WO2017085348A1 - Device for measuring the diffusion coefficient of gases in a porous material under real conditions - Google Patents

Device for measuring the diffusion coefficient of gases in a porous material under real conditions Download PDF

Info

Publication number
WO2017085348A1
WO2017085348A1 PCT/ES2016/070822 ES2016070822W WO2017085348A1 WO 2017085348 A1 WO2017085348 A1 WO 2017085348A1 ES 2016070822 W ES2016070822 W ES 2016070822W WO 2017085348 A1 WO2017085348 A1 WO 2017085348A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
mixture
diffusion coefficient
conditions
Prior art date
Application number
PCT/ES2016/070822
Other languages
Spanish (es)
French (fr)
Inventor
David BENAVENTE GARCÍA
Enrique Gadea Ramos
Concepcion PLA BRU
Original Assignee
Universidad De Alicante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alicante filed Critical Universidad De Alicante
Publication of WO2017085348A1 publication Critical patent/WO2017085348A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects

Definitions

  • the present invention falls within the general field of materials science and in particular refers to a device and a method for determining the diffusion coefficient of at least one gas present in a gas mixture, through a porous material , in varying conditions of humidity, temperature and composition.
  • Gaseous diffusion causes the movement of the molecules of the components of a gas mixture as a result of the concentration gradient in a system. It is the main mechanism for transporting gases through porous materials (soils, rocks, concrete, etc.). Gas diffusion processes are defined by the diffusion coefficient of the gas under study, which varies depending on the type of material through which diffusion occurs and which relates the flow of matter with this existing concentration gradient.
  • this gaseous diffusion coefficient to the field of materials science, mainly the study of natural materials such as soils and rocks, is of interest if it is considered that the materials from which it is intended to determine the diffusion coefficient, are usually subjected at varying hygrometric conditions and which are determinants in the variation of the calculated coefficient.
  • the experimental system used in the laboratory does not allow the variation of the test conditions, that is, a diffusion coefficient is calculated without considering temperature values or volumetric water content in the soil.
  • the injection of the necessary gas used to perform the experiment is performed directly on the sample without the existence of a homogenization chamber. This experimental design, therefore, would have to be discarded if the material tested was a compact solid, since the adequacy of the sample to the device would not be achieved.
  • thermohygrometric test conditions allows to study the process together with the variations of the thermohygrometric test conditions, as well as the possibility of studying different types of gases and testing a wide variety of porous materials, in such a way that a rigorous calculation of the coefficient is developed of diffusion and a detailed vision of what are the determining factors in the gas diffusion process.
  • the present invention solves the problems described in the state of the art since it provides a device and a method that allows determining the diffusion coefficient of at least one gas present in a homogeneous or heterogeneous gas mixture, with different degrees of humidity on a determined permeable material (soils and / or rocks, synthetic materials, etc.), being able to reproduce on a laboratory scale situations existing in reality, where it is interesting to calculate the gas diffusion coefficient.
  • the present invention relates to a device for determining the diffusion coefficient (hereinafter, device of the present invention) of at least one gas present in a gas mixture, through a sample of porous material, comprising a first gas mixing chamber and a second gas mixing chamber, arranged continuously and separated from each other by a third chamber, configured to house a sample
  • the first chamber comprises a sensor system for monitoring the gas conditions, to measure the humidity and concentration conditions of the compounds present in the gas mixture of said chamber, which is connected to a control system, which keeps said conditions constant, and from which a gas inlet and outlet duct is connected to a system of inlet and outlet valves
  • the second chamber is sealed by all its walls except for the part thereof that is in contact with the third chamber and comprises a monitoring sensor that measures the gas conditions of the chamber and a control system that records the difference gas concentration of the chamber during the measurement process; From the chamber part an inlet conduit connected to an inlet valve system and an outlet conduit connected to an outlet valve system.
  • the first chamber and / or the second chamber comprise a temperature control chamber, more particularly, the temperature control chambers are connected to a temperature control system.
  • the sensors of the first chamber and the second chamber are temperature, gas concentration and humidity sensors.
  • the valve system of the first chamber is constituted by a valve for the inlet of the gas to be studied, an inlet valve for water vapor and an outlet valve.
  • the first chamber and the second chamber operate with different thermohygrometric conditions.
  • the first chamber and the second chamber operate with the same pressure (atmospheric pressure).
  • the present invention relates to a method for determining the diffusion coefficient of at least one gas present in a gas mixture, through a sample of characterized porous material.
  • the determination is carried out in the device of the present invention and comprises the following steps: a) Insert the sample into the third chamber, b) Introduce the mixture of gases to be studied in the first chamber and keep the humidity and concentration of each of the gases that make up the mixture constant,
  • the concentration of each of the gases that make up the mixture is maintained constant, as well as the degree of humidity, either by the continuous circulation of a mixture of gases with a composition determined or by means of the valve system that allows each of the components of the mixture to be replaced independently depending on their diffusion to the other chamber.
  • the equipment can operate in different modes depending on the needs and objectives of the analysis, performing short and repetitive cycles or long test cycles.
  • FIG 1 shows the device of the present invention
  • Figure 2 shows the device of the invention incorporating the temperature control system and a particular embodiment referring to the valve system.
  • the device and method of the present invention allowed the calculation of the diffusion coefficient of one or more compounds present in a mixture of gases with different relative humidity in a wide range of temperatures.
  • the device comprises a system of valves that control the entrance of the gas mixture, wet or not, to be studied (5) to the first chamber (1), a system of valves (6) that control the entrance of gases to the second camera (2) for establish the initial conditions of the same, a gas outlet valve of the second chamber (7) that allows gas purge and closes to ensure the tightness of the second chamber during measurement, of a first chamber (1 ) where the concentration of the different compounds that form the mixture of gases and humidity are kept constant and that is in contact with the third chamber (3) that contains the sample to be studied which, in turn, is in contact with a second chamber (2) that is conditioned with certain initial conditions of concentration of gases and humidity and remains watertight during the measurement, recording, by one or more sensors (9) the evolution of the concentrations of the gaseous compounds to be studied and / or of temperature and / or humidity.
  • the equipment is automatically controlled by a control system (12).
  • Both gas chambers are at the same pressure (atmospheric pressure), so that the passage of gases through the sample is produced solely by the diffusion phenomenon.
  • the device of the present invention has a system of gas inlet and outlet valves (5) of the first chamber (1) consisting solely of an inlet connection and another outlet where a mixture of gases with the composition and humidity required for the study is circulated through the first chamber (1).
  • the device of the present invention comprises a system of gas inlet and outlet valves (5) of the first chamber (1) consisting of at least one gas inlet valve to be studied. (15), at least one water vapor inlet valve (16) and one outlet valve (17), through which the different compounds that form the gas mixture are introduced, keeping the gas concentrations to be studied constant and of the humidity depending on the decrease of the same due to the diffusion through the sample and, of a system of sensors (8) of concentration of gas and / or of temperature and / or humidity that allow the measurement of said values so that they can be kept constant by the valve system (5).
  • the first chamber (1) and / or the second chamber (2) comprise a temperature control chamber (10) and (11) respectively, which may be connected to a system of temperature control (13).
  • This temperature chamber system can operate interchangeably with both the valve system of Figure 1 and that of Figure 2.
  • the procedure began by introducing a sample of porous rock into the chamber (3) and then proceeding by introducing the mixture of gases (C0 2 and water vapor) into the first chamber (1) with humidity conditions (65%) and about concentrations (4000 ppm of concentration of C0 2 and water vapor, until reaching 65% relative humidity, equivalent to a vapor pressure 624-10 3 micromol / m 3 at 20 ° C temperature) of the components of the mixture.
  • the initial concentration and humidity conditions 40 ppm of C0 2 and water vapor equivalent to 35% relative humidity and vapor pressure of 329-10 3 micromol / m 3 at 20 °
  • this chamber watertight except for the part of it in contact with the third chamber (3) where the sample is housed.
  • the evolution of the concentration of the compounds to be studied (C0 2 and water vapor), in the second chamber (2) are the result of their diffusion through the sample, being able to obtain the diffusion coefficient through numerical treatment of the data collected from each experiment, according to existing methodologies published in the bibliography.
  • the second chamber (2) can be purged and return to other initial conditions, being able to repeat the diffusion study and being able to check if the diffusion coefficients of the compounds of interest change, and in what way, as a function of time, with what can be known if the behavior of the sample changes over time.
  • the fact that the device is equipped with two gas mixing chambers is essential to be able to establish, separately, different thermo-hygrometric conditions in each of the chambers independently since, in addition, each of the chambers can Control at a certain temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a device and method for determining the diffusion coefficient of at least one gas present in a mixture of gases in a sample of a permeable material, with different relative humidity values over a wide range of temperatures, comprising a first gas mixture chamber (1) and a second gas mixture chamber (2) arranged in a continuous manner, but separated from one another by a third chamber (3) designed to house a sample.

