WO2017085406A1 - Propulsion unit comprising a main engine and an auxiliary engine - Google Patents

Propulsion unit comprising a main engine and an auxiliary engine Download PDF

Info

Publication number
WO2017085406A1
WO2017085406A1 PCT/FR2016/052979 FR2016052979W WO2017085406A1 WO 2017085406 A1 WO2017085406 A1 WO 2017085406A1 FR 2016052979 W FR2016052979 W FR 2016052979W WO 2017085406 A1 WO2017085406 A1 WO 2017085406A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating condition
main engine
ratio
engine
main
Prior art date
Application number
PCT/FR2016/052979
Other languages
French (fr)
Inventor
Pascal Charles Edouard COAT
Jean-François Endy BERSOT
Stéphane ORCEL
Nicolas Jérôme Jean TANTOT
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1561008A external-priority patent/FR3043727B1/en
Priority claimed from FR1561005A external-priority patent/FR3043726B1/en
Priority claimed from FR1561012A external-priority patent/FR3043729B1/en
Priority claimed from FR1561011A external-priority patent/FR3043728B1/en
Priority claimed from FR1561001A external-priority patent/FR3043725B1/en
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to US15/776,433 priority Critical patent/US20180327109A1/en
Publication of WO2017085406A1 publication Critical patent/WO2017085406A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/12Plants including a gas turbine driving a compressor or a ducted fan characterised by having more than one gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Propulsion unit comprising a main motor and an auxiliary motor
  • the invention relates to the general field of aircraft, and more particularly to the dimensioning of the engines of such aircraft with a view to improving, among other things, the specific consumption.
  • the invention is applicable in all types of aircraft intended to perform missions with various operating conditions.
  • each phase of flight is associated with a condition of engine operation, including idle (or “idle” in English), takeoff (or “take off” in English), climb (or “climb” in English), the summit of climb (or “top of climb” or “maximum climb” in English) or the cruise (or “cruise” in English).
  • the engine is maintained for a relatively long time (between thirty seconds for takeoff and several hours for cruising) at predefined speed spectra, which depend on the engine redline (ie the absolute maximum speed encountered by the low pressure shaft during the entire flight).
  • the most restrictive engine operating condition in terms of thrust is takeoff.
  • the engines for aircraft are dimensioned according to this operating condition in order to guarantee their ability to take off the aircraft.
  • the motors are dimensioned so as to operate at the maximum temperatures at the inlet and outlet of the combustion chamber during the take-off phase, so that the efficiency of the thermodynamic (and thus energy) cycle of the engine is optimal during this phase.
  • These inlet and outlet temperatures of the combustion chamber will therefore directly affect the size of the high pressure parts of the engine (high pressure compressor, combustion chamber and high pressure turbine) and their constituent material, so that they are capable of to provide the thrust required for take-off.
  • the duration of the take-off phase is very short (between one and five minutes, depending on the type of aircraft and their mission) in front of the other phases of flight.
  • the engine requires a lower thrust and therefore has a thermodynamic efficiency (and therefore energy) less. This is particularly the case of the cruise operating condition, which generally lasts at least thirty minutes.
  • the power required by the engine is lower than during takeoff.
  • the reduction of the power of the engine is obtained by reducing the temperature at the outlet of the combustion chamber and therefore at the inlet of the high-pressure turbine of the engine, which implies a reduction in the overall compression ratio.
  • the specific consumption of the engine is greater than its optimum.
  • An object of the invention is therefore to propose a solution in the field of aircraft propulsion that responds to this problem of reconciliation of operational constraints, such as the ability of the propulsion unit to take off an aircraft, with objectives of increasingly fuel consumption, typical of civil commercial aviation.
  • the invention proposes a propulsion unit for an aircraft, said propulsion unit being configured to provide a takeoff thrust during a takeoff operating condition and a climb summit thrust during an operating condition. climbing summit and comprising:
  • At least one main engine configured to provide a main thrust during the take-off operating condition and the climb-top operating condition, said main engine comprising a high-pressure compressor, and
  • At least one auxiliary engine separate from the main engine and configured to provide auxiliary thrust to complete the main thrust of the main engine during at least the takeoff operating condition.
  • the main motor is sized taking into account the thrust of the auxiliary motor in the operating condition of takeoff, such that a temperature ratio of the high pressure compressor, corresponding to the ratio between a temperature at the output of the high pressure compressor of the main engine in the operating condition of the ascent summit and a temperature at the outlet of the high pressure compressor of the engine main operating condition of takeoff, between 0.90 and 1 .10, for example between 0.95 and 1 .05.
  • the main motor may comprise a streamlined blower having an inlet section, said blower being located upstream of the high pressure compressor in the direction of gas flow in the main engine.
  • a reduced main engine blower speed ratio corresponding to the ratio of the reduced air flow entering the main engine blower at the input section to the climb top operating condition and the reduced flow rate of the engine.
  • the air entering the main engine blower at said entry section in take-off operating condition may be between 1.3 and 1.5, preferably between 1.35 and 1.40.
  • the main motor may have a ratio of between 1.50 and 1.90, for example between 1.55 and 1.80, between its overall compression ratio in the climb-up condition and its overall compression ratio of the main engine in take-off operating condition.
  • the main engine may further include a combustion chamber extending downstream of the high pressure compressor in the direction of gas flow in the main engine.
  • the main engine can then have a temperature ratio (corresponding to the ratio between, on the one hand, a ratio between a temperature at the outlet of the combustion chamber of the main engine in peak operating condition of a rise and a temperature at the outlet of the combustion chamber of the main engine in take-off operating condition, and secondly, the temperature ratio of the high-pressure compressor) of between 1 .00 and 1 .10.
  • the main motor may have a body size ratio (corresponding to the ratio of a body size at an inlet section of the main engine high pressure compressor to a climb top condition of operation and the body size at said inlet section of the main engine high pressure compressor in take-off operating condition of between 0.95 and 1.05.
  • the main engine may comprise, downstream of the blower, a combustion chamber in the direction of gas flow, and a ratio between a temperature at the outlet of the combustion chamber of the main engine under the condition of climb top operation and a temperature at the outlet of the combustion chamber of the main engine in take-off operating condition can then be between 0.90 and 1 .10, for example between 1 .00 and 1 .05.
  • the main engine may comprise a high pressure turbine downstream of the high pressure compressor in the gas flow direction, with a ratio between a temperature output of the high pressure turbine of the main engine in operating condition and a temperature at the outlet of the main engine high pressure turbine in take-off operating condition which is between 0.90 and 1 .10, for example between 0.95 and 1 .05.
  • the auxiliary motor comprises a ducted blower having an inlet section, with a reduced blower speed ratio of the auxiliary engine, corresponding to the ratio of the reduced air flow entering the blower of the auxiliary engine to the level of the inlet section in the up-hill operating condition and the reduced flow rate of air entering the auxiliary engine blower at said take-off operating condition input section, between 1 .00 and 1 .10.
  • a ratio between an overall compression ratio of the auxiliary engine in climb-up operating condition and an overall compression ratio of the auxiliary engine in take-off operating condition can be between 1 .00 and 1. 30.
  • the propulsion unit may, in a nonlimiting manner, comprise at least two auxiliary engines, the thrust of said auxiliary engines participating to 100% of the auxiliary thrust.
  • FIG. 1 is a graph illustrating, for several parameters, the ratio between the value of this measured parameter for an operating condition corresponding to the climb summit and the value of this parameter measured for an operating condition corresponding to the take-off, for an example embodiment of a main engine of a propulsion unit according to the invention and for a conventional engine
  • FIG. 2 illustrates an exemplary embodiment of an aircraft that may comprise a propulsion unit according to the invention
  • Figure 3 is a schematic partial sectional view of an exemplary embodiment of a main motor.
  • the invention proposes to release the main engine 3 from the constraint of being able to provide sufficient thrust to take off the aircraft 1 and to add to the propulsion unit 2 an auxiliary motor 4, separate from the main engine 3, in order to compensate for the thrust loss associated with this modification of the main engine 3. It then becomes possible to size the main engine 3 by significantly improving its specific fuel consumption in the flight phases having a important duration, as the cruise, while ensuring that the propulsion unit 2 is capable of taking off the aircraft 1.
  • the propulsion unit 2 is configured to operate at at least two different operating conditions and comprises at least one main engine 3 and an auxiliary engine 4. These two engines contribute to the total thrust delivered by the propulsion unit, in different thrust proportions depending on the flight phase.
  • main engine means here and throughout the present text a motor configured to provide thrust during all the different phases of flight and in particular to provide during the cruise phase a thrust that contributes primarily to the total thrust .
  • Auxiliary engine means a motor that assists the main engine by providing auxiliary thrust during certain phases of flight (during the take-off phase and up to the climb summit, in particular).
  • the auxiliary engine is cut during flight phases requiring less total thrust, such as the cruise phase; during these phases, it can also operate at low speed or at low thrust.
  • the main engine 3 comprises a turbojet engine.
  • the main engine (s) 3 possibly comprising one or more turbojet engines and / or one or more turboprop engines, said main engines 3 possibly comprising at least one ducted or non-ducted fan / propeller.
  • the turbojet engine 3 thus comprises, from upstream to downstream in the direction of flow of the gases in the turbojet engine 3, at least one ducted fan 30 housed in a fan casing 30, an annular space of primary flow and an annular secondary flow space.
  • the mass of air sucked by the fan 30 is thus divided into a primary flow, which circulates in the primary flow space, and a secondary flow, which is concentric with the primary flow and circulates in the space of secondary flow.
  • the primary flow space passes through a primary body comprising one or more stages of compressors, for example a low pressure compressor 32 and a high pressure compressor 34, a combustion chamber 36, one or more turbine stages, for example a turbine high pressure 38 and a low pressure turbine 40, and a gas exhaust nozzle.
  • a primary body comprising one or more stages of compressors, for example a low pressure compressor 32 and a high pressure compressor 34, a combustion chamber 36, one or more turbine stages, for example a turbine high pressure 38 and a low pressure turbine 40, and a gas exhaust nozzle.
  • the main engine 3 and the auxiliary motor 4 together provide the thrust of the propulsion unit.
  • the main engine 3 may be assisted by the auxiliary engine 4 in the take-off phase to provide the take-off thrust to the propulsion unit 2 and possibly in the climb summit phase to provide the climb summit thrust.
  • the thrust provided by the propulsion unit 2 during the take-off phase can be obtained up to 5% to 45% by the auxiliary engine 4, the complement being provided by the main engine 3.
  • the main motor 3 can provide all the necessary thrust, or be assisted from 0% to 50% by the auxiliary motor 4.
  • the takeoff corresponds to a rotation speed of the low pressure shaft of between 2500 and 3000 rpm
  • the climbing top corresponds to a rotational speed of the low pressure shaft of between 3000 rpm and 3500 rpm.
  • the propulsion unit 2 may have additional operating conditions, such as, among other things, cruising, idling (on the ground and in flight), etc.
  • the distribution of the thrust between the main engine 3 and the auxiliary engine 4 of the propulsion unit 2 can be determined according to the type of aircraft 1 and the associated mission type (short, medium, long haul, etc. .).
  • the share of the thrust provided by the auxiliary engine 4 at the climbing summit is preferably greater than in the case of an aircraft 1 configured to perform a short-haul type mission.
  • the flight time in cruising operating condition is shorter on a short-haul than on a long haul, so it may be preferable to improve the thermodynamic efficiency of the propulsion unit 2 at the top. to increase and limit the size and weight of the auxiliary engine 4 rather than to improve its thermodynamic efficiency in cruising and to increase the size and weight of the auxiliary engine 4.
  • the auxiliary engine 4 may provide a continuous thrust between the operating condition corresponding to the take-off and the operating condition corresponding to the climbing summit, or alternatively be stopped during at least one of said speeds.
