WO2017084536A1 - 智能图形识别二维码的编码系统及方法、解码系统及方法 - Google Patents

智能图形识别二维码的编码系统及方法、解码系统及方法 Download PDF

Info

Publication number
WO2017084536A1
WO2017084536A1 PCT/CN2016/105431 CN2016105431W WO2017084536A1 WO 2017084536 A1 WO2017084536 A1 WO 2017084536A1 CN 2016105431 W CN2016105431 W CN 2016105431W WO 2017084536 A1 WO2017084536 A1 WO 2017084536A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional code
color
data
decoding
mode
Prior art date
Application number
PCT/CN2016/105431
Other languages
English (en)
French (fr)
Inventor
区华威
Original Assignee
上海好想法网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海好想法网络科技有限公司 filed Critical 上海好想法网络科技有限公司
Publication of WO2017084536A1 publication Critical patent/WO2017084536A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding

Definitions

  • the invention belongs to the technical field of two-dimensional code encoding and decoding, and relates to a coding and decoding system for a two-dimensional code, in particular to a coding and decoding system for a two-dimensional code of a wisdom picture; in addition, the invention relates to an intelligent graphic recognition two The encoding and decoding method of the dimension code.
  • the existing two-dimensional code stores information by the position of the marked point in a horizontal and vertical two-dimensional plane.
  • "dot” is used to indicate a binary "1”
  • no punctuation is a binary "0”.
  • positional information is typically indicated on four or three corners.
  • the early two-dimensional code appeared as a supplement to the one-dimensional bar code in logistics, commodity labeling and so on.
  • the use of mobile phone QR code has gradually emerged. Users can scan the QR code through the mobile phone camera to achieve fast mobile Internet access, quickly and conveniently browse the web, download graphics, music, video, get coupons, participate in lottery, and learn about product information. .
  • the wide application of the two-dimensional code provides great convenience for users to use the mobile phone to access the Internet, eliminating the trouble of inputting the URL, and quickly entering the webpage that they want to see at the touch of a button, thereby greatly improving the convenience of the Internet.
  • barcode recognition applications provide a way for print media, value-added service providers and businesses to communicate with users anytime, anywhere.
  • the shortcomings of the two-dimensional code are slow resolution, poor error correction capability, large redundancy, high requirements for reading equipment, and due to the shape of the traditional two-dimensional code itself, it determines that it is performing some fashion graphic design and advertising content. , image photos, etc. can be weak in design.
  • the existing paintings are usually not combined with the QR code during the exhibition, and the visitors cannot understand the further information of the works.
  • the existing color two-dimensional code usually uses only four colors, and requires a lot of space to place a color two-dimensional code when the amount of data is large.
  • the technical problem to be solved by the present invention is to provide an intelligent graphic recognition two-dimensional code encoding system, which can use different color types, can be combined with a pattern or graphically, and can improve the data represented by the two-dimensional code in the same area. Quantity; at the same time can improve the efficiency and correct rate of two-dimensional code decoding.
  • the invention also provides an intelligent graphic recognition two-dimensional code encoding method, which can use different color types, can be combined with a pattern or graphically, and can increase the amount of data represented by the two-dimensional code in the same area; The efficiency and correct rate of dimensional decoding.
  • the present invention also provides a decoding system for intelligent graphic recognition two-dimensional code, which can use different color types, can be combined with a pattern or graphically, and can increase the amount of data represented by the two-dimensional code in the same area; Improve the efficiency and correct rate of QR code decoding.
  • the present invention also provides a method for decoding a two-dimensional code for intelligent pattern recognition, which can use different color types, can be combined with a pattern or graphically, and can increase the amount of data represented by the two-dimensional code in the same area; Improve the efficiency and correct rate of QR code decoding.
  • An intelligent graphic recognition two-dimensional code encoding system the two-dimensional code generated by the encoding system is matched with the color of the image to form a color matrix that is integrated into one, two, three or four sides of the image, and the two-dimensional code includes a position. Mode setting area, color setting area, number of rows and columns setting area, data area;
  • the position mode setting area, the color setting area, the number of rows and columns setting area, and the data area respectively comprise one or more cells, and the color of each cell is one of 8 colors;
  • the encoding system includes:
  • a position mode generating unit configured to set a partial region of the two-dimensional code as a position mode setting region, and fill the data information indicating the two-dimensional code position and the decoding mode in the position mode setting region;
  • a color setting unit for setting a partial area of the two-dimensional code as a color setting area, and filling in the color setting area with data information indicating a color number n usable by the cell;
  • the color setting area is set to two-dimensional a corner portion of the code, the data setting area indicating the color selection and decoding mode of the two-dimensional code is filled in the color setting area;
  • a row-column number generating unit for setting a partial region of the two-dimensional code as a row-column number setting region, and filling the row-column number setting region with information indicating the number of two-dimensional code rows and columns;
  • a coding unit for setting a partial region of the two-dimensional code as a data region, and filling the encoded data in the data region according to an encoding mode set by the position pattern generating unit;
  • the two-dimensional code generated by the encoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; where N and M are natural numbers;
  • the coding mode includes one of a one-side coding mode, an L-type coding mode, a U-type coding mode, a back-type coding mode, or a matrix coding mode;
  • the encoding method of the unilateral coding mode is: the data of the two-dimensional code including N ⁇ M cells is numbered by two lines, and the first column of the first row is taken as 1, the reading is from top to bottom, and the Clockwise numbered by number, sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells;
  • the encoding method of the L-type coding mode is: taking the data of the two-dimensional code including N ⁇ M cells by two lines of the L-shaped outer circumference and determining that the first row of the first row is 1, and the reading is first and then Inside, first left and right, press the clockwise number to the number, go to the corner before the corner point, turn the corner point number, then turn, then follow the first outside, the first left, the right, the right clockwise number, and then fill in the N ⁇ In the data area in the two-dimensional code of the M cells, the end of the second edge ends;
  • the encoding method of the U-type coding mode is: taking the data of the two-dimensional code including the N ⁇ M cells by two lines of the U-shaped three-sided outer ring, and determining that the first column of the first row is 1, and the reading is first. After the inside, first left and then right, press the clockwise number to the number, go to the corner before the corner, turn the corner point number, then turn, continue to follow the first outer, the first left, the right, the clockwise number, and then fill in the N ⁇ in the data area in the two-dimensional code of the M cells, ending at the end of the third side;
  • the encoding method of the back-type coding mode is: the data of the two-dimensional code including the N ⁇ M cells is taken back into two rows of four-sided outer rings, and the first row is determined to be 1, the first row is The second column is 2, the reading is first outside and then inside, first left and then right, clockwise by number, to the corner before the corner, steering corner number, then turn, continue to follow first, then, first, left, and right
  • the hour hand number is sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells, and ends at the fourth edge end;
  • the two-dimensional code includes a position mode setting area;
  • the encoding system includes a position pattern generating unit, configured to set a partial area of the two-dimensional code as a position mode setting area, and fill the two-dimensional code in the position mode setting area Data information of location and decoding mode;
  • the decoding mode includes one or more of a sequential decoding mode, a reverse decoding mode, and an out-of-order decoding mode;
  • the decoding method of the sequential decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from top to bottom, left to right, increasing sequentially by number; and then, numbering the data Filled in the data area in the two-dimensional code containing N ⁇ M cells from top to bottom and left to right in order from small to large;
  • the decoding method of the reverse decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from bottom to top and from right to left, and sequentially increasing by number; and then, according to the numbered data, In the order of small to large, from bottom to top, from right to left, in the data region in the two-dimensional code containing N ⁇ M cells;
  • the decoding method of the out-of-order decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells according to a sequence of a specific function rule, sequentially increasing by number; and then filling the numbered data with N ⁇ In the data region in the two-dimensional code of the M cells, the filling order is in accordance with the corresponding function rule; the loop is sequentially performed until all the data is filled into the data region in the two-dimensional code including N ⁇ M cells.
  • An intelligent graphic recognition two-dimensional code encoding system the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including a position mode setting area and a color setting. Fixed area, number of rows and columns setting area, data area;
  • the color setting area and the data area respectively comprise one or more cells, and the color of each cell is one of n color color fields;
  • the encoding system includes:
  • a position mode generation area for setting a partial area of the two-dimensional code as a position mode setting area, and filling the position mode setting area with data information indicating a two-dimensional code position and a decoding mode
  • the color setting area for setting a partial area of the two-dimensional code as a color setting area, and filling the color setting area with data information indicating the number n of colors that the cell can use;
  • the color setting area is set to two-dimensional a corner portion of the code, and filling in the color setting area with data information indicating a color selection and decoding mode of the two-dimensional code;
  • a row-column number generation area for setting a partial region of the two-dimensional code as a row-column number setting region, and filling the row-column number setting region with information indicating the number of two-dimensional code rows and columns;