Description

Equipo para la medición del coeficiente de difusión de gases a través de un material poroso en condiciones reales  Equipment for measuring the gas diffusion coefficient through a porous material in real conditions
DESCRIPCIÓN DESCRIPTION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se encuadra en el campo general de la ciencia de los materiales y en particular se refiere a un dispositivo y a un método para determinar el coeficiente de difusión de al menos un gas presente en una mezcla de gases, a través de un material poroso, en condiciones variables de humedad, temperatura y composición. The present invention falls within the general field of materials science and in particular refers to a device and a method for determining the diffusion coefficient of at least one gas present in a gas mixture, through a porous material , in varying conditions of humidity, temperature and composition.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
La difusión gaseosa provoca el movimiento de las moléculas de los componentes de una mezcla de gases a consecuencia del gradiente de concentraciones existente en un sistema. Se trata del principal mecanismo de transporte de gases a través de materiales porosos (suelos, rocas, hormigones, etc.). Los procesos de difusión de gases quedan definidos por el coeficiente de difusión del gas objeto de estudio, que varía en función del tipo de material a través del cual se produce la difusión y que relaciona el flujo de materia con este gradiente de concentración existente. Gaseous diffusion causes the movement of the molecules of the components of a gas mixture as a result of the concentration gradient in a system. It is the main mechanism for transporting gases through porous materials (soils, rocks, concrete, etc.). Gas diffusion processes are defined by the diffusion coefficient of the gas under study, which varies depending on the type of material through which diffusion occurs and which relates the flow of matter with this existing concentration gradient.
La aplicación de este coeficiente de difusión gaseoso al campo de la ciencia de materiales, principalmente el estudio de materiales naturales como suelos y rocas, tiene su interés si se considera que los materiales de los cuales se pretende determinar el coeficiente de difusión, suelen estar sometidos a condiciones higrométricas variables y que son determinantes en la variación del coeficiente calculado. The application of this gaseous diffusion coefficient to the field of materials science, mainly the study of natural materials such as soils and rocks, is of interest if it is considered that the materials from which it is intended to determine the diffusion coefficient, are usually subjected at varying hygrometric conditions and which are determinants in the variation of the calculated coefficient.
Actualmente, la determinación y cuantificación del coeficiente de difusión en ambientes sometidos a cambios en sus condiciones higrométricas se consigue mediante aproximaciones metodológicas-experimentales, estudiando los factores que controlan este transporte de gases a través del sistema poroso del material en cuestión. Este cálculo del coeficiente de difusión ha sido abordado por distintos grupos de investigación para objetivos distintos, dado el interés científico y técnico asociado al cálculo de este parámetro. En lo que se refiere al estudio de la difusión gaseosa asociada a materiales porosos no existe un protocolo estrictamente definido. Como ejemplo se podrían consultar trabajos como el Turcu, et al, 2005. Continuous soil carbón dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone Journal 4(4): 1161-1169), donde se aborda el estudio de la difusión gaseosa en una columna de suelo a través de la cual se crea un gradiente de concentraciones. Sin embargo, el sistema experimental empleado en laboratorio no permite la variación de las condiciones de ensayo, es decir, que se calcula un coeficiente de difusión sin considerar valores de temperatura o contenido volumétrico de agua en el suelo. Además, la inyección del gas necesario empleado para realizar el experimento se realiza directamente sobre la muestra sin la existencia de una cámara de homogeneización. Este diseño experimental, por tanto, habría que descartarlo si el material ensayado fuese un sólido compacto, ya que no se conseguiría la adecuación de la muestra al dispositivo. Currently, the determination and quantification of the diffusion coefficient in environments subject to changes in their hygrometric conditions is achieved through methodological-experimental approaches, studying the factors that control this transport of gases through the porous system of the material in question. This calculation of the diffusion coefficient has been addressed by different research groups for different purposes, given the scientific and technical interest associated with the calculation of this parameter. As regards the study of gas diffusion associated with porous materials, there is no strictly defined protocol. As an example, one could consult works such as Turcu, et al, 2005. Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux. Vadose Zone Journal 4 (4): 1161-1169), where the study of gas diffusion in a soil column is approached through which a concentration gradient is created. However, the experimental system used in the laboratory does not allow the variation of the test conditions, that is, a diffusion coefficient is calculated without considering temperature values or volumetric water content in the soil. In addition, the injection of the necessary gas used to perform the experiment is performed directly on the sample without the existence of a homogenization chamber. This experimental design, therefore, would have to be discarded if the material tested was a compact solid, since the adequacy of the sample to the device would not be achieved.
Por su parte, Ganot et al. , 2014. Impact of thermal convection on C02 flux across the earth-atmosphere boundary in high-permeability soils. Agricultura! and Forest Meteorology 184(0): 12-24) reproducen un diseño experimental relacionado al anterior en el que sí que estudian las variaciones térmicas provocadas en el sistema y su repercusión en los gases estudiados, aunque centrándose en el proceso convectivo del movimiento de una masa de gas y no profundizando en el proceso difusivo. On the other hand, Ganot et al. , 2014. Impact of thermal convection on C0 2 flux across the earth-atmosphere boundary in high-permeability soils. Farming! and Forest Meteorology 184 (0): 12-24) reproduce an experimental design related to the previous one in which they do study the thermal variations caused in the system and its impact on the gases studied, although focusing on the convective process of the movement of a mass of gas and not deepening the diffusive process.
De la misma forma, O'Brien et al., 2014. Using field analogue soil column experiments to quantify radon-222 gas migration and transport through soils and bedrock of Halifax, Nova Scotia, Canadá. Environmental Earth Sciences 72(7): 2607-2620), proponen un experimental interesante en el que estudian la difusión del radón en una columna de suelo, pero, de nuevo, considerando constantes las condiciones de ensayo. Sanci et al; 2009. Assessment of soil moisture influence on C02 flux: a laboratory experiment. Environmental Geology 58(3): 491-497) desarrollan un experimental en el que concluyen que la variación del contenido de agua en el suelo es determinante a la hora de calcular el valor del coeficiente de difusión de un gas, sin embargo su investigación queda destinada a desarrollar un sistema de calibración para cámaras dinámicas de medición de flujos gaseosos y no para determinar un resultado final del coeficiente de difusión gaseosa. El dispositivo que emplean es bastante más complejo que el que se presenta en esta propuesta. Albanito et al., 2009. Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil C02 concentration profile. European Journal of Soil Science 60(4): 507-514) o Risk et al., (2012) (Risk, D, Nickerson, N, Creelman, C, McArthur, G, Owens, J, 2011. