WO2017086468A1 - Hybrid vehicle and method for controlling same - Google Patents

Hybrid vehicle and method for controlling same Download PDF

Info

Publication number
WO2017086468A1
WO2017086468A1 PCT/JP2016/084331 JP2016084331W WO2017086468A1 WO 2017086468 A1 WO2017086468 A1 WO 2017086468A1 JP 2016084331 W JP2016084331 W JP 2016084331W WO 2017086468 A1 WO2017086468 A1 WO 2017086468A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
hybrid vehicle
motor generator
idle stop
stop control
Prior art date
Application number
PCT/JP2016/084331
Other languages
French (fr)
Japanese (ja)
Inventor
憲仁 岩田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017086468A1 publication Critical patent/WO2017086468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This disclosure relates to a hybrid vehicle and a control method thereof.
  • HEV hybrid vehicle
  • driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
  • a hybrid vehicle includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and the engine power is transmitted via a clutch. And a control device that executes idle stop control that stops fuel injection of the engine when a preset idle stop control execution condition is satisfied.
  • the clutch is controlled to be disengaged, and the target rotational speed of the motor generator is set to zero.
  • the clutch is controlled to be disengaged, and the target rotational speed of the motor generator is set to zero.
  • the idle stop control is executed to stop the fuel injection of the engine when the idle stop control execution condition is satisfied, the clutch is disengaged, and the rotational torque on the transmission side is transmitted to the engine side.
  • the target rotational speed of the motor generator is set to zero, it is possible to suppress the reverse rotation of the engine immediately before stopping the forward rotation and the occurrence of roll vibration. Thereby, the comfort of a hybrid vehicle can be improved.
  • the motor generator can generate a resistance torque against the rotation of the engine by setting the target rotation speed of the motor generator to zero. As a result, the time until the engine speed reaches zero can be shortened. As a result, it is possible to reduce the time required from when the engine is restarted (restart request) until the engine is restarted.
  • the motor generator is driven by the energy of the inertia (inertia) of the engine after the fuel injection of the engine is stopped by executing the idle stop control until the engine speed actually becomes zero. You can also.
  • the energy can be recovered up to the inertia of the engine by the motor generator. As a result, fuel consumption can be improved.
  • a hybrid vehicle includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, a transmission in which the engine power is transmitted via a clutch, and a control device
  • the control device executes idle stop control for stopping fuel injection of the engine when a preset idle stop control execution condition is satisfied, and the clutch is disengaged.
  • the motor generator is driven while being controlled in a disconnected state.
  • the idle stop control execution condition can be exemplified by a condition that the hybrid vehicle is decelerating.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart illustrating an example of control processing by the control device.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and a hybrid having an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle.
  • a system 30 is provided.
  • the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the engine 10 is a diesel engine or a gasoline engine.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 via a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • the transmission 20 is not particularly limited by the type of manual transmission (MT) or automatic transmission (AT, AMT).
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31, and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in this order.
  • the high voltage battery 32 includes a lithium ion battery and a nickel metal hydride battery.
  • the low voltage battery 34 is a lead battery.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the low voltage battery 34 supplies power to various vehicle electrical components 36.
  • BMS 39 battery management system
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the first pulley 15, the second pulley 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be, for example, a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20.
  • the motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the hybrid system 30 described above is controlled by the control device 80. Specifically, the hybrid system 30 is controlled by the control device 80 to assist at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32 when the HEV starts or accelerates. On the other hand, during inertial running or braking, regenerative power generation is performed by the motor generator 31, and excess kinetic energy is converted into electric power to charge the high voltage battery 32.
  • control device 80 controls the disengagement and connection of the clutch 14, and also controls the gear stage of the transmission 20 by controlling the speed change actuator 21.
  • the control device 80 executes idle stop control for stopping fuel injection of the engine 10 when a condition (idle stop control execution condition) for executing idle stop control set in advance is satisfied, and the clutch 14 is controlled to a disconnected state (a disconnected state), and the target rotational speed of the motor generator 31 is set to zero.
  • a condition for executing idle stop control set in advance is satisfied
  • the clutch 14 is controlled to a disconnected state (a disconnected state)
  • the target rotational speed of the motor generator 31 is set to zero.