  • the two-dimensional code generated by the encoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; where N and M are natural numbers.
  • the coding mode includes: one of a unilateral coding mode, an L-type coding mode, a U-type coding mode, a back-type coding mode, or a matrix coding mode;
  • the encoding method of the unilateral coding mode is: taking the data of the two-dimensional code including N ⁇ M cells by two lines of one side, taking the first column of the first row as a1, reading from top to bottom, pressing Clockwise numbered by number, sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells; a1 is a natural number;
  • the encoding method of the L-type coding mode is: taking the data of the two-dimensional code including N ⁇ M cells by two lines of the L-shaped outer circumference and numbering, determining that the first column of the first row is a2, and the reading is first and then Inside, first left and right, press the clockwise number to the number, go to the corner before the corner point, turn the corner point number, then turn, then follow the first outside, the first left, the right, the right clockwise number, and then fill in the N ⁇ In the data area in the two-dimensional code of the M cells, the end of the second edge ends; a2 is a natural number;
  • the encoding method of the U-shaped coding mode is: taking the data of the two-dimensional code including the N ⁇ M cells by two lines of the U-shaped three-sided outer ring, and determining that the first column of the first row is a3, and the reading is first. After the inside, first left and then right, press the clockwise number to the number, go to the corner before the corner, turn the corner point number, then turn, continue to follow the first outer, the first left, the right, the clockwise number, and then fill in the N ⁇ in the data area in the two-dimensional code of the M cells, ending at the end of the third side; a3 is a natural number;
  • the encoding method of the return type encoding mode is: the data of the two-dimensional code including the N ⁇ M cells is taken back into two rows of four outer outer rings, and the first row is determined to be a4, the first row is The second column is a5, the reading is first and then the inside, first left and right, clockwise by number, to the corner before the corner, steering corner number, then turn, continue to follow the first, the first, the first, the left, the right
  • the hour hand number is sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells, and ends at the fourth edge end; a4 and a5 are natural numbers;
  • the encoding method of the matrix coding mode is: taking the data of the two-dimensional code including N ⁇ M cells into the first row and the first column as a6, first and then right and clockwise by number, to fill the number Corner turn, which is sequentially filled in the data area of the entire QR code containing N ⁇ M cells, to all orders The cell fill is over; a6 is a natural number;
  • the n is 8; white, black, red, yellow, green, blue, light gray, and dark gray, respectively.
  • the two-dimensional code includes a position mode setting area;
  • the encoding system includes a position pattern generating unit for setting a partial area of the two-dimensional code as a position mode setting area, at the position
  • the mode setting area is filled with data information indicating a two-dimensional code position and a decoding mode;
  • the decoding mode includes one or more of a sequential decoding mode, a reverse decoding mode, and an out-of-order decoding mode;
  • the decoding method of the sequential decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from top to bottom, left to right, increasing sequentially by number; and then, numbering the data Filled in the data area in the two-dimensional code containing N ⁇ M cells from top to bottom and left to right in order from small to large;
  • the decoding method of the reverse decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from bottom to top and from right to left, and sequentially increasing by number; and then, according to the numbered data, In the order of small to large, from bottom to top, from right to left, in the data region in the two-dimensional code containing N ⁇ M cells;
  • the decoding method of the out-of-order decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells according to a sequence of a specific function rule, sequentially increasing by number; and then filling the numbered data with N ⁇ In the data region in the two-dimensional code of the M cells, the filling order is in accordance with the corresponding function rule; the loop is sequentially performed until all the data is filled into the data region in the two-dimensional code including N ⁇ M cells.
  • An intelligent graphic recognition two-dimensional code encoding method the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including a position mode setting area and a color setting. Fixed area, number of rows and columns setting area, data area;
  • the encoding method includes:
  • the high-brightness white area is set to white, L is in the range of 80 to 100, a is in the range of -20 to 20, and b is in the range of -20 to 20;
  • the low-brightness black area is set to black, L is in the range of 0 to 20, a is in the range of -20 to 20, and b is in the range of -20 to 20;
  • the red area is set to red, L is in the range of 30 to 60, a is in the range of 20 to 127, and b is in the range of -80 to 80.
  • the yellow area is set to yellow, L is in the range of 30 to 60, a is in the range of -80 to 80, and b is in the range of 20 to 127.
  • the green area is set to green, L is in the range of 30 to 60, a is in the range of -20 to -128, and b is in the range of -80 to 80.
  • the blue area is set to blue, L is in the range of 30 to 60, a is in the range of -80 to 80, and b is in the range of -20 to -128.
  • the bright gray area is set to light gray, L ranges from 50 to 80, a ranges from -20 to 20, and b ranges from -20 to 20.
  • the dark gray area is set to dark gray, L ranges from 20 to 50, a ranges from -20 to 20, and b ranges from -20 to 20;
  • a decoding system for intelligent graphic recognition two-dimensional code the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including a position mode setting area and a color setting. Fixed area, number of rows and columns setting area, data area;
  • the decoding system includes:
  • a position mode analyzing unit for acquiring data information of a position mode setting area of the two-dimensional code, and Parsing the position information and the decoding mode corresponding to the two-dimensional code according to the data information, and applying different decoding algorithms according to different decoding modes;
  • a color analysis unit configured to acquire color information of the two-dimensional code and data information of the color type setting area, and parse the color number and color type corresponding to the two-dimensional code according to the data information; and send the parsed data To the decoding unit;
  • a row-column number analyzing unit for acquiring data information of a row number setting area of the two-dimensional code, and parsing the number of rows and columns corresponding to the two-dimensional code according to the data information; and transmitting the parsed data to the decoding unit;
  • a data parsing unit configured to acquire data information of the two-dimensional code content data, and send the parsed arrival data to the decoding unit;
  • a decoding unit configured to perform, according to the two-dimensional code position information, the color number, and the color mode of the two-dimensional code analyzed by the color type analyzing unit, according to the parsed corresponding decoding mode and the two-dimensional code
  • the color mode decodes the two-dimensional code, and the decoding unit uses different decoding algorithms according to different decoding modes;
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the decoding mode includes one or more of a sequential decoding mode, a reverse decoding mode, and an out-of-order decoding mode;
  • the decoding method of the sequential decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from top to bottom, left to right, increasing sequentially by number; and then, numbering the data Filled in the data area in the two-dimensional code containing N ⁇ M cells from top to bottom and left to right in order from small to large;
  • the decoding method of the reverse decoding mode is: pressing data of a two-dimensional code including N ⁇ M cells According to the bottom-up, right-to-left decoding, the numbers are sequentially increased; then, the numbered data is filled in the order from small to large, from bottom to top, from right to left, including N ⁇ M units. In the data area of the grid's QR code;
  • the decoding method of the out-of-order decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells according to a sequence of a specific function rule, sequentially increasing by number; and then filling the numbered data with N ⁇ In the data region in the two-dimensional code of the M cells, the filling order is in accordance with the corresponding function rule; the loop is sequentially performed until all the data is filled into the data region in the two-dimensional code including N ⁇ M cells;
  • the decoding method of the decoding system is:
  • the first step determine the color mode
  • Step 2 Determine the number of data lines
  • the third step determining the decoding mode
  • the fourth step the data acquisition part
  • the cell outside the corner is a data area, and the valid coded data is read according to the decoding mode according to the decoding mode, and the decoding result is verified by the check cell to obtain the data collection of the two-dimensional code;
  • Step 5 Identify the end of the scan
  • a decoding system for intelligent graphic recognition two-dimensional code the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including a position mode setting area and a color setting. Fixed area, number of rows and columns setting area, data area;
  • the decoding system includes:
  • a position mode analyzing unit configured to acquire data information of a position pattern setting area of the two-dimensional code, and parse the position information and the decoding mode corresponding to the two-dimensional code according to the data information, or to parse the unit included in the image area The number of grids or / and the location of the image area;
  • a color analysis unit configured to acquire color information of the two-dimensional code and data information of the color type setting area, and parse the color number and color type corresponding to the two-dimensional code according to the data information; and send the parsed data To the decoding unit;
  • a row-column number analyzing unit for acquiring data information of a row number setting area of the two-dimensional code, and parsing the number of rows and columns corresponding to the two-dimensional code according to the data information; and transmitting the parsed data to the decoding unit;
  • a data parsing unit configured to acquire data information of the two-dimensional code content data, and send the parsed arrival data to the decoding unit;
  • a decoding unit configured to perform, according to the two-dimensional code position information, the color number, and the color mode of the two-dimensional code analyzed by the color type analyzing unit, according to the parsed corresponding decoding mode and the two-dimensional code
  • the color mode decodes the two-dimensional code, and the decoding unit uses different decoding algorithms according to different decoding modes.