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agricultura! and Forest Meteorology 151(12): 1622-1631) proponen también distintos métodos para el cálculo del coeficiente de difusión y estimación de flujo gaseoso. Mientras que el primero presenta un experimental para desarrollar en laboratorio (válido únicamente para materiales tipo membrana plástica) el segundo propone la determinación de un valor de flujo de gas mediante una cámara de difusión forzada, que en todo caso tampoco sería válida para determinar coeficientes de difusión en materiales sólidos robustos. Similarly, O'Brien et al., 2014. Using field analogue soil column experiments to quantify radon-222 gas migration and transport through soils and bedrock of Halifax, Nova Scotia, Canada. Environmental Earth Sciences 72 (7): 2607-2620), propose an interesting experiment in which they study the diffusion of radon in a soil column, but, again, considering the test conditions constant. Sanci et al; 2009. Assessment of soil moisture influence on C0 2 flux: a laboratory experiment. Environmental Geology 58 (3): 491-497) develop an experimental in which they conclude that the variation of the water content in the soil is decisive when calculating the value of the diffusion coefficient of a gas, however its research remains aimed at developing a calibration system for dynamic gas flow measurement chambers and not to determine a final result of the gas diffusion coefficient. The device they use is much more complex than the one presented in this proposal. Albanito et al., 2009. Automated diffusion chambers to diurnal monitor and seasonal dynamics of the soil C0 2 concentration profile. European Journal of Soil Science 60 (4): 507-514) or Risk et al., (2012) (Risk, D, Nickerson, N, Creelman, C, McArthur, G, Owens, J, 2011. Forced Diffusion soil flux : A new technique for continuous monitoring of soil gas efflux Agriculture! And Forest Meteorology 151 (12): 1622-1631) also propose different methods for calculating the diffusion coefficient and estimation of gas flow. While the first presents an experimental to develop in the laboratory (valid only for plastic membrane type materials) the second proposes the determination of a gas flow value through a forced diffusion chamber, which in any case would not be valid to determine coefficients of diffusion in robust solid materials.
Jabro, 2009. Water Vapor Diffusion Through Soil as Affected by Temperature and Aggregate Size. Transport in Porous Media 77(3): 417-428) propone un método para calcular el coeficiente de difusión del vapor de agua en el suelo. Considera que la temperatura es un factor determinante en el proceso. No obstante la metodología que emplea es menos rigurosa que la que se presenta con este nuevo equipo, ya que las condiciones de ensayo se consiguen con soluciones salinas. Este mismo autor presenta también un trabajo (Jabro et al. 2012. Estimation of C02 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils. Archives of Agronomy and Soil Science 58(1): 1-9) en el que hace una recopilación de las distintas fórmulas teóricas existentes en la bibliografía para obtener, en este caso, un valor del coeficiente de difusión del C02 en las que se identifica la influencia de las condiciones de temperatura y contenido de agua en el material objeto de estudio a la hora de determinar el valor del coeficiente de difusión. Jabro, 2009. Water Vapor Diffusion Through Soil as Affected by Temperature and Aggregate Size. Transport in Porous Media 77 (3): 417-428) proposes a method to calculate the diffusion coefficient of water vapor in the soil. Consider that temperature is a determining factor in the process. However, the methodology used is less rigorous than that presented with this new equipment, since the test conditions are achieved with saline solutions. This same author also presents a paper (Jabro et al. 2012. Estimation of C0 2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils. Archives of Agronomy and Soil Science 58 (1): 1-9) in which compiles the different theoretical formulas existing in the literature to obtain, in this case, a value of the diffusion coefficient of C0 2 in which the influence of temperature conditions and water content on the material under study is identified when determining the value of the diffusion coefficient.
La extrapolación de los sistemas experimentales de laboratorio a condiciones reales también se lleva a cabo. Como ejemplo se pueden consultar los trabajos Pingintha et al., 2010. Assessment of the soil C02 gradient method for soil C02 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus Series B-Chemical and Physical Meteorology 62(1): 47-58) donde reproducen un procedimiento operativo similar al que se plantea en esta nueva propuesta pero ensayando los materiales (suelos en este caso) en su ambiente real. Como consecuencia, estos trabajos valoran los cambios de humedad y temperatura existentes en la naturaleza, relacionándolos con la variación del coeficiente de difusión del gas estudiado. Dichos cambios son los que, en el equipo que se presenta, se reproducen en forma de ensayo de laboratorio. Esta extrapolación al laboratorio permite ensayar muestras que, de otra forma, sería imposible ensayar dado su difícil acceso. Extrapolation of experimental laboratory systems to real conditions is also carried out. As an example, see the works Pingintha et al., 2010. Assessment of the soil C0 2 gradient method for soil C0 2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus Series B-Chemical and Physical Meteorology 62 (1): 47-58) where they reproduce an operating procedure similar to that proposed in this new proposal but by testing the materials (soils in this case) in their real environment. As a consequence, these works assess the changes in humidity and temperature in nature, relating them to the variation in the diffusion coefficient of the gas studied. These changes are those that, in the equipment presented, are They reproduce in the form of a laboratory test. This extrapolation to the laboratory makes it possible to test samples that would otherwise be impossible to test given their difficult access.
Existe pues la necesidad de proporcionar un dispositivo y un método para determinar la implicación de cada uno de los factores (temperatura, humedad, etc.) en los procesos de difusión gaseosa, en función de las características microestructurales del sistema poroso, que sea capaz de mejorar los resultados obtenidos con los sistemas experimentales actuales, y con el que se puedan determinar las variaciones del coeficiente de difusión de un gas a través de un determinado material, cuando hay varios compuestos en la mezcla gaseosa (presencia de más de un gas o incluso presencia de vapor de agua). Y, que además, permita estudiar el proceso junto con las variaciones de las condiciones termohigrométricas de ensayo, así como la posibilidad de estudiar distintos tipos de gases y ensayar una amplia variedad de materiales porosos, de tal forma que se desarrolle un cálculo riguroso del coeficiente de difusión y una visión detallada de cuáles son los factores determinantes en el proceso de difusión gaseosa. There is therefore a need to provide a device and a method to determine the implication of each of the factors (temperature, humidity, etc.) in the gas diffusion processes, depending on the microstructural characteristics of the porous system, which is capable of improve the results obtained with the current experimental systems, and with which the variations of the diffusion coefficient of a gas through a certain material can be determined, when there are several compounds in the gas mixture (presence of more than one gas or even presence of water vapor). And, that also, allows to study the process together with the variations of the thermohygrometric test conditions, as well as the possibility of studying different types of gases and testing a wide variety of porous materials, in such a way that a rigorous calculation of the coefficient is developed of diffusion and a detailed vision of what are the determining factors in the gas diffusion process.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención soluciona los problemas descritos en el estado de la técnica puesto que proporciona un dispositivo y un método que permite determinar el coeficiente de difusión de al menos un gas presente en una mezcla de gases homogénea o heterogénea, con diferentes grados de humedad sobre un material permeable determinado (suelos y/o rocas, materiales sintéticos, etc.), siendo capaz de reproducir a escala de laboratorio situaciones existentes en la realidad, donde resulta interesante calcular el coeficiente de difusión gaseoso.  The present invention solves the problems described in the state of the art since it provides a device and a method that allows determining the diffusion coefficient of at least one gas present in a homogeneous or heterogeneous gas mixture, with different degrees of humidity on a determined permeable material (soils and / or rocks, synthetic materials, etc.), being able to reproduce on a laboratory scale situations existing in reality, where it is interesting to calculate the gas diffusion coefficient.