  • FIG. 2 is a flowchart showing an example of control processing by the control device 80.
  • the control device 80 repeatedly executes the flowchart of FIG. 2 at a predetermined cycle. It is assumed that the idle stop control is not executed at the first start of FIG. 2, and the normal HEV travel control (referred to as normal control) is executed.
  • step S10 the control device 80 determines whether or not the idle stop control execution condition is satisfied.
  • the condition that HEV is at the time of deceleration is used as an example. That is, the control device 80 according to the present embodiment executes the idle stop control when the HEV is decelerated. Specifically, the control device 80 acquires the HEV vehicle speed based on the detection result of a vehicle speed sensor (not shown), and determines whether the HEV is in a deceleration state based on the acquired vehicle speed. To do. Then, the control device 80 determines that the idle stop control execution condition is satisfied when it is determined that the HEV is in a deceleration state.
  • the content of step S10 mentioned above is only an example, and the specific content of step S10 is not limited to this.
  • step S10 When it is determined No in step S10 (when the idle stop control execution condition is not satisfied), the control device 80 ends the execution of the flowchart.
  • the control device 80 performs idle stop control for stopping the fuel injection of the engine 10 and controls the clutch 14 to the disengaged state, so that the transmission 20 side (that is, the drive wheel) (24 side) rotational torque is not transmitted to the engine 10 side, and the target rotational speed of the motor generator 31 (MG) is set to zero (step S20). After step S20, the control device 80 ends the execution of the flowchart.
  • the control device 80 is provided with a target rotational speed setting unit (which is realized by a CPU, for example) that sets the target rotational speed of the motor generator 31. Controls the motor generator 31 so that the rotational speed of the motor generator 31 becomes the rotational speed set in the target rotational speed setting unit. Therefore, when setting the target rotational speed to zero in step S20, specifically, the control device 80 sets the value of the target rotational speed set in the target rotational speed setting unit to zero. As a result, the motor generator 31 is controlled so that its rotational speed is actually zero.
  • a target rotational speed setting unit which is realized by a CPU, for example
  • the engine 10 can rotate for a while due to the inertia (inertia) of the engine 10, but eventually the rotation speed becomes zero. Further, the target rotational speed of the motor generator 31 is set to zero in step S20, so that the rotational speed of the motor generator 31 is finally zero. However, in this case, the motor generator 31 is driven by the inertia (inertia) energy of the engine 10 until the rotational speed of the engine 10 actually becomes zero after the fuel injection of the engine 10 is stopped. The motor generator 31 can execute regenerative power generation.
  • the period (execution period) for executing the control process according to step S20 is not particularly limited, but in the present embodiment, as an example, the idle stop control execution condition is satisfied. That is, the control device 80 according to the present embodiment continuously executes the control process of step S20 while the idle stop control execution condition is satisfied. When the idle stop control execution condition is not satisfied because the HEV is not in the deceleration state, the control device 80 stops the control process in step S20 and returns to the normal control state.
  • the idle stop control execution condition when the idle stop control execution condition is satisfied, the idle stop control for stopping the fuel injection of the engine 10 is performed, and the clutch 14 is disengaged, and the transmission 20 side , And the target rotational speed of the motor generator 31 is set to zero, so that the engine 10 reversely rotates immediately before stopping normal rotation to generate roll vibration. This can be suppressed. Thereby, the comfort of HEV can be improved.
  • the motor generator 31 can generate a resistance torque against the rotation of the engine 10 by setting the target rotational speed of the motor generator 31 to zero. Thereby, time until the rotation speed of the engine 10 becomes zero can also be shortened. As a result, it is also possible to reduce the time required from when the engine 10 is restarted (restart request) until the engine 10 is restarted.
  • the motor is driven by the inertia (inertia) energy of the engine 10 after the fuel injection of the engine 10 is stopped by the execution of the idle stop control until the rotational speed of the engine 10 actually becomes zero.
  • the generator 31 can also be driven. Thereby, the energy can be recovered by the motor generator 31 up to the inertia of the engine 10. As a result, fuel consumption can be improved.
  • the hybrid vehicle of the present disclosure is useful in that it can suppress the occurrence of engine roll vibration when the idle stop control is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Provided is a hybrid vehicle provided with: a hybrid system 30 having a motor generator 31 connected to an output axis 13 which transmits power of an engine 10; a transmission 20 to which the power of the engine is transmitted via a clutch 14; and a control device 80, wherein the control device, when a preset idling stop control execution condition is fulfilled, controls the clutch to a disengaged state and sets a target number of revolutions of the motor generator to zero while executing an idling stop control that stops fuel injection of the engine.