  • the main engine 3 is dimensioned so that a temperature ratio of the high pressure compressor QTCHP is between 0.90 and 1.10, for example between 0.95 and 1.05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
  • the ratio between the temperature at the outlet of the high-pressure compressor 34 (and therefore at the combustion chamber inlet 36) of the main engine 3 under the operating condition of the ascent vertex will be understood here.
  • TCHP T O C
  • T C HP Tkoff
  • the output temperature of the high pressure compressor T C HP represents the temperature of the fluid at the outlet of the diffuser, which is itself placed behind the last mobile wheel of the high pressure compressor 34.
  • the QT C HP temperature ratio is generally between 0.85. and 0.95. It can be deduced from this that the temperature T C HP at the outlet of the high pressure compressor 34 at the summit of rise is higher in the main engine 3 than in a conventional engine.
  • the main engine 3 is dimensioned so as to have very few variations of T C HP at the compressor outlet, between the take-off condition and the climb crown condition, compared with a conventional engine without auxiliary thrust at take-off.
  • the compression ratio of the high pressure compressor 34 is therefore higher for the main engine 3 at the top of the climb, which is a benefit in terms of the thermal efficiency of the turbojet (s) / turboprop (s) of the main engine 3.
  • the air pressure at the outlet of the high pressure compressor 34 is the highest of the engine.
  • the high pressure compressor 34 can not be cooled, since none of the other components is likely to provide it with enough pressurized air to ventilate it.
  • the temperature at the outlet of the high pressure compressor 34 is therefore an optimization point of this compressor.
  • T C HP TOC
  • TcHP temperature Tkoff
  • a reduced fan fan speed ratio of the main engine 3 may be between 1.30 and 1.50.
  • the ratio between the reduced flow of air entering the fan of the main engine 3 at the inlet section in the operating condition of the top of the engine will be understood. mounted and the reduced flow of air entering the blower 30 of the main engine 3 at said inlet section in take-off operating condition.
  • the reduced flow rate Q fan corresponds here to the total mass air flow at the inlet of the fan Qm fan and reduced with the total pressure and temperature conditions at the inlet of the fan according to the following formula:
  • the inlet section of the blower 30, where the Qnrifan air flow rate, the T fan temperature and the fan P pressure are measured, corresponds to the area of the blower housing 30 as seen by the flow entering said blower 30. , in a plane perpendicular to an axis of revolution of the fan 30. It will be noted that the exact position of the measurement of this input section is not decisive insofar as a flow ratio is evaluated, as long as the flow rate is determined for the same inlet section of the blower 30 in take-off operating condition and in climb-up operating condition.
  • the reduced air flow rate in a climb-up condition and in take-off operating condition is measured when the main engine 3 is stationary in a standard atmosphere (as defined by the engine manual).
  • a main engine 3 comprising a turbojet having such a reduced fan speed ratio Qf an then has a better specific consumption compared to a conventional engine since it is dimensioned not according to a compromise between the operating condition of takeoff and the cruising operating condition, but mainly depending on the climb and cruise summit operating condition, which correspond to a substantial part of the operation of the main engine 3.
  • the reduced airflow Q fan at the input of the blower 30 of this main motor 3 is therefore more important at the summit of climb than at takeoff whereas, for a conventional engine, the ratio of reduced flow rate of fan Qf year is between 1 .00 and 1 .10.
  • a main motor 3 according to the invention has a more efficient thermodynamic cycle than a conventional motor.
  • the total pressure ratio of the blower 30 of the main engine 3 may be between 1.35 and 1.40.
  • the ratio Q OPR between the overall compression ratio of the main engine 3 in climb-up operating condition and the overall compression ratio of the main engine 3 under take-off operating condition can be between 1.50 and 1.90, for example between 1.55 and 1.80. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
  • this ratio is usually between 1 .00 and 1 .30.
  • the assistance of the auxiliary engine 4 optimizes the thermodynamic operation of the main engine 3 by choosing by design to operate it for all operating conditions (takeoff, climb summit, cruise, idle, etc.) at temperatures and pressures close to the maximum permitted by the nature of the materials and components of its modules. This makes it possible in particular to increase the compression ratio in the low pressure and high pressure compressors of the main engine 3.
  • overall compression ratio here will be understood the combination of the compression ratio of the high pressure compressor 34, the low pressure compressor 32 and the blower 30 or, in other words, the ratio between the outlet pressure of the high pressure compressor. 34 (and thus at the combustion chamber inlet 36) and the pressure at the inlet of the fan 30.
  • the overall compression ratio is determined, whether in run-up operating condition or in take-off operating condition, when the main engine 3 is stationary in a standard atmosphere (as defined by the International Civil Aviation Organization (ICAO) manual, Doc 7488 / 3, 3rd edition) and at sea level.
  • IAO International Civil Aviation Organization
  • the temperature ratio QT Co mb corresponding to the ratio between the temperature at the outlet of the combustion chamber 36 (and thus at the inlet of the high-pressure turbine 38) of the main engine 3 under the operating condition of the climb vertex T Co mb ( Toc) and the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the take-off operating condition T Co mb (Tkoff) can be between 0.90 and 1 .10, for example between 0.95 and 1 .05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
  • the QT Co mb temperature ratio is generally between 0.85 and 0.95. It can be deduced that the temperature T Co mb at the outlet of the combustion chamber 36 at the summit of rise is higher in the main engine 3 than in a conventional engine. The thermodynamic cycle of the turbojet of the main engine 3 is therefore more efficient.
  • the high-pressure turbine 38 is generally cooled by ventilation.
  • the design of the cooling system is generally performed on the maximum temperature conditions encountered at the take-off condition, and the cooling system is oversized. and underused for other operating conditions.
  • the QTcomb temperature ratio thus defined makes it possible to continuously use the cooling system of the high-pressure turbine 38 of the main engine 3 over its optimum operation and therefore cooling efficiency.
  • the limitation of the thermal excursions seen by the high-pressure turbine 38 between take-off and cruise conditions contributes to limiting the mechanical degradation of the latter and thus to improve its service life.
  • a high pressure temperature ratio QT Co mb / QTcHP corresponding to the ratio between, on the one hand, the ratio between the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the operating condition of the climb vertex T Co mb (Toc) and the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the take-off operating condition T Co mb (Tkoff), and secondly, the ratio QT C HP between the outlet temperature of the high compressor pressure 34 of the main engine 3 in the up-hill operating condition T C HP (T O C) and a temperature at the outlet of the high-pressure compressor 34 of the main engine 3 under the take-off operating condition T C HP (Tkoff), can be between 1 .00 and 1 .10.
  • QTcomb QTcHP is the ratio of the QT Co mb temperature ratio to the QT C HP-temperature ratio.
  • the main engine 3 is not a variable cycle engine, since its high pressure temperature ratio QTcomb QTcHP is substantially equal to that of a conventional engine regardless of the operating conditions.
  • the temperature ratio QT T HP which corresponds to the ratio between the outlet temperature of the high-pressure turbine 38 (and thus at the inlet of the low-pressure turbine 40) of the main engine 3 in the operating condition of the climb vertex T T HP (T OC ) and the outlet temperature of the high-pressure turbine 38 of the main engine 3 in the take-off operating condition T T HP (Tkoff) can be between 0.90 and 1.10, for example between 0.95 and 1.05.
  • the temperature at the outlet of the high pressure turbine T T HP may, for example, be measured in an area close to the last impeller of the high-pressure turbine 38 (at the leading edge of the first distributor of the low-pressure turbine 40 or at the intrados wall of the second distributor of the low-pressure turbine 40). This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
  • the QTTHP temperature ratio is generally between 0.85 and 0.95. It can be deduced that the temperature at the outlet of the low-pressure turbine 40 at the summit of rise is higher in the main engine 3 than in a conventional engine.
  • the inlet temperature of the low pressure turbine 40 is an optimization point of the low pressure turbine 40 and the main motor 3 in general.
  • the choice of the outlet temperature of the high-pressure turbine 38 under the T T HP (T OC ) up-hill operating condition thus makes it possible to dimension the main engine 3 in the operating condition of the ascent or crest, which cover a substantial part of the operation of the main engine 3, and not exclusively in take-off operating condition.
  • the limitation of the thermal excursions seen by the low-pressure turbine 40 between the take-off and cruising conditions contributes to limiting the mechanical degradation of the latter and thus to improving its service life.
  • a C-body size ratio of the main engine 3 between the climb-up and take-off operating conditions can be between 0.95 and 1.05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
  • Relative body Q ⁇ re size of the main engine 3 it is understood here the ratio between the body size at a high pressure compressor inlet section 34 of the main motor 3 in mounted condition of the top of operation and the body size at level of said input section in take-off operating condition.
  • the size of body T ⁇ re here corresponds to the air mass flow rate Qm CO re entering the high pressure compressor 34 of the main engine 3 at the corrected input section TCHP temperature conditions and pressure P C Total HP at the outlet of the high pressure compressor 34 according to the following formula:
  • the body size T CO re in climb-up operating condition and in take-off operating condition is measured when the main engine 3 is stationary in a standard atmosphere (as defined by the manual of the Organization).
  • the body size T ⁇ re is representative of the geometric height of the vein of the high pressure compressor 34.
  • the auxiliary motor 4 may also be dimensioned so as to optimize the specific consumption of the propulsion unit 2.
  • a ratio of blower rate Q fan of the auxiliary motor 4 can be between 1 .00 and 1 .10.
  • the fan flow rate ratio Qf an of the auxiliary engine 4 corresponds to the ratio of the air flow rate entering the fan 30 of the auxiliary engine 4 at the input section in upwind operating condition and the air flow entering the blower 30 of the auxiliary engine 4 at said input section in take-off operating condition, the flow being measured when auxiliary engine 4 is stationary in a standard atmosphere (as defined by the International Civil Aviation Organization (ICAO) Manual, Doc 7488/3, 3rd Edition) and at sea level.
  • IAO International Civil Aviation Organization
  • the auxiliary engine (s) 4 may comprise one or more turboprop engines and / or one or more propulsive effectors driven by electric motors.
  • the auxiliary engine or engines may comprise one or more turbojet engines in combination with one or more turboprop engines and / or one or more propulsive effectors driven by electric motors.
  • the ratio Q OPR between the overall compression ratio of the auxiliary engine 4 in the climb-summit operating condition and the overall compression ratio of the auxiliary engine 4 in take-off operating condition can be between 1 .00 and 1. .30.
  • the overall compression ratio in climb-up operating condition and take-off operating condition is measured when the auxiliary engine 4 is stationary in a standard atmosphere (as defined by the Organization's manual of the international civil Aviation Organization (ICAO), Doc 7488/3, 3rd edition) and at the sea.
  • a ratio of body size Q ⁇ re auxiliary motor 4 between the conditions of climb and top off operation can be understood between 0.95 and 1.05.
  • the ratio between the body size at an inlet section of the high pressure compressor 34 of the auxiliary motor 4 in the operating condition of the ascent vertex will be understood. and the body size at said input section in take-off operating condition.
  • the definition and measurement of body size T ⁇ re specified for the main motor 3 applies mutatis mutandis to the auxiliary motor 4.
  • the propulsion system 2 may comprise one or more main engines 3 and one or more auxiliary motors 4.
  • the main engine (s) 3 then participate together in the supply of the main thrust, while the auxiliary engine (s) 4 participate together in the supply of the auxiliary thrust.
  • the propulsion unit 2 may comprise a main engine 3 and two auxiliary engines 4.
  • the auxiliary engines 4 may for example be fixed under the wings of an aircraft 1 while the main engine 3 may be placed at the rear of the fuselage of the aircraft 1, as illustrated in FIG. 2.
  • the propulsion unit 2 may comprise a turbofan propeller propeller and two auxiliary engines 4 each comprising one or more effectors driven by an electric motor.
  • the auxiliary engine (s) 4 may be retractable, that is to say that their position may be modified during certain phases of the flight of the aircraft 1 in order to minimize their drag.
  • the auxiliary engines 4 can be retracted by being tucked into a specific wedge formed in the wings of the aircraft 1.

