WO2017086045A1 - Thermal management system - Google Patents

Thermal management system Download PDF

Info

Publication number
WO2017086045A1
WO2017086045A1 PCT/JP2016/079610 JP2016079610W WO2017086045A1 WO 2017086045 A1 WO2017086045 A1 WO 2017086045A1 JP 2016079610 W JP2016079610 W JP 2016079610W WO 2017086045 A1 WO2017086045 A1 WO 2017086045A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat medium
pump
heat
valve device
Prior art date
Application number
PCT/JP2016/079610
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 雅之
加藤 吉毅
憲彦 榎本
慧伍 佐藤
功嗣 三浦
賢吾 杉村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017086045A1 publication Critical patent/WO2017086045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling

Definitions

  • This disclosure relates to a thermal management system mounted on a vehicle.
  • a low-temperature heat medium is supplied to the cooler core of the air conditioner.
  • air cooled by heat exchange with the heat medium is blown into the passenger compartment.
  • a high-temperature heat medium is supplied to the heater core of the air conditioner.
  • the heating operation by the air conditioner is performed, air heated by heat exchange with the heat medium is blown out into the passenger compartment.
  • the air conditioner of the thermal management system can also perform an operation of simultaneously dehumidifying the air by the cooler core and heating the air by the heater core, that is, a dehumidifying heating operation.
  • air conditioning of the vehicle interior is performed by an air conditioner, and cooling of in-vehicle devices such as an inverter and a motor generator is also performed.
  • Each vehicle-mounted device is provided with a cooler in which a heat medium flow path is formed. A part of the heat medium circulating in the vehicle is also supplied to the cooler, thereby cooling the in-vehicle device.
  • the control of adjusting the surface temperature of the heater core by changing the rotation speed of the compressor included in the refrigeration cycle and making the temperature of the blown air coincide with the target temperature is performed by dehumidification. Knowledge that it is desirable for heating operation has been obtained.
  • the dehumidifying performance may be lowered. For this reason, it is necessary to adjust the heat absorption amount in the radiator so that the surface temperature of the cooler core is maintained at an appropriate temperature.
  • the endothermic amount can be adjusted by changing the flow rate of the heat medium supplied to the radiator.
  • the heat management system described in Patent Document 1 is configured such that the flow rate of the heat medium supplied to the cooler core and the flow rate of the heat medium supplied to the radiator are adjusted by a single pump. ing.
  • the flow rate of the heat medium supplied to the radiator is changed so as to obtain an appropriate heat absorption amount
  • the flow rate of the heat medium supplied to the cooler core also changes simultaneously.
  • the surface temperature of the cooler core changes, and the “appropriate heat absorption amount” at that time also changes, so that it becomes necessary to further change the flow rate of the heat medium supplied to the radiator.
  • the surface temperature of the cooler core may become unstable.
  • the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner cannot be individually adjusted, and the performance of the air conditioner, particularly There was a problem that it was difficult to stably exhibit the performance during dehumidifying heating.
  • a flow rate adjusting valve may be arranged in the middle of the flow path for supplying the heat medium to the radiator. Conceivable.
  • the present disclosure has been made in view of the above problems found by the inventor, and the purpose thereof is the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner. Is to provide a heat management system that can suppress the increase in size of a pump that pumps a heat medium.
  • a thermal management system is a thermal management system mounted on a vehicle, and includes a refrigeration cycle having a condenser and an evaporator, and a flow path through which a heat medium flows. A part of which is heated by a condenser, a first pump that is provided in the first channel and that pumps the heat medium, and a flow path through which the heat medium flows.
  • a second flow path whose part is cooled by the evaporator, a second pump provided in the second flow path for pumping the heat medium, and air supplied to the passenger compartment through the first flow path Supplied to the radiator, an air conditioner that heats or cools by heat exchange with the heat medium that flows through the second flow path, a radiator that heat-exchanges the heat medium that flows through the air conditioner, and the outside air, and the radiator
  • a third flow path that is a flow path through which the heat medium flows, and a third flow path
  • a first pump that switches a path through which a heat medium flows, wherein a third pump that pumps the body, one end of the first flow path, one end of the second flow path, and one end of the third flow path are connected to each other.
  • a second valve device that is connected to the other end of the first flow path, the other end of the second flow path, and the other end of the third flow path, and switches a path through which the heat medium flows; And a control device that controls the overall operation of the thermal management system.
  • the third flow path is connected to a position parallel to the first flow path and the second flow path.
  • the flow rate of the heat medium supplied to the air conditioner is adjusted by the rotational speed of the first pump or the second pump.
  • the flow rate of the heat medium supplied to the radiator is adjusted by a third pump provided separately from the first pump and the second pump.
  • the heat medium is pumped to the radiator by a third pump that is provided separately from the pump that pumps the heat medium toward the air conditioner.
  • a third pump that is provided separately from the pump that pumps the heat medium toward the air conditioner.
  • FIG. 1 is a diagram illustrating an overall configuration of a thermal management system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating.
  • FIG. 3 is a diagram illustrating the flow of the heat medium during cooling.
  • FIG. 4 is a flowchart showing a flow of processing executed by the control device.
  • FIG. 5 is a flowchart showing the flow of processing executed by the control device.
  • FIG. 6 is a flowchart showing a flow of processing executed by the control device.
  • FIG. 7 is a diagram illustrating an overall configuration of a thermal management system according to the second embodiment.
  • FIG. 8 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating.
  • FIG. 9 is a diagram illustrating the flow of the heat medium during cooling.
  • FIG. 10 is a diagram illustrating an overall configuration of a thermal management system according to the third embodiment.
  • FIG. 11 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating.
  • FIG. 12 is a diagram illustrating the flow of the heat medium during cooling.
  • the thermal management system 10 is mounted on a vehicle (not shown), and is configured as a system for performing air conditioning in the vehicle interior, cooling various in-vehicle devices provided in the vehicle, and the like.
  • the vehicle is an electric vehicle. That is, it is a vehicle that does not have an internal combustion engine and travels by the driving force of the rotating electrical machine.
  • the thermal management system 10 includes a refrigeration cycle 100, an air conditioner 200, a radiator 300, an inverter cooler E1, a battery cooler E2, a first valve device 410, a second valve device 420, and a control device 20. It is equipped with.
  • the refrigeration cycle 100 is a device for heating and cooling a heat medium circulating in the heat management system 10.
  • an antifreeze liquid mainly composed of ethylene glycol is used as the heat medium.
  • the refrigeration cycle 100 includes a circulation channel 101, a compressor 130, an expansion valve 140, a condenser 110, and an evaporator 120.
  • the circulation channel 101 is a channel through which the refrigerant of the refrigeration cycle 100 circulates.
  • the refrigerant of the refrigeration cycle 100 For example, carbon dioxide is used as the refrigerant.
  • the compressor 130 is a device for pumping the refrigerant and circulating it in the circulation channel 101, and is provided in the middle of the circulation channel 101.
  • the rotation speed of the compressor 130 is controlled by the control device 20 described later. That is, the flow rate of the refrigerant circulating in the circulation channel 101 is controlled by the control device 20.
  • the expansion valve 140 is an orifice provided in the middle of the circulation channel 101.
  • the flow passage cross-sectional area of the circulation flow passage 101 is locally reduced in the expansion valve 140. For this reason, when the compressor 130 operates and the refrigerant circulates, the refrigerant pressure is higher in the downstream portion of the circulation flow path 101 than the compressor 130, and the compressor 130 in the circulation flow path 101. In the upstream side portion, the pressure of the refrigerant is low.
  • the condenser 110 is provided in the circulation channel 101 at a position downstream of the compressor 130 and upstream of the expansion valve 140.
  • the compressor 130 operates and the refrigerant circulates through the circulation channel 101, the refrigerant changes from the gas phase to the liquid phase inside the condenser 110, and increases its temperature. For this reason, the condenser 110 becomes high temperature.
  • a part of piping constituting a first flow path 510 described later is attached to the outside of the condenser 110. For this reason, when the condenser 110 is at a high temperature as described above, a part of the first flow path 510 is heated by the condenser 110, and the heat medium flowing inside the first flow path 510 is also heated. As the rotation speed of the compressor 130 increases, that is, as the flow rate of the refrigerant circulating in the circulation flow path 101 increases, the amount of heat given from the condenser 110 to the first flow path 510 also increases.
  • the evaporator 120 is provided in a position that is upstream of the compressor 130 and downstream of the expansion valve 140 in the circulation channel 101.
  • the compressor 130 operates and the refrigerant circulates in the circulation channel 101, the refrigerant changes from the liquid phase to the gas phase inside the evaporator 120, and the temperature is lowered. For this reason, the evaporator 120 becomes low temperature.
  • a part of piping constituting a second flow path 520 described later is attached to the outside of the evaporator 120. For this reason, when the evaporator 120 is at a low temperature as described above, a part of the second flow path 520 is cooled by the evaporator 120 and the heat medium flowing inside the second flow path 520 is also cooled. As the number of rotations of the compressor 130 increases, that is, as the flow rate of the refrigerant circulating in the circulation channel 101 increases, the amount of heat taken away from the second channel 520 by the evaporator 120 also increases.
  • the air conditioner 200 is an apparatus for performing air conditioning of the passenger compartment by heating or cooling the air and then blowing the air into the passenger compartment.
  • the air conditioner 200 includes a casing 201, a blower 202, a heater core 210, and a cooler core 220.
  • the casing 201 is a container in which a flow path through which air passes is formed.
  • a temperature sensor 203 is provided on the air outlet side (the right side in FIG. 1) of the casing 201.
  • the temperature sensor 203 is a sensor for measuring the temperature of air blown from the air conditioner 200 into the vehicle interior. The temperature measured by the temperature sensor 203 is transmitted to the control device 20.
  • the casing 201 is provided with an air mix door (not shown).
  • an air mix door By the operation of the air mix door, a cooling state in which the air that has passed through the cooler core 220 is blown out without passing through the heater core 210, and a heating state in which the air that has passed through the cooler core 220 is also blown out after passing through the heater core 210, Is switched.
  • the specific description is abbreviate
  • the blower 202 is a device for creating a flow of air blown into the passenger compartment, and is provided on the air inlet side (the left side in FIG. 1) of the casing 201.
  • the operation of the blower 202 is controlled by the control device 20.
  • the air sent out from the blower 202 flows through the inside of the casing 201 and then blown into the vehicle interior.
  • the heater core 210 is a heat exchanger for heating the air flowing in the casing 201.
  • the heater core 210 is disposed in the casing 201 at a position near the outlet.
  • the heater core 210 is supplied with a high-temperature heat medium flowing through the first flow path 510, that is, a high-temperature heat medium heated by the condenser 110.
  • a high-temperature heat medium heated by the condenser 110 heat exchange between the high-temperature heat medium and the air flowing in the casing 201 is performed, whereby the air is heated.
  • the amount of heat given from the condenser 110 to the first flow path 510 increases as the rotational speed of the compressor 130 increases.
  • the temperature of the heat medium passing through the heater core 210 rises, and the temperature of the air blown out from the air conditioner 200 also rises.
  • the cooler core 220 is a heat exchanger for cooling the air flowing in the casing 201. Further, when the air passes through the cooler core 220, moisture contained in the air is condensed. For this reason, the cooler core 220 can also be said to dehumidify the air flowing in the casing 201.
  • the cooler core 220 is disposed in the casing 201 at a position upstream of the heater core 210 in the air flow direction (the direction indicated by the arrow AR1 in FIG. 1).
  • the cooler core 220 is supplied with a low-temperature heat medium flowing through the second flow path 520, that is, a low-temperature heat medium cooled by the evaporator 120.
  • a low-temperature heat medium flowing through the second flow path 520
  • heat exchange between the low-temperature heat medium and the air flowing in the casing 201 is performed, thereby cooling the air.
  • the amount of heat taken away from the second flow path 520 by the evaporator 120 increases as the rotational speed of the compressor 130 increases.
  • the temperature of the heat medium passing through the cooler core 220 decreases, and the temperature of the air reaching the heater core 210 also decreases.
  • the cooler core 220 is provided with a temperature sensor 221 for measuring the surface temperature.
  • the surface temperature of the cooler core 220 measured by the temperature sensor 221 is transmitted to the control device 20.
  • the radiator 300 is a heat exchanger for exchanging heat between the heat medium circulating in the heat management system 10 and the outside air. As will be described later, by the operation of the first valve device 410 and the second valve device 420, a heat dissipation state in which a high-temperature heat medium is supplied to the radiator 300, and a heat absorption state in which a low-temperature heat medium is supplied to the radiator 300, Are switched.
  • the radiator 300 is provided with an electric fan 301.
  • the electric fan 301 is a device for adjusting the flow rate of outside air passing through the radiator 300.
  • the rotational speed of the electric fan 301 is controlled by the control device 20.
  • the inverter cooler E1 is a heat exchanger for adjusting the temperature of an inverter (not shown) mounted on the vehicle, and is attached to the inverter.
  • the inverter is a power converter that converts DC power supplied from a storage battery (not shown) mounted on the vehicle into AC power and supplies the AC power to the rotating electrical machine.
  • the inverter cooler E1 is supplied with a high-temperature heat medium flowing through the first flow path 510 or a low-temperature heat medium flowing through the second flow path 520.
  • the inverter cooler E1 performs heat exchange between the heat medium and the inverter.
  • the high-temperature heat medium is supplied to the inverter cooler E1
  • the inverter is warmed up.
  • the low-temperature heat medium is supplied to the inverter cooler E1
  • Which heat medium is supplied to the inverter cooler E1 is switched by the operation of the first valve device 410 and the like to be described later.
  • the battery cooler E2 is a heat exchanger for adjusting the temperature of the storage battery mounted on the vehicle, and is attached to the storage battery.
  • the storage battery is for storing electric power necessary for traveling of the vehicle.
  • the battery cooler E2 is also supplied with a high-temperature heat medium that has flowed through the first flow path 510 or a low-temperature heat medium that has flowed through the second flow path 520. Heat exchange between the heat medium and the storage battery is performed by the battery cooler E2. When the high-temperature heat medium is supplied to the battery cooler E2, the storage battery is warmed up. When the low-temperature heat medium is supplied to the battery cooler E2, the storage battery is cooled. Which heat medium is supplied to the battery cooler E2 is switched by the operation of the first valve device 410 and the like.
  • the heat management system 10 includes a first flow path 510, a second flow path 520, a third flow path 530, a heater core flow path 550, and a cooler core flow path 540 as flow paths through which the heat medium flows.
  • An inverter flow path 560 and a storage battery flow path 570 are provided. These are all configured by piping arranged inside the vehicle.
  • the piping is partially formed of metal and partially formed of resin.
  • the first flow path 510 is a flow path for heating the heat medium flowing inside by the condenser 110. As already described, a part of the piping constituting the first flow path 510 is attached to the outside of the condenser 110.
  • a first pump P ⁇ b> 1 is provided in a position on the upstream side of the condenser 110 in the first flow path 510.
  • the first pump P1 is a pump for pumping the heat medium so that the heat medium flows through the first flow path 510.
  • the number of rotations of the first pump P1 is controlled by the control device 20. That is, the flow rate of the heat medium flowing through the first flow path 510 and passing through the condenser 110 is controlled by the control device 20.
  • the second flow path 520 is a flow path for cooling the heat medium flowing inside by the evaporator 120. As already described, a part of the piping constituting the second flow path 520 is attached to the outside of the evaporator 120.
  • a second pump P ⁇ b> 2 is provided in a position on the upstream side of the evaporator 120 in the second flow path 520.
  • the second pump P ⁇ b> 2 is a pump for pumping the heat medium so that the heat medium flows through the second flow path 520.
  • the rotation speed of the second pump P2 is controlled by the control device 20. That is, the flow rate of the heat medium that flows through the second flow path 520 and passes through the evaporator 120 is controlled by the control device 20.
  • the third channel 530 is a channel through which the heat medium supplied to the radiator 300 flows.
  • the radiator 300 is provided in the middle of the third flow path 530.
  • a third pump P3 is provided in a position on the upstream side of the radiator 300 in the third flow path 530. That is, in the third flow path 530, the radiator 300 and the third pump P3 are arranged in series.
  • the third pump P3 is a pump for pumping the heat medium so that the heat medium flows through the third flow path 530.
  • the rotation speed of the third pump P3 is controlled by the control device 20. That is, the flow rate of the heat medium flowing through the third flow path 530 and passing through the radiator 300 is controlled by the control device 20.
  • the heater core channel 550 is a channel through which the heat medium supplied to the heater core 210 flows.
  • the heater core 210 is provided in the middle of the heater core flow path 550.
  • the heat medium flows through the first flow path 510 described above, and then flows through the heater core flow path 550 via the first valve device 410. For this reason, the flow rate of the heat medium flowing through the heater core flow path 550 is adjusted by the first pump P ⁇ b> 1 provided in the first flow path 510.
  • the cooler core channel 540 is a channel through which the heat medium supplied to the cooler core 220 flows.
  • the cooler core 220 is provided in the middle of the cooler core flow path 540.
  • the heat medium flows through the cooler core flow path 540 via the first valve device 410 after flowing through the second flow path 520 described above. For this reason, the flow rate of the heat medium flowing through the cooler core channel 540 is adjusted by the second pump P ⁇ b> 2 provided in the second channel 520.
  • the inverter channel 560 is a channel through which the heat medium supplied to the inverter cooler E1 flows.
  • the inverter cooler E1 is provided in the middle of the inverter flow path 560.
  • the flow rate of the heat medium flowing through the inverter flow path 560 is adjusted by the opening degree of the first valve device 410 or the opening degree of the second valve device 420.
  • the storage battery channel 570 is a channel through which the heat medium supplied to the battery cooler E2 flows.
  • the battery cooler E2 is provided in the middle of the storage battery flow path 570.
  • the flow rate of the heat medium flowing through the storage battery flow path 570 is adjusted by the opening degree of the first valve device 410 or the opening degree of the second valve device 420.
  • the first valve device 410 is an electrically coupled multi-way valve.
  • the first valve device 410 is formed with openings 411 and 412 that are inlets of the heat medium, and openings 413, 414, 415, 416, and 417 that are outlets of the heat medium.
  • a downstream end portion of the first flow path 510 is connected to the opening 411.
  • the downstream end of the second flow path 520 is connected to the opening 412.
  • the opening 413 is connected to the upstream end of the third flow path 530.
  • the upstream end of the cooler core channel 540 is connected to the opening 414.
  • the upstream end of the heater core flow path 550 is connected to the opening 415.
  • the upstream end of the inverter flow path 560 is connected to the opening 416.
  • the upstream end of the storage battery flow path 570 is connected to the opening 417.
  • the first valve device 410 After flowing through the first flow path 510, at least a part of the high-temperature heat medium flowing into the first valve device 410 from the opening 411 is discharged from the opening 415 and supplied to the heater core 210.
  • the first valve device 410 can also supply a part of the high-temperature heat medium to the radiator 300 from the opening 413 by switching the flow path formed inside. Also, a part of the high-temperature heat medium can be supplied to the inverter cooler E1 from the opening 416 or supplied to the battery cooler E2 from the opening 417.
  • the first valve device 410 After flowing through the second flow path 520, at least a part of the low-temperature heat medium flowing into the first valve device 410 from the opening 412 is discharged from the opening 414 and supplied to the cooler core 220.
  • the first valve device 410 can also supply a part of the low-temperature heat medium to the radiator 300 from the opening 413 by switching the flow path formed inside. Further, a part of the low-temperature heat medium can be supplied from the opening 416 to the inverter cooler E1, or can be supplied from the opening 417 to the battery cooler E2.
  • a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed inside the first valve device 410.
  • each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the first valve device 410.
  • the first valve device 410 As a specific configuration of the first valve device 410, a known configuration such as a configuration of a switching valve described in JP2013-230805A can be employed. Further, the first valve device 410 that functions as described above may be configured by combining a plurality of electric two-way valves, three-way valves, four-way valves, and the like.
  • the second valve device 420 is an electrically coupled multi-way valve similar to the first valve device 410.
  • the second valve device 420 is formed with openings 421 and 422 that are outlets of the heat medium, and openings 423, 424, 425, 426, and 427 that are inlets of the heat medium.
  • An upstream end of the first flow path 510 is connected to the opening 421.
  • An upstream end of the second flow path 520 is connected to the opening 422.
  • the downstream end of the third flow path 530 is connected to the opening 423.
  • the downstream end of the cooler core channel 540 is connected to the opening 424.
  • the downstream end of the heater core flow path 550 is connected to the opening 425.
  • the downstream end of the inverter flow path 560 is connected to the opening 426.
  • the downstream end of the storage battery flow path 570 is connected to the opening 427.
  • the second valve device 420 After flowing through the heater core flow path 550, at least a part of the high-temperature heat medium flowing into the second valve device 420 from the opening 425 is discharged from the opening 421 and flows through the first flow path 510. Further, when a high-temperature heat medium is supplied to the radiator 300, the second valve device 420 receives the heat medium from the opening 423 by switching the flow path formed inside. The heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
  • the second valve device 420 can receive the high-temperature heat medium flowing through the inverter cooler E1 from the opening 426 and can receive the high-temperature heat medium flowing through the battery cooler E2 from the opening 427.
  • the heat medium joins the heat medium flowing through the first flow path 510 and the heater core flow path 550.
  • the second valve device 420 After flowing through the cooler core flow path 540, at least a part of the low-temperature heat medium flowing into the second valve device 420 from the opening 424 is discharged from the opening 422 and flows through the second flow path 520.
  • the second valve device 420 receives the heat medium from the opening 423 by switching the flow path formed inside. The heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
  • the second valve device 420 can receive the low-temperature heat medium that has flowed through the inverter cooler E1 from the opening 426, and can receive the low-temperature heat medium that has flowed through the battery cooler E2 from the opening 427.
  • the heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
  • the flow path through which the high-temperature heat medium flows and the flow path through which the low-temperature heat medium flow are formed inside the second valve device 420.
  • each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge inside the second valve device 420.
  • the second valve device 420 as described above, a known configuration such as a configuration of a switching valve described in Japanese Patent Application Laid-Open No. 2013-230805 can be employed.
  • the first valve device 410 that functions as described above may be configured by combining a plurality of electric two-way valves, three-way valves, four-way valves, and the like.
  • the control device 20 is a computer system that includes a CPU, ROM, RAM, and the like, and is configured as a device that controls the overall operation of the thermal management system 10.
  • the control device 20 controls the operation of the various components described so far. For example, the control device 20 individually adjusts the rotation speed of the first pump P1, the rotation speed of the second pump P2, and the rotation speed of the third pump P3. That is, the flow rate of the heat medium passing through each is individually adjusted.
  • the flow path of the heat medium in the heat management system 10 is switched by switching the states of the first valve device 410 and the second valve device 420.
  • FIG. 2 shows the flow of the heat medium when the vehicle interior is heated by the air conditioner 200.
  • a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line.
  • a path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410, the heater core 210, the second valve device 420, and the first pump P1, and then returns to the condenser 110 again. It is.
  • the first valve device 410 and the second valve device 420 are configured such that a part of the high-temperature heat medium flowing into the first valve device 410 from the opening 411 flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched.
  • the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
  • the flow rate of the heat medium in the inverter flow path 560 controls the operation of at least one of the first valve device 410 and the second valve device 420, and the opening (416 or 426) connected to the inverter flow path 560. It is adjusted by changing the opening.
  • the flow rate of the heat medium in the storage battery channel 570 controls the operation of at least one of the first valve device 410 or the second valve device 420, and the opening (417 or 427) connected to the storage battery channel 570. It is adjusted by changing the opening degree.
  • the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410, the cooler core 220, the second valve device 420, and the second pump P2, and then returns to the evaporator 120 again. Returned.
  • a part of the low-temperature heat medium that has flowed into the first valve device 410 is discharged from the opening 413, and then flows into the second valve device 420 from the opening 423 through the third pump P3 and the radiator 300 in order.
  • the heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
  • a low-temperature heat medium is supplied to the radiator 300.
  • heat exchange between the low-temperature heat medium and the outside air is performed, and the heat of the outside air is taken into the low-temperature heat medium. That is, in the radiator 300, heat necessary for heating is taken from outside air.
  • the air conditioner 200 When heating is performed, in the air conditioner 200, after the air is once cooled by heat exchange with the cooler core 220, the air is heated by heat exchange with the heater core 210. The air that has finally reached a high temperature is blown out from the air conditioner 200 into the passenger compartment.
  • FIG. 3 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 3, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410, the heater core 210, the second valve device 420, and the first pump P1, and then returns to the condenser 110 again. It is.
  • a part of the high-temperature heat medium that has flowed into the first valve device 410 is discharged from the opening 413, and then flows through the third pump P3 and the radiator 300 in order to flow into the second valve device 420 from the opening 423.
  • the heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
  • the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410, the cooler core 220, the second valve device 420, and the second pump P2, and then returns to the evaporator 120 again. Returned.
  • the temperature of the in-vehicle devices such as the inverter is likely to rise, which may hinder the operation of the in-vehicle devices. For this reason, when the temperature of an inverter etc. becomes high, a low temperature heat medium is supplied also to the inverter cooler E1 and the battery cooler E2. That is, the first valve device 410 and the second valve device 420 are configured so that a part of the low-temperature heat medium flowing into the first valve device 410 from the opening 412 flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched.
  • the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
  • a high-temperature heat medium is supplied to the radiator 300.
  • heat exchange between the high-temperature heat medium and the outside air is performed, and the heat of the heat medium is released to the outside air. That is, in the radiator 300, the vehicle interior is cooled by releasing heat to the outside air.
  • the air conditioner 200 When cooling is performed, the air conditioner 200 once cools the air by heat exchange with the cooler core 220. The air is guided through the air mix door, and is blown into the passenger compartment without passing through the heater core 210.
  • FIG. 4 shows a flow of processing executed by the control device 20 in order to switch between the heat absorption state and the heat dissipation state described so far.
  • a series of processes shown in FIG. 4 is repeatedly executed every time a predetermined period elapses in a period in which air conditioning is performed by the air conditioner 200.
  • step S01 it is determined whether or not the air conditioning performed by the air conditioner 200 is cooling. For example, when a switch or the like provided on the front panel of the vehicle is operated and “cooling” is selected, it is determined that cooling is performed. If it is determined that cooling is performed, the process proceeds to step S02.
  • step S02 each of the first valve device 410 and the second valve device 420 is operated to switch to the heat dissipation state shown in FIG. As a result, a high-temperature heat medium flows through the radiator 300, and heat is radiated from the radiator 300.
  • step S01 when it is not determined that cooling is performed, that is, when it is determined that heating is performed, the process proceeds to step S03.
  • step S03 each of the first valve device 410 and the second valve device 420 is operated to switch to the heat absorption state shown in FIG. As a result, a low-temperature heating medium flows through the radiator 300, and heat is absorbed from outside air in the radiator 300.
  • FIG. 5 the flow of processing executed by the control device 20 when dehumidification heating is performed by the air conditioner 200 will be described.
  • a series of processes shown in FIG. 5 are repeatedly executed every time a predetermined period elapses in a period in which dehumidifying heating is performed.
  • the target value is an air conditioning target temperature set by a vehicle driver by operating a switch or the like provided on the front panel of the vehicle.
  • the target value for keeping the vehicle interior comfortable may be an aspect that is automatically set by calculation performed by the control device 20.
  • step S11 if the blowing temperature is lower than the target value, the process proceeds to step S12.
  • step S12 the rotation speed of the compressor 130 provided in the refrigeration cycle 100 is increased. As a result, the amount of heat generated in the condenser 110 increases, so that the temperature of the heat medium that reaches the heater core 210 through the first flow path 510 and the heater core flow path 550 increases. As a result, the blowing temperature also rises and approaches the target value.
  • step S11 when the blowing temperature is equal to or higher than the target value, the process proceeds to step S13.
  • step S13 it is determined whether or not the blowing temperature exceeds a target value. If the blowout temperature does not exceed the target value, it means that the blowout temperature matches the target value, and the series of processing shown in FIG. 5 is terminated.
  • step S14 the rotation speed of the compressor 130 provided in the refrigeration cycle 100 is decreased. As a result, the amount of heat generated in the condenser 110 decreases, so that the temperature of the heat medium that reaches the heater core 210 through the first flow path 510 and the heater core flow path 550 decreases. As a result, the blowout temperature also decreases and approaches the target value.
  • the control for making the blowing temperature coincide with the target value is performed.
  • control is performed to keep the surface temperature of the cooler core 220 constant by adjusting the rotational speed of the third pump P3 as well.
  • control is performed so that the temperature of the air blown out from the air conditioner 200 (the blown air temperature) matches the target value.
  • the temperature measured by the temperature sensor 221, that is, the surface temperature of the cooler core 220 is below a predetermined target value.
  • the target value is set in advance as a temperature at which the dehumidifying performance is appropriately exhibited in the cooler core 220. For example, when the surface temperature of the cooler core 220 is too low, the condensed water adhering to the surface of the cooler core 220 is frozen to form frost (so-called “frost”), and the flow of air passing through the casing 201 is obstructed. There is a possibility that.
  • the target value for the surface temperature of the cooler core 220 is desirably set to about 0 ° C. to 10 ° C., for example.
  • step S21 if the surface temperature of the cooler core 220 is lower than the target value, the process proceeds to step S22.
  • step S22 the rotation speed of the third pump P3 provided in the third flow path 530 is increased. As a result, the flow rate of the low-temperature heat medium passing through the radiator 300 increases, so that the amount of heat taken into the heat medium from the outside air in the radiator 300 increases. As a result, the surface temperature of the cooler core 220 rises and approaches the target value.
  • step S21 when the surface temperature of the cooler core 220 is equal to or higher than the target value, the process proceeds to step S23.
  • step S23 it is determined whether or not the surface temperature of the cooler core 220 exceeds a target value. If the surface temperature of the cooler core 220 does not exceed the target value, it means that the surface temperature of the cooler core 220 matches the target value, and the series of processes shown in FIG.
  • step S24 the rotational speed of the third pump P3 is decreased. As a result, the flow rate of the low-temperature heat medium passing through the radiator 300 is reduced, so that the amount of heat taken into the heat medium from the outside air in the radiator 300 is reduced. As a result, the surface temperature of the cooler core 220 decreases and approaches the target value.
  • the surface temperature of the cooler core 220 is adjusted by the rotation speed of the third pump P3 while adjusting the blowing temperature by the rotation speed of the compressor 130.
  • the dehumidification performance and heating performance of the air conditioner 200 can be exhibited stably.
  • the cooler core 220 and the radiator 300 are arranged in series in the flow path through which the low-temperature heat medium flows, the flow rate of the heat medium flowing through the cooler core 220 and the flow rate of the heat medium flowing through the radiator 300 are always the same. Will be. Therefore, when the flow rate of the heat medium flowing through the radiator 300 is adjusted in order to make the endothermic amount in the radiator 300 appropriate, the flow rate of the heat medium passing through the cooler core 220 changes accordingly.
  • the phase change of the heat medium does not occur, so the sensible heat change occurs instead of the latent heat change.
  • the temperature distribution on the surface of the cooler core 220 greatly changes accordingly.
  • the cooler core 220 and the radiator 300 are connected in parallel to each other.
  • a cooler core flow path 540 in which the cooler core 220 is provided in the middle, and a third flow path 530 in which the radiator 300 is provided in the middle include the first valve device 410 and The second valve device 420 is connected in parallel with the second valve device 420 interposed therebetween.
  • a part of the low-temperature heat medium circulating in the second flow path 520 and the cooler core flow path 540 is supplied to the radiator 300 through the third flow path 530.
  • the third pump P3 may be replaced with a flow rate adjusting valve in the configuration of FIG.
  • the flow rate of the heat medium flowing through the cooler core 220 can be adjusted by adjusting the rotational speed of the second pump P2.
  • the flow rate of the heat medium flowing through the radiator 300 can be adjusted by adjusting the opening degree of the flow rate adjusting valve.
  • the flow path (the first flow path 510 and the like) through which the heat medium flows is complicated, and the path is also relatively long due to routing in the vehicle.
  • a plurality of first valve devices 410, inverter coolers E1, and the like are provided in the middle of the flow path. As a result, the pressure loss in the flow path through which the heat medium flows is relatively large.
  • the pressure of the heat medium becomes very high on the discharge side of the second pump P2. For this reason, a high breakdown voltage is required.
  • the pressure of the heat medium becomes very low on the suction side of the second pump P2. For this reason, for example, a part of resin piping which comprises the 2nd flow path 520 may be crushed by a negative pressure. Since some measures need to be taken on both the discharge side and the suction side, the overall cost of the heat management system 10 increases.
  • Such problems are not limited to heating or dehumidifying heating, but also occur during cooling. That is, when the third pump P3 is replaced with a flow rate adjustment valve, it is necessary to enlarge the first pump P1 particularly during cooling.
  • the third pump P3 is provided in the middle of the third flow path 530, which is a flow path through which the heat medium supplied to the radiator 300 passes. That is, the third pump P3 is provided as a dedicated pump for supplying the heat medium to the radiator 300. In such a configuration, since the heat medium is circulated by the two pumps, it is not necessary to use a large pump as described above. In addition, in the flow path through which the heat medium passes, there is no possibility that the pressure is locally excessively high or low, and measures such as a high breakdown voltage are not required.
  • either the low-temperature heat medium or the high-temperature heat medium, which requires a larger flow rate, is configured to be supplementarily pumped by the third pump P3.
  • the flow rate of the heat medium pumped by the third pump P3 is smaller than the flow rate of the heat medium pumped by the second pump P2 during heating or dehumidifying heating.
  • the rotation speed of the third pump P3 is controlled by the control device 20 so as to achieve such a flow rate.
  • the flow rate of the heat medium pumped by the third pump P3 is smaller than the flow rate of the heat medium pumped by the first pump P1.
  • the rotation speed of the third pump P3 is controlled by the control device 20 so as to achieve such a flow rate.
  • the 3rd pump P3 is a pump used to the last to the last. For this reason, it is desirable to make the flow rate of the heat medium pumped by the third pump P3 smaller than the flow rate of the heat medium pumped by the main pump (that is, the first pump P1 or the second pump P2).
  • the distance between the first pump P1 and the third pump P3 along the flow path of the heat medium and the distance between the second pump P2 and the third pump P3 along the flow path of the heat medium are as much as possible. It is desirable to arrange the third pump P3 at a position where it becomes longer. Since the pressure of the heat medium in the flow path is dispersed, the above effect by using the third pump P3 as an auxiliary is more exhibited.
  • a thermal management system 10A according to the second embodiment will be described with reference to FIG.
  • the heater core 210 of the air conditioner 200 is arranged in the middle of the first flow path 510, and there is no flow path corresponding to the heater core flow path 550 in the first embodiment.
  • the cooler core 220 of the air conditioner 200 is disposed in the middle of the second flow path 520, and there is no flow path corresponding to the cooler core flow path 540 in the first embodiment.
  • a common flow path 580 that connects the first valve device 410A and the second valve device 420A is provided.
  • the configurations of the first valve device 410A and the second valve device 420A are also different from the first embodiment.
  • the thermal management system 10A according to the present embodiment is different from the thermal management system 10 in the above points, but is otherwise the same as the thermal management system 10 according to the first embodiment. Below, only a different part from 1st Embodiment is demonstrated.
  • the first valve device 410A is an electric coupled multi-way valve having the same configuration as the first valve device 410.
  • openings 413A and 418A that are inlets of the heat medium and openings 411A, 412A, 416A, and 417A that are outlets of the heat medium are formed.
  • the downstream end of the third flow path 530 is connected to the opening 413A.
  • the downstream end of the common flow path 580 is connected to the opening 418A.
  • the upstream end of the first flow path 510 is connected to the opening 411A.
  • the upstream end of the second flow path 520 is connected to the opening 412A.
  • the upstream end of the inverter flow path 560 is connected to the opening 416A.
  • the upstream end of the storage battery flow path 570 is connected to the opening 417A.
  • a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flow are formed inside the first valve device 410A.
  • each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the first valve device 410A.
  • the second valve device 420A is an electrically coupled multi-way valve having the same configuration as the second valve device 420.
  • openings 423A and 428A that are outlets of the heat medium and openings 421A, 422A, 426A, and 427A that are inlets of the heat medium are formed.
  • the upstream end of the third flow path 530 is connected to the opening 423A.
  • the upstream end of the common flow path 580 is connected to the opening 428A.
  • the downstream end of the first flow path 510 is connected to the opening 421A.
  • the downstream end of the second flow path 520 is connected to the opening 422A.
  • the downstream end of the inverter flow path 560 is connected to the opening 426A.
  • the downstream end of the storage battery channel 570 is connected to the opening 427A.
  • a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flow are formed inside the second valve device 420A.
  • each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the second valve device 420A.
  • FIG. 8 shows the flow of the heat medium when the vehicle interior is heated or dehumidified by the air conditioner 200.
  • a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line.
  • a path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the high-temperature heat medium discharged from the condenser 110 sequentially flows through the heater core 210, the second valve device 420A, the common flow path 580, the first valve device 410A, and the first pump P1, and again. Returned to the condenser 110.
  • a high-temperature heat medium is also supplied to the inverter cooler E1 and the battery cooler E2.
  • the first valve device 410A and the second valve device 420A of the first valve device 410A and the second valve device 420A so that a part of the high-temperature heat medium flowing into the first valve device 410A from the opening 418A flows through the inverter flow channel 560 and the storage battery flow channel 570.
  • the state is switched.
  • the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
  • the low-temperature heat medium discharged from the evaporator 120 passes through the cooler core 220, the second valve device 420A, the third pump P3, the radiator 300, the first valve device 410A, and the second pump P2. It flows back to the evaporator 120 again.
  • FIG. 9 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 9, the path through which the high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the high-temperature heat medium discharged from the condenser 110 sequentially flows through the heater core 210, the second valve device 420A, the third pump P3, the radiator 300, the first valve device 410A, and the first pump P1. Then, it is returned to the condenser 110 again.
  • the low-temperature heat medium discharged from the evaporator 120 flows in order through the cooler core 220, the second valve device 420A, the common flow path 580, the first valve device 410A, and the second pump P2. It is returned to the evaporator 120 again.
  • a low-temperature heat medium is also supplied to the inverter cooler E1 and the battery cooler E2.
  • the first valve device 410A and the second valve device 420A of the first valve device 410A and the second valve device 420A so that a part of the low-temperature heat medium flowing into the first valve device 410A from the opening 418A flows through the inverter flow channel 560 and the storage battery flow channel 570.
  • the state is switched.
  • a path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
  • a low-temperature heat medium flows through the third flow path 530 and the radiator 300 during heating or dehumidifying heating. Further, a high-temperature heat medium flows through the third flow path 530 and the radiator 300 during cooling. In any case, the heat medium supplied to the radiator 300 is pumped by the third pump P3. Thereby, there exists an effect similar to the case of 1st Embodiment.
  • the heater core 210 and the condenser 110 are arranged in series in the first flow path 510. For this reason, all of the high-temperature heat medium heated by the condenser 110 is supplied to the heater core 210 without branching on the way. Thereby, the air heating performance by the heater core 210 is improved.
  • the cooler core 220 and the evaporator 120 are arranged in series in the second flow path 520. For this reason, all of the low-temperature heat medium cooled by the evaporator 120 is supplied to the cooler core 220 without branching on the way. Thereby, the air cooling performance by the cooler core 220 is improved.
  • the third pump P3 is disposed at a position upstream of the radiator 300.
  • the position where the third pump P3 is disposed may be a position different from these.
  • the third pump P3 may be arranged at any position as long as it is in the middle of the third flow path 530.
  • a thermal management system 10B according to the third embodiment will be described with reference to FIG.
  • the radiator 300 is not disposed in the third flow path 530, and only the third pump P3 is disposed.
  • the radiator 300 is disposed in the middle of a radiator flow path 531 provided separately from the third flow path 530.
  • the configurations of the first valve device 410B and the second valve device 420B are also different from the first embodiment.
  • the thermal management system 10B according to the present embodiment is different from the thermal management system 10 in the above points, but is otherwise the same as the thermal management system 10 according to the first embodiment. Below, only a different part from 1st Embodiment is demonstrated.
  • the first valve device 410B is an electrically coupled multi-way valve having the same configuration as the first valve device 410.
  • the first valve device 410B is formed with an opening 419 to which the upstream end of the radiator flow path 531 is connected.
  • the downstream end of the third flow path 530 is connected to the opening 413 of the first valve device 410B.
  • a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed in the first valve device 410B.
  • each flow path is separated. For this reason, a high temperature heat medium and a low temperature heat medium do not merge in the 1st valve apparatus 410B.
  • the second valve device 420B is an electrically coupled multi-way valve having the same configuration as the second valve device 420.
  • the second valve device 420B is formed with an opening 429 to which the downstream end of the radiator flow path 531 is connected.
  • the upstream end of the third flow path 530 is connected to the opening 423 of the second valve device 420B.
  • a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed inside the second valve device 420B.
  • each flow path is separated. For this reason, a high temperature heat medium and a low temperature heat medium do not merge in the 2nd valve apparatus 420B.
  • FIG. 11 shows the flow of the heat medium when the vehicle interior is heated or dehumidified by the air conditioner 200.
  • a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line.
  • a path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the path through which the high-temperature heat medium discharged from the condenser 110 flows is the same as that in the first embodiment shown in FIG. 2 as indicated by the solid line and the dotted line.
  • a path through which a low-temperature heat medium flows will be described. As indicated by the one-dot chain line in FIG. 11, the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410B, the cooler core 220, the second valve device 420B, and the second pump P2, and evaporates again. Returned to vessel 120.
  • a part of the low-temperature heat medium flowing into the first valve device 410B is discharged from the opening 419, flows through the radiator flow path 531 and the radiator 300, and then flows into the second valve device 420B from the opening 429.
  • the heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
  • a part of the low-temperature heat medium flowing inside the second valve device 420B is discharged from the opening 423, flows through the third flow path 530 and the third pump P3, and then flows into the first valve device 410B.
  • the heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
  • FIG. 12 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 12, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
  • the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410B, the heater core 210, the second valve device 420B, and the first pump P1, and returns to the condenser 110 again. It is.
  • part of the high-temperature heat medium that has flowed into the first valve device 410B is discharged from the opening 419, flows through the radiator flow path 531 and the radiator 300, and then flows into the second valve device 420B from the opening 429.
  • the heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
  • a part of the high-temperature heat medium flowing inside the second valve device 420B is discharged from the opening 423, flows through the third flow path 530 and the third pump P3, and then flows into the first valve device 410B.
  • the heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
  • the path through which the low-temperature heat medium discharged from the evaporator 120 flows is the same as that in the first embodiment shown in FIG. 3 as indicated by the alternate long and short dash line.
  • the radiator 300 and the third pump P3 are not disposed in the same flow path, but are disposed in the radiator flow path 531 and the third flow path 530, respectively.
  • the heat medium is pumped through the third flow path 530 by the third pump P3, the heat medium flows through the radiator flow path 531 and is supplied to the radiator 300.
  • the third flow path 530 in the present insulator form is also a flow path through which the heat medium supplied to the radiator 300 flows. Even with such a configuration, the same effects as those of the first embodiment can be obtained.
  • the vehicle-mounted device heated or cooled by the heat medium may be a device other than the inverter or the storage battery.
  • examples of such in-vehicle devices include a motor generator, a transaxle, an oil cooler, an intercooler, an EGR cooler, an exhaust heat recovery machine, a fuel supply pipe, an intake path, an exhaust gas purification catalyst, and a throttle cooler.
  • the number of in-vehicle devices heated or cooled by the heat medium may be one of these, or three or more.
  • a heat exchanger for equipment (in this embodiment, inverter cooler E1 and battery cooler E2) for heating or cooling the in-vehicle equipment, and piping for supplying a heat medium to the heat exchanger for equipment.
  • the number of sets with the inverter flow path 560 and the storage battery flow path 570 is as many as the number of in-vehicle devices.
  • the equipment heat exchanger may be arranged in the middle of the first flow path 510 or in the middle of the second flow path 520.
  • the heat exchanger for equipment should just be arrange
  • the heat absorption amount in the radiator 300 may be adjusted only by the rotation speed of the third pump P3, but may be adjusted by both the rotation speed of the third pump P3 and the rotation speed of the electric fan 301. Further, it may be adjusted by combining with the operation of a radiator shutter (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A thermal management system (10) is provided with: a first flow channel (510), a part of which is heated by a condenser (110); a second flow channel (520), a part of which is cooled by an evaporator (120); a third flow channel (530), in which a heat medium to be supplied to a radiator (300) flows; a first valve device (410), to which one end of the first flow channel, one end of the second flow channel, and one end of the third flow channel are connected, and which switches a path in which the heat medium flows; and a second valve device (420), to which the other end of the first flow channel, the other end of the second flow channel, and the other end of the third flow channel are connected, and which switches a path in which the heat medium flows.