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; and the data in the two-dimensional code including the N ⁇ M cells passes through a decoding mode.
  • the specific area set is valid encoded data;
  • the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the decoding mode includes one of a sequential decoding mode, a reverse decoding mode, and an out-of-order decoding mode or Multiple
  • the decoding method of the sequential decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from top to bottom, left to right, increasing sequentially by number; and then, numbering the data Filled in the data area in the two-dimensional code containing N ⁇ M cells from top to bottom and left to right in order from small to large;
  • the decoding method of the reverse decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells in order from bottom to top and from right to left, and sequentially increasing by number; and then, according to the numbered data, In the order of small to large, from bottom to top, from right to left, in the data region in the two-dimensional code containing N ⁇ M cells;
  • the decoding method of the out-of-order decoding mode is: decoding data of a two-dimensional code including N ⁇ M cells according to a sequence of a specific function rule, sequentially increasing by number; and then filling the numbered data with N ⁇ In the data region in the two-dimensional code of the M cells, the filling order is in accordance with the corresponding function rule; the loop is sequentially performed until all the data is filled into the data region in the two-dimensional code including N ⁇ M cells;
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the color combination is a color combination in the color setting.
  • a method for decoding a two-dimensional code of intelligent graphic recognition the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including a position mode setting area and a color setting. Fixed area, number of rows and columns setting area, data area;
  • the decoding method includes:
  • the position pattern analysis unit acquires data information of the position pattern setting area of the two-dimensional code, and parses the position information and the decoding mode corresponding to the two-dimensional code according to the data information, or Also parsing the number of cells or/and the location of the image region contained in the image region;
  • the color number analysis unit acquires data information of the color setting area of the two-dimensional code, and parses out the color combination corresponding to the two-dimensional code according to the data information; and sends the parsed data to the decoding unit;
  • the decoding unit is configured according to the two-dimensional code position information analyzed by the position pattern analyzing unit and the two-dimensional code color pattern parsed by the color analyzing unit, and the data area is determined according to the corresponding decoding mode and the two-dimensional code color mode.
  • the two-dimensional code cells are decoded; the decoding unit uses different decoding algorithms for different decoding modes.
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; and the data in the two-dimensional code including the N ⁇ M cells passes through a decoding mode.
  • the specific area set is valid encoded data;
  • the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the decoding method of the decoding system is:
  • the first step determine the color mode
  • Step 2 Determine the number of data lines
  • the third step determining the decoding mode
  • the fourth step the data acquisition part
  • the cell outside the corner is a data area, and the valid coded data is read according to the decoding mode according to the decoding mode, and the decoding result is verified by the check cell to obtain the data collection of the two-dimensional code;
  • Step 5 Identify the end of the scan
  • the image processing adopts the Lab color model.
  • the color setting is determined by the specific color gamut range in the Lab color model, and can be converted into RBG, HSV and CMYK color systems through the color space conversion function.
  • the data encoding system includes a color number generating unit and a coding unit; the color generating unit is configured to set a partial region of the two-dimensional code as an encoding setting region, and the color setting region is filled with data information indicating a color number n usable by the cell;
  • the coding unit is configured to set a partial region of the two-dimensional code as a data region, fill the encoded data in the data region according to the coding mode set by the location mode generation unit, and ensure the fault tolerance capability of the two-dimensional code by using a verification manner.
  • the invention can use different color types and combinations, can be combined with the pattern or graphically; the amount of data represented by the two-dimensional code can be increased in the same area; and the efficiency and correct rate of the two-dimensional code decoding can be improved.
  • the invention has the beneficial effects that the codec system and method for intelligent graphic recognition two-dimensional code proposed by the invention can use different color type combinations (such as two colors, three colors, or even eight colors), and can be combined with the pattern. Or graphically, the amount of data represented by the two-dimensional code can be increased in the same area; at the same time, the color number setting area is set, and the number of colors used in encoding is recognized by identifying the data of the color number setting area, and The number of colors is recognized, which can improve the efficiency and correct rate of two-dimensional code decoding.
  • different color type combinations such as two colors, three colors, or even eight colors
  • FIG. 1 is a schematic diagram of a conventional two-dimensional code.
  • FIG. 2 is a schematic diagram of a smart pattern recognition two-dimensional code in the present invention.
  • FIG. 3 is a schematic diagram of a two-dimensional code of a unilateral mode of the present invention.
  • FIG. 4 is a schematic diagram of a two-dimensional code of an L-type mode of the present invention.
  • FIG. 5 is a schematic diagram of a two-dimensional code of a U-shaped mode of the present invention.
  • FIG. 6 is a schematic diagram of a two-dimensional code of a return mode of the present invention.
  • FIG. 7 is a schematic diagram of a two-dimensional code of a matrix mode of the present invention.
  • Figure 8 is a color combination diagram of the Lab color model used in Figure 8.
  • Figure 9 is a schematic diagram showing the composition of the coding system of the present invention.
  • Figure 10 is a schematic diagram showing the composition of a decoding system of the present invention.
  • the present invention discloses an intelligent graphic recognition two-dimensional code encoding system, which is characterized in that the generated two-dimensional code is merged with the color of the image to form a single side, two sides, three sides or four sides.
  • the color matrix includes a position mode setting area, a color setting area, a number of rows and columns setting area, a data area; the position mode setting area, a color number setting area, a line number setting area, a data area, and an end mark A region containing one or more cells, each of which has a color of one of n colors.
  • n is 8; compared with the two colors, the amount of data represented can be increased by the same number of data cells.
  • the two-dimensional code is fixed to two lines
  • the position mode setting area may coincide with the color setting area
  • the color setting area is cells 1, 2, 3, 4
  • the line number setting area The cells are 2, 3, 4 of the two-dimensional code
  • the position mode cell is 13
  • the other area is the data area
  • the ending cell is 14.
  • the encoding system includes: color number generating cells 1, 2, 3, 4, row number generating cells 2, 3, 4, decoding cells 13, and ending cells 14.
  • the position pattern generating unit 13 is configured to set a partial region of the two-dimensional code as a position pattern setting region, and the position pattern setting region is filled with data information indicating a two-dimensional code decoding mode.
  • the color generating cells 1, 2, 3, and 4 are used to set a partial region of the two-dimensional code as a color setting region, and the color of the color setting region is filled with the color selected in the color mode of the two-dimensional code.
  • the row number generating cells 2, 3, and 4 are used to set a partial region of the two-dimensional code as a row number setting region, and represent the number of rows of the two-dimensional code by a binary conversion algorithm.
  • the cells 5-12 are used to set a partial region of the two-dimensional code as a data region, and the data region is filled with the encoded data according to the encoding mode set by the position pattern generating unit.
  • the end flag area generating unit 14 is configured to set a partial area of the two-dimensional code as an end flag area, and fill the setting code data in the end flag area.
  • the decoding mode includes one or more of a sequential decoding mode, a reverse decoding mode, and an out-of-order decoding mode.
  • the decoding method of the sequential decoding mode is: data of a two-dimensional code including N ⁇ M cells is numbered in order from top to bottom and left to right, and the number is sequentially increased; and then, the number is followed by The data is filled in the data area in the two-dimensional code including N ⁇ M cells from top to bottom and left to right in order from small to large.
  • the decoding method of the reverse decoding mode is: the data of the two-dimensional code including N ⁇ M cells are numbered in order from top to bottom and left to right, and the number is sequentially increased; and then, the number is The data is filled in the data area in the two-dimensional code including N ⁇ M cells in order from bottom to top and from right to left in order from small to large.
  • the decoding method of the out-of-order decoding mode is: the data of the two-dimensional code including N ⁇ M cells is numbered in order from top to bottom and left to right, and the number is sequentially increased; The data is filled in a data area in a two-dimensional code containing N ⁇ M cells, and the filling order is filled from top to bottom and left to right.
  • the steps of filling are: obtaining all remaining numbers, filling the remaining numbers. Minimum number; get all remaining numbers, fill in the largest number of remaining numbers; cycle through until all data is filled into the data area in the QR code containing N ⁇ M cells.
  • the coding mode further includes one of a one-side coding mode, an L-type coding mode, a U-type coding mode, a back-type coding mode, or a matrix coding mode.
  • the encoding method of the unilateral coding mode is: taking the data of the two-dimensional code including the N ⁇ M cells by two lines of one side, and taking the first column of the first row as 1 (may also be other values), Readings from top to bottom, The number is numbered clockwise, and is sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells, see Figure 3.
  • the encoding method of the L-type coding mode is: the data of the two-dimensional code including the N ⁇ M cells is numbered by two lines of the L-shaped outer circumference, and the first column of the first row is determined to be 1 (may also be other Value), the reading is first and then left, first left and right, clockwise by number, to the corner before the corner, turn the corner number, then turn, then clockwise according to the first outside, first left, then right, right. Fill in the data area in the two-dimensional code containing N ⁇ M cells in turn, and end at the end of the second side, see Figure 4.
