WO2017085862A1 - Measurement device, measurement method, and computer program - Google Patents

Measurement device, measurement method, and computer program Download PDF

Info

Publication number
WO2017085862A1
WO2017085862A1 PCT/JP2015/082690 JP2015082690W WO2017085862A1 WO 2017085862 A1 WO2017085862 A1 WO 2017085862A1 JP 2015082690 W JP2015082690 W JP 2015082690W WO 2017085862 A1 WO2017085862 A1 WO 2017085862A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz wave
sample
back surface
irradiation
refractive index
Prior art date
Application number
PCT/JP2015/082690
Other languages
French (fr)
Japanese (ja)
Inventor
義行 奧田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/082690 priority Critical patent/WO2017085862A1/en
Priority to JP2017551489A priority patent/JPWO2017085862A1/en
Publication of WO2017085862A1 publication Critical patent/WO2017085862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Definitions

  • the present invention relates to a technical field of a measuring apparatus, a measuring method, and a computer program for measuring a refractive index of a sample using, for example, terahertz waves.
  • a measuring device using a terahertz wave is known as a measuring device for measuring the refractive index of a sample.
  • a sample is irradiated with a terahertz wave through a transmission member that is in contact with the sample, and based on the time waveform of the terahertz wave reflected by the transmission member and the time waveform of the terahertz wave reflected by the sample.
  • An information acquisition device for acquiring the refractive index of a sample is described.
  • Patent Document 2 discloses that a terahertz wave is irradiated on a specimen disposed between a reflecting member and a plate-like member through the plate-like member and reflected at the interface between the plate-like member and the specimen.
  • An information acquisition device is described that acquires the refractive index of a specimen based on the time waveform of the wave and the time waveform of the terahertz wave reflected at the interface between the specimen and the reflecting member.
  • JP 2014-209094 A Japanese Patent Laying-Open No. 2015-83964
  • the first example of the measuring device includes a first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the surface irradiated on the surface.
  • the second time required for the terahertz wave to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is determined by a plurality of irradiation positions of the terahertz waves having different positions with respect to the sample.
  • the first example of the measurement method of the present invention includes a first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the surface irradiated on the surface.
  • the second time required for the terahertz wave to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is determined by a plurality of irradiation positions of the terahertz waves having different positions with respect to the sample.
  • the first example of the computer program of the present invention causes a computer to execute the first example of the measurement method of the present invention described above.
  • FIG. 1 is a block diagram illustrating a configuration of the terahertz wave measuring apparatus according to the present embodiment.
  • FIG. 2 is a flowchart illustrating an example of a flow of a first measurement operation for measuring a refractive index and a thickness performed by the terahertz wave measuring apparatus.
  • FIG. 3 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the sample and the optical path of the terahertz wave reflected by the sample.
  • FIG. 4 is a graph showing a waveform signal of the terahertz wave detected by the terahertz wave detecting element.
  • FIG. 5 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the first position and the optical path of the terahertz wave irradiated to the second position.
  • FIG. 6 is a flowchart illustrating an example of a flow of a second measurement operation for measuring the refractive index and the thickness performed by the terahertz wave measuring apparatus.
  • FIG. 7 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the first position, the optical path of the terahertz wave irradiated to the second position, and the optical path of the terahertz wave irradiated to the third position.
  • the first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is The second time required to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is acquired for each of the plurality of terahertz wave irradiation positions having different positions with respect to the sample. And obtaining means for calculating the refractive index of the sample based on the first and second times.
  • the measurement apparatus of the present embodiment as will be described in detail later using specific mathematical formulas, a plurality of first times and a plurality of times corresponding to a plurality of irradiation positions without contacting any special member with the sample. Based on the second time, the refractive index of the sample can be suitably measured (that is, calculated).
  • the thickness of the sample which is a physical distance between the front surface and the back surface, differs for each irradiation position.
  • the terahertz wave is irradiated to a plurality of irradiation positions having different thicknesses of the sample, so that the measuring device can suitably measure (that is, calculate) the refractive index of the sample.
  • the measurement apparatus further includes an irradiation unit that irradiates the terahertz wave toward the surface, and a detection unit that detects the terahertz wave reflected by the sample, and the predetermined position is , The position where the detection means is installed, and the first time is required for the terahertz wave reflected from the surface to reach the detection means after the irradiation means irradiates the terahertz wave The second time is a time required for the terahertz wave reflected from the back surface to reach the detection unit after the irradiation unit irradiates the terahertz wave.
  • the measuring apparatus can suitably measure the refractive index of the sample using the irradiation unit and the detection unit.
  • the measurement apparatus further includes changing means for changing the irradiation position by moving a moving object including the sample along a predetermined movement direction.
  • the measuring apparatus can suitably acquire the first and second times for each of a plurality of irradiation positions having different positions.
  • the irradiation position is determined by moving a moving object including at least one of the sample, the irradiation unit, and the detection unit along a predetermined movement direction. It further comprises changing means for changing.
  • the measuring apparatus can suitably acquire the first and second times for each of a plurality of irradiation positions having different positions.
  • the acquisition unit when the moving direction is parallel to the back surface, is configured to perform the first operation when the irradiation position is the first position. And the second time and the first and second times when the irradiation position is a second position different from the first position.
  • the predetermined position (or the terahertz wave irradiation position and the terahertz wave detection position)
  • the distance between at least one of the above and the back surface of the sample does not change.
  • the measurement apparatus acquires two first times and two second times respectively corresponding to two different irradiation positions, it can suitably measure the refractive index of the sample. That is, in order to measure the refractive index of the sample, the measuring device does not have to acquire three or more first times and three or more second times respectively corresponding to three or more irradiation positions.
  • the irradiation position are defined as t a1 and t b1, respectively, and when the irradiation position is the second position, t a2 is defined as the first time and the second time when the irradiation position is the second position, respectively.
  • the variable ⁇ t 1 is defined by Equation 1
  • the variable ⁇ t 2 is defined by Equation 2
  • the refractive index is defined as n, when the moving direction is parallel to the back surface,
  • the calculating means calculates the refractive index based on Equation 3.
  • the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on the mathematical formulas 1 to 3.
  • the moving means keeps the moving direction fixed.
  • the irradiation position is sequentially changed to a first position, a second position, and a third position that are different from each other, the moving direction is not parallel to the back surface, and the back surface is flat.
  • the acquisition means includes the first and second times when the irradiation position is the first position, the first and second times when the irradiation position is the second position,
  • the acquisition unit includes: The first and second times, and The amount of movement of the moving object when the irradiation position is changed from the first position to the second position, and the movement when the irradiation position is changed from the second position to the third position.
  • the refractive index is calculated based on the amount of movement of the object.
  • the predetermined position (or at least one of the terahertz wave irradiation position and the terahertz wave detection position) is set.
  • the distance between the back of the sample also changes.
  • the measurement apparatus acquires three first times and three second times respectively corresponding to three different irradiation positions
  • the refractive index of the sample can be suitably measured. That is, in order to measure the refractive index of the sample, the measuring device does not need to acquire four or more first times and four or more second times respectively corresponding to four or more irradiation positions.
  • the first and second times when the irradiation position is the first position are defined as t a1 and t b1, respectively, and the irradiation position is the first position.
  • the first and second times when the two positions are defined are defined as t a2 and t b2, respectively, and the first and second times when the irradiation position is the third position are defined as t a3 and t b3, respectively.
  • the variable ⁇ t 1 is defined by Equation 4
  • the variable ⁇ t 2 is defined by Equation 5
  • the variable ⁇ t 3 is defined by Equation 6, and the irradiation position is changed from the first position to the second position.
  • the amount of movement of the moving object is defined as P1
  • the irradiation position is the first position
  • the movement amount of the moving object when changing from the position to the third position is defined as P2
  • the refractive index is defined as n
  • the movement direction is not parallel to the back surface and the back surface is a plane.
  • the calculation unit calculates the refractive index based on Equation 7.
  • the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on Expression 4 to Expression 7.
  • the moving means when the moving direction is not parallel to the back surface and the back surface is a plane, the moving means includes (i) the irradiation position. And (ii) the amount of movement of the moving object when changing from the first position to the second position so as to change sequentially from the first position, the second position, and the third position, which are different from each other.
  • the acquisition means is configured to perform the first and second times when the irradiation position is the first position, and the irradiation position is the first position.
  • the first and second in the second position During, as well as to acquire the first and second time when the irradiation position becomes the third position.
  • the measuring device acquires three first times and three second times respectively corresponding to the three irradiation positions.
  • the refractive index of the sample can be suitably measured.
  • the first and second times when the irradiation position is the first position are defined as t a1 and t b1, respectively, and the irradiation position is the first position.
  • the first and second times when the two positions are defined are defined as t a2 and t b2, respectively, and the first and second times when the irradiation position is the third position are defined as t a3 and t b3, respectively.
  • the variable ⁇ t 1 is defined by Equation 8
  • the variable ⁇ t 2 is defined by Equation 9
  • the variable ⁇ t 3 is defined by Equation 10
  • the refractive index is defined as n, the movement direction is parallel to the back surface. If the back surface is a flat surface, the calculation means Based on, it calculates the refractive index.
  • the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on Expression 8 to Expression 11.
  • the calculation unit further calculates the thickness of the sample, which is a physical distance between the front surface and the back surface, based on the calculated refractive index. .
  • the measuring apparatus can measure (that is, calculate) the thickness of the sample in addition to the refractive index.
  • the first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is The second time required to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is acquired for each of the plurality of terahertz wave irradiation positions having different positions with respect to the sample. And a calculation step of calculating a refractive index of the sample based on the first and second times.
  • the measurement device of the present embodiment it is possible to suitably enjoy the same effects as those that can be enjoyed by the measurement device of the present embodiment described above.
  • the measurement method of this embodiment may adopt various aspects.
  • the computer program of this embodiment causes a computer to execute the measurement method of this embodiment described above.
  • the computer program of the present embodiment may adopt various aspects.
  • the computer program may be recorded on a computer-readable recording medium.
  • the measurement apparatus includes an acquisition unit and a calculation unit.
  • the measurement method of this embodiment includes an acquisition process and a calculation process.
  • the computer program of this embodiment causes a computer to execute the measurement method of this embodiment described above. Therefore, the refractive index of the sample is measured even when no special member is brought into contact with the sample.
  • the measurement apparatus the measurement method, and the computer program are described using an example in which the measurement apparatus, the measurement method, and the computer program are applied to the terahertz wave measurement apparatus 100 that measures the refractive index n of the sample 10 by irradiating the sample 10 with the terahertz wave THz. To proceed.
  • FIG. 1 is a block diagram illustrating a configuration of a terahertz wave measuring apparatus 100 according to the present embodiment.
  • the terahertz wave measuring apparatus 100 irradiates the sample 10 with the terahertz wave THz, and detects the terahertz wave THz reflected by the sample 10 (that is, the terahertz wave THz irradiated on the sample 10).
  • the terahertz region is a frequency region that combines light straightness and electromagnetic wave transparency.
  • the terahertz region is a frequency region in which various substances have unique absorption spectra. Therefore, the terahertz wave measuring apparatus 100 can measure the characteristics of the sample 10 by analyzing the terahertz wave THz irradiated on the sample 10.
  • the terahertz wave measuring apparatus 100 can measure the refractive index n of the sample 10 which is an example of the characteristics of the sample 10 by analyzing the terahertz wave THz irradiated on the sample 10.
  • the terahertz wave measuring apparatus 100 indirectly detects the waveform of the terahertz wave THz by employing a pump-probe method based on time delay scanning.
  • a pump-probe method based on time delay scanning.
  • the terahertz wave measuring apparatus 100 includes a pulse laser apparatus 101, a terahertz wave generating element 110 which is a specific example of “irradiation means”, a beam splitter 161, a reflecting mirror 162, and a reflecting mirror 163.
  • a control unit 150 and a stage 170 are provided.
  • the pulse laser device 101 generates sub-picosecond order or femtosecond order pulse laser light LB having a light intensity corresponding to the drive current input to the pulse laser device 101.
  • the pulse laser beam LB generated by the pulse laser device 101 is incident on the beam splitter 161 via a light guide (not shown) (for example, an optical fiber).
  • the beam splitter 161 branches the pulsed laser light LB into pump light LB1 and probe light LB2.
  • the pump light LB1 is incident on the terahertz wave generating element 110 through a light guide path (not shown).
  • the probe light LB2 enters the optical delay mechanism 120 via a light guide path and a reflecting mirror 162 (not shown). Thereafter, the probe light LB2 emitted from the optical delay mechanism 120 is incident on the terahertz wave detection element 130 via the reflecting mirror 163 and a light guide path (not shown).
  • the terahertz wave generating element 110 emits a terahertz wave THz.
  • the terahertz wave generating element 110 includes a pair of electrode layers facing each other through a gap.
  • a bias voltage generated by the bias voltage generation unit 141 is applied to the gap via a pair of electrode layers.
  • an effective bias voltage for example, a bias voltage other than 0 V
  • the pump light LB1 is also applied to the photoconductive layer formed below the gap. Is irradiated. In this case, carriers are generated in the photoconductive layer irradiated with the pump light LB1 by light excitation by the pump light LB1.
  • the terahertz wave generating element 110 generates a pulse-shaped current signal in the order of subpicoseconds or in the order of femtoseconds corresponding to the generated carrier.
  • the generated current signal flows through the pair of electrode layers.
  • the terahertz wave generating element 110 emits the terahertz wave THz resulting from the pulsed current signal.
  • the terahertz wave THz emitted from the terahertz wave generating element 110 passes through the half mirror 164.
  • the terahertz wave THz transmitted through the half mirror 164 is irradiated to the sample 10 (particularly, the surface 10a of the sample 10).
  • the terahertz wave THz irradiated on the sample 10 is reflected by the sample 10 (particularly, by the front surface 10a and the back surface 10b of the sample).
  • the terahertz wave THz reflected by the sample 10 is reflected by the half mirror 164.
  • the terahertz wave THz reflected by the half mirror 164 enters the terahertz wave detection element 130.
  • the terahertz wave detecting element 130 detects the terahertz wave THz incident on the terahertz wave detecting element 130.
  • the terahertz wave detection element 130 includes a pair of electrode layers facing each other with a gap interposed therebetween.
  • the probe light LB2 is irradiated to the gap
  • the probe light LB2 is also irradiated to the photoconductive layer formed below the gap.
  • carriers are generated in the photoconductive layer irradiated with the probe light LB2 by light excitation by the probe light LB2.
  • a current signal corresponding to the carrier flows through the pair of electrode layers included in the terahertz wave detection element 130.
  • the signal intensity of the current signal flowing through the pair of electrode layers changes according to the light intensity of the terahertz wave THz.
  • a current signal whose signal intensity changes according to the light intensity of the terahertz wave THz is output to the IV conversion unit 142 via the pair of electrode layers.
  • the optical delay mechanism 120 adjusts the difference (that is, the optical path length difference) between the optical path length of the pump light LB1 and the optical path length of the probe light LB2. Specifically, the optical delay mechanism 120 adjusts the optical path length difference by adjusting the optical path length of the probe light LB2.
  • the timing at which the pump light LB1 enters the terahertz wave generation element 110 (or the timing at which the terahertz wave generation element 110 emits the terahertz wave THz) and the probe light LB2 at the terahertz wave detection element 130
  • the time difference from the timing at which the light enters (or the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz) is adjusted.
  • the terahertz wave measuring apparatus 100 indirectly detects the waveform of the terahertz wave THz by adjusting the time difference.
  • the timing at which the probe light LB2 enters the terahertz wave detection element 130 is delayed by 1 picosecond.
  • the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz is delayed by 1 picosecond.
  • the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz is gradually shifted.
  • the terahertz wave detection element 130 can indirectly detect the waveform of the terahertz wave THz. That is, the lock-in detection unit 151 described later can detect the waveform of the terahertz wave THz based on the detection result of the terahertz wave detection element 130.
  • the current signal output from the terahertz wave detection element 130 is converted into a voltage signal by the IV conversion unit 142.
  • the control unit 150 performs a control operation for controlling the entire operation of the terahertz wave measuring apparatus 100.
  • the control unit 150 includes a CPU (Central Processing Unit) and a memory.
  • the memory stores a computer program for causing the control unit 150 to perform a control operation.
  • a logical processing block for performing a control operation is formed inside the CPU.
  • the computer program may not be recorded in the memory. In this case, the CPU may execute a computer program downloaded via a network.
  • the control unit 150 performs a measurement operation for measuring the characteristics of the sample 10 based on the detection result of the terahertz wave detection element 130 (that is, the voltage signal output from the IV conversion unit 142).
  • the control unit 150 includes a lock-in detection unit 151 and a signal processing unit 152 as logical processing blocks formed in the CPU.
  • the lock-in detection unit 151 performs synchronous detection on the voltage signal output from the IV conversion unit 142 using the bias voltage generated by the bias voltage generation unit 141 as a reference signal. As a result, the lock-in detection unit 151 detects a sample value of the terahertz wave THz. Thereafter, the same operation is repeated while appropriately adjusting the difference between the optical path length of the pump light LB1 and the optical path length of the probe light LB2 (that is, the optical path length difference).
  • the waveform (time waveform) of the terahertz wave THz detected by the detection element 130 can be detected.
  • the lock-in detection unit 151 outputs a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detection element 130 to the signal processing unit 152. That is, the lock-in detection unit 151 removes a noise component having a frequency different from that of the reference signal from the voltage signal output from the IV conversion unit 142 (that is, the detection signal of the terahertz wave THz). That is, the lock mark detection unit 151 detects the time waveform signal with relatively high sensitivity and relatively high accuracy by performing synchronous detection using the detection signal and the reference signal. If the terahertz wave measuring apparatus 100 does not use lock-in detection, a DC voltage may be applied to the terahertz wave generating element 110 as a bias voltage.
  • the signal processing unit 152 measures the characteristics of the sample 10 based on the waveform signal output from the lock-in detection unit 151. For example, the signal processing unit 152 acquires the frequency spectrum of the terahertz wave THz using terahertz time domain spectroscopy, and measures the characteristics of the sample 10 based on the frequency spectrum.
  • the signal processing unit 152 performs a measurement operation of measuring the refractive index n of the sample 10 based on the waveform signal output from the lock-in detection unit 151 as an example of the control operation. Further, as an example of the control operation, the signal processing unit 152 is based on the waveform signal output from the lock-in detection unit 151, and the thickness d of the sample 10 (that is, the direction in which the terahertz wave THz is incident on the sample 10). A measurement operation for measuring the thickness d) along the line is performed.
  • the thickness d means “physical distance between the front surface 10a and the back surface 10b”.
  • the signal processing unit 152 includes a detection time acquisition unit 1521 that is a specific example of the “acquisition unit” and a “calculation unit” as logical processing blocks formed inside the CPU.
  • a refractive index calculation unit 1522 as a specific example and a thickness calculation unit 1523 as a specific example of “calculation means” are provided. Note that specific examples of operations of the detection time acquisition unit 1521, the refractive index calculation unit 1522, and the thickness calculation unit 1523 will be described in detail later and will not be described here.
  • Stage 170 holds sample 10.
  • the stage 170 holds the sample 10 so that the back surface 10b of the sample 10 faces the stage 170 side.
  • the stage 170 is movable along a predetermined movement direction while holding the sample 10.
  • the stage 170 moves, the irradiation position on the sample 10 of the terahertz wave THz changes.
  • the movement of the stage 170 is controlled by the control unit 150.
  • the control unit 150 includes an irradiation position changing unit 153 as a logical processing block formed inside the CPU.
  • the irradiation position changing unit 153 controls the movement of the stage 170 so that the irradiation position of the terahertz wave THz is adjusted (for example, changed to a desired position).
  • the irradiation position changing unit 153 moves the irradiation position of the terahertz wave THz by moving at least one of the terahertz wave generating element 110 and the terahertz wave detecting element 130 in addition to or instead of moving the stage 170. May be adjusted.
  • the terahertz wave measuring apparatus 100 performs at least one of two types of measurement operations (first measurement operation and second measurement operation) as a measurement operation for measuring the refractive index n and the thickness d.
  • first measurement operation and second measurement operation the first measurement operation for measuring the refractive index n and the thickness d
  • second measurement operation the second measurement operation for measuring the refractive index n and the thickness d
  • FIG. 2 is a flowchart illustrating an example of a flow of a first measurement operation for measuring the refractive index n and the thickness d performed by the terahertz wave measuring apparatus 100.
  • the irradiation position changing unit 153 controls the stage 170 so that the irradiation position of the terahertz wave THz is the first position on the surface 10a of the sample 10 (step S101).
  • the terahertz wave generating element 110 emits the terahertz wave THz toward the surface 10a of the sample 10 (step S102). That is, the terahertz wave generating element 110 irradiates the first position on the surface 10a of the sample 10 with the terahertz wave THz (step S102).
  • FIG. 3 is a cross-sectional view of the sample 10 showing the optical path of the terahertz wave THz irradiated on the sample 10 and the optical path of the terahertz wave THz reflected by the sample 10.
  • a part of the terahertz wave THz irradiated on the sample 10 is reflected by the surface 10 a of the sample 10.
  • the terahertz wave THz reflected by the surface 10a propagates from the sample 10 to the terahertz wave detecting element 130.
  • a part of the terahertz wave THz irradiated on the sample 10 passes through the inside of the sample 10 without being reflected by the surface 10a. Thereafter, the terahertz wave THz transmitted through the sample 10 reaches the back surface 10 b of the sample 10. As a result, a part of the terahertz wave THz transmitted through the sample 10 is reflected by the back surface 10 b of the sample 10. The terahertz wave THz reflected by the back surface 10b passes through the sample 10 again. Thereafter, the terahertz wave THz transmitted through the sample 10 reaches the surface 10 a of the sample 10. As a result, a part of the terahertz wave THz reflected by the back surface 10 b propagates from the sample 10 to the terahertz wave detecting element 130.
  • the front surface 10a and the back surface 10b are the two outer surfaces of the sample 10 facing each other along the propagation direction of the terahertz wave THz in the sample 10 (the horizontal direction in FIGS. 1 and 3).
  • the surface 10a corresponds to one outer surface close to the terahertz wave generating element 110 and the terahertz wave detecting element 130 among the two outer surfaces.
  • the back surface 10b corresponds to the other outer surface far from the terahertz wave generating element 110 and the terahertz wave detecting element 130 out of the two outer surfaces.
  • a reflecting member may be arranged so as to be in contact with or in close contact with the back surface 10b of the sample 10.
  • the terahertz wave THz reflected by the sample 10 is detected by the terahertz wave detecting element 130 (step S102).
  • a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
  • the detection time acquisition unit 1521 acquires the first detection time t a1 and the second detection time t b1 based on the waveform signal input to the signal processing unit 152 (step S103). That is, the terahertz wave measuring apparatus 100 acquires the first detection time t a1 and the second detection time t b1 based on the detection result of the terahertz wave THz irradiated to the first position.
  • the detection time acquisition unit 1521 outputs the first detection time t a1 and the second detection time t b1 acquired when the first position is irradiated with the terahertz wave THz to the refractive index calculation unit 1522.
  • the first detection time t a1 and the second detection time t b1 are specific examples of “first time” and “second time”, respectively.
  • FIG. 4 is a graph showing a waveform signal of the terahertz wave THz detected by the terahertz wave detecting element 130.
  • the waveform signal includes a waveform signal corresponding to the terahertz wave THz reflected by the front surface 10a and a waveform signal corresponding to the terahertz wave THz reflected by the back surface 10b.
  • the terahertz wave THz reflected by the back surface 10b reaches the terahertz wave detecting element 130 after passing through the inside of the sample 10, while the terahertz wave THz reflected by the front surface 10a does not pass through the inside of the sample 10 and does not pass through the terahertz wave.
  • the wave detection element 130 is reached.
  • the terahertz wave THz reflected by the back surface 10b reaches the terahertz wave detecting element 130 later in time than the terahertz wave THz reflected by the front surface 10a. Therefore, also on the waveform signal, the waveform signal corresponding to the terahertz wave THz reflected by the back surface 10b is delayed in time from the waveform signal corresponding to the terahertz wave THz reflected by the front surface 10a.
  • the first detection time ta1 is a time required for the terahertz wave THz reflected from the surface 10a of the sample 10 to reach the terahertz wave detecting element 130 after the terahertz wave generating element 110 starts irradiation with the terahertz wave THz. is there.
  • the second detection time t b1 is from when the terahertz wave generating element 110 starts irradiation of the terahertz wave THz until the terahertz wave THz reflected by the back surface 10b of the sample 10 reaches the terahertz wave detecting element 130. It takes time.
  • the detection time acquisition unit 1521 can easily acquire (in other words, calculate or specify) the first detection time t a1 and the second detection time t b1 by analyzing the waveform signal.
  • the terahertz wave measuring apparatus 100 performs the above-described operation (that is, the operation for obtaining the first detection time t a2 and the second detection time t b2 ) again after changing the irradiation position.
  • the irradiation position changing unit 153 sets the irradiation position of the terahertz wave THz to the second position on the surface 10a of the sample 10 (however, the second position is different from the first position).
  • the stage 170 is controlled (step S101). As a result, the stage 170 moves by a predetermined movement amount along a predetermined movement direction.
  • FIG. 5 is a cross-sectional view of the sample 10 showing the optical path of the terahertz wave THz irradiated to the first position and the optical path of the terahertz wave THz irradiated to the second position.
  • the first and second positions are the distances between the terahertz wave generating element 110 and the back surface 10b under the situation where the first position is irradiated with the terahertz wave THz.
  • the first condition is satisfied that L11 and the distance L21 between the terahertz wave generating element 110 and the back surface 10b under the condition where the second position is irradiated with the terahertz wave THz are the same.
  • the first and second positions are a distance L13 between the terahertz wave detecting element 130 and the back surface 10b in a situation where the first position is irradiated with the terahertz wave THz, and the second position is the terahertz wave THz.
  • the second condition that the distance L23 between the terahertz wave detecting element 130 and the back surface 10b under the irradiation condition is the same is satisfied. That is, the irradiation position changing unit 153 controls the stage 170 so as to satisfy the first and second conditions. In other words, the irradiation position changing unit 153 controls the stage 170 so that the terahertz wave THz is irradiated to each of the first position and the second position that satisfy the first and second conditions.
  • the irradiation position changing unit 153 controls the stage 170 so that the moving direction of the stage 170 is parallel to the back surface 10b of the sample 10. In other words, in order to control the stage 170 so as to satisfy the first and second conditions, the irradiation position changing unit 153 moves the stage 170 so that the stage 170 moves along a direction parallel to the back surface 10 b of the sample 10. To control. As a result, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave generating element 110 and the back surface 10b does not change. Similarly, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave detecting element 130 and the back surface 10b does not change.
  • the state “the stage 170 moves along a direction parallel to the back surface 10b” means “the stage 170 in a state where the terahertz wave THz is applied to the first position and the second position. This means a state where the stage 170 moves so that the stage 170 under the condition where the terahertz wave THz is irradiated is aligned along a direction parallel to the back surface 10b. Such a state is realized by the stage 170 moving only along the first direction parallel to the back surface 10b. Alternatively, in such a state, even when the stage 170 moves along the first direction parallel to the back surface 10b and the second direction intersecting the back surface 10b, the amount of movement of the stage 170 along the second direction is small. As long as the total is zero (ie offset), it will be realized.
  • the irradiation position changing unit 153 moves at least one of the terahertz wave generation element 110 and the terahertz wave detection element 130 in addition to or instead of moving the stage 170, so that the irradiation position of the terahertz wave THz is reached. As described above, may be adjusted. Even in this case, the irradiation position changing unit 153 moves at least one of the terahertz wave generating element 110 and the terahertz wave detecting element 130 so as to satisfy the first and second conditions.
  • the thickness d1 of the sample 10 at the first position is different from the thickness d2 of the sample 10 at the second position in the first and second positions. Satisfies the third condition. That is, the irradiation position changing unit 153 controls the stage 170 so as to satisfy the third condition. In other words, the irradiation position changing unit 153 controls the stage 170 so that the first position and the second position that satisfy the third condition are irradiated with the terahertz wave THz.
  • the sample 10 satisfies the condition that the thickness d of the sample 10 varies.
  • the variation in the thickness d may include a variation in the thickness d caused by unevenness (for example, a step or a curved surface) intentionally formed on the surface 10a of the sample 10.
  • the variation in the thickness d may include a variation in the thickness d due to the roughness of the surface 10a of the sample 10 depending on the accuracy of the finishing process.
  • the back surface 10b of the sample 10 is a plane
  • the first and second positions can easily satisfy the first and second conditions described above.
  • the back surface 10b of the sample 10 is preferably a flat surface.
  • the terahertz wave generating element 110 irradiates the second position on the surface 10a of the sample 10 with the terahertz wave THz (step S112).
  • the terahertz wave detecting element 130 detects the terahertz wave THz reflected by the sample 10 (step S112).
  • a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
  • the detection time acquisition unit 1521 acquires the first detection time t a2 and the second detection time t b2 based on the waveform signal input to the signal processing unit 152 (step S113).
  • the terahertz wave measuring apparatus 100 acquires the first detection time t a2 and the second detection time t b2 based on the detection result of the terahertz wave THz irradiated to the second position.
  • the first detection time t a2 and the second detection time t b2 are specific examples of “first time” and “second time”, respectively.
  • the refractive index calculator 1522 calculates the refractive index n of the sample 10 based on the first detection time t a1 and the second detection time t b1 , and the first detection time t a2 and the second detection time t b2. (Step S121). Specifically, the refractive index calculation unit 1522 calculates the refractive index n using Equation 12. Note that ⁇ t 1 in Equation 12 corresponds to the time required for the terahertz wave THz to pass through the inside of the sample 10 when the first position is irradiated with the terahertz wave THz.
  • ⁇ t 2 in Expression 12 corresponds to the time required for the terahertz wave THz to pass through the inside of the sample 10 when the second position is irradiated with the terahertz wave THz.
  • Equation 12 the reason why the refractive index n can be calculated using Equation 12 will be described with reference to FIG. 5 described above.
  • the time required for the terahertz wave THz to reach the back surface 10b from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the second detection time tb1 .
  • the optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the back surface 10b under the condition where the terahertz wave THz is irradiated to the first position is (L ⁇ d1) + n ⁇ d1. (However, for convenience of explanation, the sample 10 is located in the air and the refractive index of the air is approximated to 1). Therefore, when the velocity of the terahertz wave THz in the air is defined as c, Equation 13 is established. For similar reasons, Equation 14 associated with the second position also holds.
  • the time required for the terahertz wave THz to reach the surface 10a from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the first detection time ta1 .
  • the optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the surface 10a under the condition where the terahertz wave THz is irradiated to the first position is Ld1. Therefore, Formula 15 is established. For similar reasons, Equation 16 associated with the second position also holds.
  • the variable d1 can be deleted from the equation 13 by substituting the equation 15 into the equation 13.
  • Equation 17 is obtained.
  • the variable d2 can be deleted from Equation 14.
  • Formula 14 in which the variable d2 is deleted is solved for n, Formula 18 is obtained.
  • variable n can be deleted from the equation 17 by substituting the equation 18 into the equation 17.
  • Formula 19 is obtained.
  • Equation 19 By substituting Equation 19 into Equation 17, the variable L can be deleted from Equation 17.
  • Equation 17 with the variable L deleted is solved for n, Equation 12 described above is obtained.
  • the thickness calculation unit 1523 performs the first detection time t a1 and the second detection time t b1 , the first detection time t a2 and the second detection time t b2 , and the refraction calculated in step S121. Based on the rate n, the thickness d of the sample 10 is calculated (step S122). In the first operation example, as described above, the thickness d1 of the sample 10 at the first position is different from the thickness d2 of the sample 10 at the second position. Therefore, the thickness calculation unit 1523 calculates each of the thicknesses d1 and d2.
  • the terahertz measurement apparatus 100 can suitably measure (that is, calculate) the refractive index n of the sample 10 by executing the first measurement operation.
  • the terahertz measuring apparatus 100 according to the present embodiment irradiates a plurality of irradiation positions with different thicknesses d of the sample 10 with the terahertz wave THz, so that the refractive index n does not contact the sample 10 with any special member. Can be suitably measured.
  • the terahertz measuring apparatus 100 of the present embodiment can suitably measure the refractive index n, the thickness d of the sample 10 can also be favorably measured.
  • the thickness d is measured by irradiating the single irradiation position with the terahertz wave THz.
  • a terahertz wave measuring device is assumed.
  • the terahertz wave measuring apparatus of the comparative example to obtain a first detection time t a and the second detection time t b.
  • the terahertz wave measuring apparatus 100 of the comparative example needs to measure the refractive index n in order to measure the original thickness d.
  • the measurement of the refractive index n is generally troublesome.
  • the terahertz wave measuring apparatus 100 of the present embodiment has a great advantage that the refractive index n can be measured relatively easily.
  • the above-described equation 12 is an equation obtained by solving n simultaneous equations (that is, four equations having L, d1, d2, and n as unknowns) composed of equations 13 to 16. It can be said that. For this reason, the terahertz wave measuring apparatus 100 may calculate the refractive index n by solving simultaneous equations composed of Expressions 13 to 16 for n instead of using Expression 12. For example, the terahertz wave measuring apparatus 100 determines whether the simultaneous equations are satisfied by substituting the assumed values of n into the simultaneous equations, and adjusts the assumed values of n that are substituted into the simultaneous equations until the simultaneous equations are satisfied. The operation may be repeated. In this case, an assumed value of n that satisfies the simultaneous equations corresponds to the refractive index n of the sample 10.
  • FIG. 6 is a flowchart showing an example of the flow of the second measurement operation for measuring the refractive index n and the thickness d performed by the terahertz wave measuring apparatus 100.
  • the stage 170 moves along a direction parallel to the back surface 10b of the sample 10. That is, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave generating element 110 and the back surface 10b and the distance between the terahertz wave detecting element 130 and the back surface 10b do not change. However, depending on the movement conditions of the stage 170 and the state of the sample 10 (particularly, the state of the back surface 10b), the stage 170 may not be able to move along a direction parallel to the back surface 10b of the sample 10.
  • the irradiation position of the terahertz wave THz is changed, at least one of the distance between the terahertz wave generating element 110 and the back surface 10b and the distance between the terahertz wave detecting element 130 and the back surface 10b is changed. In some cases.
  • the terahertz wave measuring apparatus 100 measures the refractive index n by performing the second measurement operation.
  • the second measurement operation is performed on the sample 10 whose back surface 10b is flat (in other words, the back surface 10b is not intentionally uneven).
  • the irradiation position changing unit 153 controls the stage 170 so that the irradiation position of the terahertz wave THz is the first position on the surface 10a of the sample 10 (step S201). ).
  • the terahertz wave generating element 110 irradiates the first position with the terahertz wave THz (step S202).
  • the terahertz wave detection element 130 detects the terahertz wave THz reflected by the sample 10 (step S202).
  • a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
  • the detection time acquisition unit 1521 acquires the first detection time t a1 and the second detection time t b1 based on the waveform signal input to the signal processing unit 152 (step S203).
  • the operations of step S201, step S202, and step S203 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
  • the irradiation position changing unit 153 controls the stage 170 so as to be the second position on the surface 10a of the sample 10 (however, the second position is different from the first position) (step S211).
  • the stage 170 moves along a predetermined movement direction by a predetermined first movement amount P1 in order to change the irradiation position from the first position to the second position.
  • the second measurement operation is an operation performed mainly when the stage 170 cannot move along a direction parallel to the back surface 10 b of the sample 10. For this reason, when the irradiation position changing unit 153 changes the irradiation position to the second position, even when the irradiation position of the terahertz wave THz is changed, the irradiation position changing unit 153 is not provided between the terahertz wave generating element 110 and the back surface 10b.
  • the stage 170 may not be controlled so as to satisfy the above-described first condition that the distance does not change.
  • the irradiation position changing unit 153 changes the position between the terahertz wave detection element 130 and the back surface 10b even when the irradiation position of the terahertz wave THz is changed.
  • the stage 170 may not be controlled so as to satisfy the above-described second condition that the distance does not change.
  • the terahertz wave generating element 110 irradiates the second position with the terahertz wave THz (step S212).
  • the terahertz wave detecting element 130 detects the terahertz wave THz reflected by the sample 10 (step S212).
  • a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
  • the detection time acquisition unit 1521 acquires the first detection time t a2 and the second detection time t b2 based on the waveform signal input to the signal processing unit 152 (step S213).
  • the operations of step S211, step S212, and step S213 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
  • the irradiation position changing unit 153 controls the stage 170 so as to be the third position on the surface 10a of the sample 10 (however, the third position is different from the first position and the second position) (step). S221). As a result, the stage 170 moves along a predetermined movement direction by a predetermined second movement amount P2 in order to change the irradiation position from the second position to the third position.
  • the irradiation position changing unit 153 moves the stage 170 when changing the irradiation position from the second position to the third position when the irradiation position is changed from the first position to the second position.
  • the stage 170 is controlled to be the same as the moving direction of the stage 170. That is, the irradiation position changing unit 153 controls the stage 170 so that the moving direction of the stage 170 when the irradiation position is changed from the first position to the third position via the second position is fixed.
  • the second measurement operation is an operation performed mainly when the stage 170 cannot move along the direction parallel to the back surface 10b of the sample 10. For this reason, when changing the irradiation position to the third position, the irradiation position changing unit 153 does not have to control the stage 170 so as to satisfy the first condition described above. Similarly, when changing the irradiation position to the third position, the irradiation position changing unit 153 may not control the stage 170 so as to satisfy the second condition described above.
  • the terahertz wave generating element 110 irradiates the third position with the terahertz wave THz (step S222).
  • the terahertz wave detection element 130 detects the terahertz wave THz reflected by the sample 10 (step S222).
  • a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
  • the detection time acquisition unit 1521 acquires the first detection time t a3 and the second detection time t b3 based on the waveform signal input to the signal processing unit 152 (step S223).
  • the operations of step S221, step S222, and step S223 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
  • the refractive index calculation unit 1522 includes the first detection time t a1 and the second detection time t b1 , the first detection time t a2 and the second detection time t b2 , and the first detection time t a3 and the second detection time. Based on tb3 , the refractive index n of the sample 10 is calculated (step S231). Specifically, the refractive index calculation unit 1522 calculates the refractive index n using Equation 20. Note that ⁇ t 1 and ⁇ t 2 in Equation 20 have already been described when the first measurement operation is described.
  • FIG. 7 is a cross-sectional view of a sample showing the optical path of the terahertz wave THz irradiated to the first position, the optical path of the terahertz wave THz irradiated to the second position, and the optical path of the terahertz wave THz irradiated to the third position. .
  • the distance L23 between the detection element 130 and the back surface 10b is assumed to be the same (for convenience, L2).
  • the distance L33 between the detection element 130 and the back surface 10b is assumed to be the same (for convenience, L3).
  • L11 ⁇ L13 if “L1” in the description to be described later is replaced with “(L11 + L13) / 2”, the reason why the refractive index n can be calculated using Equation 20 remains the same. I understand that. Even when L21 ⁇ L23, if “L2” in the description to be described later is replaced with “(L21 + L23) / 2”, the reason why the refractive index n can be calculated using Equation 20 does not change. I understand. Even when L31 ⁇ L33, if “L3” in the description to be described later is replaced with “(L31 + L33) / 2”, the reason why the refractive index n can be calculated using Equation 20 does not change. I understand.
  • the thickness d of the sample 10 at the first position is d1.
  • the thickness d of the sample 10 at the second position is assumed to be d2.
  • the thickness d of the sample 10 at the third position is d3.
  • the time required for the terahertz wave THz to reach the back surface 10b from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the second detection time tb1 .
  • the optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the back surface 10b under the situation where the first position is irradiated with the terahertz wave THz is (L1 ⁇ d1) + n ⁇ d1. (However, for convenience of explanation, the sample 10 is located in the air and the refractive index of the air is approximated to 1). Therefore, when the velocity of the terahertz wave THz in the air is defined as c, Equation 21 is established. For the same reason, Equation 22 related to the second position and Equation 23 related to the third position also hold.
  • the time required for the terahertz wave THz to reach the surface 10a from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the first detection time ta1 .
  • the optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the surface 10a under the condition where the terahertz wave THz is irradiated to the first position is L1-d1. Therefore, Formula 24 is established. For similar reasons, Equation 25 associated with the second position and Equation 26 associated with the third position also hold.
  • the terahertz measurement apparatus 100 can enjoy the same effect as the effect that can be enjoyed when the first measurement operation is performed by executing the second measurement operation.
  • the terahertz wave measuring apparatus 100 includes a distance between the terahertz wave generating element 110 and the back surface 10b and a distance between the terahertz wave detecting element 130 and the back surface 10b by changing the irradiation position of the terahertz wave THz. Even when at least one of the above changes, the refractive index n of the sample 10 can be suitably measured (that is, calculated).
  • Equation 20 described above becomes Equation 31. Therefore, when the irradiation position changing unit 153 controls the stage 170 so that the movement amount P1 and the movement amount P2 are the same, the refractive index calculation unit 1522 uses Equation 32 instead of Equation 20.
  • the refractive index n may be calculated.
  • Expression 20 is a simultaneous equation composed of Expression 21 to Expression 26 and Expression 30 (that is, simultaneous equations composed of seven equations with L1, L2, L3, d1, d2, d3, and n as unknowns). It can be said that this is a mathematical expression obtained by solving for n. For this reason, the terahertz wave measuring apparatus 100 may calculate the refractive index n by solving simultaneous equations composed of Expressions 21 to 26 and Expression 30 for n instead of using Expression 20.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • a measurement method and a computer program are also included in the technical scope of the present invention.

