WO2017083994A1 - Alternating magnetic field nanogenerator using a nanowire, which can be used to generate current, and associated method - Google Patents

Alternating magnetic field nanogenerator using a nanowire, which can be used to generate current, and associated method Download PDF

Info

Publication number
WO2017083994A1
WO2017083994A1 PCT/CL2016/050061 CL2016050061W WO2017083994A1 WO 2017083994 A1 WO2017083994 A1 WO 2017083994A1 CL 2016050061 W CL2016050061 W CL 2016050061W WO 2017083994 A1 WO2017083994 A1 WO 2017083994A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
magnetic field
nanowire
nanogenerator
domain wall
Prior art date
Application number
PCT/CL2016/050061
Other languages
Spanish (es)
French (fr)
Inventor
Alvaro Patricio ESPEJO PIÑA
Nicolás Segundo VIDAL SILVA
Felipe Sebastián TEJO LAZO
Juan Eduardo ESCRIG MURUA
Original Assignee
Universidad De Santiago De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Santiago De Chile filed Critical Universidad De Santiago De Chile
Publication of WO2017083994A1 publication Critical patent/WO2017083994A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Definitions

  • the present invention consists of a nanometric alternating magnetic field generator and a method for generating a nanometric alternating magnetic field.
  • a transverse or block type domain wall can be located, generating a magnetic region that varies its magnetization direction alternately, thus inducing an alternating magnetic flux.
  • an alternating magnetic field nanogenerator a polarized spin current and a demagnetizing field created by the geometric change of a modulated diameter nanowire have been used, by means of which it is possible to set the position of a transverse domain wall, and in this position generate a stable domain wall rotation over time.
  • the variation of the magnetic flux over the area of the loop will produce an induced alternating voltage.
  • this conductive loop is part of a circuit, then this induced alternating voltage will generate an alternating current that will feed the components of a nanoscale circuit, which has not been achieved before
  • the speed of rotation of the domain wall stopped or anchored in a specific place of the nanowire, at speeds of magnitudes of the Giga Hertz (GHz), which allows this generator to have applications in the area of communications such as telecommunications, wire-less and mobile telephony.
  • GHz Giga Hertz
  • an alternating magnetic field nanogenerator which consists of a transverse or Bloch-type domain wall, which can generate an alternating magnetic flux, that is, a magnetic field that rotates at a uniform speed in a given position, stable over time and with a controlled angular frequency.
  • the angular frequency will be a function of the demagnetizing field, which depends on the geometric and magnetic parameters of the nanowire, and on the parameters that depend on the polarized spin current, as explained in equation 3, described below.
  • the propagation induced by a spin-polarized current of a transverse type domain wall in a cylindrical nanowire of modulated diameter has been studied by numerical simulations, where it has been found that it is possible to anchor this magnetic domain wall in a specific region of the system, keeping it fixed in a certain position of the nanowire, and making it "turn” on itself, controlling its angular speed of rotation, which reaches frequencies of the order of 60 GHz.
  • an alternating magnetic field has been created literally from a pulse of direct current. This alternating magnetic field is located (it is generated in a specific region of the magnetic nanowire), whose frequency is stable and can be modified by simply varying the intensity of the applied current pulse.
  • the current pulse must be a current of spin-polarized electrons, that is, they have the same value for their spin.
  • the simplest method for a current to be spin-polarized is to pass it through a ferromagnetic material, so that it filters the electrons evenly.
  • Waiker describes the transition between a stationary movement, conserving its structure, and a precession movement of the domain wall, where it is continually transformed, which will always occur in nanowires of flat geometry.
  • this document discloses the equations to determine the frequency of rotation of the domain wall as it travels along the wire as a function of the current intensity.
  • the nanowire (1) with a domain wall (2) in a portion (3) having a first wall (7) and a second wall (8), wherein said domain wall (2) has a rotational movement and translation, is represented in figure 1 of the present application.
  • This document is the closest to the present invention, since both in this document and in the present invention, one works with a transverse domain wall, which is affected by the application of a polarized spin current. However, between said document and the present invention, there are large differences which are explained below.
  • Magnetic power inverter AC voltage generation from DC magnetic fields
  • J. Leda and S. Maekawa a method for generating an alternating voltage by the movement of a magnetic domain wall, which propagates to along a flat nanowire with modulated geometry.
  • the movement of the domain wall is generated by the application of an external magnetic field with direction perpendicular to the surface of the nanowire.
  • the movement of the wall through the modulations of the system will induce a voltage at the ends of the nanowire.
  • This device differs from that proposed in this invention in many respects.
  • the authors of this document need an external magnetic field to generate the domain wall movement, while a spin-polarized electric current is used in the present invention.
  • the longitudinal movement of the domain wall is required to generate voltages at the ends of the nanowire, while in the system of the present invention it is possible to create an alternating magnetic field and simultaneously an alternating voltage with the wall of dominance in a fixed position, which will only rotate on itself.
  • Fadaray Electromagnetic Induction Law it is established that the voltage induced in a closed circuit is directly proportional to the speed with which the magnetic flux that passes through any surface changes with the circuit as an edge. In this way, if we place this surface near the modulation of the nanowire, we can effectively generate an alternating voltage produced by the variation of magnetic flux (see figure 19).
  • This document discloses that it is necessary to induce a constant voltage, while in the present invention it is possible to generate an alternating voltage due to the application of a direct electric current and the stable rotation of the magnetic domain wall.
  • the objective of generating an external magnetic field is not disclosed in said document, but focuses on that for certain materials and magnetic configurations it is possible to increase the voltage induced by the longitudinal movement of a domain wall, while in the present invention, the domain wall stops its longitudinal movement due to the counterposition of the flow of electrons and the magnetic field applied in the opposite direction, thus generating a rotation of the magnetization in a fixed position.
  • WO 2012/019806 Metal and assembly for exciting spin waves in magnetic solid bodies
  • Leibniz-lnstitut für Festkórper und technikstoffaba Dresden EV discloses a way to excite domain walls through polarized light to achieve excitation and generation of spin waves using the Kerr effect.
  • This document does not work with magnetic fields or current, nor is it an alternating magnetic field generator, therefore, it is not relevant to our invention.
  • WO 2010/055333 Magnetic data storage device with magnetic domain wall motion
  • Paul Cowburn Russell discloses a system of nanowire arrays with magnetocrystalline anisotropy perpendicular to the axis of axial symmetry, which is capable of containing along the magnetic domains thread oriented perpendicular to the main axis.
  • a circular external magnetic field surrounding each wire it is possible to perform a displacement of the domain walls, which will represent binary information stored along the thread.
  • This document has substantial differences with respect to the present invention.
  • said document is oriented to the storage of information and its displacement through a circular magnetic field, understood as information to the magnetic domain walls that will represent binary bits.
  • a domain wall is moved using an electric current, to then counteract its displacement with a magnetic field that will stop its movement and rotate it on itself to generate an alternating magnetic field.
  • Magnetic domain walls are one of the main sources of study of nanoscale magnetism. These represent the local deformations of the magnetization at the separation limit of two opposite and uniform magnetic domains. They are often present in the processes of reversing ferromagnetic nanostructures, varying their shape, size and behavior depending on the material and geometry of the nanostructure. When an electron flow passes through a ferromagnetic material, they acquire a polarization along the direction of the local magnetization, and a transfer of the angular momentum of the spin of the electrons to the magnetization of the system is generated. This coupling allows to control e! movement of magnetic domain walls through the application of a polarized spin current and has been reported in multiple both theoretical and experimental studies.
  • Bloch is affected by the presence of a magnetic field or a polarized spin current, the wall will generate two types of movements, one will be of translation, moving in the same direction as the flow of electrons or applied fields; and the other will be a rotational movement in the plane perpendicular to the main axis of the nanostructure, which will periodically vary the magnetization of the nanostructure, creating an alternating magnetic field. Both movements of translation and rotation will occur simultaneously, and will last until the influence of the magnetic fields or currents is removed.
  • this invention relates to an alternating magnetic field nanogenerator, stable over time and maintaining the rotation of the domain wall in a fixed position, thus being able to know in situ the source of field variation.
  • the present invention It establishes the relationship that spin-polarized currents and magnetic fields must meet to obtain the phenomenon described by the alternating magnetic field nanogenerator.
  • a polarized spin current and a demagnetizing field created by the geometric change of a modulated diameter nano-tube have been used, by means of which it is possible to fix the position of a transverse domain wall! , and in this position generate a stable domain wall rotation over time.
  • micromagnetic simulations have been carried out using the free OOM F software, which was extended to also consider the dynamics of magnetization induced by a spin-polarized current.
  • Figure 1 shows a nano-thread of the prior art, in which the domain wall advances and rotates at the same time, from when it is generated at the first end until the second end is lost, by applying a continuous current, of polarized spin.
  • Figure 2 shows a nano-thread of the prior art, where the domain wall advances and rotates at the same time, from being generated at the first end until it is lost at the second end, by applying a spin, continuous current polarized, a magnet having a magnetic field opposite current flow being away from said second end of the nanowire.
  • Figure 3 shows a sequence of nanowires, where the domain wall advances and rotates at the same time, since it is generated at the first end until it stops its advance and is locked before the second end, where said domain wall begins to rotate in the opposite direction and in the same place, since the polarized spin direct current competes with the opposite magnetic field of the magnet that is close to said second end of the nanowire.
  • Figure 4 shows a nanowire and a magnet where the domain wall is stopped and anchored at the same site of said nanowire and rotates at the same time, because the polarized spin current enters into competition with the magnetic field. opposite of the magnet, which is close to said second end of the nanowire, where this configuration is transformed into a first embodiment of the invention.
  • Figure 5 shows a perspective view of a second modality of the nanowire formed by two portions of different diameter and having a variable splice zone.
  • Figure 6 shows a side view of the second mode of the nanowire formed by two portions of different diameter and having a variable splice zone.
  • Figure 7 shows a graph with the display of the demagnetizing field created by the variation in e! diameter of the nanowire of figures 5 and 8.
  • Figure 8 shows a graph with the average speed of displacement of the domain wall in the two portions of the nanowire, the speed of the wall in thin diameter and the speed of the wall in thick diameter.
  • Figure 9 shows a schematic perspective view of the second mode of the nanowire, where the domain wall moves from the thinner end, to the thicker end, stopping before the splice area of variable diameter.
