WO2017084235A1 - Cadre de mesure à base de csi-rs formés en faisceau - Google Patents

Cadre de mesure à base de csi-rs formés en faisceau Download PDF

Info

Publication number
WO2017084235A1
WO2017084235A1 PCT/CN2016/078453 CN2016078453W WO2017084235A1 WO 2017084235 A1 WO2017084235 A1 WO 2017084235A1 CN 2016078453 W CN2016078453 W CN 2016078453W WO 2017084235 A1 WO2017084235 A1 WO 2017084235A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
circuitry
virtualized
rsrp
value
Prior art date
Application number
PCT/CN2016/078453
Other languages
English (en)
Inventor
Yushu Zhang
Yuan Zhu
Wenting CHANG
Gang Gary XIONG
Huaning Niu
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Publication of WO2017084235A1 publication Critical patent/WO2017084235A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • Embodiments described herein generally relate to the field of wireless communications and, more particularly, to methods and apparatus for measurement of channel state information reference signals in beamformed transmit beams.
  • MIMO Multiple Input and Multiple output
  • Fig. 1 is diagram of an example wireless network according to various embodiments
  • Fig. 2 is a block diagram of the example wireless network of Figure 2 according to various embodiments
  • Fig. 3 is a sequence diagram of messaging for beamformed channel state information reference signals (CSI ⁇ RS) based measurement according to some embodiments;
  • CSI ⁇ RS channel state information reference signals
  • Fig. 4 is a block diagram of a method performed in an eNB according to some embodiments.
  • Fig. 5 is a block diagram of a method performed in a UE according to some embodiments.
  • Fig. 6 is a block diagram of an example system operable to implement some embodiments.
  • Fig. 7 is a block diagram of an example User Equipment device operable to implement some embodiments.
  • the phrase “in one embodiment” is used repeatedly. The phrase generally does not refer to the same embodiment; however, it may.
  • the terms “comprising, ” “having, ” and “including” are synonymous, unless the context dictates otherwise.
  • the phrase “A/B” means “A or B” .
  • the phrase “A and/or B” means “ (A) , (B) , or (A and B) ” .
  • the phrase “at least one of A, B and C” means “ (A) , (B) , (C) , (A and B) , (A and C) , (B and C) or (A, B and C) ” .
  • the phrase “ (A) B” means “ (B) or (A B) ” , that is, A is optional.
  • module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group) that execute one or more software or firmware instructions and/or programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • Radio systems specifically included within the scope of the present invention include, but are not limited to, network interface cards (NICs) , network adaptors, fixed or mobile client devices, relays, base stations, femtocells, gateways, bridges, hubs, routers, access points, or other network devices.
  • NICs network interface cards
  • network adaptors fixed or mobile client devices
  • relays base stations
  • femtocells gateways
  • bridges bridges
  • hubs hubs
  • routers access points, or other network devices.
  • radio systems within the scope of the invention may be implemented in cellular radiotelephone systems, satellite systems, two ⁇ way radio systems as well as computing devices including such radio systems including personal computers (PCs) , tablets and related peripherals, personal digital assistants (PDAs) , personal computing accessories, hand ⁇ held communication devices and all systems which may be related in nature and to which the principles of the inventive embodiments could be suitably applied.
  • PCs personal computers
  • PDAs personal digital assistants
  • hand ⁇ held communication devices and all systems which may be related in nature and to which the principles of the inventive embodiments could be suitably applied.
  • a large number of service antennas may be used to provide a number of virtual beams that may provide a high degree of spatial separation between terminals in a wireless network.
  • massive MIMO massive Multiple Input and Multiple output
  • FD ⁇ MIMO Full Dimension MIMO
  • a system may be able to support a large number of users on the same bandwidth simultaneously.
  • an evolved NodeB may transmit a number of analog sector transmitting (Tx) beams, and each sector Tx beam may be generated based on different vertical down tilting angles. That is, a single eNB may provide a plurality of virtualized sectors that are horizontally wide and vertically narrow. The eNB may transmit multiple antenna ports from each sector Tx beam. Within each virtualized sector Tx beam, a digital precoder may be applied to provide further horizontal Tx beamforming.
  • a user equipment (UE) served by the eNB may select one sector Tx beam and report the Channel State Information (CSI) measured from this sector Tx beam.
  • the UE may report a Reference Signal Receiving Power (RSRP) of one sector Tx beam.
  • the UE may report the CSI for the selected sector Tx beam which may contain a Channel Quality Indicator (CQI) , Rank Indicator (RI) , and Precoder Matrix Indicator (PMI) .
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PMI Precoder Matrix Indicator
  • the eNB usually relies on the PMI to create a Tx beam for data transmission on the selected sector Tx beam.
  • different serving Tx beams for data transmission may be observed from different Rx beams of the same or different antenna panels.
  • the best Tx beams for data transmission may be within the same or different sector Tx beams.
  • Figure 1 illustrates one example arrangement of a wireless network 100 including an eNB 102 and a UE 104 configured to use different Tx beam and Rx beam pairs for data transmission.
  • the eNB 102 and UE 104 may have identified a first Tx beam –Rx beam pair 106a for transmission of data and control information, and a second, candidate, Tx beam –Rx beam pair 106b.
  • the active antenna panel or active Rx beam on the UE side may change so that the Tx beams for data transmission may need to be updated.
  • the Tx beam change for data transmission may include a sector Tx beam change, horizontal digital Tx beam change within a sector Tx beam, or both.
  • the CSI ⁇ RS may be beamformed within a sector Tx beam, it may be beneficial in some embodiments to measure the receiving power from the narrow vertical and narrow horizontal beams to allow beam switching from any two Tx beams for data transmission from either the same or different sector Tx beams.
  • Example embodiments provide systems, apparatuses, and methods for beamformed CSI ⁇ RS based measurement framework with the UE side Rx beamforming to enable beam mobility in millimeter wave (mmWave) systems.
  • mmWave millimeter wave
  • Wireless communication network 100 may be an access network of a 3rd Generation Partnership Project (3GPP) long ⁇ term evolution (LTE) , long ⁇ term evolution ⁇ advanced (LTE ⁇ A) network such as an evolved universal mobile telecommunication system (UMTS) terrestrial radio access network (E ⁇ UTRAN) or 5G network.
  • 3GPP 3rd Generation Partnership Project
  • LTE long ⁇ term evolution
  • LTE ⁇ A long ⁇ term evolution ⁇ advanced
  • UMTS evolved universal mobile telecommunication system
  • E ⁇ UTRAN terrestrial radio access network
  • 5G network 5G network.