Así pues en un primer aspecto, la presente invención se refiere a un dispositivo para determinar el coeficiente de difusión (de aquí en adelante, dispositivo de la presente invención) de al menos un gas presente en una mezcla de gases, a través de una muestra de material poroso, que comprende una primera cámara de mezcla de gases y una segunda cámara de mezcla de gases, dispuestas de forma continua y separadas entre sí por una tercera cámara, configurada para albergar una muestra, donde la primera cámara comprende un sistema de sensores de monitorización de las condiciones del gas, para medir las condiciones de humedad y de concentración de los compuestos presentes en la mezcla de gases de dicha cámara, que está conectado a un sistema control, que mantiene dichas condiciones constantes, y de la que parte un conducto de entrada y salida de gases conectado a un sistema de válvulas de entrada y de salida; y donde la segunda cámara es estanca por todas sus paredes menos por la parte de la misma que está en contacto con la tercera cámara y comprende un sensor de monitorización que mide las condiciones del gas de la cámara y un sistema de control que registra la diferencia de concentración de gas de la cámara durante el proceso de medida; de la cámara parte un conducto de entrada conectado a un sistema de válvulas de entrada y un conducto de salida conectado a un sistema de válvulas de salida. Thus, in a first aspect, the present invention relates to a device for determining the diffusion coefficient (hereinafter, device of the present invention) of at least one gas present in a gas mixture, through a sample of porous material, comprising a first gas mixing chamber and a second gas mixing chamber, arranged continuously and separated from each other by a third chamber, configured to house a sample, where the first chamber comprises a sensor system for monitoring the gas conditions, to measure the humidity and concentration conditions of the compounds present in the gas mixture of said chamber, which is connected to a control system, which keeps said conditions constant, and from which a gas inlet and outlet duct is connected to a system of inlet and outlet valves; and where the second chamber is sealed by all its walls except for the part thereof that is in contact with the third chamber and comprises a monitoring sensor that measures the gas conditions of the chamber and a control system that records the difference gas concentration of the chamber during the measurement process; From the chamber part an inlet conduit connected to an inlet valve system and an outlet conduit connected to an outlet valve system.
En un aspecto particular de la presente invención, la primera cámara y/o la segunda cámara, comprenden una cámara de control de temperatura, más en particular, las cámaras de control de la temperatura están conectadas a un sistema de control de la temperatura. In a particular aspect of the present invention, the first chamber and / or the second chamber comprise a temperature control chamber, more particularly, the temperature control chambers are connected to a temperature control system.
En un aspecto particular de la presente invención los sensores de la primera cámara y de la segunda cámara son sensores de temperatura, concentración de gas y de humedad. In a particular aspect of the present invention the sensors of the first chamber and the second chamber are temperature, gas concentration and humidity sensors.
En un aspecto particular de la presente invención, el sistema de válvulas de la primera cámara está constituido por una válvula para la entrada del gas a estudiar, una válvula de entrada para el vapor de agua y una válvula de salida. In a particular aspect of the present invention, the valve system of the first chamber is constituted by a valve for the inlet of the gas to be studied, an inlet valve for water vapor and an outlet valve.
En un aspecto particular de la presente invención, la primera cámara y la segunda cámara, operan con diferentes condiciones termohigrométricas. In a particular aspect of the present invention, the first chamber and the second chamber operate with different thermohygrometric conditions.
En otro aspecto particular de la presente invención, la primera cámara y la segunda cámara operan con la misma presión (presión atmosférica). In another particular aspect of the present invention, the first chamber and the second chamber operate with the same pressure (atmospheric pressure).
En un segundo aspecto, la presente invención se refiere a un procedimiento para determinar el coeficiente de difusión de al menos un gas presente en una mezcla de gases, a través de una muestra de material poroso caracterizado. La determinación se lleva a cabo en el dispositivo de la presente invención y comprende las siguientes etapas: a) Introducir la muestra en la tercera cámara, b) Introducir en la primera cámara, la mezcla de gases a estudiar y mantener constante la humedad y concentración de cada uno de los gases que componen dicha mezcla, In a second aspect, the present invention relates to a method for determining the diffusion coefficient of at least one gas present in a gas mixture, through a sample of characterized porous material. The determination is carried out in the device of the present invention and comprises the following steps: a) Insert the sample into the third chamber, b) Introduce the mixture of gases to be studied in the first chamber and keep the humidity and concentration of each of the gases that make up the mixture constant,
c) Mantener la primera cámara y la segunda cámara con la misma presión (presión atmosférica) durante todo el ensayo,  c) Maintain the first chamber and the second chamber with the same pressure (atmospheric pressure) throughout the test,
d) Determinar la diferencia de concentración y humedad en los compuestos de la mezcla de gases en la segunda cámara entre el inicio del proceso y después del mismo,  d) Determine the difference in concentration and humidity in the compounds of the gas mixture in the second chamber between the start of the process and after it,
e) Determinar el coeficiente de difusión del gas mediante el tratamiento numérico a partir de los datos obtenidos en la etapa d).  e) Determine the diffusion coefficient of the gas by means of the numerical treatment from the data obtained in step d).
En un aspecto particular de la presente invención, en la primera cámara se mantiene constante la concentración de cada uno de los gases que componen la mezcla, así como el grado de humedad, ya sea mediante la circulación continua de una mezcla de gases con una composición determinada o mediante el sistema de válvulas que permite reponer independientemente cada uno de los componentes de la mezcla en función de su difusión a la otra cámara. In a particular aspect of the present invention, in the first chamber the concentration of each of the gases that make up the mixture is maintained constant, as well as the degree of humidity, either by the continuous circulation of a mixture of gases with a composition determined or by means of the valve system that allows each of the components of the mixture to be replaced independently depending on their diffusion to the other chamber.
El dispositivo y método de la presente invención proporciona las siguientes ventajas: The device and method of the present invention provides the following advantages:
• Permite el cálculo del coeficiente de difusión de uno o varios compuestos a través de una determinada muestra bajo condiciones higrométricas variables, simulando las condiciones reales en que se producen los procesos de difusión en la naturaleza. Dado que el coeficiente de difusión está estrechamente relacionado con parámetros como la temperatura o grado de humedad, esta flexibilidad en el cambio de las condiciones, permite determinar el efecto que tienen estos parámetros en el cálculo del valor final. Existen dos atmósferas distintas, separadas por una membrana constituida por el material objeto de estudio en sí. Esto permite reproducir condiciones diferenciadas en cada cámara de manera independiente. • It allows the calculation of the diffusion coefficient of one or more compounds through a given sample under variable hygrometric conditions, simulating the real conditions in which diffusion processes occur in nature. Since the diffusion coefficient is closely related to parameters such as temperature or degree of humidity, this flexibility in changing conditions, allows to determine the effect that these parameters have in the calculation of the final value. There are two different atmospheres, separated by a membrane constituted by the material under study. This allows to reproduce differentiated conditions in each camera independently.