Abstract

The invention relates to a propulsion unit (2) configured to provide takeoff thrust and top of climb thrust and comprising: - a main engine (3), configured to supply main thrust during the takeoff phase and during the top of climb phase with a ratio (QT CHP ) between a temperature on the outlet side of the high-pressure compressor (34) in top of climb operating condition (T CHP(ToC)) and a temperature on the outlet side of the high-pressure compressor (34) in a takeoff operating condition (T CHP(TkOff)), which is comprised between 0.90 and 1.10, for example between 0.95 and 1.05, and - an auxiliary engine (4), distinct from the main engine (3) and configured to supply auxiliary thrust in order to supplement the main thrust of the main engine (3) at least during the takeoff phase.

Description

Ensemble propulsif comprenant un moteur principal et un moteur auxiliaire  Propulsion unit comprising a main motor and an auxiliary motor
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
L'invention concerne le domaine général des aéronefs, et plus particulièrement du dimensionnement des moteurs de tels aéronefs en vue d'en améliorer, entre autres, la consommation spécifique. L'invention trouve application dans tous les types d'aéronefs destinés à réaliser des missions comportant des conditions de fonctionnement diverses.  The invention relates to the general field of aircraft, and more particularly to the dimensioning of the engines of such aircraft with a view to improving, among other things, the specific consumption. The invention is applicable in all types of aircraft intended to perform missions with various operating conditions.
ARRIERE-PLAN TECHNOLOGIQUE BACKGROUND
En fonctionnement, un moteur donné est sollicité différemment selon les phases de vol de l'aéronef. En effet, à chaque phase de vol est associée une condition de fonctionnement du moteur, dont le ralenti au sol (ou « idle » en anglais), le décollage (ou « take off » en anglais), la montée (ou « climb » en anglais), le sommet de montée (ou « top of climb » ou « maximum climb » en anglais) ou encore la croisière (ou « cruise » en anglais). Pendant les conditions de fonctionnement précitées, le moteur est maintenu pendant un temps relativement long (entre une trentaine de secondes pour le décollage et plusieurs heures pour la croisière) à des spectres de vitesse prédéfinis, qui dépendent de la redline du moteur (à savoir la vitesse maximale absolue rencontrée par l'arbre basse pression durant tout le vol). La condition de fonctionnement du moteur la plus contraignante en termes de poussée est le décollage. C'est pourquoi, habituellement, les moteurs pour aéronefs sont dimensionnés en fonction de cette condition de fonctionnement afin de garantir leur capacité à faire décoller l'aéronef. Pour cela, les moteurs sont dimensionnés de manière à fonctionner aux températures maximales en entrée et en sortie de la chambre de combustion pendant la phase de décollage, afin que l'efficacité du cycle thermodynamique (et donc énergétique) du moteur soit optimale pendant cette phase. Ces températures d'entrée et de sortie de la chambre de combustion vont donc directement conditionner la taille des parties haute pression du moteur (compresseur haute pression, chambre de combustion et turbine haute pression) ainsi que leur matériau constitutif, afin qu'ils soient capables de fournir la poussée nécessaire au décollage. In operation, a given engine is requested differently according to the flight phases of the aircraft. Indeed, each phase of flight is associated with a condition of engine operation, including idle (or "idle" in English), takeoff (or "take off" in English), climb (or "climb" in English), the summit of climb (or "top of climb" or "maximum climb" in English) or the cruise (or "cruise" in English). During the aforementioned operating conditions, the engine is maintained for a relatively long time (between thirty seconds for takeoff and several hours for cruising) at predefined speed spectra, which depend on the engine redline (ie the absolute maximum speed encountered by the low pressure shaft during the entire flight). The most restrictive engine operating condition in terms of thrust is takeoff. This is why, usually, the engines for aircraft are dimensioned according to this operating condition in order to guarantee their ability to take off the aircraft. For this, the motors are dimensioned so as to operate at the maximum temperatures at the inlet and outlet of the combustion chamber during the take-off phase, so that the efficiency of the thermodynamic (and thus energy) cycle of the engine is optimal during this phase. These inlet and outlet temperatures of the combustion chamber will therefore directly affect the size of the high pressure parts of the engine (high pressure compressor, combustion chamber and high pressure turbine) and their constituent material, so that they are capable of to provide the thrust required for take-off.
Toutefois, la durée de la phase de décollage est très courte (entre une et cinq minutes environ, selon les types d'aéronef et leur mission) devant les autres phases de vol. Il en résulte que, pendant la majeure partie du vol, le moteur nécessite une plus faible poussée et présente donc une efficacité thermodynamique (et donc énergétique) moindre. C'est notamment le cas de la condition de fonctionnement de croisière, qui dure généralement au moins une trentaine de minutes. En effet, pendant la croisière, la puissance requise par le moteur est plus faible que pendant le décollage. Or, la diminution de la puissance du moteur est obtenue en réduisant la température en sortie de la chambre de combustion et donc en entrée de la turbine haute pression du moteur, ce qui implique une réduction du rapport global de compression. Il en résulte que pendant cette phase de vol, la consommation spécifique du moteur est plus importante que son optimum.  However, the duration of the take-off phase is very short (between one and five minutes, depending on the type of aircraft and their mission) in front of the other phases of flight. As a result, during most of the flight, the engine requires a lower thrust and therefore has a thermodynamic efficiency (and therefore energy) less. This is particularly the case of the cruise operating condition, which generally lasts at least thirty minutes. Indeed, during the cruise, the power required by the engine is lower than during takeoff. However, the reduction of the power of the engine is obtained by reducing the temperature at the outlet of the combustion chamber and therefore at the inlet of the high-pressure turbine of the engine, which implies a reduction in the overall compression ratio. As a result, during this phase of flight, the specific consumption of the engine is greater than its optimum.
Or actuellement, afin de respecter les contraintes réglementaires croissantes (en termes d'acoustique et d'émission de polluants notamment) et de réduire les coûts de fonctionnement des moteurs, notamment liés à leur consommation spécifique, les motoristes ont tendance à augmenter la température en entrée et en sortie des chambres de combustion afin de réduire la taille du corps haute pression des moteurs et d'augmenter la taille du corps basse pression tout en maintenant des diamètres de soufflante acceptables pour les avionneurs. Une telle augmentation de la température en entrée et en sortie de la chambre de combustion permet en outre d'améliorer l'efficacité du cycle thermodynamique des moteurs, dans la mesure où le rapport global de compression et la température en entrée de la turbine haute pression augmentent. Cela améliore effectivement l'efficacité thermodynamique en phase de décollage, qui est la phase dimensionnante. Toutefois, l'efficacité thermodynamique dans les autres phases de vol n'est pas optimale, notamment en condition de fonctionnement de croisière. However, in order to comply with increasing regulatory constraints (in terms of acoustics and pollutant emissions in particular) and to reduce the operating costs of the engines, in particular related to their specific consumption, engine manufacturers tend to increase the temperature in particular. inlet and outlet of the combustion chambers to reduce the size of the high pressure body of the engines and increase the size of the low pressure body while maintaining acceptable fan diameters for aircraft manufacturers. Such an increase in the temperature at the inlet and at the outlet of the combustion chamber also makes it possible to improve the efficiency of the thermodynamic cycle of the engines, insofar as the overall compression ratio and the inlet temperature of the high-pressure turbine increase. This actually improves the thermodynamic efficiency during the takeoff phase, which is the dimensioning phase. However, the thermodynamic efficiency in the other phases of flight is not optimal, especially in cruising operating condition.
Les motoristes cherchent donc à trouver un compromis entre les besoins du moteur suivants les différentes conditions de fonctionnement et l'impact de ces contraintes en termes de consommation spécifique, de masse, de contraintes acoustiques, etc. RESUME DE L'INVENTION  Engineers therefore seek to find a compromise between the needs of the engine following the different operating conditions and the impact of these constraints in terms of specific consumption, mass, acoustic constraints, etc. SUMMARY OF THE INVENTION
Un objectif de l'invention est donc de proposer une solution dans le domaine de la propulsion des aéronefs qui réponde à cette problématique de conciliation des contraintes opérationnelles, telle que la capacité de l'ensemble propulsif à faire décoller un aéronef, avec des objectifs de consommation de carburant ambitieux, typiques de l'aviation commerciale civile.  An object of the invention is therefore to propose a solution in the field of aircraft propulsion that responds to this problem of reconciliation of operational constraints, such as the ability of the propulsion unit to take off an aircraft, with objectives of ambitious fuel consumption, typical of civil commercial aviation.
Pour cela, l'invention propose un ensemble propulsif pour un aéronef, ledit ensemble propulsif étant configuré pour fournir une poussée de décollage au cours d'une condition de fonctionnement de décollage et une poussée de sommet de montée au cours d'une condition de fonctionnement de sommet de montée et comprenant : For this purpose, the invention proposes a propulsion unit for an aircraft, said propulsion unit being configured to provide a takeoff thrust during a takeoff operating condition and a climb summit thrust during an operating condition. climbing summit and comprising:
- au moins un moteur principal, configuré pour fournir une poussée principale au cours de la condition de fonctionnement de décollage et de la condition de fonctionnement de sommet de montée, ledit moteur principal comprenant un compresseur haute pression, et  at least one main engine, configured to provide a main thrust during the take-off operating condition and the climb-top operating condition, said main engine comprising a high-pressure compressor, and
- au moins un moteur auxiliaire, distinct du moteur principal et configuré pour fournir une poussée auxiliaire afin de compléter la poussée principale du moteur principal pendant au moins la condition de fonctionnement de décollage.  - At least one auxiliary engine, separate from the main engine and configured to provide auxiliary thrust to complete the main thrust of the main engine during at least the takeoff operating condition.
Par ailleurs, le moteur principal est dimensionné en tenant compte de la poussée du moteur auxiliaire dans la condition de fonctionnement de décollage, de telle sorte qu'un rapport de température du compresseur haute pression, correspondant au rapport entre une température en sortie du compresseur haute pression du moteur principal en condition de fonctionnement de sommet de montée et une température en sortie du compresseur haute pression du moteur principal en condition de fonctionnement de décollage, soit compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. Furthermore, the main motor is sized taking into account the thrust of the auxiliary motor in the operating condition of takeoff, such that a temperature ratio of the high pressure compressor, corresponding to the ratio between a temperature at the output of the high pressure compressor of the main engine in the operating condition of the ascent summit and a temperature at the outlet of the high pressure compressor of the engine main operating condition of takeoff, between 0.90 and 1 .10, for example between 0.95 and 1 .05.
Indépendamment ou en combinaison, le moteur principal peut comprendre une soufflante carénée qui présente une section d'entrée, ladite soufflante étant située en amont du compresseur haute pression dans le sens d'écoulement des gaz dans le moteur principal. Un rapport de débit réduit de soufflante du moteur principal, correspondant au rapport entre le débit réduit d'air entrant dans la soufflante du moteur principal au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit réduit d'air entrant dans la soufflante du moteur principal au niveau de ladite section d'entrée en condition de fonctionnement de décollage, peut être compris entre 1 .3 et 1 .50, de préférence entre 1 .35 et 1 .40. Egalement indépendamment ou en combinaison, le moteur principal peut présenter un rapport compris entre 1 .50 et 1 .90, par exemple entre 1 .55 et 1 .80, entre son taux de compression global en condition de fonctionnement de sommet de montée et son taux de compression global du moteur principal en condition de fonctionnement de décollage. Independently or in combination, the main motor may comprise a streamlined blower having an inlet section, said blower being located upstream of the high pressure compressor in the direction of gas flow in the main engine. A reduced main engine blower speed ratio, corresponding to the ratio of the reduced air flow entering the main engine blower at the input section to the climb top operating condition and the reduced flow rate of the engine. The air entering the main engine blower at said entry section in take-off operating condition may be between 1.3 and 1.5, preferably between 1.35 and 1.40. Also independently or in combination, the main motor may have a ratio of between 1.50 and 1.90, for example between 1.55 and 1.80, between its overall compression ratio in the climb-up condition and its overall compression ratio of the main engine in take-off operating condition.
Egalement indépendamment ou en combinaison avec les caractéristiques précédentes, le moteur principal peut comprendre en outre une chambre de combustion s'étendant en aval du compresseur haute pression dans le sens d'écoulement des gaz dans le moteur principal. Le moteur principal peut alors présenter un rapport de température (correspondant au rapport entre, d'une part, un rapport entre une température en sortie de la chambre de combustion du moteur principal en condition de fonctionnement de sommet de montée et une température en sortie de la chambre de combustion du moteur principal en condition de fonctionnement de décollage, et d'autre part, le rapport de température du compresseur haute pression) compris entre 1 .00 et 1 .10. Also independently or in combination with the above features, the main engine may further include a combustion chamber extending downstream of the high pressure compressor in the direction of gas flow in the main engine. The main engine can then have a temperature ratio (corresponding to the ratio between, on the one hand, a ratio between a temperature at the outlet of the combustion chamber of the main engine in peak operating condition of a rise and a temperature at the outlet of the combustion chamber of the main engine in take-off operating condition, and secondly, the temperature ratio of the high-pressure compressor) of between 1 .00 and 1 .10.
Egalement indépendamment ou en combinaison, le moteur principal peut présenter un rapport de taille de corps (correspondant au rapport entre une taille de corps au niveau d'une section d'entrée du compresseur haute pression du moteur principal en condition de fonctionnement de sommet de montée et la taille de corps au niveau de ladite section d'entrée du compresseur haute pression du moteur principal en condition de fonctionnement de décollage) compris entre 0.95 et 1 .05. Also independently or in combination, the main motor may have a body size ratio (corresponding to the ratio of a body size at an inlet section of the main engine high pressure compressor to a climb top condition of operation and the body size at said inlet section of the main engine high pressure compressor in take-off operating condition of between 0.95 and 1.05.
Toujours indépendamment ou en combinaison, le moteur principal peut comprendre, en aval de la soufflante, une chambre de combustion dans le sens d'écoulement des gaz, et un rapport entre une température en sortie de la chambre de combustion du moteur principal en condition de fonctionnement de sommet de montée et une température en sortie de la chambre de combustion du moteur principal en condition de fonctionnement de décollage peut alors être compris entre 0.90 et 1 .10, par exemple entre 1 .00 et 1 .05. Still independently or in combination, the main engine may comprise, downstream of the blower, a combustion chamber in the direction of gas flow, and a ratio between a temperature at the outlet of the combustion chamber of the main engine under the condition of climb top operation and a temperature at the outlet of the combustion chamber of the main engine in take-off operating condition can then be between 0.90 and 1 .10, for example between 1 .00 and 1 .05.