Abstract

A measurement device 100 is equipped with an acquisition means 1521 which, for each of a plurality of terahertz wave irradiation positions, the locations of which relative to a specimen 10 differ, acquires: first time periods ta1, ta2 that are required for a terahertz wave THz to reach a prescribed position after being emitted toward the surface 10a of the specimen 10 and being reflected by said surface; and second time periods ta1, ta2 that are required for a terahertz wave to reach the prescribed position after being emitted toward the surface and reflected by the rear surface of the specimen. The measurement device 100 is further equipped with a calculation means 1522 for calculating the refractive index n of the specimen, on the basis of the first and second time periods.

Description

計測装置、計測方法及びコンピュータプログラムMeasuring device, measuring method, and computer program
 本発明は、例えばテラヘルツ波を用いて試料の屈折率を計測する計測装置、計測方法及びコンピュータプログラムの技術分野に関する。 The present invention relates to a technical field of a measuring apparatus, a measuring method, and a computer program for measuring a refractive index of a sample using, for example, terahertz waves.
 試料の屈折率を計測するための計測装置として、テラヘルツ波を用いた計測装置が知られている。例えば、特許文献1には、試料と接している透過部材を介してテラヘルツ波を試料に照射すると共に、透過部材で反射したテラヘルツ波の時間波形及び試料で反射したテラヘルツ波の時間波形に基づいて試料の屈折率を取得する情報取得装置が記載されている。例えば、特許文献2には、反射部材と板状部材との間に配置された検体に対して板状部材を介してテラヘルツ波を照射すると共に、板状部材と検体との界面で反射したテラヘルツ波の時間波形及び検体と反射部材との界面で反射したテラヘルツ波の時間波形に基づいて検体の屈折率を取得する情報取得装置が記載されている。 A measuring device using a terahertz wave is known as a measuring device for measuring the refractive index of a sample. For example, in Patent Document 1, a sample is irradiated with a terahertz wave through a transmission member that is in contact with the sample, and based on the time waveform of the terahertz wave reflected by the transmission member and the time waveform of the terahertz wave reflected by the sample. An information acquisition device for acquiring the refractive index of a sample is described. For example, Patent Document 2 discloses that a terahertz wave is irradiated on a specimen disposed between a reflecting member and a plate-like member through the plate-like member and reflected at the interface between the plate-like member and the specimen. An information acquisition device is described that acquires the refractive index of a specimen based on the time waveform of the wave and the time waveform of the terahertz wave reflected at the interface between the specimen and the reflecting member.
特開2014-209094号公報JP 2014-209094 A 特開2015-83964号公報Japanese Patent Laying-Open No. 2015-83964
 特許文献1及び2に記載された情報取得装置では、屈折率を計測するためには、試料(言い換えれば、検体)に対して特殊な部材(具体的には、透過部材、又は、板状部材及び反射部材)を密着させる必要がある。しかしながら、何らかの要因によって、特殊な部材を試料に密着させることができない可能性が出てくる。この場合、特許文献1及び2に記載された情報取得装置が試料の屈折率を計測することができないという技術的問題点が生ずる。 In the information acquisition apparatuses described in Patent Documents 1 and 2, in order to measure the refractive index, a special member (specifically, a transmission member or a plate-like member) with respect to a sample (in other words, a specimen) And the reflective member) need to be in close contact with each other. However, for some reason, there is a possibility that a special member cannot be brought into close contact with the sample. In this case, the technical problem that the information acquisition apparatus described in patent documents 1 and 2 cannot measure the refractive index of a sample arises.
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、試料の屈折率を計測するために試料に何らかの特殊な部材を接触させなくてもよい計測装置、計測方法及びコンピュータプログラムを提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a measuring apparatus, a measuring method, and a computer program that do not require any special member to be brought into contact with the sample in order to measure the refractive index of the sample.
 本発明の計測装置の第1の例は、試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得手段と、前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出手段とを備える。 The first example of the measuring device according to the present invention includes a first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the surface irradiated on the surface. The second time required for the terahertz wave to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is determined by a plurality of irradiation positions of the terahertz waves having different positions with respect to the sample. An acquisition means for acquiring each and a calculation means for calculating the refractive index of the sample based on the first and second times.
 本発明の計測方法の第1の例は、試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得工程と、前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出工程とを備える。 The first example of the measurement method of the present invention includes a first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the surface irradiated on the surface. The second time required for the terahertz wave to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is determined by a plurality of irradiation positions of the terahertz waves having different positions with respect to the sample. An acquisition step for each acquisition, and a calculation step for calculating the refractive index of the sample based on the first and second times.
 本発明のコンピュータプログラムの第1の例は、コンピュータに上述した本発明の計測方法の第1の例を実行させる。 The first example of the computer program of the present invention causes a computer to execute the first example of the measurement method of the present invention described above.
図1は、本実施例のテラヘルツ波計測装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of the terahertz wave measuring apparatus according to the present embodiment. 図2は、テラヘルツ波計測装置が行う屈折率及び厚さを計測する第1計測動作の流れの一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a flow of a first measurement operation for measuring a refractive index and a thickness performed by the terahertz wave measuring apparatus. 図3は、試料に照射されるテラヘルツ波の光路及び試料によって反射されたテラヘルツ波の光路を示す試料の断面図である。FIG. 3 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the sample and the optical path of the terahertz wave reflected by the sample. 図4は、テラヘルツ波検出素子が検出したテラヘルツ波の波形信号を示すグラフである。FIG. 4 is a graph showing a waveform signal of the terahertz wave detected by the terahertz wave detecting element. 図5は、第1位置に照射されるテラヘルツ波の光路及び第2位置に照射されるテラヘルツ波の光路を示す試料の断面図である。FIG. 5 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the first position and the optical path of the terahertz wave irradiated to the second position. 図6は、テラヘルツ波計測装置が行う屈折率及び厚さを計測する第2計測動作の流れの一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a flow of a second measurement operation for measuring the refractive index and the thickness performed by the terahertz wave measuring apparatus. 図7は、第1位置に照射されるテラヘルツ波の光路、第2位置に照射されるテラヘルツ波の光路及び第3位置に照射されるテラヘルツ波の光路を示す試料の断面図である。FIG. 7 is a cross-sectional view of the sample showing the optical path of the terahertz wave irradiated to the first position, the optical path of the terahertz wave irradiated to the second position, and the optical path of the terahertz wave irradiated to the third position.
 以下、計測装置、計測方法及びコンピュータプログラムの実施形態について説明を進める。 Hereinafter, embodiments of the measurement apparatus, the measurement method, and the computer program will be described.
 (計測装置の実施形態)
 <1>
 本実施形態の計測装置は、試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得手段と、前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出手段とを備える。
(Embodiment of measuring device)
<1>
In the measurement apparatus of the present embodiment, the first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is The second time required to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is acquired for each of the plurality of terahertz wave irradiation positions having different positions with respect to the sample. And obtaining means for calculating the refractive index of the sample based on the first and second times.
 本実施形態の計測装置によれば、後に具体的な数式を用いて詳述するように、試料に何らかの特殊な部材を接触させることなく、複数の照射位置に対応する複数の第1時間及び複数の第2時間に基づいて、試料の屈折率を好適に計測する(つまり、算出する)ことができる。 According to the measurement apparatus of the present embodiment, as will be described in detail later using specific mathematical formulas, a plurality of first times and a plurality of times corresponding to a plurality of irradiation positions without contacting any special member with the sample. Based on the second time, the refractive index of the sample can be suitably measured (that is, calculated).
 <2>
 本実施形態の計測装置の他の態様では、前記照射位置毎に、前記表面と前記裏面との間の物理的な距離である前記試料の厚さが異なる。
<2>
In another aspect of the measurement apparatus of the present embodiment, the thickness of the sample, which is a physical distance between the front surface and the back surface, differs for each irradiation position.
 この態様によれば、試料の厚さが異なる複数の照射位置にテラヘルツ波が照射されることで、計測装置は、試料の屈折率を好適に計測する(つまり、算出する)ことができる。 According to this aspect, the terahertz wave is irradiated to a plurality of irradiation positions having different thicknesses of the sample, so that the measuring device can suitably measure (that is, calculate) the refractive index of the sample.
 <3>
 本実施形態の計測装置の他の態様では、前記表面に向けて前記テラヘルツ波を照射する照射手段と、前記試料によって反射された前記テラヘルツ波を検出する検出手段とを更に備え、前記所定位置は、前記検出手段が設置されている位置であり、前記第1時間は、前記照射手段が前記テラヘルツ波を照射してから前記表面で反射された前記テラヘルツ波が前記検出手段に到達するまでに要する時間であり、前記第2時間は、前記照射手段が前記テラヘルツ波を照射してから前記裏面で反射された前記テラヘルツ波が前記検出手段に到達するまでに要する時間である。
<3>
In another aspect of the measurement apparatus of the present embodiment, the measurement apparatus further includes an irradiation unit that irradiates the terahertz wave toward the surface, and a detection unit that detects the terahertz wave reflected by the sample, and the predetermined position is , The position where the detection means is installed, and the first time is required for the terahertz wave reflected from the surface to reach the detection means after the irradiation means irradiates the terahertz wave The second time is a time required for the terahertz wave reflected from the back surface to reach the detection unit after the irradiation unit irradiates the terahertz wave.
 この態様によれば、計測装置は、照射手段及び検出手段を用いて、試料の屈折率を好適に計測することができる。 According to this aspect, the measuring apparatus can suitably measure the refractive index of the sample using the irradiation unit and the detection unit.
 <4>
 本実施形態の計測装置の他の態様では、前記試料を含む移動対象物を所定の移動方向に沿って移動させることで、前記照射位置を変更する変更手段を更に備える。
<4>
In another aspect of the measurement apparatus of the present embodiment, the measurement apparatus further includes changing means for changing the irradiation position by moving a moving object including the sample along a predetermined movement direction.
 この態様によれば、計測装置は、位置が互いに異なる複数の照射位置の夫々毎の第1及び第2時間を好適に取得することができる。 According to this aspect, the measuring apparatus can suitably acquire the first and second times for each of a plurality of irradiation positions having different positions.
 <5>
 本実施形態の計測装置の他の態様では、前記試料、前記照射手段及び前記検出手段のうちの少なくとも一つを含む移動対象物を所定の移動方向に沿って移動させることで、前記照射位置を変更する変更手段を更に備える。
<5>
In another aspect of the measurement apparatus of the present embodiment, the irradiation position is determined by moving a moving object including at least one of the sample, the irradiation unit, and the detection unit along a predetermined movement direction. It further comprises changing means for changing.
 この態様によれば、計測装置は、位置が互いに異なる複数の照射位置の夫々毎の第1及び第2時間を好適に取得することができる。 According to this aspect, the measuring apparatus can suitably acquire the first and second times for each of a plurality of irradiation positions having different positions.
 <6>
 上述の如く移動対象物を移動させる計測装置の他の態様では、前記移動方向が前記裏面に平行である場合には、前記取得手段は、前記照射位置が第1位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第1位置とは異なる第2位置となる場合の前記第1及び第2時間を取得する。
<6>
In another aspect of the measuring apparatus for moving the moving object as described above, when the moving direction is parallel to the back surface, the acquisition unit is configured to perform the first operation when the irradiation position is the first position. And the second time and the first and second times when the irradiation position is a second position different from the first position.
 この態様によれば、移動方向が試料の裏面に平行である場合には、照射位置が変更された場合であっても、所定位置(或いは、テラヘルツ波の照射位置及びテラヘルツ波の検出位置のうちの少なくとも一方)と試料の裏面との間の距離が変わることはない。この場合には、計測装置は、2つの異なる照射位置に夫々対応する2つの第1時間及び2つの第2時間を取得すれば、試料の屈折率を好適に計測することができる。つまり、計測装置は、試料の屈折率を計測するために、3つ以上の照射位置に夫々対応する3つ以上の第1時間及び3つ以上の第2時間を取得しなくてもよい。 According to this aspect, when the moving direction is parallel to the back surface of the sample, even if the irradiation position is changed, the predetermined position (or the terahertz wave irradiation position and the terahertz wave detection position) The distance between at least one of the above and the back surface of the sample does not change. In this case, if the measurement apparatus acquires two first times and two second times respectively corresponding to two different irradiation positions, it can suitably measure the refractive index of the sample. That is, in order to measure the refractive index of the sample, the measuring device does not have to acquire three or more first times and three or more second times respectively corresponding to three or more irradiation positions.
 <7>
 上述の如く照射位置が第1位置となる場合の第1及び第2時間並びに照射位置が第2位置となる場合の第1及び第2時間を取得する計測装置の他の態様では、前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、変数Δtを数式1で定義し、変数Δtを数式2で定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行である場合には、前記算出手段は、数式3に基づいて、前記屈折率を算出する。
<7>
As described above, in another aspect of the measuring apparatus that acquires the first and second times when the irradiation position is the first position and the first and second times when the irradiation position is the second position, the irradiation position Are defined as t a1 and t b1, respectively, and when the irradiation position is the second position, t a2 is defined as the first time and the second time when the irradiation position is the second position, respectively. And t b2 , the variable Δt 1 is defined by Equation 1, the variable Δt 2 is defined by Equation 2, and the refractive index is defined as n, when the moving direction is parallel to the back surface, The calculating means calculates the refractive index based on Equation 3.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 この態様によれば、計測装置は、数式1から数式3に基づく演算を行うことで、第1及び第2時間に基づいて、試料の屈折率を好適に計測することができる。 According to this aspect, the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on the mathematical formulas 1 to 3.
 <8>
 上述の如く移動対象物を移動させる計測装置の他の態様では、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記移動手段は、前記移動方向を固定したまま前記移動対象物を移動させることで、前記照射位置を、互いに異なる第1位置、第2位置及び第3位置へと順に変更し、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記照射位置が前記第1位置となる場合の前記第1及び第2時間、前記照射位置が前記第2位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を取得し、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記第1及び第2時間、並びに、前記照射位置を前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量、及び、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量に基づいて、前記屈折率を算出する。
<8>
In another aspect of the measuring apparatus for moving the moving object as described above, when the moving direction is not parallel to the back surface and the back surface is a plane, the moving means keeps the moving direction fixed. By moving the moving object, the irradiation position is sequentially changed to a first position, a second position, and a third position that are different from each other, the moving direction is not parallel to the back surface, and the back surface is flat. In some cases, the acquisition means includes the first and second times when the irradiation position is the first position, the first and second times when the irradiation position is the second position, In addition, when the irradiation position is the third position, the first and second times are acquired, and when the moving direction is not parallel to the back surface and the back surface is a plane, the acquisition unit includes: The first and second times, and The amount of movement of the moving object when the irradiation position is changed from the first position to the second position, and the movement when the irradiation position is changed from the second position to the third position. The refractive index is calculated based on the amount of movement of the object.
 この態様によれば、移動方向が試料の裏面に平行でない場合には、照射位置が変更されると、所定位置(或いは、テラヘルツ波の照射位置及びテラヘルツ波の検出位置のうちの少なくとも一方)と試料の裏面との間の距離もまた変わる。この場合には、計測装置は、3つの異なる照射位置に夫々対応する3つの第1時間及び3つの第2時間を取得すれば、試料の屈折率を好適に計測することができる。つまり、計測装置は、試料の屈折率を計測するために、4つ以上の照射位置に夫々対応する4つ以上の第1時間及び4つ以上の第2時間を取得しなくてもよい。 According to this aspect, when the moving direction is not parallel to the back surface of the sample, when the irradiation position is changed, the predetermined position (or at least one of the terahertz wave irradiation position and the terahertz wave detection position) is set. The distance between the back of the sample also changes. In this case, if the measurement apparatus acquires three first times and three second times respectively corresponding to three different irradiation positions, the refractive index of the sample can be suitably measured. That is, in order to measure the refractive index of the sample, the measuring device does not need to acquire four or more first times and four or more second times respectively corresponding to four or more irradiation positions.
 <9>
 上述の如く照射位置が第1位置となる場合の第1及び第2時間、照射位置が第2位置となる場合の第1及び第2時間並びに照射位置が第3位置となる場合の第1及び第2時間を取得する計測装置の他の態様では、前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を夫々ta3及びtb3と定義し、変数Δtを数式4で定義し、変数Δtを数式5で定義し、変数Δtを数式6で定義し、前記照射位置を前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量をP1と定義し、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量をP2と定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記算出手段は、数式7に基づいて、前記屈折率を算出する。
<9>
As described above, the first and second times when the irradiation position is the first position, the first and second times when the irradiation position is the second position, and the first and second times when the irradiation position is the third position. In another aspect of the measuring apparatus for acquiring the second time, the first and second times when the irradiation position is the first position are defined as t a1 and t b1, respectively, and the irradiation position is the first position. The first and second times when the two positions are defined are defined as t a2 and t b2, respectively, and the first and second times when the irradiation position is the third position are defined as t a3 and t b3, respectively. The variable Δt 1 is defined by Equation 4, the variable Δt 2 is defined by Equation 5, the variable Δt 3 is defined by Equation 6, and the irradiation position is changed from the first position to the second position. The amount of movement of the moving object is defined as P1, and the irradiation position is the first position When the movement amount of the moving object when changing from the position to the third position is defined as P2 and the refractive index is defined as n, the movement direction is not parallel to the back surface and the back surface is a plane. In this case, the calculation unit calculates the refractive index based on Equation 7.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 この態 
Figure JPOXMLDOC01-appb-M000018
This state
様によれば、計測装置は、数式4から数式7に基づく演算を行うことで、第1及び第2時間に基づいて、試料の屈折率を好適に計測することができる。 According to the above, the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on Expression 4 to Expression 7.
 <10>
 上述の如く移動対象物を移動させる計測装置の他の態様では、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記移動手段は、(i)前記照射位置を、互いに異なる第1位置、第2位置及び第3位置へと順に変更するように、且つ、(ii)前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量が、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量と同一になるように、前記移動方向を固定したまま前記移動対象物を移動させ、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記照射位置が前記第1位置となる場合の前記第1及び第2時間、前記照射位置が前記第2位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を取得する。
<10>