Description

熱管理システムThermal management system 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年11月19日に出願された日本国特許出願2015-226554号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2015-226554 filed on November 19, 2015, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、車両に搭載される熱管理システムに関する。 This disclosure relates to a thermal management system mounted on a vehicle.
 冷凍サイクルの凝縮器によって加熱された高温の熱媒体と、冷凍サイクルの蒸発器によって冷却された低温の熱媒体と、をそれぞれ車両内で循環させることにより、車両の空調や各種車載機器の冷却等を行う熱管理システムが知られている。 By circulating the high-temperature heat medium heated by the condenser of the refrigeration cycle and the low-temperature heat medium cooled by the evaporator of the refrigeration cycle in the vehicle, the air conditioning of the vehicle, the cooling of various in-vehicle devices, etc. Thermal management systems that perform are known.
 例えば、下記特許文献1に記載されている熱管理システムでは、空調装置のクーラコアに低温の熱媒体が供給される。空調装置による冷房が行われる際には、当該熱媒体との熱交換により冷却された空気が車室内に吹き出される。また、空調装置のヒータコアには高温の熱媒体が供給される。空調装置による暖房運転が行われる際には、当該熱媒体との熱交換により加熱された空気が車室内に吹き出される。更に、上記熱管理システムの空調装置は、クーラコアによる空気の除湿と、ヒータコアによる空気の加熱とを同時に行う運転、すなわち除湿暖房運転を行うことも可能となっている。 For example, in the heat management system described in Patent Document 1 below, a low-temperature heat medium is supplied to the cooler core of the air conditioner. When cooling by the air conditioner is performed, air cooled by heat exchange with the heat medium is blown into the passenger compartment. A high-temperature heat medium is supplied to the heater core of the air conditioner. When the heating operation by the air conditioner is performed, air heated by heat exchange with the heat medium is blown out into the passenger compartment. Furthermore, the air conditioner of the thermal management system can also perform an operation of simultaneously dehumidifying the air by the cooler core and heating the air by the heater core, that is, a dehumidifying heating operation.
 上記熱管理システムでは、空調装置による車室内の空調が行われるとともに、インバータやモータジェネレータのような車載機器の冷却も行われる。それぞれの車載機器には、熱媒体の流路が形成された冷却器が設けられている。車両内を循環する熱媒体の一部が冷却器にも供給されることにより、車載機器の冷却が行われる。 In the above thermal management system, air conditioning of the vehicle interior is performed by an air conditioner, and cooling of in-vehicle devices such as an inverter and a motor generator is also performed. Each vehicle-mounted device is provided with a cooler in which a heat medium flow path is formed. A part of the heat medium circulating in the vehicle is also supplied to the cooler, thereby cooling the in-vehicle device.
特開2013-230805号公報JP 2013-230805 A
 除湿暖房運転が行われているときには、クーラコアの除湿性能と、ヒータコアの加熱性能とをそれぞれ適切に発揮させながら、車室内に吹き出される空気の温度を目標温度に一致させる必要がある。発明者らが検討したところによれば、冷凍サイクルが備えるコンプレッサの回転数を変化させることでヒータコアの表面温度を調整し、吹き出される空気の温度を目標温度に一致させるような制御が、除湿暖房運転には望ましいという知見が得られている。 When the dehumidifying and heating operation is being performed, it is necessary to match the temperature of the air blown into the vehicle interior to the target temperature while appropriately exhibiting the dehumidifying performance of the cooler core and the heating performance of the heater core. According to a study by the inventors, the control of adjusting the surface temperature of the heater core by changing the rotation speed of the compressor included in the refrigeration cycle and making the temperature of the blown air coincide with the target temperature is performed by dehumidification. Knowledge that it is desirable for heating operation has been obtained.
 このとき、コンプレッサの回転数の変化に伴い、クーラコアの表面温度も変化してしまうと、除湿性能が低下する可能性がある。このため、クーラコアの表面温度が適切な温度に保たれるように、ラジエータにおける吸熱量を調整する必要がある。吸熱量は、ラジエータに供給される熱媒の流量を変化させることによって調整することができる。 At this time, if the surface temperature of the cooler core also changes with the change in the rotation speed of the compressor, the dehumidifying performance may be lowered. For this reason, it is necessary to adjust the heat absorption amount in the radiator so that the surface temperature of the cooler core is maintained at an appropriate temperature. The endothermic amount can be adjusted by changing the flow rate of the heat medium supplied to the radiator.
 ところで、上記特許文献1に記載されている熱管理システムは、クーラコアに供給される熱媒体の流量と、ラジエータに供給される熱媒体の流量とが、単一のポンプによって調整される構成となっている。 By the way, the heat management system described in Patent Document 1 is configured such that the flow rate of the heat medium supplied to the cooler core and the flow rate of the heat medium supplied to the radiator are adjusted by a single pump. ing.
 このため、適切な吸熱量となるように、ラジエータに供給される熱媒体の流量を変化させると、クーラコアに供給される熱媒体の流量も同時に変化してしまう。その結果、クーラコアの表面温度が変化し、そのときの「適切な吸熱量」も変化してしまうので、ラジエータに供給される熱媒体の流量を更に変化させる必要が生じてしまう。その結果、クーラコアの表面温度が不安定になってしまう可能性がある。 For this reason, if the flow rate of the heat medium supplied to the radiator is changed so as to obtain an appropriate heat absorption amount, the flow rate of the heat medium supplied to the cooler core also changes simultaneously. As a result, the surface temperature of the cooler core changes, and the “appropriate heat absorption amount” at that time also changes, so that it becomes necessary to further change the flow rate of the heat medium supplied to the radiator. As a result, the surface temperature of the cooler core may become unstable.
 このように、従来の熱管理システムにおいては、ラジエータに供給される熱媒体の流量と、空調装置に供給される熱媒体の流量とを個別に調整することができず、空調装置の性能、特に除湿暖房時における性能を安定的に発揮させることが難しい、という問題があった。 Thus, in the conventional heat management system, the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner cannot be individually adjusted, and the performance of the air conditioner, particularly There was a problem that it was difficult to stably exhibit the performance during dehumidifying heating.
 このような問題を解決するためには、ラジエータに熱媒体を供給するための流路と、クーラコアに熱媒体を供給するための流路とを、互いに直列ではなく並列に接続することが考えらえられる。具体的には、クーラコアに供給される熱媒体の一部がラジエータにも供給される構成とした上で、ラジエータに熱媒体を供給するための流路の途中に流量調整弁を配置することも考えられる。 In order to solve such a problem, it is considered to connect a flow path for supplying a heat medium to a radiator and a flow path for supplying a heat medium to a cooler core in parallel rather than in series. available. Specifically, after a part of the heat medium supplied to the cooler core is also supplied to the radiator, a flow rate adjusting valve may be arranged in the middle of the flow path for supplying the heat medium to the radiator. Conceivable.
 しかしながら、その場合には、ラジエータに熱媒体を供給するための流路における圧力損失が大きくなり過ぎてしまう。このため、夏期や冬期のような高負荷時において、ラジエータの吸熱性能等を十分に発揮させるためには、大型のポンプによって熱媒体を圧送する必要が生じる。ただし、大型のポンプが用いられた場合には、熱媒体の流路を形成するホース等の高耐圧化が必要となるなど、ポンプのみならずシステム全体のコストが増加してしまうという問題が生じる。 However, in that case, the pressure loss in the flow path for supplying the heat medium to the radiator becomes too large. For this reason, it is necessary to pump the heat medium by a large pump in order to fully exhibit the heat absorption performance of the radiator during high loads such as summer and winter. However, when a large pump is used, there is a problem that the cost of not only the pump but the entire system increases, such as the need to increase the pressure resistance of the hose that forms the flow path of the heat medium. .
 本開示は、発明者によって見出された上記のような課題に鑑みてなされたものであり、その目的は、ラジエータに供給される熱媒体の流量と、空調装置に供給される熱媒体の流量とを個別に調整することのできる構成としながらも、熱媒体を圧送するポンプの大型化を抑制することのできる熱管理システムを提供することにある。 The present disclosure has been made in view of the above problems found by the inventor, and the purpose thereof is the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner. Is to provide a heat management system that can suppress the increase in size of a pump that pumps a heat medium.
 上記課題を解決するために、本開示の一態様に係る熱管理システムは、車両に搭載される熱管理システムであって、凝縮器と蒸発器とを有する冷凍サイクルと、熱媒体が流れる流路であって、その一部が凝縮器によって加熱される第1流路と、第1流路に設けられ、熱媒体を圧送する第1ポンプと、熱媒体が流れる流路であって、その一部が蒸発器によって冷却される第2流路と、第2流路に設けられ、熱媒体を圧送する第2ポンプと、車室内に供給される空気を、第1流路を通った熱媒体との熱交換、及び第2流路を流れた熱媒体との熱交換によって加熱又は冷却する空調装置と、空調装置を流れた熱媒体と、外気とを熱交換させるラジエータと、ラジエータに供給される熱媒体が流れる流路である第3流路と、第3流路に設けられ、熱媒体を圧送する第3ポンプと、第1流路の一端と、第2流路の一端と、第3流路の一端と、がそれぞれ接続されており、熱媒体が流れる経路を切り替える第1弁装置と、第1流路の他端と、第2流路の他端と、第3流路の他端と、がそれぞれ接続されており、熱媒体が流れる経路を切り替える第2弁装置と、熱管理システムの全体の動作を制御する制御装置と、を備える。 In order to solve the above problems, a thermal management system according to one aspect of the present disclosure is a thermal management system mounted on a vehicle, and includes a refrigeration cycle having a condenser and an evaporator, and a flow path through which a heat medium flows. A part of which is heated by a condenser, a first pump that is provided in the first channel and that pumps the heat medium, and a flow path through which the heat medium flows. A second flow path whose part is cooled by the evaporator, a second pump provided in the second flow path for pumping the heat medium, and air supplied to the passenger compartment through the first flow path Supplied to the radiator, an air conditioner that heats or cools by heat exchange with the heat medium that flows through the second flow path, a radiator that heat-exchanges the heat medium that flows through the air conditioner, and the outside air, and the radiator A third flow path that is a flow path through which the heat medium flows, and a third flow path, A first pump that switches a path through which a heat medium flows, wherein a third pump that pumps the body, one end of the first flow path, one end of the second flow path, and one end of the third flow path are connected to each other. A second valve device that is connected to the other end of the first flow path, the other end of the second flow path, and the other end of the third flow path, and switches a path through which the heat medium flows; And a control device that controls the overall operation of the thermal management system.
 このような熱管理システムでは、第1流路及び第2流路に対して互いに並列となる位置に、第3流路が接続されている。空調装置に供給される熱媒体の流量は、第1ポンプ又は第2ポンプの回転数によって調整される。一方、ラジエータに供給される熱媒体の流量は、第1ポンプや第2ポンプとは別に設けられた第3ポンプによって調整される。 In such a heat management system, the third flow path is connected to a position parallel to the first flow path and the second flow path. The flow rate of the heat medium supplied to the air conditioner is adjusted by the rotational speed of the first pump or the second pump. On the other hand, the flow rate of the heat medium supplied to the radiator is adjusted by a third pump provided separately from the first pump and the second pump.
 このため、ラジエータに供給される熱媒体の流量と、空調装置に供給される熱媒体の流量とを、個別に調整することが可能となる。その結果、ラジエータにおける吸熱量や放熱量を確保するための制御と、空調装置から吹き出される空気の温度を目標温度に一致させ且つ安定させるための制御とを、互いに独立に行うことが可能となる。 Therefore, it is possible to individually adjust the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner. As a result, it is possible to perform the control for ensuring the heat absorption amount and the heat radiation amount in the radiator and the control for making the temperature of the air blown out from the air conditioner coincide with the target temperature and stabilize them independently of each other. Become.
 また、上記熱管理システムでは、空調装置に向けて熱媒体を圧送するポンプとは別に設けられた第3ポンプにより、ラジエータへの熱媒体の圧送が行われる。このように、単一のポンプではなく複数のポンプによって熱媒体の循環が行われるので、それぞれのポンプに求められる負荷が小さくなる。このため、ポンプを大型化させる必要が無い。 In the heat management system, the heat medium is pumped to the radiator by a third pump that is provided separately from the pump that pumps the heat medium toward the air conditioner. Thus, since the heat medium is circulated by a plurality of pumps instead of a single pump, the load required for each pump is reduced. For this reason, it is not necessary to enlarge the pump.
 本開示によれば、ラジエータに供給される熱媒体の流量と、空調装置に供給される熱媒体の流量とを個別に調整することのできる構成としながらも、熱媒体を圧送するポンプの大型化を抑制することのできる熱管理システムが提供される。 According to the present disclosure, it is possible to individually adjust the flow rate of the heat medium supplied to the radiator and the flow rate of the heat medium supplied to the air conditioner, and the size of the pump that pumps the heat medium is increased. A thermal management system capable of suppressing the above is provided.
図1は、第1実施形態に係る熱管理システムの全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a thermal management system according to the first embodiment. 図2は、暖房時又は除湿暖房時における、熱媒体の流れを示す図である。FIG. 2 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating. 図3は、冷房時における、熱媒体の流れを示す図である。FIG. 3 is a diagram illustrating the flow of the heat medium during cooling. 図4は、制御装置によって実行される処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing a flow of processing executed by the control device. 図5は、制御装置によって実行される処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of processing executed by the control device. 図6は、制御装置によって実行される処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing a flow of processing executed by the control device. 図7は、第2実施形態に係る熱管理システムの全体構成を示す図である。FIG. 7 is a diagram illustrating an overall configuration of a thermal management system according to the second embodiment. 図8は、暖房時又は除湿暖房時における、熱媒体の流れを示す図である。FIG. 8 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating. 図9は、冷房時における、熱媒体の流れを示す図である。FIG. 9 is a diagram illustrating the flow of the heat medium during cooling. 図10は、第3実施形態に係る熱管理システムの全体構成を示す図である。FIG. 10 is a diagram illustrating an overall configuration of a thermal management system according to the third embodiment. 図11は、暖房時又は除湿暖房時における、熱媒体の流れを示す図である。FIG. 11 is a diagram illustrating the flow of the heat medium during heating or dehumidifying heating. 図12は、冷房時における、熱媒体の流れを示す図である。FIG. 12 is a diagram illustrating the flow of the heat medium during cooling.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 第1実施形態に係る熱管理システム10の構成について、図1を参照しながら説明する。熱管理システム10は車両(不図示)に搭載されるものであり、車室内の空調、及び車両に備えられた各種車載機器の冷却等を行うためのシステムとして構成されている。本実施形態では、当該車両は電気自動車である。つまり、内燃機関を有しておらず、回転電機の駆動力によって走行する車両である。 The configuration of the thermal management system 10 according to the first embodiment will be described with reference to FIG. The thermal management system 10 is mounted on a vehicle (not shown), and is configured as a system for performing air conditioning in the vehicle interior, cooling various in-vehicle devices provided in the vehicle, and the like. In the present embodiment, the vehicle is an electric vehicle. That is, it is a vehicle that does not have an internal combustion engine and travels by the driving force of the rotating electrical machine.
 熱管理システム10は、冷凍サイクル100と、空調装置200と、ラジエータ300と、インバータ冷却器E1と、電池冷却器E2と、第1弁装置410と、第2弁装置420と、制御装置20と、を備えている。 The thermal management system 10 includes a refrigeration cycle 100, an air conditioner 200, a radiator 300, an inverter cooler E1, a battery cooler E2, a first valve device 410, a second valve device 420, and a control device 20. It is equipped with.
 冷凍サイクル100は、熱管理システム10を循環する熱媒体を加熱及び冷却するための装置である。尚、本実施形態においては、上記熱媒体として、エチレングリコールを主成分とする不凍液が用いられている。冷凍サイクル100は、循環流路101と、コンプレッサ130と、膨張弁140と、凝縮器110と、蒸発器120と、を有している。 The refrigeration cycle 100 is a device for heating and cooling a heat medium circulating in the heat management system 10. In the present embodiment, an antifreeze liquid mainly composed of ethylene glycol is used as the heat medium. The refrigeration cycle 100 includes a circulation channel 101, a compressor 130, an expansion valve 140, a condenser 110, and an evaporator 120.
 循環流路101は、冷凍サイクル100の冷媒が循環するための流路である。冷媒としては、例えば二酸化炭素が用いられる。 The circulation channel 101 is a channel through which the refrigerant of the refrigeration cycle 100 circulates. For example, carbon dioxide is used as the refrigerant.
 コンプレッサ130は、冷媒を圧送して循環流路101で循環させるための装置であって、循環流路101の途中に設けられている。コンプレッサ130の回転数は、後述の制御装置20によって制御される。つまり、循環流路101を循環する冷媒の流量が、制御装置20によって制御される。 The compressor 130 is a device for pumping the refrigerant and circulating it in the circulation channel 101, and is provided in the middle of the circulation channel 101. The rotation speed of the compressor 130 is controlled by the control device 20 described later. That is, the flow rate of the refrigerant circulating in the circulation channel 101 is controlled by the control device 20.
 膨張弁140は、循環流路101の途中に設けられたオリフィスである。循環流路101の流路断面積は、膨張弁140において局所的に絞られている。このため、コンプレッサ130が動作して冷媒が循環しているときには、循環流路101のうちコンプレッサ130よりも下流側部分おいては冷媒の圧力が高くなっており、循環流路101のうちコンプレッサ130よりも上流側部分においては冷媒の圧力が低くなっている。 The expansion valve 140 is an orifice provided in the middle of the circulation channel 101. The flow passage cross-sectional area of the circulation flow passage 101 is locally reduced in the expansion valve 140. For this reason, when the compressor 130 operates and the refrigerant circulates, the refrigerant pressure is higher in the downstream portion of the circulation flow path 101 than the compressor 130, and the compressor 130 in the circulation flow path 101. In the upstream side portion, the pressure of the refrigerant is low.
 凝縮器110は、循環流路101のうちコンプレッサ130よりも下流側であり、且つ膨張弁140よりも上流側となる位置に設けられている。コンプレッサ130が動作して循環流路101を冷媒が循環しているときには、凝縮器110の内部では冷媒が気相から液相へと変化して、その温度を上昇させる。このため、凝縮器110は高温となる。 The condenser 110 is provided in the circulation channel 101 at a position downstream of the compressor 130 and upstream of the expansion valve 140. When the compressor 130 operates and the refrigerant circulates through the circulation channel 101, the refrigerant changes from the gas phase to the liquid phase inside the condenser 110, and increases its temperature. For this reason, the condenser 110 becomes high temperature.
 凝縮器110の外側には、後述の第1流路510を構成する配管の一部が取り付けられている。このため、上記のように凝縮器110が高温となっているときには、第1流路510の一部が凝縮器110によって加熱され、第1流路510の内部を流れる熱媒体も加熱される。コンプレッサ130の回転数が大きくなるほど、すなわち循環流路101を循環する冷媒の流量が大きくなるほど、凝縮器110から第1流路510に与えられる熱量も大きくなる。 A part of piping constituting a first flow path 510 described later is attached to the outside of the condenser 110. For this reason, when the condenser 110 is at a high temperature as described above, a part of the first flow path 510 is heated by the condenser 110, and the heat medium flowing inside the first flow path 510 is also heated. As the rotation speed of the compressor 130 increases, that is, as the flow rate of the refrigerant circulating in the circulation flow path 101 increases, the amount of heat given from the condenser 110 to the first flow path 510 also increases.
 蒸発器120は、循環流路101のうちコンプレッサ130よりも上流側であり、且つ膨張弁140よりも下流側となる位置に設けられている。コンプレッサ130が動作して循環流路101を冷媒が循環しているときには、蒸発器120の内部では冷媒が液相から気相へと変化して、その温度を低下させる。このため、蒸発器120は低温となる。 The evaporator 120 is provided in a position that is upstream of the compressor 130 and downstream of the expansion valve 140 in the circulation channel 101. When the compressor 130 operates and the refrigerant circulates in the circulation channel 101, the refrigerant changes from the liquid phase to the gas phase inside the evaporator 120, and the temperature is lowered. For this reason, the evaporator 120 becomes low temperature.
 蒸発器120の外側には、後述の第2流路520を構成する配管の一部が取り付けられている。このため、上記のように蒸発器120が低温となっているときには、第2流路520の一部が蒸発器120によって冷却され、第2流路520の内部を流れる熱媒体も冷却される。コンプレッサ130の回転数が大きくなるほど、すなわち循環流路101を循環する冷媒の流量が大きくなるほど、蒸発器120によって第2流路520から奪われる熱量も大きくなる。 A part of piping constituting a second flow path 520 described later is attached to the outside of the evaporator 120. For this reason, when the evaporator 120 is at a low temperature as described above, a part of the second flow path 520 is cooled by the evaporator 120 and the heat medium flowing inside the second flow path 520 is also cooled. As the number of rotations of the compressor 130 increases, that is, as the flow rate of the refrigerant circulating in the circulation channel 101 increases, the amount of heat taken away from the second channel 520 by the evaporator 120 also increases.
 空調装置200は、空気を加熱又は冷却した後に車室内に吹き出すことで、車室内の空調を行うための装置である。空調装置200は、ケーシング201と、送風機202と、ヒータコア210と、クーラコア220と、を有している。 The air conditioner 200 is an apparatus for performing air conditioning of the passenger compartment by heating or cooling the air and then blowing the air into the passenger compartment. The air conditioner 200 includes a casing 201, a blower 202, a heater core 210, and a cooler core 220.
 ケーシング201は、空気が通過する流路が内部に形成された容器である。ケーシング201のうち空気の吹き出し口側(図1では右側)には、温度センサ203が設けられている。温度センサ203は、空調装置200から車室内に吹き出される空気の温度を測定するためのセンサである。温度センサ203で測定された温度は、制御装置20に送信される。 The casing 201 is a container in which a flow path through which air passes is formed. A temperature sensor 203 is provided on the air outlet side (the right side in FIG. 1) of the casing 201. The temperature sensor 203 is a sensor for measuring the temperature of air blown from the air conditioner 200 into the vehicle interior. The temperature measured by the temperature sensor 203 is transmitted to the control device 20.