  • Figures 10, 1, 1 and 12 show an enlarged perspective view of the second mode of the nanowire with the domain wall stopped, rotating as a function of time due to the competition between the demagnetizing field and the electric current.
  • Figure 13 shows a perspective view of a third modality of the nanowire with an abrupt change in diameter between the first and second portion of the nanowire, where the second end of the first portion, splices directly with the first end of the second portion.
  • Figure 14 shows a schematic perspective view of a third mode of the nanowire, where the domain wall moves from the thinner end, to the thicker end, stopping before the splice zone between the second end of the first portion and the first end of the second portion.
  • Figures 15, 16 and 17 show an enlarged perspective view of the third mode of the nanowire with the domain wall stopped, rotating in function of time due to competition between a demagnetizing field and electric current
  • Figure 18 shows the graph of the angular velocity for two current densities, in which the domain wall found an equilibrium position due to competition between the electric current and the demagnetizing field, in the second embodiment of the present invention.
  • Figure 19 shows a nanogenerator formed by the second mode of the nanowire, where the alternating magnetic field induces an alternating voltage in a coil in the vicinity of the nanogenerator.
  • Figure 20 shows a graph with the estimation of the angular velocity (squares) and anchor field (circles) of the domain wall for different current densities, and in its internal graph, a zoom is shown for the densities of currents more low.
  • the present invention relates to a nanometric alternating magnetic field generator from the movement of domain walls, by means of direct current pulses. As a result it is obtained that the alternating magnetic field is generated on e! Nano wire and its frequency is stable and can be controlled or modified according to the variation of the intensity of the applied DC pulse.
  • the present invention consists in generating an alternating magnetic field (AC) of the sinusoidal type on a magnetic nanowire.
  • AC alternating magnetic field
  • a nano wire (1) having a fixed diameter portion (3) D1 by applying pulses of direct current between a first leg (7) and a second end (8) in a ferromagnetic material, the polarized spin current, causes the domain wall (2) moves moving from the first end (7), and at the same time, during its transit it rotates in the opposite direction to the clockwork. However, since there is nothing to stop it, said domain wall (2) is lost when it reaches the second end (8).
  • the magnetic medium (9) can be a natural or artificial magnet, permanent magnet or an electromagnet whose magnetic field can be quickly manipulated over a wide range, controlling the amount of electric current.
  • a magnetic particle of elongated geometry in some axis k which contains a transverse domain wall or of Bloch, whose center can be described in a first approximation by M-M s r, and
  • the domain wall will be considered to be under the action of a magnetic field H 0
  • the domain wall will be considered to be under the action of a polarized spin current.
  • the dynamics of the domain wall can be estimated using the Landau-Liftshitz-Gilbert equation, with the inclusion of additional spin-torque transfer terms: dM to ⁇ dM ⁇ ,, ⁇ .. ⁇ ⁇ ⁇ r _
  • nanogenerator of the present invention by means of a nanowire (1) having a first portion (3) of continuous diameter Di, where at its ends (7, 8) a continuous polarized spin current (1) is applied 2) which causes the domain wall (2) to move through the nanowire (1), and the anchoring of said domain wall (2) is achieved, by approaching or splicing the outlet end (1 0) of a magnetic field produced by a magnetic medium (9) from which a magnetic field comes out
  • said nano-wire (1) is formed by a first portion (3) having a first end (7) and a second end (8), whose diameter is D ; and a second portion (4) having a first end (1 3) and a second end (14), whose diameter is D 2 .
  • the diameter D is smaller than the diameter D 2 .
  • a region of diameter change (5) is located that has a continuous variable diameter and that forms a truncated cone that splices with the first portion (3) and the second portion ( 4), respectively.
  • said diameter change region (5) is a conical type modulation region, which has a smaller diameter equal to D and a larger diameter equal to D 2 .
  • a domain wall (2) is located, as shown in Figure 5.
  • the volume of the nanostructure is divided into cubic cells of 1.25 x 1 .25 x 2.5 nm 3 , where the largest cell corresponds to the axis of the nanostructure (in this case, in the direction k)
  • the modulated nano-wire produces a variation in the area of its cross-section along the axis of symmetry, it is necessary to modulate in the same way the polarized spin current density along this axis, so that the current entering and leaving the ends of the nanostructure is preserved.
  • the advantage of using a nanowire (1) that has a region of change in diameter (5) formed in the first mode by a conical shape that has a smaller diameter D and a larger diameter D 2 , is to be able to replace the magnetic field source external by the demagnetizing field (7 and 8) created naturally by the nanowire of diameter D 2 , which ends with a conical section (5), corresponding to the geometric modulation of the nanostructure.
  • the demagnetizing field (7) in the region of the thin nanowire is non-homogeneous, can reach values close to 0.5 T, and is oriented in -k, which could allow braking the domain wall propagation (2) with + k direction, driven by an electric current, generating the stable alternating magnetic field (8).
  • the demagnetizing field is greater than or equal to that generated by electric current, satisfying in some position the zero displacement condition shown in equation (4).
  • the detent of the domain wall in the transition zone was achieved for the current densities of 1 x 10 12 A / m 2 (curve 15) and 2 x 10 12 A / m 2 (curve 18 ⁇ shown in the graph of Figure 18, since the domain wall was not able to reach the second thickest portion (4) of the nanowire (1).
  • the domain wall stops its advance, it is anchored before the region of diameter change (5) and begins to rotate in the opposite way as it had been moving, achieving frequencies in magnitudes of the GHz, which allows applications in the area of telecommunications.
  • the nanogenerator described does not refer only to the geometric measurements that have been chosen for the simulated nanostructure, but in principle it will work for any nanostructure that satisfies equation 4.
  • a third mode of the nanogenerator can be carried out through an abrupt change in diameter.
  • Figure 13 shows a nanowire (1) that is formed by a first portion (3) having a diameter D- ⁇ and a second portion (4) having a diameter D 2 .
  • the diameter D is smaller than the diameter D 2 .
  • Simulations performed in this second mode also consider the use of polarized spin current along this axis.
  • a polarized spin current must be applied along the axis of the nanowire (1), in order to produce a translation and rotation of the domain wall (2).
  • the current must be intense enough to produce the two movements described above, but not exceeding the limit in which the nanowire loses its magnetization due to thermal effects.
  • the domain wall (2) must be subjected to a magnetic field in the opposite direction to the propagation of the domain wall (2) until competition occurs between the spin current polarized and the magnetic field in the opposite direction, so ta! that the domain wall stops moving, is anchored at a point of the nanowire (1) and maintains its rotation.
  • the magnetic field in the opposite direction to the propagation of the domain wall (2) can be a demagnetizing field produced in the modulation region of! nano thread
  • the first modality that is to say a nanowire (1) formed by a single portion (3) and closely or spliced with a magnetic medium (9), as an example a natural or artificial magnet, permanent magnet or a electromagnet whose magnetic field can be quickly manipulated over a wide range, controlling the amount of electric current. From said magnetic means said magnetic field (1 1) is generated opposite the direction of the polarized spin current.
  • the arrest of the domain wall (2) is obtained by controlling the polarized spin current, applied between the ends of the nanowire (1).
  • the magnetization rotation frequencies obtained are of the order of 10 GHz, therefore, the described system could have applications in the microwave range, where it could fulfill different roles, either as an alternating magnetic field nano-generator; It could also be used to induce alternating electric current in metals; or in wire-less applications in nanometric scale devices for telecommunications.
  • the nanoscale electronic components have a common pattern, and they all work based on direct current pulses, DC, because it is not yet possible to produce alternating current, AC, in a localized way at these scales. This is why an alternating electrical or magnetic signal could generate a new technological revolution at the nanoscale, changing the paradigm in the way of operating future technological devices.
  • one of the great applications of this invention is the generation of alternating current, to power different elements of a nanoscale electronic circuit.
  • the alternating magnetic field can reach GHz scales
  • this invention can be applied in wire-less communications in nanometer-scale devices for telecommunications.
  • the emission / transmission range of the electromagnetic signal of the antennas of these devices occurs between approximately 0.9 GHz to 1 .8 GHz for the 2G / GSM band, between 0.3 GHz to 2.1 GHz for the 3G / WCDMA frequency band and between 0.3 GHz to 2.0 GHz for the 4G / LTE band.
  • the alternating magnetic field nanogenerator could serve as a base component for the creation of an electromagnetic signal emitting and / or receiving antenna.
  • the frequency range of the electromagnetic signal may vary slightly for different countries, in practical terms the nanogenerator technology covers the mentioned frequency spectrum widely.
  • the nanogenerator may modify its frequency of emission of the electromagnetic signal by means of the variation of the applied current density.
  • Figure 20 shows an estimate of the variation of the rotation of the domain wall and the magnetic anchor field for different applied current densities.
  • the frequency of rotation of the domain wall, ⁇ increases with increasing current density.
  • 2 ⁇ ⁇ , where f is the frequency
  • the frequency is expected to vary proportionally to the speed of rotation of the domain wall.
  • the frequency range estimated in Figure 20 varies between approximately 0.058 GHz and 58 GHz, completely covering the frequency range used in mobile telephony.
  • the field Magnetic needed to stop wall propagation which also increases at higher current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

The present invention relates to a time-stable nanometric alternating magnetic field nanogenerator, which can be used in the generation of alternating current at nanoscale level in communication systems, such as wireless communication systems, or telecommunications for mobile telephony. The nanogenerator is formed by a nanowire comprising a portion having a first end and a second end, and a domain wall. According to the invention, a spin-polarised current is applied at the ends of the nanowire, causing the domain wall to move both in translation along the length of the nanowire and simultaneously in rotation in the plane perpendicular to the axis of symmetry of the nanowire, said nanogenerator being formed by the nanowire, the second end of which is located near, or coupled to, an end from which a magnetic field emanates from a magnetic means. The nanogenerator can comprise a single nanowire formed by a first portion having a first end and a second end with a diameter D1 and a second portion having a first end and a second end with a diameter D2, wherein the diameter D1 is less than the diameter D2. Moreover, a diameter variation region is located between said first and second portions, said region having a larger diameter equal to D1 and smaller diameter equal to D2. The invention also relates to a method for generating a time-stable alternating magnetic field on a nanoscale.