  • the network 100 may include a base station, e.g., evolved node base station (eNB) 102, configured to wirelessly communicate with one or more mobile device (s) or terminal (s) , e.g., user equipment (UE) 104.
  • eNB evolved node base station
  • the eNB 102 may be a fixed station (e.g., a fixed node) or a mobile station/node.
  • the eNB 104 may include receiver circuitry 120 with which to receive signals from UE 104 via one or more antennas 130.
  • eNB 104 may include transmitter circuitry 124 with which to transmit signals to UE 104 via one or more antennas 130.
  • eNB 104 may also include controller circuitry 128 in communication with receiver module 120 and transmitter module 124 and configured to encode and decode information communicated by the signals.
  • Controller module 128 also includes CSI ⁇ RS configuration circuitry 126 to facilitate configuration and report processing of beamformed CSI ⁇ RS messages in the network 100.
  • control circuitry 128 may be comprised in a separate device from the receiver circuitry 120 and/or the transmitter circuitry 124.
  • the eNB 104 may be implemented as part of a cloud ⁇ RAN (C ⁇ RAN) .
  • the UE 104 and/or the eNB 102 may include a plurality of antennas 156, 130 to implement a multiple ⁇ input ⁇ multiple ⁇ output (MIMO) transmission system, which may operate in a variety of MIMO modes, including single ⁇ user MIMO (SU ⁇ MIMO) , multi ⁇ user MIMO (MU ⁇ MIMO) , close loop MIMO, open loop MIMO or variations of smart antenna processing.
  • MIMO multiple ⁇ input ⁇ multiple ⁇ output
  • UE 104 comprises transmitter circuitry 148 for transmitting signals to eNB 102 and receiver circuitry 144 for receiving signals from the eNB 102.
  • UE 104 further comprises controller circuitry 152 coupled between receiver circuitry 144 and transmitter circuitry 148 and including communication circuitry 154 to encode and decode information communicated by the signals.
  • Controller circuitry 152 may also include CSI reporting circuitry 158 to facilitate measurement and reporting of channel state information by the UE 102.
  • the UE 104 may attempt to receive channel state information reference signals (CSI ⁇ RS) for each sector Tx beam using receiver circuitry 144 and then measure a reference signal received power (RSRP) for each sector Tx beam received based on the CSI ⁇ RS beamformed within each sector Tx beam.
  • CSI ⁇ RS channel state information reference signals
  • RSRP reference signal received power
  • the US 104 may then report the selected Tx beam to the eNB 102, and may include the measured RSRP value associated with the selected sector Tx beam.
  • the UE 104 may report all measured RSRP values and their associated sector Tx beams to the eNB 102, and selection of a sector Tx beam may then be performed in the eNB 102.
  • the UE may then attempt to receive UE specific CSI ⁇ RS on the selected sector Tx beam and to determine based on the received CSI ⁇ RS a precoder matrix indicator to signal to the eNB 102 a horizontal Tx beam within the selected Tx sector to be used to communicate data.
  • a two ⁇ dimensional narrow Tx beam may be defined. Further CSI ⁇ RS may be transmitted on this two ⁇ dimensional narrow beam to allow the UE to determine a channel quality indicator, rank indicator, etc. for the beamformed link.
  • the UE 104 may select its sector Tx beam based on the CSI ⁇ RS Receiving Power (CSIRS ⁇ RP) of each sector Tx beam, as the CSI ⁇ RS may be beamformed with different sector Tx beams.
  • the UE may report the horizontal Tx beam directions by the PMI.
  • the eNodeB may further transmit one additional beamformed CSI ⁇ RS using the Tx beam for data transmission.
  • UE may further measure this additional CSI ⁇ RS from this Tx beam to derive CQI RI etc.
  • the active Tx beam may be defined as the one digital narrow beam with the highest reported CQI from the sector Tx beam having highest reported CSIRS ⁇ RP.
  • a candidate Tx beam can be defined as the digital narrow beam with the highest CQI from the sector beam which is cannot be measured by UE simultaneously as the active Tx beam.
  • Table 1 illustrates one example for the CSIRS ⁇ RPs measured by UE 104 using different Rx beams.
  • Tx beam 2 has the highest reported received power and may be designated to be the active Tx beam and the Tx beam 4 has the second highest reported received power and may be designated to be the candidate Tx beam by the eNB 102.
  • Table 1 one example for RSRP measurement result
  • the active Tx beam and candidate Tx beam can be the same sector Tx beam.
  • the basic procedure may contain the sector Tx beam selection, digital beam selection and CSIRS ⁇ RP measurement and report as illustrated in Figure 3.
  • eNB 102 begins by transmitting 202 multiple CSI ⁇ RS (s) on a plurality of vertically narrow, horizontally wide sector Tx beams. These sector Tx beams are monitored by the UE 104, and RSRP values for one or more sector Tx beams are reported 204 to the eNB to facilitate sector Tx beam selection.
  • CSI ⁇ RS CSI ⁇ RS
  • the eNB 102 then transmits 206 UE specific CSI ⁇ RS within the selected sector Tx beam.
  • multiple horizontally narrow beams within the selected sector Tx beam may be used.
  • the UE 104 uses the received CSI ⁇ RS information to provide 208 a precoder matrix indicator to the eNB 102 defining a horizontally narrow beam within the Tx sector.
  • the eNB 102 then transmits 210 further UE specific CSI ⁇ RS using the defined two ⁇ dimensional narrow beam to allow channel state information to be determined by the UE and reported 212 to the eNB 102.
  • Figure 4 illustrates a method 400 performed by an eNB 102 according to some embodiments.
  • the eNB 102 first configures 402 CSI ⁇ RS for each of a number of virtualized, horizontally wide but vertically narrow, sector Tx beams.
  • the eNB 102 then receives 404 at least one RSRP value associated with a sector Tx beam.
  • a selection 406 is then made based on the received RSRP value.
  • Figure 5 illustrates a method 500 performed at UE 104 according to some embodiments.
  • the UE 104 receives 502 CSI ⁇ RS associated with virtualized, horizontally wide but vertically narrow, sector Tx beams.
  • a reference signal received power value is then determined 504 for a virtualized sector based on the associated received CSI ⁇ RS.
  • Determined RSRP values are then reported 506 to the eNB 102.
  • the UE 104 may need to report an RSRP value for each sector Tx beam, which may help the eNodeB 102 to decide the best sector Tx beam for the UE.
  • the UE 104 may maintain two non ⁇ simultaneous Rx beam (s) , and may report the RSRP value with an indicator to show whether this RSRP value is measured from active Rx beam or candidate Rx beam.