  • the encoding method of the U-type coding mode is: taking the data of the two-dimensional code including the N ⁇ M cells by two lines of the U-shaped three-sided outer circle, and determining that the first column of the first row is 1 (may also be Other values), the reading is first outside and then inside, first left and then right, clockwise by number, to the corner before the corner, steering corner number, then turn, continue to follow the first, the first, the first, the left, the right, clockwise
  • the number is sequentially filled in the data area in the two-dimensional code containing N ⁇ M cells, and ends at the end of the third side, see Figure 5.
  • the encoding method of the back-type coding mode is: the data of the two-dimensional code including the N ⁇ M cells is taken back by two rows of four-sided outer rings, and the first column of the first row is determined to be 1 (may also be other Value), the second column of the first row is 2 (can also be other values), the reading is first outside and then inside, first left and then right, clockwise by number, to the corner before the corner, steering corner number, then Steering, continue to clockwise according to the first, second, second, right, and right, sequentially fill in the data area in the two-dimensional code containing N ⁇ M cells, and end to the fourth end, see Figure 6.
  • the encoding method of the matrix coding mode is: taking the data of the two-dimensional code including N ⁇ M cells into the first row and the first column as 1 (may also be other values), first left and then right and clockwise by number The size number is turned to the corner of the filled number, which is sequentially filled in the data area of the entire QR code containing N ⁇ M cells, and the filling of all the cells is completed, see Figure 7.
  • the invention also discloses an encoding system for intelligent graphic recognition two-dimensional code, characterized in that the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including Position mode setting area, color setting area, number of rows and columns setting area, data area;
  • the encoding system includes a position pattern generating unit, a color generating unit, a row and column number generating unit, and a code generating unit.
  • the setting area and the ending flag area respectively comprise one or more cells, and the color of each cell is one of 8 colors, wherein the color mode n may be an integer greater than or equal to 2; for example, n is 4.
  • the encoding method includes the following steps:
  • the position pattern generating unit sets a partial region of the two-dimensional code as a position pattern setting region, and the position pattern setting region is filled with data information indicating a two-dimensional code position and a decoding mode.
  • the color generation unit sets a partial region of the two-dimensional code as a color number setting region, and the color number setting region is filled with data information indicating the number n of colors usable by the cell.
  • the row and column number generation unit sets a partial region of the two-dimensional code as a row and column number setting region, and indicates the number of rows and columns of the two-dimensional code.
  • the coding unit sets a partial region of the two-dimensional code as a data region, and fills the encoded data in the data region according to the coding mode set by the position pattern generation unit.
  • the end flag area generating unit sets a partial area of the two-dimensional code as an end flag area, and fills the setting flag data in the end flag area.
  • the invention discloses a coding method for intelligent graphic recognition two-dimensional code, which is characterized in that the generated two-dimensional code is matched with the color of the picture to form a color matrix which is integrated into one side, two sides, three sides or four sides of the picture, including the position.
  • a mode setting area, a color setting area, a number of rows and columns setting area, and a data area (of course, may include an end flag area);
  • the color setting encoding method includes:
  • the high-brightness white area is set to white, L is in the range of 80 to 100, a is in the range of -20 to 20, and b is in the range of -20 to 20;
  • the low-brightness black area is set to black, L is in the range of 0 to 20, and a is in the range of -20 to 20. b ranges from -20 to 20;
  • the red area is set to red, L is in the range of 30 to 60, a is in the range of 20 to 127, and b is in the range of -80 to 80.
  • the yellow area is set to yellow, L is in the range of 30 to 60, a is in the range of -80 to 80, and b is in the range of 20 to 127.
  • the green area is set to green, L is in the range of 30 to 60, a is in the range of -20 to -128, and b is in the range of -80 to 80.
  • the blue area is set to blue, L is in the range of 30 to 60, a is in the range of -80 to 80, and b is in the range of -20 to -128.
  • the bright gray area is set to light gray, L ranges from 50 to 80, a ranges from -20 to 20, and b ranges from -20 to 20.
  • the dark gray area is set to dark gray, L is in the range of 20 to 50, a is in the range of -20 to 20, and b is in the range of -20 to 20; see Figure 8.
  • the decoding system includes a position mode analyzing unit, a color analyzing unit, a row and column number analyzing unit, and a decoding unit.
  • the location mode analysis unit is configured to acquire data information of the location mode setting area of the two-dimensional code, and parse the location information and the decoding mode corresponding to the two-dimensional code according to the data information, or parse the number of cells included in the image region. Or / and the location of the image area;
  • the color analysis unit is configured to acquire data information of the color number setting area of the two-dimensional code, and parse the color number n corresponding to the two-dimensional code according to the data information; and send the parsed data to the decoding unit;
  • the row and column number analyzing unit is configured to obtain data information of the row and column number setting area of the two-dimensional code, and parse the number of rows and columns corresponding to the two-dimensional code according to the data information; and send the parsed data to the decoding unit;
  • the decoding unit is configured to use the two-dimensional code position information and the color number n of the two-dimensional code analyzed by the color number analyzing unit according to the position pattern analyzing unit, according to the corresponding decoding mode, the two-dimensional code color number and the two-dimensional The number of code lines decodes the two-dimensional code.
  • the two-dimensional code decoded by the decoding system is a two-dimensional code including N ⁇ M cells; the specific region set by the decoding mode of the data in the two-dimensional code including the N ⁇ M cells is a valid encoding Data; the color combination decoding mode of the decoding unit includes a two-color decoding mode, a 3-color decoding mode, and a 4-color decoding mode;
  • the decoding method of the decoding system is:
  • the first step determine the color mode
  • Step 2 Determine the number of data lines
  • the four rectangular cells at the corner of the cell with number 1 are the number of rows.
  • the number is converted according to the key color of the cell.
  • the binary conversion is used to decode and calculate, and the decimal and the decimal are two-dimensional.
  • the number of lines of the code; the four rectangular cells of the opposite diagonal number of the number 1 are the number of columns, and the number is converted according to the key color of the cell, and the number of columns of the two-dimensional code is calculated by the binary conversion decoding method. (One-sided mode does not need to calculate the number of columns);
  • the third step determining the decoding mode
  • the four cells of the relative corners of the cell where the number 1 is located are the decoding regions, and the digital conversion is performed according to the key color of the cell to obtain the decoding mode information;
  • the fourth step the data acquisition part
  • the cell outside the corner is a data area, and the valid coded data is read according to the decoding mode according to the decoding mode, and the decoding result is verified by the check cell to obtain the data collection of the two-dimensional code;
  • Step 5 Identify the end of the scan
  • the present invention also discloses a decoding method for the intelligent graphic recognition two-dimensional code.
  • the two-dimensional code is located on one side of the painted picture, including the position. Mode setting area, color number setting area, line number setting area, data area, and end mark area;
  • the position mode setting area, the color number setting area, the line number setting area, the data area, and the end mark area respectively include one or more cells, and the color of each cell is one of 8 colors.
  • the decoding method includes:
  • the position pattern analysis unit acquires the data information of the position pattern setting area of the two-dimensional code, and analyzes the position information and the decoding mode corresponding to the two-dimensional code based on the data information, or further analyzes the image area The number of cells or / and the location of the image area;
  • the color analysis unit acquires data information of the color setting area of the two-dimensional code, and parses out the color number n and the color mode corresponding to the two-dimensional code according to the data information; and sends the parsed data to the decoding unit. ;
  • the line number analysis unit acquires data information of the row number setting area of the two-dimensional code, and parses the number of rows and columns corresponding to the two-dimensional code according to the data information; and sends the parsed data to the decoding unit;
  • the decoding unit is configured according to the two-dimensional code position information analyzed by the position pattern analyzing unit, the two-dimensional code color number n and the color mode analyzed by the color analyzing unit, and the corresponding decoding mode and the two-dimensional code color number according to the analysis.
  • the two-dimensional code color mode, the two-dimensional code row and column number decodes the two-dimensional code cells in the data region; the decoding unit uses different decoding algorithms for different decoding modes.
  • the codec system and method for intelligent graphic recognition two-dimensional code proposed by the present invention can use different color combinations (such as 2 colors, 3 colors, or even 8 colors), and can be combined with graphics or graphics.
  • the mode is presented; the amount of data represented by the two-dimensional code can be increased in the same area; and the color setting area is set at the same time, and the color number and color mode used in encoding are recognized by identifying the data of the color setting area, and the color mode is adopted Identification can improve the efficiency and correct rate of two-dimensional code decoding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种智能图形识别二维码的编码系统及方法、解码系统及方法,编码系统生成的智图码通过与图片的色彩吻合,形成融于图片的一边、两边或多边的色彩矩阵,并通过模糊识别,形成可以通过图案方式进行识别的智能图形识别二维码系统。智能图形识别二维码的编解码系统及方法,可使用不同色彩组合(如2种色彩、3种色彩、乃至8种色彩),可以与图案结合或以图形方式呈现;在同一片区域可提高二维码表示的数据量;同时设置有色彩设定区域,通过识别色彩设定区域的数据识别出编码时使用的色彩数与色彩模式,并以该色彩模式进行识别,能提高二维码解码的效率及正确率。