Description

NANOGENERADOR DE CAMPO MAGNÉTICO ALTERNO QUE UTILIZA UN NANOHILO QUE PERMITE SER APLICADO EN LA GENERACIÓN DE CORRIENTE Y MÉTODO ASOCIADO MEMORIA DESCRIPTIVA  ALTERNATE MAGNETIC FIELD NANOGENERATOR USING A NANOHILO THAT ALLOWS TO BE APPLIED IN THE GENERATION OF CURRENT AND ASSOCIATED METHOD DESCRIPTIVE MEMORY
FUNDAMENTOS DE LA INVENCIÓN FUNDAMENTALS OF THE INVENTION
La presente invención consiste en un generador de campo magnético alterno nanométrico y un método para generar un campo magnético alterno nanométrico. Mediante la competencia entre pulsos de corriente espín polarizada y campos magnéticos, se puede localizar una pared de dominio tipo transversal o de Bloch, generando una región magnética que varía su dirección de magnetización en forma alternada, induciendo así un flujo magnético alterno. A modo de ejemplo de un nanogenerador de campo magnético alterno, se ha usado una corriente espín polarizada y un campo demagnetizante creado por el cambio geométrico de un nanohilo de diámetro modulado, mediante los cuales es posible fijar la posición de una pared de dominio transversal, y en esta posición generar una rotación de la pared de dominio estable en el tiempo. Al generar un campo magnético alterno en una posición específica del nanohilo, la variación del flujo magnético sobre el área de la espira producirá un voltaje alterno inducido. Además, si esta espira conductora forma parte de un circuito, entonces este voltaje alterno inducido generará una corriente alterna que alimentará los componentes de un circuito a nanoescala, lo que no se ha logrado antes. Además, la velocidad de giro de la pared de dominio detenida o anclada en un lugar específico del nanohilo, a velocidades de magnitudes de los Giga Hertz (GHz), lo que permite que este generador tenga aplicaciones en el área de las comunicaciones como telecomunicaciones, wire-less y telefonía móvil. The present invention consists of a nanometric alternating magnetic field generator and a method for generating a nanometric alternating magnetic field. Through competition between pulses of polarized spin current and magnetic fields, a transverse or block type domain wall can be located, generating a magnetic region that varies its magnetization direction alternately, thus inducing an alternating magnetic flux. As an example of an alternating magnetic field nanogenerator, a polarized spin current and a demagnetizing field created by the geometric change of a modulated diameter nanowire have been used, by means of which it is possible to set the position of a transverse domain wall, and in this position generate a stable domain wall rotation over time. By generating an alternating magnetic field at a specific position of the nanowire, the variation of the magnetic flux over the area of the loop will produce an induced alternating voltage. In addition, if this conductive loop is part of a circuit, then this induced alternating voltage will generate an alternating current that will feed the components of a nanoscale circuit, which has not been achieved before In addition, the speed of rotation of the domain wall stopped or anchored in a specific place of the nanowire, at speeds of magnitudes of the Giga Hertz (GHz), which allows this generator to have applications in the area of communications such as telecommunications, wire-less and mobile telephony.
CAMPO DE APLICACIÓN  SCOPE
En la actualidad, una parte importante del desarrollo tecnológico de la humanidad se ha centrado en reducir los circuitos electrónicos a escalas nanométricas, debido a que en estas dimensiones es posible crear dispositivos que superen enormemente en rendimiento a sus predecesores, como por ejemplo, aumentando su velocidad de procesamiento de la información y/o velocidad en la escritura de datos, mayor capacidad de almacenamiento de la información, mayor eficiencia energética, etc. Por otra parte, cada vez se descubren más propiedades en el comportamiento de los materiales a estas escalas nanométricas, permitiendo abrir campos para enormes desarrollos tecnológicos, tal como en el pasado lo fue el descubrimiento de la magnetoresistencia gigante, la que permitió disminuir el tamaño de los sensores y cabezales magnéticos y que actualmente se encuentra en prácticamente todos nuestros aparatos electrónicos, como celulares, tablets, etc., o como el caso del reciente descubrimiento del grafeno, material que tiene excelentes propiedades mecánicas, electrónicas y térmicas, y que promete causar una revolución tecnológica en los próximos años. Considerando el funcionamiento de los componentes electrónicos a nanoescala, es posible observar un patrón común, y es que todos ellos funcionan en base a pulsos de corriente directa, DC, debido a que aún no es posible producir corriente alterna, AC, en forma localizada a estas escalas. Es por esto que una señal eléctrica o magnética alterna podría generar una nueva revolución tecnológica a nanoescala, cambiando el paradigma en la forma de operar de los dispositivos tecnológicos futuros. At present, an important part of humanity's technological development has focused on reducing electronic circuits to nanometric scales, because in these dimensions it is possible to create devices that greatly outperform their predecessors, such as increasing their information processing speed and / or data writing speed, greater information storage capacity, greater energy efficiency, etc. On the other hand, more and more properties in the behavior of the materials are discovered at these nanometric scales, allowing to open fields for enormous technological developments, as in the past was the discovery of giant magnetoresistance, which allowed to reduce the size of the sensors and magnetic heads and currently found in virtually all our electronic devices, such as cell phones, tablets, etc., or as the case of the recent discovery of graphene, material that has excellent mechanical, electronic and thermal properties, and that promises to cause a technological revolution in the coming years. Considering the operation of the nanoscale electronic components, it is possible to observe a common pattern, and they all work on the basis of pulses of direct current, DC, because it is not yet possible to produce alternating current, AC, in a localized way. These scales. This is why an alternating electrical or magnetic signal could generate a new technological revolution at the nanoscale, changing the paradigm in the way of operating future technological devices.
Para llevar a cabo esta invención, se requiere de una relación entre campos magnéticos y corrientes espín-polarizadas, la cual se debe satisfacer para obtener un nanogenerador de campo magnético alterno, que consiste en una pared de dominio tipo transversal o Bloch, que puede generar un flujo magnético alterno, es decir, un campo magnético que rota a una velocidad uniforme en una posición determinada, estable en el tiempo y con una frecuencia angular controlada. La frecuencia angular será función del campo demagnetizante, que depende de los parámetros geométricos y magnéticos del nanohilo, y de los parámetros que dependen de la corriente espín polarizada, según se explica en la ecuación 3, descrita más adelante. A modo de ejemplo, se ha estudiado mediante simulaciones numéricas la propagación inducida por una corriente espín-polarizada de una pared de dominio de tipo transversal en un nanohilo cilindrico de diámetro modulado, donde se ha encontrado que es posible anclar esta pared de dominio magnética en una región específica del sistema, manteniéndola fija en una cierta posición del nanohilo, y haciéndola "girar" sobre sí misma, controlando su velocidad angular de giro, la cual alcanza frecuencias del orden de 60 GHz. Con este sistema se ha creado literalmente un campo magnético alterno a partir de un pulso de corriente continuo. Este campo magnético alterno es localizado (se genera en una región específica del nanohilo magnético), cuya frecuencia es estable y puede ser modificada con sólo variar la intensidad del pulso de corriente aplicado. Es importante señalar que el pulso de corriente debe ser una corriente de electrones espín-polarizados, es decir, que tengan el mismo valor para su espín. El método más simple de que una corriente sea espín-polarizada es hacerla pasar a través de un material ferromagnético, de forma tal que filtre a los electrones de manera uniforme. In order to carry out this invention, a relationship between magnetic fields and spin-polarized currents is required, which must be satisfied to obtain an alternating magnetic field nanogenerator, which consists of a transverse or Bloch-type domain wall, which can generate an alternating magnetic flux, that is, a magnetic field that rotates at a uniform speed in a given position, stable over time and with a controlled angular frequency. The angular frequency will be a function of the demagnetizing field, which depends on the geometric and magnetic parameters of the nanowire, and on the parameters that depend on the polarized spin current, as explained in equation 3, described below. As an example, the propagation induced by a spin-polarized current of a transverse type domain wall in a cylindrical nanowire of modulated diameter has been studied by numerical simulations, where it has been found that it is possible to anchor this magnetic domain wall in a specific region of the system, keeping it fixed in a certain position of the nanowire, and making it "turn" on itself, controlling its angular speed of rotation, which reaches frequencies of the order of 60 GHz. With this system an alternating magnetic field has been created literally from a pulse of direct current. This alternating magnetic field is located (it is generated in a specific region of the magnetic nanowire), whose frequency is stable and can be modified by simply varying the intensity of the applied current pulse. It is important to note that the current pulse must be a current of spin-polarized electrons, that is, they have the same value for their spin. The simplest method for a current to be spin-polarized is to pass it through a ferromagnetic material, so that it filters the electrons evenly.
Este fenómeno es completamente novedoso y puede abrir un campo nuevo de desarrollo tecnológico, ya que permite contar con fuentes magnéticas de campo variable en la nanoescala, lo que no existe en la actualidad.  This phenomenon is completely new and can open a new field of technological development, since it allows to have magnetic sources of variable field in the nanoscale, which does not exist at present.
Además, cuando este sistema se acerque a un circuito cerrado conductor de electricidad, el flujo magnético alterno inducirá una corriente eléctrica alterna sobre el conductor, creando un nanogenerador de señal eléctrica sinusoidal. Esto permite cambiar el paradigma de sólo utilizar señales de corriente eléctrica DC por señales AC.  In addition, when this system approaches a closed conductor of electricity, the alternating magnetic flux will induce an alternating electric current on the conductor, creating a sinusoidal electrical signal nanogenerator. This allows changing the paradigm of only using DC electrical current signals with AC signals.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
El tema del movimiento de las paredes de dominio es un tema bastante actual y con múltiples futuras aplicaciones. En el arte previo, se describen varios documentos relacionados. Así por ejemplo, el documento "Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires" de los autores M. Yan et al., muestran mediante teoría y simulaciones micromagnéticas la dinámica del movimiento de una pared de dominio de tipo transversal en un nanohilo cilindrico homogéneo. En este documento se divulga el movimiento de la pared de dominio mediante la aplicación de una corriente espín polarizada, demostrando que en esta configuración magnética, la pared de dominio es libre de rotar sobre la geometría cilindrica provocando una supresión en el límite de velocidad antes de la caída de Waiker. La caída de Waiker describe la transición entre un movimiento estacionario, conservando su estructura, y un movimiento precesional de la pared de dominio, donde se transforma continuamente, la cual siempre ocurrirá en nanohilos de geometría plana. Además, en este documento se divulgan las ecuaciones para determinar la frecuencia de rotación de la pared de dominio mientras se desplaza a lo largo del hilo como función de la intensidad de corriente. The theme of the movement of the domain walls is a fairly current issue with multiple future applications. In the prior art, several related documents are described. For example, the document "Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires" of the Authors M. Yan et al., show through micromagnetic theory and simulations the dynamics of the movement of a transverse type domain wall in a homogeneous cylindrical nanowire. This document discloses the movement of the domain wall by applying a polarized spin current, demonstrating that in this magnetic configuration, the domain wall is free to rotate on the cylindrical geometry causing a suppression in the speed limit before the fall of Waiker. The fall of Waiker describes the transition between a stationary movement, conserving its structure, and a precession movement of the domain wall, where it is continually transformed, which will always occur in nanowires of flat geometry. In addition, this document discloses the equations to determine the frequency of rotation of the domain wall as it travels along the wire as a function of the current intensity.