Egalement indépendamment ou en combinaison, le moteur principal peut comprendre une turbine haute pression en aval du compresseur haute pression dans le sens d'écoulement des gaz, avec un rapport entre une température en sortie de la turbine haute pression du moteur principal en condition de fonctionnement de sommet de montée et une température en sortie de la turbine haute pression du moteur principal en condition de fonctionnement de décollage qui soit compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. Egalement indépendamment ou en combinaison, le moteur auxiliaire comprend une soufflante carénée présentant une section d'entrée, avec un rapport de débit réduit de soufflante du moteur auxiliaire, correspondant au rapport entre le débit réduit d'air entrant dans la soufflante du moteur auxiliaire au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit réduit d'air entrant dans la soufflante du moteur auxiliaire au niveau de ladite section d'entrée en condition de fonctionnement de décollage, compris entre 1 .00 et 1 .10. Egalement indépendamment ou en combinaison, un rapport entre un taux de compression global du moteur auxiliaire en condition de fonctionnement de sommet de montée et un taux de compression global du moteur auxiliaire en condition de fonctionnement de décollage peut être compris entre 1 .00 et 1 .30. Also independently or in combination, the main engine may comprise a high pressure turbine downstream of the high pressure compressor in the gas flow direction, with a ratio between a temperature output of the high pressure turbine of the main engine in operating condition and a temperature at the outlet of the main engine high pressure turbine in take-off operating condition which is between 0.90 and 1 .10, for example between 0.95 and 1 .05. Also independently or in combination, the auxiliary motor comprises a ducted blower having an inlet section, with a reduced blower speed ratio of the auxiliary engine, corresponding to the ratio of the reduced air flow entering the blower of the auxiliary engine to the level of the inlet section in the up-hill operating condition and the reduced flow rate of air entering the auxiliary engine blower at said take-off operating condition input section, between 1 .00 and 1 .10. Also independently or in combination, a ratio between an overall compression ratio of the auxiliary engine in climb-up operating condition and an overall compression ratio of the auxiliary engine in take-off operating condition can be between 1 .00 and 1. 30.
Enfin, l'ensemble propulsif peut, de manière non limitative, comprendre au moins deux moteurs auxiliaires, la poussée desdits moteurs auxiliaires participant à hauteur de 100% de la poussée auxiliaire. BREVE DESCRIPTION DES DESSINS Finally, the propulsion unit may, in a nonlimiting manner, comprise at least two auxiliary engines, the thrust of said auxiliary engines participating to 100% of the auxiliary thrust. BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée qui va suivre, et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :  Other features, objects and advantages of the present invention will appear better on reading the detailed description which follows, and with reference to the appended drawings given by way of non-limiting examples and in which:
La figure 1 est un graphique illustrant, pour plusieurs paramètres, le rapport entre la valeur de ce paramètre mesuré pour une condition de fonctionnement correspondant au sommet de montée et la valeur de ce paramètre mesuré pour une condition de fonctionnement correspondant au décollage, pour un exemple de réalisation d'un moteur principal d'un ensemble propulsif conforme à l'invention et pour un moteur conventionnel, La figure 2 illustre un exemple de réalisation d'un aéronef pouvant comprendre un ensemble propulsif conforme à l'invention, et La figure 3 est une vue schématique en coupe partielle d'un exemple de réalisation d'un moteur principal. FIG. 1 is a graph illustrating, for several parameters, the ratio between the value of this measured parameter for an operating condition corresponding to the climb summit and the value of this parameter measured for an operating condition corresponding to the take-off, for an example embodiment of a main engine of a propulsion unit according to the invention and for a conventional engine, FIG. 2 illustrates an exemplary embodiment of an aircraft that may comprise a propulsion unit according to the invention, and Figure 3 is a schematic partial sectional view of an exemplary embodiment of a main motor.
DESCRIPTION DETAILLEE D'UN MODE DE REALISATION DETAILED DESCRIPTION OF AN EMBODIMENT
Afin d'améliorer la consommation spécifique d'un ensemble propulsif In order to improve the specific consumption of a propulsion unit
2 pour un aéronef 1 comprenant un moteur principal 3, l'invention propose de libérer le moteur principal 3 de la contrainte d'être capable de fournir une poussée suffisante pour faire décoller l'aéronef 1 et d'ajouter à l'ensemble propulsif 2 un moteur auxiliaire 4, distinct du moteur principal 3, afin de compenser la perte de poussée liée à cette modification du moteur principal 3. Il devient alors possible de dimensionner le moteur principal 3 en améliorant significativement sa consommation spécifique dans les phases de vol ayant une durée importante, comme la croisière, tout en garantissant que l'ensemble propulsif 2 est capable de faire décoller l'aéronef 1 . 2 for an aircraft 1 comprising a main engine 3, the invention proposes to release the main engine 3 from the constraint of being able to provide sufficient thrust to take off the aircraft 1 and to add to the propulsion unit 2 an auxiliary motor 4, separate from the main engine 3, in order to compensate for the thrust loss associated with this modification of the main engine 3. It then becomes possible to size the main engine 3 by significantly improving its specific fuel consumption in the flight phases having a important duration, as the cruise, while ensuring that the propulsion unit 2 is capable of taking off the aircraft 1.
Pour cela, l'ensemble propulsif 2 est configuré pour fonctionner à au moins deux conditions de fonctionnement distinctes et comprend au moins un moteur principal 3 et un moteur auxiliaire 4. Ces deux moteurs contribuent à la poussée totale délivrée par l'ensemble propulsif, dans des proportions de poussée différentes selon les phases de vol. Par moteur principal, on entend ici et dans tout le présent texte un moteur configuré pour fournir une poussée pendant l'ensemble des différentes phases de vol et en particulier pour fournir pendant la phase de croisière une poussée qui contribue de manière principale à la poussée totale. Par moteur auxiliaire, on entend un moteur qui assiste le moteur principal en fournissant une poussée auxiliaire pendant certaines phases de vol (pendant la phase de décollage et jusqu'au sommet de montée, notamment). De manière préférentielle, le moteur auxiliaire est coupé pendant les phases de vol nécessitant une poussée totale moins importante, comme la phase de croisière ; il peut également, pendant ces phases, fonctionner au ralenti ou à faible poussée. Dans ce qui suit, l'invention va plus particulièrement être décrite dans le cas où le moteur principal 3 comprend un turboréacteur. Ceci n'est cependant pas limitatif, le ou les moteurs principaux 3 pouvant comprendre un ou plusieurs turboréacteurs et/ou un ou plusieurs turbopropulseurs, lesdits moteurs principaux 3 pouvant comprendre au moins une soufflante/hélice carénée ou non carénée. For this, the propulsion unit 2 is configured to operate at at least two different operating conditions and comprises at least one main engine 3 and an auxiliary engine 4. These two engines contribute to the total thrust delivered by the propulsion unit, in different thrust proportions depending on the flight phase. By main engine means here and throughout the present text a motor configured to provide thrust during all the different phases of flight and in particular to provide during the cruise phase a thrust that contributes primarily to the total thrust . Auxiliary engine means a motor that assists the main engine by providing auxiliary thrust during certain phases of flight (during the take-off phase and up to the climb summit, in particular). Preferably, the auxiliary engine is cut during flight phases requiring less total thrust, such as the cruise phase; during these phases, it can also operate at low speed or at low thrust. In what follows, the invention will more particularly be described in the case where the main engine 3 comprises a turbojet engine. However, this is not limiting, the main engine (s) 3 possibly comprising one or more turbojet engines and / or one or more turboprop engines, said main engines 3 possibly comprising at least one ducted or non-ducted fan / propeller.
De manière connue en soi, le turboréacteur 3 comprend donc, d'amont en aval dans le sens d'écoulement des gaz dans le turboréacteur 3, au moins une soufflante 30 carénée et logée dans un carter de soufflante 30, un espace annulaire d'écoulement primaire et un espace annulaire d'écoulement secondaire. La masse d'air aspirée par la soufflante 30 est donc divisée en un flux primaire, qui circule dans l'espace d'écoulement primaire, et en un flux secondaire, qui est concentrique avec le flux primaire et circule dans l'espace d'écoulement secondaire.  In a manner known per se, the turbojet engine 3 thus comprises, from upstream to downstream in the direction of flow of the gases in the turbojet engine 3, at least one ducted fan 30 housed in a fan casing 30, an annular space of primary flow and an annular secondary flow space. The mass of air sucked by the fan 30 is thus divided into a primary flow, which circulates in the primary flow space, and a secondary flow, which is concentric with the primary flow and circulates in the space of secondary flow.
L'espace d'écoulement primaire traverse un corps primaire comprenant un ou plusieurs étages de compresseurs, par exemple un compresseur basse pression 32 et un compresseur haute pression 34, une chambre de combustion 36, un ou plusieurs étages de turbines, par exemple une turbine haute pression 38 et une turbine basse pression 40, et une tuyère d'échappement des gaz.  The primary flow space passes through a primary body comprising one or more stages of compressors, for example a low pressure compressor 32 and a high pressure compressor 34, a combustion chamber 36, one or more turbine stages, for example a turbine high pressure 38 and a low pressure turbine 40, and a gas exhaust nozzle.
Selon les phases de vol, le moteur principal 3 et le moteur auxiliaire 4 fournissent ensemble la poussée de l'ensemble propulsif. En particulier, le moteur principal 3 peut être assisté par le moteur auxiliaire 4 en phase de décollage afin de fournir la poussée de décollage à l'ensemble propulsif 2 et éventuellement en phase de sommet de montée afin de fournir la poussée de sommet de montée. Par exemple, la poussée fournie par l'ensemble propulsif 2 pendant la phase de décollage peut être obtenue à hauteur de 5% à 45% par le moteur auxiliaire 4, le complément étant apporté par le moteur principal 3. En phase de sommet de montée, le moteur principal 3 peut fournir toute la poussée nécessaire, ou être assisté à hauteur de 0% à 50% par le moteur auxiliaire 4. Typiquement, pour un moteur ayant une redline de vitesse de rotation des parties basse pression comprise entre 3000 tr/min (tours par minute) et 4000 tr/min, le décollage correspond à une vitesse de rotation de l'arbre basse pression comprise entre 2500 et 3000 tr/min, tandis que le sommet de montée correspond à une vitesse de rotation de l'arbre basse pression comprise entre 3000 tr/min et 3500 tr/min. Par ailleurs, l'ensemble propulsif 2 peut présenter des conditions de fonctionnement supplémentaires, tels que, entre autres, la croisière, le ralenti (au sol et en vol), etc. According to the flight phases, the main engine 3 and the auxiliary motor 4 together provide the thrust of the propulsion unit. In particular, the main engine 3 may be assisted by the auxiliary engine 4 in the take-off phase to provide the take-off thrust to the propulsion unit 2 and possibly in the climb summit phase to provide the climb summit thrust. For example, the thrust provided by the propulsion unit 2 during the take-off phase can be obtained up to 5% to 45% by the auxiliary engine 4, the complement being provided by the main engine 3. In the climb summit phase , the main motor 3 can provide all the necessary thrust, or be assisted from 0% to 50% by the auxiliary motor 4. Typically, for an engine having a low speed rotational speed reduction of between 3,000 rpm (revolutions per minute) and 4000 rpm, the takeoff corresponds to a rotation speed of the low pressure shaft of between 2500 and 3000 rpm, while the climbing top corresponds to a rotational speed of the low pressure shaft of between 3000 rpm and 3500 rpm. Furthermore, the propulsion unit 2 may have additional operating conditions, such as, among other things, cruising, idling (on the ground and in flight), etc.
On notera que la répartition de la poussée entre le moteur principal 3 et le moteur auxiliaire 4 de l'ensemble propulsif 2 peut être déterminée en fonction du type d'aéronef 1 et du type de mission associée (court, moyen, long courrier, etc.). Typiquement, pour un aéronef 1 configuré pour effectuer une mission du type long-courrier, la quote-part de la poussée fournie par le moteur auxiliaire 4 au sommet de montée est de préférence plus importante que dans le cas d'un aéronef 1 configuré pour effectuer une mission du type court-courrier. En effet, le temps de vol en condition de fonctionnement de croisière est plus court sur un court-courrier que sur un long-courrier, de sorte qu'il peut être préférable d'améliorer le rendement thermodynamique de l'ensemble propulsif 2 au sommet de montée et de limiter l'encombrement et le poids du moteur auxiliaire 4 plutôt que d'améliorer son rendement thermodynamique en croisière et d'augmenter l'encombrement et le poids du moteur auxiliaire 4.  It will be noted that the distribution of the thrust between the main engine 3 and the auxiliary engine 4 of the propulsion unit 2 can be determined according to the type of aircraft 1 and the associated mission type (short, medium, long haul, etc. .). Typically, for an aircraft 1 configured to perform a mission of the long-haul type, the share of the thrust provided by the auxiliary engine 4 at the climbing summit is preferably greater than in the case of an aircraft 1 configured to perform a short-haul type mission. Indeed, the flight time in cruising operating condition is shorter on a short-haul than on a long haul, so it may be preferable to improve the thermodynamic efficiency of the propulsion unit 2 at the top. to increase and limit the size and weight of the auxiliary engine 4 rather than to improve its thermodynamic efficiency in cruising and to increase the size and weight of the auxiliary engine 4.
Le moteur auxiliaire 4 peut fournir une poussée de manière continue entre la condition de fonctionnement correspondant au décollage et la condition de fonctionnement correspondant au sommet de montée, ou en variante être arrêté pendant l'un au moins desdits régimes.  The auxiliary engine 4 may provide a continuous thrust between the operating condition corresponding to the take-off and the operating condition corresponding to the climbing summit, or alternatively be stopped during at least one of said speeds.
Afin de réduire la consommation spécifique de l'ensemble propulsif 2 tout en garantissant la capacité de l'ensemble propulsif 2 à faire décoller un aéronef 1 , le moteur principal 3 est dimensionné de sorte qu'un rapport de température du compresseur haute pression QTCHP est compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). In order to reduce the specific consumption of the propulsion unit 2 while guaranteeing the capacity of the propulsion unit 2 to take off an aircraft 1, the main engine 3 is dimensioned so that a temperature ratio of the high pressure compressor QTCHP is between 0.90 and 1.10, for example between 0.95 and 1.05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
Par rapport de température du compresseur haute pression QTCHP, on comprendra ici le rapport entre la température en sortie du compresseur haute pression 34 (et donc en entrée de chambre de combustion 36) du moteur principal 3 en condition de fonctionnement de sommet de montée TCHP(TOC) et une température en sortie du compresseur haute pression 34 du moteur principal 3 en condition de fonctionnement de décollage TCHP(Tkoff)- La température en sortie du compresseur haute pression TCHP représente la température du fluide à la sortie du diffuseur, qui est lui-même placé derrière la dernière roue mobile du compresseur haute pression 34. In relation to the temperature of the high-pressure compressor QT C HP , the ratio between the temperature at the outlet of the high-pressure compressor 34 (and therefore at the combustion chamber inlet 36) of the main engine 3 under the operating condition of the ascent vertex will be understood here. TCHP (T O C) and a temperature at the outlet of the high pressure compressor 34 of the main engine 3 under take-off operating condition T C HP (Tkoff) - The output temperature of the high pressure compressor T C HP represents the temperature of the fluid at the outlet of the diffuser, which is itself placed behind the last mobile wheel of the high pressure compressor 34.