• Se pueden estudiar muestras de distinto tamaño y composición, mediante diferentes portamuestras y en función del objetivo del estudio.  • Samples of different size and composition can be studied, using different sample holders and depending on the objective of the study.
• El equipo puede operar en diferentes modos en función de las necesidades y objetivos del análisis, realizando ciclos cortos y repetitivos o bien ciclos largos de ensayo.  • The equipment can operate in different modes depending on the needs and objectives of the analysis, performing short and repetitive cycles or long test cycles.
• La muestra no se altera durante el ensayo, ya que va alojada en una cámara independiente. • Se puede trabajar con varios gases a la vez: por una parte el vapor de agua, que además de garantizar las condiciones de humedad requeridas para cada experimento permite el cálculo de su coeficiente de difusión gaseoso y de otro gas o gases no condensables en las condiciones del experimento (C02, 03, CH4, etc.) • The sample is not altered during the test, since it is housed in a separate chamber. • You can work with several gases at the same time: on the one hand the water vapor, which in addition to guaranteeing the humidity conditions required for each experiment allows the calculation of its gas diffusion coefficient and other gas or non-condensable gases in the experiment conditions (C0 2 , 0 3 , CH 4 , etc.)
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra el dispositivo de la presente invención Figure 1 shows the device of the present invention
La figura 2 muestra el dispositivo de la invención que incorpora el sistema de control de la temperatura y una realización particular referente al sistema de válvulas.  Figure 2 shows the device of the invention incorporating the temperature control system and a particular embodiment referring to the valve system.
Referencias: References:
(1) primera cámara  (1) first camera
(2) segunda cámara  (2) second camera
(3) tercera cámara  (3) third chamber
(5) sistema de válvulas de entrada y salida de la primera cámara  (5) first chamber inlet and outlet valve system
(6) sistema de válvulas de entrada de la segunda cámara  (6) second chamber inlet valve system
(7) sistema de válvulas de salida de la segunda cámara  (7) second chamber outlet valve system
(8) sensores de monitorización de las condiciones del gas de la primera cámara (8) sensors for monitoring the gas conditions of the first chamber
(9) sensores de monitorización de las condiciones del gas de la segunda cámara.(9) sensors for monitoring the gas conditions of the second chamber.
(10) cámara de control de la temperatura de la primera cámara (10) temperature control chamber of the first chamber
(1 1) cámara de control de la temperatura de la segunda cámara  (1 1) temperature control chamber of the second chamber
(12) sistema de control  (12) control system
(13) sistema de control de la temperatura  (13) temperature control system
(15) válvula de entrada de gas en la primera cámara  (15) gas inlet valve in the first chamber
(16) válvula de entrada de vapor de agua en la primera cámara  (16) water vapor inlet valve in the first chamber
(17) válvula de salida de la primera cámara.  (17) first chamber outlet valve.
EXPOSICIÓN DETALLADA DE MODOS DE REALIZACIÓN DETAILED EXHIBITION OF REALIZATION MODES
El dispositivo y método de la presente invención permitió el cálculo del coeficiente de difusión de uno o varios compuestos presentes en una mezcla de gases con diferentes humedades relativas en un rango amplio de temperaturas. The device and method of the present invention allowed the calculation of the diffusion coefficient of one or more compounds present in a mixture of gases with different relative humidity in a wide range of temperatures.
El dispositivo comprende un sistema de válvulas que controlan la entrada de la mezcla de gases, húmedos o no, a estudiar (5) a la primera cámara (1), un sistema de válvulas (6) que controlan la entrada de gases a la segunda cámara (2) para establecer las condiciones iniciales de la misma, una válvula de salida de gases de la segunda cámara (7) que permite la purga de los gases y que se cierra para asegurar la estanqueidad de la segunda cámara durante la medida, de una primera cámara (1) donde se mantienen constantes la concentración de los diferentes compuestos que forman la mezcla de gases y la humedad y que está en contacto con la tercera cámara (3) que contiene la muestra a estudiar que, a su vez, está en contacto con una segunda cámara (2) que se acondiciona con unas determinadas condiciones iniciales de concentración de gases y humedad y se mantiene estanca durante la medida, registrándose, mediante uno o más sensores (9) la evolución de las concentraciones de los compuestos gaseosos a estudiar y/o de la temperatura y/o humedad. El equipo está controlado automáticamente por un sistema de control (12). The device comprises a system of valves that control the entrance of the gas mixture, wet or not, to be studied (5) to the first chamber (1), a system of valves (6) that control the entrance of gases to the second camera (2) for establish the initial conditions of the same, a gas outlet valve of the second chamber (7) that allows gas purge and closes to ensure the tightness of the second chamber during measurement, of a first chamber (1 ) where the concentration of the different compounds that form the mixture of gases and humidity are kept constant and that is in contact with the third chamber (3) that contains the sample to be studied which, in turn, is in contact with a second chamber (2) that is conditioned with certain initial conditions of concentration of gases and humidity and remains watertight during the measurement, recording, by one or more sensors (9) the evolution of the concentrations of the gaseous compounds to be studied and / or of temperature and / or humidity. The equipment is automatically controlled by a control system (12).
Ambas cámaras de gases se encuentran a la misma presión (presión atmosférica), por lo que el paso de gases a través de la muestra se produce, únicamente, por el fenómeno de difusión. Both gas chambers are at the same pressure (atmospheric pressure), so that the passage of gases through the sample is produced solely by the diffusion phenomenon.
En una realización particular, tal y como se muestra en la figura 1 , el dispositivo de la presente invención presenta un sistema de válvulas (5) de entrada y salida de gases de la primera cámara (1) que consta únicamente de una conexión de entrada y otra de salida por donde se hace circular a través de la primera cámara (1) una mezcla de gases con la composición y humedad requeridas para el estudio. In a particular embodiment, as shown in Figure 1, the device of the present invention has a system of gas inlet and outlet valves (5) of the first chamber (1) consisting solely of an inlet connection and another outlet where a mixture of gases with the composition and humidity required for the study is circulated through the first chamber (1).
En otra realización particular, (figura 2) el dispositivo de la presente invención comprende un sistema de válvulas de entrada y salida de gases (5) de la primera cámara (1) que consta de al menos, una válvula de entrada del gas a estudiar (15), al menos una válvula de entrada de vapor de agua (16) y una válvula de salida (17), mediante las que se introducen los diferentes compuestos que forman la mezcla de gas, manteniendo constantes las concentraciones del gas a estudiar y de la humedad en función de la disminución de los mismos debido a la difusión a través de la muestra y, de un sistema de sensores (8) de concentración de gas y/o de temperatura y/o de humedad que permiten la medición de dichos valores para que puedan ser mantenidos constantes mediante el sistema de válvulas (5). In another particular embodiment, (figure 2) the device of the present invention comprises a system of gas inlet and outlet valves (5) of the first chamber (1) consisting of at least one gas inlet valve to be studied. (15), at least one water vapor inlet valve (16) and one outlet valve (17), through which the different compounds that form the gas mixture are introduced, keeping the gas concentrations to be studied constant and of the humidity depending on the decrease of the same due to the diffusion through the sample and, of a system of sensors (8) of concentration of gas and / or of temperature and / or humidity that allow the measurement of said values so that they can be kept constant by the valve system (5).