Description

智能图形识别二维码的编码系统及方法、解码系统及方法 技术领域
本发明属于二维码编解码技术领域,涉及一种二维码的编码及解码系统,尤其涉及一种智图二维码的编码及解码系统;此外,本发明还涉及一种智能图形识别二维码的编码及解码方法。
背景技术
如图1所示,现有的二维码是在水平和垂直的二维平面内通过标示点的位置存储信息。在单元位置上,用“点”表示二进制的“1”,不标点表示二进制的“0”。甚至有的使用彩色点,以增加数据量。为了帮助解码软件定位的图案,通常在四个或三个角上标示位置信息。
二维码早期作为一维条码的补充出现在物流、商品标签等方面。近年来手机二维码运用逐渐兴起,用户通过手机摄像头扫描二维码即可实现快速手机上网,快速便捷地浏览网页、下载图文、音乐、视频、获取优惠券、参与抽奖、了解企业产品信息。
二维码的广泛应用为用户使用手机上网提供了极大便利,省去了输入URL的麻烦,可一次按键即快速进入自己想看的网页,大大提高了上网的便利性。此外,条码识别应用也为平面媒体、增值服务商和企业提供了一个与用户随时随地沟通的方式。
目前二维码的缺点是,解析速度慢、纠错能力差、冗余大,对识读设备要求高,同时由于传统二维码本身的形态,决定了它在表现一些时尚平面设计、广告内容、图像照片等可设计方面比较弱。
同时,现有的绘画作品在展览时,通常还没有与二维码结合,参观者无法了解作品的进一步的信息。此外,现有的彩色二维码通常只使用4种颜色,在数据量较大时需要很多空间来放置彩色二维码。
有鉴于此,如今迫切需要设计一种新的二维码编解码方式,以克服现有编解码方式的上述缺陷。
发明内容
本发明所要解决的技术问题是:提供一种智能图形识别二维码的编码系统,可使用不同色彩种类,可以与图案结合或以图形方式呈现,在同一片区域可提高二维码表示的数据量;同时能提高二维码解码的效率及正确率。
本发明同时提供一种智能图形识别二维码的编码方法,可使用不同色彩种类,可以与图案结合或以图形方式呈现,在同一片区域可提高二维码表示的数据量;同时能提高二维码解码的效率及正确率。
同时,本发明还提供一种智能图形识别二维码的解码系统,可使用不同色彩种类,可以与图案结合或以图形方式呈现,在同一片区域可提高二维码表示的数据量;同时能提高二维码解码的效率及正确率。
此外,本发明还提供一种智能图形识别二维码的解码方法,可使用不同色彩种类,可以与图案结合或以图形方式呈现,在同一片区域可提高二维码表示的数据量;同时能提高二维码解码的效率及正确率。
为解决上述技术问题,本发明采用如下技术方案:
一种智能图形识别二维码的编码系统,所述编码系统生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,二维码包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种;
所述编码系统包括:
-位置模式生成单元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
-色彩设定单元,用以设定二维码的部分区域为色彩设定区域,在色彩设定区域填充表示单元格可使用的色彩数n的数据信息;色彩设定区域设定为二维码的角部,在色彩设定区域填充表示二维码的色彩选用及解码模式的数据信息;
-行列数生成单元,用以设定二维码的部分区域为行列数设定区域,在行列数设定区域填充表示二维码行列数信息;
-编码单元,用以设定二维码的部分区域为数据区域,在数据区域按照所述位置模式生成单元设定的编码模式填充编码数据;
所述编码系统生成的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;其中,N、M为自然数;
所述编码模式包括单边编码模式、L型编码模式、U型编码模式、回型编码模式或矩阵编码模式中的一种;
所述单边编码模式的编码方法为:将包含N×M个单元格的二维码的数据取单边两行进行编号,取第一行第一列为1,读数从上到下,按顺时针方式按数字大小编号,依次填充在包含N×M个单元格的二维码中的数据区域中;
所述L型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取L型两边外圈两行进行编号,确定第一行第一列为1,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,再按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第二边终点结束;
所述U型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取U型三边外圈两行进行编号,确定第一行第一列为1,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第三边终点结束;
所述回型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取回型四边外圈两行进行编号,确定第一行第一列为1,第一行第二列为2,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第四边终点结束;
所述二维码包括位置模式设定区域;所述编码系统包括位置模式生成单元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中。
一种智能图形识别二维码的编码系统,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述色彩设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为n种色彩色域中的一种;
所述编码系统包括:
-位置模式生成区域,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
-色彩设定区域,用以设定二维码的部分区域为色彩设定区域,在色彩设定区域填充表示单元格可使用的色彩数n的数据信息;色彩设定区域设定为二维码的角部,在色彩设定区域填充表示二维码色彩选用及解码模式的数据信息;
-行列数生成区域,用以设定二维码的部分区域为行列数设定区域,在行列数设定区域填充表示二维码行列数的信息;
-数据区域,用以设定二维码数的部分区域为数据区域,在数据区域填充表 示二维码数据内容据内容的数据信息;
所述编码系统生成的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;其中,N、M为自然数。
作为本发明的一种优选方案,所述编码模式包括:单边编码模式、L型编码模式、U型编码模式、回型编码模式或矩阵编码模式中的一种;
所述单边编码模式的编码方法为:将包含N×M个单元格的二维码的数据取单边两行进行编号,取第一行第一列为a1,读数从上到下,按顺时针方式按数字大小编号,依次填充在包含N×M个单元格的二维码中的数据区域中;a1为自然数;
所述L型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取L型两边外圈两行进行编号,确定第一行第一列为a2,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,再按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第二边终点结束;a2为自然数;
所述U型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取U型三边外圈两行进行编号,确定第一行第一列为a3,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第三边终点结束;a3为自然数;
所述回型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取回型四边外圈两行进行编号,确定第一行第一列为a4,第一行第二列为a5,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第四边终点结束;a4、a5为自然数;
所述矩阵编码模式的编码方法为:将包含N×M个单元格的二维码的数据取第一行第一列为a6,先左后右按顺时针按数字大小编号,到为填充数字的角点转向,依次填充在整个包含N×M个单元格的二维码中的数据区域中,到所有单 元格填充完毕结束;a6为自然数;
所述n为8;分别为白色、黑色、红色、黄色、绿色、蓝色、浅灰色和深灰色。
作为本发明的一种优选方案,所述二维码包括位置模式设定区域;所述编码系统包括位置模式生成单元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中。
一种智能图形识别二维码的编码方法,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
所述编码方法包括:
-图像处理采用Lab色彩模型,色彩的设定以Lab色彩模型中的特定色域范围确定,并通过颜色空间转换函转换成RBG、HSV和CMYK色彩体系;
-色彩设定,根据Lab色彩模型设定色彩,
高亮度白色区域设定为白色,L取值范围为80到100,a取值范围为-20到20,b取值范围为-20到20;
低亮度黑色区域设定为黑色,L取值范围为0到20,a取值范围为-20到20,b取值范围为-20到20;
红色区域设定为红色,L取值范围为30到60,a取值范围为20到127,b取值范围为-80到80;
黄色区域设定为黄色,L取值范围为30到60,a取值范围为-80到80,b取值范围为20到127;
绿色区域设定为绿色,L取值范围为30到60,a取值范围为-20到-128,b取值范围为-80到80;
蓝色区域设定为蓝色,L取值范围为30到60,a取值范围为-80到80,b取值范围为-20到-128;
亮灰色区域设定为浅灰色,L取值范围为50到80,a取值范围为-20到20,b取值范围为-20到20;
暗灰色区域设定为深灰色,L取值范围为20到50,a取值范围为-20到20,b取值范围为-20到20;
-色彩编码,使用二进制对颜色进行编码,定义黑色为000,定义深灰色为001,定义蓝色为010,定义绿色为011,定义黄色为100,定义红色为101,定义浅灰色为110,定义白色为111。
一种智能图形识别二维码的解码系统,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n可取值2=<n<=8,n为自然数;
所述解码系统包括:
-位置模式解析单元,用以获取二维码的位置模式设定区域的数据信息,并 根据该数据信息解析出该二维码对应的位置信息及解码模式,根据不同的解码模式实用不同的解码算法;
-色彩解析单元,用以获取二维码的色彩数、色彩种类设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数及色彩种类;并将解析到的数据发送至解码单元;
-行列数解析单元,用以获取二维码的行数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
-数据解析单元,用以获取二维码内容数据的数据信息,并将解析到达数据发送到解码单元;
-解码单元,用以根据所述位置模式解析单元解析出的二维码位置信息、色彩数及色彩种类解析单元解析出的二维码的色彩模式,按照解析出的对应解码模式及二维码色彩模式对二维码进行解码,所述的解码单元根据不同的解码模式使用不同的解码算法;
所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按 照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中;
所述解码系统的解码方法为:
第一步:确定色彩模式;
从顶部扫描色彩,以二维码的四个角点单元格为色彩设定区域,通过单元格颜色确定二维码的色彩模式,如果二维码四个角点单元格内只存在权利要求5中的8色中的两个颜色,为双色模式,如果二维码四个角点单元格内存在权利要求5中的8色中的3种颜色,为3色模式,如果二维码四个角点单元格内存在权利要求5中的8色中4种颜色,则为4色模式;当色彩模式大于等于5时,则通过四个角部的4格矩阵单元作为色彩设定区域;
第二步:确定数据行数;
从顶部自上而下扫描,以设定编号所在单元格角部的四个矩形单元格为行数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的行数;设定编号相对的对角的四个矩形单元格为列数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的列数,单边模式不需要计算列数;
第三步:确定解码模式;
从顶部自上而下扫描,以设定编号所在单元格通行的相对角点的四个单元格为解码区域,根据单元格重点色彩进行数字转换,获取解码模式信息;
第四步:数据采集部分;
角部以外单元格为数据区域,根据解码模式对有效编码数据按照约定解码方式读码,并通过校验单元格复核解码结果,获取二维码的数据采集;
第五步:识别扫描结束位;
从顶部自上而下扫描,以设定编号开始扫描,根据二维码的解码模式,至该二维码最后一个编码单元格结束。
一种智能图形识别二维码的解码系统,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述位置模式设定区域、色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
所述解码系统包括:
-位置模式解析单元,用以获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者还解析出图像区域包含的单元格数目或/和图像区域的位置;
-色彩解析单元,用以获取二维码的色彩数、色彩种类设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数及色彩种类;并将解析到的数据发送至解码单元;
-行列数解析单元,用以获取二维码的行数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
-数据解析单元,用以获取二维码内容数据的数据信息,并将解析到达数据发送到解码单元;
-解码单元,用以根据所述位置模式解析单元解析出的二维码位置信息、色彩数及色彩种类解析单元解析出的二维码的色彩模式,按照解析出的对应解码模式及二维码色彩模式对二维码进行解码,所述的解码单元根据不同的解码模式使用不同的解码算法。
作为本发明的一种优选方案,所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或 多种;
所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中;
所述色彩数n取值2=<n<=8,n为自然数;
所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述色彩组合为色彩设定中的色彩组合。
一种智能图形识别二维码的解码方法,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
所述位置模式设定区域、色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
所述解码方法包括:
-位置模式解析步骤,位置模式解析单元获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者 还解析出图像区域包含的单元格数目或/和图像区域的位置;
-色彩解析步骤,色彩数解析单元获取二维码的色彩设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩组合;并将解析到的数据发送至解码单元;
-解码步骤,解码单元根据所述位置模式解析单元解析出的二维码位置信息、色彩解析单元解析出的二维码色彩模式,按照解析出的对应解码模式及二维码色彩模式对数据区域中的二维码单元格进行解码;所述解码单元针对不同的解码模式使用不同的解码算法。