A titre de comparaison, pour un moteur conventionnel (c'est-à-dire un moteur dimensionné à partir de la condition de fonctionnement de décollage et qui est dépourvu de moteur auxiliaire), le rapport de température QTCHP est généralement compris entre 0.85 et 0.95. On en déduit que la température TCHP en sortie du compresseur haute pression 34 en sommet de montée est plus élevée dans le moteur principal 3 que dans un moteur conventionnel. Le moteur principal 3 est dimensionné de sorte à présenter très peu de variations de TCHP en sortie de compresseur, entre la condition de décollage et la condition de sommet de montée, par rapport à un moteur classique sans poussée auxiliaire au décollage. Le taux de compression du compresseur haute pression 34 est donc plus élevé pour le moteur principal 3 au sommet de montée, ce qui constitue un bénéfice en termes de rendement thermique du ou des turboréacteur(s)/turbopropulseur(s) du moteur principal 3. By way of comparison, for a conventional engine (that is to say a motor sized from the take-off operating condition and which has no auxiliary motor), the QT C HP temperature ratio is generally between 0.85. and 0.95. It can be deduced from this that the temperature T C HP at the outlet of the high pressure compressor 34 at the summit of rise is higher in the main engine 3 than in a conventional engine. The main engine 3 is dimensioned so as to have very few variations of T C HP at the compressor outlet, between the take-off condition and the climb crown condition, compared with a conventional engine without auxiliary thrust at take-off. The compression ratio of the high pressure compressor 34 is therefore higher for the main engine 3 at the top of the climb, which is a benefit in terms of the thermal efficiency of the turbojet (s) / turboprop (s) of the main engine 3.
Dans un moteur du type turboréacteur, la pression de l'air en sortie du compresseur haute pression 34 est la plus élevée du moteur. Il en résulte que le compresseur haute pression 34 ne peut être refroidi, puisqu'aucun des autres composants n'est susceptible de lui fournir un air suffisamment pressurisé pour le ventiler. La température en sortie du compresseur haute pression 34 est donc un point d'optimisation de ce compresseur. En dimensionnant le moteur principal 3 de sorte que la température TCHP(TOC) en sommet de montée est supérieure à la température TcHP(Tkoff) au décollage, il est ainsi possible d'optimiser le cycle thermodynamique du turboréacteur du moteur principal 3 en condition de fonctionnement de sommet de montée ou de croisière, au lieu d'avoir un compromis entre les optimisations en condition de fonctionnement de sommet de montée et condition de fonctionnement de décollage, et d'améliorer la consommation spécifique du moteur principal 3. On notera que, connaissant la température optimale TCHP à atteindre en sortie du compresseur haute pression 34, il est alors possible de définir une forme optimale des aubages de chaque étage du compresseur haute pression 34, associée à une technologie de matériau. In a turbojet type engine, the air pressure at the outlet of the high pressure compressor 34 is the highest of the engine. As a result, the high pressure compressor 34 can not be cooled, since none of the other components is likely to provide it with enough pressurized air to ventilate it. The temperature at the outlet of the high pressure compressor 34 is therefore an optimization point of this compressor. By dimensioning the main engine 3 so that the temperature T C HP (TOC) at the summit of rise is greater than the TcHP temperature (Tkoff) at takeoff, it is thus possible to optimize the thermodynamic cycle of the turbojet of the main engine 3 in climb-up or cruising operating condition, instead of having a compromise between optimizations in climb-up operating condition and take-off operating condition, and improve the main-engine specific power consumption. that, knowing the optimum temperature T HP C to reach the output of the high pressure compressor 34, it is then possible to define an optimum shape of the blades of each stage of the high pressure compressor 34, associated with a material technology.
Dans le cas où le moteur principal 3 comprend au moins un turboréacteur, un rapport de débit réduit de soufflante Qfan du moteur principal 3 peut être compris entre 1 .30 et 1 .50. Par rapport de débit réduit de soufflante Qfan du moteur principal 3, on comprendra ici le rapport entre le débit réduit d'air entrant dans la soufflante 30 du moteur principal 3 au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit réduit d'air entrant dans la soufflante 30 du moteur principal 3 au niveau de ladite section d'entrée en condition de fonctionnement de décollage. Le débit réduit Qfan correspond ici au débit d'air massique total en entrée de la soufflante Qmfan et réduit avec les conditions totales de pression et de température en entrée de la soufflante conformément à la formule suivante : In the case where the main engine 3 comprises at least one turbojet engine, a reduced fan fan speed ratio of the main engine 3 may be between 1.30 and 1.50. Compared with the reduced fan flow rate Q fan of the main engine 3, here the ratio between the reduced flow of air entering the fan of the main engine 3 at the inlet section in the operating condition of the top of the engine will be understood. mounted and the reduced flow of air entering the blower 30 of the main engine 3 at said inlet section in take-off operating condition. The reduced flow rate Q fan corresponds here to the total mass air flow at the inlet of the fan Qm fan and reduced with the total pressure and temperature conditions at the inlet of the fan according to the following formula:
Qfan — Qmfan
Figure imgf000013_0001
Qfan - Q m fan
Figure imgf000013_0001
où : - Qmfan correspond au débit d'air massique total au niveau section d'entrée de la soufflante - Tfan correspond à la température au niveau de la section d'entrée de la soufflante (exprimée en Kelvin, K) where: - Qm f an corresponds to the total mass air flow at the intake section of the blower - Tfan is the temperature at the inlet section of the blower (expressed in Kelvin, K)
- Tstd correspond à la température standard (288.15 K) - T s td corresponds to the standard temperature (288.15 K)
- Pfan correspond à la pression au niveau de la section d'entrée de la soufflante (exprimée en Bar)  - Pfan corresponds to the pressure at the inlet section of the fan (expressed in Bar)
- Pstd correspond à la pression standard (1 .0135 Bar) - P s td corresponds to the standard pressure (1 .0135 Bar)
La section d'entrée de la soufflante 30, où sont mesurés le débit d'air Qnrifan, la température Tfan et la pression Pfan, correspond à la surface du carter de soufflante 30 vue par l'écoulement qui entre dans ladite soufflante 30, dans un plan perpendiculaire à un axe de révolution de la soufflante 30. On notera que la position exacte de la mesure de cette section d'entrée n'est pas déterminante dans la mesure où l'on évalue un rapport de débit, tant que le débit est déterminé pour la même section d'entrée de la soufflante 30 en condition de fonctionnement de décollage et en condition de fonctionnement de sommet de montée. The inlet section of the blower 30, where the Qnrifan air flow rate, the T fan temperature and the fan P pressure are measured, corresponds to the area of the blower housing 30 as seen by the flow entering said blower 30. , in a plane perpendicular to an axis of revolution of the fan 30. It will be noted that the exact position of the measurement of this input section is not decisive insofar as a flow ratio is evaluated, as long as the flow rate is determined for the same inlet section of the blower 30 in take-off operating condition and in climb-up operating condition.
Pour calculer ce rapport Qfan, le débit réduit d'air en condition de fonctionnement de sommet de montée et en condition de fonctionnement de décollage est mesuré lorsque le moteur principal 3 est stationnaire dans une atmosphère standard (telle que définie par le manuel de l'Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer. To calculate this fan ratio Q, the reduced air flow rate in a climb-up condition and in take-off operating condition is measured when the main engine 3 is stationary in a standard atmosphere (as defined by the engine manual). International Civil Aviation Organization (ICAO), Doc 7488/3, 3rd Edition) and at sea level.
Un moteur principal 3 comprenant un turboréacteur ayant un tel rapport de débit réduit de soufflante Qfan présente alors une meilleure consommation spécifique en comparaison avec un moteur conventionnel puisqu'il est dimensionné non pas en fonction d'un compromis entre la condition de fonctionnement de décollage et la condition de fonctionnement de croisière, mais en fonction principalement de la condition de fonctionnement de sommet de montée et de croisière, qui correspondent à une partie substantielle du fonctionnement du moteur principal 3. Le débit réduit d'air Qfan en entrée de la soufflante 30 de ce moteur principal 3 est donc plus important au sommet de montée qu'au décollage alors que, pour un moteur conventionnel, le rapport de débit réduit de soufflante Qfan se situe entre 1 .00 et 1 .10. Il en résulte qu'un moteur principal 3 conforme à l'invention présente un cycle thermodynamique plus efficace qu'un moteur conventionnel. A main engine 3 comprising a turbojet having such a reduced fan speed ratio Qf an then has a better specific consumption compared to a conventional engine since it is dimensioned not according to a compromise between the operating condition of takeoff and the cruising operating condition, but mainly depending on the climb and cruise summit operating condition, which correspond to a substantial part of the operation of the main engine 3. The reduced airflow Q fan at the input of the blower 30 of this main motor 3 is therefore more important at the summit of climb than at takeoff whereas, for a conventional engine, the ratio of reduced flow rate of fan Qf year is between 1 .00 and 1 .10. As a result, a main motor 3 according to the invention has a more efficient thermodynamic cycle than a conventional motor.
Dans une forme de réalisation, le rapport de pression totale de la soufflante 30 du moteur principal 3 peut être compris entre 1 .35 et 1 .40. Le rapport QOPR entre le taux de compression global du moteur principal 3 en condition de fonctionnement de sommet de montée et le taux de compression global du moteur principal 3 en condition de fonctionnement de décollage peut être compris entre 1 .50 et 1 .90, par exemple entre 1 .55 et 1 .80. Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). In one embodiment, the total pressure ratio of the blower 30 of the main engine 3 may be between 1.35 and 1.40. The ratio Q OPR between the overall compression ratio of the main engine 3 in climb-up operating condition and the overall compression ratio of the main engine 3 under take-off operating condition can be between 1.50 and 1.90, for example between 1.55 and 1.80. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
A titre de comparaison, pour un moteur conventionnel, ce rapport est habituellement compris entre 1 .00 et 1 .30. Cette différence s'explique par le fait que l'assistance du moteur auxiliaire 4 permet d'optimiser le fonctionnement thermodynamique du moteur principal 3 en choisissant par conception de le faire fonctionner pour toutes les conditions de fonctionnement (décollage, sommet de montée, croisière, ralenti, etc.) à des températures et pressions proches des maxima autorisés par la nature des matériaux et composants de ses modules. Cela permet en particulier d'augmenter le taux de compression dans les compresseurs basse pression et haute pression du moteur principal 3.  For comparison, for a conventional engine, this ratio is usually between 1 .00 and 1 .30. This difference is explained by the fact that the assistance of the auxiliary engine 4 optimizes the thermodynamic operation of the main engine 3 by choosing by design to operate it for all operating conditions (takeoff, climb summit, cruise, idle, etc.) at temperatures and pressures close to the maximum permitted by the nature of the materials and components of its modules. This makes it possible in particular to increase the compression ratio in the low pressure and high pressure compressors of the main engine 3.
Par taux de compression global, on comprendra ici la combinaison du rapport de compression du compresseur haute pression 34, du compresseur basse pression 32 et de la soufflante 30 ou, en d'autre termes, le rapport entre la pression en sortie du compresseur haute pression 34 (et donc en entrée de chambre de combustion 36) et la pression à l'entrée de la soufflante 30. Le taux de compression global est déterminé, que ce soit en condition de fonctionnement de sommet de montée ou en condition de fonctionnement de décollage, lorsque le moteur principal 3 est stationnaire dans une atmosphère standard (telle que définie par le manuel de l'Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer. By overall compression ratio, here will be understood the combination of the compression ratio of the high pressure compressor 34, the low pressure compressor 32 and the blower 30 or, in other words, the ratio between the outlet pressure of the high pressure compressor. 34 (and thus at the combustion chamber inlet 36) and the pressure at the inlet of the fan 30. The overall compression ratio is determined, whether in run-up operating condition or in take-off operating condition, when the main engine 3 is stationary in a standard atmosphere (as defined by the International Civil Aviation Organization (ICAO) manual, Doc 7488 / 3, 3rd edition) and at sea level.
Le rapport de température QTComb, correspondant au rapport entre la température en sortie de la chambre de combustion 36 (et donc en entrée de la turbine haute pression 38) du moteur principal 3 en condition de fonctionnement de sommet de montée TComb(Toc) et la température en sortie de la chambre de combustion 36 du moteur principal 3 en condition de fonctionnement de décollage TComb(Tkoff) peut être compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). The temperature ratio QT Co mb, corresponding to the ratio between the temperature at the outlet of the combustion chamber 36 (and thus at the inlet of the high-pressure turbine 38) of the main engine 3 under the operating condition of the climb vertex T Co mb ( Toc) and the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the take-off operating condition T Co mb (Tkoff) can be between 0.90 and 1 .10, for example between 0.95 and 1 .05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
A titre de comparaison, pour un moteur conventionnel, le rapport de température QTComb est généralement compris entre 0.85 et 0.95. On en déduit que la température TComb en sortie de la chambre de combustion 36 en sommet de montée est plus élevée dans le moteur principal 3 que dans un moteur conventionnel. Le cycle thermodynamique du turboréacteur du moteur principal 3 est donc plus efficace. By way of comparison, for a conventional engine, the QT Co mb temperature ratio is generally between 0.85 and 0.95. It can be deduced that the temperature T Co mb at the outlet of the combustion chamber 36 at the summit of rise is higher in the main engine 3 than in a conventional engine. The thermodynamic cycle of the turbojet of the main engine 3 is therefore more efficient.
Dans un moteur du type turboréacteur, on refroidit généralement par ventilation la turbine haute pression 38. Le dimensionnement du système de refroidissement est généralement réalisé sur les conditions de température maximales rencontrées au niveau de la condition de décollage, et le système de refroidissement se retrouve surdimensionné et sous-exploité pour les autres conditions de fonctionnement. Le rapport de température QTcomb ainsi défini permet d'utiliser en permanence le système de refroidissement de la turbine haute pression 38 du moteur principal 3 sur son optimum de fonctionnement et donc d'efficacité de refroidissement. En outre, la limitation des excursions thermiques vues par la turbine haute pression 38 entre les conditions décollage et de croisière contribue à limiter la dégradation mécanique de cette dernière et donc à améliorer sa durée de vie. In a turbojet type engine, the high-pressure turbine 38 is generally cooled by ventilation. The design of the cooling system is generally performed on the maximum temperature conditions encountered at the take-off condition, and the cooling system is oversized. and underused for other operating conditions. The QTcomb temperature ratio thus defined makes it possible to continuously use the cooling system of the high-pressure turbine 38 of the main engine 3 over its optimum operation and therefore cooling efficiency. In addition, the limitation of the thermal excursions seen by the high-pressure turbine 38 between take-off and cruise conditions contributes to limiting the mechanical degradation of the latter and thus to improve its service life.