El nanohilo (1 ) con una pared de dominio (2) en una porción (3) que tiene una primera pared (7) y una segunda pared (8), en donde dicha pared de dominio (2) tiene un movimiento de rotación y traslación, está representada en la figura 1 de la presente solicitud. Este documento es el más cercano a la presente invención, ya que tanto en este documento como en la presente invención, se trabaja con una pared de dominio transversal, la que se ve afectada por la aplicación de una corriente espín polarizada. Sin embargo, entre dicho documento y la presente invención, existen grandes diferencias las cuales se explican a continuación. En el documento de Yan et al., sólo se consideró en las simulaciones el efecto de la corriente espín polarizada actuando sobre la pared de dominio, mientras que en la presente invención se incorpora ésta y además el efecto de un campo magnético en sentido opuesto a la corriente continua de espín polarizada, que en una de sus modalidades corresponde a un campo demagnetizante con dirección opuesta al flujo de electrones, el que se crea debido al efecto de la modulación en el diámetro de la nanoestructura. Este campo es el responsable de detener el avance de la pared de dominio debido a la corriente. Además, a través de ecuaciones los autores dan cuenta de la frecuencia de oscilación para una pared de dominio debido sólo al campo magnético externo o sólo a una corriente espín polarizada, mientras que en la presente invención se utilizan ambas ecuaciones simultáneamente para poder detener y localizar en una posición fija la pared de dominio y estimar su frecuencia de oscilación. The nanowire (1) with a domain wall (2) in a portion (3) having a first wall (7) and a second wall (8), wherein said domain wall (2) has a rotational movement and translation, is represented in figure 1 of the present application. This document is the closest to the present invention, since both in this document and in the present invention, one works with a transverse domain wall, which is affected by the application of a polarized spin current. However, between said document and the present invention, there are large differences which are explained below. In the document by Yan et al., Only considered in the simulations the effect of the polarized spin current acting on the domain wall, while in the present invention it is incorporated and also the effect of a magnetic field in the opposite direction to the polarized spin direct current, which in one of its modalities correspond to a demagnetizing field with an opposite direction to the flow of electrons, which is created due to the effect of modulation on the nanostructure diameter. This field is responsible for stopping the advance of the domain wall due to the current. In addition, through equations the authors report the oscillation frequency for a domain wall due only to the external magnetic field or only to a polarized spin current, while in the present invention both equations are used simultaneously to be able to stop and locate In a fixed position the domain wall and estimate its oscillation frequency.
En el documento "Magnetic power inverter: AC voltage generation from DC magnetic fields" de los autores J. Leda and S. Maekawa, se divulga un método para generar un voltaje alterno mediante el movimiento de una pared de dominio magnética, que se propaga a lo largo de un nanohilo plano con geometría modulada. El movimiento de la pared de dominio es generado por la aplicación de un campo magnético externo con dirección perpendicular a la superficie del nanohilo. El movimiento de la pared a través de las modulaciones del sistema inducirá un voltaje en los extremos del nanohilo. Este dispositivo difiere del que se propone en esta invención en muchos aspectos. Los autores de este documento necesitan de un campo magnético externo para generar el movimiento de la pared de dominio, mientras que en la presente invención se utiliza una corriente eléctrica espín-polarizada. En el sistema divulgado en este documento se requiere del movimiento longitudinal de la pared de dominio para generar voltajes en los extremos del nanohilo, mientras que en el sistema de la presente invención es posible crear un campo magnético alterno y simultáneamente un voltaje alterno con la pared de dominio en una posición fija, la cual sólo rotará sobre sí misma. Usando la Ley de Inducción Electromagnética de Fadaray se establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde. De esta forma, si colocamos esta superficie cerca de la modulación del nanohilo, podremos generar efectivamente un voltaje alterno producido por la variación de flujo magnético (ver figura 19). Finalmente, es importante señalar que mientras los autores de este documento convierten un campo magnético DC en un voltaje AC, en el presente invento se convierte una corriente DC en un campo magnético AC, y simultáneamente en un voltaje también AC. Por último, el orden de magnitud de la frecuencia de oscilaciones que los autores divulgan en su documento son cercanas a 1000 veces menor que las que se proponen en el sistema de la presente invención. In the document "Magnetic power inverter: AC voltage generation from DC magnetic fields" by the authors J. Leda and S. Maekawa, a method for generating an alternating voltage by the movement of a magnetic domain wall, which propagates to along a flat nanowire with modulated geometry. The movement of the domain wall is generated by the application of an external magnetic field with direction perpendicular to the surface of the nanowire. The movement of the wall through the modulations of the system will induce a voltage at the ends of the nanowire. This device differs from that proposed in this invention in many respects. The authors of this document need an external magnetic field to generate the domain wall movement, while a spin-polarized electric current is used in the present invention. In the system disclosed in this document, the longitudinal movement of the domain wall is required to generate voltages at the ends of the nanowire, while in the system of the present invention it is possible to create an alternating magnetic field and simultaneously an alternating voltage with the wall of dominance in a fixed position, which will only rotate on itself. Using the Fadaray Electromagnetic Induction Law, it is established that the voltage induced in a closed circuit is directly proportional to the speed with which the magnetic flux that passes through any surface changes with the circuit as an edge. In this way, if we place this surface near the modulation of the nanowire, we can effectively generate an alternating voltage produced by the variation of magnetic flux (see figure 19). Finally, it is important to note that while the authors of this document convert a DC magnetic field into an AC voltage, in the present invention a DC current is converted into an AC magnetic field, and simultaneously also an AC voltage. Finally, the order of magnitude of the frequency of oscillations that the authors disclose in their document are close to 1000 times less than those proposed in the system of the present invention.
En el documento "Stability of spinmotive forcé in perpendicularly magnetized nanowires under high magnetic fields" de Y. Yamane, J. Leda y S. Maekawa, se divulga que teóricamente es posible generar un voltaje debido al movimiento de paredes de dominios con dirección perpendicular a la superficie de un nanohilo plano. Para esto, en este documento se supone un nanohilo con una alta anisotropía magnetocristalina generada por aleaciones de Co/Ni y Fe/Pt, luego inducen un movimiento de las paredes de dominio mediante la aplicación de un campo magnético externo perpendicular a la superficie del nanohilo. La aplicación de este campo generará un movimiento de las paredes de dominio, el cual inducirá una fuerza electromotriz que podrá ser medida como un voltaje en los extremos del nanohilo. Este documento divulga que es necesario inducir un voltaje constante, mientras que en la presente invención es posible generar un voltaje alterno debido a la aplicación de una corriente eléctrica directa y a la rotación estable de la pared de dominio magnética. Además, en dicho documento no se divulga el objetivo de generar un campo magnético externo, sino que se enfoca en que para ciertos materiales y configuraciones magnéticas es posible incrementar el voltaje inducido por el movimiento longitudinal de una pared de dominio, mientras que en la presente invención, la pared de dominio detiene su movimiento longitudinal debido a la contraposición del flujo de electrones y del campo magnético aplicado en dirección contraria, generando así una rotación de la magnetización en una posición fija. In the document "Stability of spinmotive forced in perpendicularly magnetized nanowires under high magnetic fields" by Y. Yamane, J. Leda and S. Maekawa, it is disclosed that theoretically it is possible to generate a voltage due to the movement of domain walls perpendicular to the surface of a flat nanowire. To this end, this document assumes a nanowire with a high magnetocrystalline anisotropy generated by Co / Ni and Fe / Pt alloys, then induces a movement of the domain walls by applying an external magnetic field perpendicular to the surface of the nanowire . The application of this field will generate a movement of the domain walls, which will induce an electromotive force that can be measured as a voltage at the ends of the nanowire. This document discloses that it is necessary to induce a constant voltage, while in the present invention it is possible to generate an alternating voltage due to the application of a direct electric current and the stable rotation of the magnetic domain wall. In addition, the objective of generating an external magnetic field is not disclosed in said document, but focuses on that for certain materials and magnetic configurations it is possible to increase the voltage induced by the longitudinal movement of a domain wall, while in the present invention, the domain wall stops its longitudinal movement due to the counterposition of the flow of electrons and the magnetic field applied in the opposite direction, thus generating a rotation of the magnetization in a fixed position.
En el documento "Domain wall motion on magnetic nanotubes" de los autores P. Landeros y A. Nuñez, se divulga la dinámica de una pared de dominio en un nanotubo magnético manejada por un campo magnético externo. En este documento se muestra cómo la dinámica de la pared genera cambios de quiralidad dependiendo de la configuración magnética antiparalela de sus espines, mostrando que existen dos regímenes para el movimiento de la pared de dominio, uno en el cual ésta se mueve a velocidad lineal en función de la intensidad de campo magnético, y otro en el cual la pared de dominio genera un movimiento precesional, generando una caída de Walker. En la presente invención se utiliza una pared de dominio magnética de configuración transversal, la cual es afectada de manera simultánea por un flujo de corriente espín polarizada y por un campo magnético, ambos en direcciones opuestas. Además, en la presente invención se demuestra que es posible detener el avance de una pared de dominio, haciéndola rotar sobre sí misma en una posición fija, generando un campo magnético alterno producto de esta rotación. In the document "Domain wall motion on magnetic nanotubes" by the authors P. Landeros and A. Nuñez, the dynamics of a domain wall in a magnetic nanotube driven by an external magnetic field are disclosed. This document shows how the dynamics of the wall generates chirality changes depending on the antiparallel magnetic configuration of its spins, showing that there are two regimes for the movement of the domain wall, one in which it moves at a linear speed depending on the magnetic field strength, and another in which the domain wall generates a precessional movement, generating a fall of Walker. In the present invention a magnetic domain wall of transverse configuration is used, which is simultaneously affected by a polarized spin current flow and by a magnetic field, both in opposite directions. Furthermore, it is demonstrated in the present invention that it is possible to stop the advance of a domain wall, making it rotate on itself in a fixed position, generating an alternating magnetic field product of this rotation.