作为本发明的一种优选方案,所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述解码系统的解码方法为:
第一步:确定色彩模式;
从顶部扫描色彩,以二维码的四个角点单元格为色彩设定区域,通过单元格颜色确定二维码的色彩模式,如果二维码四个角点单元格内只存在权利要求5中的8色中的两个颜色,为双色模式,如果二维码四个角点单元格内存在权利要求5中的8色中的3种颜色,为3色模式,如果二维码四个角点单元格内存在权利要求5中的8色中4种颜色,则为4色模式;当色彩模式大于等于5时,则通过四个角部的4格矩阵单元作为色彩设定区域;
第二步:确定数据行数;
从顶部自上而下扫描,以设定编号所在单元格角部的四个矩形单元格为行数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的行数;设定编号相对的对角的四个矩形单元格为列数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的列数;
第三步:确定解码模式;
从顶部自上而下扫描,以设定编号所在单元格通行的相对角点的四个单元格 为解码区域,根据单元格重点色彩进行数字转换,获取解码模式信息;
第四步:数据采集部分;
角部以外单元格为数据区域,根据解码模式对有效编码数据按照约定解码方式读码,并通过校验单元格复核解码结果,获取二维码的数据采集;
第五步:识别扫描结束位;
从顶部自上而下扫描,以设定编号开始扫描,根据二维码的解码模式,至该二维码最后一个编码单元格结束。
智图码色彩矩阵包括编码设定区域和数据区域;编码设定区域和数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,色彩模式的编码体系由8种色彩中的n种(n为自然数,2=<n<=8)进行组合生成。图像处理采用Lab色彩模型,色彩的设定以Lab色彩模型中的特定色域范围确定,并可通过颜色空间转换函转换成RBG、HSV和CMYK色彩体系。数据编码系统包括色彩数生成单元、编码单元;色彩生成单元用以设定二维码的部分区域为编码设定区域,在色彩设定区域填充表示单元格可使用的色彩数n的数据信息;编码单元用以设定二维码的部分区域为数据区域,在数据区域按照所述位置模式生成单元设定的编码模式填充编码数据,并通过校验方式保证二维码的容错能力。本发明可使用不同色彩种类和组合,可以与图案结合或以图形方式呈现;在同一片区域可提高二维码表示的数据量;同时能提高二维码解码的效率及正确率。
本发明的有益效果在于:本发明提出的智能图形识别二维码的编解码系统及方法,可使用不同色彩种类组合(如2种色彩、3种色彩、乃至8种色彩),可以与图案结合或以图形方式呈现,在同一片区域可提高二维码表示的数据量;同时设置有色彩数设定区域,通过识别色彩数设定区域的数据识别出编码时使用的色彩数,并以该色彩数进行识别,能提高二维码解码的效率及正确率。
附图说明
图1为现有二维码的示意图。
图2为本发明中智能图形识别二维码的示意图。
图3为本发明单边模式的二维码示意图。
图4为本发明L型模式的二维码示意图。
图5为本发明U型模式的二维码示意图。
图6为本发明回型模式的二维码示意图。
图7为本发明矩阵模式的二维码示意图
图8所采用的Lab色彩模型的色彩组合示意图。
图9为本发明的编码系统组成示意图
图10为本发明的解码系统组成示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例一
请参阅图2,本发明揭示了一种智能图形识别二维码的编码系统,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;所述位置模式设定区域、色彩数设定区域、行数设定区域、数据区域、结束标志区域,分别包含一个或多个单元格,每个单元格的色彩为n种色彩中的一种。本实施例中,n为8;与2种色彩相比,可以通过同样数量的数据格提高表示的数据量。此外,单边模式实施例中,二维码固定为两行,位置模式设定区域可与色彩设定区域重合,色彩设定区域为单元格1、2、3、4;行数设定区域为二维码的单元格2、3、4;位置模式单元格为13;其他区域为数据区域,结束单元格为14。
请参阅图3,所述编码系统包括:色彩数生成单元格1、2、3、4,行数生成单元格2、3、4,解码单元格13、结束单元格14。
位置模式生成单元格13用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码解码模式的数据信息。
色彩生成单元格1、2、3、4用以设定二维码的部分区域为色彩设定区域,色彩设定区域的颜色填充为该二维码的色彩模式中选用的色彩。
行数生成单元格2、3、4用以设定二维码的部分区域为行数设定区域,通过二进制转换算法表示二维码的行数。
单元格5-12用以设定二维码的部分区域为数据区域,在数据区域按照所述位置模式生成单元设定的编码模式填充编码数据。
结束标志区域生成单元格14用以设定二维码的部分区域为结束标志区域,在结束标志区域填充设定编码数据。
所述编码系统生成的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据均为有效的编码数据;其中,N为自然数,M=2。
所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种。
所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序编号,所编编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中。
所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序编号,所编编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中。
所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序编号,所编编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序为由上至下、由左至右填充,填充的步骤为:获取剩余的所有编号,填充剩余编号的最小编号;获取剩余的所有编号,填充剩余编号的最大编号;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中。
所述编码模式还包括:单边编码模式、L型编码模式、U型编码模式、回型编码模式或矩阵编码模式中的一种。
所述单边编码模式的编码方法为:将包含N×M个单元格的二维码的数据取单边两行进行编号,取第一行第一列为1(也可以为其他数值),读数从上到下, 按顺时针方式按数字大小编号,依次填充在包含N×M个单元格的二维码中的数据区域中,请参见图3。
所述L型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取L型两边外圈两行进行编号,确定第一行第一列为1(也可以为其他数值),读数先外后,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,再按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第二边终点结束,请参见图4。
所述U型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取U型三边外圈两行进行编号,确定第一行第一列为1(也可以为其他数值),读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第三边终点结束,请参见图5。
所述回型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取回型四边外圈两行进行编号,确定第一行第一列为1(也可以为其他数值),第一行第二列为2(也可以为其他数值),读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第四边终点结束,请参见图6。
所述矩阵编码模式的编码方法为:将包含N×M个单元格的二维码的数据取第一行第一列为1(也可以为其他数值),先左后右按顺时针按数字大小编号,到为填充数字的角点转向,依次填充在整个包含N×M个单元格的二维码中的数据区域中,到所有单元格填充完毕结束,请参见图7。
本发明还揭示一种智能图形识别二维码的编码系统,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
请参阅图9,所述编码系统包括位置模式生成单元、色彩生成单元、行列数生成单元、编码生成单元。
所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域、解码 设定区域、结束标志区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩模式n可以为大于等于2的整数;如n为4。所述编码方法包括如下步骤:
位置模式生成步骤,位置模式生成单元设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息。
色彩生成步骤,色彩生成单元设定二维码的部分区域为色彩数设定区域,在色彩数设定区域填充表示单元格可使用的色彩数n的数据信息。
行列数生成步骤,行列数生成单元设定二维码的部分区域为行列数设定区域,标明二维码的行列数。
编码步骤,编码单元设定二维码的部分区域为数据区域,在数据区域按照所述位置模式生成单元设定的编码模式填充编码数据。
结束标志区域生成步骤,结束标志区域生成单元设定二维码的部分区域为结束标志区域,在结束标志区域填充设定编码数据。
实施例二
本发明揭示一种智能图形识别二维码的编码方法,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域(当然也可以包括结束标志区域);所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;。
请参阅图8,所述色彩设定编码方法包括:
-图像处理采用Lab色彩模型,色彩的设定以Lab色彩模型中的特定色域范围确定,并可通过颜色空间转换函转换成RBG、HSV和CMYK色彩体系;
-色彩设定,根据Lab色彩模型设定色彩,
高亮度白色区域设定为白色,L取值范围为80到100,a取值范围为-20到20,b取值范围为-20到20;
低亮度黑色区域设定为黑色,L取值范围为0到20,a取值范围为-20到20, b取值范围为-20到20;
红色区域设定为红色,L取值范围为30到60,a取值范围为20到127,b取值范围为-80到80;
黄色区域设定为黄色,L取值范围为30到60,a取值范围为-80到80,b取值范围为20到127;
绿色区域设定为绿色,L取值范围为30到60,a取值范围为-20到-128,b取值范围为-80到80;
蓝色区域设定为蓝色,L取值范围为30到60,a取值范围为-80到80,b取值范围为-20到-128;
亮灰色区域设定为浅灰色,L取值范围为50到80,a取值范围为-20到20,b取值范围为-20到20;
暗灰色区域设定为深灰色,L取值范围为20到50,a取值范围为-20到20,b取值范围为-20到20;请参见图8。
-色彩编码,使用二进制对颜色进行编码,定义黑色为000,定义深灰色为001,定义蓝色为010,定义绿色为011,定义黄色为100,定义红色为101,定义浅灰色为110,定义白色为111。
请参阅图10,所述解码系统包括位置模式解析单元、色彩解析单元、行列数解析单元、解码单元。
位置模式解析单元用以获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者还解析出图像区域包含的单元格数目或/和图像区域的位置;
色彩解析单元用以获取二维码的色彩数设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数n;并将解析到的数据发送至解码单元;
行列数解析单元用以获取二维码的行列数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
解码单元用以根据所述位置模式解析单元解析出的二维码位置信息、色彩数解析单元解析出的二维码色彩数n,按照解析出的对应解码模式、二维码色彩数及二维码行数对二维码进行解码。
所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
所述解码系统的解码方法为:
第一步:确定色彩模式;
从顶部扫描色彩,以二维码的四个角点单元格为色彩设定区域,通过单元格颜色确定二维码的色彩模式,如果二维码四个角点单元格内只存在权利要求5中的8色中的两个颜色,为双色模式,如果二维码四个角点单元格内存在权利要求5中的8色中的3种颜色,为3色模式,如果二维码四个角点单元格内存在权利要求5中的8色中4种颜色,则为4色模式。当色彩模式大于等于5时,则通过四个角部的4格矩阵单元作为色彩设定区域,如图6中的1、2、3、40,10、11、12、13,20、21、22、23,30、31、32、33。
第二步:确定数据行数;
从顶部自上而下扫描,以编号1所在单元格角部的四个矩形单元格为行数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的行数;编号1相对的对角的四个矩形单元格为列数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的列数,(单边模式不需要计算列数);
第三步:确定解码模式;
从顶部自上而下扫描,以编号1所在单元格通行的相对角点的四个单元格为解码区域,根据单元格重点色彩进行数字转换,获取解码模式信息;
第四步:数据采集部分;
角部以外单元格为数据区域,根据解码模式对有效编码数据按照约定解码方式读码,并通过校验单元格复核解码结果,获取二维码的数据采集;
第五步:识别扫描结束位;
从顶部自上而下扫描,以编号1开始扫描,根据二维码的解码模式,至该二维码最后一个编码单元格结束。
以上介绍了本发明智能图形识别二维码的解码系统,本发明在揭示上述系统的同时,还揭示一种智能图形识别二维码的解码方法,二维码位于彩绘图片的一侧,包括位置模式设定区域、色彩数设定区域、行数设定区域、数据区域、结束标志区域;
所述位置模式设定区域、色彩数设定区域、行数设定区域、数据区域、结束标志区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种。所述解码方法包括:
位置模式解析步骤,位置模式解析单元获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者还解析出图像区域包含的单元格数目或/和图像区域的位置;
色彩解析步骤,色彩解析单元获取二维码的色彩设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数n及色彩模式;并将解析到的数据发送至解码单元;
行列数解析步骤,行数解析单元获取二维码的行列数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
解码步骤,解码单元根据所述位置模式解析单元解析出的二维码位置信息、色彩解析单元解析出的二维码色彩数n及色彩模式,按照解析出的对应解码模式、二维码色彩数、二维码色彩模式、二维码行列数对数据区域中的二维码单元格进行解码;所述解码单元针对不同的解码模式使用不同的解码算法。
综上所述,本发明提出的智能图形识别二维码的编解码系统及方法,可使用不同色彩组合(如2种色彩、3种色彩、乃至8种色彩),可以与图案结合或以图形方式呈现;在同一片区域可提高二维码表示的数据量;同时设置有色彩设定区域,通过识别色彩设定区域的数据识别出编码时使用的色彩数与色彩模式,并以该色彩模式进行识别,能提高二维码解码的效率及正确率。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实 施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (10)