  • a current Rx beam is defined as the Rx beam used for current downlink control and signal receiving. This current Rx beam may switch between active Rx beam and candidate Rx beam according to channel conditions.
  • the context for RSRP may contain the following information:
  • the Cell ID may be used to indicate the cell ID which used to generate the CSI ⁇ RS.
  • RSRP value may be quantized by several bits.
  • Subframe index may indicate the subframe index for the CSI ⁇ RS where the RSRP is measured.
  • the Rx beam indicator may contain 1 bit, where value 0 may indicate the CSIRS ⁇ RP is measured from active Rx beam and value 1 may indicate it is measured from candidate Rx beam. Alternatively the Rx beam indicator may not be used and the UE may report two RSRPs values measured from two Rx beams per sector Tx beam to the eNodeB.
  • the beam index may be equal to the sector Tx beam index.
  • sector Tx beam index is transparent to UE, so CSI ⁇ RS port index may be used to implicitly indicate which sector Tx beam is chosen based on the corresponding Rx beam.
  • Two ports may be paired for vertical and horizontal channel measurement, and be equipped with the same sector Tx beam. In this case, report of only one CSI ⁇ RS port index may be sufficient.
  • CSI ⁇ RS process ID may indicate the RSRP is measured on which CSI ⁇ RS symbols.
  • the UE may further select the Tx beam within the selected sector Tx beam.
  • the UE may measure the same CSI ⁇ RS in the selected sector Tx beam and report more than one digital beam selection based CSI, e.g. using one PMI for one digital precoder.
  • two PMIs may be restricted to be measured from a rank 1 precoder codebook for N Tx antenna ports based sector Tx beam, where N is equal to the number of antenna ports for sector beam based CSI ⁇ RS.
  • the codebook for the two PMIs may be defined by the system.
  • the PMI for the active Rx beam and candidate Rx beam may be measured in two CSI ⁇ RS subframes and reported individually or jointly as in the embodiment above.
  • the eNodeB may be able to generate the narrow Tx beam based on the feedback PMIs and the sector Tx beam.
  • the CSI ⁇ RS may be divided into several groups, and each CSI ⁇ RS group may include K antenna ports. In one example, K may be equal to 2. Different narrow Tx beams may be applied to different CSI ⁇ RS groups. In one example, a narrow Tx beam can be generated as follow.
  • N tx ⁇ N p analog beamforming weight for sector Tx beam i; may denote the N p ⁇ K digital precoder for PMI j; P i, j may refer to the narrow Tx beam for sector i and PMI j; N tx is the number of Tx antenna; N p is the number of CSI ⁇ RS antenna ports.
  • the UE may then measure a number of narrow Tx beams of one sector Tx beam in one CSI ⁇ RS subframe, and may report the CSI containing the following items:
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the Uplink Control Information may contain more than one of the above CSI blocks.
  • the UE may measure and report the CSIRS ⁇ RP based on each CSI ⁇ RS group. Then the UE may report the CSIRS ⁇ RP with the following pattern:
  • ⁇ Beam index or CSI ⁇ RS group index corresponded to active beam.
  • RRC Radio Resource Control
  • r a may indicate the CSIRS ⁇ RP measured from active Tx beam with the current Rx beam
  • r a, k may indicate the CSIRS ⁇ RP measured from the Tx beam c with Rx beam k.
  • the Rx beam k can be either the current Rx beam or candidate Rx beam.
  • Threshold ⁇ denotes the CSIRS ⁇ RP threshold, which may be configured via RRC signaling.
  • an antenna port used to transmit a transmit beam for a virtualized sector beamformed to be vertically narrow and horizontally wide is associated with a first number, N v , of vertical antenna elements and a second number, N h , of horizontal antenna elements, where N v is greater than N h .
  • N v is greater than or equal to 8 while N h is less than or equal to 2.
  • the term eNB may loosely refer to a cell or RAN (Radio Access Network) node or transmission point (TP) .
  • the relay UE may belong to the same or different eNB or entity. When it belongs to different entity than the direct path of the remote UE, then additional signaling and context transfer might need to happen for the remote UE to switch between the direct path and relay UE path.
  • the remote UE may be receiving data from multiple relay UEs, each associated with the same eNB/entity or different eNB/entity than the remote UE itself.
  • Embodiments of the technology herein may be described as related to the third generation partnership project (3GPP) long term evolution (LTE) or LTE ⁇ advanced (LTE ⁇ A) standards.
  • 3GPP third generation partnership project
  • LTE long term evolution
  • LTE ⁇ A LTE ⁇ advanced
  • terms or entities such as eNodeB (eNB) , mobility management entity (MME) , user equipment (UE) , etc. may be used that may be viewed as LTE ⁇ related terms or entities.
  • the technology may be used in or related to other wireless technologies such as the Institute of Electrical and Electronic Engineers (IEEE) 802.16 wireless technology (WiMax) , IEEE 802.11 wireless technology (WiFi) , various other wireless technologies such as global system for mobile communications (GSM) , enhanced data rates for GSM evolution (EDGE) , GSM EDGE radio access network (GERAN) , universal mobile telecommunications system (UMTS) , UMTS terrestrial radio access network (UTRAN) , or other 2G, 3G, 4G, 5G, etc. technologies either already developed or to be developed.
  • LTE ⁇ related terms such as eNB, MME, UE, etc.
  • one or more entities or components may be used that may be considered to be equivalent or approximately equivalent to one or more of the LTE ⁇ based terms or entities.
  • circuitry may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • circuitry may include logic, at least partially operable in hardware.
  • FIG. 6 illustrates, for one embodiment, example components of an electronic device 600.
  • the electronic device 600 may be, implement, be incorporated into, or otherwise be a part of a user equipment (UE) , an evolved NodeB (eNB) , or any other suitable electronic device.
  • the electronic device 600 may include application circuitry 602, baseband circuitry 604, Radio Frequency (RF) circuitry 606, front ⁇ end module (FEM) circuitry 608 and one or more antennas 610, coupled together at least as shown.
  • RF Radio Frequency
  • FEM front ⁇ end module
  • the application circuitry 602 may include one or more application processors.
  • the application circuitry 602 may include circuitry such as, but not limited to, one or more single ⁇ core or multi ⁇ core processors.
  • the processor (s) may include any combination of general ⁇ purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) .
  • the processors may be coupled with and/or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems to run on the system.
  • the baseband circuitry 604 may include circuitry such as, but not limited to, one or more single ⁇ core or multi ⁇ core processors.