En el documento "Domain wall manipulation in magnetic nanotubes induced by electric current pulses" de los autores J. A. Otálora et al., se divulga el movimiento de una pared de dominio magnética en un nanotubo homogéneo mediante corriente espín polarizada. En dicho documento se señala que la dinámica del movimiento de esta pared de dominio, la cual produce un movimiento precesional de cambio de quiralidad para diferentes densidades de corriente, generando una caída de Walker, puede ser predicha utilizando las ecuaciones que los autores describen. Dicho documento es diferente de la presente invención, ya que en ésta se trabaja con una pared de dominio magnética de tipo transversal. Por otra parte, la diferencia principal es que con el sistema divulgado en dicho documento, no es posible generar un campo magnético alterno localizado, como sí sucede con la presente invención. En el documento US 2013241344 "Fuel Free Nanowire Motors" se divulga un sistema de nanohilos inmersos en un fluido. Los hilos son diodos eléctricos que pueden ser desplazados dentro del fluido a través de campos eléctricos y magnéticos. El sistema que se propone es con piezas móviles sumergidas en un fluido, donde los nanohilos son desplazados físicamente. En la presente invención, se investiga el movimiento de paredes de dominio magnéticas, pero donde las nanoestructuras permanecen en una posición fija. Por otra parte, la aplicación es completamente distinta, ya el objetivo divulgado en este documento es generar el movimiento de nanohilos, mientras que en el presente caso, es generar un campo magnético alterno. In the document "Domain wall manipulation in magnetic nanotubes induced by electric current pulses" of the authors JA Otálora et al., The movement of a magnetic domain wall in a homogeneous nanotube by polarized spin current is disclosed. In this document it is pointed out that the dynamics of the movement of this domain wall, which produces a precessional chirality change movement for different current densities, generating a Walker drop, can be predicted using the equations described by the authors. Said document is different from the present invention, since it works with a transverse type magnetic domain wall. On the other hand, the main difference is that with the system disclosed in said document, it is not possible to generate a localized alternating magnetic field, as is the case with the present invention. In US 2013241344 "Fuel Free Nanowire Motors" a system of nanowires immersed in a fluid is disclosed. The wires are electrical diodes that can be displaced within the fluid through electric and magnetic fields. The proposed system is with moving parts submerged in a fluid, where the nanowires are physically displaced. In the present invention, the movement of magnetic domain walls is investigated, but where the nanostructures remain in a fixed position. On the other hand, the application is completely different, and the objective disclosed in this document is to generate the movement of nanowires, while in the present case, it is to generate an alternating magnetic field.
El documento WO 2012/019806 "Method and assembly for exciting spin waves in magnetic solid bodies", del Leibniz-lnstitut für Festkórper und werkstoffforschung Dresden E.V., divulga una forma de excitar paredes de dominio a través de luz polarizada para lograr la excitación y generación de ondas de espín utilizando el efecto Kerr. Este documento no trabaja con campos magnéticos ni con corriente, tampoco es un generador de campo magnético alterno, por lo tanto, no es relevante para nuestra invención.  WO 2012/019806 "Method and assembly for exciting spin waves in magnetic solid bodies", by Leibniz-lnstitut für Festkórper und werkstoffforschung Dresden EV, discloses a way to excite domain walls through polarized light to achieve excitation and generation of spin waves using the Kerr effect. This document does not work with magnetic fields or current, nor is it an alternating magnetic field generator, therefore, it is not relevant to our invention.
El documento WO 2010/055333 "Magnetic data storage device with magnetic domain wall motion", de Paul Cowburn Russell, divulga un sistema de arreglos de nanohilos con anisotropía magnetocristalina perpendicular al eje de simetría axial, el cual es capaz de contener a lo largo del hilo dominios magnéticos con orientación perpendicular al eje principal. Utilizando un campo magnético externo circular que rodea a cada hilo, es posible realizar un desplazamiento de las paredes de dominio, las cuales representarán información binaria almacenada a lo largo del hilo. Este documento tiene diferencias sustanciales con respecto a la presente invención. Primero, dicho documento está orientada al almacenamiento de información y a su desplazamiento mediante un campo magnético circular, entendiendo como información a las paredes de dominio magnéticas que representarán bits binarios. En la presente invención, se mueve una pared de dominio usando una corriente eléctrica, para luego contrarrestar su desplazamiento con un campo magnético que detendrá su movimiento y la hará girar sobre sí misma para generar un campo magnético alterno. WO 2010/055333 "Magnetic data storage device with magnetic domain wall motion", by Paul Cowburn Russell, discloses a system of nanowire arrays with magnetocrystalline anisotropy perpendicular to the axis of axial symmetry, which is capable of containing along the magnetic domains thread oriented perpendicular to the main axis. Using a circular external magnetic field surrounding each wire, it is possible to perform a displacement of the domain walls, which will represent binary information stored along the thread. This document has substantial differences with respect to the present invention. First, said document is oriented to the storage of information and its displacement through a circular magnetic field, understood as information to the magnetic domain walls that will represent binary bits. In the present invention, a domain wall is moved using an electric current, to then counteract its displacement with a magnetic field that will stop its movement and rotate it on itself to generate an alternating magnetic field.
RESEÑA DE LA INVENCIÓN SUMMARY OF THE INVENTION
Las paredes de dominio magnéticas son una de las principales fuentes de estudio del magnetismo a nanoescala. Éstas representan ¡as deformaciones locales de la magnetización en el límite de separación de dos dominios magnéticos opuestos y uniformes. A menudo están presentes en los procesos de reversión de las nanoestructuras ferromagnéticas, variando su forma, tamaño y comportamiento dependiendo del material y geometría de la nanoestructura. Cuando un flujo de electrones atraviesa un material ferromagnético, estos adquieren una polarización a lo largo de la dirección de la magnetización local, y se genera una transferencia del momento angular del espín de los electrones hacia la magnetización del sistema. Este acople permite controlar e! movimiento de paredes de dominio magnéticas medíante la aplicación de una corriente espín polarizada y ha sido reportado en múltiples estudios tanto teóricos, como experimentales. El movimiento de paredes de dominio en nanoestructuras y/o nanocintas ferro magnéticas abre una ventana de oportunidades para potenciales aplicaciones en sistemas de estado sólido y dispositivos lógicos. A la fecha, la gran mayoría de estas investigaciones han sido desarrolladas sobre sistemas de geometría planar (nanohilos planos), y solo muy pocas se han realizado en otro tipo de geometrías. Entre ellas se encuentran los nanohilos cilindricos, donde el movimiento de las paredes de dominio pueden alcanzar velocidades de mayor amplitud y un comportamiento más estable que en sistemas de geometría planar. Magnetic domain walls are one of the main sources of study of nanoscale magnetism. These represent the local deformations of the magnetization at the separation limit of two opposite and uniform magnetic domains. They are often present in the processes of reversing ferromagnetic nanostructures, varying their shape, size and behavior depending on the material and geometry of the nanostructure. When an electron flow passes through a ferromagnetic material, they acquire a polarization along the direction of the local magnetization, and a transfer of the angular momentum of the spin of the electrons to the magnetization of the system is generated. This coupling allows to control e! movement of magnetic domain walls through the application of a polarized spin current and has been reported in multiple both theoretical and experimental studies. The movement of domain walls in nanostructures and / or ferro magnetic nanocintas opens a window of opportunities for potential applications in solid state systems and logical devices. To date, the vast majority of these investigations have been developed on planar geometry systems (flat nanowires), and only very few have been carried out in other types of geometries. Among them are cylindrical nanowires, where the movement of the domain walls can reach higher amplitude speeds and a more stable behavior than in planar geometry systems.
Por otra parte, cuando una pared de dominio de tipo transversal o On the other hand, when a transverse type domain wall or
Bloch es afectada por la presencia de un campo magnético o una corriente espín polarizada, la pared generará dos tipos de movimientos, uno será de traslación, moviéndose en la misma dirección que el flujo de electrones o campos aplicados; y el otro será un movimiento rotacional en el plano perpendicular al eje principal de la nanostructura, el cual hará variar la magnetización de la nanoestructura periódicamente, creando un campo magnético alterno. Ambos movimientos de traslación y rotación ocurrirán simultáneamente, y durarán hasta quitar la influencia de los campos magnéticos o corrientes. Bloch is affected by the presence of a magnetic field or a polarized spin current, the wall will generate two types of movements, one will be of translation, moving in the same direction as the flow of electrons or applied fields; and the other will be a rotational movement in the plane perpendicular to the main axis of the nanostructure, which will periodically vary the magnetization of the nanostructure, creating an alternating magnetic field. Both movements of translation and rotation will occur simultaneously, and will last until the influence of the magnetic fields or currents is removed.
Considerando los fenómenos mencionados, esta invención se refiere a un nanogenerador de campo magnético alterno, estable en el tiempo y manteniendo la rotación de la pared de dominio en una posición fija, pudiendo así conocer in-situ la fuente de variación de campo. La presente invención establece la relación que deben satisfacer las corrientes espín-polarizadas y los campos magnéticos para obtener el fenómeno descrito por el nanogenerador de campo magnético alterno. Considering the aforementioned phenomena, this invention relates to an alternating magnetic field nanogenerator, stable over time and maintaining the rotation of the domain wall in a fixed position, thus being able to know in situ the source of field variation. The present invention It establishes the relationship that spin-polarized currents and magnetic fields must meet to obtain the phenomenon described by the alternating magnetic field nanogenerator.