Un rapport de température haute pression QTComb/QTcHP, correspondant au rapport entre, d'une part, le rapport entre la température en sortie de la chambre de combustion 36 du moteur principal 3 en condition de fonctionnement de sommet de montée TComb(Toc) et la température en sortie de la chambre de combustion 36 du moteur principal 3 en condition de fonctionnement de décollage TComb(Tkoff), et d'autre part, le rapport QTCHP entre la température en sortie du compresseur haute pression 34 du moteur principal 3 en condition de fonctionnement de sommet de montée TCHP(TOC) et une température en sortie du compresseur haute pression 34 du moteur principal 3 en condition de fonctionnement de décollage TCHP(Tkoff), peut être compris entre 1 .00 et 1 .10. A high pressure temperature ratio QT Co mb / QTcHP, corresponding to the ratio between, on the one hand, the ratio between the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the operating condition of the climb vertex T Co mb (Toc) and the temperature at the outlet of the combustion chamber 36 of the main engine 3 in the take-off operating condition T Co mb (Tkoff), and secondly, the ratio QT C HP between the outlet temperature of the high compressor pressure 34 of the main engine 3 in the up-hill operating condition T C HP (T O C) and a temperature at the outlet of the high-pressure compressor 34 of the main engine 3 under the take-off operating condition T C HP (Tkoff), can be between 1 .00 and 1 .10.
En d'autres termes, le rapport de température haute pression In other words, the high pressure temperature ratio
QTcomb QTcHP correspond au rapport entre le rapport température QTComb et le rapport de température QTCHP-QTcomb QTcHP is the ratio of the QT Co mb temperature ratio to the QT C HP-temperature ratio.
Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
On comprendra donc qu'ici, le moteur principal 3 n'est pas un moteur à cycle variable, puisque son rapport de température haute pression QTcomb QTcHP est sensiblement égal à celui d'un moteur conventionnel quelles que soient les conditions de fonctionnement. Le rapport de température QTTHP, qui correspond au rapport entre la température en sortie de la turbine haute pression 38 (et donc en entrée de la turbine basse pression 40) du moteur principal 3 en condition de fonctionnement de sommet de montée TTHP(TOC) et la température en sortie de la turbine haute pression 38 du moteur principal 3 en condition de fonctionnement de décollage TTHP(Tkoff) peut être compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. La température en sortie de la turbine haute pression TTHP peut, par exemple, être mesurée dans une zone proche de la dernière roue mobile de la turbine haute pression 38 (au niveau du bord d'attaque du premier distributeur de la turbine basse pression 40 ou au niveau de la paroi d'intrados du deuxième distributeur de la turbine basse pression 40). Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). It will therefore be understood that here, the main engine 3 is not a variable cycle engine, since its high pressure temperature ratio QTcomb QTcHP is substantially equal to that of a conventional engine regardless of the operating conditions. The temperature ratio QT T HP, which corresponds to the ratio between the outlet temperature of the high-pressure turbine 38 (and thus at the inlet of the low-pressure turbine 40) of the main engine 3 in the operating condition of the climb vertex T T HP (T OC ) and the outlet temperature of the high-pressure turbine 38 of the main engine 3 in the take-off operating condition T T HP (Tkoff) can be between 0.90 and 1.10, for example between 0.95 and 1.05. The temperature at the outlet of the high pressure turbine T T HP may, for example, be measured in an area close to the last impeller of the high-pressure turbine 38 (at the leading edge of the first distributor of the low-pressure turbine 40 or at the intrados wall of the second distributor of the low-pressure turbine 40). This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
A titre de comparaison, pour un moteur conventionnel, le rapport de température QTTHP est généralement compris entre 0.85 et 0.95. On en déduit que la température en sortie de la turbine basse pression 40 en sommet de montée est plus élevée dans le moteur principal 3 que dans un moteur conventionnel.  By way of comparison, for a conventional engine, the QTTHP temperature ratio is generally between 0.85 and 0.95. It can be deduced that the temperature at the outlet of the low-pressure turbine 40 at the summit of rise is higher in the main engine 3 than in a conventional engine.
La température en entrée de la turbine basse pression 40 est un point d'optimisation de la turbine basse pression 40 et du moteur principal 3 en général. Le choix de la température en sortie de la turbine haute pression 38 en condition de fonctionnement de sommet de montée TTHP(TOC) permet ainsi de dimensionner le moteur principal 3 en condition de fonctionnement de sommet de montée ou de croisière, qui couvrent une partie substantielle du fonctionnement du moteur principal 3, et non exclusivement en condition de fonctionnement de décollage. La limitation des excursions thermiques vues par la turbine basse pression 40 entre les conditions décollage et croisière contribue à limiter la dégradation mécanique de cette dernière et donc à améliorer sa durée de vie. The inlet temperature of the low pressure turbine 40 is an optimization point of the low pressure turbine 40 and the main motor 3 in general. The choice of the outlet temperature of the high-pressure turbine 38 under the T T HP (T OC ) up-hill operating condition thus makes it possible to dimension the main engine 3 in the operating condition of the ascent or crest, which cover a substantial part of the operation of the main engine 3, and not exclusively in take-off operating condition. The limitation of the thermal excursions seen by the low-pressure turbine 40 between the take-off and cruising conditions contributes to limiting the mechanical degradation of the latter and thus to improving its service life.
Un rapport de taille de corps C du moteur principal 3 entre les conditions de fonctionnement de sommet de montée et de décollage peut être compris entre 0.95 et 1 .05. Cette relation est valable quel que soit le type du moteur principal 3 (ou un plusieurs turboréacteur(s) et/ou turbopropulseur(s)). A C-body size ratio of the main engine 3 between the climb-up and take-off operating conditions can be between 0.95 and 1.05. This relationship is valid regardless of the type of the main engine 3 (or a number of turbojet (s) and / or turboprop (s)).
Par rapport de taille de corps Qre du moteur principal 3, on comprendra ici le rapport entre la taille de corps au niveau d'une section d'entrée du compresseur haute pression 34 du moteur principal 3 en condition de fonctionnement de sommet de montée et la taille de corps au niveau de ladite section d'entrée en condition de fonctionnement de décollage. Relative body Q re size of the main engine 3, it is understood here the ratio between the body size at a high pressure compressor inlet section 34 of the main motor 3 in mounted condition of the top of operation and the body size at level of said input section in take-off operating condition.
La taille de corps Tre correspond ici au débit massique d'air QmCOre entrant dans le compresseur haute pression 34 du moteur principal 3 au niveau de la section d'entrée corrigé des conditions de température TCHP et de pression PCHP totale en sortie du compresseur haute pression 34 conformément à la formule suivante :
Figure imgf000019_0001
The size of body T re here corresponds to the air mass flow rate Qm CO re entering the high pressure compressor 34 of the main engine 3 at the corrected input section TCHP temperature conditions and pressure P C Total HP at the outlet of the high pressure compressor 34 according to the following formula:
Figure imgf000019_0001
où : - QITICHP correspond au débit d'air massique total en entrée de la soufflante where: - QITICHP corresponds to the total mass air flow at the inlet of the blower
- TCHP correspond à la température en sortie du compresseur haute pression 34 (exprimée en Kelvin, K)  - TCHP corresponds to the temperature at the outlet of the high-pressure compressor 34 (expressed in Kelvin, K)
- Tstd correspond à la température standard (288.15 K) - T s td corresponds to the standard temperature (288.15 K)
- PCHP correspond à la pression en sortie du compresseur haute pression 34 (exprimée en Bar)  - PCHP corresponds to the pressure at the outlet of the high pressure compressor 34 (expressed in Bar)
- Pstd correspond à la pression standard (1 .0135 Bar) - P s td corresponds to the standard pressure (1 .0135 Bar)
Ici encore, la taille de corps TCOre en condition de fonctionnement de sommet de montée et en condition de fonctionnement de décollage est mesurée lorsque le moteur principal 3 est stationnaire dans une atmosphère standard (telle que définie par le manuel de l'Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer. Here again, the body size T CO re in climb-up operating condition and in take-off operating condition is measured when the main engine 3 is stationary in a standard atmosphere (as defined by the manual of the Organization). International Civil Aviation (ICAO), Doc 7488/3, 3rd Edition) and at sea level.
La taille de corps Tre est représentative de la hauteur géométrique de la veine du compresseur haute pression 34. The body size T re is representative of the geometric height of the vein of the high pressure compressor 34.
Le moteur auxiliaire 4 peut, également, être dimensionné de manière à optimiser la consommation spécifique de l'ensemble propulsif 2. Typiquement, lorsque le moteur auxiliaire 4 comprend un ou plusieurs turboréacteurs comportant, de manière conventionnelle, une soufflante 30 carénée, un rapport de débit de soufflante Qfan du moteur auxiliaire 4 peut être compris entre 1 .00 et 1 .10. De manière analogue au rapport de débit de soufflante Qfan du moteur principal 3 défini ci-dessus, le rapport de débit de soufflante Qfan du moteur auxiliaire 4 correspond alors au rapport entre le débit d'air entrant dans la soufflante 30 du moteur auxiliaire 4 au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit d'air entrant dans la soufflante 30 du moteur auxiliaire 4 au niveau de ladite section d'entrée en condition de fonctionnement de décollage, le débit étant mesuré lorsque le moteur auxiliaire 4 est stationnaire dans une atmosphère standard (telle que définie par le manuel de l'Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer. The auxiliary motor 4 may also be dimensioned so as to optimize the specific consumption of the propulsion unit 2. Typically, when the auxiliary engine 4 comprises one or more turbojets having, in a conventional manner, a ducted fan, a ratio of blower rate Q fan of the auxiliary motor 4 can be between 1 .00 and 1 .10. In a similar manner to the fan flow ratio Qf an of the main motor 3 defined above, the fan flow rate ratio Qf an of the auxiliary engine 4 then corresponds to the ratio of the air flow rate entering the fan 30 of the auxiliary engine 4 at the input section in upwind operating condition and the air flow entering the blower 30 of the auxiliary engine 4 at said input section in take-off operating condition, the flow being measured when auxiliary engine 4 is stationary in a standard atmosphere (as defined by the International Civil Aviation Organization (ICAO) Manual, Doc 7488/3, 3rd Edition) and at sea level.
En variante, le ou les moteurs auxiliaires 4 peuvent comprendre un ou plusieurs turbopropulseurs et/ou un ou plusieurs effecteurs propulsifs entraînés par des moteurs électriques. Selon une autre variante, le ou les moteurs auxiliaires peuvent comprendre un ou plusieurs turboréacteurs en combinaison avec un ou plusieurs turbopropulseurs et/ou un ou plusieurs effecteurs propulsifs entraînés par des moteurs électriques Alternatively, the auxiliary engine (s) 4 may comprise one or more turboprop engines and / or one or more propulsive effectors driven by electric motors. According to another variant, the auxiliary engine or engines may comprise one or more turbojet engines in combination with one or more turboprop engines and / or one or more propulsive effectors driven by electric motors.
Par ailleurs, le rapport QOPR entre le taux de compression global du moteur auxiliaire 4 en condition de fonctionnement de sommet de montée et le taux de compression global du moteur auxiliaire 4 en condition de fonctionnement de décollage peut être compris entre 1 .00 et 1 .30. Moreover, the ratio Q OPR between the overall compression ratio of the auxiliary engine 4 in the climb-summit operating condition and the overall compression ratio of the auxiliary engine 4 in take-off operating condition can be between 1 .00 and 1. .30.
Ici encore, le taux de compression global en condition de fonctionnement de sommet de montée et en condition de fonctionnement de décollage est mesuré lorsque le moteur auxiliaire 4 est stationnaire dans une atmosphère standard (telle que définie par le manuel de l'Organisation de l'aviation civile internationale (OACI), Doc 7488/3, 3e édition) et au niveau de la mer. Un rapport de taille de corps Qre du moteur auxiliaire 4 entre les conditions de fonctionnement de sommet de montée et de décollage peut être compris entre 0.95 et 1 .05. Par rapport de taille de corps Qre du moteur auxiliaire 4, on comprendra ici le rapport entre la taille de corps au niveau d'une section d'entrée du compresseur haute pression 34 du moteur auxiliaire 4 en condition de fonctionnement de sommet de montée et la taille de corps au niveau de ladite section d'entrée en condition de fonctionnement de décollage. Here again, the overall compression ratio in climb-up operating condition and take-off operating condition is measured when the auxiliary engine 4 is stationary in a standard atmosphere (as defined by the Organization's manual of the international civil Aviation Organization (ICAO), Doc 7488/3, 3rd edition) and at the sea. A ratio of body size Q re auxiliary motor 4 between the conditions of climb and top off operation can be understood between 0.95 and 1.05. In relation to the body size Q of the auxiliary motor 4, here the ratio between the body size at an inlet section of the high pressure compressor 34 of the auxiliary motor 4 in the operating condition of the ascent vertex will be understood. and the body size at said input section in take-off operating condition.
La définition et la mesure de la taille de corps Tre indiquée pour le moteur principale 3 s'applique mutatis mutandis au moteur auxiliaire 4. L'ensemble propulsif 2 peut comprendre un ou plusieurs moteurs principaux 3 et un ou plusieurs moteurs auxiliaires 4. Dans ce cas, le ou les moteurs principaux 3 participent alors ensemble dans la fourniture de la poussée principale, tandis que le ou les moteurs auxiliaires 4 participent ensemble dans la fourniture de la poussée auxiliaire. The definition and measurement of body size T re specified for the main motor 3 applies mutatis mutandis to the auxiliary motor 4. The propulsion system 2 may comprise one or more main engines 3 and one or more auxiliary motors 4. In this case, the main engine (s) 3 then participate together in the supply of the main thrust, while the auxiliary engine (s) 4 participate together in the supply of the auxiliary thrust.
Par exemple, l'ensemble propulsif 2 peut comprendre un moteur principal 3 et deux moteurs auxiliaires 4. Les moteurs auxiliaires 4 peuvent par exemple être fixés sous les ailes d'un aéronef 1 tandis que le moteur principal 3 peut être placé à l'arrière du fuselage de l'aéronef 1 , comme illustré sur la figure 2. For example, the propulsion unit 2 may comprise a main engine 3 and two auxiliary engines 4. The auxiliary engines 4 may for example be fixed under the wings of an aircraft 1 while the main engine 3 may be placed at the rear of the fuselage of the aircraft 1, as illustrated in FIG. 2.
Typiquement, l'ensemble propulsif 2 peut comprendre un turbopropulseur à hélice non carénée et deux moteurs auxiliaires 4 comprenant chacun un ou plusieurs effecteurs entraînés par un moteur électrique.  Typically, the propulsion unit 2 may comprise a turbofan propeller propeller and two auxiliary engines 4 each comprising one or more effectors driven by an electric motor.
Le cas échéant, le ou les moteurs auxiliaires 4 peuvent être escamotables, c'est-à-dire que leur position peut être modifiée pendant certaines phases du vol de l'aéronef 1 afin de minimiser leur traînée. Par exemple, les moteurs auxiliaires 4 peuvent être escamotés en étant rentrés dans une cale spécifique formée dans les ailes de l'aéronef 1 . If necessary, the auxiliary engine (s) 4 may be retractable, that is to say that their position may be modified during certain phases of the flight of the aircraft 1 in order to minimize their drag. For example, the auxiliary engines 4 can be retracted by being tucked into a specific wedge formed in the wings of the aircraft 1.