In another aspect of the measuring apparatus for moving the moving object as described above, when the moving direction is not parallel to the back surface and the back surface is a plane, the moving means includes (i) the irradiation position. And (ii) the amount of movement of the moving object when changing from the first position to the second position so as to change sequentially from the first position, the second position, and the third position, which are different from each other. Moving the moving object while fixing the moving direction so as to be the same as the moving amount of the moving object when the irradiation position is changed from the second position to the third position, When the movement direction is not parallel to the back surface and the back surface is a plane, the acquisition means is configured to perform the first and second times when the irradiation position is the first position, and the irradiation position is the first position. The first and second in the second position During, as well as to acquire the first and second time when the irradiation position becomes the third position.
 この態様によれば、上述したように、移動方向が試料の裏面に平行でない場合には、計測装置は、3つの照射位置に夫々対応する3つの第1時間及び3つの第2時間を取得すれば、試料の屈折率を好適に計測することができる。 According to this aspect, as described above, when the moving direction is not parallel to the back surface of the sample, the measuring device acquires three first times and three second times respectively corresponding to the three irradiation positions. For example, the refractive index of the sample can be suitably measured.
 <11>
 上述の如く照射位置が第1位置となる場合の第1及び第2時間、照射位置が第2位置となる場合の第1及び第2時間並びに照射位置が第3位置となる場合の第1及び第2時間を取得する計測装置の他の態様では、前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を夫々ta3及びtb3と定義し、変数Δtを数式8で定義し、変数Δtを数式9で定義し、変数Δtを数式10で定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記算出手段は、数式11に基づいて、前記屈折率を算出する。
<11>
As described above, the first and second times when the irradiation position is the first position, the first and second times when the irradiation position is the second position, and the first and second times when the irradiation position is the third position. In another aspect of the measuring apparatus for acquiring the second time, the first and second times when the irradiation position is the first position are defined as t a1 and t b1, respectively, and the irradiation position is the first position. The first and second times when the two positions are defined are defined as t a2 and t b2, respectively, and the first and second times when the irradiation position is the third position are defined as t a3 and t b3, respectively. If the variable Δt 1 is defined by Equation 8, the variable Δt 2 is defined by Equation 9, the variable Δt 3 is defined by Equation 10, and the refractive index is defined as n, the movement direction is parallel to the back surface. If the back surface is a flat surface, the calculation means Based on, it calculates the refractive index.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 この態様によれば、計測装置は、数式8から数式11に基づく演算を行うことで、第1及び第2時間に基づいて、試料の屈折率を好適に計測することができる。 According to this aspect, the measurement apparatus can appropriately measure the refractive index of the sample based on the first and second times by performing the calculation based on Expression 8 to Expression 11.
 <12>
 本実施形態の計測装置の他の態様では、前記算出手段は更に、算出した前記屈折率に基づいて、前記表面と前記裏面との間の物理的な距離である前記試料の厚さを算出する。
<12>
In another aspect of the measurement apparatus of the present embodiment, the calculation unit further calculates the thickness of the sample, which is a physical distance between the front surface and the back surface, based on the calculated refractive index. .
 この態様によれば、計測装置は、屈折率に加えて、試料の厚さを計測する(つまり、算出する)ことができる。 According to this aspect, the measuring apparatus can measure (that is, calculate) the thickness of the sample in addition to the refractive index.
 (計測方法の実施形態)
 <13>
 本実施形態の計測方法は、試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得工程と、前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出工程とを備える。
(Embodiment of measurement method)
<13>
In the measurement method of the present embodiment, the first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is The second time required to reach the predetermined position after being reflected by the back surface of the sample located on the opposite side of the front surface is acquired for each of the plurality of terahertz wave irradiation positions having different positions with respect to the sample. And a calculation step of calculating a refractive index of the sample based on the first and second times.
 本実施形態の計測装置によれば、上述した本実施形態の計測装置が享受することが可能な効果と同様の効果を好適に享受することができる。 According to the measurement device of the present embodiment, it is possible to suitably enjoy the same effects as those that can be enjoyed by the measurement device of the present embodiment described above.
 尚、本実施形態の計測装置が採用する各種態様に対応して、本実施形態の計測方法も、各種態様を採用してもよい。 Incidentally, in response to various aspects adopted by the measurement apparatus of this embodiment, the measurement method of this embodiment may adopt various aspects.
 (コンピュータプログラムの実施形態)
 <14>
 本実施形態のコンピュータプログラムは、コンピュータに上述した本実施形態の計測方法を実行させる。
(Embodiment of computer program)
<14>
The computer program of this embodiment causes a computer to execute the measurement method of this embodiment described above.
 本実施形態のコンピュータプログラムによれば、上述した本実施形態の計測装置が享受する効果と同様の効果を好適に享受することができる。 According to the computer program of the present embodiment, it is possible to suitably enjoy the same effects as those enjoyed by the measurement apparatus of the present embodiment described above.
 尚、本実施形態の計測装置が採用する各種態様に対応して、本実施形態のコンピュータプログラムも、各種態様を採用してもよい。また、コンピュータプログラムは、コンピュータ読み取り可能な記録媒体に記録されていてもよい。 Incidentally, in response to various aspects adopted by the measurement apparatus of the present embodiment, the computer program of the present embodiment may adopt various aspects. The computer program may be recorded on a computer-readable recording medium.
 本実施形態の計測装置、計測方法及びコンピュータプログラムの作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the measurement apparatus, measurement method, and computer program of the present embodiment will be described in more detail in the following examples.
 以上説明したように、本実施形態の計測装置は、取得手段と、算出手段とを備える。本実施形態の計測方法は、取得工程と、算出工程とを備える。本実施形態のコンピュータプログラムは、コンピュータに上述した本実施形態の計測方法を実行させる。従って、試料に何らかの特殊な部材を接触させない場合であっても、試料の屈折率が計測される。 As described above, the measurement apparatus according to the present embodiment includes an acquisition unit and a calculation unit. The measurement method of this embodiment includes an acquisition process and a calculation process. The computer program of this embodiment causes a computer to execute the measurement method of this embodiment described above. Therefore, the refractive index of the sample is measured even when no special member is brought into contact with the sample.
 以下、図面を参照しながら、計測装置、計測方法及びコンピュータプログラムの実施例について説明する。特に、以下では、計測装置、計測方法及びコンピュータプログラムが、テラヘルツ波THzを試料10に照射することで当該試料10の屈折率nを計測するテラヘルツ波計測装置100に適用された例を用いて説明を進める。 Hereinafter, embodiments of the measurement device, the measurement method, and the computer program will be described with reference to the drawings. In particular, in the following, the measurement apparatus, the measurement method, and the computer program are described using an example in which the measurement apparatus, the measurement method, and the computer program are applied to the terahertz wave measurement apparatus 100 that measures the refractive index n of the sample 10 by irradiating the sample 10 with the terahertz wave THz. To proceed.
 (1)テラヘルツ波計測装置100の構成
 初めに、図1を参照しながら、本実施例のテラヘルツ波計測装置100の構成について説明する。図1は、本実施例のテラヘルツ波計測装置100の構成を示すブロック図である。
(1) Configuration of Terahertz Wave Measuring Device 100 First, the configuration of the terahertz wave measuring device 100 of the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of a terahertz wave measuring apparatus 100 according to the present embodiment.
 図1に示すように、テラヘルツ波計測装置100は、テラヘルツ波THzを試料10に照射すると共に、試料10が反射したテラヘルツ波THz(つまり、試料10に照射されたテラヘルツ波THz)を検出する。 As shown in FIG. 1, the terahertz wave measuring apparatus 100 irradiates the sample 10 with the terahertz wave THz, and detects the terahertz wave THz reflected by the sample 10 (that is, the terahertz wave THz irradiated on the sample 10).
 テラヘルツ波THzは、1テラヘルツ(1THz=1012Hz)前後の周波数領域(つまり、テラヘルツ領域)に属する電磁波成分を含む電磁波である。テラヘルツ領域は、光の直進性と電磁波の透過性を兼ね備えた周波数領域である。テラヘルツ領域は、様々な物質が固有の吸収スペクトルを有する周波数領域である。従って、テラヘルツ波計測装置100は、試料10に照射されたテラヘルツ波THzを解析することで、試料10の特性を計測することができる。本実施例では、テラヘルツ波計測装置100は、試料10に照射されたテラヘルツ波THzを解析することで、試料10の特性の一例である試料10の屈折率nを計測することができる。 The terahertz wave THz is an electromagnetic wave including an electromagnetic wave component belonging to a frequency region (that is, a terahertz region) around 1 terahertz (1 THz = 10 12 Hz). The terahertz region is a frequency region that combines light straightness and electromagnetic wave transparency. The terahertz region is a frequency region in which various substances have unique absorption spectra. Therefore, the terahertz wave measuring apparatus 100 can measure the characteristics of the sample 10 by analyzing the terahertz wave THz irradiated on the sample 10. In the present embodiment, the terahertz wave measuring apparatus 100 can measure the refractive index n of the sample 10 which is an example of the characteristics of the sample 10 by analyzing the terahertz wave THz irradiated on the sample 10.
 ここで、テラヘルツ波THzの周期は、サブピコ秒のオーダーの周期であるがゆえに、当該テラヘルツ波THzの波形を直接的に検出することが技術的に困難である。そこで、テラヘルツ波計測装置100は、時間遅延走査に基づくポンプ・プローブ法を採用することで、テラヘルツ波THzの波形を間接的に検出する。以下、このようなポンプ・プローブ法を採用するテラヘルツ波計測装置100についてより具体的に説明を進める。 Here, since the period of the terahertz wave THz is a period of the order of sub-picoseconds, it is technically difficult to directly detect the waveform of the terahertz wave THz. Therefore, the terahertz wave measuring apparatus 100 indirectly detects the waveform of the terahertz wave THz by employing a pump-probe method based on time delay scanning. Hereinafter, the terahertz wave measuring apparatus 100 that employs such a pump-probe method will be described more specifically.
 図1に示すように、テラヘルツ波計測装置100は、パルスレーザ装置101と、「照射手段」の一具体例であるテラヘルツ波発生素子110と、ビームスプリッタ161と、反射鏡162と、反射鏡163と、ハーフミラー164と、光学遅延機構120と、「検出手段」の一具体例であるテラヘルツ波検出素子130と、バイアス電圧生成部141と、I-V(電流-電圧)変換部142と、制御部150と、ステージ170を備えている。 As shown in FIG. 1, the terahertz wave measuring apparatus 100 includes a pulse laser apparatus 101, a terahertz wave generating element 110 which is a specific example of “irradiation means”, a beam splitter 161, a reflecting mirror 162, and a reflecting mirror 163. A half mirror 164, an optical delay mechanism 120, a terahertz wave detecting element 130 as a specific example of “detecting means”, a bias voltage generating unit 141, an IV (current-voltage) converting unit 142, A control unit 150 and a stage 170 are provided.
 パルスレーザ装置101は、当該パルスレーザ装置101に入力される駆動電流に応じた光強度を有するサブピコ秒オーダー又はフェムト秒オーダーのパルスレーザ光LBを生成する。パルスレーザ装置101が生成したパルスレーザ光LBは、不図示の導光路(例えば、光ファイバ等)を介して、ビームスプリッタ161に入射する。 The pulse laser device 101 generates sub-picosecond order or femtosecond order pulse laser light LB having a light intensity corresponding to the drive current input to the pulse laser device 101. The pulse laser beam LB generated by the pulse laser device 101 is incident on the beam splitter 161 via a light guide (not shown) (for example, an optical fiber).
 ビームスプリッタ161は、パルスレーザ光LBを、ポンプ光LB1とプローブ光LB2とに分岐する。ポンプ光LB1は、不図示の導光路を介して、テラヘルツ波発生素子110に入射する。一方で、プローブ光LB2は、不図示の導光路及び反射鏡162を介して、光学遅延機構120に入射する。その後、光学遅延機構120から出射したプローブ光LB2は、反射鏡163及び不図示の導光路を介して、テラヘルツ波検出素子130に入射する。 The beam splitter 161 branches the pulsed laser light LB into pump light LB1 and probe light LB2. The pump light LB1 is incident on the terahertz wave generating element 110 through a light guide path (not shown). On the other hand, the probe light LB2 enters the optical delay mechanism 120 via a light guide path and a reflecting mirror 162 (not shown). Thereafter, the probe light LB2 emitted from the optical delay mechanism 120 is incident on the terahertz wave detection element 130 via the reflecting mirror 163 and a light guide path (not shown).
 テラヘルツ波発生素子110は、テラヘルツ波THzを出射する。具体的には、テラヘルツ波発生素子110は、ギャップを介して互いに対向する一対の電極層を備えている。ギャップには、一対の電極層を介して、バイアス電圧生成部141が生成したバイアス電圧が印加されている。有効なバイアス電圧(例えば、0Vでないバイアス電圧)がギャップに印加されている状態でポンプ光LB1がギャップに照射されると、ギャップの下側に形成されている光伝導層にもまたポンプ光LB1が照射される。この場合、ポンプ光LB1が照射された光伝導層には、ポンプ光LB1による光励起によってキャリアが発生する。その結果、テラヘルツ波発生素子110には、発生したキャリアに応じたサブピコ秒オーダーの又はフェムト秒オーダーのパルス状の電流信号が発生する。発生した電流信号は、一対の電極層に流れる。その結果、テラヘルツ波発生素子110は、当該パルス状の電流信号に起因したテラヘルツ波THzを出射する。 The terahertz wave generating element 110 emits a terahertz wave THz. Specifically, the terahertz wave generating element 110 includes a pair of electrode layers facing each other through a gap. A bias voltage generated by the bias voltage generation unit 141 is applied to the gap via a pair of electrode layers. When the pump light LB1 is irradiated to the gap while an effective bias voltage (for example, a bias voltage other than 0 V) is applied to the gap, the pump light LB1 is also applied to the photoconductive layer formed below the gap. Is irradiated. In this case, carriers are generated in the photoconductive layer irradiated with the pump light LB1 by light excitation by the pump light LB1. As a result, the terahertz wave generating element 110 generates a pulse-shaped current signal in the order of subpicoseconds or in the order of femtoseconds corresponding to the generated carrier. The generated current signal flows through the pair of electrode layers. As a result, the terahertz wave generating element 110 emits the terahertz wave THz resulting from the pulsed current signal.
 テラヘルツ波発生素子110から出射したテラヘルツ波THzは、ハーフミラー164を透過する。その結果、ハーフミラー164を透過したテラヘルツ波THzは、試料10(特に、試料10の表面10a)に照射される。試料10に照射されたテラヘルツ波THzは、試料10によって(特に、試料の表面10a及び裏面10bの夫々によって)反射される。試料10によって反射されたテラヘルツ波THzは、ハーフミラー164によって反射される。ハーフミラー164によって反射されたテラヘルツ波THzは、テラヘルツ波検出素子130に入射する。 The terahertz wave THz emitted from the terahertz wave generating element 110 passes through the half mirror 164. As a result, the terahertz wave THz transmitted through the half mirror 164 is irradiated to the sample 10 (particularly, the surface 10a of the sample 10). The terahertz wave THz irradiated on the sample 10 is reflected by the sample 10 (particularly, by the front surface 10a and the back surface 10b of the sample). The terahertz wave THz reflected by the sample 10 is reflected by the half mirror 164. The terahertz wave THz reflected by the half mirror 164 enters the terahertz wave detection element 130.
 テラヘルツ波検出素子130は、テラヘルツ波検出素子130に入射するテラヘルツ波THzを検出する。具体的には、テラヘルツ波検出素子130は、ギャップを介して互いに対向する一対の電極層を備えている。ギャップにプローブ光LB2が照射されると、ギャップの下側に形成されている光伝導層にもまたプローブ光LB2が照射される。この場合、プローブ光LB2が照射された光伝導層には、プローブ光LB2による光励起によってキャリアが発生する。その結果、キャリアに応じた電流信号が、テラヘルツ波検出素子130が備える一対の電極層に流れる。プローブ光LB2がギャップに照射されている状態でテラヘルツ波検出素子130にテラヘルツ波THzが照射されると、一対の電極層に流れる電流信号の信号強度は、テラヘルツ波THzの光強度に応じて変化する。テラヘルツ波THzの光強度に応じて信号強度が変化する電流信号は、一対の電極層を介して、I-V変換部142に出力される。 The terahertz wave detecting element 130 detects the terahertz wave THz incident on the terahertz wave detecting element 130. Specifically, the terahertz wave detection element 130 includes a pair of electrode layers facing each other with a gap interposed therebetween. When the probe light LB2 is irradiated to the gap, the probe light LB2 is also irradiated to the photoconductive layer formed below the gap. In this case, carriers are generated in the photoconductive layer irradiated with the probe light LB2 by light excitation by the probe light LB2. As a result, a current signal corresponding to the carrier flows through the pair of electrode layers included in the terahertz wave detection element 130. When the terahertz wave detection element 130 is irradiated with the terahertz wave THz while the probe light LB2 is irradiated on the gap, the signal intensity of the current signal flowing through the pair of electrode layers changes according to the light intensity of the terahertz wave THz. To do. A current signal whose signal intensity changes according to the light intensity of the terahertz wave THz is output to the IV conversion unit 142 via the pair of electrode layers.
 光学遅延機構120は、ポンプ光LB1の光路長とプローブ光LB2の光路長との間の差分(つまり、光路長差)を調整する。具体的には、光学遅延機構120は、プローブ光LB2の光路長を調整することで、光路長差を調整する。光路長差が調整されると、ポンプ光LB1がテラヘルツ波発生素子110に入射するタイミング(或いは、テラヘルツ波発生素子110がテラヘルツ波THzを出射するタイミング)と、プローブ光LB2がテラヘルツ波検出素子130に入射するタイミング(或いは、テラヘルツ波検出素子130がテラヘルツ波THzを検出するタイミング)との時間差が調整される。テラヘルツ波計測装置100は、この時間差を調整することで、テラヘルツ波THzの波形を間接的に検出する。例えば、光学遅延機構120によってプローブ光LB2の光路が0.3ミリメートル(但し、空気中での光路長)だけ長くなると、プローブ光LB2がテラヘルツ波検出素子130に入射するタイミングが1ピコ秒だけ遅くなる。この場合、テラヘルツ波検出素子130がテラヘルツ波THzを検出するタイミングが、1ピコ秒だけ遅くなる。テラヘルツ波検出素子130に対して同一の波形を有するテラヘルツ波THzが数十MHz程度の間隔で繰り返し入射することを考慮すれば、テラヘルツ波検出素子130がテラヘルツ波THzを検出するタイミングを徐々にずらすことで、テラヘルツ波検出素子130は、テラヘルツ波THzの波形を間接的に検出することができる。つまり、後述するロックイン検出部151は、テラヘルツ波検出素子130の検出結果に基づいて、テラヘルツ波THzの波形を検出することができる。 The optical delay mechanism 120 adjusts the difference (that is, the optical path length difference) between the optical path length of the pump light LB1 and the optical path length of the probe light LB2. Specifically, the optical delay mechanism 120 adjusts the optical path length difference by adjusting the optical path length of the probe light LB2. When the optical path length difference is adjusted, the timing at which the pump light LB1 enters the terahertz wave generation element 110 (or the timing at which the terahertz wave generation element 110 emits the terahertz wave THz) and the probe light LB2 at the terahertz wave detection element 130 The time difference from the timing at which the light enters (or the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz) is adjusted. The terahertz wave measuring apparatus 100 indirectly detects the waveform of the terahertz wave THz by adjusting the time difference. For example, when the optical path of the probe light LB2 is increased by 0.3 millimeters (however, the optical path length in the air) by the optical delay mechanism 120, the timing at which the probe light LB2 enters the terahertz wave detection element 130 is delayed by 1 picosecond. Become. In this case, the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz is delayed by 1 picosecond. Considering that the terahertz wave THz having the same waveform repeatedly enters the terahertz wave detecting element 130 at intervals of about several tens of MHz, the timing at which the terahertz wave detecting element 130 detects the terahertz wave THz is gradually shifted. Thus, the terahertz wave detection element 130 can indirectly detect the waveform of the terahertz wave THz. That is, the lock-in detection unit 151 described later can detect the waveform of the terahertz wave THz based on the detection result of the terahertz wave detection element 130.
 テラヘルツ波検出素子130から出力される電流信号は、I-V変換部142によって、電圧信号に変換される。 The current signal output from the terahertz wave detection element 130 is converted into a voltage signal by the IV conversion unit 142.
 制御部150は、テラヘルツ波計測装置100の全体の動作を制御するための制御動作を行う。制御部150は、CPU(Central Processing Unit))と、メモリとを備える。メモリには、制御部150に制御動作を行わせるためのコンピュータプログラムが記録されている。当該コンピュータプログラムがCPUによって実行されることで、CPUの内部には、制御動作を行うための論理的な処理ブロックが形成される。但し、メモリにコンピュータプログラムが記録されていなくてもよい。この場合、CPUは、ネットワークを介してダウンロードしたコンピュータプログラムを実行してもよい。 The control unit 150 performs a control operation for controlling the entire operation of the terahertz wave measuring apparatus 100. The control unit 150 includes a CPU (Central Processing Unit) and a memory. The memory stores a computer program for causing the control unit 150 to perform a control operation. When the computer program is executed by the CPU, a logical processing block for performing a control operation is formed inside the CPU. However, the computer program may not be recorded in the memory. In this case, the CPU may execute a computer program downloaded via a network.
 制御部150は、制御動作の一例として、テラヘルツ波検出素子130の検出結果(つまり、I-V変換部142が出力する電圧信号)に基づいて、試料10の特性を計測する計測動作を行う。計測動作を行うために、制御部150は、CPUの内部に形成される論理的な処理ブロックとして、ロックイン検出部151と、信号処理部152とを備えている。 As an example of the control operation, the control unit 150 performs a measurement operation for measuring the characteristics of the sample 10 based on the detection result of the terahertz wave detection element 130 (that is, the voltage signal output from the IV conversion unit 142). In order to perform the measurement operation, the control unit 150 includes a lock-in detection unit 151 and a signal processing unit 152 as logical processing blocks formed in the CPU.