 ケーシング201には、不図示のエアミックスドアが配置されている。エアミックスドアの動作により、クーラコア220を通過した空気がヒータコア210を通過することなく吹き出される冷房状態と、クーラコア220を通過した空気がヒータコア210をも通過してから吹き出される暖房状態と、が切り替えられる。尚、このようなエアミックスドアの構造や動作については公知であるから、その具体的な説明は省略する。 The casing 201 is provided with an air mix door (not shown). By the operation of the air mix door, a cooling state in which the air that has passed through the cooler core 220 is blown out without passing through the heater core 210, and a heating state in which the air that has passed through the cooler core 220 is also blown out after passing through the heater core 210, Is switched. In addition, since the structure and operation | movement of such an air mix door are well-known, the specific description is abbreviate | omitted.
 送風機202は、車室内に吹き出される空気の流れを作り出すための装置であって、ケーシング201のうち空気の入口側(図1では左側)に設けられている。送風機202の動作は、制御装置20によって制御される。送風機202が動作すると、送風機202から送り出された空気がケーシング201の内部を流れた後、車室内に吹き出される。 The blower 202 is a device for creating a flow of air blown into the passenger compartment, and is provided on the air inlet side (the left side in FIG. 1) of the casing 201. The operation of the blower 202 is controlled by the control device 20. When the blower 202 is operated, the air sent out from the blower 202 flows through the inside of the casing 201 and then blown into the vehicle interior.
 ヒータコア210は、ケーシング201内を流れる空気を加熱するための熱交換器である。ヒータコア210は、ケーシング201の内部のうち吹き出し口の近傍となる位置に配置されている。 The heater core 210 is a heat exchanger for heating the air flowing in the casing 201. The heater core 210 is disposed in the casing 201 at a position near the outlet.
 ヒータコア210には、第1流路510を流れて高温となった熱媒体、すなわち、凝縮器110によって加熱され高温となった熱媒体が供給される。ヒータコア210では、高温の熱媒体と、ケーシング201内を流れる空気との熱交換が行われ、これにより空気が加熱される。既に述べたように、コンプレッサ130の回転数が大きくなるほど、凝縮器110から第1流路510に与えられる熱量が大きくなる。これに伴い、ヒータコア210を通過する熱媒体の温度が上昇し、空調装置200から吹き出される空気の温度も上昇する。 The heater core 210 is supplied with a high-temperature heat medium flowing through the first flow path 510, that is, a high-temperature heat medium heated by the condenser 110. In the heater core 210, heat exchange between the high-temperature heat medium and the air flowing in the casing 201 is performed, whereby the air is heated. As already described, the amount of heat given from the condenser 110 to the first flow path 510 increases as the rotational speed of the compressor 130 increases. Along with this, the temperature of the heat medium passing through the heater core 210 rises, and the temperature of the air blown out from the air conditioner 200 also rises.
 クーラコア220は、ケーシング201内を流れる空気を冷却するための熱交換器である。また、空気がクーラコア220を通過する際には、当該空気に含まれる水分が結露する。このため、クーラコア220は、ケーシング201内を流れる空気を除湿するもの、ともいうことができる。クーラコア220は、ケーシング201の内部のうち、空気の流れ方向(図1の矢印AR1で示される方向)においてヒータコア210よりも上流側となる位置に配置されている。 The cooler core 220 is a heat exchanger for cooling the air flowing in the casing 201. Further, when the air passes through the cooler core 220, moisture contained in the air is condensed. For this reason, the cooler core 220 can also be said to dehumidify the air flowing in the casing 201. The cooler core 220 is disposed in the casing 201 at a position upstream of the heater core 210 in the air flow direction (the direction indicated by the arrow AR1 in FIG. 1).
 クーラコア220には、第2流路520を流れて低温となった熱媒体、すなわち、蒸発器120によって冷却され低温となった熱媒体が供給される。クーラコア220では、低温の熱媒体と、ケーシング201内を流れる空気との熱交換が行われ、これにより空気が冷却される。既に述べたように、コンプレッサ130の回転数が大きくなるほど、蒸発器120によって第2流路520から奪われる熱量が大きくなる。これに伴い、クーラコア220を通過する熱媒体の温度が低下し、ヒータコア210に到達する空気の温度も低下する。 The cooler core 220 is supplied with a low-temperature heat medium flowing through the second flow path 520, that is, a low-temperature heat medium cooled by the evaporator 120. In the cooler core 220, heat exchange between the low-temperature heat medium and the air flowing in the casing 201 is performed, thereby cooling the air. As already described, the amount of heat taken away from the second flow path 520 by the evaporator 120 increases as the rotational speed of the compressor 130 increases. Along with this, the temperature of the heat medium passing through the cooler core 220 decreases, and the temperature of the air reaching the heater core 210 also decreases.
 クーラコア220には、その表面温度を測定するための温度センサ221が設けられている。温度センサ221によって測定されたクーラコア220の表面温度は、制御装置20に送信される。 The cooler core 220 is provided with a temperature sensor 221 for measuring the surface temperature. The surface temperature of the cooler core 220 measured by the temperature sensor 221 is transmitted to the control device 20.
 ラジエータ300は、熱管理システム10を循環する熱媒体と、外気とを熱交換させるための熱交換器である。後に説明するように、第1弁装置410や第2弁装置420の動作によって、高温の熱媒体がラジエータ300に供給される放熱状態と、低温の熱媒体がラジエータ300に供給される吸熱状態と、が切り替えられる。 The radiator 300 is a heat exchanger for exchanging heat between the heat medium circulating in the heat management system 10 and the outside air. As will be described later, by the operation of the first valve device 410 and the second valve device 420, a heat dissipation state in which a high-temperature heat medium is supplied to the radiator 300, and a heat absorption state in which a low-temperature heat medium is supplied to the radiator 300, Are switched.
 放熱状態においては、凝縮器110及びヒータコア210を通り高温となった熱媒体の熱が、外気へと放出される。このため、熱媒体は、ラジエータ300を通過する際においてその温度を低下させる。空調装置200により車室内の冷房が行われるときには、放熱状態とされる。 In the heat dissipation state, the heat of the heat medium that has become high temperature through the condenser 110 and the heater core 210 is released to the outside air. For this reason, the temperature of the heat medium decreases when passing through the radiator 300. When the vehicle interior is cooled by the air conditioner 200, a heat dissipation state is established.
 吸熱状態においては、蒸発器120及びクーラコア220を通り低温となった熱媒体に、外気からの熱が取り込まれる。このため、熱媒体は、ラジエータ300を通過する際においてその温度を上昇させる。空調装置200により車室内の暖房が行われるときには、吸熱状態とされる。 In the endothermic state, heat from the outside air is taken into the heat medium that has passed through the evaporator 120 and the cooler core 220 and has become low temperature. For this reason, the heat medium increases its temperature when passing through the radiator 300. When the vehicle interior is heated by the air conditioner 200, an endothermic state is established.
 ラジエータ300には、電動ファン301が設けられている。電動ファン301は、ラジエータ300を通過する外気の流量を調整するための装置である。電動ファン301の回転数は、制御装置20によって制御される。 The radiator 300 is provided with an electric fan 301. The electric fan 301 is a device for adjusting the flow rate of outside air passing through the radiator 300. The rotational speed of the electric fan 301 is controlled by the control device 20.
 インバータ冷却器E1は、車両に搭載されたインバータ(不図示)の温度を調整するための熱交換器であって、インバータに取り付けられている。インバータは、車両に搭載された蓄電池(不図示)から供給される直流電力を、交流電力に変換して回転電機に供給する電力変換器である。 The inverter cooler E1 is a heat exchanger for adjusting the temperature of an inverter (not shown) mounted on the vehicle, and is attached to the inverter. The inverter is a power converter that converts DC power supplied from a storage battery (not shown) mounted on the vehicle into AC power and supplies the AC power to the rotating electrical machine.
 インバータ冷却器E1には、第1流路510を流れた高温の熱媒体、又は第2流路520を流れた低温の熱媒体が供給される。インバータ冷却器E1により、熱媒体とインバータとの熱交換が行われる。高温の熱媒体がインバータ冷却器E1に供給されると、インバータが暖機される。低温の熱媒体がインバータ冷却器E1に供給されると、インバータが冷却される。インバータ冷却器E1にいずれの熱媒体が供給されるかは、後に説明する第1弁装置410等の動作によって切り替えられる。 The inverter cooler E1 is supplied with a high-temperature heat medium flowing through the first flow path 510 or a low-temperature heat medium flowing through the second flow path 520. The inverter cooler E1 performs heat exchange between the heat medium and the inverter. When the high-temperature heat medium is supplied to the inverter cooler E1, the inverter is warmed up. When the low-temperature heat medium is supplied to the inverter cooler E1, the inverter is cooled. Which heat medium is supplied to the inverter cooler E1 is switched by the operation of the first valve device 410 and the like to be described later.
 電池冷却器E2は、車両に搭載された蓄電池の温度を調整するための熱交換器であって、蓄電池に取り付けられている。蓄電池は、車両の走行に必要な電力を蓄えておくためのものである。 The battery cooler E2 is a heat exchanger for adjusting the temperature of the storage battery mounted on the vehicle, and is attached to the storage battery. The storage battery is for storing electric power necessary for traveling of the vehicle.
 インバータ冷却器E1と同様に、電池冷却器E2にも、第1流路510を流れた高温の熱媒体、又は第2流路520を流れた低温の熱媒体が供給される。電池冷却器E2により、熱媒体と蓄電池との熱交換が行われる。高温の熱媒体が電池冷却器E2に供給されると、蓄電池が暖機される。低温の熱媒体が電池冷却器E2に供給されると、蓄電池が冷却される。電池冷却器E2にいずれの熱媒体が供給されるかは、第1弁装置410等の動作によって切り替えられる。 Like the inverter cooler E1, the battery cooler E2 is also supplied with a high-temperature heat medium that has flowed through the first flow path 510 or a low-temperature heat medium that has flowed through the second flow path 520. Heat exchange between the heat medium and the storage battery is performed by the battery cooler E2. When the high-temperature heat medium is supplied to the battery cooler E2, the storage battery is warmed up. When the low-temperature heat medium is supplied to the battery cooler E2, the storage battery is cooled. Which heat medium is supplied to the battery cooler E2 is switched by the operation of the first valve device 410 and the like.
 第1弁装置410及び第2弁装置420の説明に先立ち、熱管理システム10において熱媒体が循環する流路について説明する。熱管理システム10には、熱媒体が流れる流路として、第1流路510と、第2流路520と、第3流路530と、ヒータコア用流路550と、クーラコア用流路540と、インバータ用流路560と、蓄電池用流路570と、が設けられている。これらは、いずれも車両の内部に配置された配管によって構成されている。当該配管は、一部が金属によって形成され、一部が樹脂によって形成されている。 Prior to the description of the first valve device 410 and the second valve device 420, the flow path through which the heat medium circulates in the heat management system 10 will be described. The heat management system 10 includes a first flow path 510, a second flow path 520, a third flow path 530, a heater core flow path 550, and a cooler core flow path 540 as flow paths through which the heat medium flows. An inverter flow path 560 and a storage battery flow path 570 are provided. These are all configured by piping arranged inside the vehicle. The piping is partially formed of metal and partially formed of resin.
 第1流路510は、内部を流れる熱媒体を凝縮器110によって加熱するための流路である。既に述べたように、第1流路510を構成する配管の一部は凝縮器110の外側に取り付けられている。第1流路510のうち、凝縮器110よりも上流側となる位置には、第1ポンプP1が設けられている。第1ポンプP1は、第1流路510を熱媒体が流れるよう熱媒体を圧送するためのポンプである。第1ポンプP1の回転数は制御装置20によって制御される。つまり、第1流路510を流れて凝縮器110を通過する熱媒体の流量が、制御装置20によって制御される。 The first flow path 510 is a flow path for heating the heat medium flowing inside by the condenser 110. As already described, a part of the piping constituting the first flow path 510 is attached to the outside of the condenser 110. A first pump P <b> 1 is provided in a position on the upstream side of the condenser 110 in the first flow path 510. The first pump P1 is a pump for pumping the heat medium so that the heat medium flows through the first flow path 510. The number of rotations of the first pump P1 is controlled by the control device 20. That is, the flow rate of the heat medium flowing through the first flow path 510 and passing through the condenser 110 is controlled by the control device 20.
 第2流路520は、内部を流れる熱媒体を蒸発器120によって冷却するための流路である。既に述べたように、第2流路520を構成する配管の一部は蒸発器120の外側に取り付けられている。第2流路520のうち、蒸発器120よりも上流側となる位置には、第2ポンプP2が設けられている。第2ポンプP2は、第2流路520を熱媒体が流れるよう熱媒体を圧送するためのポンプである。第2ポンプP2の回転数は制御装置20によって制御される。つまり、第2流路520を流れて蒸発器120を通過する熱媒体の流量が、制御装置20によって制御される。 The second flow path 520 is a flow path for cooling the heat medium flowing inside by the evaporator 120. As already described, a part of the piping constituting the second flow path 520 is attached to the outside of the evaporator 120. A second pump P <b> 2 is provided in a position on the upstream side of the evaporator 120 in the second flow path 520. The second pump P <b> 2 is a pump for pumping the heat medium so that the heat medium flows through the second flow path 520. The rotation speed of the second pump P2 is controlled by the control device 20. That is, the flow rate of the heat medium that flows through the second flow path 520 and passes through the evaporator 120 is controlled by the control device 20.
 第3流路530は、ラジエータ300に供給される熱媒体が流れる流路である。本実施形態では、第3流路530の途中にラジエータ300が設けられている。第3流路530のうち、ラジエータ300よりも上流側となる位置には、第3ポンプP3が設けられている。つまり、第3流路530において、ラジエータ300と第3ポンプP3とが直列に並ぶように配置されている。第3ポンプP3は、第3流路530を熱媒体が流れるよう熱媒体を圧送するためのポンプである。第3ポンプP3の回転数は制御装置20によって制御される。つまり、第3流路530を流れてラジエータ300を通過する熱媒体の流量が、制御装置20によって制御される。 The third channel 530 is a channel through which the heat medium supplied to the radiator 300 flows. In the present embodiment, the radiator 300 is provided in the middle of the third flow path 530. A third pump P3 is provided in a position on the upstream side of the radiator 300 in the third flow path 530. That is, in the third flow path 530, the radiator 300 and the third pump P3 are arranged in series. The third pump P3 is a pump for pumping the heat medium so that the heat medium flows through the third flow path 530. The rotation speed of the third pump P3 is controlled by the control device 20. That is, the flow rate of the heat medium flowing through the third flow path 530 and passing through the radiator 300 is controlled by the control device 20.
 ヒータコア用流路550は、ヒータコア210に供給される熱媒体が流れる流路である。ヒータコア210は、ヒータコア用流路550の途中に設けられている。熱媒体は、先に説明した第1流路510を流れた後、第1弁装置410を経由してヒータコア用流路550を流れる。このため、ヒータコア用流路550を流れる熱媒体の流量は、第1流路510に設けられた第1ポンプP1によって調整される。 The heater core channel 550 is a channel through which the heat medium supplied to the heater core 210 flows. The heater core 210 is provided in the middle of the heater core flow path 550. The heat medium flows through the first flow path 510 described above, and then flows through the heater core flow path 550 via the first valve device 410. For this reason, the flow rate of the heat medium flowing through the heater core flow path 550 is adjusted by the first pump P <b> 1 provided in the first flow path 510.
 クーラコア用流路540は、クーラコア220に供給される熱媒体が流れる流路である。クーラコア220は、クーラコア用流路540の途中に設けられている。熱媒体は、先に説明した第2流路520を流れた後、第1弁装置410を経由してクーラコア用流路540を流れる。このため、クーラコア用流路540を流れる熱媒体の流量は、第2流路520に設けられた第2ポンプP2によって調整される。 The cooler core channel 540 is a channel through which the heat medium supplied to the cooler core 220 flows. The cooler core 220 is provided in the middle of the cooler core flow path 540. The heat medium flows through the cooler core flow path 540 via the first valve device 410 after flowing through the second flow path 520 described above. For this reason, the flow rate of the heat medium flowing through the cooler core channel 540 is adjusted by the second pump P <b> 2 provided in the second channel 520.
 インバータ用流路560は、インバータ冷却器E1に供給される熱媒体が流れる流路である。インバータ冷却器E1は、インバータ用流路560の途中に設けられている。インバータ用流路560を流れる熱媒体の流量は、第1弁装置410の開度又は第2弁装置420の開度によって調整される。 The inverter channel 560 is a channel through which the heat medium supplied to the inverter cooler E1 flows. The inverter cooler E1 is provided in the middle of the inverter flow path 560. The flow rate of the heat medium flowing through the inverter flow path 560 is adjusted by the opening degree of the first valve device 410 or the opening degree of the second valve device 420.
 蓄電池用流路570は、電池冷却器E2に供給される熱媒体が流れる流路である。電池冷却器E2は、蓄電池用流路570の途中に設けられている。蓄電池用流路570を流れる熱媒体の流量は、第1弁装置410の開度又は第2弁装置420の開度によって調整される。 The storage battery channel 570 is a channel through which the heat medium supplied to the battery cooler E2 flows. The battery cooler E2 is provided in the middle of the storage battery flow path 570. The flow rate of the heat medium flowing through the storage battery flow path 570 is adjusted by the opening degree of the first valve device 410 or the opening degree of the second valve device 420.
 第1弁装置410は電動式の結合多方弁である。第1弁装置410には、熱媒体の入口である開口411、412と、熱媒体の出口である開口413、414、415、416、417とが形成されている。開口411には、第1流路510の下流側端部が接続されている。開口412には、第2流路520の下流側端部が接続されている。開口413には、第3流路530の上流側端部が接続されている。開口414には、クーラコア用流路540の上流側端部が接続されている。開口415には、ヒータコア用流路550の上流側端部が接続されている。開口416には、インバータ用流路560の上流側端部が接続されている。開口417には、蓄電池用流路570の上流側端部が接続されている。 The first valve device 410 is an electrically coupled multi-way valve. The first valve device 410 is formed with openings 411 and 412 that are inlets of the heat medium, and openings 413, 414, 415, 416, and 417 that are outlets of the heat medium. A downstream end portion of the first flow path 510 is connected to the opening 411. The downstream end of the second flow path 520 is connected to the opening 412. The opening 413 is connected to the upstream end of the third flow path 530. The upstream end of the cooler core channel 540 is connected to the opening 414. The upstream end of the heater core flow path 550 is connected to the opening 415. The upstream end of the inverter flow path 560 is connected to the opening 416. The upstream end of the storage battery flow path 570 is connected to the opening 417.
 第1流路510を流れた後、開口411から第1弁装置410に流入した高温の熱媒体は、少なくともその一部が開口415から排出されて、ヒータコア210に供給される。また、第1弁装置410は、内部に形成された流路を切り替えることにより、高温の熱媒体の一部を開口413からラジエータ300に供給することもできる。また、高温の熱媒体の一部を開口416からインバータ冷却器E1に供給したり、開口417から電池冷却器E2に供給したりすることもできる。 After flowing through the first flow path 510, at least a part of the high-temperature heat medium flowing into the first valve device 410 from the opening 411 is discharged from the opening 415 and supplied to the heater core 210. The first valve device 410 can also supply a part of the high-temperature heat medium to the radiator 300 from the opening 413 by switching the flow path formed inside. Also, a part of the high-temperature heat medium can be supplied to the inverter cooler E1 from the opening 416 or supplied to the battery cooler E2 from the opening 417.
 第2流路520を流れた後、開口412から第1弁装置410に流入した低温の熱媒体は、少なくともその一部が開口414から排出されて、クーラコア220に供給される。また、第1弁装置410は、内部に形成された流路を切り替えることにより、低温の熱媒体の一部を開口413からラジエータ300に供給することもできる。また、低温の熱媒体の一部を開口416からインバータ冷却器E1に供給したり、開口417から電池冷却器E2に供給したりすることもできる。 After flowing through the second flow path 520, at least a part of the low-temperature heat medium flowing into the first valve device 410 from the opening 412 is discharged from the opening 414 and supplied to the cooler core 220. The first valve device 410 can also supply a part of the low-temperature heat medium to the radiator 300 from the opening 413 by switching the flow path formed inside. Further, a part of the low-temperature heat medium can be supplied from the opening 416 to the inverter cooler E1, or can be supplied from the opening 417 to the battery cooler E2.
 上記のように、第1弁装置410の内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第1弁装置410の内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 As described above, a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed inside the first valve device 410. However, each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the first valve device 410.
 尚、このような第1弁装置410の具体的な構成としては、例えば特開2013-230805号公報に記載された切替弁の構成のような、公知の構成を採用し得る。また、電動式の2方弁、3方弁、4方弁等を複数個組み合わせることにより、上記のように機能する第1弁装置410が構成されていてもよい。 In addition, as a specific configuration of the first valve device 410, a known configuration such as a configuration of a switching valve described in JP2013-230805A can be employed. Further, the first valve device 410 that functions as described above may be configured by combining a plurality of electric two-way valves, three-way valves, four-way valves, and the like.
 第2弁装置420は、第1弁装置410と同様の電動式の結合多方弁である。第2弁装置420には、熱媒体の出口である開口421、422と、熱媒体の入口である開口423、424、425、426、427とが形成されている。開口421には、第1流路510の上流側端部が接続されている。開口422には、第2流路520の上流側端部が接続されている。開口423には、第3流路530の下流側端部が接続されている。開口424には、クーラコア用流路540の下流側端部が接続されている。開口425には、ヒータコア用流路550の下流側端部が接続されている。開口426には、インバータ用流路560の下流側端部が接続されている。開口427には、蓄電池用流路570の下流側端部が接続されている。 The second valve device 420 is an electrically coupled multi-way valve similar to the first valve device 410. The second valve device 420 is formed with openings 421 and 422 that are outlets of the heat medium, and openings 423, 424, 425, 426, and 427 that are inlets of the heat medium. An upstream end of the first flow path 510 is connected to the opening 421. An upstream end of the second flow path 520 is connected to the opening 422. The downstream end of the third flow path 530 is connected to the opening 423. The downstream end of the cooler core channel 540 is connected to the opening 424. The downstream end of the heater core flow path 550 is connected to the opening 425. The downstream end of the inverter flow path 560 is connected to the opening 426. The downstream end of the storage battery flow path 570 is connected to the opening 427.