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本開示はハイブリッド車両及びその制御方法に関する。 This disclosure relates to a hybrid vehicle and a control method thereof.
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や制動時においてはモータージェネレーターによる回生発電が行われる(例えば特許文献1参照)。 In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. . In this HEV, driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
 また、近年、燃費を向上させるために、エンジンの燃料噴射を停止させるアイドルストップ制御を実行するHEVも開発されている(例えば特許文献2参照)。しかしながら、アイドルストップ制御の実行によってエンジンの正回転が停止する直前に、エンジンが圧縮反発により逆回転して、ブルブルという不快な振動を発生する(以下、この不快な振動を「ロール振動」と称する)。 In recent years, in order to improve fuel efficiency, HEVs that perform idle stop control for stopping engine fuel injection have also been developed (see, for example, Patent Document 2). However, immediately before the forward rotation of the engine stops due to the execution of the idle stop control, the engine reversely rotates due to compression repulsion and generates an unpleasant vibration called bull (hereinafter, this unpleasant vibration is referred to as “roll vibration”). ).
日本国特開2002-238105号公報Japanese Unexamined Patent Publication No. 2002-238105 日本国特開2001-54208号公報Japanese Unexamined Patent Publication No. 2001-54208
 本開示の一形態は上記のことを鑑みてなされたものであり、その目的は、アイドルストップ制御が実行されたときのエンジンのロール振動の発生を抑制することができるハイブリッド車両及びその制御方法を提供することにある。
 また、本開示の他形態の目的は、アイドルストップ制御が実行されたときの回転数がゼロになるまでの時間を短縮させることができるハイブリッド車両及びその制御方法を提供することにある。
One aspect of the present disclosure has been made in view of the above, and an object of the present disclosure is a hybrid vehicle that can suppress the occurrence of engine roll vibration when idle stop control is executed, and a control method thereof. It is to provide.
Another object of the present disclosure is to provide a hybrid vehicle and a control method thereof that can shorten the time until the rotational speed becomes zero when the idle stop control is executed.
 上記の目的を達成するための本開示の一形態に係るハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、制御装置と、を備えたハイブリッド車両であり、前記制御装置は、予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターの目標回転数をゼロに設定することを特徴とする。 In order to achieve the above object, a hybrid vehicle according to an embodiment of the present disclosure includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and the engine power is transmitted via a clutch. And a control device that executes idle stop control that stops fuel injection of the engine when a preset idle stop control execution condition is satisfied. In addition, the clutch is controlled to be disengaged, and the target rotational speed of the motor generator is set to zero.
 また、上記の目的を達成するための本開示の一形態に係るハイブリッド車両の制御方法は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、を備えたハイブリッド車両の制御方法であり、予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターの目標回転数をゼロに設定することを特徴とする。 In addition, a hybrid vehicle control method according to an aspect of the present disclosure for achieving the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and the engine power is a clutch. And a transmission transmitted through the vehicle, and executes an idle stop control for stopping fuel injection of the engine when a preset idle stop control execution condition is satisfied. In addition, the clutch is controlled to be disengaged, and the target rotational speed of the motor generator is set to zero.
 本開示によれば、アイドルストップ制御実行条件が満たされた場合にエンジンの燃料噴射を停止させるアイドルストップ制御が実行されるとともに、クラッチを断状態にして、トランスミッション側の回転トルクをエンジン側に伝達されないようにすることができ、且つモータージェネレーターの目標回転数がゼロに設定されるので、エンジンが正回転停止直前に逆回転してロール振動を発生することを抑制することができる。これにより、ハイブリッド車両の快適性を向上させることができる。 According to the present disclosure, the idle stop control is executed to stop the fuel injection of the engine when the idle stop control execution condition is satisfied, the clutch is disengaged, and the rotational torque on the transmission side is transmitted to the engine side. In addition, since the target rotational speed of the motor generator is set to zero, it is possible to suppress the reverse rotation of the engine immediately before stopping the forward rotation and the occurrence of roll vibration. Thereby, the comfort of a hybrid vehicle can be improved.
 また本開示によれば、モータージェネレーターの目標回転数がゼロに設定されることで、このモータージェネレーターはエンジンの回転に対する抵抗トルクを発生させることができる。これにより、エンジンの回転数がゼロになるまでの時間を短縮させることもできる。この結果、エンジンを再度始動させるとの要求(再始動要求)を受けてから、エンジンが再始動するまでに要する時間を短縮することもできる。 Also, according to the present disclosure, the motor generator can generate a resistance torque against the rotation of the engine by setting the target rotation speed of the motor generator to zero. As a result, the time until the engine speed reaches zero can be shortened. As a result, it is possible to reduce the time required from when the engine is restarted (restart request) until the engine is restarted.