  • the baseband circuitry 604 may include one or more baseband processors and/or control logic to process baseband signals received from a receive signal path of the RF circuitry 606 and to generate baseband signals for a transmit signal path of the RF circuitry 606.
  • Baseband processing circuity 604 may interface with the application circuitry 602 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 606.
  • the baseband circuitry 604 may include a second generation (2G) baseband processor 604a, third generation (3G) baseband processor 604b, fourth generation (4G) baseband processor 604c, and/or other baseband processor (s) 604d for other existing generations, generations in development or to be developed in the future (e.g., fifth generation (5G) , 6G, etc. ) .
  • the baseband circuitry 604 e.g., one or more of baseband processors 604a ⁇ d
  • the radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc.
  • modulation/demodulation circuitry of the baseband circuitry 604 may include Fast ⁇ Fourier Transform (FFT) , precoding, and/or constellation mapping/demapping functionality.
  • FFT Fast ⁇ Fourier Transform
  • encoding/decoding circuitry of the baseband circuitry 604 may include convolution, tail ⁇ biting convolution, turbo, Viterbi, and/or Low Density Parity Check (LDPC) encoder/decoder functionality.
  • LDPC Low Density Parity Check
  • the baseband circuitry 604 may include elements of a protocol stack such as, for example, elements of an evolved universal terrestrial radio access network (EUTRAN) protocol including, for example, physical (PHY) , media access control (MAC) , radio link control (RLC) , packet data convergence protocol (PDCP) , and/or radio resource control (RRC) elements.
  • EUTRAN evolved universal terrestrial radio access network
  • a central processing unit (CPU) 604e of the baseband circuitry 604 may be configured to run elements of the protocol stack for signaling of the PHY, MAC, RLC, PDCP and/or RRC layers.
  • the baseband circuitry may include one or more audio digital signal processor (s) (DSP) 604f.
  • the audio DSP (s) 604f may be include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
  • the baseband circuitry 604 may further include memory/storage 604g.
  • the memory/storage 604g may be used to load and store data and/or instructions for operations performed by the processors of the baseband circuitry 604.
  • Memory/storage for one embodiment may include any combination of suitable volatile memory and/or non ⁇ volatile memory.
  • the memory/storage 604g may include any combination of various levels of memory/storage including, but not limited to, read ⁇ only memory (ROM) having embedded software instructions (e.g., firmware) , random access memory (e.g., dynamic random access memory (DRAM) ) , cache , buffers, etc.
  • ROM read ⁇ only memory
  • DRAM dynamic random access memory
  • the memory/storage 604g may be shared among the various processors or dedicated to particular processors.
  • Components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or disposed on a same circuit board in some embodiments.
  • some or all of the constituent components of the baseband circuitry 604 and the application circuitry 602 may be implemented together such as, for example, on a system on a chip (SOC) .
  • SOC system on a chip
  • the baseband circuitry 604 may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry 604 may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi ⁇ mode baseband circuitry Embodiments in which the baseband circuitry 604 is configured to support radio communications of more than one wireless protocol.
  • RF circuitry 606 may enable communication with wireless networks using modulated electromagnetic radiation through a non ⁇ solid medium.
  • the RF circuitry 606 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • RF circuitry 606 may include a receive signal path which may include circuitry to down ⁇ convert RF signals received from the FEM circuitry 608 and provide baseband signals to the baseband circuitry 604.
  • RF circuitry 606 may also include a transmit signal path which may include circuitry to up ⁇ convert baseband signals provided by the baseband circuitry 604 and provide RF output signals to the FEM circuitry 608 for transmission.
  • the RF circuitry 606 may include a receive signal path and a transmit signal path.
  • the receive signal path of the RF circuitry 606 may include mixer circuitry 606a, amplifier circuitry 606b and filter circuitry 606c.
  • the transmit signal path of the RF circuitry 606 may include filter circuitry 606c and mixer circuitry 606a.
  • RF circuitry 606 may also include synthesizer circuitry 606d for synthesizing a frequency for use by the mixer circuitry 606a of the receive signal path and the transmit signal path.
  • the mixer circuitry 606a of the receive signal path may be configured to down ⁇ convert RF signals received from the FEM circuitry 608 based on the synthesized frequency provided by synthesizer circuitry 606d.
  • the amplifier circuitry 606b may be configured to amplify the down ⁇ converted signals and the filter circuitry 606c may be a low ⁇ pass filter (LPF) or band ⁇ pass filter (BPF) configured to remove unwanted signals from the down ⁇ converted signals to generate output baseband signals.
  • LPF low ⁇ pass filter
  • BPF band ⁇ pass filter
  • Output baseband signals may be provided to the baseband circuitry 604 for further processing.
  • the output baseband signals may be zero ⁇ frequency baseband signals, although this is not a requirement.
  • mixer circuitry 606a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • the mixer circuitry 606a of the transmit signal path may be configured to up ⁇ convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 606d to generate RF output signals for the FEM circuitry 608.
  • the baseband signals may be provided by the baseband circuitry 604 and may be filtered by filter circuitry 606c.
  • the filter circuitry 606c may include a low ⁇ pass filter (LPF) , although the scope of the embodiments is not limited in this respect.
  • LPF low ⁇ pass filter
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and/or upconversion respectively.
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) .
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a may be arranged for direct downconversion and/or direct upconversion, respectively.
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may be configured for super ⁇ heterodyne operation.
  • the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect.
  • the output baseband signals and the input baseband signals may be digital baseband signals.
  • the RF circuitry 606 may include analog ⁇ to ⁇ digital converter (ADC) and digital ⁇ to ⁇ analog converter (DAC) circuitry and the baseband circuitry 604 may include a digital baseband interface to communicate with the RF circuitry 606.
  • ADC analog ⁇ to ⁇ digital converter
  • DAC digital ⁇ to ⁇ analog converter
  • a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • the synthesizer circuitry 606d may be a fractional ⁇ N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable.
  • synthesizer circuitry 606d may be a delta ⁇ sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase ⁇ locked loop with a frequency divider.
  • the synthesizer circuitry 606d may be configured to synthesize an output frequency for use by the mixer circuitry 606a of the RF circuitry 606 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 606d may be a fractional N/N+1 synthesizer.
  • frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a requirement.
  • VCO voltage controlled oscillator
  • Divider control input may be provided by either the baseband circuitry 604 or the applications processor 602 depending on the desired output frequency.
  • a divider control input (e.g., N) may be determined from a look ⁇ up table based on a channel indicated by the applications processor 602.