 ヒータコア用流路550を流れた後、開口425から第2弁装置420に流入した高温の熱媒体は、少なくともその一部が開口421から排出されて第1流路510を流れる。また、ラジエータ300に高温の熱媒体が供給されているときには、第2弁装置420は、内部に形成された流路を切り替えることにより、当該熱媒体を開口423から受け入れる。当該熱媒体は、第1流路510やヒータコア用流路550を流れる熱媒体に合流する。 After flowing through the heater core flow path 550, at least a part of the high-temperature heat medium flowing into the second valve device 420 from the opening 425 is discharged from the opening 421 and flows through the first flow path 510. Further, when a high-temperature heat medium is supplied to the radiator 300, the second valve device 420 receives the heat medium from the opening 423 by switching the flow path formed inside. The heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
 また、第2弁装置420は、インバータ冷却器E1を流れた高温の熱媒体を開口426から受け入れたり、電池冷却器E2を流れた高温の熱媒体を開口427から受け入れたりすることもできる。この場合、当該熱媒体は、第1流路510やヒータコア用流路550を流れる熱媒体に合流する。 Also, the second valve device 420 can receive the high-temperature heat medium flowing through the inverter cooler E1 from the opening 426 and can receive the high-temperature heat medium flowing through the battery cooler E2 from the opening 427. In this case, the heat medium joins the heat medium flowing through the first flow path 510 and the heater core flow path 550.
 クーラコア用流路540を流れた後、開口424から第2弁装置420に流入した低温の熱媒体は、少なくともその一部が開口422から排出されて第2流路520を流れる。また、ラジエータ300に低温の熱媒体が供給されているときには、第2弁装置420は、内部に形成された流路を切り替えることにより、当該熱媒体を開口423から受け入れる。当該熱媒体は、第2流路520やクーラコア用流路540を流れる熱媒体に合流する。 After flowing through the cooler core flow path 540, at least a part of the low-temperature heat medium flowing into the second valve device 420 from the opening 424 is discharged from the opening 422 and flows through the second flow path 520. When the low-temperature heat medium is supplied to the radiator 300, the second valve device 420 receives the heat medium from the opening 423 by switching the flow path formed inside. The heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
 また、第2弁装置420は、インバータ冷却器E1を流れた低温の熱媒体を開口426から受け入れたり、電池冷却器E2を流れた低温の熱媒体を開口427から受け入れたりすることもできる。この場合、当該熱媒体は、第2流路520やクーラコア用流路540を流れる熱媒体に合流する。 Also, the second valve device 420 can receive the low-temperature heat medium that has flowed through the inverter cooler E1 from the opening 426, and can receive the low-temperature heat medium that has flowed through the battery cooler E2 from the opening 427. In this case, the heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
 上記のように、第2弁装置420の内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第2弁装置420の内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 As described above, the flow path through which the high-temperature heat medium flows and the flow path through which the low-temperature heat medium flow are formed inside the second valve device 420. However, each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge inside the second valve device 420.
 尚、このような第2弁装置420の具体的な構成としては、例えば特開2013-230805号公報に記載された切替弁の構成のような、公知の構成を採用し得る。また、電動式の2方弁、3方弁、4方弁等を複数個組み合わせることにより、上記のように機能する第1弁装置410が構成されていてもよい。 In addition, as a specific configuration of the second valve device 420 as described above, a known configuration such as a configuration of a switching valve described in Japanese Patent Application Laid-Open No. 2013-230805 can be employed. Further, the first valve device 410 that functions as described above may be configured by combining a plurality of electric two-way valves, three-way valves, four-way valves, and the like.
 制御装置20は、CPU、ROM、RAM等を備えたコンピュータシステムであって、熱管理システム10の全体の動作を制御する装置として構成されている。制御装置20は、これまでに説明した種々の構成機器の動作を制御する。例えば、制御装置20は、第1ポンプP1の回転数、第2ポンプP2の回転数、及び第3ポンプP3の回転数を、それぞれ個別に調整する。すなわち、それぞれを通過する熱媒体の流量を個別に調整する。また、第1弁装置410や第2弁装置420の状態を切り替えることにより、熱管理システム10における熱媒体の流路を切り替える。 The control device 20 is a computer system that includes a CPU, ROM, RAM, and the like, and is configured as a device that controls the overall operation of the thermal management system 10. The control device 20 controls the operation of the various components described so far. For example, the control device 20 individually adjusts the rotation speed of the first pump P1, the rotation speed of the second pump P2, and the rotation speed of the third pump P3. That is, the flow rate of the heat medium passing through each is individually adjusted. Moreover, the flow path of the heat medium in the heat management system 10 is switched by switching the states of the first valve device 410 and the second valve device 420.
 熱管理システム10の全体において熱媒体が流れる経路について説明する。図2に示されるのは、空調装置200によって車室内の暖房が行われる際における、熱媒体の流れである。図2においては、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 A path through which the heat medium flows in the entire heat management system 10 will be described. FIG. 2 shows the flow of the heat medium when the vehicle interior is heated by the air conditioner 200. In FIG. 2, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 実線で示されるように、凝縮器110から排出された高温の熱媒体は、第1弁装置410、ヒータコア210、第2弁装置420、第1ポンプP1を順に流れて、再び凝縮器110に戻される。 As indicated by the solid line, the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410, the heater core 210, the second valve device 420, and the first pump P1, and then returns to the condenser 110 again. It is.
 尚、暖房が行われるような期間、すなわち冬期においては、インバータ等の車載機器が低温となり、始動時等において暖機が必要となることが多い。このため、インバータ等の暖機が必要な際には、インバータ冷却器E1や電池冷却器E2にも高温の熱媒体が供給される。つまり、開口411から第1弁装置410に流入した高温の熱媒体の一部が、インバータ用流路560及び蓄電池用流路570を流れるように、第1弁装置410及び第2弁装置420の状態が切り換えられる。 In addition, in a period in which heating is performed, that is, in winter, in-vehicle equipment such as an inverter becomes low temperature, and warm-up is often required at start-up. For this reason, when warming up of an inverter etc. is required, a high temperature heat medium is supplied also to the inverter cooler E1 and the battery cooler E2. That is, the first valve device 410 and the second valve device 420 are configured such that a part of the high-temperature heat medium flowing into the first valve device 410 from the opening 411 flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched.
 図2においては、当該熱媒体が流れる経路が点線で示されている。尚、インバータ用流路560及び蓄電池用流路570を熱媒体が流れるときであっても、実線及び一点鎖線で示される熱媒体の流れは維持される。 In FIG. 2, the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
 尚、インバータ用流路560における熱媒体の流量は、第1弁装置410又は第2弁装置420のうち少なくとも一方の動作を制御して、インバータ用流路560に繋がる開口(416又は426)の開度を変化させることにより調整される。 Note that the flow rate of the heat medium in the inverter flow path 560 controls the operation of at least one of the first valve device 410 and the second valve device 420, and the opening (416 or 426) connected to the inverter flow path 560. It is adjusted by changing the opening.
 同様に、蓄電池用流路570における熱媒体の流量は、第1弁装置410又は第2弁装置420のうち少なくとも一方の動作を制御して、蓄電池用流路570に繋がる開口(417又は427)の開度を変化させることにより調整される。 Similarly, the flow rate of the heat medium in the storage battery channel 570 controls the operation of at least one of the first valve device 410 or the second valve device 420, and the opening (417 or 427) connected to the storage battery channel 570. It is adjusted by changing the opening degree.
 一点鎖線で示されるように、蒸発器120から排出された低温の熱媒体は、第1弁装置410、クーラコア220、第2弁装置420、第2ポンプP2を順に流れて、再び蒸発器120に戻される。 As indicated by the alternate long and short dash line, the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410, the cooler core 220, the second valve device 420, and the second pump P2, and then returns to the evaporator 120 again. Returned.
 また、第1弁装置410に流入した低温の熱媒体の一部は、開口413から排出された後、第3ポンプP3、ラジエータ300を順に通り、開口423から第2弁装置420に流入する。当該熱媒体は、第2流路520やクーラコア用流路540を流れる熱媒体に合流する。 Further, a part of the low-temperature heat medium that has flowed into the first valve device 410 is discharged from the opening 413, and then flows into the second valve device 420 from the opening 423 through the third pump P3 and the radiator 300 in order. The heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
 このように、空調装置200による暖房が行われているときには、低温の熱媒体がラジエータ300に供給される。ラジエータ300においては、低温の熱媒体と外気との熱交換が行われ、外気の熱が低温の熱媒体に取り込まれる。つまり、ラジエータ300では、暖房を行うために必要な熱が外気から取り込まれる。 Thus, when heating by the air conditioner 200 is performed, a low-temperature heat medium is supplied to the radiator 300. In the radiator 300, heat exchange between the low-temperature heat medium and the outside air is performed, and the heat of the outside air is taken into the low-temperature heat medium. That is, in the radiator 300, heat necessary for heating is taken from outside air.
 第2流路を流れた低温の熱媒体の少なくとも一部がラジエータ300に供給される状態、すなわち図2に示される経路で熱媒体が循環する状態が、先に説明した「吸熱状態」に該当する。 The state in which at least a part of the low-temperature heat medium that has flowed through the second flow path is supplied to the radiator 300, that is, the state in which the heat medium circulates in the path shown in FIG. 2 corresponds to the “heat absorption state” described above. To do.
 暖房が行われているときには、空調装置200では、クーラコア220との熱交換によって空気が一旦冷却された後、ヒータコア210との熱交換によって空気が加熱される。最終的に高温となった空気が、空調装置200から車室内へと吹き出される。 When heating is performed, in the air conditioner 200, after the air is once cooled by heat exchange with the cooler core 220, the air is heated by heat exchange with the heater core 210. The air that has finally reached a high temperature is blown out from the air conditioner 200 into the passenger compartment.
 このとき、クーラコア220の温度を除湿に適した温度に維持することにより、効率的な空気の除湿と、空気の加熱とを同時に行うこともできる。このように行われる空調は暖房の一種ではあるが、除湿が成り行きで行われるような暖房と区別するために、以下では、「除湿暖房」とも称する。除湿暖房が行われているときに熱媒体が流れる経路は、図2に示されるものと同一である。除湿暖房の際に実行される制御については、後に説明する。 At this time, by maintaining the temperature of the cooler core 220 at a temperature suitable for dehumidification, efficient dehumidification of air and heating of air can be performed simultaneously. Although air conditioning performed in this way is a kind of heating, in order to distinguish it from heating in which dehumidification is performed in an eventual manner, hereinafter, it is also referred to as “dehumidification heating”. The path through which the heat medium flows when dehumidifying heating is performed is the same as that shown in FIG. Control executed during dehumidifying heating will be described later.
 図3に示されるのは、空調装置200によって車室内の冷房が行われる際における、熱媒体の流れである。図3においても、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 FIG. 3 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 3, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 実線で示されるように、凝縮器110から排出された高温の熱媒体は、第1弁装置410、ヒータコア210、第2弁装置420、第1ポンプP1を順に流れて、再び凝縮器110に戻される。 As indicated by the solid line, the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410, the heater core 210, the second valve device 420, and the first pump P1, and then returns to the condenser 110 again. It is.
 また、第1弁装置410に流入した高温の熱媒体の一部は、開口413から排出された後、第3ポンプP3、ラジエータ300を順に通り、開口423から第2弁装置420に流入する。当該熱媒体は、第1流路510やヒータコア用流路550を流れる熱媒体に合流する。 Further, a part of the high-temperature heat medium that has flowed into the first valve device 410 is discharged from the opening 413, and then flows through the third pump P3 and the radiator 300 in order to flow into the second valve device 420 from the opening 423. The heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
 一点鎖線で示されるように、蒸発器120から排出された低温の熱媒体は、第1弁装置410、クーラコア220、第2弁装置420、第2ポンプP2を順に流れて、再び蒸発器120に戻される。 As indicated by the alternate long and short dash line, the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410, the cooler core 220, the second valve device 420, and the second pump P2, and then returns to the evaporator 120 again. Returned.
 尚、冷房が行われるような期間、すなわち夏期においては、インバータ等の車載機器の温度が上昇しやすく、車載機器の動作に支障をきたす可能性がある。このため、インバータ等の温度が高くなった際には、インバータ冷却器E1や電池冷却器E2にも低温の熱媒体が供給される。つまり、開口412から第1弁装置410に流入した低温の熱媒体の一部が、インバータ用流路560及び蓄電池用流路570を流れるように、第1弁装置410及び第2弁装置420の状態が切り換えられる。 In the period when cooling is performed, that is, in summer, the temperature of the in-vehicle devices such as the inverter is likely to rise, which may hinder the operation of the in-vehicle devices. For this reason, when the temperature of an inverter etc. becomes high, a low temperature heat medium is supplied also to the inverter cooler E1 and the battery cooler E2. That is, the first valve device 410 and the second valve device 420 are configured so that a part of the low-temperature heat medium flowing into the first valve device 410 from the opening 412 flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched.
 図3においては、当該熱媒体が流れる経路が点線で示されている。尚、インバータ用流路560及び蓄電池用流路570を熱媒体が流れるときであっても、実線及び一点鎖線で示される熱媒体の流れは維持される。 In FIG. 3, the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
 以上のように、空調装置200による冷房が行われているときには、高温の熱媒体がラジエータ300に供給される。ラジエータ300においては、高温の熱媒体と外気との熱交換が行われ、熱媒体の熱が外気に放出される。つまり、ラジエータ300では、外気に熱を放出することによって車室内の冷房が行われる。 As described above, when cooling by the air conditioner 200 is performed, a high-temperature heat medium is supplied to the radiator 300. In the radiator 300, heat exchange between the high-temperature heat medium and the outside air is performed, and the heat of the heat medium is released to the outside air. That is, in the radiator 300, the vehicle interior is cooled by releasing heat to the outside air.
 第1流路を流れた高温の熱媒体の少なくとも一部がラジエータ300に供給される状態、すなわち図3に示される経路で熱媒体が循環する状態が、先に説明した「放熱状態」に該当する。 The state in which at least a part of the high-temperature heat medium that has flowed through the first flow path is supplied to the radiator 300, that is, the state in which the heat medium circulates in the path shown in FIG. 3 corresponds to the “heat dissipation state” described above. To do.
 冷房が行われているときには、空調装置200では、クーラコア220との熱交換によって空気が一旦冷却される。当該空気は、エアミックスドアで案内されることにより、ヒータコア210を通ることなく車室内に吹き出される。 When cooling is performed, the air conditioner 200 once cools the air by heat exchange with the cooler core 220. The air is guided through the air mix door, and is blown into the passenger compartment without passing through the heater core 210.
 図4に示されるのは、これまでに説明した吸熱状態と放熱状態とを切り替えるために、制御装置20によって実行される処理の流れである。図4に示される一連の処理は、空調装置200による空調が行われている期間において、所定の周期が経過する毎に繰り返し実行されている。 FIG. 4 shows a flow of processing executed by the control device 20 in order to switch between the heat absorption state and the heat dissipation state described so far. A series of processes shown in FIG. 4 is repeatedly executed every time a predetermined period elapses in a period in which air conditioning is performed by the air conditioner 200.
 最初のステップS01では、空調装置200で行われる空調が冷房か否かが判定される。例えば、車両のフロントパネルに設けられたスイッチ等が操作され、「冷房」が選択されているときには、冷房が行われると判定される。冷房が行われると判定されれば、ステップS02に移行する。 In the first step S01, it is determined whether or not the air conditioning performed by the air conditioner 200 is cooling. For example, when a switch or the like provided on the front panel of the vehicle is operated and “cooling” is selected, it is determined that cooling is performed. If it is determined that cooling is performed, the process proceeds to step S02.
 ステップS02では、第1弁装置410及び第2弁装置420のそれぞれを動作させることにより、図3に示される放熱状態に切り換える。これにより、ラジエータ300には高温の熱媒が流れるようになり、ラジエータ300における放熱が行われる。 In step S02, each of the first valve device 410 and the second valve device 420 is operated to switch to the heat dissipation state shown in FIG. As a result, a high-temperature heat medium flows through the radiator 300, and heat is radiated from the radiator 300.
 ステップS01において、冷房が行われると判定されなかった場合、すなわち暖房が行われると判定された場合には、ステップS03に移行する。ステップS03では、第1弁装置410及び第2弁装置420のそれぞれを動作させることにより、図2に示される吸熱状態に切り換える。これにより、ラジエータ300には低温の熱媒が流れるようになり、ラジエータ300における外気からの吸熱が行われる。 In step S01, when it is not determined that cooling is performed, that is, when it is determined that heating is performed, the process proceeds to step S03. In step S03, each of the first valve device 410 and the second valve device 420 is operated to switch to the heat absorption state shown in FIG. As a result, a low-temperature heating medium flows through the radiator 300, and heat is absorbed from outside air in the radiator 300.
 図5を参照しながら、空調装置200による除湿暖房が行われているときに、制御装置20によって実行される処理の流れについて説明する。図5に示される一連の処理は、除湿暖房が行われている期間において、所定の周期が経過する毎に繰り返し実行されている。 Referring to FIG. 5, the flow of processing executed by the control device 20 when dehumidification heating is performed by the air conditioner 200 will be described. A series of processes shown in FIG. 5 are repeatedly executed every time a predetermined period elapses in a period in which dehumidifying heating is performed.
 最初のステップS11では、温度センサ203で測定された温度、すなわち、空調装置200から車室内に吹き出される空気の温度(以下、「吹き出し温度」とも称する)が、所定の目標値を下回っているか否かが判定される。当該目標値は、車両のフロントパネルに設けられたスイッチ等の操作によって、車両の運転者により設定された空調の目標温度である。このような態様に替えて、車室内を快適に保つための目標値が、制御装置20が行う演算によって自動的に設定される態様であってもよい。 In the first step S11, is the temperature measured by the temperature sensor 203, that is, the temperature of the air blown out from the air conditioner 200 into the vehicle interior (hereinafter also referred to as “blowing temperature”) below a predetermined target value? It is determined whether or not. The target value is an air conditioning target temperature set by a vehicle driver by operating a switch or the like provided on the front panel of the vehicle. Instead of such an aspect, the target value for keeping the vehicle interior comfortable may be an aspect that is automatically set by calculation performed by the control device 20.
 ステップS11において、吹き出し温度が目標値を下回っていれば、ステップS12に移行する。ステップS12では、冷凍サイクル100が備えるコンプレッサ130の回転数を増加させる。これにより、凝縮器110における発熱量が増加するので、第1流路510及びヒータコア用流路550を通りヒータコア210に到達する熱媒体の温度が上昇する。その結果、吹き出し温度も上昇し、目標値に近づくこととなる。 In step S11, if the blowing temperature is lower than the target value, the process proceeds to step S12. In step S12, the rotation speed of the compressor 130 provided in the refrigeration cycle 100 is increased. As a result, the amount of heat generated in the condenser 110 increases, so that the temperature of the heat medium that reaches the heater core 210 through the first flow path 510 and the heater core flow path 550 increases. As a result, the blowing temperature also rises and approaches the target value.
 ステップS11において、吹き出し温度が目標値以上であった場合には、ステップS13に移行する。ステップS13では、吹き出し温度が目標値を超えているか否かが判定される。吹き出し温度が目標値を超えていなかった場合には、吹き出し温度が目標値に一致しているということであるから、図5に示される一連の処理を終了する。 In step S11, when the blowing temperature is equal to or higher than the target value, the process proceeds to step S13. In step S13, it is determined whether or not the blowing temperature exceeds a target value. If the blowout temperature does not exceed the target value, it means that the blowout temperature matches the target value, and the series of processing shown in FIG. 5 is terminated.
 吹き出し温度が目標値を超えていれば、ステップS14に移行する。ステップS14では、冷凍サイクル100が備えるコンプレッサ130の回転数を減少させる。これにより、凝縮器110における発熱量が減少するので、第1流路510及びヒータコア用流路550を通りヒータコア210に到達する熱媒体の温度が低下する。その結果、吹き出し温度も低下し、目標値に近づくこととなる。 If the blowing temperature exceeds the target value, the process proceeds to step S14. In step S14, the rotation speed of the compressor 130 provided in the refrigeration cycle 100 is decreased. As a result, the amount of heat generated in the condenser 110 decreases, so that the temperature of the heat medium that reaches the heater core 210 through the first flow path 510 and the heater core flow path 550 decreases. As a result, the blowout temperature also decreases and approaches the target value.
 以上のように、除湿暖房時においては、コンプレッサ130の回転数を調整することにより、吹き出し温度を目標値に一致させる制御が行われる。 As described above, at the time of dehumidifying heating, by adjusting the rotation speed of the compressor 130, the control for making the blowing temperature coincide with the target value is performed.
 尚、コンプレッサ130の回転数が変化すると、上記のように凝縮器110における発熱量が変化するのみならず、蒸発器120における吸熱量も変化する。その結果、クーラコア220の表面温度が変化してしまい、除湿性能が発揮し得なくなってしまうことが懸念される。 In addition, when the rotation speed of the compressor 130 is changed, not only the heat generation amount in the condenser 110 is changed as described above, but also the heat absorption amount in the evaporator 120 is changed. As a result, there is a concern that the surface temperature of the cooler core 220 changes and the dehumidifying performance cannot be exhibited.