 また本開示によれば、アイドルストップ制御の実行によってエンジンの燃料噴射が停止されてから実際にエンジンの回転数がゼロになるまでの間、エンジンのイナーシャ(慣性)のエネルギーによってモータージェネレーターを駆動することもできる。これにより、モータージェネレーターによって、エンジンのイナーシャ分までエネルギーを回収することができる。この結果、燃費を向上させることもできる。 Further, according to the present disclosure, the motor generator is driven by the energy of the inertia (inertia) of the engine after the fuel injection of the engine is stopped by executing the idle stop control until the engine speed actually becomes zero. You can also. Thus, the energy can be recovered up to the inertia of the engine by the motor generator. As a result, fuel consumption can be improved.
 また、本開示の他形態に係るハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、制御装置と、を備えたハイブリッド車両であり、前記制御装置は、予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターを駆動することを特徴とする。 Further, a hybrid vehicle according to another embodiment of the present disclosure includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, a transmission in which the engine power is transmitted via a clutch, and a control device The control device executes idle stop control for stopping fuel injection of the engine when a preset idle stop control execution condition is satisfied, and the clutch is disengaged. The motor generator is driven while being controlled in a disconnected state.
なお、アイドルストップ制御実行条件としては、ハイブリッド車両が減速時であるとの条件を例示できる。 Note that the idle stop control execution condition can be exemplified by a condition that the hybrid vehicle is decelerating.
 本開示によれば、アイドルストップ制御が実行されたときのエンジンのロール振動の発生を抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of engine roll vibration when the idle stop control is executed.
図1は、本開示の実施形態からなるハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure. 図2は、制御装置による制御処理の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of control processing by the control device.
 以下に、本開示の実施の形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両の構成図である。このハイブリッド車両(以下「HEV」という)は、普通乗用車のみならず、バスやトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure. This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and a hybrid having an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle. A system 30 is provided.
 エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。クランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を介してトランスミッション20に伝達される。 In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 via a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20としては、手動変速機(MT)、自動変速機(AT、AMT)の種別による制約は特に無い。 The transmission 20 is not particularly limited by the type of manual transmission (MT) or automatic transmission (AT, AMT).
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、このモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。 The hybrid system 30 includes a motor generator 31, and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in this order.
 高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。 Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery.
 DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。 The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.
 このハイブリッドシステム30における種々のパラメータ、例えば、電流値、電圧値やSOCなどは、BMS39(バッテリーマネージメントシステム)により検出される。 Various parameters in the hybrid system 30, such as current value, voltage value, and SOC, are detected by the BMS 39 (battery management system).
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、エンジン10との間で動力を伝達する。なお、第1プーリー15、第2プーリー16及びベルト状部材17の代わりに、ギアボックス等を用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限定されるものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であってもよい。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the first pulley 15, the second pulley 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be, for example, a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。 The motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 上述したハイブリッドシステム30は制御装置80によって制御される。具体的にはハイブリッドシステム30は、制御装置80に制御されることで、HEVの発進時や加速時には、高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。 The hybrid system 30 described above is controlled by the control device 80. Specifically, the hybrid system 30 is controlled by the control device 80 to assist at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32 when the HEV starts or accelerates. On the other hand, during inertial running or braking, regenerative power generation is performed by the motor generator 31, and excess kinetic energy is converted into electric power to charge the high voltage battery 32.
 また制御装置80は、ハイブリッドシステム30の他に、クラッチ14の切断及び接続を制御するとともに、変速用アクチュエーター21を制御することでトランスミッション20のギア段も制御する。 Further, in addition to the hybrid system 30, the control device 80 controls the disengagement and connection of the clutch 14, and also controls the gear stage of the transmission 20 by controlling the speed change actuator 21.