A modo de ejemplo de un nanogenerador de campo magnético alterno, se ha usado una corriente espín polarizada y un campo demagnetizante creado por el cambio geométrico de un nanohüo de diámetro modulado, mediante los cuales es posible fijar la posición de una pared de dominio transversa!, y en esta posición generar una rotación de la pared de dominio estable en el tiempo. Para esto, se han realizado simulaciones micromagnéticas utilizando el software libre OOM F, que fue extendido para considerar también la dinámica de la magnetización inducida por una corriente espín-polarizada.  As an example of an alternating magnetic field nanogenerator, a polarized spin current and a demagnetizing field created by the geometric change of a modulated diameter nano-tube have been used, by means of which it is possible to fix the position of a transverse domain wall! , and in this position generate a stable domain wall rotation over time. For this, micromagnetic simulations have been carried out using the free OOM F software, which was extended to also consider the dynamics of magnetization induced by a spin-polarized current.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 muestra un nanohilo del arte previo, en donde la pared de dominio avanza y rota al mismo tiempo, desde que se genera en el primer extremo hasta perderte el segundo extremo, mediante la aplicación de una corriente continua, de espín polarizado.  Figure 1 shows a nano-thread of the prior art, in which the domain wall advances and rotates at the same time, from when it is generated at the first end until the second end is lost, by applying a continuous current, of polarized spin.
La figura 2 muestra un nanohilo del arte previo, en donde la pared de dominio avanza y rota al mismo tiempo, desde que se genera en el primer extremo hasta que se pierde en el segundo extremo, mediante la aplicación de una corriente continua, de espín polarizado, estando de manera alejada de dicho segundo extremo del nanohilo un imán que tiene un campo magnético opuesto a flujo de corriente. La figura 3 muestra una secuencia de nanohilos, en donde la pared de dominio avanza y rota al mismo tiempo, desde que se genera en el primer extremo hasta que detiene su avance y se enclava antes del segundo extremo, en donde dicha pared de dominio comienza a girar en sentido opuesto y en el mismo lugar, dado que la corriente continua, de espín polarizado, entra en competencia con el campo magnético opuesto del imán que está cercano a dicho segundo extremo del nanohilo. Figure 2 shows a nano-thread of the prior art, where the domain wall advances and rotates at the same time, from being generated at the first end until it is lost at the second end, by applying a spin, continuous current polarized, a magnet having a magnetic field opposite current flow being away from said second end of the nanowire. Figure 3 shows a sequence of nanowires, where the domain wall advances and rotates at the same time, since it is generated at the first end until it stops its advance and is locked before the second end, where said domain wall begins to rotate in the opposite direction and in the same place, since the polarized spin direct current competes with the opposite magnetic field of the magnet that is close to said second end of the nanowire.
La figura 4 muestra un nanohilo y un imán en donde la pared de dominio está detenida y anclada en el mismo sitio de dicho nanohilo y rota al mismo tiempo, debido a que la corriente continua, de espín polarizado, entra en competencia con el campo magnético opuesto del imán, que está cercano a dicho segundo extremo del nanohilo, en donde esta configuración, se transforma en una primera modalidad de la invención.  Figure 4 shows a nanowire and a magnet where the domain wall is stopped and anchored at the same site of said nanowire and rotates at the same time, because the polarized spin current enters into competition with the magnetic field. opposite of the magnet, which is close to said second end of the nanowire, where this configuration is transformed into a first embodiment of the invention.
La figura 5 muestra una vista en perspectiva de una segunda modalidad del nanohilo conformada por dos porciones de diámetro diferente y que tienen una zona de empalme variable.  Figure 5 shows a perspective view of a second modality of the nanowire formed by two portions of different diameter and having a variable splice zone.
La figura 6 muestra una vista lateral la una segunda modalidad del nanohilo conformada por dos porciones de diámetro diferente y que tienen una zona de empalme variable.  Figure 6 shows a side view of the second mode of the nanowire formed by two portions of different diameter and having a variable splice zone.
La figura 7 muestra un gráfico con la visualización del campo desmagnetizante creado por la variación en e! diámetro del nanohilo de las figuras 5 y 8. La figura 8 muestra un gráfico con la velocidad promedio de desplazamiento de la pared de dominio en las dos porciones del nanohilo, la velocidad de la pared en diámetro delgado y la velocidad de la pared en diámetro grueso. Figure 7 shows a graph with the display of the demagnetizing field created by the variation in e! diameter of the nanowire of figures 5 and 8. Figure 8 shows a graph with the average speed of displacement of the domain wall in the two portions of the nanowire, the speed of the wall in thin diameter and the speed of the wall in thick diameter.
La figura 9 muestra una vista en perspectiva esquemática de la segunda modalidad del nanohilo, en donde la pared de dominio se mueve desde el extremo más delgado, hacia el extremo más grueso, deteniéndose antes de la zona de empalme de diámetro variable.  Figure 9 shows a schematic perspective view of the second mode of the nanowire, where the domain wall moves from the thinner end, to the thicker end, stopping before the splice area of variable diameter.
Las figuras 10, 1 1 y 12 muestran una vista en perspectiva ampliada de la segunda modalidad del nanohilo con la pared de dominio detenida, rotando en función del tiempo debido a la competencia entre el campo demagnetizante y la corriente eléctrica.  Figures 10, 1, 1 and 12 show an enlarged perspective view of the second mode of the nanowire with the domain wall stopped, rotating as a function of time due to the competition between the demagnetizing field and the electric current.
La figura 13 muestra una vista en perspectiva de una tercera modalidad del nanohilo con un cambio de diámetro abrupto entre la primera y segunda porción del nanohilo, en donde el segundo extremo de la primera porción, empalma directamente con el primer extremo de la segunda porción.  Figure 13 shows a perspective view of a third modality of the nanowire with an abrupt change in diameter between the first and second portion of the nanowire, where the second end of the first portion, splices directly with the first end of the second portion.
La figura 14 muestra una vista en perspectiva esquemática de una tercera modalidad del nanohilo, en donde la pared de dominio se mueve desde el extremo más delgado, hacia el extremo más grueso, deteniéndose antes de la zona de empalme entre el segundo extremo de la primera porción y el primer extremo de la segunda porción.  Figure 14 shows a schematic perspective view of a third mode of the nanowire, where the domain wall moves from the thinner end, to the thicker end, stopping before the splice zone between the second end of the first portion and the first end of the second portion.
Las figuras 15, 16 y 17 muestran una vista en perspectiva ampliada de la tercera modalidad del nanohilo con la pared de dominio detenida, rotando en función del tiempo debido a la competencia entre un campo demagnetizante y la corriente eléctrica Figures 15, 16 and 17 show an enlarged perspective view of the third mode of the nanowire with the domain wall stopped, rotating in function of time due to competition between a demagnetizing field and electric current
La figura 18 muestra el gráfico de la velocidad angular para dos densidades de corriente, en que la pared de dominio encontró una posición de equilibrio debido a la competencia entre la corriente eléctrica y el campo demagnetizante, en la segunda modalidad de la presente invención.  Figure 18 shows the graph of the angular velocity for two current densities, in which the domain wall found an equilibrium position due to competition between the electric current and the demagnetizing field, in the second embodiment of the present invention.
La figura 19 muestra un nanogenerador conformado por la segunda modalidad del nanohilo, en donde el campo magnético alterno, induce un voltaje alterno en una bobina en las cercanías del nanogenerador.  Figure 19 shows a nanogenerator formed by the second mode of the nanowire, where the alternating magnetic field induces an alternating voltage in a coil in the vicinity of the nanogenerator.
La figura 20 muestra un gráfico con la estimación de la velocidad angular (cuadrados) y campo de anclaje (círculos) de la pared de dominio para distintas densidades de corriente, y en su gráfico interno, se muestra un zoom para las densidades de corrientes más bajas.  Figure 20 shows a graph with the estimation of the angular velocity (squares) and anchor field (circles) of the domain wall for different current densities, and in its internal graph, a zoom is shown for the densities of currents more low.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un generador de campo magnético alterno nanométrico a partir del movimiento de paredes de dominio, mediante pulsos de corriente continua. Como resultado se obtiene que el campo magnético alterno se genera sobre e! nanohilo y su frecuencia es estable y puede ser controlada o modificada de acuerdo a la variación de la intensidad del pulso de corriente continua aplicado.  The present invention relates to a nanometric alternating magnetic field generator from the movement of domain walls, by means of direct current pulses. As a result it is obtained that the alternating magnetic field is generated on e! Nano wire and its frequency is stable and can be controlled or modified according to the variation of the intensity of the applied DC pulse.
La presente invención consiste en generar un campo magnético alterno (AC) del tipo sinusoidal sobre un nanohilo magnético. En general, tal como se describe en la figura 1 , en relación al estado arte más cercano, en un nanohilo (1 ) que tiene una porción (3) de diámetro fijo D1 , al aplicar pulsos de corriente continua entre un primer tremo (7) y un segundo extremo (8) en un material ferromagnético, la corriente de espín polarizado, hace que la pared de dominio (2) se mueva trasladándose desde el primer extremo (7), y a la vez, durante su tránsito vaya rotando en sentido opuesto a las ajugas de un reloj. Sin embargo, como no existe nada que la detenga, dicha pared de dominio (2), se pierde cuando llega al segundo extremo (8). Lo mismo ocurre, cuando a una distancia alejada del segundo extremo (8) del nanohilo (1 ) se coloca un extremo de salida (10) de un campo magnético proveniente de un medio magnético (9), como un imán (9), tal como se aprecia en la figura 2. El medio magnético (9) puede ser un imán natural o artificial, imán permanente o un electroimán cuyo campo magnético puede ser rápidamente manipulado en un amplio rango, controlando la cantidad de corriente eléctrica. The present invention consists in generating an alternating magnetic field (AC) of the sinusoidal type on a magnetic nanowire. In general, as described in Figure 1, in relation to the closest art state, in a nano wire (1) having a fixed diameter portion (3) D1, by applying pulses of direct current between a first leg (7) and a second end (8) in a ferromagnetic material, the polarized spin current, causes the domain wall (2) moves moving from the first end (7), and at the same time, during its transit it rotates in the opposite direction to the clockwork. However, since there is nothing to stop it, said domain wall (2) is lost when it reaches the second end (8). The same occurs when, at a distance away from the second end (8) of the nanowire (1), an outlet end (10) of a magnetic field from a magnetic medium (9), such as a magnet (9), is placed, such As can be seen in Figure 2. The magnetic medium (9) can be a natural or artificial magnet, permanent magnet or an electromagnet whose magnetic field can be quickly manipulated over a wide range, controlling the amount of electric current.