  1. 一种智能图形识别二维码的编码系统,其特征在于,所述编码系统生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,二维码包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种;
    所述编码系统包括:
    -位置模式生成单元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
    -色彩设定单元,用以设定二维码的部分区域为色彩设定区域,在色彩设定区域填充表示单元格可使用的色彩数n的数据信息;色彩设定区域设定为二维码的角部,在色彩设定区域填充表示二维码的色彩选用及解码模式的数据信息;
    -行列数生成单元,用以设定二维码的部分区域为行列数设定区域,在行列数设定区域填充表示二维码行列数信息;
    -编码单元,用以设定二维码的部分区域为数据区域,在数据区域按照所述位置模式生成单元设定的编码模式填充编码数据;
    所述编码系统生成的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;其中,N、M为自然数;
    所述编码模式包括单边编码模式、L型编码模式、U型编码模式、回型编码模式或矩阵编码模式中的一种;
    所述单边编码模式的编码方法为:将包含N×M个单元格的二维码的数据取单边两行进行编号,取第一行第一列为1,读数从上到下,按顺时针方式按数字大小编号,依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述L型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取L型两边外圈两行进行编号,确定第一行第一列为1,读数先外后内, 先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,再按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第二边终点结束;
    所述U型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取U型三边外圈两行进行编号,确定第一行第一列为1,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第三边终点结束;
    所述回型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取回型四边外圈两行进行编号,确定第一行第一列为1,第一行第二列为2,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第四边终点结束;
    所述二维码包括位置模式设定区域;所述编码系统包括位置模式生成单元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
    所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
    所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据 填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中。
  2. 一种智能图形识别二维码的编码系统,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述色彩设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为n种色彩色域中的一种;
    所述编码系统包括:
    -位置模式生成区域,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
    -色彩设定区域,用以设定二维码的部分区域为色彩设定区域,在色彩设定区域填充表示单元格可使用的色彩数n的数据信息;色彩设定区域设定为二维码的角部,在色彩设定区域填充表示二维码色彩选用及解码模式的数据信息;
    -行列数生成区域,用以设定二维码的部分区域为行列数设定区域,在行列数设定区域填充表示二维码行列数的信息;
    -数据区域,用以设定二维码数的部分区域为数据区域,在数据区域填充表示二维码数据内容据内容的数据信息;
    所述编码系统生成的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;其中,N、M为自然数。
  3. 根据权利要求2所述的智图二维码的编码系统,其特征在于:
    所述编码模式包括:单边编码模式、L型编码模式、U型编码模式、回型编码模式或矩阵编码模式中的一种;
    所述单边编码模式的编码方法为:将包含N×M个单元格的二维码的数 据取单边两行进行编号,取第一行第一列为a1,读数从上到下,按顺时针方式按数字大小编号,依次填充在包含N×M个单元格的二维码中的数据区域中;a1为自然数;
    所述L型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取L型两边外圈两行进行编号,确定第一行第一列为a2,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,再按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第二边终点结束;a2为自然数;
    所述U型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取U型三边外圈两行进行编号,确定第一行第一列为a3,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第三边终点结束;a3为自然数;
    所述回型编码模式的编码方法为:将包含N×M个单元格的二维码的数据取回型四边外圈两行进行编号,确定第一行第一列为a4,第一行第二列为a5,读数先外后内,先左后右按顺时针按数字大小编号,到角点前一格,转向角点编号,然后转向,继续按照先外后内、先左后右顺时针编号,依次填充在包含N×M个单元格的二维码中的数据区域中,到第四边终点结束;a4、a5为自然数;
    所述矩阵编码模式的编码方法为:将包含N×M个单元格的二维码的数据取第一行第一列为a6,先左后右按顺时针按数字大小编号,到为填充数字的角点转向,依次填充在整个包含N×M个单元格的二维码中的数据区域中,到所有单元格填充完毕结束;a6为自然数;
    所述n为8;分别为白色、黑色、红色、黄色、绿色、蓝色、浅灰色和深灰色。
  4. 根据权利要求2所述的智图二维码的编码系统,其特征在于:
    所述二维码包括位置模式设定区域;所述编码系统包括位置模式生成单 元,用以设定二维码的部分区域为位置模式设定区域,在位置模式设定区域填充表示二维码位置及解码模式的数据信息;
    所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
    所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中。
  5. 一种智能图形识别二维码的编码方法,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
    所述编码方法包括:
    -图像处理采用Lab色彩模型,色彩的设定以Lab色彩模型中的特定色域范围确定,并通过颜色空间转换函转换成RBG、HSV和CMYK色彩体系;
    -色彩设定,根据Lab色彩模型设定色彩,
    高亮度白色区域设定为白色,L取值范围为80到100,a取值范围为-20 到20,b取值范围为-20到20;
    低亮度黑色区域设定为黑色,L取值范围为0到20,a取值范围为-20到20,b取值范围为-20到20;
    红色区域设定为红色,L取值范围为30到60,a取值范围为20到127,b取值范围为-80到80;
    黄色区域设定为黄色,L取值范围为30到60,a取值范围为-80到80,b取值范围为20到127;
    绿色区域设定为绿色,L取值范围为30到60,a取值范围为-20到-128,b取值范围为-80到80;
    蓝色区域设定为蓝色,L取值范围为30到60,a取值范围为-80到80,b取值范围为-20到-128;
    亮灰色区域设定为浅灰色,L取值范围为50到80,a取值范围为-20到20,b取值范围为-20到20;
    暗灰色区域设定为深灰色,L取值范围为20到50,a取值范围为-20到20,b取值范围为-20到20;
    -色彩编码,使用二进制对颜色进行编码,定义黑色为000,定义深灰色为001,定义蓝色为010,定义绿色为011,定义黄色为100,定义红色为101,定义浅灰色为110,定义白色为111。
  6. 一种智能图形识别二维码的解码系统,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述位置模式设定区域、色彩设定区域、行列数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n可取值2=<n<=8,n为自然数;
    所述解码系统包括:
    -位置模式解析单元,用以获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,根据不同的 解码模式实用不同的解码算法;
    -色彩解析单元,用以获取二维码的色彩数、色彩种类设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数及色彩种类;并将解析到的数据发送至解码单元;
    -行列数解析单元,用以获取二维码的行数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
    -数据解析单元,用以获取二维码内容数据的数据信息,并将解析到达数据发送到解码单元;
    -解码单元,用以根据所述位置模式解析单元解析出的二维码位置信息、色彩数及色彩种类解析单元解析出的二维码的色彩模式,按照解析出的对应解码模式及二维码色彩模式对二维码进行解码,所述的解码单元根据不同的解码模式使用不同的解码算法;
    所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
    所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
    所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
    所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数 据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中;
    所述解码系统的解码方法为:
    第一步:确定色彩模式;
    从顶部扫描色彩,以二维码的四个角点单元格为色彩设定区域,通过单元格颜色确定二维码的色彩模式,如果二维码四个角点单元格内只存在权利要求5中的8色中的两个颜色,为双色模式,如果二维码四个角点单元格内存在权利要求5中的8色中的3种颜色,为3色模式,如果二维码四个角点单元格内存在权利要求5中的8色中4种颜色,则为4色模式;当色彩模式大于等于5时,则通过四个角部的4格矩阵单元作为色彩设定区域;
    第二步:确定数据行数;
    从顶部自上而下扫描,以设定编号所在单元格角部的四个矩形单元格为行数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的行数;设定编号相对的对角的四个矩形单元格为列数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的列数,单边模式不需要计算列数;
    第三步:确定解码模式;
    从顶部自上而下扫描,以设定编号所在单元格通行的相对角点的四个单元格为解码区域,根据单元格重点色彩进行数字转换,获取解码模式信息;
    第四步:数据采集部分;
    角部以外单元格为数据区域,根据解码模式对有效编码数据按照约定解码方式读码,并通过校验单元格复核解码结果,获取二维码的数据采集;
    第五步:识别扫描结束位;
    从顶部自上而下扫描,以设定编号开始扫描,根据二维码的解码模式,至该二维码最后一个编码单元格结束。
  7. 一种智能图形识别二维码的解码系统,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述位置模式设定区域、色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
    所述解码系统包括:
    -位置模式解析单元,用以获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者还解析出图像区域包含的单元格数目或/和图像区域的位置;
    -色彩解析单元,用以获取二维码的色彩数、色彩种类设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩数及色彩种类;并将解析到的数据发送至解码单元;
    -行列数解析单元,用以获取二维码的行数设定区域的数据信息,并根据该数据信息解析出该二维码对应的行列数;并将解析到的数据发送至解码单元;
    -数据解析单元,用以获取二维码内容数据的数据信息,并将解析到达数据发送到解码单元;
    -解码单元,用以根据所述位置模式解析单元解析出的二维码位置信息、色彩数及色彩种类解析单元解析出的二维码的色彩模式,按照解析出的对应解码模式及二维码色彩模式对二维码进行解码,所述的解码单元根据不同的解码模式使用不同的解码算法。
  8. 根据权利要求7所述的智图二维码的解码系统,其特征在于:
    所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
    所述解码模式包括顺序解码模式、倒序解码模式、乱序解码模式中的一种或多种;
    所述顺序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由上至下、由左至右的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由上至下、由左至右依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述倒序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照由下至上、由右至左的顺序解码,按编号依次增加;而后,将编号后的数据按照由小到大的顺序,由下至上、由右至左依次填充在包含N×M个单元格的二维码中的数据区域中;
    所述乱序解码模式的解码方法为:将包含N×M个单元格的二维码的数据按照特定函数规律的顺序解码,按编号依次增加;而后,将编号后的数据填充在包含N×M个单元格的二维码中的数据区域中,填充顺序按照相应函数规律;依次循环,直至所有数据均填充至包含N×M个单元格的二维码中的数据区域中;
    所述色彩数n取值2=<n<=8,n为自然数;
    所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
    所述色彩组合为色彩设定中的色彩组合。
  9. 一种智能图形识别二维码的解码方法,其特征在于,生成的二维码通过与图片的色彩吻合,形成融于图片单边、两边、三边或四边的色彩矩阵,包括位 置模式设定区域、色彩设定区域、行列数设定区域、数据区域;
    所述位置模式设定区域、色彩数设定区域、数据区域分别包含一个或多个单元格,每个单元格的色彩为8种色彩中的一种,其中,色彩数n取值2=<n<=8,n为自然数;
    所述解码方法包括:
    -位置模式解析步骤,位置模式解析单元获取二维码的位置模式设定区域的数据信息,并根据该数据信息解析出该二维码对应的位置信息及解码模式,或者还解析出图像区域包含的单元格数目或/和图像区域的位置;
    -色彩解析步骤,色彩数解析单元获取二维码的色彩设定区域的数据信息,并根据该数据信息解析出该二维码对应的色彩组合;并将解析到的数据发送至解码单元;
    -解码步骤,解码单元根据所述位置模式解析单元解析出的二维码位置信息、色彩解析单元解析出的二维码色彩模式,按照解析出的对应解码模式及二维码色彩模式对数据区域中的二维码单元格进行解码;所述解码单元针对不同的解码模式使用不同的解码算法。
  10. 根据权利要求9所述的智能图形识别二维码的解码方法,其特征在于:
    所述解码系统解码的二维码为包含N×M个单元格的二维码;所述包含N×M个单元格的二维码中的数据通过解码模式设定的具体区域为有效的编码数据;所述解码单元的色彩组合解码模式包括双色解码模式、3色解码模式及4色解码模式;
    所述解码系统的解码方法为:
    第一步:确定色彩模式;
    从顶部扫描色彩,以二维码的四个角点单元格为色彩设定区域,通过单元格颜色确定二维码的色彩模式,如果二维码四个角点单元格内只存在权利要求5中的8色中的两个颜色,为双色模式,如果二维码四个角点单元格内存在权利要求5中的8色中的3种颜色,为3色模式,如果二维码四个角点单元格内存在权利要求5中的8色中4种颜色,则为4色模式;当色彩模式 大于等于5时,则通过四个角部的4格矩阵单元作为色彩设定区域;
    第二步:确定数据行数;
    从顶部自上而下扫描,以设定编号所在单元格角部的四个矩形单元格为行数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的行数;设定编号相对的对角的四个矩形单元格为列数区域,根据单元格重点色彩进行数字转换,通过二进制转换解码方式,计算所得及十进制即为二维码的列数;
    第三步:确定解码模式;
    从顶部自上而下扫描,以设定编号所在单元格通行的相对角点的四个单元格为解码区域,根据单元格重点色彩进行数字转换,获取解码模式信息;
    第四步:数据采集部分;
    角部以外单元格为数据区域,根据解码模式对有效编码数据按照约定解码方式读码,并通过校验单元格复核解码结果,获取二维码的数据采集;
    第五步:识别扫描结束位;
    从顶部自上而下扫描,以设定编号开始扫描,根据二维码的解码模式,至该二维码最后一个编码单元格结束。
PCT/CN2016/105431 2015-11-20 2016-11-11 智能图形识别二维码的编码系统及方法、解码系统及方法 WO2017084536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510808631.0 2015-11-20
CN201510808631.0A CN105426945B (zh) 2015-11-20 2015-11-20 智能图形识别二维码的编码系统及方法、解码系统及方法