Claims

REVENDICATIONS
1 . Ensemble propulsif (2) pour un aéronef (1 ), ledit ensemble propulsif (2) étant configuré pour fournir une poussée de décollage au cours d'une condition de fonctionnement de décollage et une poussée de sommet de montée au cours d'une condition de fonctionnement de sommet de montée et comprenant : 1. A propulsion assembly (2) for an aircraft (1), said propulsion assembly (2) being configured to provide a take-off thrust during a take-off operating condition and a climb-up thrust during a take-off condition. summit climb operation and comprising:
- au moins un moteur principal (3), configuré pour fournir une poussée principale au cours de la condition de fonctionnement de décollage et de la condition de fonctionnement de sommet de montée, et  at least one main engine (3), configured to provide a main thrust during the take-off operating condition and the climb-top operating condition, and
- au moins un moteur auxiliaire (4), distinct du moteur principal (3) et configuré pour fournir une poussée auxiliaire afin de compléter la poussée principale du moteur principal (3) pendant au moins la condition de fonctionnement de décollage,  at least one auxiliary motor (4), distinct from the main engine (3) and configured to provide auxiliary thrust to complete the main thrust of the main engine (3) during at least the take-off operating condition,
l'ensemble propulsif (2) étant caractérisé en ce que : the propulsion unit (2) being characterized in that:
- le moteur principal comprend un compresseur haute pression (34), et the main motor comprises a high-pressure compressor (34), and
- le moteur principal est dimensionné en tenant compte de la poussée du moteur auxiliaire dans la condition de fonctionnement de décollage, de telle sorte qu'un rapport de température du compresseur haute pression (QTCHP), correspondant au rapport entre une température en sortie du compresseur haute pression (34) du moteur principal (3) en condition de fonctionnement de sommet de montée (TCHP(TOC)) et une température en sortie du compresseur haute pression (34) du moteur principal (3) en condition de fonctionnement de décollage (TcHP(Tkoff)), soit compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. the main motor is dimensioned taking into account the thrust of the auxiliary engine in the take-off operating condition, such that a temperature ratio of the high-pressure compressor (QTCHP) corresponding to the ratio between a temperature at the outlet of the compressor high pressure (34) of the main engine (3) in up-hill operating condition (T C HP (TOC)) and a temperature at the outlet of the high-pressure compressor (34) of the main engine (3) in operating condition of takeoff (TcHP (Tkoff)), being between 0.90 and 1 .10, for example between 0.95 and 1 .05.
2. Ensemble propulsif (2) selon la revendication 1 , dans lequel : 2. propulsion unit (2) according to claim 1, wherein:
- le moteur principal (3) comprend en outre une soufflante (30) carénée qui présente une section d'entrée, ladite soufflante (30) étant située en amont du compresseur haute pression (34) dans le sens d'écoulement des gaz dans le moteur principal (3), et - un rapport de débit réduit de soufflante (Qfan) du moteur principal (3), correspondant au rapport entre le débit réduit d'air entrant dans la soufflante (30) du moteur principal (3) au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit réduit d'air entrant dans la soufflante (30) du moteur principal (3) au niveau de ladite section d'entrée en condition de fonctionnement de décollage, est compris entre 1 .3 et 1 .50, de préférence entre 1 .35 et 1 .40. the main motor (3) further comprises a ducted fan (30) having an inlet section, said fan (30) being situated upstream of the high pressure compressor (34) in the direction of flow of the gases in the main motor (3), and a reduced fan speed ratio (Qf an ) of the main engine (3) corresponding to the ratio of the reduced air flow entering the blower (30) of the main engine (3) at the inlet section; in the up-hill operating condition and the reduced flow rate of air entering the main engine blower (30) at said entry section in take-off operating condition is between 1 .3 and 1.50, preferably between 1.35 and 1.40.
3. Ensemble propulsif (2) selon l'une des revendications 1 ou 2, dans lequel un rapport (QOPR) entre un taux de compression global du moteur principal (3) en condition de fonctionnement de sommet de montée et un taux de compression global du moteur principal (3) en condition de fonctionnement de décollage, est compris entre 1 .50 et 1 .90, par exemple entre 1 .55 et 1 .80. 3. propulsion unit (2) according to one of claims 1 or 2, wherein a ratio (QOPR) between an overall compression ratio of the main engine (3) in upwind operating condition and a global compression ratio the main engine (3) in take-off operating condition is between 1.50 and 1.90, for example between 1.55 and 1.80.
4. Ensemble propulsif (2) selon l'une des revendications 1 à 3, dans lequel : 4. propulsion unit (2) according to one of claims 1 to 3, wherein:
- le moteur principal (3) comprend en outre une chambre de combustion (36) s'étendant en aval du compresseur haute pression (34) dans le sens d'écoulement des gaz dans le moteur principal (3), et  the main motor (3) further comprises a combustion chamber (36) extending downstream of the high pressure compressor (34) in the direction of gas flow in the main engine (3), and
- un rapport de température (QTComb/QTcHp) du moteur principal (3), correspondant au rapport entre, d'une part, un rapport entre une température en sortie de la chambre de combustion (36) du moteur principal (3) en condition de fonctionnement de sommet de montée (TComb(Toc)) et une température en sortie de la chambre de combustion (36) du moteur principal (3) en condition de fonctionnement de décollage (TComb(Tkoff)), et d'autre part, le rapport (QTCHP) de température du compresseur haute pression, est compris entre 1 .00 et 1 .1 0. a temperature ratio (QT Co mb / QTcHp) of the main engine (3), corresponding to the ratio between, on the one hand, a ratio between a temperature at the outlet of the combustion chamber (36) of the main engine (3) in a climb summit operating condition (T Co mb (Toc)) and a temperature at the outlet of the combustion chamber (36) of the main engine (3) under take-off operating condition (T Co mb (Tkoff)), and secondly, the ratio (QT C HP) of the high pressure compressor temperature, is between 1 .00 and 1 .1 0.
5. Ensemble propulsif (2) selon l'une des revendications 1 à 4, dans lequel un rapport de taille de corps (Q∞re) du moteur principal (3), correspondant au rapport entre une taille de corps au niveau d'une section d'entrée du compresseur haute pression (34) du moteur principal (3) en condition de fonctionnement de sommet de montée et la taille de corps au niveau de ladite section d'entrée du compresseur haute pression (34) du moteur principal (3) en condition de fonctionnement de décollage, est compris entre 0.95 et 1 .05. 5. Propulsion unit (2) according to one of claims 1 to 4, wherein a body size ratio (Q∞re) of the main motor (3), corresponding to the ratio between a body size at a level of section input of high pressure compressor (34) of main engine (3) in upwind operating condition and body size at said inlet section of high pressure compressor (34) of main engine (3) in take-off operating condition, is between 0.95 and 1 .05.
6. Ensemble propulsif (2) selon l'une des revendications 1 à 5, dans lequel : 6. propulsion unit (2) according to one of claims 1 to 5, wherein:
- le moteur principal (3) comprend en outre, en aval de la soufflante (30), une chambre de combustion (36) dans le sens d'écoulement des gaz dans le moteur principal (3), et  the main motor (3) further comprises, downstream of the fan (30), a combustion chamber (36) in the direction of flow of the gases in the main engine (3), and
- un rapport (QTComb) entre une température en sortie de la chambre de combustion (36) du moteur principal (3) en condition de fonctionnement de sommet de montée (TComb(Toc)) et une température en sortie de la chambre de combustion (36) du moteur principal (3) en condition de fonctionnement de décollage (TComb(Tkoff)) est compris entre 0.90 et 1 .10, par exemple entre 1 .00 et 1 .05. a ratio (QT Co mb) between a temperature at the outlet of the combustion chamber (36) of the main engine (3) in a climb summit operating condition (T Co mb (Toc)) and a temperature at the outlet of the combustion chamber (36) of the main engine (3) in take-off operating condition (T Co mb (Tkoff)) is between 0.90 and 1 .10, for example between 1 .00 and 1 .05.
7. Ensemble propulsif (2) selon l'une des revendications 1 à 6, dans lequel : 7. propulsion unit (2) according to one of claims 1 to 6, wherein:
- le moteur principal (3) comprend en outre, en aval du compresseur haute pression (34) dans le sens d'écoulement des gaz dans le moteur principal (3), une turbine haute pression (38), et  the main motor (3) further comprises, downstream of the high-pressure compressor (34) in the direction of flow of the gases in the main motor (3), a high-pressure turbine (38), and
- un rapport (QTTHP) entre une température en sortie de la turbine haute pression (38) du moteur principal (3) en condition de fonctionnement de sommet de montée (TTHP(TOC)) et une température en sortie de la turbine haute pression (38) du moteur principal (3) en condition de fonctionnement de décollage (TTHP(Tkoff)) est compris entre 0.90 et 1 .10, par exemple entre 0.95 et 1 .05. a ratio (QT T HP) between a temperature at the outlet of the high-pressure turbine (38) of the main engine (3) in a climb-summit operating condition (T T HP (TOC)) and a temperature at the outlet of the high pressure turbine (38) of the main engine (3) in take-off operating condition (T T HP (Tkoff)) is between 0.90 and 1 .10, for example between 0.95 and 1 .05.
8. Ensemble propulsif (2) selon l'une des revendications 1 à 7, dans lequel le moteur auxiliaire (4) comprend une soufflante (30) carénée présentant une section d'entrée, et dans lequel un rapport de débit réduit de soufflante du moteur auxiliaire (4), correspondant au rapport entre le débit réduit d'air entrant dans la soufflante (30) du moteur auxiliaire (4) au niveau de la section d'entrée en condition de fonctionnement de sommet de montée et le débit réduit d'air entrant dans la soufflante (30) du moteur auxiliaire (4) au niveau de ladite section d'entrée en condition de fonctionnement de décollage, est compris entre 1 .00 et 1 .10. 8. propulsion unit (2) according to one of claims 1 to 7, wherein the auxiliary motor (4) comprises a fan (30) streamlined having an inlet section, and wherein a reduced auxiliary motor blower speed ratio (4), corresponding to the ratio of the reduced air flow entering the blower (30) of the auxiliary engine (4) to the level of the input section in the up-hill operating condition and the reduced flow rate of air entering the blower (30) of the auxiliary motor (4) at said input section under take-off operating condition is included between 1 .00 and 1 .10.
9. Ensemble propulsif (2) selon l'une des revendications 1 à 8, dans lequel un rapport entre un taux de compression global du moteur auxiliaire (4) en condition de fonctionnement de sommet de montée et un taux de compression global du moteur auxiliaire (4) en condition de fonctionnement de décollage, est compris entre 1 .00 et 1 .30. 9. Propulsion unit (2) according to one of claims 1 to 8, wherein a ratio between an overall compression ratio of the auxiliary motor (4) in up-hill operating condition and an overall compression ratio of the auxiliary motor. (4) in take-off operating condition, is between 1 .00 and 1 .30.
10. Ensemble propulsif selon l'une des revendications 1 à 9, comprenant au moins deux moteurs auxiliaires (4), la poussée desdits moteurs auxiliaires (4) participant à hauteur de 100% de la poussée auxiliaire. 10. Propulsion unit according to one of claims 1 to 9, comprising at least two auxiliary motors (4), the thrust of said auxiliary motors (4) participating to 100% of the auxiliary thrust.
PCT/FR2016/052979 2015-11-16 2016-11-16 Propulsion unit comprising a main engine and an auxiliary engine WO2017085406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,433 US20180327109A1 (en) 2015-11-16 2016-11-16 Propulsion unit comprising a main engine and an auxiliary engine