 また制御装置80は、予め設定されたアイドルストップ制御を実行するための条件(アイドルストップ制御実行条件)が満たされた場合に、エンジン10の燃料噴射を停止させるアイドルストップ制御を実行するとともに、クラッチ14を断状態(切断された状態)に制御するとともに、モータージェネレーター31の目標回転数をゼロに設定する。この制御処理の詳細についてフローチャートを用いて説明すると次のようになる。 The control device 80 executes idle stop control for stopping fuel injection of the engine 10 when a condition (idle stop control execution condition) for executing idle stop control set in advance is satisfied, and the clutch 14 is controlled to a disconnected state (a disconnected state), and the target rotational speed of the motor generator 31 is set to zero. The details of this control processing will be described with reference to a flowchart.
 図2は制御装置80による制御処理の一例を示すフローチャートである。制御装置80は図2のフローチャートを所定周期で繰り返し実行する。なお図2の最初のスタート時において、アイドルストップ制御は実行されておらず、通常のHEVの走行時の制御(通常制御と称する)が実行されているものとする。 FIG. 2 is a flowchart showing an example of control processing by the control device 80. The control device 80 repeatedly executes the flowchart of FIG. 2 at a predetermined cycle. It is assumed that the idle stop control is not executed at the first start of FIG. 2, and the normal HEV travel control (referred to as normal control) is executed.
 ステップS10において制御装置80は、アイドルストップ制御実行条件が満たされたか否かを判定する。このアイドルストップ制御実行条件の具体的な内容は特に限定されるものではないが、本実施形態においては、一例として、HEVが減速時であるとの条件を用いる。すなわち、本実施形態に係る制御装置80は、HEVの減速時にアイドルストップ制御を実行する。具体的には制御装置80は、車速センサ(図示せず)の検出結果に基づいてHEVの車速を取得し、この取得された車速に基づいてHEVが減速時の状態であるか否かを判定する。そして制御装置80は、HEVが減速時の状態であると判定したときに、アイドルストップ制御実行条件を満たしていると判定する。但し、上述したステップS10の内容は一例に過ぎず、ステップS10の具体的内容はこれに限定されるものではない。 In step S10, the control device 80 determines whether or not the idle stop control execution condition is satisfied. Although the specific content of this idle stop control execution condition is not specifically limited, In this embodiment, the condition that HEV is at the time of deceleration is used as an example. That is, the control device 80 according to the present embodiment executes the idle stop control when the HEV is decelerated. Specifically, the control device 80 acquires the HEV vehicle speed based on the detection result of a vehicle speed sensor (not shown), and determines whether the HEV is in a deceleration state based on the acquired vehicle speed. To do. Then, the control device 80 determines that the idle stop control execution condition is satisfied when it is determined that the HEV is in a deceleration state. However, the content of step S10 mentioned above is only an example, and the specific content of step S10 is not limited to this.
 ステップS10でNoと判定された場合(アイドルストップ制御実行条件を満たさない場合)、制御装置80はフローチャートの実行を終了する。一方、ステップS10でYesと判定された場合、制御装置80は、エンジン10の燃料噴射を停止させるアイドルストップ制御を実行するとともに、クラッチ14を断状態に制御して、トランスミッション20側(すなわち駆動輪24側)の回転トルクがエンジン10側に伝達されないようにし、且つモータージェネレーター31(MG)の目標回転数をゼロに設定する(ステップS20)。ステップS20の後に制御装置80はフローチャートの実行を終了する。 When it is determined No in step S10 (when the idle stop control execution condition is not satisfied), the control device 80 ends the execution of the flowchart. On the other hand, when it is determined Yes in step S10, the control device 80 performs idle stop control for stopping the fuel injection of the engine 10 and controls the clutch 14 to the disengaged state, so that the transmission 20 side (that is, the drive wheel) (24 side) rotational torque is not transmitted to the engine 10 side, and the target rotational speed of the motor generator 31 (MG) is set to zero (step S20). After step S20, the control device 80 ends the execution of the flowchart.
 なお、本実施形態に係る制御装置80には、モータージェネレーター31の目標とする回転数を設定する目標回転数設定部(これは例えばCPUによって実現されている)が設けられており、制御装置80は、モータージェネレーター31の回転数がこの目標回転数設定部に設定された回転数となるように、モータージェネレーター31を制御している。そこで、ステップS20で目標回転数をゼロに設定するにあたり、具体的には制御装置80は、この目標回転数設定部に設定されている目標回転数の値をゼロに設定する。これにより、モータージェネレーター31は、その回転数が実際にゼロになるように制御されることとなる。 The control device 80 according to the present embodiment is provided with a target rotational speed setting unit (which is realized by a CPU, for example) that sets the target rotational speed of the motor generator 31. Controls the motor generator 31 so that the rotational speed of the motor generator 31 becomes the rotational speed set in the target rotational speed setting unit. Therefore, when setting the target rotational speed to zero in step S20, specifically, the control device 80 sets the value of the target rotational speed set in the target rotational speed setting unit to zero. As a result, the motor generator 31 is controlled so that its rotational speed is actually zero.