 そこで、本実施形態においては、第3ポンプP3の回転数もあわせて調整することにより、クーラコア220の表面温度を一定に保つ制御が行われる。その結果として、空調装置200から吹き出される空気の温度(吹出空気温度)を目標値に一致させる制御が行われることとなる。当該制御のために制御装置20によって実行される処理の流れを、図6を参照しながら説明する。図6に示される一連の処理は、図5に示される処理と並行して、所定の周期が経過する毎に繰り返し実行されている。 Therefore, in the present embodiment, control is performed to keep the surface temperature of the cooler core 220 constant by adjusting the rotational speed of the third pump P3 as well. As a result, control is performed so that the temperature of the air blown out from the air conditioner 200 (the blown air temperature) matches the target value. A flow of processing executed by the control device 20 for the control will be described with reference to FIG. A series of processing shown in FIG. 6 is repeatedly executed every time a predetermined period elapses in parallel with the processing shown in FIG.
 最初のステップS21では、温度センサ221で測定された温度、すなわち、クーラコア220の表面温度が、所定の目標値を下回っているか否かが判定される。当該目標値は、クーラコア220において除湿性能が適切に発揮される温度として、予め設定されたものである。例えば、クーラコア220の表面温度が低すぎる場合には、クーラコア220の表面に付着した結露水が凍結して着霜(所謂「フロスト」)が発生し、ケーシング201を通過する空気の流れが阻害されてしまう可能性がある。逆に、クーラコア220の表面温度が高すぎる場合には、クーラコア220の表面に付着した凝縮水が蒸発するので、高湿の空気が車室内に吹き出されてしまう可能性がある。以上のような現象を防止するために、クーラコア220の表面温度についての上記目標値は、例えば0℃~10℃程度に設定されることが望ましい。 In the first step S21, it is determined whether or not the temperature measured by the temperature sensor 221, that is, the surface temperature of the cooler core 220 is below a predetermined target value. The target value is set in advance as a temperature at which the dehumidifying performance is appropriately exhibited in the cooler core 220. For example, when the surface temperature of the cooler core 220 is too low, the condensed water adhering to the surface of the cooler core 220 is frozen to form frost (so-called “frost”), and the flow of air passing through the casing 201 is obstructed. There is a possibility that. On the other hand, when the surface temperature of the cooler core 220 is too high, the condensed water adhering to the surface of the cooler core 220 evaporates, so that high-humidity air may be blown out into the vehicle interior. In order to prevent the above phenomenon, the target value for the surface temperature of the cooler core 220 is desirably set to about 0 ° C. to 10 ° C., for example.
 ステップS21において、クーラコア220の表面温度が目標値を下回っていれば、ステップS22に移行する。ステップS22では、第3流路530に設けられた第3ポンプP3の回転数を増加させる。これにより、ラジエータ300を通過する低温の熱媒体の流量が増加するので、ラジエータ300において外気から熱媒体に取り込まれる熱量が増加する。その結果、クーラコア220の表面温度は上昇し、目標値に近づくこととなる。 In step S21, if the surface temperature of the cooler core 220 is lower than the target value, the process proceeds to step S22. In step S22, the rotation speed of the third pump P3 provided in the third flow path 530 is increased. As a result, the flow rate of the low-temperature heat medium passing through the radiator 300 increases, so that the amount of heat taken into the heat medium from the outside air in the radiator 300 increases. As a result, the surface temperature of the cooler core 220 rises and approaches the target value.
 ステップS21において、クーラコア220の表面温度が目標値以上であった場合には、ステップS23に移行する。ステップS23では、クーラコア220の表面温度が目標値を超えているか否かが判定される。クーラコア220の表面温度が目標値を超えていなかった場合には、クーラコア220の表面温度が目標値に一致しているということであるから、図6に示される一連の処理を終了する。 In step S21, when the surface temperature of the cooler core 220 is equal to or higher than the target value, the process proceeds to step S23. In step S23, it is determined whether or not the surface temperature of the cooler core 220 exceeds a target value. If the surface temperature of the cooler core 220 does not exceed the target value, it means that the surface temperature of the cooler core 220 matches the target value, and the series of processes shown in FIG.
 クーラコア220の表面温度が目標値を超えていれば、ステップS24に移行する。ステップS24では、第3ポンプP3の回転数を減少させる。これにより、ラジエータ300を通過する低温の熱媒体の流量が減少するので、ラジエータ300において外気から熱媒体に取り込まれる熱量が減少する。その結果、クーラコア220の表面温度は低下し、目標値に近づくこととなる。 If the surface temperature of the cooler core 220 exceeds the target value, the process proceeds to step S24. In step S24, the rotational speed of the third pump P3 is decreased. As a result, the flow rate of the low-temperature heat medium passing through the radiator 300 is reduced, so that the amount of heat taken into the heat medium from the outside air in the radiator 300 is reduced. As a result, the surface temperature of the cooler core 220 decreases and approaches the target value.
 このように、除湿暖房が行われているときには、コンプレッサ130の回転数によって吹き出し温度の調整を行いながら、第3ポンプP3の回転数によってクーラコア220の表面温度を調整する。これにより、空調装置200の除湿性能と暖房性能とを安定して発揮させることができる。 Thus, when the dehumidifying heating is performed, the surface temperature of the cooler core 220 is adjusted by the rotation speed of the third pump P3 while adjusting the blowing temperature by the rotation speed of the compressor 130. Thereby, the dehumidification performance and heating performance of the air conditioner 200 can be exhibited stably.
 低温の熱媒体が流れる流路において、仮にクーラコア220とラジエータ300とが直列に配置されていた場合には、クーラコア220を流れる熱媒体の流量と、ラジエータ300を流れる熱媒体の流量とは常に一致することとなる。従って、ラジエータ300における吸熱量を適切なものとするために、ラジエータ300を流れる熱媒体の流量の調整が行われると、これに合わせてクーラコア220を通過する熱媒体の流量が変化してしまう。 If the cooler core 220 and the radiator 300 are arranged in series in the flow path through which the low-temperature heat medium flows, the flow rate of the heat medium flowing through the cooler core 220 and the flow rate of the heat medium flowing through the radiator 300 are always the same. Will be. Therefore, when the flow rate of the heat medium flowing through the radiator 300 is adjusted in order to make the endothermic amount in the radiator 300 appropriate, the flow rate of the heat medium passing through the cooler core 220 changes accordingly.
 クーラコア220では熱媒体の相変化が生じないので、潜熱変化ではなく顕熱変化が生じている。このため、上記のようにクーラコア220を通過する熱媒体の流量が変化すると、それに伴ってクーラコア220の表面における温度分布が大きく変化してしまう。その結果、クーラコア220の表面温度を目標値に一致させるために、ラジエータ300を流れる熱媒体の流量を更に変化させる必要が生じる。 In the cooler core 220, the phase change of the heat medium does not occur, so the sensible heat change occurs instead of the latent heat change. For this reason, when the flow rate of the heat medium passing through the cooler core 220 changes as described above, the temperature distribution on the surface of the cooler core 220 greatly changes accordingly. As a result, it is necessary to further change the flow rate of the heat medium flowing through the radiator 300 in order to make the surface temperature of the cooler core 220 coincide with the target value.
 つまり、クーラコア220とラジエータ300とが互いに直列に配置された構成とした場合には、それぞれを流れる熱媒体の流量を個別に調整することができない。クーラコア220における熱媒体の最適流量と、ラジエータ300における熱媒体の最適流量と、は互いに異なっているので、上記構成においては、クーラコア220の表面温度が不安定になってしまうという問題が生じることとなる。 In other words, when the cooler core 220 and the radiator 300 are arranged in series with each other, the flow rate of the heat medium flowing through each cannot be individually adjusted. Since the optimum flow rate of the heat medium in the cooler core 220 and the optimum flow rate of the heat medium in the radiator 300 are different from each other, there is a problem that the surface temperature of the cooler core 220 becomes unstable in the above configuration. Become.
 これに対し、本実施形態では、クーラコア220とラジエータ300とが互いに並列に接続されている。具体的には、図1に示されるように、クーラコア220が途中に設けられたクーラコア用流路540と、ラジエータ300が途中に設けられた第3流路530とが、第1弁装置410及び第2弁装置420を間に挟んで互いに並列となるよう接続されている。 In contrast, in this embodiment, the cooler core 220 and the radiator 300 are connected in parallel to each other. Specifically, as shown in FIG. 1, a cooler core flow path 540 in which the cooler core 220 is provided in the middle, and a third flow path 530 in which the radiator 300 is provided in the middle include the first valve device 410 and The second valve device 420 is connected in parallel with the second valve device 420 interposed therebetween.
 このため、図2に示されるように、第2流路520及びクーラコア用流路540を循環する低温の熱媒体の一部が、第3流路530を通ってラジエータ300に供給される。このような構成においては、クーラコア220を流れる熱媒体の流量と、ラジエータ300を流れる熱媒体の流量と、を互いに一致させる必要が無いので、両者を個別に調整することができる。 For this reason, as shown in FIG. 2, a part of the low-temperature heat medium circulating in the second flow path 520 and the cooler core flow path 540 is supplied to the radiator 300 through the third flow path 530. In such a configuration, it is not necessary to make the flow rate of the heat medium flowing through the cooler core 220 and the flow rate of the heat medium flowing through the radiator 300 coincide with each other, so that both can be adjusted individually.
 本実施形態では、クーラコア220を流れる熱媒体の流量を頻繁に変更する必要が無いので、クーラコア220の表面における温度分布の変動が抑制される。また、クーラコア220を流れる熱媒体の流量に影響を与えることなく、ラジエータ300を流れる熱媒体の流量を調整することができるので、ラジエータ300の吸熱性能を十分に確保することができる。更に、クーラコア220を流れる熱媒体の流量に影響を与えることなく、インバータ冷却器E1等を流れる熱媒体の流量を調整することができるので、車載機器の冷却性能も十分に確保することができる。 In this embodiment, since it is not necessary to frequently change the flow rate of the heat medium flowing through the cooler core 220, fluctuations in the temperature distribution on the surface of the cooler core 220 are suppressed. In addition, since the flow rate of the heat medium flowing through the radiator 300 can be adjusted without affecting the flow rate of the heat medium flowing through the cooler core 220, the heat absorption performance of the radiator 300 can be sufficiently ensured. Furthermore, since the flow rate of the heat medium flowing through the inverter cooler E1 and the like can be adjusted without affecting the flow rate of the heat medium flowing through the cooler core 220, the cooling performance of the in-vehicle device can be sufficiently ensured.
 ところで、上記2つの流量を個別に調整するためには、図1の構成において、第3ポンプP3を流量調整弁に置き換えてもよいように思われる。そのような構成においては、第2ポンプP2の回転数を調整することにより、クーラコア220を流れる熱媒体の流量を調整することができる。また、流量調整弁の開度を調整することにより、ラジエータ300を流れる熱媒体の流量を調整することができる。 By the way, in order to individually adjust the above two flow rates, it seems that the third pump P3 may be replaced with a flow rate adjusting valve in the configuration of FIG. In such a configuration, the flow rate of the heat medium flowing through the cooler core 220 can be adjusted by adjusting the rotational speed of the second pump P2. Moreover, the flow rate of the heat medium flowing through the radiator 300 can be adjusted by adjusting the opening degree of the flow rate adjusting valve.
 しかしながら、そのような構成においては、単一の第2ポンプP2のみによって低温の熱媒体が循環するので、ラジエータ300に供給される熱媒体の流量が小さくなってしまう。その結果、夏期や冬期のような高負荷時において、ラジエータ300の吸熱性能等が十分に発揮されなくなってしまう。ラジエータ300を流れる熱媒体の流量を十分に確保するには、第2ポンプP2として大容量のポンプを用いる必要が生じる。 However, in such a configuration, since the low-temperature heat medium is circulated only by the single second pump P2, the flow rate of the heat medium supplied to the radiator 300 is reduced. As a result, the heat absorption performance and the like of the radiator 300 are not sufficiently exhibited during high loads such as summer and winter. In order to sufficiently secure the flow rate of the heat medium flowing through the radiator 300, it is necessary to use a large capacity pump as the second pump P2.
 しかしながら、熱媒体が流れる流路(第1流路510等)は複雑である上、車内における引き回しによってその経路も比較的長くなっている。また、流路の途中には第1弁装置410やインバータ冷却器E1等が複数設けられている。その結果、熱媒体が流れる流路における圧力損失は比較的大きくなっている。 However, the flow path (the first flow path 510 and the like) through which the heat medium flows is complicated, and the path is also relatively long due to routing in the vehicle. A plurality of first valve devices 410, inverter coolers E1, and the like are provided in the middle of the flow path. As a result, the pressure loss in the flow path through which the heat medium flows is relatively large.
 従って、第2ポンプP2として大容量のポンプが用いられると、第2ポンプP2の吐出側においては熱媒体の圧力が非常に高くなる。このため、高耐圧化が必要となる。一方、第2ポンプP2の吸入側においては、熱媒体の圧力が非常に低くなる。このため、例えば第2流路520を構成する樹脂配管の一部が、負圧によって潰れてしまう可能性もある。吐出側と吸入側との両方において何らかの対策を講じる必要が生じるので、熱管理システム10の全体のコストが増加してしまう。 Therefore, when a large-capacity pump is used as the second pump P2, the pressure of the heat medium becomes very high on the discharge side of the second pump P2. For this reason, a high breakdown voltage is required. On the other hand, on the suction side of the second pump P2, the pressure of the heat medium becomes very low. For this reason, for example, a part of resin piping which comprises the 2nd flow path 520 may be crushed by a negative pressure. Since some measures need to be taken on both the discharge side and the suction side, the overall cost of the heat management system 10 increases.
 更に、第2ポンプP2として大容量のポンプが用いられた場合には、熱媒体の流量が小さいときにおける運転効率が著しく低下する、という問題も生じる。例えば、春や秋など、空調装置200への負荷が小さいときには、大容量の第2ポンプP2において電力が無駄に消費されてしまうこととなる。 Furthermore, when a large-capacity pump is used as the second pump P2, there arises a problem that the operation efficiency is remarkably lowered when the flow rate of the heat medium is small. For example, when the load on the air conditioner 200 is small, such as in spring or autumn, electric power is wasted in the large-capacity second pump P2.
 尚、このような問題は暖房時や除湿暖房時に限られたものではなく、冷房時においても生じるものである。つまり、第3ポンプP3を流量調整弁に置き換えた構成とした場合には、特に冷房時において第1ポンプP1を大型化する必要が生じてしまう。 Such problems are not limited to heating or dehumidifying heating, but also occur during cooling. That is, when the third pump P3 is replaced with a flow rate adjustment valve, it is necessary to enlarge the first pump P1 particularly during cooling.
 そこで、本実施形態では、ラジエータ300に供給される熱媒体が通る流路、である第3流路530の途中に、第3ポンプP3が設けられている。つまり、ラジエータ300に熱媒体を供給するための専用のポンプとして第3ポンプP3が設けられている。このような構成においては、熱媒体の循環が2つのポンプによって分散して行われるので、上記のように大型のポンプを用いる必要が無い。また、熱媒体が通る流路において、局所的に高圧となり過ぎたり、低圧となり過ぎたりすることもないので、高耐圧化等の対策も不要となる。 Therefore, in the present embodiment, the third pump P3 is provided in the middle of the third flow path 530, which is a flow path through which the heat medium supplied to the radiator 300 passes. That is, the third pump P3 is provided as a dedicated pump for supplying the heat medium to the radiator 300. In such a configuration, since the heat medium is circulated by the two pumps, it is not necessary to use a large pump as described above. In addition, in the flow path through which the heat medium passes, there is no possibility that the pressure is locally excessively high or low, and measures such as a high breakdown voltage are not required.
 尚、本実施形態のように、熱媒体としてエチレングリコールを主成分とする不凍液が用いられる場合には、低温時には熱媒体の粘度が増大し、第3流路530等を循環する熱媒体の流量が低下する傾向がある。このため、二つのポンプによって低温の熱媒体を循環させる本実施形態は、冬期において特に大きな効果を発揮する。 When an antifreeze liquid mainly composed of ethylene glycol is used as the heat medium as in the present embodiment, the viscosity of the heat medium increases at low temperatures, and the flow rate of the heat medium circulating in the third flow path 530 and the like. Tends to decrease. For this reason, this embodiment which circulates a low-temperature heat medium with two pumps exhibits a big effect especially in winter.
 暖房時又は除湿暖房時においては、ラジエータ300における吸熱量を大きくする必要がある。このため、熱管理システム10を循環する熱媒体のうち、低温の熱媒体の流量を大きくする必要がある。図2に示されるように、暖房時又は除湿暖房時においては、低温の熱媒体が、第2ポンプP2と第3ポンプP3の二つによって圧送され循環している。 During heating or dehumidifying heating, it is necessary to increase the amount of heat absorbed by the radiator 300. For this reason, it is necessary to increase the flow rate of the low-temperature heat medium among the heat medium circulating in the heat management system 10. As shown in FIG. 2, at the time of heating or dehumidifying heating, a low-temperature heat medium is pumped and circulated by two pumps, the second pump P2 and the third pump P3.
 また、冷房時においては、ラジエータ300における放熱量を大きくする必要がある。このため、熱管理システム10を循環する熱媒体のうち、高温の熱媒体の流量を大きくする必要がある。図3に示されるように、冷房時においては、高温の熱媒体が、第1ポンプP1と第3ポンプP3の二つによって圧送され循環している。 Also, it is necessary to increase the heat radiation amount in the radiator 300 during cooling. For this reason, it is necessary to increase the flow rate of the high-temperature heat medium among the heat medium circulating in the heat management system 10. As shown in FIG. 3, during cooling, a high-temperature heat medium is pumped and circulated by two pumps, the first pump P1 and the third pump P3.
 このように、本実施形態では、低温の熱媒体又は高温の熱媒体のうち、流量を大きくする必要のある方が、第3ポンプP3によって補助的に圧送されるように構成されている。 As described above, in the present embodiment, either the low-temperature heat medium or the high-temperature heat medium, which requires a larger flow rate, is configured to be supplementarily pumped by the third pump P3.
 尚、吸熱状態となっている暖房時又は除湿暖房時においては、第3ポンプP3によって圧送される熱媒体の流量は、第2ポンプP2によって圧送される熱媒体の流量よりも小さい。換言すれば、そのような流量となるように、第3ポンプP3の回転数が制御装置20によって制御される。 It should be noted that the flow rate of the heat medium pumped by the third pump P3 is smaller than the flow rate of the heat medium pumped by the second pump P2 during heating or dehumidifying heating. In other words, the rotation speed of the third pump P3 is controlled by the control device 20 so as to achieve such a flow rate.
 同様に、放熱状態となっている冷房時においては、第3ポンプP3によって圧送される熱媒体の流量は、第1ポンプP1によって圧送される熱媒体の流量よりも小さい。換言すれば、そのような流量となるように、第3ポンプP3の回転数が制御装置20によって制御される。 Similarly, during cooling in a heat dissipation state, the flow rate of the heat medium pumped by the third pump P3 is smaller than the flow rate of the heat medium pumped by the first pump P1. In other words, the rotation speed of the third pump P3 is controlled by the control device 20 so as to achieve such a flow rate.
 いずれの場合であっても、第3ポンプP3によって圧送される熱媒体の流量が大きくなり過ぎてしまうと、熱管理システム10の全体における圧力や流量のバランスが崩れてしまう。第3ポンプP3は、あくまで補助的に用いられるポンプである。このため、第3ポンプP3によって圧送される熱媒体の流量は、メインのポンプ(つまり第1ポンプP1や第2ポンプP2)によって圧送される熱媒体の流量よりも、小さくすることが望ましい。 In any case, if the flow rate of the heat medium pumped by the third pump P3 becomes too large, the balance of the pressure and flow rate in the entire heat management system 10 is lost. The 3rd pump P3 is a pump used to the last to the last. For this reason, it is desirable to make the flow rate of the heat medium pumped by the third pump P3 smaller than the flow rate of the heat medium pumped by the main pump (that is, the first pump P1 or the second pump P2).
 尚、熱媒体の流路に沿った第1ポンプP1と第3ポンプP3との距離、及び、熱媒体の流路に沿った第2ポンプP2と第3ポンプP3との距離が、可能な限り長くなるような位置に、第3ポンプP3を配置することが望ましい。流路内における熱媒体の圧力が分散されるので、第3ポンプP3を補助的に用いることによる上記効果がより発揮されることとなる。 It should be noted that the distance between the first pump P1 and the third pump P3 along the flow path of the heat medium and the distance between the second pump P2 and the third pump P3 along the flow path of the heat medium are as much as possible. It is desirable to arrange the third pump P3 at a position where it becomes longer. Since the pressure of the heat medium in the flow path is dispersed, the above effect by using the third pump P3 as an auxiliary is more exhibited.
 第2実施形態に係る熱管理システム10Aについて、図7を参照しながら説明する。本実施形態では、第1流路510の途中に空調装置200のヒータコア210が配置されており、第1実施形態におけるヒータコア用流路550に対応する流路が存在しない。また、第2流路520の途中に空調装置200のクーラコア220が配置されており、第1実施形態におけるクーラコア用流路540に対応する流路が存在しない。更に、本実施形態では、第1弁装置410Aと第2弁装置420Aとを繋ぐ共通流路580が設けられている。本実施形態では、第1弁装置410A及び第2弁装置420Aの構成においても第1実施形態と異なっている。 A thermal management system 10A according to the second embodiment will be described with reference to FIG. In the present embodiment, the heater core 210 of the air conditioner 200 is arranged in the middle of the first flow path 510, and there is no flow path corresponding to the heater core flow path 550 in the first embodiment. Further, the cooler core 220 of the air conditioner 200 is disposed in the middle of the second flow path 520, and there is no flow path corresponding to the cooler core flow path 540 in the first embodiment. Furthermore, in this embodiment, a common flow path 580 that connects the first valve device 410A and the second valve device 420A is provided. In the present embodiment, the configurations of the first valve device 410A and the second valve device 420A are also different from the first embodiment.
 本実施形態に係る熱管理システム10Aは、以上の点において熱管理システム10と異なっているが、他の点においては第1実施形態に係る熱管理システム10と同一である。以下では、第1実施形態と異なる部分についてのみ説明する。 The thermal management system 10A according to the present embodiment is different from the thermal management system 10 in the above points, but is otherwise the same as the thermal management system 10 according to the first embodiment. Below, only a different part from 1st Embodiment is demonstrated.
