reflector 11 for reflecting the incident sunlight,
    태양광 모듈의 주변으로 입사되는 태양광을 태양광 모듈 측으로 반사시켜 집광효율을 증대시킨 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치.A photovoltaic device having increased light collecting efficiency through a reflective tab, characterized by increasing the light collecting efficiency by reflecting sunlight incident to the periphery of the solar module toward the photovoltaic module.
  2. 제1항에 있어서, 상기 반사탭은 내각이 30~60°인 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치.The solar cell apparatus of claim 1, wherein the reflective tab has an internal angle of 30 ° to 60 °.
  3. 제1항에 있어서, 상기 반사탭의 하단에는 태양광 모듈의 외주면에 결합하기 위한 결합부가 연장형성되는 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치.The solar cell apparatus of claim 1, wherein a coupling part for coupling to an outer circumferential surface of the solar module is extended at a lower end of the reflective tab.
  4. 제1항에 있어서, 상기 반사탭은 연속적으로 배열설치되는 복수의 태양광 모듈에 설치되되, 인접한 두 개의 태양광 모듈 사이에 설치될 수 있도록 이등변 삼각형으로 형성되거나 최외측에 설치되는 태양광 모듈의 최외측 테두리에 설치될 수 있도록 직각 삼각형으로 형성되는 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치.The photovoltaic module of claim 1, wherein the reflective tabs are installed in a plurality of solar modules arranged in series, and formed in an isosceles triangle or installed at the outermost side so as to be installed between two adjacent solar modules. Photovoltaic device to increase the light collecting efficiency through the reflection tab, characterized in that formed in a right triangle so as to be installed on the outermost edge.
  5. 제3항 또는 제4항에 있어서, 상기 결합부는 상기 태양광 반사부의 하단으로부터 수평방향으로 내측 방향으로 "─"자 형상으로 연장형성되는 제1결합부, 태양광 반사부의 하단으로부터 수직으로 "│"자 형상으로 연장형성되는 제2결합부 또는 태양광 반사부의 하단으로부터 "T"자 형상으로 연장형성되는 제3결합부 중 어느 하나인 것을 특징으로 하는 반사탭을 통해 집광효율을 증대시킨 태양광 발전장치.According to claim 3 or claim 4, wherein the coupling portion is the first coupling portion extending in a "-" shape in the horizontal direction in the horizontal direction from the lower end of the solar reflecting portion, vertically from the lower end of the solar reflecting portion "│" Solar light that has increased condensing efficiency through a reflective tab, characterized in that any one of the "second coupling part extending in the shape of a shape or the third coupling part extending in a shape of" T "from the lower end of the solar reflection part. Power generation device.
PCT/KR2016/005359 2015-11-19 2016-05-20 Solar power generation apparatus for increasing light collection efficiency through reflection tap WO2017086558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0162810 2015-11-19
KR20150162810 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017086558A1 true WO2017086558A1 (en) 2017-05-26

Family

ID=58717481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005359 WO2017086558A1 (en) 2015-11-19 2016-05-20 Solar power generation apparatus for increasing light collection efficiency through reflection tap

Country Status (1)

Country Link
WO (1) WO2017086558A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158281A (en) * 2005-11-30 2007-06-21 Hideyuki Tsugane Internal light reflection type photovoltaic generation element
US20070227582A1 (en) * 2006-03-28 2007-10-04 Peter Zupei Chen Low aspect ratio concentrator photovoltaic module with improved light transmission and reflective properties
KR20070104300A (en) * 2007-06-20 2007-10-25 황우성 Concentrating photovoltaic module structure
KR20090095079A (en) * 2008-03-04 2009-09-09 광주과학기술원 Photovoltaic system transforming solar ray reflected by reflector to electric energy
JP2014204112A (en) * 2013-04-07 2014-10-27 守宏 早乙女 Condenser lens, light-emitting diode (visible light), reflector-equipped solar cell, and photovoltaic power generation system with high-hierarchy structure integrated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158281A (en) * 2005-11-30 2007-06-21 Hideyuki Tsugane Internal light reflection type photovoltaic generation element
US20070227582A1 (en) * 2006-03-28 2007-10-04 Peter Zupei Chen Low aspect ratio concentrator photovoltaic module with improved light transmission and reflective properties
KR20070104300A (en) * 2007-06-20 2007-10-25 황우성 Concentrating photovoltaic module structure
KR20090095079A (en) * 2008-03-04 2009-09-09 광주과학기술원 Photovoltaic system transforming solar ray reflected by reflector to electric energy
JP2014204112A (en) * 2013-04-07 2014-10-27 守宏 早乙女 Condenser lens, light-emitting diode (visible light), reflector-equipped solar cell, and photovoltaic power generation system with high-hierarchy structure integrated

Similar Documents

Publication Publication Date Title
Mallick et al. Non-concentrating and asymmetric compound parabolic concentrating building façade integrated photovoltaics: an experimental comparison
Coventry Performance of a concentrating photovoltaic/thermal solar collector
Gaur et al. Performance of photovoltaic modules of different solar cells
Ye et al. On PV module temperatures in tropical regions
Makrides et al. Performance of photovoltaics under actual operating conditions
Dag et al. Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions
Famoso et al. Performance comparison between low concentration photovoltaic and fixed angle PV systems
Wang et al. Grid-Connected semitransparent building-integrated photovoltaic system: the comprehensive case study of the 120 kWp plant in Kunming, China
Sato et al. Design and testing of highly transparent concentrator photovoltaic modules for efficient dual‐land‐use applications
Judkins et al. Performance results of a low-concentration photovoltaic system based on high efficiency back contact cells
Adar et al. Performance analysis of PV grid-connected in fours special months of the year
Huot et al. Performance investigation of tempered glass-based monocrystalline and polycrystalline solar photovoltaic panels
Adar et al. Simulation study of three PV systems
Faranda et al. Analysis of a PV system with single-axis tracking energy production and performances
Owen et al. Heat dissipation factors for building-attached PV modules
WO2017086558A1 (en) Solar power generation apparatus for increasing light collection efficiency through reflection tap
Mallick et al. Electrical performance evaluation of low‐concentrating non‐imaging photovoltaic concentrator
CN205945604U (en) Green house's photovoltaic system
Mo et al. Performance of a passively cooled Fresnel lens concentrating photovoltaic module
Narasimman et al. Performance analysis of 1‐Sun and 2‐Sun ridge concentrator PV system with various geometrical conditions
Kramer The cost of solar energy production has plunged, but it needs to fall further
Ghosal et al. Performance of a micro-cell based transfer printed HCPV system in the South Eastern US
Daneček et al. Design and data comparison of the photovoltaic power plants in the southern and northern hemispheres
Paul et al. Enhancing the performance of a building integrated compound parabolic photovoltaic concentrator using a hybrid photovoltaic cell
CN110375676A (en) A kind of photodetector for double-shaft solar tracing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866511

Country of ref document: EP

Kind code of ref document: A1