  • Synthesizer circuitry 606d of the RF circuitry 606 may include a divider, a delay ⁇ locked loop (DLL) , a multiplexer and a phase accumulator.
  • the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) .
  • the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio.
  • the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D ⁇ type flip ⁇ flop.
  • the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • synthesizer circuitry 606d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other.
  • the output frequency may be a LO frequency (fLO) .
  • the RF circuitry 606 may include an IQ/polar converter.
  • FEM circuitry 608 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 610, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 606 for further processing.
  • FEM circuitry 608 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 606 for transmission by one or more of the one or more antennas 610.
  • the FEM circuitry 608 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuitry may include a receive signal path and a transmit signal path.
  • the receive signal path of the FEM circuitry may include a low ⁇ noise amplifier (LNA) to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 606) .
  • the transmit signal path of the FEM circuitry 608 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 606) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 610.
  • PA power amplifier
  • the electronic device 600 may include additional elements such as, for example, memory/storage, display, camera, sensor, and/or input/output (I/O) interface.
  • additional elements such as, for example, memory/storage, display, camera, sensor, and/or input/output (I/O) interface.
  • the electronic device 600 of Figure 6 may be configured to perform one or more processes, techniques, and/or methods as described herein, or portions thereof. Such processes may include one or more of the following examples.
  • Figure 7 shows an embodiment in which the electronic device 600 implements a UE 102 in the specific form of a mobile device 700.
  • user interfaces could include, but are not limited to, a display 740 (e.g., a liquid crystal display, a touch screen display, etc. ) , a speaker 730, a microphone 790, one or more cameras 780 (e.g., a still camera and/or a video camera) , a flashlight (e.g., a light emitting diode flash) , and a keyboard 770.
  • a display 740 e.g., a liquid crystal display, a touch screen display, etc.
  • a speaker 730 e.g., a microphone 790
  • one or more cameras 780 e.g., a still camera and/or a video camera
  • a flashlight e.g., a light emitting diode flash
  • keyboard 770 e.g., a keyboard 770.
  • the peripheral component interfaces may include, but are not limited to, a non ⁇ volatile memory port, an audio jack, and a power supply interface.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, a network interface to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the electronic device 600 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, a mobile phone, etc.
  • system 700 may have more or less components, and/or different architectures.
  • the implemented wireless network may be a 3rd Generation Partnership Project’s long term evolution (LTE) advanced wireless communication standard, which may include, but is not limited to releases 8, 9, 10, 11, 12, 13, and 14 or later, of the 3GPP’s LTE ⁇ A or 5G standards.
  • LTE long term evolution
  • Example 1 may include a method comprising: configuring beamformed Channel State Information Reference Signal (CSI ⁇ RS) , wherein the CSI ⁇ RS is transmitted with a vertical narrow and horizontal wide sector transmitting (Tx) beam, and each Tx beam is considered as a virtualized sector.
  • CSI ⁇ RS Channel State Information Reference Signal
  • Example 2 may include the method of example 1 or some other example herein, wherein the UE measures and reports the Reference Signal Receiving Power (RSRP) based on the beamformed CSI ⁇ RS to indicate the signal quality of one sector Tx beam.
  • RSRP Reference Signal Receiving Power
  • Example 3 may include the method of example 2 or some other example herein, wherein the UE reports a receiving (Rx) beam indicator associated with the RSRP, where value 0 indicates the RSRP is measured from an active Rx beam and value 1 indicates the RSRP is measured from a candidate Rx beam, and wherein the UE cannot receive data from both active Rx beam and candidate Rx beam simultaneously, wherein the Rx beam is defined as an Rx beam used for data and control receiving and is initially set to be either active Rx beam and can be switched to candidate Rx beam.
  • Rx receiving
  • Example 4 may include the method of example 1 or 3 or some other example herein, wherein the UE reports a digital beam selection Channel State Information (CSI) , wherein a Precoder Matrix Indicator (PMI) for the active Rx beam and the PMI for the candidate Rx beam may be reported.
  • CSI Digital beam selection Channel State Information
  • PMI Precoder Matrix Indicator
  • Example 5 may include the method of example 4 or some other example herein, wherein the PMI is measured using a codebook from the CSI ⁇ RS transmitted on sector beam, which is defined by the system.
  • Example 6 may include the method of example 4 or some other example herein, wherein the PMI is selected from a rank 1 codebook.
  • Example 7 may include the method of example 1 or some other example herein, wherein a UE ⁇ specific CSI ⁇ RS is transmitted as several groups and each group of the several groups is transmitted using a two dimensional narrow Tx beam.
  • Example 8 may include the method of example 7 or some other example herein, wherein each of the several groups use two antenna ports sent from both horizontal and vertical polarizations.
  • Example 9 may include the method of example 7 or some other example herein, wherein the UE measures the CSI ⁇ RS Receiving Power (CSIRS ⁇ RP) for each CSI ⁇ RS group.
  • CSIRS ⁇ RP CSI ⁇ RS Receiving Power
  • Example 10 may include the method of example 9 or some other example herein, wherein the UE reports the CSIRS ⁇ RP comprising the value of CSIRS ⁇ RP, Rx beam indicator, CSI ⁇ RS group index and subframe index, wherein the Rx beam indicator is used to indicate whether this CSIRS ⁇ RP is measured from active Rx beam or candidate Rx beam.
  • Example 11 may include the method of example 10 or some other example herein, wherein the UE may report up to N CSIRS ⁇ RPs, where N is to be configured by the system or radio resource control (RRC) signaling.
  • RRC radio resource control
  • Example 12 may include the method of example 11 or some other example herein, wherein only a valid CSIRS ⁇ RP may be reported and a valid CSIRS ⁇ RP is defined as a CSIRS ⁇ RP within the CSIRS ⁇ RP threshold, which is configured by the system or RRC signaling.
  • Example 13 may include an apparatus comprising means to perform one or more elements of a method described in or related to any of examples 1 ⁇ 12, or any other method or process described herein.
  • Example 14 may include one or more non ⁇ transitory computer ⁇ readable media comprising instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1 ⁇ 12, or any other method or process described herein.
  • Example 15 may include an apparatus comprising logic, modules, and/or circuitry to perform one or more elements of a method described in or related to any of examples 1 ⁇ 12, or any other method or process described herein.
  • Example 16 may include a method, technique, or process as described in or related to any of examples 1 ⁇ 12, or portions or parts thereof.
  • Example 17 may include an apparatus comprising: one or more processors and one or more computer readable media comprising instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1 ⁇ 12, or portions thereof.
  • Example 18 may include a method of communicating in a wireless network as shown and described herein.