 第1弁装置410Aは、第1弁装置410と同様の構成を有する電動式の結合多方弁である。第1弁装置410Aには、熱媒体の入口である開口413A、418Aと、熱媒体の出口である開口411A、412A、416A、417Aとが形成されている。開口413Aには、第3流路530の下流側端部が接続されている。開口418Aには、共通流路580の下流側端部が接続されている。開口411Aには、第1流路510の上流側端部が接続されている。開口412Aには、第2流路520の上流側端部が接続されている。開口416Aには、インバータ用流路560の上流側端部が接続されている。開口417Aには、蓄電池用流路570の上流側端部が接続されている。 The first valve device 410A is an electric coupled multi-way valve having the same configuration as the first valve device 410. In the first valve device 410A, openings 413A and 418A that are inlets of the heat medium and openings 411A, 412A, 416A, and 417A that are outlets of the heat medium are formed. The downstream end of the third flow path 530 is connected to the opening 413A. The downstream end of the common flow path 580 is connected to the opening 418A. The upstream end of the first flow path 510 is connected to the opening 411A. The upstream end of the second flow path 520 is connected to the opening 412A. The upstream end of the inverter flow path 560 is connected to the opening 416A. The upstream end of the storage battery flow path 570 is connected to the opening 417A.
 本実施形態においても、第1弁装置410Aの内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第1弁装置410Aの内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 Also in the present embodiment, a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flow are formed inside the first valve device 410A. However, each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the first valve device 410A.
 第2弁装置420Aは、第2弁装置420と同様の構成を有する電動式の結合多方弁である。第2弁装置420Aには、熱媒体の出口である開口423A、428Aと、熱媒体の入口である開口421A、422A、426A、427Aとが形成されている。開口423Aには、第3流路530の上流側端部が接続されている。開口428Aには、共通流路580の上流側端部が接続されている。開口421Aには、第1流路510の下流側端部が接続されている。開口422Aには、第2流路520の下流側端部が接続されている。開口426Aには、インバータ用流路560の下流側端部が接続されている。開口427Aには、蓄電池用流路570の下流側端部が接続されている。 The second valve device 420A is an electrically coupled multi-way valve having the same configuration as the second valve device 420. In the second valve device 420A, openings 423A and 428A that are outlets of the heat medium and openings 421A, 422A, 426A, and 427A that are inlets of the heat medium are formed. The upstream end of the third flow path 530 is connected to the opening 423A. The upstream end of the common flow path 580 is connected to the opening 428A. The downstream end of the first flow path 510 is connected to the opening 421A. The downstream end of the second flow path 520 is connected to the opening 422A. The downstream end of the inverter flow path 560 is connected to the opening 426A. The downstream end of the storage battery channel 570 is connected to the opening 427A.
 本実施形態においても、第2弁装置420Aの内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第2弁装置420Aの内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 Also in the present embodiment, a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flow are formed inside the second valve device 420A. However, each flow path is separated. For this reason, the high temperature heat medium and the low temperature heat medium do not merge in the second valve device 420A.
 熱管理システム10Aの全体において熱媒体が流れる経路について説明する。図8に示されるのは、空調装置200によって車室内の暖房又は除湿暖房が行われる際における、熱媒体の流れである。図8においては、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 The path through which the heat medium flows in the entire heat management system 10A will be described. FIG. 8 shows the flow of the heat medium when the vehicle interior is heated or dehumidified by the air conditioner 200. In FIG. 8, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 実線で示されるように、凝縮器110から排出された高温の熱媒体は、ヒータコア210、第2弁装置420A、共通流路580、第1弁装置410A、第1ポンプP1を順に流れて、再び凝縮器110に戻される。インバータ等の車載機器の暖気が必要なときには、インバータ冷却器E1や電池冷却器E2にも高温の熱媒体が供給される。つまり、開口418Aから第1弁装置410Aに流入した高温の熱媒体の一部が、インバータ用流路560及び蓄電池用流路570を流れるように、第1弁装置410A及び第2弁装置420Aの状態が切り換えられる。図8においては、当該熱媒体が流れる経路が点線で示されている。尚、インバータ用流路560及び蓄電池用流路570を熱媒体が流れるときであっても、実線及び一点鎖線で示される熱媒体の流れは維持される。 As indicated by the solid line, the high-temperature heat medium discharged from the condenser 110 sequentially flows through the heater core 210, the second valve device 420A, the common flow path 580, the first valve device 410A, and the first pump P1, and again. Returned to the condenser 110. When in-vehicle equipment such as an inverter needs to be warmed, a high-temperature heat medium is also supplied to the inverter cooler E1 and the battery cooler E2. That is, the first valve device 410A and the second valve device 420A of the first valve device 410A and the second valve device 420A so that a part of the high-temperature heat medium flowing into the first valve device 410A from the opening 418A flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched. In FIG. 8, the path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
 一点鎖線で示されるように、蒸発器120から排出された低温の熱媒体は、クーラコア220、第2弁装置420A、第3ポンプP3、ラジエータ300、第1弁装置410A、第2ポンプP2を順に流れて、再び蒸発器120に戻される。 As indicated by the alternate long and short dash line, the low-temperature heat medium discharged from the evaporator 120 passes through the cooler core 220, the second valve device 420A, the third pump P3, the radiator 300, the first valve device 410A, and the second pump P2. It flows back to the evaporator 120 again.
 図9に示されるのは、空調装置200によって車室内の冷房が行われる際における、熱媒体の流れである。図9においても、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 FIG. 9 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 9, the path through which the high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 実線で示されるように、凝縮器110から排出された高温の熱媒体は、ヒータコア210、第2弁装置420A、第3ポンプP3、ラジエータ300、第1弁装置410A、第1ポンプP1を順に流れて、再び凝縮器110に戻される。 As indicated by the solid line, the high-temperature heat medium discharged from the condenser 110 sequentially flows through the heater core 210, the second valve device 420A, the third pump P3, the radiator 300, the first valve device 410A, and the first pump P1. Then, it is returned to the condenser 110 again.
 一点鎖線で示されるように、蒸発器120から排出された低温の熱媒体は、クーラコア220、第2弁装置420A、共通流路580、第1弁装置410A、第2ポンプP2を順に流れて、再び蒸発器120に戻される。インバータ等の車載機器の冷却が必要なときには、インバータ冷却器E1や電池冷却器E2にも低温の熱媒体が供給される。つまり、開口418Aから第1弁装置410Aに流入した低温の熱媒体の一部が、インバータ用流路560及び蓄電池用流路570を流れるように、第1弁装置410A及び第2弁装置420Aの状態が切り換えられる。図9においては、当該熱媒体が流れる経路が点線で示されている。尚、インバータ用流路560及び蓄電池用流路570を熱媒体が流れるときであっても、実線及び一点鎖線で示される熱媒体の流れは維持される。 As indicated by the alternate long and short dash line, the low-temperature heat medium discharged from the evaporator 120 flows in order through the cooler core 220, the second valve device 420A, the common flow path 580, the first valve device 410A, and the second pump P2. It is returned to the evaporator 120 again. When it is necessary to cool an in-vehicle device such as an inverter, a low-temperature heat medium is also supplied to the inverter cooler E1 and the battery cooler E2. That is, the first valve device 410A and the second valve device 420A of the first valve device 410A and the second valve device 420A so that a part of the low-temperature heat medium flowing into the first valve device 410A from the opening 418A flows through the inverter flow channel 560 and the storage battery flow channel 570. The state is switched. In FIG. 9, a path through which the heat medium flows is indicated by a dotted line. Even when the heat medium flows through the inverter flow path 560 and the storage battery flow path 570, the flow of the heat medium indicated by the solid line and the alternate long and short dash line is maintained.
 以上のように、本実施形態においても、暖房時又は除湿暖房時には、第3流路530及びラジエータ300を低温の熱媒体が流れる。また、冷房時には、第3流路530及びラジエータ300を高温の熱媒体が流れる。いずれの場合でも、ラジエータ300に供給される熱媒体は第3ポンプP3により圧送される。これにより、第1実施形態の場合と同様の効果を奏する。 As described above, also in the present embodiment, a low-temperature heat medium flows through the third flow path 530 and the radiator 300 during heating or dehumidifying heating. Further, a high-temperature heat medium flows through the third flow path 530 and the radiator 300 during cooling. In any case, the heat medium supplied to the radiator 300 is pumped by the third pump P3. Thereby, there exists an effect similar to the case of 1st Embodiment.
 更に、本実施形態では、第1流路510において、ヒータコア210と凝縮器110とが直列に並ぶように配置されている。このため、凝縮器110によって加熱された高温の熱媒体が、途中で分岐することなくその全てがヒータコア210に供給される。これにより、ヒータコア210による空気の加熱性能が向上している。 Furthermore, in the present embodiment, the heater core 210 and the condenser 110 are arranged in series in the first flow path 510. For this reason, all of the high-temperature heat medium heated by the condenser 110 is supplied to the heater core 210 without branching on the way. Thereby, the air heating performance by the heater core 210 is improved.
 同様に、本実施形態では、第2流路520において、クーラコア220と蒸発器120とが直列に並ぶように配置されている。このため、蒸発器120によって冷却された低温の熱媒体が、途中で分岐することなくその全てがクーラコア220に供給される。これにより、クーラコア220による空気の冷却性能が向上している。 Similarly, in this embodiment, the cooler core 220 and the evaporator 120 are arranged in series in the second flow path 520. For this reason, all of the low-temperature heat medium cooled by the evaporator 120 is supplied to the cooler core 220 without branching on the way. Thereby, the air cooling performance by the cooler core 220 is improved.
 尚、第1実施形態、及び第2実施形態のいずれにおいても、第3ポンプP3はラジエータ300よりも上流側となる位置に配置されている。しかしながら、第3ポンプP3が配置される位置は、これらとは異なる位置であってもよい。第3ポンプP3は、第3流路530の途中であれば、どのような位置に配置されていてもよい。 Note that, in both the first embodiment and the second embodiment, the third pump P3 is disposed at a position upstream of the radiator 300. However, the position where the third pump P3 is disposed may be a position different from these. The third pump P3 may be arranged at any position as long as it is in the middle of the third flow path 530.
 第3実施形態に係る熱管理システム10Bについて、図10を参照しながら説明する。本実施形態では、第3流路530にはラジエータ300が配置されておらず、第3ポンプP3のみが配置されている。また、ラジエータ300は、第3流路530とは別に設けられたラジエータ用流路531の途中に配置されている。更に本実施形態では、第1弁装置410B及び第2弁装置420Bの構成においても第1実施形態と異なっている。 A thermal management system 10B according to the third embodiment will be described with reference to FIG. In the present embodiment, the radiator 300 is not disposed in the third flow path 530, and only the third pump P3 is disposed. The radiator 300 is disposed in the middle of a radiator flow path 531 provided separately from the third flow path 530. Furthermore, in the present embodiment, the configurations of the first valve device 410B and the second valve device 420B are also different from the first embodiment.
 本実施形態に係る熱管理システム10Bは、以上の点において熱管理システム10と異なっているが、他の点においては第1実施形態に係る熱管理システム10と同一である。以下では、第1実施形態と異なる部分についてのみ説明する。 The thermal management system 10B according to the present embodiment is different from the thermal management system 10 in the above points, but is otherwise the same as the thermal management system 10 according to the first embodiment. Below, only a different part from 1st Embodiment is demonstrated.
 第1弁装置410Bは、第1弁装置410と同様の構成を有する電動式の結合多方弁である。第1弁装置410Bには、ラジエータ用流路531の上流側端部が接続される開口419が形成されている。また、第1弁装置410Bの開口413には、第3流路530の下流側端部が接続されている。 The first valve device 410B is an electrically coupled multi-way valve having the same configuration as the first valve device 410. The first valve device 410B is formed with an opening 419 to which the upstream end of the radiator flow path 531 is connected. The downstream end of the third flow path 530 is connected to the opening 413 of the first valve device 410B.
 本実施形態においても、第1弁装置410Bの内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第1弁装置410Bの内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 Also in the present embodiment, a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed in the first valve device 410B. However, each flow path is separated. For this reason, a high temperature heat medium and a low temperature heat medium do not merge in the 1st valve apparatus 410B.
 第2弁装置420Bは、第2弁装置420と同様の構成を有する電動式の結合多方弁である。第2弁装置420Bには、ラジエータ用流路531の下流側端部が接続される開口429が形成されている。また、第2弁装置420Bの開口423には、第3流路530の上流側端部が接続されている。 The second valve device 420B is an electrically coupled multi-way valve having the same configuration as the second valve device 420. The second valve device 420B is formed with an opening 429 to which the downstream end of the radiator flow path 531 is connected. The upstream end of the third flow path 530 is connected to the opening 423 of the second valve device 420B.
 本実施形態においても、第2弁装置420Bの内部には、高温の熱媒体が流れる流路と、低温の熱媒体が流れる流路とが形成されている。ただし、それぞれの流路は分離されている。このため、第2弁装置420Bの内部において、高温の熱媒体と低温の熱媒体とが合流することはない。 Also in the present embodiment, a flow path through which a high-temperature heat medium flows and a flow path through which a low-temperature heat medium flows are formed inside the second valve device 420B. However, each flow path is separated. For this reason, a high temperature heat medium and a low temperature heat medium do not merge in the 2nd valve apparatus 420B.
 熱管理システム10Bの全体において熱媒体が流れる経路について説明する。図11に示されるのは、空調装置200によって車室内の暖房又は除湿暖房が行われる際における、熱媒体の流れである。図11においては、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 The path through which the heat medium flows in the entire heat management system 10B will be described. FIG. 11 shows the flow of the heat medium when the vehicle interior is heated or dehumidified by the air conditioner 200. In FIG. 11, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 凝縮器110から排出された高温の熱媒体が流れる経路は、実線及び点線で示されるように、図2に示される第1実施形態の場合と同一である。 The path through which the high-temperature heat medium discharged from the condenser 110 flows is the same as that in the first embodiment shown in FIG. 2 as indicated by the solid line and the dotted line.
 低温の熱媒体が流れる経路について説明する。図11の一点鎖線で示されるように、蒸発器120から排出された低温の熱媒体は、第1弁装置410B、クーラコア220、第2弁装置420B、第2ポンプP2を順に流れて、再び蒸発器120に戻される。 A path through which a low-temperature heat medium flows will be described. As indicated by the one-dot chain line in FIG. 11, the low-temperature heat medium discharged from the evaporator 120 flows in order through the first valve device 410B, the cooler core 220, the second valve device 420B, and the second pump P2, and evaporates again. Returned to vessel 120.
 また、第1弁装置410Bに流入した低温の熱媒体の一部は、開口419から排出され、ラジエータ用流路531及びラジエータ300を流れた後、開口429から第2弁装置420Bに流入する。当該熱媒体は、第2流路520やクーラコア用流路540を流れる熱媒体に合流する。 Further, a part of the low-temperature heat medium flowing into the first valve device 410B is discharged from the opening 419, flows through the radiator flow path 531 and the radiator 300, and then flows into the second valve device 420B from the opening 429. The heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
 更に、第2弁装置420Bの内部を流れる低温の熱媒体の一部は、開口423から排出され、第3流路530及び第3ポンプP3を流れた後、第1弁装置410Bに流入する。当該熱媒体は、第2流路520やクーラコア用流路540を流れる熱媒体に合流する。 Furthermore, a part of the low-temperature heat medium flowing inside the second valve device 420B is discharged from the opening 423, flows through the third flow path 530 and the third pump P3, and then flows into the first valve device 410B. The heat medium joins the heat medium flowing through the second flow path 520 and the cooler core flow path 540.
 図12に示されるのは、空調装置200によって車室内の冷房が行われる際における、熱媒体の流れである。図12においても、凝縮器110によって加熱された高温の熱媒体が流れる経路が、実線で示されている。また、蒸発器120によって冷却された低温の熱媒体が流れる経路が、一点鎖線で示されている。 FIG. 12 shows the flow of the heat medium when the vehicle interior is cooled by the air conditioner 200. Also in FIG. 12, a path through which a high-temperature heat medium heated by the condenser 110 flows is indicated by a solid line. A path through which a low-temperature heat medium cooled by the evaporator 120 flows is indicated by a one-dot chain line.
 実線で示されるように、凝縮器110から排出された高温の熱媒体は、第1弁装置410B、ヒータコア210、第2弁装置420B、第1ポンプP1を順に流れて、再び凝縮器110に戻される。 As indicated by the solid line, the high-temperature heat medium discharged from the condenser 110 sequentially flows through the first valve device 410B, the heater core 210, the second valve device 420B, and the first pump P1, and returns to the condenser 110 again. It is.
 また、第1弁装置410Bに流入した高温の熱媒体の一部は、開口419から排出され、ラジエータ用流路531及びラジエータ300を流れた後、開口429から第2弁装置420Bに流入する。当該熱媒体は、第1流路510やヒータコア用流路550を流れる熱媒体に合流する。 Further, part of the high-temperature heat medium that has flowed into the first valve device 410B is discharged from the opening 419, flows through the radiator flow path 531 and the radiator 300, and then flows into the second valve device 420B from the opening 429. The heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
 更に、第2弁装置420Bの内部を流れる高温の熱媒体の一部は、開口423から排出され、第3流路530及び第3ポンプP3を流れた後、第1弁装置410Bに流入する。当該熱媒体は、第1流路510やヒータコア用流路550を流れる熱媒体に合流する。 Furthermore, a part of the high-temperature heat medium flowing inside the second valve device 420B is discharged from the opening 423, flows through the third flow path 530 and the third pump P3, and then flows into the first valve device 410B. The heat medium merges with the heat medium flowing through the first flow path 510 and the heater core flow path 550.
 尚、蒸発器120から排出された低温の熱媒体が流れる経路は、一点鎖線で示されるように、図3に示される第1実施形態の場合と同一である。 The path through which the low-temperature heat medium discharged from the evaporator 120 flows is the same as that in the first embodiment shown in FIG. 3 as indicated by the alternate long and short dash line.
 以上のように、本実施形態では、ラジエータ300と第3ポンプP3とが同一の流路に配置されているのではなく、ラジエータ用流路531及び第3流路530にそれぞれ配置されている。第3ポンプP3によって第3流路530を熱媒体が圧送されると、当該熱媒体がラジエータ用流路531を流れてラジエータ300に供給される。つまり、本時獅子形態における第3流路530も、ラジエータ300に供給される熱媒体が流れる流路となっている。このような構成であっても、第1実施形態と同様の効果を奏する。 As described above, in the present embodiment, the radiator 300 and the third pump P3 are not disposed in the same flow path, but are disposed in the radiator flow path 531 and the third flow path 530, respectively. When the heat medium is pumped through the third flow path 530 by the third pump P3, the heat medium flows through the radiator flow path 531 and is supplied to the radiator 300. That is, the third flow path 530 in the present insulator form is also a flow path through which the heat medium supplied to the radiator 300 flows. Even with such a configuration, the same effects as those of the first embodiment can be obtained.
 以上の説明においては、車載機器のうちインバータと蓄電池が、熱媒体によって加熱又は冷却される例について説明した。熱媒体によって加熱又は冷却される車載機器は、インバータや蓄電池以外の機器であってもよい。このような車載機器としては、例えば、モータジェネレータ、トランスアクスル、オイルクーラ、インタークーラ、EGRクーラ、排気熱回収機、燃料供給配管、吸気経路、排ガス浄化用触媒、スロットルクーラ等が挙げられる。また、熱媒体によって加熱又は冷却される車載機器の数は、これらのうちの1つでもよく、3つ以上でもよい。この場合、車載機器を加熱又は冷却するための機器用熱交換器(本実施形態ではインバータ冷却器E1、及び電池冷却器E2)と、当該機器用熱交換器に熱媒体を供給するための配管(本実施形態ではインバータ用流路560、及び蓄電池用流路570)との組は、車載機器の数だけ設けられることとなる。 In the above description, an example in which an inverter and a storage battery in a vehicle-mounted device are heated or cooled by a heat medium has been described. The vehicle-mounted device heated or cooled by the heat medium may be a device other than the inverter or the storage battery. Examples of such in-vehicle devices include a motor generator, a transaxle, an oil cooler, an intercooler, an EGR cooler, an exhaust heat recovery machine, a fuel supply pipe, an intake path, an exhaust gas purification catalyst, and a throttle cooler. Also, the number of in-vehicle devices heated or cooled by the heat medium may be one of these, or three or more. In this case, a heat exchanger for equipment (in this embodiment, inverter cooler E1 and battery cooler E2) for heating or cooling the in-vehicle equipment, and piping for supplying a heat medium to the heat exchanger for equipment. (In this embodiment, the number of sets with the inverter flow path 560 and the storage battery flow path 570) is as many as the number of in-vehicle devices.
 機器用熱交換器は、第1流路510の途中や、第2流路520の途中に配置してもよい。機器用熱交換器は、車載機器にとっての最適温度を考慮し、適切な場所に配置されればよい。 The equipment heat exchanger may be arranged in the middle of the first flow path 510 or in the middle of the second flow path 520. The heat exchanger for equipment should just be arrange | positioned in an appropriate place in consideration of the optimal temperature for vehicle equipment.
 ラジエータ300における吸熱量は、第3ポンプP3の回転数のみによって調整されてもよいが、第3ポンプP3の回転数と、電動ファン301の回転数との両方によって調整されてもよい。また、ラジエータシャッター(不図示)の動作と組み合わせることによって調整されてもよい。 The heat absorption amount in the radiator 300 may be adjusted only by the rotation speed of the third pump P3, but may be adjusted by both the rotation speed of the third pump P3 and the rotation speed of the electric fan 301. Further, it may be adjusted by combining with the operation of a radiator shutter (not shown).
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (15)