 ロックイン検出部151は、I-V変換部142から出力される電圧信号に対して、バイアス電圧生成部141が生成するバイアス電圧を参照信号とする同期検波を行う。その結果、ロックイン検出部151は、テラヘルツ波THzのサンプル値を検出する。その後、ポンプ光LB1の光路長とプローブ光LB2の光路長との間の差分(つまり、光路長差)を適宜調整しながら同様の動作が繰り返されることで、ロックイン検出部151は、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形(時間波形)を検出することができる。ロックイン検出部151は、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号を、信号処理部152に対して出力する。つまりロックイン検出部151は、I-V変換部142から出力される電圧信号(つまり、テラヘルツ波THzの検出信号)から参照信号とは異なる周波数のノイズ成分を除去する。即ちロック印検出部151は、検出信号と参照信号とを用いて同期検波をすることによって、時間波形信号を相対的に高い感度で且つ相対的に高精度に検波する。尚、テラヘルツ波計測装置100がロックイン検出を用いない場合は、テラヘルツ波発生素子110には、バイアス電圧として直流電圧が印加されればよい。 The lock-in detection unit 151 performs synchronous detection on the voltage signal output from the IV conversion unit 142 using the bias voltage generated by the bias voltage generation unit 141 as a reference signal. As a result, the lock-in detection unit 151 detects a sample value of the terahertz wave THz. Thereafter, the same operation is repeated while appropriately adjusting the difference between the optical path length of the pump light LB1 and the optical path length of the probe light LB2 (that is, the optical path length difference). The waveform (time waveform) of the terahertz wave THz detected by the detection element 130 can be detected. The lock-in detection unit 151 outputs a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detection element 130 to the signal processing unit 152. That is, the lock-in detection unit 151 removes a noise component having a frequency different from that of the reference signal from the voltage signal output from the IV conversion unit 142 (that is, the detection signal of the terahertz wave THz). That is, the lock mark detection unit 151 detects the time waveform signal with relatively high sensitivity and relatively high accuracy by performing synchronous detection using the detection signal and the reference signal. If the terahertz wave measuring apparatus 100 does not use lock-in detection, a DC voltage may be applied to the terahertz wave generating element 110 as a bias voltage.
 信号処理部152は、ロックイン検出部151から出力される波形信号に基づいて、試料10の特性を計測する。例えば、信号処理部152は、テラヘルツ時間領域分光法を用いてテラヘルツ波THzの周波数スペクトルを取得すると共に、当該周波数スペクトルに基づいて試料10の特性を計測する。 The signal processing unit 152 measures the characteristics of the sample 10 based on the waveform signal output from the lock-in detection unit 151. For example, the signal processing unit 152 acquires the frequency spectrum of the terahertz wave THz using terahertz time domain spectroscopy, and measures the characteristics of the sample 10 based on the frequency spectrum.
 本実施例では特に、信号処理部152は、制御動作の一例として、ロックイン検出部151から出力される波形信号に基づいて、試料10の屈折率nを計測する計測動作を行う。更に、信号処理部152は、制御動作の一例として、ロックイン検出部151から出力される波形信号に基づいて、試料10の厚さd(つまり、試料10に対してテラヘルツ波THzが入射する方向に沿った厚さd)を計測する計測動作を行う。尚、ここでいう厚さdは、「表面10aと裏面10bとの間の物理的な距離」を意味する。計測動作を行うために、信号処理部152は、CPUの内部に形成される論理的な処理ブロックとして、「取得手段」の一具体例である検出時間取得部1521と、「算出手段」の一具体例である屈折率算出部1522と、「算出手段」の一具体例である厚さ算出部1523とを備える。尚、検出時間取得部1521、屈折率算出部1522、厚さ算出部1523の動作の具体例については、後に詳述するためここでの説明を省略する。 Particularly in this embodiment, the signal processing unit 152 performs a measurement operation of measuring the refractive index n of the sample 10 based on the waveform signal output from the lock-in detection unit 151 as an example of the control operation. Further, as an example of the control operation, the signal processing unit 152 is based on the waveform signal output from the lock-in detection unit 151, and the thickness d of the sample 10 (that is, the direction in which the terahertz wave THz is incident on the sample 10). A measurement operation for measuring the thickness d) along the line is performed. Here, the thickness d means “physical distance between the front surface 10a and the back surface 10b”. In order to perform the measurement operation, the signal processing unit 152 includes a detection time acquisition unit 1521 that is a specific example of the “acquisition unit” and a “calculation unit” as logical processing blocks formed inside the CPU. A refractive index calculation unit 1522 as a specific example and a thickness calculation unit 1523 as a specific example of “calculation means” are provided. Note that specific examples of operations of the detection time acquisition unit 1521, the refractive index calculation unit 1522, and the thickness calculation unit 1523 will be described in detail later and will not be described here.
 ステージ170は、試料10を保持する。図1に示す例では、ステージ170は、試料10の裏面10bがステージ170側を向くように、試料10を保持している。ステージ170は、試料10を保持したまま、所定の移動方向に沿って移動可能である。ステージ170が移動すると、テラヘルツ波THzの試料10上での照射位置が変わる。 Stage 170 holds sample 10. In the example shown in FIG. 1, the stage 170 holds the sample 10 so that the back surface 10b of the sample 10 faces the stage 170 side. The stage 170 is movable along a predetermined movement direction while holding the sample 10. When the stage 170 moves, the irradiation position on the sample 10 of the terahertz wave THz changes.
 ステージ170の移動は、制御部150によって制御される。具体的には、制御部150は、CPUの内部に形成される論理的な処理ブロックとして、照射位置変更部153を備える。照射位置変更部153は、テラヘルツ波THzの照射位置を調整する(例えば、所望位置に変更する)ように、ステージ170の移動を制御する。 The movement of the stage 170 is controlled by the control unit 150. Specifically, the control unit 150 includes an irradiation position changing unit 153 as a logical processing block formed inside the CPU. The irradiation position changing unit 153 controls the movement of the stage 170 so that the irradiation position of the terahertz wave THz is adjusted (for example, changed to a desired position).
 尚、照射位置変更部153は、ステージ170を移動させることに加えて又は代えて、テラヘルツ波発生素子110及びテラヘルツ波検出素子130のうちの少なくとも一方を移動させることで、テラヘルツ波THzの照射位置を調整してもよい。 The irradiation position changing unit 153 moves the irradiation position of the terahertz wave THz by moving at least one of the terahertz wave generating element 110 and the terahertz wave detecting element 130 in addition to or instead of moving the stage 170. May be adjusted.
 (2)テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する計測動作
 続いて、図2から図7を参照しながら、テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する計測動作について説明する。本実施例では、テラヘルツ波計測装置100は、屈折率n及び厚さdを計測する計測動作として、2種類の計測動作(第1計測動作及び第2計測動作)のうちの少なくとも一方を行う。以下、屈折率n及び厚さdを計測する第1計測動作、及び、屈折率n及び厚さdを計測する第2計測動作について順に説明する。
(2) Measuring operation for measuring refractive index n and thickness d performed by terahertz wave measuring apparatus 100 Subsequently, referring to FIGS. 2 to 7, the refractive index n and thickness d performed by the terahertz wave measuring apparatus 100 are determined. A measurement operation to be measured will be described. In the present embodiment, the terahertz wave measuring apparatus 100 performs at least one of two types of measurement operations (first measurement operation and second measurement operation) as a measurement operation for measuring the refractive index n and the thickness d. Hereinafter, the first measurement operation for measuring the refractive index n and the thickness d and the second measurement operation for measuring the refractive index n and the thickness d will be described in order.
 (2-1)屈折率n及び厚さdを計測する第1計測動作
 はじめに、図2を参照しながら、テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する第1計測動作について説明する。図2は、テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する第1計測動作の流れの一例を示すフローチャートである。
(2-1) First Measurement Operation for Measuring Refractive Index n and Thickness d First, a first measurement operation for measuring refractive index n and thickness d performed by the terahertz wave measuring apparatus 100 with reference to FIG. explain. FIG. 2 is a flowchart illustrating an example of a flow of a first measurement operation for measuring the refractive index n and the thickness d performed by the terahertz wave measuring apparatus 100.
 図2に示すように、照射位置変更部153は、テラヘルツ波THzの照射位置が、試料10の表面10a上の第1位置になるように、ステージ170を制御する(ステップS101)。 As shown in FIG. 2, the irradiation position changing unit 153 controls the stage 170 so that the irradiation position of the terahertz wave THz is the first position on the surface 10a of the sample 10 (step S101).
 その後、テラヘルツ波発生素子110は、テラヘルツ波THzを試料10の表面10aに向けて出射する(ステップS102)。つまり、テラヘルツ波発生素子110は、テラヘルツ波THzを、試料10の表面10a上の第1位置に照射する(ステップS102)。 Thereafter, the terahertz wave generating element 110 emits the terahertz wave THz toward the surface 10a of the sample 10 (step S102). That is, the terahertz wave generating element 110 irradiates the first position on the surface 10a of the sample 10 with the terahertz wave THz (step S102).
 試料10aに照射されたテラヘルツ波THzは、試料10によって反射される。ここで、図3を参照しながら、試料10によるテラヘルツ波THzの反射について説明する。図3は、試料10に照射されるテラヘルツ波THzの光路及び試料10によって反射されたテラヘルツ波THzの光路を示す試料10の断面図である。 The terahertz wave THz irradiated on the sample 10a is reflected by the sample 10. Here, the reflection of the terahertz wave THz by the sample 10 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the sample 10 showing the optical path of the terahertz wave THz irradiated on the sample 10 and the optical path of the terahertz wave THz reflected by the sample 10.
 図3に示すように、試料10に照射されたテラヘルツ波THzの一部は、試料10の表面10aによって反射される。表面10aによって反射されたテラヘルツ波THzは、試料10からテラヘルツ波検出素子130に伝搬していく。 As shown in FIG. 3, a part of the terahertz wave THz irradiated on the sample 10 is reflected by the surface 10 a of the sample 10. The terahertz wave THz reflected by the surface 10a propagates from the sample 10 to the terahertz wave detecting element 130.
 一方で、試料10に照射されたテラヘルツ波THzの一部は、表面10aによって反射されることなく、試料10の内部を透過していく。その後、試料10の内部を透過したテラヘルツ波THzは、試料10の裏面10bに到達する。その結果、試料10の内部を透過したテラヘルツ波THzの一部は、試料10の裏面10bによって反射される。裏面10bによって反射されたテラヘルツ波THzは、再び試料10の内部を透過していく。その後、試料10の内部を透過したテラヘルツ波THzは、試料10の表面10aに到達する。その結果、裏面10bによって反射されたテラヘルツ波THzの一部は、試料10からテラヘルツ波検出素子130に伝搬していく。 On the other hand, a part of the terahertz wave THz irradiated on the sample 10 passes through the inside of the sample 10 without being reflected by the surface 10a. Thereafter, the terahertz wave THz transmitted through the sample 10 reaches the back surface 10 b of the sample 10. As a result, a part of the terahertz wave THz transmitted through the sample 10 is reflected by the back surface 10 b of the sample 10. The terahertz wave THz reflected by the back surface 10b passes through the sample 10 again. Thereafter, the terahertz wave THz transmitted through the sample 10 reaches the surface 10 a of the sample 10. As a result, a part of the terahertz wave THz reflected by the back surface 10 b propagates from the sample 10 to the terahertz wave detecting element 130.
 尚、本実施例において、表面10a及び裏面10bは、試料10内でのテラヘルツ波THzの伝搬方向(図1及び図3で言えば、図面横方向)に沿って対向する試料10の2つの外面を意味する。この場合、表面10aは、2つの外面のうちテラヘルツ波発生素子110及びテラヘルツ波検出素子130に近い一方の外面に相当する。一方で、裏面10bは、2つの外面のうちテラヘルツ波発生素子110及びテラヘルツ波検出素子130から遠い他方の外面に相当する。 In this embodiment, the front surface 10a and the back surface 10b are the two outer surfaces of the sample 10 facing each other along the propagation direction of the terahertz wave THz in the sample 10 (the horizontal direction in FIGS. 1 and 3). Means. In this case, the surface 10a corresponds to one outer surface close to the terahertz wave generating element 110 and the terahertz wave detecting element 130 among the two outer surfaces. On the other hand, the back surface 10b corresponds to the other outer surface far from the terahertz wave generating element 110 and the terahertz wave detecting element 130 out of the two outer surfaces.
 また、試料10の裏面10bによるテラヘルツ波THzの反射を促進するべく、試料10の裏面10bに接する又は密着するように反射部材が配置されていてもよい。 Further, in order to promote the reflection of the terahertz wave THz by the back surface 10b of the sample 10, a reflecting member may be arranged so as to be in contact with or in close contact with the back surface 10b of the sample 10.
 再び図2において、試料10によって反射されたテラヘルツ波THzは、テラヘルツ波検出素子130によって検出される(ステップS102)。その結果、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号が、信号処理部152に入力される。 2 again, the terahertz wave THz reflected by the sample 10 is detected by the terahertz wave detecting element 130 (step S102). As a result, a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152.
 その後、検出時間取得部1521は、信号処理部152に入力された波形信号に基づいて、第1検出時間ta1及び第2検出時間tb1を取得する(ステップS103)。つまり、テラヘルツ波計測装置100は、第1位置に照射されたテラヘルツ波THzの検出結果に基づいて、第1検出時間ta1及び第2検出時間tb1を取得する。検出時間取得部1521は、テラヘルツ波THzを第1位置に照射した場合に取得された第1検出時間ta1及び第2検出時間tb1を、屈折率算出部1522に出力する。尚、第1検出時間ta1及び第2検出時間tb1は、夫々、「第1時間」及び「第2時間」の一具体例である。 Thereafter, the detection time acquisition unit 1521 acquires the first detection time t a1 and the second detection time t b1 based on the waveform signal input to the signal processing unit 152 (step S103). That is, the terahertz wave measuring apparatus 100 acquires the first detection time t a1 and the second detection time t b1 based on the detection result of the terahertz wave THz irradiated to the first position. The detection time acquisition unit 1521 outputs the first detection time t a1 and the second detection time t b1 acquired when the first position is irradiated with the terahertz wave THz to the refractive index calculation unit 1522. The first detection time t a1 and the second detection time t b1 are specific examples of “first time” and “second time”, respectively.
 ここで、図4を参照しながら、第1検出時間ta1及び第2検出時間tb1の取得動作について説明する。図4は、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形信号を示すグラフである。 Here, with reference to FIG. 4, the acquisition operation of the first detection time t a1 and the second detection time t b1 will be described. FIG. 4 is a graph showing a waveform signal of the terahertz wave THz detected by the terahertz wave detecting element 130.
 図4に示すように、波形信号には、表面10aで反射されたテラヘルツ波THzに相当する波形信号及び裏面10bで反射されたテラヘルツ波THzに相当する波形信号が含まれている。裏面10bで反射されたテラヘルツ波THzが試料10の内部を透過した後にテラヘルツ波検出素子130に到達する一方で、表面10aで反射されたテラヘルツ波THzは試料の10の内部を透過することなくテラヘルツ波検出素子130に到達する。このため、裏面10bで反射されたテラヘルツ波THzは、表面10aで反射されたテラヘルツ波THzよりも時間的に遅れてテラヘルツ波検出素子130に到達する。従って、波形信号上でも、裏面10bで反射されたテラヘルツ波THzに相当する波形信号は、表面10aで反射されたテラヘルツ波THzに相当する波形信号よりも時間的に遅れている。 As shown in FIG. 4, the waveform signal includes a waveform signal corresponding to the terahertz wave THz reflected by the front surface 10a and a waveform signal corresponding to the terahertz wave THz reflected by the back surface 10b. The terahertz wave THz reflected by the back surface 10b reaches the terahertz wave detecting element 130 after passing through the inside of the sample 10, while the terahertz wave THz reflected by the front surface 10a does not pass through the inside of the sample 10 and does not pass through the terahertz wave. The wave detection element 130 is reached. For this reason, the terahertz wave THz reflected by the back surface 10b reaches the terahertz wave detecting element 130 later in time than the terahertz wave THz reflected by the front surface 10a. Therefore, also on the waveform signal, the waveform signal corresponding to the terahertz wave THz reflected by the back surface 10b is delayed in time from the waveform signal corresponding to the terahertz wave THz reflected by the front surface 10a.
 第1検出時間ta1は、テラヘルツ波発生素子110がテラヘルツ波THzの照射を開始してから試料10の表面10aで反射されたテラヘルツ波THzがテラヘルツ波検出素子130に到達するまでに要する時間である。一方で、第2検出時間tb1は、テラヘルツ波発生素子110がテラヘルツ波THzの照射を開始してから試料10の裏面10bで反射されたテラヘルツ波THzがテラヘルツ波検出素子130に到達するまでに要する時間である。検出時間取得部1521は、波形信号を解析することで、第1検出時間ta1及び第2検出時間tb1を容易に取得する(言い換えれば、算出する又は特定する)ことができる。 The first detection time ta1 is a time required for the terahertz wave THz reflected from the surface 10a of the sample 10 to reach the terahertz wave detecting element 130 after the terahertz wave generating element 110 starts irradiation with the terahertz wave THz. is there. On the other hand, the second detection time t b1 is from when the terahertz wave generating element 110 starts irradiation of the terahertz wave THz until the terahertz wave THz reflected by the back surface 10b of the sample 10 reaches the terahertz wave detecting element 130. It takes time. The detection time acquisition unit 1521 can easily acquire (in other words, calculate or specify) the first detection time t a1 and the second detection time t b1 by analyzing the waveform signal.
 再び図2において、その後、テラヘルツ波計測装置100は、照射位置を変更した後に、上述した動作(つまり、第1検出時間ta2及び第2検出時間tb2を取得する動作)を再度行う。具体的には、照射位置変更部153は、テラヘルツ波THzの照射位置が、試料10の表面10a上の第2位置(但し、第2位置は、第1位置とは異なる)になるように、ステージ170を制御する(ステップS101)。その結果、ステージ170は、所定の移動方向に沿って所定の移動量だけ移動する。 In FIG. 2 again, after that, the terahertz wave measuring apparatus 100 performs the above-described operation (that is, the operation for obtaining the first detection time t a2 and the second detection time t b2 ) again after changing the irradiation position. Specifically, the irradiation position changing unit 153 sets the irradiation position of the terahertz wave THz to the second position on the surface 10a of the sample 10 (however, the second position is different from the first position). The stage 170 is controlled (step S101). As a result, the stage 170 moves by a predetermined movement amount along a predetermined movement direction.
 ここで、図5を参照しながら、テラヘルツ波THzが照射される第1位置及び第2位置について説明する。図5は、第1位置に照射されるテラヘルツ波THzの光路及び第2位置に照射されるテラヘルツ波THzの光路を示す試料10の断面図である。 Here, the first position and the second position where the terahertz wave THz is irradiated will be described with reference to FIG. FIG. 5 is a cross-sectional view of the sample 10 showing the optical path of the terahertz wave THz irradiated to the first position and the optical path of the terahertz wave THz irradiated to the second position.
 図5に示すように、第1動作例では、第1及び第2位置は、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L11と、第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L21とが同一であるという第1条件を満たす。更に、第1及び第2位置は、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L13と、第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L23とが同一であるという第2条件を満たす。つまり、照射位置変更部153は、第1及び第2条件を満たすように、ステージ170を制御する。言い換えれば、照射位置変更部153は、第1及び第2条件を満たす第1位置及び第2位置の夫々にテラヘルツ波THzが照射されるように、ステージ170を制御する。 As shown in FIG. 5, in the first operation example, the first and second positions are the distances between the terahertz wave generating element 110 and the back surface 10b under the situation where the first position is irradiated with the terahertz wave THz. The first condition is satisfied that L11 and the distance L21 between the terahertz wave generating element 110 and the back surface 10b under the condition where the second position is irradiated with the terahertz wave THz are the same. Further, the first and second positions are a distance L13 between the terahertz wave detecting element 130 and the back surface 10b in a situation where the first position is irradiated with the terahertz wave THz, and the second position is the terahertz wave THz. The second condition that the distance L23 between the terahertz wave detecting element 130 and the back surface 10b under the irradiation condition is the same is satisfied. That is, the irradiation position changing unit 153 controls the stage 170 so as to satisfy the first and second conditions. In other words, the irradiation position changing unit 153 controls the stage 170 so that the terahertz wave THz is irradiated to each of the first position and the second position that satisfy the first and second conditions.
 第1及び第2条件を満たすようにステージ170を制御するために、照射位置変更部153は、ステージ170の移動方向が試料10の裏面10bと平行になるように、ステージ170を制御する。言い換えれば、第1及び第2条件を満たすようにステージ170を制御するために、照射位置変更部153は、試料10の裏面10bに平行な方向に沿ってステージ170が移動するように、ステージ170を制御する。その結果、テラヘルツ波THzの照射位置が変更される場合であっても、テラヘルツ波発生素子110と裏面10bとの間の距離が変わることはない。同様に、テラヘルツ波THzの照射位置が変更される場合であっても、テラヘルツ波検出素子130と裏面10bとの間の距離が変わることはない。 In order to control the stage 170 so as to satisfy the first and second conditions, the irradiation position changing unit 153 controls the stage 170 so that the moving direction of the stage 170 is parallel to the back surface 10b of the sample 10. In other words, in order to control the stage 170 so as to satisfy the first and second conditions, the irradiation position changing unit 153 moves the stage 170 so that the stage 170 moves along a direction parallel to the back surface 10 b of the sample 10. To control. As a result, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave generating element 110 and the back surface 10b does not change. Similarly, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave detecting element 130 and the back surface 10b does not change.