  • Example 19 may include a system for providing wireless communication as shown and described herein.
  • Example 20 may include a device for providing wireless communication as shown and described herein.
  • Example 21 may include an apparatus for use in an eNB in a wireless communication network, the apparatus comprising transmitter circuitry; and control circuitry coupled to the transmitter circuitry, the control circuitry to: configure a plurality of channel state information reference signals (CSI ⁇ RS) , each CSI ⁇ RS associated with one of a plurality of virtualized sectors; and cause the transmitter circuitry to transmit the configured CSI ⁇ RS; wherein each of the plurality of virtualized sectors comprises a transmit beam beamformed to be vertically narrow and horizontally wide based on an associated vertical downtilt angle.
  • CSI ⁇ RS channel state information reference signals
  • Example 22 may include the apparatus of example 21, wherein each of the plurality of virtualized sectors is associated with a different vertical downtilt angle.
  • Example 23 may include the apparatus of example 21 or example 22 example further comprising receiver circuitry coupled to the control circuitry, the receiver circuitry to receive an indication of a reference signal received power (RSRP) value associated with one of the virtualized sectors from a User Equipment (UE) , the indication of RSRP value based on the CSI ⁇ RS associated with the one of the virtualized sectors.
  • RSRP reference signal received power
  • Example 24 may include the apparatus of example 23, wherein the indication of RSRP value comprises an indication of a receiving beam associated with the RSRP value.
  • Example 25 may include the apparatus of example 24, wherein the indication of a receiving beam comprises a first value to indicate that the RSRP value was measured from an active receiving beam and a second value to indicate that the RSRP value was measure from a candidate receiving beam.
  • Example 26 may include the apparatus of example 23, wherein the control circuitry is further to select a virtualized sector beam for communicating with the UE based on the received indication of RSRP value.
  • Example 27 may include the apparatus of example 26, wherein the control circuitry is further to configure UE specific CSI ⁇ RS associated with the selected virtualized sector and cause the transmitter circuitry to transmit the UE specific CSI ⁇ RS to the UE in the selected virtualized sector.
  • Example 28 may include the apparatus of example 27, wherein the receiver circuitry is further to receive a digital beam selection channel state information (CSI) from the UE in response to the UE specific CSI ⁇ RS, the digital beam selection CSI comprising a first precoder matrix indicator (PMI) associated with an active receiving beam.
  • CSI digital beam selection channel state information
  • PMI precoder matrix indicator
  • Example 29 may include the apparatus of example 28, wherein the digital beam selection CSI further comprises a second PMI associated with a candidate receiving beam.
  • Example 30 may include the apparatus of examples 28 or 29, wherein the PMI is selected from a rank 1 codebook.
  • Example 31 may include the apparatus of examples 28 or 29, wherein the PMI is measured using a codebook defined by the network.
  • Example 32 may include the apparatus of any of examples 8 to 10, wherein the control circuitry is further to generate a two dimensional narrow transmit beam within the selected virtualized sector based on a received PMI.
  • Example 33 may include the apparatus of any of examples 27 to 32, wherein the transmitter circuitry is further to transmit the US specific CSI ⁇ RS a plurality of CSI ⁇ RS groups, wherein each CSI ⁇ RS group of the plurality of CSI ⁇ RS groups is associated with a two dimensional narrow transmit beam within the selected virtualized sector.
  • Example 34 may include the apparatus of example 33, wherein each of the plurality of CSI ⁇ RS groups is associated with two antenna ports sent from both horizontal and vertical polarizations.
  • Example 35 may include the apparatus of example 33 or example 34, the receiver circuitry further to receive a CSI ⁇ RS report from the UE, the report comprising: CSI ⁇ RS receiving power (CSIRS ⁇ RP) value; a receiving beam indicator comprising a first value to indicate the CSIRS ⁇ RP value was measured using an active receive beam and a second value to indicate that the CSIRS ⁇ RP value was measured using a candidate receive beam; a CSI ⁇ RS group index; and a subframe index.
  • CSIRS ⁇ RP CSI ⁇ RS receiving power
  • Example 36 may include the apparatus of example 35, the receiver circuitry further to receive a plurality of CSI ⁇ RS reports from the UE, each CSI ⁇ RS report associated with a CSI ⁇ RS group of the plurality of CSI ⁇ RS groups.
  • Example 37 may include the apparatus of example 36, wherein the plurality of CSI ⁇ RS reports may comprise N CSI ⁇ RP reports, where N is configured by the network or using radio resource control signalling (RRC) .
  • RRC radio resource control signalling
  • Example 38 may include the apparatus of example 36 or example 37, wherein the plurality of CSI ⁇ RS reports comprises CSI ⁇ RS reports having a CSIRS ⁇ RP value greater than a threshold CSIRS ⁇ RP value.
  • Example 39 may include the apparatus of example 38, wherein the threshold CSIRS ⁇ RP value is configured by the network or using radio resource control signalling (RRC) .
  • RRC radio resource control signalling
  • Example 40 may include an apparatus for use in a user equipment in a wireless communication network, the apparatus comprising receiver circuitry to receive a plurality of channel state information reference signals (CSI ⁇ RS) from an eNB, each CSI ⁇ RS associated with one of a plurality of virtualized sectors; controller circuitry coupled to the receiver circuitry, the controller circuitry to: obtain a plurality of reference signal receiver power (RSRP) values, each of the plurality of RSRP values associated with one of the received CSI ⁇ RS; and generate an indication of RSRP associated with one of the virtualized sectors; and transmitter circuitry to transmit the indication of RSRP to the eNB; and wherein each of the plurality of virtualized sectors comprises a transmit beam beamformed to be vertically narrow and horizontally wide based on an associated vertical downtilt angle.
  • CSI ⁇ RS channel state information reference signals
  • Example 41 may include the apparatus of example 40, the controller circuitry further to determine a highest RSRP value of the plurality of RSRP values wherein the generated indication comprises an indication of the determined highest RSRP value and the associated virtualized sector.
  • Example 42 may include the apparatus of example 40 or example 41, wherein the receiver circuitry is operable to receive an active receiving beam and a candidate receiving beam; and wherein the generated indication of RSRP further comprises an indication of a receiving beam associated with the RSRP value, wherein the indication of a receiving beam comprises a first value to indicate that the RSRP value was measured from the active receiving beam and a second value to indicate that the RSRP value was measure from the candidate receiving beam.
  • Example 43 may include the apparatus of example 42, wherein the receiver circuitry is operable to receive one of the active receiving beam and the candidate receiving beam at one time.