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
FR1561008A FR3043727B1 (en) 2015-11-16 2015-11-16 PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR1561005A FR3043726B1 (en) 2015-11-16 2015-11-16 PROPELLANT ASSEMBLY COMPRISING A MAIN MOTOR AND AN AUXILIARY MOTOR
FR1561012A FR3043729B1 (en) 2015-11-16 2015-11-16 PROPELLANT ASSEMBLY COMPRISING A MAIN MOTOR AND AN AUXILIARY MOTOR
FR1561008 2015-11-16
FR1561005 2015-11-16
FR1561011 2015-11-16
FR1561012 2015-11-16
FR1561011A FR3043728B1 (en) 2015-11-16 2015-11-16 PROPELLANT ASSEMBLY COMPRISING A MAIN MOTOR AND AN AUXILIARY MOTOR
FR1561001A FR3043725B1 (en) 2015-11-16 2015-11-16 PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR1561001 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017085406A1 true WO2017085406A1 (en) 2017-05-26

Family

ID=57570272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052979 WO2017085406A1 (en) 2015-11-16 2016-11-16 Propulsion unit comprising a main engine and an auxiliary engine

Country Status (2)

Country Link
US (1) US20180327109A1 (en)
WO (1) WO2017085406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099138A1 (en) * 2019-07-23 2021-01-29 Safran Aircraft Engines Aircraft comprising a blower thruster at the rear of the fuselage and an attachment structure for this thruster

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180127089A1 (en) * 2016-11-04 2018-05-10 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Turboelectric Aircraft with Aft Propulsion
US10633104B2 (en) * 2017-05-17 2020-04-28 General Electric Company Hybrid-electric propulsion system for an aircraft
US11591075B2 (en) 2019-06-13 2023-02-28 Hamilton Sundstrand Corporation Intelligent engine offload of auxiliary loads for enhanced engine durability
GB201908972D0 (en) 2019-06-24 2019-08-07 Rolls Royce Plc Compression in a gas turbine engine
GB201908978D0 (en) * 2019-06-24 2019-08-07 Rolls Royce Plc Gas turbine engine transfer efficiency
US11255263B2 (en) 2020-01-03 2022-02-22 Raytheon Technologies Corporation Multi core geared gas turbine engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB924078A (en) * 1961-12-22 1963-04-24 Rolls Royce Aircraft
EP1069044A2 (en) * 1999-07-15 2001-01-17 The Boeing Company Auxiliary power and thrust unit
US20100044504A1 (en) * 2008-02-29 2010-02-25 Airbus France Rear propulsion system with lateral air inlets for an aircraft with such system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681377B1 (en) * 1991-09-18 1995-01-20 Snecma PROTECTION AGAINST THE EXTINCTION OF A TURBOMACHINE IN THE EVENT OF INGESTION OF MASSIVE WATER OR HAIL.
US5239830A (en) * 1992-03-05 1993-08-31 Avco Corporation Plural engine power producing system
US20110004388A1 (en) * 2009-07-01 2011-01-06 United Technologies Corporation Turbofan temperature control with variable area nozzle
FR2962488B1 (en) * 2010-07-06 2014-05-02 Turbomeca METHOD AND ARCHITECTURE OF TURBOMACHINE POWER RECOMBINATION
FR2964087B1 (en) * 2010-08-25 2013-06-14 Turbomeca METHOD FOR OPTIMIZING THE ENGINE OPERABILITY OF AN AIRCRAFT AND INDEPENDENT POWER UNIT FOR IMPLEMENTING THE SAME
EP2622191A1 (en) * 2010-09-30 2013-08-07 General Electric Company Dual fuel aircraft system and method for operating same
US8935923B2 (en) * 2011-10-25 2015-01-20 United Technologies Corporation Gas turbine engine with intercooling turbine section and intercooling turbine section bypass
US20160047304A1 (en) * 2013-12-19 2016-02-18 United Technologies Corporation Ultra high overall pressure ratio gas turbine engine
US10066547B2 (en) * 2014-07-01 2018-09-04 United Technologies Corporation Combined two engine cycle with at least one recuperated cycle engine for rotor drive
EP3421759A1 (en) * 2015-12-04 2019-01-02 Jetoptera, Inc. Micro-turbine gas generator and propulsive system
US10384791B2 (en) * 2016-07-21 2019-08-20 United Technologies Corporation Cross engine coordination during gas turbine engine motoring
US11149578B2 (en) * 2017-02-10 2021-10-19 General Electric Company Propulsion system for an aircraft
US10671092B2 (en) * 2017-10-20 2020-06-02 The Boeing Company Airplane climb thrust optimization
US11334854B2 (en) * 2017-11-10 2022-05-17 General Electric Company Systems and methods to generate an asset workscope
US11415044B2 (en) * 2018-06-19 2022-08-16 Raytheon Technologies Corporation Multi-engine architecture with linkages to multiple spools
US11143142B2 (en) * 2018-08-01 2021-10-12 United Technologies Corporation Adaptive engine with boost spool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB924078A (en) * 1961-12-22 1963-04-24 Rolls Royce Aircraft
EP1069044A2 (en) * 1999-07-15 2001-01-17 The Boeing Company Auxiliary power and thrust unit
US20100044504A1 (en) * 2008-02-29 2010-02-25 Airbus France Rear propulsion system with lateral air inlets for an aircraft with such system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099138A1 (en) * 2019-07-23 2021-01-29 Safran Aircraft Engines Aircraft comprising a blower thruster at the rear of the fuselage and an attachment structure for this thruster

Also Published As

Publication number Publication date
US20180327109A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017085406A1 (en) Propulsion unit comprising a main engine and an auxiliary engine
EP3619417B1 (en) Turbomachine with fan rotor and reduction gearbox driving a low-pressure compressor shaft
CA2758078C (en) Air bleed having an inertial filter in the tandem rotor of a compressor
WO2017158294A1 (en) Turbofan comprising a low-supercritical-pressure shaft
CA2837498C (en) Variable-pitch nozzle for a radial flow turbine, in particular for a turbine of an auxiliary power source
FR3017159A1 (en) AIR SUPPLYING AN AIR CONDITIONING CIRCUIT OF A CABIN OF AN AIRCRAFT FROM ITS TURBOPROPULSOR
WO2017085405A1 (en) Method for rating a propulsion unit comprising a main engine and an auxiliary engine
FR2586754A1 (en) MEANS FOR CONTROLLING AIR, ESPECIALLY FOR A GAS TURBINE ENGINE
EP3430243B1 (en) Turbojet engine comprising a simplified bearing lubrication assembly
FR3093349A1 (en) Geared gas turbine engine
FR2960905A1 (en) METHOD AND SYSTEM FOR CONTROLLING TURBINE ROTOR BLACK SUMP
FR3093350A1 (en) Geared gas turbine engine
CA3117485A1 (en) Turbomachine with unducted twin propellers
FR3084910A1 (en) EFFICIENT AIRCRAFT ENGINE
FR3084909A1 (en) Efficient gas turbine engine
FR3036140A1 (en) AIRCRAFT TURBOMACHINE WITH COANDA EFFECT
EP3430242A1 (en) Turbojet engine comprising a simplified bearing lubrication unit
FR2605679A1 (en) Multi-spool multi-bypass turbo jet engine with a drum rotor
FR3084908A1 (en) High propulsion and thermal efficiency aircraft engine
FR3043729A1 (en) PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR3043727A1 (en) PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR3043725A1 (en) PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR3043728A1 (en) PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE
FR3080886A1 (en) CARENEE BLOWER TURBOMACHINE
FR3043726A1 (en) PROPULSIVE ASSEMBLY COMPRISING A MAIN ENGINE AND AN AUXILIARY ENGINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16812990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15776433

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16812990

Country of ref document: EP

Kind code of ref document: A1