  1.  車両に搭載される熱管理システム(10,10A,10B)であって、
     凝縮器(110)と蒸発器(120)とを有する冷凍サイクル(100)と、
     熱媒体が流れる流路であって、その一部が前記凝縮器によって加熱される第1流路(510,510A,510B)と、
     前記第1流路に設けられ、熱媒体を圧送する第1ポンプ(P1)と、
     熱媒体が流れる流路であって、その一部が前記蒸発器によって冷却される第2流路(520,520A,520B)と、
     前記第2流路に設けられ、熱媒体を圧送する第2ポンプ(P2)と、
     車室内に供給される空気を、前記第1流路を通った熱媒体との熱交換、及び前記第2流路を流れた熱媒体との熱交換によって加熱又は冷却する空調装置(200)と、
     前記空調装置を流れた熱媒体と、外気とを熱交換させるラジエータ(300)と、
     前記ラジエータに供給される熱媒体が流れる流路である第3流路(530)と、
     前記第3流路に設けられ、熱媒体を圧送する第3ポンプ(P3)と、
     前記第1流路の一端と、前記第2流路の一端と、前記第3流路の一端と、がそれぞれ接続されており、熱媒体が流れる経路を切り替える第1弁装置(410,410A,410B)と、
     前記第1流路の他端と、前記第2流路の他端と、前記第3流路の他端と、がそれぞれ接続されており、熱媒体が流れる経路を切り替える第2弁装置(420,420A,420B)と、
     熱管理システムの全体の動作を制御する制御装置(20)と、を備える熱管理システム。
    A thermal management system (10, 10A, 10B) mounted on a vehicle,
    A refrigeration cycle (100) having a condenser (110) and an evaporator (120);
    A first flow path (510, 510A, 510B) in which a heat medium flows, a part of which is heated by the condenser;
    A first pump (P1) provided in the first flow path and pumping the heat medium;
    A flow path through which the heat medium flows, a second flow path (520, 520A, 520B), part of which is cooled by the evaporator;
    A second pump (P2) provided in the second flow path to pump the heat medium;
    An air conditioner (200) for heating or cooling the air supplied to the passenger compartment by heat exchange with the heat medium passing through the first flow path and heat exchange with the heat medium flowing through the second flow path; ,
    A radiator (300) for exchanging heat between the heat medium flowing through the air conditioner and the outside air;
    A third flow path (530) that is a flow path through which the heat medium supplied to the radiator flows;
    A third pump (P3) provided in the third flow path and pumping the heat medium;
    One end of the first flow path, one end of the second flow path, and one end of the third flow path are connected to each other, and a first valve device (410, 410A, 410B)
    The other end of the first flow path, the other end of the second flow path, and the other end of the third flow path are connected to each other, and a second valve device (420) that switches a path through which the heat medium flows. , 420A, 420B),
    And a control device (20) for controlling the overall operation of the thermal management system.
  2.  前記制御装置は、
     前記第1ポンプ、前記第2ポンプ、及び前記第3ポンプのそれぞれの動作を制御することにより、それぞれを通過する熱媒体の流量を個別に調整する、請求項1に記載の熱管理システム。
    The control device includes:
    The thermal management system according to claim 1, wherein the flow rate of the heat medium passing through each of the first pump, the second pump, and the third pump is individually adjusted by controlling the operations of the first pump, the second pump, and the third pump.
  3.  前記空調装置は、
     前記第1流路を流れた熱媒体、との熱交換により空気を加熱するヒータコア(210)と、
     前記第2流路を流れた熱媒体、との熱交換により空気を冷却するクーラコア(220)と、を有し、
     空気の流れ方向における上流側に前記クーラコアが配置されており、下流側に前記ヒータコアが配置されている、請求項2に記載の熱管理システム。
    The air conditioner
    A heater core (210) for heating air by heat exchange with the heat medium flowing through the first flow path;
    A cooler core (220) for cooling air by heat exchange with the heat medium flowing through the second flow path,
    The thermal management system according to claim 2, wherein the cooler core is disposed on the upstream side in the air flow direction, and the heater core is disposed on the downstream side.
  4.  前記制御装置は、
     前記第1弁装置及び前記第2弁装置のそれぞれの動作を制御することにより、
     前記第1流路を流れた熱媒体の一部が前記第3流路を流れる放熱状態と、
     前記第2流路を流れた熱媒体の一部が前記第3流路を流れる吸熱状態と、を切り替える、請求項3に記載の熱管理システム。
    The control device includes:
    By controlling the respective operations of the first valve device and the second valve device,
    A heat dissipation state in which a part of the heat medium flowing through the first flow path flows through the third flow path;
    The thermal management system according to claim 3, wherein a part of the heat medium that has flowed through the second flow path is switched between an endothermic state in which the heat medium flows through the third flow path.
  5.  前記制御装置は、
     前記空調装置による車室内の冷房が行われるときには前記放熱状態となり、
     前記空調装置による車室内の暖房が行われるときには前記吸熱状態となるように、前記第1弁装置及び前記第2弁装置の動作を制御する、請求項4に記載の熱管理システム。
    The control device includes:
    When the vehicle interior is cooled by the air conditioner, the heat dissipation state is established.
    The heat management system according to claim 4, wherein the operation of the first valve device and the second valve device is controlled so that the heat absorption state is achieved when the vehicle interior is heated by the air conditioner.
  6.  前記クーラコアにおける空気の除湿と、前記ヒータコアにおける空気の加熱と、が同時に行われている除湿暖房時において、
     前記制御装置は、
     前記第3ポンプの動作を制御することによって前記ラジエータにおける吸熱量を調整し、これにより前記空調装置の吹出空気温度を目標温度と一致させる制御を行う、請求項5に記載の熱管理システム。
    At the time of dehumidification heating in which dehumidification of air in the cooler core and heating of air in the heater core are performed simultaneously,
    The control device includes:
    The heat management system according to claim 5, wherein the heat absorption amount in the radiator is adjusted by controlling the operation of the third pump, and thereby, the control is performed so that the air temperature of the air conditioner matches the target temperature.
  7.  前記放熱状態において、前記制御装置は、
     前記第3ポンプを通過する熱媒体の流量が、前記第1ポンプを通過する熱媒体の流量よりも小さくなるように前記第3ポンプの動作を制御する、請求項4に記載の熱管理システム。
    In the heat dissipation state, the control device
    The heat management system according to claim 4, wherein the operation of the third pump is controlled so that a flow rate of the heat medium passing through the third pump is smaller than a flow rate of the heat medium passing through the first pump.
  8.  前記吸熱状態において、前記制御装置は、
     前記第3ポンプを通過する熱媒体の流量が、前記第2ポンプを通過する熱媒体の流量よりも小さくなるように前記第3ポンプの動作を制御する、請求項4に記載の熱管理システム。
    In the endothermic state, the control device
    5. The heat management system according to claim 4, wherein the operation of the third pump is controlled such that a flow rate of the heat medium passing through the third pump is smaller than a flow rate of the heat medium passing through the second pump.
  9.  前記第1流路において、前記ヒータコアと前記凝縮器とが直列に並ぶように配置されている、請求項3に記載の熱管理システム。 The thermal management system according to claim 3, wherein the heater core and the condenser are arranged in series in the first flow path.
  10.  前記第2流路において、前記クーラコアと前記蒸発器とが直列に並ぶように配置されている、請求項3に記載の熱管理システム。 The thermal management system according to claim 3, wherein the cooler core and the evaporator are arranged in series in the second flow path.
  11.  前記車両に搭載された車載機器を、前記第1流路又は前記第2流路を流れた熱媒体との熱交換によって加熱又は冷却する機器用熱交換器(E1,E2)を更に備えた、請求項1に記載の熱管理システム。 The vehicle-mounted device mounted on the vehicle further includes a device heat exchanger (E1, E2) for heating or cooling by heat exchange with the heat medium that has flowed through the first channel or the second channel, The thermal management system according to claim 1.
  12.  前記制御装置は、
     前記第1弁装置及び前記第2弁装置のうち少なくとも一方の動作を制御することにより、前記機器用熱交換器に供給される熱媒体の流量を調整する、請求項11に記載の熱管理システム。
    The control device includes:
    The heat management system according to claim 11, wherein a flow rate of a heat medium supplied to the equipment heat exchanger is adjusted by controlling an operation of at least one of the first valve device and the second valve device. .
  13.  前記機器用熱交換器に供給される熱媒体が流れる流路である第4流路(560,570)が、前記第1流路、前記第2流路、及び前記第3流路とは別の流路として設けられており、
     前記第4流路の一端は前記第1弁装置に接続され、前記第4流路の他端は前記第2弁装置に接続されている、請求項12に記載の熱管理システム。
    The fourth flow path (560, 570), which is the flow path through which the heat medium supplied to the device heat exchanger flows, is separate from the first flow path, the second flow path, and the third flow path. It is provided as a flow path of
    The thermal management system according to claim 12, wherein one end of the fourth flow path is connected to the first valve device, and the other end of the fourth flow path is connected to the second valve device.
  14.  前記機器用熱交換器と前記第4流路とが複数組備えられている、請求項13に記載の熱管理システム。 The heat management system according to claim 13, wherein a plurality of sets of the equipment heat exchanger and the fourth flow path are provided.
  15.  前記第3流路において、前記ラジエータと前記第3ポンプとが直列に並ぶように配置されている、請求項1に記載の熱管理システム。 The heat management system according to claim 1, wherein the radiator and the third pump are arranged in series in the third flow path.
PCT/JP2016/079610 2015-11-19 2016-10-05 Thermal management system WO2017086045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-226554 2015-11-19
JP2015226554A JP2017094796A (en) 2015-11-19 2015-11-19 Thermal management system