Sin embargo, según se aprecia en las figuras 3 a 4, en la medida que el extremo de salida (10) de un campo magnético proveniente del medio magnético (9) acerca su primer extremo (10) desde el cual sale un campo magnético (1 1 ), éste comienza a compensar la corriente continua de espín polarizado (12), que viaja por el nanohilo (1 ), que traslada la pared de dominio (2), con lo cual, cuan la corriente y el campo magnético quedan compensados, la pared de dominio se detiene y comienza a girar velozmente en sentido opuesto al que venía girando, y comienza su giro rápido en sentido de las agujas de un reloj, pudiendo alcanzar velocidades de rotación del orden de 100 GHz, con lo cual dicha pared anclada en un punto y girando, genera un campo magnético alterno, continuo y estable en e! tiempo, lo que antes no había sido posible de lograr. However, as seen in Figures 3 to 4, to the extent that the output end (10) of a magnetic field from the magnetic medium (9) approaches its first end (10) from which a magnetic field ( 1 1), it begins to compensate for the polarized spin direct current (12), which travels through the nanowire (1), which translates the domain wall (2), whereby the current and the magnetic field are compensated , the domain wall stops and begins to rotate rapidly in the opposite direction to which it was turning, and begins its rapid rotation clockwise, being able to reach rotation speeds of the order of 100 GHz, whereby said wall anchored at a point and turning, generates a field Alternate magnetic, continuous and stable in e! time, what had not been possible before.
Para explicar los principios de la presente invención, se considerará una partícula magnética de geometría alargada en algún eje k, que contiene una pared de dominio transversal o de Bloch, cuyo centro se puede describir en una primera aproximación por M - Msr, y además, se considerará que la pared de dominio se encuentra bajo la acción de un campo magnético H0 , y finalmente, se considerará que la pared de dominio se encuentra bajo la acción de una corriente espín polarizada. Siendo esto así, la dinámica de la pared de dominio puede ser estimada mediante la ecuación de Landau-Liftshitz-Gilbert, con la inclusión de términos adicionales de transferencia de espín-torque: dM a dM \ , , →.. → β → r _ To explain the principles of the present invention, a magnetic particle of elongated geometry in some axis k, which contains a transverse domain wall or of Bloch, whose center can be described in a first approximation by M-M s r, and In addition, the domain wall will be considered to be under the action of a magnetic field H 0 , and finally, the domain wall will be considered to be under the action of a polarized spin current. This being so, the dynamics of the domain wall can be estimated using the Landau-Liftshitz-Gilbert equation, with the inclusion of additional spin-torque transfer terms: dM to dM \,, → .. → β → r _
γΗ0 x M M x ----- - ( V)AÍ +— X fu V)M . 1 γΗ 0 x MM x ----- - ( V) AÍ + - X fu V) M. one
dt \ J Ms !A J 1 donde Ms es la magnetización de saturación, γ es la tasa giromagnética, a es el damping de Gilbert, β es el parámetro no adiabático de transferencia de espín y Ü(t) = ±u(t)í , y magnitud i¿(t)
Figure imgf000020_0001
, aquí electrones fluyendo en la dirección +k significa u > 0 , donde j(t) es la densidad de corriente en el tiempo, P es la tasa de polarización de la corriente, g es el factor de Landé, μΒ el magnetón de Bohr y e es la carga del electrón. Resolviendo esta ecuación para la magnetización del centro de la pared de dominio ( θ = π/2 ), se obtienen las siguientes ecuaciones de movimiento, descritas como función de Θ y φ para coordenadas esféricas, donde: (1 + β η
dt \ J M s ! AJ 1 where M s is the saturation magnetization, γ is the pyromagnetic rate, a is Gilbert's damping, β is the non-adiabatic spin transfer parameter and Ü (t) = ± u (t ) í, and magnitude i¿ (t)
Figure imgf000020_0001
, here electrons flowing in the direction + k means u> 0, where j (t) is the current density in time, P is the polarization rate of the current, g is the Landé factor, μ Β the magneton of Bohr ye is the charge of the electron. Solving this equation for the magnetization of the center of the domain wall (θ = π / 2), the following motion equations are obtained, described as a function of Θ and φ for spherical coordinates, where: (1 + β η
θ  θ
1 + a2 1 + 2 \wc 1 + a 2 1 + 2 \ wc
(2) γΗ0 (β ~ α)ιι δθ (2) γΗ 0 (β ~ α) ιι δθ
φ  φ
1 + α 2 1 + α2 dk. 1 + α 2 1 + α 2 dk.
(3) (3)
¡36» 36 »
donde, - es proporcional al inverso del ancho de la pared de dominio cuando ésta se encuentra perpendicular a! eje de simetría de la nanoestructura, y wc denota el centro de la pared de dominio. Además, Θ es proporcional a la velocidad de desplazamiento de la pared, ν = θ ^ , y φ representa la velocidad angular de rotación de la pared y 6(k) representa el perfil de la pared de dominio a lo largo de k.  where, - is proportional to the inverse of the width of the domain wall when it is perpendicular to! axis of symmetry of the nanostructure, and wc denotes the center of the domain wall. In addition, Θ is proportional to the speed of wall displacement, ν = θ ^, and φ represents the angular speed of wall rotation and 6 (k) represents the profile of the domain wall along k.
De las ecuaciones anteriores se puede deducir que una pared de dominio puede permanecer rotando en una posición fija, manteniendo su rotación angular en la dirección ±<p, si ocurriese la condición de Θ = 0, lo que se logra si el primer término de la ecuación (2), asociado al campo magnético sobre la pared de dominio, fuese de igual magnitud y en sentido opuesto que el segundo término (asociado a la corriente eléctrica). Entonces, para detener el movimiento de propagación de la pared se requiere que el campo magnético y el flujo de electrones que conduce a la pared tengan sentidos opuestos, satisfaciendo la siguiente relación:
Figure imgf000021_0001
From the above equations it can be deduced that a domain wall can remain rotating in a fixed position, maintaining its angular rotation in the direction ± <p, if the condition of Θ = 0 occurs, which is achieved if the first term of the Equation (2), associated with the magnetic field on the domain wall, was of equal magnitude and in the opposite direction as the second term (associated with the electric current). Then, to stop the propagation movement of the wall, it is required that the magnetic field and the flow of electrons leading to the wall have opposite directions, satisfying the following relationship:
Figure imgf000021_0001
(4) La rotación permanente de la pared de dominio creará un campo magnético alterno de posición estable. Además, el valor de la velocidad angular de la rotación de la pared será determinada por la ecuación (3). (4) The permanent rotation of the domain wall will create an alternating magnetic field of stable position. In addition, the value of the angular velocity of the wall rotation will be determined by equation (3).
En un nanogenerador de campo magnético alterno es necesario cumplir con las condiciones indicadas anteriormente, utilizando una corriente espín polarizada y un campo magnético, que en este caso en particular debe su origen a un campo demagnetizante creado por e! cambio geométrico de un nanohilo de diámetro modulado, mediante los cuales es posible fijar ¡a posición de una pared de dominio transversal, y en esta posición generar una rotación de la pared de dominio estable en el tiempo. Para esto, se han realizado simulaciones micromagnéticas utilizando el software libre OOMMF, que fue extendido para considerar también la dinámica de la magnetización inducida por una corriente espín-polarizada.  In an alternating magnetic field nanogenerator it is necessary to comply with the conditions indicated above, using a polarized spin current and a magnetic field, which in this particular case owes its origin to a demagnetizing field created by e! geometric change of a modulated diameter nanowire, by means of which it is possible to fix the position of a transverse domain wall, and in this position generate a time-stable domain wall rotation. For this, micromagnetic simulations have been performed using the free OOMMF software, which was extended to also consider the dynamics of magnetization induced by a spin-polarized current.
El nanogenerador de la presente invención, es posible obtenerlo, mediante un nanohilo (1 ) que tenga una porción primera (3) de diámetro continuo D-i , en donde en sus extremos (7, 8} se aplica una corriente continua de espín polarizado (1 2) que hace mover la pared de dominio (2) a través del nanohilo (1 ), y se logre el anclaje de dicha pared de dominio (2), por medio del acercamiento o empalme del extremo de salida (1 0) de un campo magnético producido por un medio magnético (9) desde el cual sale un campo magnético It is possible to obtain the nanogenerator of the present invention, by means of a nanowire (1) having a first portion (3) of continuous diameter Di, where at its ends (7, 8) a continuous polarized spin current (1) is applied 2) which causes the domain wall (2) to move through the nanowire (1), and the anchoring of said domain wall (2) is achieved, by approaching or splicing the outlet end (1 0) of a magnetic field produced by a magnetic medium (9) from which a magnetic field comes out
(1 1 ) opuesto al sentido de avance de la corriente continua de espín polarizado(1 1) opposite the direction of advance of the polarized spin direct current
(1 2) . Esta configuración, es una primera forma de realización de la presente invención. En una segunda realización, y tal como se muestra en figura 5, dicho nanohilo (1 ) está conformado por una primera porción (3) que tiene un primer extremo (7) y un segundo extremo (8), cuyo diámetro es D ; y una segunda porción (4) que tiene un primer extremo (1 3) y un segundo extremo (14), cuyo diámetro es D2. El diámetro D es menor que el diámetro D2. Entre la primera porción (3) y la segunda porción (4) está localizada una región de cambio de diámetro (5) que tiene un diámetro variable continuo y que forma cono truncado que empalma con la primera porción (3) y la segunda porción (4), respectivamente. En el caso de la segunda modalidad, dicha región de cambio de diámetro (5) es una región de modulación de tipo cónica, que tiene un diámetro menor igual a D y un diámetro mayor igual a D2. (1 2). This configuration is a first embodiment of the present invention. In a second embodiment, and as shown in Figure 5, said nano-wire (1) is formed by a first portion (3) having a first end (7) and a second end (8), whose diameter is D ; and a second portion (4) having a first end (1 3) and a second end (14), whose diameter is D 2 . The diameter D is smaller than the diameter D 2 . Between the first portion (3) and the second portion (4) a region of diameter change (5) is located that has a continuous variable diameter and that forms a truncated cone that splices with the first portion (3) and the second portion ( 4), respectively. In the case of the second embodiment, said diameter change region (5) is a conical type modulation region, which has a smaller diameter equal to D and a larger diameter equal to D 2 .