En otra realización particular, mostrada en la figura 2, la primera cámara (1) y/o la segunda cámara (2), comprenden una cámara de control de temperatura (10) y (11) respectivamente, que pueden estar conectados a un sistema de control de la temperatura (13). Este sistema de cámaras de temperatura puede operar indistintamente tanto con el sistema de válvulas de la figura 1 como el de la figura 2. In another particular embodiment, shown in Figure 2, the first chamber (1) and / or the second chamber (2), comprise a temperature control chamber (10) and (11) respectively, which may be connected to a system of temperature control (13). This temperature chamber system can operate interchangeably with both the valve system of Figure 1 and that of Figure 2.
A continuación se describe un ejemplo de realización de la invención. An embodiment of the invention is described below.
El procedimiento comenzó introduciendo una muestra de roca porosa en la cámara (3) y a continuación se procedió introduciendo la mezcla de gases (C02 y vapor de agua) en la primera cámara (1) con unas condiciones de humedad (65%) y unas concentraciones (4000 ppm de concentración de C02 y vapor de agua, hasta alcanzar 65% de humedad relativa, equivalente a una presión de vapor 624- 103 micromol/m3 a 20°C de temperatura) de los componentes de la mezcla. The procedure began by introducing a sample of porous rock into the chamber (3) and then proceeding by introducing the mixture of gases (C0 2 and water vapor) into the first chamber (1) with humidity conditions (65%) and about concentrations (4000 ppm of concentration of C0 2 and water vapor, until reaching 65% relative humidity, equivalent to a vapor pressure 624-10 3 micromol / m 3 at 20 ° C temperature) of the components of the mixture.
En la segunda cámara (2) se partió de unas condiciones iniciales de concentración y humedad (40 ppm de C02 y vapor de agua equivalente a 35% de humedad relativa y presión de vapor de 329- 103 micromol/m3 a 20°C de temperatura) y, manteniendo esta cámara estanca salvo por la parte de la misma en contacto con la tercera cámara (3) donde se aloja la muestra. In the second chamber (2), the initial concentration and humidity conditions (40 ppm of C0 2 and water vapor equivalent to 35% relative humidity and vapor pressure of 329-10 3 micromol / m 3 at 20 °) were started C temperature) and, keeping this chamber watertight except for the part of it in contact with the third chamber (3) where the sample is housed.
Se registró la evolución de la concentración del gas o gases de estudio (C02 y vapor de agua), presentes en la primera cámara de gases (1). La evolución de la concentración de los compuestos a estudiar (C02 y vapor de agua), en la segunda cámara (2) son fruto de la difusión de los mismos a través de la muestra, pudiéndose obtener el coeficiente de difusión mediante el tratamiento numérico de los datos recogidos de cada experimento, según metodologías existentes publicadas en la bibliografía. The evolution of the concentration of the study gas or gases (C0 2 and water vapor), present in the first gas chamber (1), was recorded. The evolution of the concentration of the compounds to be studied (C0 2 and water vapor), in the second chamber (2) are the result of their diffusion through the sample, being able to obtain the diffusion coefficient through numerical treatment of the data collected from each experiment, according to existing methodologies published in the bibliography.
El ensayo finalizó cuando en la cámara superior (2) se alcanzaron 4000 ppm de concentración de C02. En este ejemplo concreto tras 5 h de ensayo. A partir de los datos registrados por el sistema de control (12) se obtuvieron los datos de evolución de concentración con respecto al tiempo, a partir de los que se calculó el coeficiente de difusión según la siguiente metodología: The test was terminated when 4000 ppm of C0 2 concentration was reached in the upper chamber (2). In this specific example after 5 hours of testing. From the data recorded by the control system (12), the concentration evolution data with respect to time were obtained, from which the diffusion coefficient was calculated according to the following methodology:
Obtenida de: Zhang et al. 2005 {Zhang, ZH, Ouriadov, AV, Willson, C, Balcom, BJ, 2005. Membrane gas diffusion measurements with MRI. " Journal of Magnetic Resonance 176(2): 215-222) y Albanito et al., (2009) {Albanito, F, Saunders, M, Jones, MB, 2009. Automated diffusion chambers to monitor diurna! and seasonal dynamics of the soil C02 concentration profile. European Journal of Soil Science 60(4): 507-514). Se consideran dos cámaras unidas por una membrana de la que se quiere calcular el coeficiente de difusión del C02. En una de las cámaras existe una concentración inicial (C1) y constante para todo el experimento. En la otra cámara se comienza con concentración 0 (C2) ppm y se finaliza el ensayo cuando la concentración aquí ha alcanzado la concentración incicial establecida para la cámara 1 (C1). Obtained from: Zhang et al. 2005 {Zhang, ZH, Ouriadov, AV, Willson, C, Balcom, BJ, 2005. Membrane gas diffusion measurements with MRI. "Journal of Magnetic Resonance 176 (2): 215-222) and Albanito et al., (2009) {Albanito, F, Saunders, M, Jones, MB, 2009. Automated diffusion chambers to daytime monitor! And seasonal dynamics of the soil C0 2 concentration profile European Journal of Soil Science 60 (4): 507-514). Two chambers joined by a membrane are considered, from which we want to calculate the diffusion coefficient of C0 2 . In one of the chambers there is an initial (C1) and constant concentration for the entire experiment. In the other chamber, concentration 0 (C2) ppm is started and the test is terminated when the concentration here has reached the initial concentration established for chamber 1 (C1).
Por un balance de masas: For a mass balance:
r C1~C2 ¿(Ci - c2) r t0 r C1 ~ C2 ¿(Ci - c 2 ) r t0
JC1°-C2° (c - Á L2J = B Ddt J C1 ° -C2 ° (c - Á L 2J = B Ddt
AH 1 1 AH 1 1
Donde B=parámetro de forma de la cámara=— (— I— ); donde A= superficie de paso de la cámara; L=espesor de la membrana (en este caso, espesor de la probeta; V0= volumen de la cámara que se va llenando de gas; V1=infinito, ya que la concentración en la cámara 1 siempre se mantiene constante). H= coeficiente de partición. Para el C02 se considera 1 , ya que el C02 es insoluble. Where B = camera shape parameter = - (- I—); where A = chamber passage surface; L = thickness of the membrane (in this case, thickness of the specimen; V0 = volume of the chamber that is filled with gas; V1 = infinity, since the concentration in chamber 1 always remains constant). H = partition coefficient. For C0 2 it is considered 1, since C0 2 is insoluble.
Integrando: Integrating:
-ln(Cl - C2)]¾0 "_c c 2 2o = BDt][° -ln (Cl - C2)] ¾ 0 " _ c c 2 2 o = BDt] [°
ln(Cl - C2) - ln(Cl0 - C20) =
Figure imgf000011_0001
ln (Cl - C2) - ln (Cl 0 - C2 0 ) =
Figure imgf000011_0001
2 „„. C2  2 "". C2
7^- = -l + e-BDt;—= l 7 ^ - = -l + e- BDt ; - = l
Cl0 Cl 0
BDt; y de aquí se obtiene D. BDt; and from here you get D.
Figure imgf000011_0002
Figure imgf000011_0002
Para el caso de estudio, el coeficiente de difusión de C02 calculado fue de 4.18 10"7 m2/s. For the case study, the calculated diffusion coefficient of C0 2 was 4.18 10 "7 m 2 / s.
En cualquier momento, cuando se considere necesario, la segunda cámara (2) puede purgarse y volver a otras condiciones iniciales, pudiendo repetir el estudio de difusión y pudiendo comprobar si los coeficientes de difusión de los compuestos de interés cambian, y en qué modo, en función del tiempo, con lo que se puede conocer si el comportamiento de la muestra cambia a lo largo del tiempo. El hecho de que el dispositivo esté dotado de dos cámaras de mezcla de gases es fundamental para poder establecer, de forma separada, diferentes condiciones termo- higrométricas en cada una de las cámaras de manera independiente ya que, además, cada una de las cámaras puede controlarse a una determinada temperatura. At any time, when deemed necessary, the second chamber (2) can be purged and return to other initial conditions, being able to repeat the diffusion study and being able to check if the diffusion coefficients of the compounds of interest change, and in what way, as a function of time, with what can be known if the behavior of the sample changes over time. The fact that the device is equipped with two gas mixing chambers is essential to be able to establish, separately, different thermo-hygrometric conditions in each of the chambers independently since, in addition, each of the chambers can Control at a certain temperature.