Publications (1)

Publication Number Publication Date
WO2017086045A1 true WO2017086045A1 (en) 2017-05-26

Family

ID=58718687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079610 WO2017086045A1 (en) 2015-11-19 2016-10-05 Thermal management system

Country Status (2)

Country Link
JP (1) JP2017094796A (en)
WO (1) WO2017086045A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061873A (en) * 2012-08-28 2014-04-10 Denso Corp Vehicle thermal management system
JP2014218237A (en) * 2013-04-08 2014-11-20 株式会社デンソー Thermal management system for vehicle
JP2015013639A (en) * 2013-06-06 2015-01-22 株式会社デンソー Vehicular air-conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061873A (en) * 2012-08-28 2014-04-10 Denso Corp Vehicle thermal management system
JP2014218237A (en) * 2013-04-08 2014-11-20 株式会社デンソー Thermal management system for vehicle
JP2015013639A (en) * 2013-06-06 2015-01-22 株式会社デンソー Vehicular air-conditioner

Also Published As

Publication number Publication date
JP2017094796A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
JP7185469B2 (en) vehicle thermal management system
JP6751457B2 (en) Automotive air conditioning system and method of operating the same
US10065478B2 (en) Thermal management system for vehicle
US9604627B2 (en) Thermal management system for vehicle
JP6015184B2 (en) Thermal management system for vehicles
JP5403766B2 (en) Vehicle cooling system
US11142036B2 (en) Air-conditioning circuit for a hybrid motor vehicle, and method for preheating a motor vehicle battery of a hybrid motor vehicle
JP6206231B2 (en) Thermal management system for vehicles
JP2020055343A (en) Heat management system of vehicle
JP6269307B2 (en) Air conditioner for vehicles
US20190078497A1 (en) Thermal management device for vehicle
KR102266483B1 (en) Heat exchanger arrangement for an air conditioning system and air conditioning system of a motor vehicle and method for operating the air conditioning system
JP6051984B2 (en) Thermal management system for vehicles
JP2018177083A (en) Vehicular air conditioner
JP2020055344A (en) Heat management system of vehicle
JP5817824B2 (en) Vehicle air conditioner
JP6083304B2 (en) Thermal management system for vehicles
JP5895739B2 (en) Thermal management system for vehicles
CN114144321A (en) Thermal management device for vehicle and thermal management method for vehicle
CN111231656B (en) Vehicle thermal management system and vehicle
US20220281285A1 (en) Integrated thermal management circuit for vehicle
CN109823138B (en) Vehicle thermal management system and vehicle
JP2022178232A (en) On-vehicle temperature control system
WO2020184146A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866047

Country of ref document: EP

Kind code of ref document: A1