Publications (1)

Publication Number Publication Date
WO2017084536A1 true WO2017084536A1 (zh) 2017-05-26

Family

ID=55505140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105431 WO2017084536A1 (zh) 2015-11-20 2016-11-11 智能图形识别二维码的编码系统及方法、解码系统及方法

Country Status (2)

Country Link
CN (1) CN105426945B (zh)
WO (1) WO2017084536A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109919278A (zh) * 2019-02-28 2019-06-21 尤尼泰克(嘉兴)信息技术有限公司 一种对称图形二维码的定向方法
CN112733567A (zh) * 2021-01-15 2021-04-30 深圳市豪恩汽车电子装备股份有限公司 机动车二维码识别方法、装置及计算机可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426945B (zh) * 2015-11-20 2019-07-05 区华威 智能图形识别二维码的编码系统及方法、解码系统及方法
CN106709544A (zh) * 2016-11-16 2017-05-24 区华威 图形快速识别iq码的编码系统及方法、解码系统及方法
CN109543803B (zh) * 2018-11-23 2022-07-22 上海好想法网络科技有限公司 可编辑子母式色彩二维码的编码系统及解码系统
CN109978111A (zh) * 2019-03-13 2019-07-05 杭州百伴生物技术有限公司 矩阵式二维码、其生成、解码方法及其设备
CN110276428A (zh) * 2019-06-05 2019-09-24 上海工程技术大学 一种四维码编码及解码方法
CN111988297B (zh) * 2020-08-13 2022-09-13 北京诚志重科海图科技有限公司 一种文字通信保密传输明密转换系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793740A (zh) * 2014-03-10 2014-05-14 上海形上投资管理有限公司 微彩绘二维码的编码系统及方法、解码系统及方法
CN104239927A (zh) * 2014-08-01 2014-12-24 周奇 一种彩色二维码生成方法及解码方法
CN104951828A (zh) * 2015-06-12 2015-09-30 矽照光电(厦门)有限公司 彩色高阶隐形图像码的生成方法
CN105426945A (zh) * 2015-11-20 2016-03-23 区华威 智能图形识别二维码的编码系统及方法、解码系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184380B (zh) * 2011-05-10 2014-12-17 华南农业大学 一种色彩叠加二维码系统及其应用方法
CN104123572B (zh) * 2014-07-22 2017-04-05 上海高研明鉴信息技术有限公司 二维码生成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793740A (zh) * 2014-03-10 2014-05-14 上海形上投资管理有限公司 微彩绘二维码的编码系统及方法、解码系统及方法
CN104239927A (zh) * 2014-08-01 2014-12-24 周奇 一种彩色二维码生成方法及解码方法
CN104951828A (zh) * 2015-06-12 2015-09-30 矽照光电(厦门)有限公司 彩色高阶隐形图像码的生成方法
CN105426945A (zh) * 2015-11-20 2016-03-23 区华威 智能图形识别二维码的编码系统及方法、解码系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109919278A (zh) * 2019-02-28 2019-06-21 尤尼泰克(嘉兴)信息技术有限公司 一种对称图形二维码的定向方法
CN109919278B (zh) * 2019-02-28 2023-07-04 尤尼泰克(嘉兴)信息技术有限公司 一种对称图形二维码的定向方法
CN112733567A (zh) * 2021-01-15 2021-04-30 深圳市豪恩汽车电子装备股份有限公司 机动车二维码识别方法、装置及计算机可读存储介质
CN112733567B (zh) * 2021-01-15 2023-12-12 深圳市豪恩汽车电子装备股份有限公司 机动车二维码识别方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN105426945A (zh) 2016-03-23
CN105426945B (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2017084536A1 (zh) 智能图形识别二维码的编码系统及方法、解码系统及方法
CN101667256B (zh) 产生以及显示二维码的方法
WO2014098130A1 (ja) 情報コード、情報コード生成方法、情報コード読取装置、及び情報コード利用システム
CN101996336B (zh) 二维条码生成、解码方法及其设备
US9311584B2 (en) Multidimensional color barcode
US20150339838A1 (en) Image mask providing a machine-readable data matrix code
US20140027516A1 (en) Color Extension of Barcodes
CN104657698B (zh) 一种可承载多幅黑白二维码的彩色二维码编解码方法
CN105574572A (zh) 一种彩色二维码及其生成方法
CN106056185A (zh) 可读矩阵码
WO2007010650A1 (ja) 階層化二次元コードおよびその作成方法、並びにその読取方法
JP6394725B2 (ja) 情報コードの生成方法、情報コード、情報コード読取装置、及び情報コード利用システム
WO2017198189A1 (zh) 颜色标识型彩色二维图码的生成、识读方法及装置
CN104657768A (zh) 一种彩色三维码结构及彩色三维码识读方法
CN112926715A (zh) 一种二维码生成、解码方法、装置及设备
CN102306273A (zh) 彩色条码识别打印系统及方法
CN103632179A (zh) 三维条码的编码和解码方法及装置
CN103310251B (zh) Ccqr码的编码方法及译码方法
CN111353321A (zh) 数据生成和解析方法及装置,计算机存储介质和电子设备
CN103259621A (zh) 彩色三维码的编码方法和装置以及彩色三维码的应用方法和系统
CN103793740B (zh) 微彩绘二维码的编码系统及方法、解码系统及方法
CN106067054A (zh) 一种基于qr码的二维码
JP2007026428A (ja) 2次元コード生成方法、読取方法、および実行プログラム
US9832471B2 (en) Description encoding/decoding of information from a graphic information unit
CN109214486B (zh) 三维码、三维码的生成方法和装置、识别方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16865713

Country of ref document: EP

Kind code of ref document: A1