Claims

REIVINDICACIONES
1. Dispositivo para determinar el coeficiente de difusión de al menos un gas presente en una mezcla de gases, a través de una muestra de material permeable caracterizado porque comprende una primera cámara de mezcla de gases (1) y una segunda cámara de mezcla de gases (2) dispuestas de forma continua y separadas entre sí por una tercera cámara (3) configurada para albergar una muestra, 1. Device for determining the diffusion coefficient of at least one gas present in a gas mixture, through a sample of permeable material characterized in that it comprises a first gas mixing chamber (1) and a second gas mixing chamber (2) arranged continuously and separated from each other by a third chamber (3) configured to house a sample,
donde la primera cámara (1) comprende un sistema de sensores de monitorización de las condiciones del gas (8) que mide las condiciones de humedad y la concentración de los compuestos presentes en la mezcla de gases presente en la primera cámara (1), que está conectado a un sistema control (12) que mantiene dichas condiciones constantes, y de la que parte un conducto de entrada y salida de gases conectado a un sistema de válvulas de entrada y de salida (5); where the first chamber (1) comprises a system of sensors for monitoring the conditions of the gas (8) that measures the humidity conditions and the concentration of the compounds present in the gas mixture present in the first chamber (1), which it is connected to a control system (12) that maintains said constant conditions, and from which a gas inlet and outlet duct is connected to a system of inlet and outlet valves (5);
donde la segunda cámara (2) es estanca por todas sus paredes menos por la parte de la misma que está en contacto con la tercera cámara (3) y comprende un sensor de monitorización que mide las condiciones del gas de la segunda cámara (2) y un sistema de control (12) que registra la diferencia de concentración de gas de la segunda cámara (2) durante el proceso de medida, de la cámara (2) parte un conducto de entrada conectado a un sistema de válvulas de entrada (6) y un conducto de salida conectado a un sistema de válvulas de salida (7). where the second chamber (2) is sealed on all its walls except for the part thereof that is in contact with the third chamber (3) and comprises a monitoring sensor that measures the gas conditions of the second chamber (2) and a control system (12) that records the difference in gas concentration of the second chamber (2) during the measurement process, from the chamber (2) starts an inlet conduit connected to an inlet valve system (6 ) and an outlet conduit connected to an outlet valve system (7).
2. Dispositivo según la reivindicación 1 , donde la primera cámara (1) y/o la segunda cámara (2), comprenden una cámara de control de temperatura (10), (1 1) respectivamente. 2. Device according to claim 1, wherein the first chamber (1) and / or the second chamber (2) comprises a temperature control chamber (10), (1 1) respectively.
3. Dispositivo según la reivindicación 2, donde las cámaras de control de la temperatura están conectadas a un sistema de control de la temperatura (13). 3. Device according to claim 2, wherein the temperature control chambers are connected to a temperature control system (13).
4. Dispositivo según cualquiera de las reivindicaciones anteriores, donde la primera cámara (1) comprende un sistema de válvulas (5), constituido por una válvula de entrada del gas a estudiar (15), una válvula de entrada de vapor de agua (16) y una válvula de salida (17). Device according to any one of the preceding claims, wherein the first chamber (1) comprises a valve system (5), constituted by a gas inlet valve to be studied (15), a water vapor inlet valve (16) and an outlet valve (17).
5. Dispositivo según cualquiera de las reivindicaciones anteriores, donde la primera cámara (1) y la segunda cámara (2) operan con diferentes condiciones te rm o- h i g ro m étri cas . 5. Device according to any one of the preceding claims, wherein the first chamber (1) and the second chamber (2) operate under different conditions te rm o- h i g ro m étri cas.
6. Dispositivo según cualquiera de las reivindicaciones anteriores, donde la primera cámara (1) y la segunda cámara (2) operan con la misma presión (presión atmosférica). 6. Device according to any of the preceding claims, wherein the first chamber (1) and the second chamber (2) operate with the same pressure (atmospheric pressure).
7. Procedimiento para determinar el coeficiente de difusión de al menos un gas presente en una mezcla de gases, a través de una muestra de material permeable caracterizado porque se lleva a cabo en un dispositivo según la reivindicación 1-4, y por que comprende las siguientes etapas: a) Introducir la muestra en la cámara (3), 7. Method for determining the diffusion coefficient of at least one gas present in a gas mixture, through a sample of permeable material characterized in that it is carried out in a device according to claim 1-4, and by which it comprises following steps: a) Insert the sample into the chamber (3),
b) Introducir en la primera cámara (1), la mezcla de gases a estudiar y mantener constante la humedad y concentración de cada uno de los gases que componen dicha mezcla,  b) Enter in the first chamber (1), the gas mixture to be studied and keep the humidity and concentration of each of the gases that make up the mixture constant,
c) Mantener la primera cámara (1) y la segunda cámara (2) con la misma presión (presión atmosférica) durante todo el ensayo,  c) Maintain the first chamber (1) and the second chamber (2) with the same pressure (atmospheric pressure) throughout the test,
d) Determinar la diferencia de concentración y humedad en los compuestos de la mezcla de gases en la segunda cámara (2) durante el inicio del proceso y después del mismo,  d) Determine the difference in concentration and humidity in the compounds of the gas mixture in the second chamber (2) during the start of the process and after it,
e) Determinar el coeficiente de difusión del gas mediante el tratamiento numérico a partir de los datos obtenidos en la etapa d).  e) Determine the diffusion coefficient of the gas by means of the numerical treatment from the data obtained in step d).
8. Procedimiento según la reivindicación 1 , donde la mezcla de gases en la primera cámara (1) se mantiene constante mediante la recirculación continua de dicha mezcla o mediante reposición de cada componente de la mezcla. 8. The method according to claim 1, wherein the gas mixture in the first chamber (1) is kept constant by continuous recirculation of said mixture or by replenishing each component of the mixture.
PCT/ES2016/070822 2015-11-19 2016-11-18 Device for measuring the diffusion coefficient of gases in a porous material under real conditions WO2017085348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201531678A ES2558851B2 (en) 2015-11-19 2015-11-19 Equipment for measuring the gas diffusion coefficient through a porous material in real conditions
ESP201531678 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017085348A1 true WO2017085348A1 (en) 2017-05-26