 尚、ここでいう「裏面10bに平行な方向に沿ってステージ170が移動する」状態とは、「第1位置にテラヘルツ波THzが照射されている状況下でのステージ170と、第2位置にテラヘルツ波THzが照射されている状況下でのステージ170とが、裏面10bに平行な方向に沿って並ぶように、ステージ170が移動する」状態を意味する。このような状態は、裏面10bに平行な第1方向のみに沿ってステージ170が移動することによって実現される。或いは、このような状態は、裏面10bに平行な第1方向及び裏面10bに交わる第2方向に沿ってステージ170が移動する場合であっても、第2方向に沿ったステージ170の移動量がトータルでゼロになる(つまり、相殺される)限りは、実現される。 Here, the state “the stage 170 moves along a direction parallel to the back surface 10b” means “the stage 170 in a state where the terahertz wave THz is applied to the first position and the second position. This means a state where the stage 170 moves so that the stage 170 under the condition where the terahertz wave THz is irradiated is aligned along a direction parallel to the back surface 10b. Such a state is realized by the stage 170 moving only along the first direction parallel to the back surface 10b. Alternatively, in such a state, even when the stage 170 moves along the first direction parallel to the back surface 10b and the second direction intersecting the back surface 10b, the amount of movement of the stage 170 along the second direction is small. As long as the total is zero (ie offset), it will be realized.
 尚、照射位置変更部153が、ステージ170を移動させることに加えて又は代えて、テラヘルツ波発生素子110及びテラヘルツ波検出素子130のうちの少なくとも一方を移動させることで、テラヘルツ波THzの照射位置を調整してもよいことは上述したとおりである。この場合においても、照射位置変更部153が、第1及び第2条件を満たすように、テラヘルツ波発生素子110及びテラヘルツ波検出素子130のうちの少なくとも一方を移動させる。 The irradiation position changing unit 153 moves at least one of the terahertz wave generation element 110 and the terahertz wave detection element 130 in addition to or instead of moving the stage 170, so that the irradiation position of the terahertz wave THz is reached. As described above, may be adjusted. Even in this case, the irradiation position changing unit 153 moves at least one of the terahertz wave generating element 110 and the terahertz wave detecting element 130 so as to satisfy the first and second conditions.
 加えて、図5に示すように、第1動作例では、第1及び第2位置は、第1位置における試料10の厚さd1が、第2位置における試料10の厚さd2とは異なるという第3条件を満たす。つまり、照射位置変更部153は、第3条件を満たすように、ステージ170を制御する。言い換えれば、照射位置変更部153は、第3条件を満たす第1位置及び第2位置の夫々にテラヘルツ波THzが照射されるように、ステージ170を制御する。 In addition, as shown in FIG. 5, in the first operation example, the thickness d1 of the sample 10 at the first position is different from the thickness d2 of the sample 10 at the second position in the first and second positions. Satisfies the third condition. That is, the irradiation position changing unit 153 controls the stage 170 so as to satisfy the third condition. In other words, the irradiation position changing unit 153 controls the stage 170 so that the first position and the second position that satisfy the third condition are irradiated with the terahertz wave THz.
 第3条件が満たされるためには、試料10は、試料10の厚さdにばらつきがあるという条件を満たすことが好ましい。厚さdのばらつきは、試料10の表面10aに意図的に形成された凹凸(例えば、段差や、曲面等)に起因した厚さdのばらつきを含んでいてもよい。或いは、厚さdのばらつきは、仕上げ加工の精度に依存する試料10の表面10aの粗さに起因した厚さdのばらつきを含んでいてもよい。 In order to satisfy the third condition, it is preferable that the sample 10 satisfies the condition that the thickness d of the sample 10 varies. The variation in the thickness d may include a variation in the thickness d caused by unevenness (for example, a step or a curved surface) intentionally formed on the surface 10a of the sample 10. Alternatively, the variation in the thickness d may include a variation in the thickness d due to the roughness of the surface 10a of the sample 10 depending on the accuracy of the finishing process.
 尚、試料10の裏面10bは平面である場合には、第1及び第2位置が上述した第1及び第2条件を満たしやすくなる。このため、第1計測動作においては、試料10の裏面10bは平面であることが好ましい。 In addition, when the back surface 10b of the sample 10 is a plane, the first and second positions can easily satisfy the first and second conditions described above. For this reason, in the first measurement operation, the back surface 10b of the sample 10 is preferably a flat surface.
 その後、テラヘルツ波発生素子110は、テラヘルツ波THzを、試料10の表面10a上の第2位置に照射する(ステップS112)。その後、テラヘルツ波検出素子130は、試料10によって反射されたテラヘルツ波THzを検出する(ステップS112)。その結果、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号が、信号処理部152に入力される。その後、検出時間取得部1521は、信号処理部152に入力された波形信号に基づいて、第1検出時間ta2及び第2検出時間tb2を取得する(ステップS113)。つまり、テラヘルツ波計測装置100は第2位置に照射されたテラヘルツ波THzの検出結果に基づいて、第1検出時間ta2及び第2検出時間tb2を取得する。検出時間取得部1521は、テラヘルツ波THzを第2位置に照射した場合に取得された第1検出時間ta2及び第2検出時間tb2を、屈折率算出部1522に出力する。尚、第1検出時間ta2及び第2検出時間tb2は、夫々、「第1時間」及び「第2時間」の一具体例である。 Thereafter, the terahertz wave generating element 110 irradiates the second position on the surface 10a of the sample 10 with the terahertz wave THz (step S112). Thereafter, the terahertz wave detecting element 130 detects the terahertz wave THz reflected by the sample 10 (step S112). As a result, a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152. Thereafter, the detection time acquisition unit 1521 acquires the first detection time t a2 and the second detection time t b2 based on the waveform signal input to the signal processing unit 152 (step S113). That is, the terahertz wave measuring apparatus 100 acquires the first detection time t a2 and the second detection time t b2 based on the detection result of the terahertz wave THz irradiated to the second position. Detection time acquisition unit 1521, a first detection time t a2 and the second detection time t b2 obtained when irradiated with a terahertz wave THz in the second position, and outputs a refractive index calculation unit 1522. The first detection time t a2 and the second detection time t b2 are specific examples of “first time” and “second time”, respectively.
 その後、屈折率算出部1522は、第1検出時間ta1及び第2検出時間tb1、並びに、第1検出時間ta2及び第2検出時間tb2に基づいて、試料10の屈折率nを算出する(ステップS121)。具体的には、屈折率算出部1522は、数式12を用いて、屈折率nを算出する。尚、数式12中のΔtは、第1位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の内部を透過するために要する時間に相当する。つまり、数式12中のΔtは、第1位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の表面10aから裏面10bを介して再度表面10aに到達するために要する時間に相当する。このため、Δtは、Δt=tb1-ta1という数式から算出可能である。数式12中のΔtは、第2位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の内部を透過するために要する時間に相当する。つまり、数式12中のΔtは、第2位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の表面10aから裏面10bを介して再度表面10aに到達するために要する時間に相当する。このため、Δtは、Δt=tb2-ta2という数式から算出可能である。 Thereafter, the refractive index calculator 1522 calculates the refractive index n of the sample 10 based on the first detection time t a1 and the second detection time t b1 , and the first detection time t a2 and the second detection time t b2. (Step S121). Specifically, the refractive index calculation unit 1522 calculates the refractive index n using Equation 12. Note that Δt 1 in Equation 12 corresponds to the time required for the terahertz wave THz to pass through the inside of the sample 10 when the first position is irradiated with the terahertz wave THz. That is, Δt 1 in Equation 12 corresponds to the time required for the terahertz wave THz to reach the surface 10a again from the front surface 10a of the sample 10 via the back surface 10b when the first position is irradiated with the terahertz wave THz. To do. Therefore, Δt 1 can be calculated from an equation: Δt 1 = t b1 −t a1 . Δt 2 in Expression 12 corresponds to the time required for the terahertz wave THz to pass through the inside of the sample 10 when the second position is irradiated with the terahertz wave THz. That is, Δt 2 in Equation 12 corresponds to the time required for the terahertz wave THz to reach the surface 10a again from the front surface 10a of the sample 10 via the back surface 10b when the second position is irradiated with the terahertz wave THz. To do. For this reason, Δt 2 can be calculated from an equation: Δt 2 = t b2 −t a2 .
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 ここで、上述した図5を参照しながら、数式12を用いて屈折率nを算出可能な理由について説明する。尚、以下の説明では、説明の便宜上、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L11と、第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L21と、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L13と、第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L23とが、いずれも同一である(便宜上、Lである)ものとする。つまり、L11=L13=L21=L23=Lであるものとする。但し、L11=L21≠L13=L23である場合であっても、後述する説明中の「L」を「(L11+L13)/2」又は「(L21+L23)/2」に置き換えれば、数式12を用いて屈折率nを算出可能な理由に変わりはないことが分かる。 Here, the reason why the refractive index n can be calculated using Equation 12 will be described with reference to FIG. 5 described above. In the following description, for convenience of description, the distance L11 between the terahertz wave generating element 110 and the back surface 10b in a situation where the first position is irradiated with the terahertz wave THz, and the terahertz wave THz at the second position. The distance L21 between the terahertz wave generating element 110 and the back surface 10b under the condition where the terahertz wave is irradiated, and the terahertz wave detecting element 130 and the back surface 10b under the condition where the terahertz wave THz is irradiated at the first position And the distance L23 between the terahertz wave detecting element 130 and the back surface 10b under the condition where the second position is irradiated with the terahertz wave THz are the same (for convenience, L ) That is, L11 = L13 = L21 = L23 = L. However, even when L11 = L21 ≠ L13 = L23, if “L” in the description to be described later is replaced with “(L11 + L13) / 2” or “(L21 + L23) / 2”, Expression 12 is used. It can be seen that there is no change in the reason why the refractive index n can be calculated.
 まず、第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から裏面10bに至るまでに要する時間は、第2検出時間tb1の半分である。第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から裏面10bに至るまでの光路長(つまり、光学距離)は、(L-d1)+n×d1である(但し、説明の便宜上、試料10が空気中に位置しており、且つ、空気の屈折率を1と近似する)。従って、空気中のテラヘルツ波THzの速度をcと定義すると、数式13が成立する。同様の理由から、第2位置に関連する数式14もまた成立する。 First, the time required for the terahertz wave THz to reach the back surface 10b from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the second detection time tb1 . The optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the back surface 10b under the condition where the terahertz wave THz is irradiated to the first position is (L−d1) + n × d1. (However, for convenience of explanation, the sample 10 is located in the air and the refractive index of the air is approximated to 1). Therefore, when the velocity of the terahertz wave THz in the air is defined as c, Equation 13 is established. For similar reasons, Equation 14 associated with the second position also holds.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 一方で、第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から表面10aに至るまでに要する時間は、第1検出時間ta1の半分である。第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から表面10aに至るまでの光路長(つまり、光学距離)は、L-d1である。従って、数式15が成立する。同様の理由から、第2位置に関連する数式16もまた成立する。 On the other hand, the time required for the terahertz wave THz to reach the surface 10a from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the first detection time ta1 . The optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the surface 10a under the condition where the terahertz wave THz is irradiated to the first position is Ld1. Therefore, Formula 15 is established. For similar reasons, Equation 16 associated with the second position also holds.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 数式13に対して数式15を代入することで、数式13から変数d1を消去することができる。変数d1が消去された数式13をnについて解くと、数式17が得られる。数式14に対して数式16を代入することで、数式14から変数d2を消去することができる。変数d2が消去された数式14をnについて解くと、数式18が得られる。 The variable d1 can be deleted from the equation 13 by substituting the equation 15 into the equation 13. When Equation 13 with the variable d1 deleted is solved for n, Equation 17 is obtained. By substituting Equation 16 into Equation 14, the variable d2 can be deleted from Equation 14. When Formula 14 in which the variable d2 is deleted is solved for n, Formula 18 is obtained.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 数式17に対して数式18を代入することで、数式17から変数nを消去することができる。変数nが消去された数式17をLについて解くと、数式19が得られる。 The variable n can be deleted from the equation 17 by substituting the equation 18 into the equation 17. When Formula 17 in which the variable n is deleted is solved for L, Formula 19 is obtained.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 数式19を数式17に代入することで、数式17から変数Lを消去することができる。変数Lが消去された数式17をnについて解くと、上述した数式12が得られる。 By substituting Equation 19 into Equation 17, the variable L can be deleted from Equation 17. When Equation 17 with the variable L deleted is solved for n, Equation 12 described above is obtained.
 再び図2において、その後、厚さ算出部1523は、第1検出時間ta1及び第2検出時間tb1、第1検出時間ta2及び第2検出時間tb2、並びに、ステップS121で算出した屈折率nに基づいて、試料10の厚さdを算出する(ステップS122)。第1動作例では、上述したように第1位置における試料10の厚さd1と第2位置における試料10の厚さd2とが異なる。従って、厚さ算出部1523は、厚さd1及びd2の夫々を算出する。具体的には、厚さ算出部1523は、d1=(c/n)×Δt/2という数式を用いて、厚さd1を算出する。厚さ算出部1523は、d2=(c/n)×Δt/2という数式を用いて、厚さd2を算出する。 In FIG. 2 again, after that, the thickness calculation unit 1523 performs the first detection time t a1 and the second detection time t b1 , the first detection time t a2 and the second detection time t b2 , and the refraction calculated in step S121. Based on the rate n, the thickness d of the sample 10 is calculated (step S122). In the first operation example, as described above, the thickness d1 of the sample 10 at the first position is different from the thickness d2 of the sample 10 at the second position. Therefore, the thickness calculation unit 1523 calculates each of the thicknesses d1 and d2. Specifically, the thickness calculation unit 1523 calculates the thickness d1 using a mathematical formula of d1 = (c / n) × Δt 1/2 . The thickness calculation unit 1523, using the formula that d2 = (c / n) × Δt 2/2, and calculates the thickness d2.
 以上説明したように、本実施例のテラヘルツ計測装置100は、第1計測動作を実行することで、試料10の屈折率nを好適に計測する(つまり、算出する)ことができる。特に、本実施例のテラヘルツ計測装置100は、試料10の厚さdが異なる複数の照射位置にテラヘルツ波THzを照射することで、試料10に何らかの特殊な部材を接触させることなく、屈折率nを好適に計測することができる。更に、本実施例のテラヘルツ計測装置100は、屈折率nを好適に計測することができるがゆえに、試料10の厚さdもまた好適に計測することができる。 As described above, the terahertz measurement apparatus 100 according to the present embodiment can suitably measure (that is, calculate) the refractive index n of the sample 10 by executing the first measurement operation. In particular, the terahertz measuring apparatus 100 according to the present embodiment irradiates a plurality of irradiation positions with different thicknesses d of the sample 10 with the terahertz wave THz, so that the refractive index n does not contact the sample 10 with any special member. Can be suitably measured. Furthermore, since the terahertz measuring apparatus 100 of the present embodiment can suitably measure the refractive index n, the thickness d of the sample 10 can also be favorably measured.
 ここで、屈折率nを計測することなく試料10の厚さdを計測する比較例のテラヘルツ波計測装置の一例として、単一の照射位置にテラヘルツ波THzを照射することで厚さdを計測するテラヘルツ波計測装置が想定される。この場合、比較例のテラヘルツ波計測装置は、第1検出時間t及び第2検出時間tを取得する。更に、比較例のテラヘルツ波計測装置は、厚さd=c×(t-t)/2という数式を用いて、試料10の厚さdを計測する。しかしながら、上述したように、試料10の内部でのテラヘルツ波THzの速度c’は、屈折率nに応じて変動する。このため、比較例のテラヘルツ波計測装置によって計測される厚さdは、試料10の本来の厚さd=(c/n)×(t-t)/2よりも大きな値となってしまう。 Here, as an example of a terahertz wave measuring apparatus of a comparative example that measures the thickness d of the sample 10 without measuring the refractive index n, the thickness d is measured by irradiating the single irradiation position with the terahertz wave THz. A terahertz wave measuring device is assumed. In this case, the terahertz wave measuring apparatus of the comparative example, to obtain a first detection time t a and the second detection time t b. Further, the terahertz wave measuring apparatus of the comparative example measures the thickness d of the sample 10 using a mathematical formula of thickness d = c × (t b −t a ) / 2. However, as described above, the speed c ′ of the terahertz wave THz inside the sample 10 varies according to the refractive index n. Therefore, the thickness d measured by the terahertz wave measuring apparatus of the comparative example is larger than the original thickness d = (c / n) × (t b −t a ) / 2 of the sample 10. End up.
 このため、比較例のテラヘルツ波計測装置100は、本来の厚さdを計測するためには、屈折率nを計測する必要がある。しかしながら、特許文献1及び2に記載されているように、屈折率nの計測には手間がかかるのが一般的である。しかしながら、本実施例のテラヘルツ波計測装置100は、比較的容易に屈折率nを計測することができると言う大きな利点を有している。 For this reason, the terahertz wave measuring apparatus 100 of the comparative example needs to measure the refractive index n in order to measure the original thickness d. However, as described in Patent Documents 1 and 2, the measurement of the refractive index n is generally troublesome. However, the terahertz wave measuring apparatus 100 of the present embodiment has a great advantage that the refractive index n can be measured relatively easily.
 尚、上述した数式12は、数式13から数式16より構成される連立方程式(つまり、L、d1、d2及びnを未知数とする4つの方程式からなる連立方程式)をnについて解くことで得られる数式であるとも言える。このため、テラヘルツ波計測装置100は、数式12を用いることに代えて、数式13から数式16より構成される連立方程式をnについて解くことで、屈折率nを算出してもよい。例えば、テラヘルツ波計測装置100は、nの仮定値を連立方程式に代入することで連立方程式が成立するか否かを判断し、連立方程式が成立するまで連立方程式に代入するnの仮定値を調整する動作を繰り返してもよい。この場合、連立方程式が成立するnの仮定値が、試料10の屈折率nに相当する。 The above-described equation 12 is an equation obtained by solving n simultaneous equations (that is, four equations having L, d1, d2, and n as unknowns) composed of equations 13 to 16. It can be said that. For this reason, the terahertz wave measuring apparatus 100 may calculate the refractive index n by solving simultaneous equations composed of Expressions 13 to 16 for n instead of using Expression 12. For example, the terahertz wave measuring apparatus 100 determines whether the simultaneous equations are satisfied by substituting the assumed values of n into the simultaneous equations, and adjusts the assumed values of n that are substituted into the simultaneous equations until the simultaneous equations are satisfied. The operation may be repeated. In this case, an assumed value of n that satisfies the simultaneous equations corresponds to the refractive index n of the sample 10.
 (2-2)屈折率n及び厚さdを計測する第2計測動作
 続いて、図6を参照しながら、テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する第2計測動作について説明する。図6は、テラヘルツ波計測装置100が行う屈折率n及び厚さdを計測する第2計測動作の流れの一例を示すフローチャートである。
(2-2) Second Measurement Operation for Measuring Refractive Index n and Thickness d Next, a second measurement operation for measuring refractive index n and thickness d performed by the terahertz wave measuring apparatus 100 with reference to FIG. Will be described. FIG. 6 is a flowchart showing an example of the flow of the second measurement operation for measuring the refractive index n and the thickness d performed by the terahertz wave measuring apparatus 100.
 上述した第1計測動作では、ステージ170は、試料10の裏面10bに平行な方向に沿って移動している。つまり、テラヘルツ波THzの照射位置が変更される場合であっても、テラヘルツ波発生素子110と裏面10bとの間の距離及びテラヘルツ波検出素子130と裏面10bとの間の距離が変わらない。しかしながら、ステージ170の移動条件や、試料10の状態(特に、裏面10bの状態)によっては、ステージ170は、試料10の裏面10bに平行な方向に沿って移動することができない場合もある。つまり、テラヘルツ波THzの照射位置が変更されると、テラヘルツ波発生素子110と裏面10bとの間の距離及びテラヘルツ波検出素子130と裏面10bとの間の距離のうちの少なくとも一方が変わってしまう場合もある。 In the first measurement operation described above, the stage 170 moves along a direction parallel to the back surface 10b of the sample 10. That is, even when the irradiation position of the terahertz wave THz is changed, the distance between the terahertz wave generating element 110 and the back surface 10b and the distance between the terahertz wave detecting element 130 and the back surface 10b do not change. However, depending on the movement conditions of the stage 170 and the state of the sample 10 (particularly, the state of the back surface 10b), the stage 170 may not be able to move along a direction parallel to the back surface 10b of the sample 10. That is, when the irradiation position of the terahertz wave THz is changed, at least one of the distance between the terahertz wave generating element 110 and the back surface 10b and the distance between the terahertz wave detecting element 130 and the back surface 10b is changed. In some cases.
 この場合には、テラヘルツ波計測装置100は、第1計測動作を行ったとしても、屈折率nを計測することは困難である。このため、ステージ170が試料10の裏面10bに平行な方向に沿って移動することができない場合には、テラヘルツ波計測装置100は、第2計測動作を行うことで屈折率nを計測する。但し、第2計測動作は、裏面10bが平面である(言い換えれば、裏面10bに意図的に凹凸が形成されていない)試料10に対して行われる。 In this case, even if the terahertz wave measuring apparatus 100 performs the first measurement operation, it is difficult to measure the refractive index n. For this reason, when the stage 170 cannot move along the direction parallel to the back surface 10b of the sample 10, the terahertz wave measuring apparatus 100 measures the refractive index n by performing the second measurement operation. However, the second measurement operation is performed on the sample 10 whose back surface 10b is flat (in other words, the back surface 10b is not intentionally uneven).