  • Example 44 may include the apparatus of any of examples 40 to 43, wherein the receiver circuitry is further to receive UE specific CSI ⁇ RS on a first virtualized sector of the plurality of virtualized sectors; and wherein the controller circuitry is further to generate a digital beam selection Channel State Information (CSI) in dependence on the received UE specific CSI ⁇ RS.
  • CSI Channel State Information
  • Example 45 may include the apparatus of example 44, wherein the UE specific CSI ⁇ RS comprises a plurality of CSI ⁇ RS groups, wherein each CSI ⁇ RS group of the plurality of CSI ⁇ RS groups is associated with a two dimensional narrow transmit beam within the selected virtualized sector.
  • Example 46 may include the apparatus of example 44 or example 45, wherein the digital beam selection CSI comprises a first precoder matrix indicator (PMI) associated with an active receiving beam.
  • PMI precoder matrix indicator
  • Example 47 may include the apparatus of example 46, wherein the digital beam selection CSI further comprises a second PMI associated with a candidate receiving beam.
  • Example 48 may include the apparatus of example 44 to example 47, wherein the PMI is selected from a rank 1 codebook.
  • Example 49 may include the apparatus of example 45, the control circuitry to generate a CSI ⁇ RS report, the CSI ⁇ RP report comprising CSI ⁇ RS receiving power (CSIRS ⁇ RP) value; a receiving beam indicator comprising a first value to indicate the CSIRS ⁇ RP value was measured using an active receive beam and a second value to indicate that the CSIRS ⁇ RP value was measured using a candidate receive beam; a CSI ⁇ RS group index; and a subframe index.
  • CSIRS ⁇ RP CSI ⁇ RS receiving power
  • Example 50 may include the apparatus of example 49, the control circuitry to generate a plurality of CSI ⁇ RS reports from the UE, each CSI ⁇ RS report associated with a CSI ⁇ RS group of the plurality of CSI ⁇ RS groups.
  • Example 51 may include the apparatus of example 50, wherein the plurality of CSI ⁇ RS reports may comprise N CSI ⁇ RP reports, where N is configured by the network or using radio resource control signalling (RRC) .
  • RRC radio resource control signalling
  • Example 52 may include the apparatus of example 50 or example 51, wherein the plurality of CSI ⁇ RS reports comprises CSI ⁇ RS reports having a CSIRS ⁇ RP value greater than a threshold CSIRS ⁇ RP value.
  • Example 53 may include the apparatus of example 52, wherein the threshold CSIRS ⁇ RP value is configured by the network or using radio resource control signalling (RRC) .
  • RRC radio resource control signalling
  • Example 54 may include a user equipment comprising an apparatus according to any of examples 20 to 33, the user equipment further comprising at least one of a display; a keyboard; and a touchscreen.
  • Example 55 may include a computer readable medium comprising computer program code that when executed implements the method of receiving a plurality of channel state information reference signals (CSI ⁇ RS) from an eNB, each CSI ⁇ RS associated with one of a plurality of virtualized sectors; obtaining a plurality of reference signal receiver power (RSRP) values, each of the plurality of RSRP values associated with one of the received CSI ⁇ RS; and generating an indication of RSRP associated with one of the virtualized sectors; and transmitting the indication of RSRP to the eNB; wherein each of the plurality of virtualized sectors comprises a transmit beam beamformed to be vertically narrow and horizontally wide based on an associated vertical downtilt angle.
  • CSI ⁇ RS channel state information reference signals
  • RSRP reference signal receiver power
  • Example 56 may include a computer readable medium comprising computer program code that when executed implements the method of configuring a plurality of channel state information reference signals (CSI ⁇ RS) , each CSI ⁇ RS associated with one of a plurality of virtualized sectors; and transmitting the configured CSI ⁇ RS; wherein each of the plurality of virtualized sectors comprises a transmit beam beamformed to be vertically narrow and horizontally wide based on an associated vertical downtilt angle.
  • CSI ⁇ RS channel state information reference signals
  • Example 57 may include the apparatus of example 21, wherein a transmit beam associated with a virtualized sector is transmitted using a first antenna port, the first antenna port associated with a first number of vertical antenna elements and a second number of horizontal antenna elements wherein the first number of vertical antenna elements is greater than the second number of horizontal antenna elements.
  • Example 58 may include the apparatus of example 57, wherein the first number of vertical antenna elements is greater than or equal to 8, and wherein the second number of horizontal antenna elements is less than or equal to 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne des procédés et des appareils pour faciliter une mesure à base de CSI-RS formés en faisceau comprenant un appareil destiné à être utilisé dans un eNB dans un réseau de communication sans fil, l'appareil comprenant un circuit d'émission ; et un circuit de commande couplé au circuit d'émission, le circuit de commande servant à configurer une pluralité de signaux de référence d'information d'état de canal (CSI-RS), chaque CSI-RS étant associé à l'un d'une pluralité de secteurs virtualisés, et à amener le circuit d'émission à transmettre le CSI-RS configuré, chacun de la pluralité de secteurs virtualisés comprenant un faisceau de transmission formé en faisceau pour être verticalement étroit et horizontalement large en fonction d'un angle de descente vertical associé.