Family

ID=55237406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070822 WO2017085348A1 (en) 2015-11-19 2016-11-18 Device for measuring the diffusion coefficient of gases in a porous material under real conditions

Country Status (2)

Country Link
ES (1) ES2558851B2 (en)
WO (1) WO2017085348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505235A (en) * 2017-09-25 2017-12-22 百林机电科技(苏州)有限公司 A kind of device for testing petroleum storage tank oil-gas diffusion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157960A (en) * 1990-02-06 1992-10-27 Massachusetts Institute Of Technology Method and apparatus for transient measurement of gas permeability in closed-cell foam insulation
US7229593B1 (en) * 2001-10-25 2007-06-12 Sandia Corporation Portable vapor diffusion coefficient meter
ES2397469A1 (en) * 2011-02-11 2013-03-07 Universidad De Valladolid Device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157960A (en) * 1990-02-06 1992-10-27 Massachusetts Institute Of Technology Method and apparatus for transient measurement of gas permeability in closed-cell foam insulation
US7229593B1 (en) * 2001-10-25 2007-06-12 Sandia Corporation Portable vapor diffusion coefficient meter
ES2397469A1 (en) * 2011-02-11 2013-03-07 Universidad De Valladolid Device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVARZANI, H. ET AL.: "Experimental measurement of the effective diffusion and thermodiffusion coefficients for binary gas mixture in porous media", CHEMICAL ENGINEERING SCIENCE, vol. 65, 2010, pages 5092 - 5104, XP027193578 *
JUNG, S.H. ET AL.: "Experimental Investigation on Diffusion Coefficient of Carbon Dioxide for Sustainable Construction Materials", 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE CONSTRUCTION MATERIALS AND TECHNOLOGIES, 2010, pages 361 - 370, ISBN: 978-1-4507-7361 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505235A (en) * 2017-09-25 2017-12-22 百林机电科技(苏州)有限公司 A kind of device for testing petroleum storage tank oil-gas diffusion

Also Published As

Publication number Publication date
ES2558851A1 (en) 2016-02-09
ES2558851B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
Welles et al. Considerations for measuring ground CO2 effluxes with chambers
Tatarinov et al. The analysis of physical background of tree sap flow measurement based on thermal methods
Tang et al. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors
Rundel et al. Water in the environment
Rahn et al. Humidity in the avian nest and egg water loss during incubation
Dugas Micrometeorological and chamber measurements of CO2 flux from bare soil
Risk et al. Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux
Molodovskaya et al. Nitrous oxide from heterogeneous agricultural landscapes: source contribution analysis by eddy covariance and chambers
Maier et al. 2D profiles of CO2, CH4, N2O and gas diffusivity in a well aerated soil: measurement and Finite Element Modeling
CN101949919A (en) Rubber forest soil respiration measuring method
Schilperoort et al. Using distributed temperature sensing for Bowen ratio evaporation measurements
Quade et al. Investigation of kinetic isotopic fractionation of water during bare soil evaporation
Price et al. Physical and isotopic characterization of evaporation from Sphagnum moss
Feng et al. A steady-state analytical profile method for determining methane oxidation in landfill cover
ES2558851B2 (en) Equipment for measuring the gas diffusion coefficient through a porous material in real conditions
Koller et al. A null-point compensating system for simultaneous and continuous measurement of net photosynthesis and transpiration by controlled gas-stream analysis
Sorrell et al. Gas transport and exchange through wetland plant aerenchyma
Hashimoto et al. Vertical distributions of carbon dioxide diffusion coefficients and production rates in forest soils
Han et al. Accounting for time‐variable soil porosity improves the accuracy of the gradient method for estimating soil carbon dioxide production
Schindler et al. Emerging measurement methods for soil hydrological studies
Monteith et al. A diffusive resistance porometer for field use. II. Theory, calibration and performance
Ambrose Monitoring long-term temperature and humidity
Pavlik et al. System for testing the hygrothermal performance of multi-layered building envelopes
Ebrahimi-Birang et al. Assessment of the WP4-T device for measuring total suction
Tingey et al. The carbon dioxide leakage from chambers measured using sulfur hexafluoride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865830

Country of ref document: EP

Kind code of ref document: A1