 具体的には、図6に示すように、照射位置変更部153は、テラヘルツ波THzの照射位置が、試料10の表面10a上の第1位置になるように、ステージ170を制御する(ステップS201)。テラヘルツ波発生素子110は、テラヘルツ波THzを、第1位置に照射する(ステップS202)。その後、テラヘルツ波検出素子130は、試料10によって反射されたテラヘルツ波THzを検出する(ステップS202)。その結果、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号が、信号処理部152に入力される。その後、検出時間取得部1521は、信号処理部152に入力された波形信号に基づいて、第1検出時間ta1及び第2検出時間tb1を取得する(ステップS203)。尚、ステップS201、ステップS202及びステップS203の動作は、特段の説明がない場合には、夫々、第1計測動作のステップS101、ステップS102及びステップS103の動作と同一であってもよい。 Specifically, as illustrated in FIG. 6, the irradiation position changing unit 153 controls the stage 170 so that the irradiation position of the terahertz wave THz is the first position on the surface 10a of the sample 10 (step S201). ). The terahertz wave generating element 110 irradiates the first position with the terahertz wave THz (step S202). Thereafter, the terahertz wave detection element 130 detects the terahertz wave THz reflected by the sample 10 (step S202). As a result, a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152. Thereafter, the detection time acquisition unit 1521 acquires the first detection time t a1 and the second detection time t b1 based on the waveform signal input to the signal processing unit 152 (step S203). Note that the operations of step S201, step S202, and step S203 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
 その後、照射位置変更部153は、試料10の表面10a上の第2位置(但し、第2位置は、第1位置とは異なる)になるように、ステージ170を制御する(ステップS211)。その結果、ステージ170は、照射位置を第1位置から第2位置に変更するために、所定の第1移動量P1だけ所定の移動方向に沿って移動する。 Thereafter, the irradiation position changing unit 153 controls the stage 170 so as to be the second position on the surface 10a of the sample 10 (however, the second position is different from the first position) (step S211). As a result, the stage 170 moves along a predetermined movement direction by a predetermined first movement amount P1 in order to change the irradiation position from the first position to the second position.
 但し、第2計測動作は、主としてステージ170が試料10の裏面10bに平行な方向に沿って移動することができない場合に行われる動作である。このため、照射位置変更部153は、照射位置を第2位置に変更する際には、テラヘルツ波THzの照射位置が変更される場合であってもテラヘルツ波発生素子110と裏面10bとの間の距離が変わらないという上述した第1条件を満たすように、ステージ170を制御しなくてもよい。同様に、照射位置変更部153は、照射位置を第2位置に変更する際には、テラヘルツ波THzの照射位置が変更される場合であってもテラヘルツ波検出素子130と裏面10bとの間の距離が変わらないという上述した第2条件を満たすように、ステージ170を制御しなくてもよい。 However, the second measurement operation is an operation performed mainly when the stage 170 cannot move along a direction parallel to the back surface 10 b of the sample 10. For this reason, when the irradiation position changing unit 153 changes the irradiation position to the second position, even when the irradiation position of the terahertz wave THz is changed, the irradiation position changing unit 153 is not provided between the terahertz wave generating element 110 and the back surface 10b. The stage 170 may not be controlled so as to satisfy the above-described first condition that the distance does not change. Similarly, when changing the irradiation position to the second position, the irradiation position changing unit 153 changes the position between the terahertz wave detection element 130 and the back surface 10b even when the irradiation position of the terahertz wave THz is changed. The stage 170 may not be controlled so as to satisfy the above-described second condition that the distance does not change.
 その後、テラヘルツ波発生素子110は、テラヘルツ波THzを、第2位置に照射する(ステップS212)。その後、テラヘルツ波検出素子130は、試料10によって反射されたテラヘルツ波THzを検出する(ステップS212)。その結果、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号が、信号処理部152に入力される。その後、検出時間取得部1521は、信号処理部152に入力された波形信号に基づいて、第1検出時間ta2及び第2検出時間tb2を取得する(ステップS213)。尚、ステップS211、ステップS212及びステップS213の動作は、特段の説明がない場合には、夫々、第1計測動作のステップS101、ステップS102及びステップS103の動作と同一であってもよい。 Thereafter, the terahertz wave generating element 110 irradiates the second position with the terahertz wave THz (step S212). Thereafter, the terahertz wave detecting element 130 detects the terahertz wave THz reflected by the sample 10 (step S212). As a result, a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152. Thereafter, the detection time acquisition unit 1521 acquires the first detection time t a2 and the second detection time t b2 based on the waveform signal input to the signal processing unit 152 (step S213). Note that the operations of step S211, step S212, and step S213 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
 その後、照射位置変更部153は、試料10の表面10a上の第3位置(但し、第3位置は、第1位置及び第2位置とは異なる)になるように、ステージ170を制御する(ステップS221)。その結果、ステージ170は、照射位置を第2位置から第3位置に変更するために、所定の第2移動量P2だけ所定の移動方向に沿って移動する。 After that, the irradiation position changing unit 153 controls the stage 170 so as to be the third position on the surface 10a of the sample 10 (however, the third position is different from the first position and the second position) (step). S221). As a result, the stage 170 moves along a predetermined movement direction by a predetermined second movement amount P2 in order to change the irradiation position from the second position to the third position.
 第2計測動作では特に、照射位置変更部153は、照射位置を第2位置から第3位置に変更する場合のステージ170の移動方向が、照射位置を第1位置から第2位置に変更する場合のステージ170の移動方向と同一になるように、ステージ170を制御する。つまり、照射位置変更部153は、照射位置を第1位置から第2位置を経由して第3位置に変更する場合のステージ170の移動方向が固定されるように、ステージ170を制御する。 Particularly in the second measurement operation, the irradiation position changing unit 153 moves the stage 170 when changing the irradiation position from the second position to the third position when the irradiation position is changed from the first position to the second position. The stage 170 is controlled to be the same as the moving direction of the stage 170. That is, the irradiation position changing unit 153 controls the stage 170 so that the moving direction of the stage 170 when the irradiation position is changed from the first position to the third position via the second position is fixed.
 また、第2計測動作が主としてステージ170が試料10の裏面10bに平行な方向に沿って移動することができない場合に行われる動作である。このため、照射位置変更部153は、照射位置を第3位置に変更する際には、上述した第1条件を満たすように、ステージ170を制御しなくてもよい。同様に、照射位置変更部153は、照射位置を第3位置に変更する際には、上述した第2条件を満たすように、ステージ170を制御しなくてもよい。 Further, the second measurement operation is an operation performed mainly when the stage 170 cannot move along the direction parallel to the back surface 10b of the sample 10. For this reason, when changing the irradiation position to the third position, the irradiation position changing unit 153 does not have to control the stage 170 so as to satisfy the first condition described above. Similarly, when changing the irradiation position to the third position, the irradiation position changing unit 153 may not control the stage 170 so as to satisfy the second condition described above.
 その後、テラヘルツ波発生素子110は、テラヘルツ波THzを、第3位置に照射する(ステップS222)。その後、テラヘルツ波検出素子130は、試料10によって反射されたテラヘルツ波THzを検出する(ステップS222)。その結果、テラヘルツ波検出素子130が検出したテラヘルツ波THzの波形を示す波形信号が、信号処理部152に入力される。その後、検出時間取得部1521は、信号処理部152に入力された波形信号に基づいて、第1検出時間ta3及び第2検出時間tb3を取得する(ステップS223)。尚、ステップS221、ステップS222及びステップS223の動作は、特段の説明がない場合には、夫々、第1計測動作のステップS101、ステップS102及びステップS103の動作と同一であってもよい。 Thereafter, the terahertz wave generating element 110 irradiates the third position with the terahertz wave THz (step S222). Thereafter, the terahertz wave detection element 130 detects the terahertz wave THz reflected by the sample 10 (step S222). As a result, a waveform signal indicating the waveform of the terahertz wave THz detected by the terahertz wave detecting element 130 is input to the signal processing unit 152. Thereafter, the detection time acquisition unit 1521 acquires the first detection time t a3 and the second detection time t b3 based on the waveform signal input to the signal processing unit 152 (step S223). Note that the operations of step S221, step S222, and step S223 may be the same as the operations of step S101, step S102, and step S103 of the first measurement operation, respectively, unless otherwise specified.
 その後、屈折率算出部1522は、第1検出時間ta1及び第2検出時間tb1、第1検出時間ta2及び第2検出時間tb2、並びに、第1検出時間ta3及び第2検出時間tb3に基づいて、試料10の屈折率nを算出する(ステップS231)。具体的には、屈折率算出部1522は、数式20を用いて、屈折率nを算出する。尚、数式20中のΔt及びΔtは、第1計測動作の説明時に既に説明済みである。数式20中のΔtは、第3位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の内部を透過するために要する時間に相当する。つまり、数式20中のΔtは、第3位置にテラヘルツ波THzを照射した場合において、テラヘルツ波THzが試料10の表面10aから裏面10bを介して再度表面10aに到達するために要する時間に相当する。このため、Δtは、Δt=tb3-ta3という数式から算出可能である。 Thereafter, the refractive index calculation unit 1522 includes the first detection time t a1 and the second detection time t b1 , the first detection time t a2 and the second detection time t b2 , and the first detection time t a3 and the second detection time. Based on tb3 , the refractive index n of the sample 10 is calculated (step S231). Specifically, the refractive index calculation unit 1522 calculates the refractive index n using Equation 20. Note that Δt 1 and Δt 2 in Equation 20 have already been described when the first measurement operation is described. Δt 3 in Expression 20 corresponds to the time required for the terahertz wave THz to pass through the inside of the sample 10 when the third position is irradiated with the terahertz wave THz. That is, Δt 3 in Equation 20 corresponds to the time required for the terahertz wave THz to reach the surface 10a again from the front surface 10a of the sample 10 via the back surface 10b when the third position is irradiated with the terahertz wave THz. To do. Therefore, Δt 3 can be calculated from an equation: Δt 3 = t b3 −t a3 .
Figure JPOXMLDOC01-appb-M000031
 ここで 
Figure JPOXMLDOC01-appb-M000031
here
、図7を参照しながら、数式20を用いて屈折率nを算出可能な理由について説明する。図7は、第1位置に照射されるテラヘルツ波THzの光路、第2位置に照射されるテラヘルツ波THzの光路及び第3位置に照射されるテラヘルツ波THzの光路を示す試料の断面図である。 The reason why the refractive index n can be calculated using Equation 20 will be described with reference to FIG. FIG. 7 is a cross-sectional view of a sample showing the optical path of the terahertz wave THz irradiated to the first position, the optical path of the terahertz wave THz irradiated to the second position, and the optical path of the terahertz wave THz irradiated to the third position. .
 尚、以下の説明では、説明の便宜上、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L11と、第1位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L13は、同一である(便宜上、L1である)ものとする。第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L21と、第2位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L23は、同一である(便宜上、L2である)ものとする。第3位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波発生素子110と裏面10bとの間の距離L31と、第3位置にテラヘルツ波THzが照射されている状況下でのテラヘルツ波検出素子130と裏面10bとの間の距離L33は、同一である(便宜上、L3である)ものとする。但し、L11≠L13である場合であっても、後述する説明中の「L1」を「(L11+L13)/2」に置き換えれば、数式20を用いて屈折率nを算出可能な理由に変わりはないことが分かる。L21≠L23である場合であっても、後述する説明中の「L2」を「(L21+L23)/2」に置き換えれば、数式20を用いて屈折率nを算出可能な理由に変わりはないことが分かる。L31≠L33である場合であっても、後述する説明中の「L3」を「(L31+L33)/2」に置き換えれば、数式20を用いて屈折率nを算出可能な理由に変わりはないことが分かる。 In the following description, for convenience of description, the distance L11 between the terahertz wave generating element 110 and the back surface 10b in a situation where the first position is irradiated with the terahertz wave THz, and the terahertz wave THz at the first position. It is assumed that the distance L13 between the terahertz wave detection element 130 and the back surface 10b under the condition where the light is irradiated is the same (for convenience, it is L1). A distance L21 between the terahertz wave generating element 110 and the back surface 10b in a situation where the second position is irradiated with the terahertz wave THz, and a terahertz wave in a situation where the second position is irradiated with the terahertz wave THz. The distance L23 between the detection element 130 and the back surface 10b is assumed to be the same (for convenience, L2). A distance L31 between the terahertz wave generating element 110 and the back surface 10b in a situation where the third position is irradiated with the terahertz wave THz, and a terahertz wave in a situation where the third position is irradiated with the terahertz wave THz. The distance L33 between the detection element 130 and the back surface 10b is assumed to be the same (for convenience, L3). However, even if L11 ≠ L13, if “L1” in the description to be described later is replaced with “(L11 + L13) / 2”, the reason why the refractive index n can be calculated using Equation 20 remains the same. I understand that. Even when L21 ≠ L23, if “L2” in the description to be described later is replaced with “(L21 + L23) / 2”, the reason why the refractive index n can be calculated using Equation 20 does not change. I understand. Even when L31 ≠ L33, if “L3” in the description to be described later is replaced with “(L31 + L33) / 2”, the reason why the refractive index n can be calculated using Equation 20 does not change. I understand.
 また、以下の説明では、第1位置における試料10の厚さdは、d1であるものとする。第2位置における試料10の厚さdは、d2であるものとする。第3位置における試料10の厚さdは、d3であるものとする。 In the following description, it is assumed that the thickness d of the sample 10 at the first position is d1. The thickness d of the sample 10 at the second position is assumed to be d2. It is assumed that the thickness d of the sample 10 at the third position is d3.
 まず、第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から裏面10bに至るまでに要する時間は、第2検出時間tb1の半分である。第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から裏面10bに至るまでの光路長(つまり、光学距離)は、(L1-d1)+n×d1である(但し、説明の便宜上、試料10が空気中に位置しており、且つ、空気の屈折率を1と近似する)。従って、空気中のテラヘルツ波THzの速度をcと定義すると、数式21が成立する。同様の理由から、第2位置に関連する数式22及び第3位置に関連する数式23もまた成立する。 First, the time required for the terahertz wave THz to reach the back surface 10b from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the second detection time tb1 . The optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the back surface 10b under the situation where the first position is irradiated with the terahertz wave THz is (L1−d1) + n × d1. (However, for convenience of explanation, the sample 10 is located in the air and the refractive index of the air is approximated to 1). Therefore, when the velocity of the terahertz wave THz in the air is defined as c, Equation 21 is established. For the same reason, Equation 22 related to the second position and Equation 23 related to the third position also hold.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 一方で、第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から表面10aに至るまでに要する時間は、第1検出時間ta1の半分である。第1位置にテラヘルツ波THzが照射されている状況下でテラヘルツ波THzがテラヘルツ波発生素子110から表面10aに至るまでの光路長(つまり、光学距離)は、L1-d1である。従って、数式24が成立する。同様の理由から、第2位置に関連する数式25及び第3位置に関連する数式26もまた成立する。 On the other hand, the time required for the terahertz wave THz to reach the surface 10a from the terahertz wave generating element 110 under the condition where the first position is irradiated with the terahertz wave THz is half of the first detection time ta1 . The optical path length (that is, the optical distance) from the terahertz wave generating element 110 to the surface 10a under the condition where the terahertz wave THz is irradiated to the first position is L1-d1. Therefore, Formula 24 is established. For similar reasons, Equation 25 associated with the second position and Equation 26 associated with the third position also hold.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 数式21中の「L1-d1」に数式24の「c×ta1/2」を代入することで得られる数式をd1について解くと、数式27が得られる。数式22中の「L2-d2」に数式25の「c×ta2/2」を代入することで得られる数式をd2について解くと、数式28が得られる。数式23中の「L3-d3」に数式26の「c×ta3/2」を代入することで得られる数式をd3について解くと、数式28が得られる。 When the formula obtained by substituting “c × t a1 / 2” of Formula 24 into “L1−d1” in Formula 21 is solved for d1, Formula 27 is obtained. When the formula obtained by substituting “c × t a2 / 2” of Formula 25 into “L2-d2” in Formula 22 is solved for d2, Formula 28 is obtained. When the formula obtained by substituting “c × t a3 / 2” of Formula 26 into “L3-d3” in Formula 23 is solved for d3, Formula 28 is obtained.
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 一方で、上述したように裏面10bが平面であるため、ステージ170の移動方向に対する裏面10bの傾きは一定である。従って、数式30が成立する。 On the other hand, since the back surface 10b is flat as described above, the inclination of the back surface 10b with respect to the moving direction of the stage 170 is constant. Therefore, Expression 30 is established.
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 この数式30に対して数式24、数式25及び数式26を代入することで得られる数式を整理すると、数式31が得られる。 When the mathematical formulas obtained by substituting the mathematical formulas 24, 25 and 26 into the mathematical formula 30 are arranged, the mathematical formula 31 is obtained.
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 数式31に対して数式27、数式28及び数式29を代入することで得られる数式を整理すると、上述した数式20が得られる。 When the mathematical formulas obtained by substituting the mathematical formulas 27, 28, and 29 into the mathematical formula 31 are arranged, the mathematical formula 20 described above is obtained.
 再び図2において、その後、厚さ算出部1523は、試料10の厚さd(つまり、厚さd1、d2及びd3)を算出する(ステップS232)。具体的には、厚さ算出部1523は、d1=(c/n)×Δt/2という数式を用いて、厚さd1を算出する。厚さ算出部1523は、d2=(c/n)×Δt/2という数式を用いて、厚さd1を算出する。厚さ算出部1523は、d3=(c/n)×Δt/2という数式を用いて、厚さd1を算出する。 In FIG. 2 again, thereafter, the thickness calculation unit 1523 calculates the thickness d of the sample 10 (that is, the thicknesses d1, d2, and d3) (step S232). Specifically, the thickness calculation unit 1523 calculates the thickness d1 using a mathematical formula of d1 = (c / n) × Δt 1/2 . The thickness calculation unit 1523, using the formula that d2 = (c / n) × Δt 2/2, and calculates the thickness d1. The thickness calculation unit 1523, using the formula that d3 = (c / n) × Δt 3/2, and calculates the thickness d1.
 以上説明したように、本実施例のテラヘルツ計測装置100は、第2計測動作を実行することで、第1計測動作を実行する場合に享受可能な効果と同様の効果を享受することができる。特に、テラヘルツ波計測装置100は、テラヘルツ波THzの照射位置が変更されることでテラヘルツ波発生素子110と裏面10bとの間の距離及びテラヘルツ波検出素子130と裏面10bとの間の距離のうちの少なくとも一方が変わってしまう場合であっても、試料10の屈折率nを好適に計測する(つまり、算出する)ことができる。 As described above, the terahertz measurement apparatus 100 according to the present embodiment can enjoy the same effect as the effect that can be enjoyed when the first measurement operation is performed by executing the second measurement operation. In particular, the terahertz wave measuring apparatus 100 includes a distance between the terahertz wave generating element 110 and the back surface 10b and a distance between the terahertz wave detecting element 130 and the back surface 10b by changing the irradiation position of the terahertz wave THz. Even when at least one of the above changes, the refractive index n of the sample 10 can be suitably measured (that is, calculated).
 尚、照射位置を第1位置から第2位置に変更する場合のステージ170の移動量P1と照射位置を第2位置から第3位置に変更する場合のステージ170の移動量P2とが同一である場合には、上述した数式20は、数式31となる。従って、移動量P1と移動量P2とが同一になるように照射位置変更部153がステージ170を制御する場合には、屈折率算出部1522は、数式20に代えて、数式32を用いて、屈折率nを算出してもよい。 Note that the movement amount P1 of the stage 170 when the irradiation position is changed from the first position to the second position is the same as the movement amount P2 of the stage 170 when the irradiation position is changed from the second position to the third position. In this case, Equation 20 described above becomes Equation 31. Therefore, when the irradiation position changing unit 153 controls the stage 170 so that the movement amount P1 and the movement amount P2 are the same, the refractive index calculation unit 1522 uses Equation 32 instead of Equation 20. The refractive index n may be calculated.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 また、上述した数式20は、数式21から数式26及び数式30より構成される連立方程式(つまり、L1、L2、L3、d1、d2、d3及びnを未知数とする7つの方程式からなる連立方程式)をnについて解くことで得られる数式であるとも言える。このため、テラヘルツ波計測装置100は、数式20を用いることに代えて、数式21から数式26及び数式30より構成される連立方程式をnについて解くことで、屈折率nを算出してもよい。 In addition, the above-described Expression 20 is a simultaneous equation composed of Expression 21 to Expression 26 and Expression 30 (that is, simultaneous equations composed of seven equations with L1, L2, L3, d1, d2, d3, and n as unknowns). It can be said that this is a mathematical expression obtained by solving for n. For this reason, the terahertz wave measuring apparatus 100 may calculate the refractive index n by solving simultaneous equations composed of Expressions 21 to 26 and Expression 30 for n instead of using Expression 20.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う計測装置、計測方法、及び、コンピュータプログラムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. A measurement method and a computer program are also included in the technical scope of the present invention.
 10 試料
 10a 表面
 10b 裏面
 100 テラヘルツ波計測装置
 101 パルスレーザ装置
 110 テラヘルツ波発生素子
 120 光学遅延機構
 130 テラヘルツ波検出素子
 150 制御部
 151 ロックイン検出部
 152 信号処理部
 1521 検出時間取得部
 1522 屈折率算出部
 1523 厚さ算出部
 153 照射位置変更部
 170 ステージ
 LB1 ポンプ光
 LB2 プローブ光
 THz テラヘルツ波
DESCRIPTION OF SYMBOLS 10 Sample 10a Front surface 10b Back surface 100 Terahertz wave measurement apparatus 101 Pulse laser apparatus 110 Terahertz wave generation element 120 Optical delay mechanism 130 Terahertz wave detection element 150 Control part 151 Lock-in detection part 152 Signal processing part 1521 Detection time acquisition part 1522 Refractive index calculation Unit 1523 thickness calculation unit 153 irradiation position changing unit 170 stage LB1 pump light LB2 probe light THz terahertz wave