 なお、ステップS20においてアイドルストップ制御が実行された場合、エンジン10はエンジン10のイナーシャ(慣性)によって暫くの間は回転することができるが、最終的には回転数がゼロになる。また、ステップS20においてモータージェネレーター31の目標回転数がゼロに設定されることで、モータージェネレーター31の回転数も最終的にはゼロになる。但し、この場合、エンジン10の燃料噴射が停止されてから実際にエンジン10の回転数がゼロになるまでの間、エンジン10のイナーシャ(慣性)のエネルギーによってモータージェネレーター31は駆動されるので、この間は、モータージェネレーター31は回生発電を実行することができる。 In addition, when the idle stop control is executed in step S20, the engine 10 can rotate for a while due to the inertia (inertia) of the engine 10, but eventually the rotation speed becomes zero. Further, the target rotational speed of the motor generator 31 is set to zero in step S20, so that the rotational speed of the motor generator 31 is finally zero. However, in this case, the motor generator 31 is driven by the inertia (inertia) energy of the engine 10 until the rotational speed of the engine 10 actually becomes zero after the fuel injection of the engine 10 is stopped. The motor generator 31 can execute regenerative power generation.
 なお、ステップS20に係る制御処理を実行する期間(実行期間)は特に限定されるものではないが、本実施形態においては一例として、アイドルストップ制御実行条件が満たされている間とする。すなわち、本実施形態に係る制御装置80は、アイドルストップ制御実行条件が満たされている間、ステップS20の制御処理を継続して実行する。そして、HEVが減速状態でなくなることでアイドルストップ制御実行条件が満たされなくなった場合、制御装置80はステップS20の制御処理を停止して、通常制御の状態に戻す。 In addition, the period (execution period) for executing the control process according to step S20 is not particularly limited, but in the present embodiment, as an example, the idle stop control execution condition is satisfied. That is, the control device 80 according to the present embodiment continuously executes the control process of step S20 while the idle stop control execution condition is satisfied. When the idle stop control execution condition is not satisfied because the HEV is not in the deceleration state, the control device 80 stops the control process in step S20 and returns to the normal control state.
 以上説明した本実施形態によれば、アイドルストップ制御実行条件が満たされた場合に、エンジン10の燃料噴射を停止させるアイドルストップ制御が実行されるとともに、クラッチ14を断状態にして、トランスミッション20側の回転トルクをエンジン10側に伝達されないようにすることができ、且つモータージェネレーター31の目標回転数がゼロに設定されるので、エンジン10が正回転停止直前に逆回転してロール振動を発生することを抑制することができる。これにより、HEVの快適性を向上させることができる。 According to the present embodiment described above, when the idle stop control execution condition is satisfied, the idle stop control for stopping the fuel injection of the engine 10 is performed, and the clutch 14 is disengaged, and the transmission 20 side , And the target rotational speed of the motor generator 31 is set to zero, so that the engine 10 reversely rotates immediately before stopping normal rotation to generate roll vibration. This can be suppressed. Thereby, the comfort of HEV can be improved.
 また本実施形態によれば、モータージェネレーター31の目標回転数がゼロに設定されることで、このモータージェネレーター31は、エンジン10の回転に対する抵抗トルクを発生させることができる。これにより、エンジン10の回転数がゼロになるまでの時間を短縮させることもできる。この結果、エンジン10を再度始動させるとの要求(再始動要求)を受けてから、エンジン10が再始動するまでに要する時間を短縮することもできる。 Further, according to the present embodiment, the motor generator 31 can generate a resistance torque against the rotation of the engine 10 by setting the target rotational speed of the motor generator 31 to zero. Thereby, time until the rotation speed of the engine 10 becomes zero can also be shortened. As a result, it is also possible to reduce the time required from when the engine 10 is restarted (restart request) until the engine 10 is restarted.
 また本実施形態によれば、アイドルストップ制御の実行によってエンジン10の燃料噴射が停止されてから実際にエンジン10の回転数がゼロになるまでの間、エンジン10のイナーシャ(慣性)のエネルギーによってモータージェネレーター31を駆動することもできる。これにより、モータージェネレーター31によって、エンジン10のイナーシャ分までエネルギーを回収することができる。この結果、燃費を向上させることもできる。 Further, according to the present embodiment, the motor is driven by the inertia (inertia) energy of the engine 10 after the fuel injection of the engine 10 is stopped by the execution of the idle stop control until the rotational speed of the engine 10 actually becomes zero. The generator 31 can also be driven. Thereby, the energy can be recovered by the motor generator 31 up to the inertia of the engine 10. As a result, fuel consumption can be improved.
 以上本開示の好ましい実施形態について説明したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present disclosure described in the claims. Is possible.
 本出願は、2015年11月20日付で出願された日本国特許出願(特願2015-227563)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-227563) filed on November 20, 2015, the contents of which are incorporated herein by reference.
 本開示のハイブリッド車両は、アイドルストップ制御が実行されたときのエンジンのロール振動の発生を抑制することができるという点において有用である。 The hybrid vehicle of the present disclosure is useful in that it can suppress the occurrence of engine roll vibration when the idle stop control is executed.
10 エンジン
13 クランクシャフト(出力軸)
14 クラッチ
20 トランスミッション
30 ハイブリッドシステム
31 モータージェネレーター
80 制御装置
10 Engine 13 Crankshaft (output shaft)
14 Clutch 20 Transmission 30 Hybrid system 31 Motor generator 80 Control device