PCT/CN2016/078453 2015-11-16 2016-04-05 Cadre de mesure à base de csi-rs formés en faisceau WO2017084235A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562255865P 2015-11-16 2015-11-16
US62/255,865 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017084235A1 true WO2017084235A1 (fr) 2017-05-26

Family

ID=58718013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078453 WO2017084235A1 (fr) 2015-11-16 2016-04-05 Cadre de mesure à base de csi-rs formés en faisceau

Country Status (1)

Country Link
WO (1) WO2017084235A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180227031A1 (en) * 2017-02-08 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for beam management
US20190253119A1 (en) * 2018-02-13 2019-08-15 Industrial Technology Research Institute Channel status information reporting method and detecting method and communication device and base station therefor
US10447513B2 (en) 2017-01-06 2019-10-15 National Instruments Corporation Common phase error (CPE) compensation for frequency division multiplex (FDM) symbols in wireless communication systems
US10567065B2 (en) 2017-08-11 2020-02-18 National Instruments Corporation Radio frequency beam management and failure pre-emption
US10616896B2 (en) 2017-05-05 2020-04-07 National Instruments Corporation Wireless communication system that performs beam management using nested reference signals
WO2020111483A1 (fr) * 2018-11-26 2020-06-04 삼성전자 주식회사 Procédé et dispositif de sélection de faisceau de réception sur la base d'un réseau neuronal artificiel
US10686572B2 (en) 2017-04-03 2020-06-16 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
TWI719378B (zh) * 2018-02-13 2021-02-21 財團法人工業技術研究院 通道狀態資訊之回報方法及偵測方法、及其通訊裝置與基地台
WO2021186212A1 (fr) * 2020-03-17 2021-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Amélioration des performances d'un équipement utilisateur à capacité csi-rs limitée par sélection de secteur axée sur la réciprocité
CN115133959A (zh) * 2018-04-06 2022-09-30 诺基亚技术有限公司 用于多面板ue的波束指示
WO2023207435A1 (fr) * 2022-04-28 2023-11-02 中兴通讯股份有限公司 Procédé d'envoi de signalisation, procédé de réception de signalisation, nœud de communication et support de stockage
US11917581B2 (en) 2017-04-19 2024-02-27 Apex Beam Technologies Llc Method and device in UE and base station used for paging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103504A1 (en) * 2009-10-30 2011-05-05 Futurewei Technologies, Inc. System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks
WO2014052806A1 (fr) * 2012-09-28 2014-04-03 Interdigital Patent Holdings, Inc. Communications sans fil au moyen d'une configuration d'antennes multidimensionnelles
WO2014099343A1 (fr) * 2012-12-20 2014-06-26 Motorola Mobility Llc Procédé et appareil pour retour de canal de réseau d'antennes
WO2014182383A1 (fr) * 2013-05-09 2014-11-13 Intel IP Corporation Communications de réseau de téléphonie mobile à entrée multiple sortie multiple

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110103504A1 (en) * 2009-10-30 2011-05-05 Futurewei Technologies, Inc. System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks
WO2014052806A1 (fr) * 2012-09-28 2014-04-03 Interdigital Patent Holdings, Inc. Communications sans fil au moyen d'une configuration d'antennes multidimensionnelles
WO2014099343A1 (fr) * 2012-12-20 2014-06-26 Motorola Mobility Llc Procédé et appareil pour retour de canal de réseau d'antennes
WO2014182383A1 (fr) * 2013-05-09 2014-11-13 Intel IP Corporation Communications de réseau de téléphonie mobile à entrée multiple sortie multiple

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447513B2 (en) 2017-01-06 2019-10-15 National Instruments Corporation Common phase error (CPE) compensation for frequency division multiplex (FDM) symbols in wireless communication systems
US20180227031A1 (en) * 2017-02-08 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for beam management
US10686572B2 (en) 2017-04-03 2020-06-16 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
US11296846B2 (en) 2017-04-03 2022-04-05 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
US11917581B2 (en) 2017-04-19 2024-02-27 Apex Beam Technologies Llc Method and device in UE and base station used for paging
US10841925B2 (en) 2017-05-05 2020-11-17 National Instruments Corporation Wireless communication system that performs beam reporting based on a combination of reference signal receive power and channel state information metrics
US10616896B2 (en) 2017-05-05 2020-04-07 National Instruments Corporation Wireless communication system that performs beam management using nested reference signals
US10567065B2 (en) 2017-08-11 2020-02-18 National Instruments Corporation Radio frequency beam management and failure pre-emption
US10951300B2 (en) 2017-08-11 2021-03-16 National Instruments Corporation Radio frequency beam management and recovery
TWI719378B (zh) * 2018-02-13 2021-02-21 財團法人工業技術研究院 通道狀態資訊之回報方法及偵測方法、及其通訊裝置與基地台
CN110166095A (zh) * 2018-02-13 2019-08-23 财团法人工业技术研究院 信道状态信息的回报方法及检测方法、及通信装置与基站
US20190253119A1 (en) * 2018-02-13 2019-08-15 Industrial Technology Research Institute Channel status information reporting method and detecting method and communication device and base station therefor
CN115133959A (zh) * 2018-04-06 2022-09-30 诺基亚技术有限公司 用于多面板ue的波束指示
WO2020111483A1 (fr) * 2018-11-26 2020-06-04 삼성전자 주식회사 Procédé et dispositif de sélection de faisceau de réception sur la base d'un réseau neuronal artificiel
US11888236B2 (en) 2018-11-26 2024-01-30 Samsung Electronics Co., Ltd. Method and device for selecting reception beam on basis of artificial neural network
WO2021186212A1 (fr) * 2020-03-17 2021-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Amélioration des performances d'un équipement utilisateur à capacité csi-rs limitée par sélection de secteur axée sur la réciprocité
WO2023207435A1 (fr) * 2022-04-28 2023-11-02 中兴通讯股份有限公司 Procédé d'envoi de signalisation, procédé de réception de signalisation, nœud de communication et support de stockage

Similar Documents

Publication Publication Date Title
US11601174B2 (en) QCL (quasi co-location) indication for beamforming management
WO2017084235A1 (fr) Cadre de mesure à base de csi-rs formés en faisceau
US11646766B2 (en) Enhanced sounding reference signaling for uplink beam tracking
US20200274595A1 (en) Method, Apparatus and System for Reporting Beam Reference Signal Receiving Power
US10333608B2 (en) Inter-beam mobility control in MIMO communication systems
US11025310B2 (en) Codebook design for new radio (NR) systems
US10382111B2 (en) Beam interpolation in massive MIMO systems
US10849001B2 (en) Measurement restrictions for CoMP
US10779360B2 (en) Control signaling for fifth generation channel state information reference signals (xCSI-RS)
US10470064B2 (en) Enhanced radio resource management reporting in cellular systems
US10038484B2 (en) Systems and methods for enhanced MBMS with MIMO support
US12021773B2 (en) Beam management for partial beam correspondence user equipment
WO2017206100A1 (fr) Rapport de cqi pour une commutation de mode de transmission flexible
WO2017080132A1 (fr) Système et procédé de mesure de qualité de canal en transmission superposée à utilisateur unique
US10511374B2 (en) System and method for control channel beam assumption
TW201731236A (zh) 觸發brs-rp(波束參考信號接收功率)報告的事件
WO2017111642A1 (fr) Rendu de comptes de découverte de faisceaux pour multiplexage spatial
CN109314872B (zh) 无线通信网络中的装置及计算机可读存储介质
CN108781440B (zh) 用于上行链路子带波束形成的系统和方法
WO2018071026A1 (fr) Mesurage de canal directionnel dans une architecture de formation de faisceau hybride
US11711176B2 (en) Systems and methods for NR V2X CSI feedback without dedicated reference signals
WO2018106260A1 (fr) Contrôle d'accès de canal partagé dans une architecture de conformation de faisceau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865418

Country of ref document: EP

Kind code of ref document: A1