Claims (14)

  1.  試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得手段と、
     前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出手段と
     を備えることを特徴とする計測装置。
    The first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is located on the opposite side of the surface An acquisition means for acquiring a second time required to reach the predetermined position after being reflected by the back surface of the sample for each of a plurality of irradiation positions of the terahertz waves having different positions with respect to the sample;
    A measuring device comprising: calculating means for calculating a refractive index of the sample based on the first and second times.
  2.  前記照射位置毎に、前記表面と前記裏面との間の物理的な距離である前記試料の厚さが異なる
     ことを特徴とする請求項1に記載の計測装置。
    The measurement apparatus according to claim 1, wherein the thickness of the sample, which is a physical distance between the front surface and the back surface, is different for each irradiation position.
  3.  前記表面に向けて前記テラヘルツ波を照射する照射手段と、
     前記試料によって反射された前記テラヘルツ波を検出する検出手段と
     を更に備え、
     前記所定位置は、前記検出手段が設置されている位置であり、
     前記第1時間は、前記照射手段が前記テラヘルツ波を照射してから前記表面で反射された前記テラヘルツ波が前記検出手段に到達するまでに要する時間であり、
     前記第2時間は、前記照射手段が前記テラヘルツ波を照射してから前記裏面で反射された前記テラヘルツ波が前記検出手段に到達するまでに要する時間である
     ことを特徴とする請求項1又は2に記載の計測装置。
    Irradiating means for irradiating the terahertz wave toward the surface;
    Detecting means for detecting the terahertz wave reflected by the sample; and
    The predetermined position is a position where the detection means is installed,
    The first time is a time required for the terahertz wave reflected from the surface to reach the detection unit after the irradiation unit irradiates the terahertz wave,
    3. The second time is a time required for the terahertz wave reflected from the back surface to reach the detection unit after the irradiation unit irradiates the terahertz wave. 4. The measuring device described in 1.
  4.  前記試料を含む移動対象物を所定の移動方向に沿って移動させることで、前記照射位置を変更する変更手段を更に備える
     ことを特徴とする請求項1又は2に記載の計測装置。
    The measuring apparatus according to claim 1, further comprising changing means for changing the irradiation position by moving a moving object including the sample along a predetermined moving direction.
  5.  前記試料、前記照射手段及び前記検出手段のうちの少なくとも一つを含む移動対象物を所定の移動方向に沿って移動させることで、前記照射位置を変更する変更手段を更に備える
     ことを特徴とする請求項3に記載の計測装置。
    The apparatus further comprises changing means for changing the irradiation position by moving a moving object including at least one of the sample, the irradiation means, and the detection means along a predetermined movement direction. The measuring device according to claim 3.
  6.  前記移動方向が前記裏面に平行である場合には、前記取得手段は、前記照射位置が第1位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第1位置とは異なる第2位置となる場合の前記第1及び第2時間を取得する
     ことを特徴とする請求項4又は5に記載の計測装置。
    When the moving direction is parallel to the back surface, the acquisition unit is configured to perform the first and second times when the irradiation position is the first position, and the irradiation position is the first position. The measurement apparatus according to claim 4 or 5, wherein the first and second times when the second positions are different are acquired.
  7.  前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、変数Δtを数式1で定義し、変数Δtを数式2で定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行である場合には、前記算出手段は、数式3に基づいて、前記屈折率を算出する
     ことを特徴とする請求項6に記載の計測装置。
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002