Claims (6)

  1.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
     前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、
     制御装置と、
     を備えたハイブリッド車両であって、
     前記制御装置は、予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターの目標回転数をゼロに設定することを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    A transmission in which the power of the engine is transmitted via a clutch;
    A control device;
    A hybrid vehicle with
    The control device executes idle stop control for stopping fuel injection of the engine when a preset idle stop control execution condition is satisfied, controls the clutch to a disengaged state, and the motor generator A hybrid vehicle characterized in that the target rotational speed of the vehicle is set to zero.
  2.  前記制御装置は、前記ハイブリッド車両が減速時の場合に、前記アイドルストップ制御実行条件が満たされたと判定する請求項1に記載のハイブリッド車両。 The hybrid vehicle according to claim 1, wherein the control device determines that the idle stop control execution condition is satisfied when the hybrid vehicle is decelerating.
  3.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、を備えたハイブリッド車両の制御方法であって、
     予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターの目標回転数をゼロに設定することを特徴とするハイブリッド車両の制御方法。
    A hybrid vehicle control method comprising: a hybrid system having a motor generator connected to an output shaft for transmitting engine power; and a transmission for transmitting the engine power via a clutch.
    When a preset idle stop control execution condition is satisfied, idle stop control for stopping fuel injection of the engine is executed, the clutch is controlled to be disengaged, and the target rotational speed of the motor generator is set. A control method for a hybrid vehicle, characterized in that it is set to zero.
  4.  前記ハイブリッド車両が減速時の場合に、前記アイドルストップ制御実行条件が満たされたと判定する請求項3に記載のハイブリッド車両の制御方法。 4. The hybrid vehicle control method according to claim 3, wherein when the hybrid vehicle is decelerated, it is determined that the idle stop control execution condition is satisfied.
  5.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
     前記エンジンの動力がクラッチを介して伝達されるトランスミッションと、
     制御装置と、
     を備えたハイブリッド車両であって、
     前記制御装置は、予め設定されたアイドルストップ制御実行条件が満たされた場合に、前記エンジンの燃料噴射を停止させるアイドルストップ制御を実行するとともに、前記クラッチを断状態に制御し、且つ前記モータージェネレーターを駆動することを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    A transmission in which the power of the engine is transmitted via a clutch;
    A control device;
    A hybrid vehicle with
    The control device executes idle stop control for stopping fuel injection of the engine when a preset idle stop control execution condition is satisfied, controls the clutch to a disengaged state, and the motor generator A hybrid vehicle characterized by driving the vehicle.
  6.  前記制御装置は、前記ハイブリッド車両が減速時の場合に、前記アイドルストップ制御実行条件が満たされたと判定する請求項1に記載のハイブリッド車両。 The hybrid vehicle according to claim 1, wherein the control device determines that the idle stop control execution condition is satisfied when the hybrid vehicle is decelerating.
PCT/JP2016/084331 2015-11-20 2016-11-18 Hybrid vehicle and method for controlling same WO2017086468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227563 2015-11-20
JP2015227563A JP2017094831A (en) 2015-11-20 2015-11-20 Hybrid vehicle and control method therefor