    Figure JPOXMLDOC01-appb-M000003
    The first and second times when the irradiation position becomes the first position are defined as t a1 and t b1, respectively, and the first and second times when the irradiation position becomes the second position, respectively. When the variable Δt 1 is defined by Equation 1, the variable Δt 2 is defined by Equation 2, and the refractive index is defined as n, respectively, when t a2 and t b2 are defined, The measurement unit according to claim 6, wherein the calculation unit calculates the refractive index based on Equation 3.
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002

    Figure JPOXMLDOC01-appb-M000003
  8.  前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記移動手段は、前記移動方向を固定したまま前記移動対象物を移動させることで、前記照射位置を、互いに異なる第1位置、第2位置及び第3位置へと順に変更し、
     前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記照射位置が前記第1位置となる場合の前記第1及び第2時間、前記照射位置が前記第2位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を取得し、
     前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記第1及び第2時間、並びに、前記照射位置を前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量、及び、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量に基づいて、前記屈折率を算出する
     ことを特徴とする請求項4又は5に記載の計測装置。
    When the moving direction is not parallel to the back surface and the back surface is a flat surface, the moving means moves the moving object while fixing the moving direction so that the irradiation positions are different from each other. Change in order to the first position, the second position and the third position,
    When the moving direction is not parallel to the back surface and the back surface is a flat surface, the acquisition unit is configured to perform the first and second times when the irradiation position is the first position, and the irradiation position is Obtaining the first and second times when the second position is reached, and the first and second times when the irradiation position is the third position;
    When the moving direction is not parallel to the back surface and the back surface is a flat surface, the acquisition unit moves the irradiation position from the first position to the second position, and the irradiation time. The refractive index is calculated based on the amount of movement of the moving object when changing and the amount of movement of the moving object when changing the irradiation position from the second position to the third position. The measuring device according to claim 4 or 5, wherein:
  9.  前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を夫々ta3及びtb3と定義し、変数Δtを数式4で定義し、変数Δtを数式5で定義し、変数Δtを数式6で定義し、前記照射位置を前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量をP1と定義し、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量をP2と定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記算出手段は、数式7に基づいて、前記屈折率を算出する
     ことを特徴とする請求項8に記載の計測装置。
    Figure JPOXMLDOC01-appb-M000004

    Figure JPOXMLDOC01-appb-M000005

    Figure JPOXMLDOC01-appb-M000006

    Figure JPOXMLDOC01-appb-M000007
    The first and second times when the irradiation position becomes the first position are defined as t a1 and t b1, respectively, and the first and second times when the irradiation position becomes the second position, respectively. Define t a2 and t b2, respectively , define the first and second times when the irradiation position is the third position as ta 3 and t b3, respectively, and define the variable Δt 1 with Equation 4. The variable Δt 2 is defined by Equation 5, the variable Δt 3 is defined by Equation 6, and the amount of movement of the moving object when the irradiation position is changed from the first position to the second position is defined as P1. When the irradiation position is changed from the second position to the third position, the moving amount of the moving object is defined as P2, and the refractive index is defined as n, the moving direction is parallel to the back surface. If the back surface is a plane, the calculation means Based on the measurement apparatus according to claim 8, characterized in that to calculate the refractive index.
    Figure JPOXMLDOC01-appb-M000004

    Figure JPOXMLDOC01-appb-M000005

    Figure JPOXMLDOC01-appb-M000006

    Figure JPOXMLDOC01-appb-M000007
  10.  前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記移動手段は、(i)前記照射位置を、互いに異なる第1位置、第2位置及び第3位置へと順に変更するように、且つ、(ii)前記第1位置から前記第2位置へと変更する場合の前記移動対象物の移動量が、前記照射位置を前記第2位置から前記第3位置へと変更する場合の前記移動対象物の移動量と同一になるように、前記移動方向を固定したまま前記移動対象物を移動させ、
     前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記取得手段は、前記照射位置が前記第1位置となる場合の前記第1及び第2時間、前記照射位置が前記第2位置となる場合の前記第1及び第2時間、並びに、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を取得する
     ことを特徴とする請求項4又は5に記載の計測装置。
    When the moving direction is not parallel to the back surface and the back surface is a plane, the moving means (i) sequentially changes the irradiation position to different first, second, and third positions. And (ii) the amount of movement of the moving object when changing from the first position to the second position changes the irradiation position from the second position to the third position. Moving the moving object while fixing the moving direction so that the moving amount of the moving object is the same as
    When the moving direction is not parallel to the back surface and the back surface is a flat surface, the acquisition unit is configured to perform the first and second times when the irradiation position is the first position, and the irradiation position is 6. The first and second times when the second position is reached, and the first and second times when the irradiation position is the third position are acquired. The measuring device described in 1.
  11.  前記照射位置が前記第1位置となる場合の前記第1及び第2時間を夫々ta1及びtb1と定義し、前記照射位置が前記第2位置となる場合の前記第1及び第2時間を夫々ta2及びtb2と定義し、前記照射位置が前記第3位置となる場合の前記第1及び第2時間を夫々ta3及びtb3と定義し、変数Δtを数式8で定義し、変数Δtを数式9で定義し、変数Δtを数式10で定義し、屈折率をnと定義すると、前記移動方向が前記裏面に平行でなく且つ前記裏面が平面である場合には、前記算出手段は、数式11に基づいて、前記屈折率を算出する
     ことを特徴とする請求項10に記載の計測装置。
    Figure JPOXMLDOC01-appb-M000008

    Figure JPOXMLDOC01-appb-M000009

    Figure JPOXMLDOC01-appb-M000010

    Figure JPOXMLDOC01-appb-M000011
    The first and second times when the irradiation position becomes the first position are defined as t a1 and t b1, respectively, and the first and second times when the irradiation position becomes the second position, respectively. Define t a2 and t b2, respectively , define the first and second times when the irradiation position is the third position as ta 3 and t b3, respectively, and define the variable Δt 1 with Equation 8. When the variable Δt 2 is defined by Equation 9, the variable Δt 3 is defined by Equation 10, and the refractive index is defined as n, when the movement direction is not parallel to the back surface and the back surface is a plane, The measuring device according to claim 10, wherein the calculating unit calculates the refractive index based on Formula 11.
    Figure JPOXMLDOC01-appb-M000008

    Figure JPOXMLDOC01-appb-M000009

    Figure JPOXMLDOC01-appb-M000010

    Figure JPOXMLDOC01-appb-M000011
  12.  前記算出手段は更に、算出した前記屈折率に基づいて、前記表面と前記裏面との間の物理的な距離である前記試料の厚さを算出する
     ことを特徴とする請求項1から11のいずれか一項に記載の計測装置。
    The said calculating means further calculates the thickness of the said sample which is a physical distance between the said surface and the said back surface based on the calculated said refractive index. Any one of Claim 1 to 11 characterized by the above-mentioned. The measuring device according to claim 1.
  13.  試料の表面に照射されたテラヘルツ波が前記表面で反射された後に所定位置に到達するまでに要する第1時間、及び、前記表面に照射された前記テラヘルツ波が前記表面の反対側に位置する前記試料の裏面で反射された後に前記所定位置に到達するまでに要する第2時間を、前記試料に対する位置が互いに異なる前記テラヘルツ波の複数の照射位置の夫々毎に取得する取得工程と、
     前記第1及び第2時間に基づいて、前記試料の屈折率を算出する算出工程と
     を備えることを特徴とする計測方法。
    The first time required for the terahertz wave irradiated on the surface of the sample to reach a predetermined position after being reflected on the surface, and the terahertz wave irradiated on the surface is located on the opposite side of the surface An acquisition step of acquiring a second time required to reach the predetermined position after being reflected on the back surface of the sample for each of the plurality of irradiation positions of the terahertz waves whose positions with respect to the sample are different from each other;
    And a calculation step of calculating a refractive index of the sample based on the first and second times.
  14.  コンピュータに請求項13に記載の計測方法を実行させることを特徴とするコンピュータプログラム。 A computer program for causing a computer to execute the measurement method according to claim 13.
PCT/JP2015/082690 2015-11-20 2015-11-20 Measurement device, measurement method, and computer program WO2017085862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/082690 WO2017085862A1 (en) 2015-11-20 2015-11-20 Measurement device, measurement method, and computer program
JP2017551489A JPWO2017085862A1 (en) 2015-11-20 2015-11-20 Measuring device, measuring method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082690 WO2017085862A1 (en) 2015-11-20 2015-11-20 Measurement device, measurement method, and computer program

Publications (1)

Publication Number Publication Date
WO2017085862A1 true WO2017085862A1 (en) 2017-05-26

Family

ID=58718084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082690 WO2017085862A1 (en) 2015-11-20 2015-11-20 Measurement device, measurement method, and computer program

Country Status (2)

Country Link
JP (1) JPWO2017085862A1 (en)
WO (1) WO2017085862A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932338A (en) * 2019-04-03 2019-06-25 北京环境特性研究所 Method and apparatus based on Terahertz frequency range measurement sample complex refractivity index
CN112985279A (en) * 2021-03-05 2021-06-18 深圳市华讯方舟光电技术有限公司 Detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270140A (en) * 2002-03-13 2003-09-25 Matsushita Electric Ind Co Ltd Measuring method and device of relative refractive index
JP2010533300A (en) * 2007-07-12 2010-10-21 ピコメトリクス、エルエルシー System and method for measuring the transit time position of a pulse in time domain data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270140A (en) * 2002-03-13 2003-09-25 Matsushita Electric Ind Co Ltd Measuring method and device of relative refractive index
JP2010533300A (en) * 2007-07-12 2010-10-21 ピコメトリクス、エルエルシー System and method for measuring the transit time position of a pulse in time domain data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932338A (en) * 2019-04-03 2019-06-25 北京环境特性研究所 Method and apparatus based on Terahertz frequency range measurement sample complex refractivity index
CN112985279A (en) * 2021-03-05 2021-06-18 深圳市华讯方舟光电技术有限公司 Detection device

Also Published As

Publication number Publication date
JPWO2017085862A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6945001B2 (en) Inspection equipment, inspection method, library generation equipment, library generation method, computer program and recording medium
JP6692914B2 (en) Inspection device, inspection method, computer program, and recording medium
WO2017085863A1 (en) Measurement device, measurement method, and computer program
JP5489906B2 (en) Terahertz wave transceiver and tomographic image acquisition device
WO2016132452A1 (en) Terahertz wave measurement device, terahertz wave measurement method, and computer program
JP2014106127A (en) Terahertz wave measurement instrument and method
JP5735824B2 (en) Information acquisition apparatus and information acquisition method
WO2011111385A1 (en) Method for calibrating the time axis in time - domain terahertz wave measuring apparatus
WO2017085862A1 (en) Measurement device, measurement method, and computer program
US20100308223A1 (en) Apparatus and method for acquiring time waveform of terahertz waves
KR20090111809A (en) Picosecond ultrasonic system incorporating an optical cavity
JP6754446B2 (en) Inspection equipment, inspection methods, computer programs and recording media
JP6913261B2 (en) Measuring device, measuring method and computer program
JP2019203905A (en) Measuring device, measuring method, and computer program
JP3776073B2 (en) Semiconductor carrier lifetime measurement method and apparatus
JP6614620B2 (en) Measuring device, measuring method, and computer program
Nissim et al. Free-surface velocity measurements of opaque materials in laser-driven shock-wave experiments using photonic Doppler velocimetry
WO2017138061A1 (en) Measurement device
US20160010978A1 (en) Measurement apparatus and measuring method
JP2017142087A (en) Measurement device, measurement method, and computer program
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
WO2018066361A1 (en) Examination device, examination method, computer program, and recording medium
RU2450387C1 (en) Method for contact-free determination of life span for non-equilibrium carriers in semi-conductors
JP2019007802A (en) Optical inspection apparatus and method for optical inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908802

Country of ref document: EP

Kind code of ref document: A1