Publications (1)

Publication Number Publication Date
WO2017086468A1 true WO2017086468A1 (en) 2017-05-26

Family

ID=58718968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084331 WO2017086468A1 (en) 2015-11-20 2016-11-18 Hybrid vehicle and method for controlling same

Country Status (2)

Country Link
JP (1) JP2017094831A (en)
WO (1) WO2017086468A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283039B2 (en) * 2018-08-03 2023-05-30 スズキ株式会社 hybrid vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122712A (en) * 1997-10-07 1999-04-30 Nissan Motor Co Ltd Controller for hybrid car
JP2000097070A (en) * 1998-09-22 2000-04-04 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2001020775A (en) * 1999-07-09 2001-01-23 Toyota Motor Corp Control system in hybrid vehicle
JP2011194984A (en) * 2010-03-18 2011-10-06 Aisin Seiki Co Ltd Control device for hybrid vehicle
JP2013086649A (en) * 2011-10-18 2013-05-13 Jatco Ltd Controller for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122712A (en) * 1997-10-07 1999-04-30 Nissan Motor Co Ltd Controller for hybrid car
JP2000097070A (en) * 1998-09-22 2000-04-04 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2001020775A (en) * 1999-07-09 2001-01-23 Toyota Motor Corp Control system in hybrid vehicle
JP2011194984A (en) * 2010-03-18 2011-10-06 Aisin Seiki Co Ltd Control device for hybrid vehicle
JP2013086649A (en) * 2011-10-18 2013-05-13 Jatco Ltd Controller for hybrid vehicle

Also Published As

Publication number Publication date
JP2017094831A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017090630A1 (en) Hybrid vehicle and control method therefor
WO2012101796A1 (en) Vehicle, and vehicle control method
JP2013184651A (en) Engine stop control device of hybrid vehicle
JP6067218B2 (en) Control device for vehicle drive system
US9227630B2 (en) Smoothing hybrid vehicle engine shutdown
JP2021154996A (en) Control device of vehicle
WO2017086468A1 (en) Hybrid vehicle and method for controlling same
JP2013124083A (en) Controller of hybrid electric vehicle
JP6746933B2 (en) Hybrid vehicle
JP2017178005A (en) Hybrid vehicle and control method therefor
WO2017094841A1 (en) Hybrid vehicle and control method therefor
CN108698589B (en) Hybrid vehicle and control method of hybrid vehicle
JP2017115761A (en) Engine starting time control system, hybrid vehicle and engine starting time control method
JP2013180698A (en) Control device for hybrid electric vehicle
JP2017178004A (en) Hybrid vehicle and control method therefor
JP2018069947A (en) Drive control device of hybrid vehicle
JP2017116019A (en) Restart control system of engine, hybrid vehicle, and restart control method of engine
WO2017086432A1 (en) Four-wheel-drive hybrid vehicle and control method for same
JP2017121896A (en) Hybrid vehicle and control method for hybrid vehicle
JP6884985B2 (en) Hybrid vehicle start acceleration control system, hybrid vehicle and hybrid vehicle start acceleration control method
WO2017086446A1 (en) Hybrid vehicle and control method for same
JP2019209822A (en) Hybrid vehicle
JP2017218069A (en) Hybrid vehicle and control method therefor
JP2017100574A (en) Hybrid vehicle and control method therefor
JP2017100638A (en) Hybrid vehicle and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866468

Country of ref document: EP

Kind code of ref document: A1