Dentro de la primera porción (3) se localiza una pared de dominio (2), tal como se muestra en la figura 5. Según se muestra en la figura 6, en el caso del nanohilo (1 ) simulado, la primera porción (3) tiene un diámetro Di = 1 0 nm, la región de cambio de diámetro (5) de forma cónica que empalma ambas porciones (3, 4), que tiene largo L igual a 30 nm, y la segunda porción (4) tiene un diámetro de D2 = 40 nm. Como material ferromagnético de estudio se ha considerado Permalloy, con una constante de intercambio de A = 1 .3 x 1 0"11 J/m y una magnetización de saturación de Ms = 798 kA/m. Dado que se considera una muestra policristalina, la anisotropía es muy pequeña y puede ser despreciada. El volumen de la nanoestructura está dividido en celdas cúbicas de 1 .25 x 1 .25 x 2.5 nm3, donde la celda mayor corresponde al eje de la nanoestructura (en este caso, en la dirección k). Como las simulaciones consideran el uso de corriente, y el nanohilo modulado produce una variación en el área de su sección transversal a lo largo del eje de simetría, es necesario modular de igual forma la densidad de corriente espín polarizada a lo largo de este eje, para que así se conserve la corriente que entra y sale por los extremos de la nanoestructura. Finalmente, se ha usado a = 0.01, β = 0.04, y P = 0.4 (parámetros definidos en la discusión de la Ecuación (1 ), con valores de densidad de corriente / variando entre 1 x 1012 A/m2 y 10 x 1012 A/m2, y se definió el flujo de electrones en la dirección +k , desplazando la pared de dominio (2) desde el extremo de la primera porción (3) hacia la segunda porción (4), como se observa en la configuración inicial magnética mostrada en la Fig. 1 B, donde se ha utilizado una pared de dominio (2) tipo transversal, la cual minimiza la energía del sistema frente a otros tipos de paredes de dominio. Within the first portion (3) a domain wall (2) is located, as shown in Figure 5. As shown in Figure 6, in the case of the simulated nanowire (1), the first portion (3 ) has a diameter Di = 1 0 nm, the region of conical diameter change (5) that splices both portions (3, 4), which has a length L equal to 30 nm, and the second portion (4) has a diameter of D 2 = 40 nm. As a ferromagnetic study material, Permalloy has been considered, with an exchange constant of A = 1 .3 x 1 0 "11 J / m and a saturation magnetization of Ms = 798 kA / m. Since it is considered a polycrystalline sample, the Anisotropy is very small and can be neglected.The volume of the nanostructure is divided into cubic cells of 1.25 x 1 .25 x 2.5 nm 3 , where the largest cell corresponds to the axis of the nanostructure (in this case, in the direction k) Like the simulations they consider the use of current, and the modulated nano-wire produces a variation in the area of its cross-section along the axis of symmetry, it is necessary to modulate in the same way the polarized spin current density along this axis, so that the current entering and leaving the ends of the nanostructure is preserved. Finally, a = 0.01, β = 0.04, and P = 0.4 (parameters defined in the discussion of Equation (1), with values of current density / varying between 1 x 10 12 A / m 2 and 10 x have been used 10 12 A / m 2 , and the flow of electrons in the + k direction was defined, moving the domain wall (2) from the end of the first portion (3) to the second portion (4), as observed in the initial magnetic configuration shown in Fig. 1 B, where a cross-sectional domain wall (2) has been used, which minimizes the energy of the system against other types of domain walls.
La ventaja de utilizar un nanohilo (1 ) que tiene una región de cambio de diámetro (5) conformada en la primera modalidad por una forma cónica que tiene un diámetro menor D y un diámetro mayor D2, es poder reemplazar la fuente de campo magnético externo por el campo demagnetizante (7 y 8) creado naturalmente por el nanohilo de diámetro D2, que termina con una sección cónica (5), correspondiente a la modulación geométrica de la nanoestructura. Como se aprecia en la Fig. 1 C, el campo demagnetizante (7) en la región del nanohilo delgado es no homogéneo, puede alcanzar valores cercanos a 0.5 T, y está orientado en -k , lo que podría permitir frenar la propagación de la pared de dominio (2) con dirección +k, impulsada por una corriente eléctrica, generando el campo magnético alterno estable (8). The advantage of using a nanowire (1) that has a region of change in diameter (5) formed in the first mode by a conical shape that has a smaller diameter D and a larger diameter D 2 , is to be able to replace the magnetic field source external by the demagnetizing field (7 and 8) created naturally by the nanowire of diameter D 2 , which ends with a conical section (5), corresponding to the geometric modulation of the nanostructure. As can be seen in Fig. 1 C, the demagnetizing field (7) in the region of the thin nanowire is non-homogeneous, can reach values close to 0.5 T, and is oriented in -k, which could allow braking the domain wall propagation (2) with + k direction, driven by an electric current, generating the stable alternating magnetic field (8).
Debido a la no homogeneidad del campo demagnetizante (7 y 8) a lo largo del nanohilo modulado, para ciertos valores de densidad de corriente es posible que la pared de dominio (2) encuentre una posición de equilibrio que satisfaga la ecuación (4), pero que no suprima su rotación angular.  Due to the non-homogeneity of the demagnetizing field (7 and 8) along the modulated nanowire, for certain current density values it is possible that the domain wall (2) finds an equilibrium position that satisfies equation (4), but that does not suppress its angular rotation.
Utilizando la configuración magnética en la se nanohilo como el mostrado en la segunda modalidad de la Fig. 5, mediante la aplicación de una corriente espín polarizada, cuyas densidades de corriente variaron entre 1 x 1 012 A/m2 y 1 0 x 1 012 A/m2, se ha generado un desplazamiento de la pared de dominio (2) con dirección hacia una segunda porción (4) más gruesa del nanohilo (1 ). De los resultados obtenidos se puede señalar que, respecto a la velocidad de propagación de la pared de dominio en la región del diámetro Di , se observa una relación lineal entre la velocidad de desplazamiento de la pared de dominio (2) y la densidad de corriente, según se muestra en el gráfico de la Fig. 8. Using the magnetic configuration in the nano wire as shown in the second mode of Fig. 5, by applying a polarized spin current, whose current densities varied between 1 x 1 0 12 A / m 2 and 1 0 x 1 0 12 A / m 2 , a displacement of the domain wall (2) with direction towards a thicker second portion (4) of the nanowire (1) has been generated. From the results obtained, it can be noted that, with respect to the speed of propagation of the domain wall in the region of the diameter Di, a linear relationship is observed between the speed of displacement of the domain wall (2) and the current density , as shown in the graph in Fig. 8.
Una vez que la pared de dominio (2) se acerca y alcanza la región de cambio de diámetro (5) conformada por una forma cónica que empalma ambas porciones (3, 4), ésta desacelera fuertemente su propagación y se generan dos posibles resultados. El primero consiste en que si la corriente es suficientemente alta, la pared de dominio (2) continuará su movimiento hacia la segunda porción (4) de diámetro mayor, disminuyendo significativamente su velocidad de desplazamiento, siendo ésta proporcional a la disminución de la densidad de corriente debido a! cambio de diámetro de D a D2. Estos resultados se muestran en el gráfico de la Fig. 18. E! otro posible resultado es que la pared de dominio (2) no pueda continuar su propagación más allá de la región de cambio de diámetro (5) conformada por una forma cónica que empalma ambas porciones (3, 4), deteniendo completamente su propagación. Esto ocurrirá para densidades de corrientes más bajas, donde el efecto de desplazamiento negativo generado por e! campo demagnetizante es mayor o igual al generado por la corriente eléctrica, satisfaciendo en alguna posición la condición de cero desplazamiento mostrada en la ecuación (4). En las simulaciones para este caso en particular, el detenimiento de la pared de dominio en la zona de transición fue logrado para las densidades de corriente de 1 x 1012 A/m2 (curva 15) y 2 x 1012 A/m2 (curva 18} mostradas en el gráfico de la figura 18, pues la pared de dominio no fue capaz de llegar a la segunda porción (4) más gruesa del nanohilo (1 ). Esto significa, que la pared de dominio detiene su avance, se ancla antes de la región de cambio de diámetro (5) y comienza a girar de forma contraria a como venía desplazándose, logrando frecuencias en magnitudes de los GHz, lo que permite tener aplicaciones en el área de las telecomunicaciones. Once the domain wall (2) approaches and reaches the region of diameter change (5) formed by a conical shape that splices both portions (3, 4), it strongly slows its propagation and two possible results are generated. The first is that if the current is sufficiently high, the domain wall (2) will continue its movement towards the second portion (4) of greater diameter, significantly decreasing its travel speed, this being proportional to the decrease in the current density due to! diameter change from D to D 2 . These results are shown in the graph in Fig. 18. E! Another possible result is that the domain wall (2) cannot continue its propagation beyond the region of diameter change (5) formed by a conical shape that splices both portions (3, 4), completely stopping its propagation. This will occur for lower current densities, where the negative displacement effect generated by e! demagnetizing field is greater than or equal to that generated by electric current, satisfying in some position the zero displacement condition shown in equation (4). In the simulations for this particular case, the detent of the domain wall in the transition zone was achieved for the current densities of 1 x 10 12 A / m 2 (curve 15) and 2 x 10 12 A / m 2 (curve 18} shown in the graph of Figure 18, since the domain wall was not able to reach the second thickest portion (4) of the nanowire (1). This means, that the domain wall stops its advance, it is anchored before the region of diameter change (5) and begins to rotate in the opposite way as it had been moving, achieving frequencies in magnitudes of the GHz, which allows applications in the area of telecommunications.
Con respecto a la frecuencia de oscilación de la pared de dominio (2) se observa que su velocidad de rotación es mucho más débil cuando la pared es impulsada por corriente eléctrica que por campo magnético, obteniéndose que para cualquier densidad de corriente empleada, mientras la pared de dominio (2) se desplaza a lo largo de la primera porción (3) más delgada del nanohilo (1 ) modulado y no siente los efectos del campo demagnetizante, ésta rotará con una velocidad angular baja. Sin embargo, una vez que la pared de dominio (2) se acerca a la región de cambio de diámetro (5) conformada por una forma cónica que empalma ambas porciones (3, 4), ésta empieza a sentir cada vez más fuerte el campo demagnetizante, que la hará girar en sentido opuesto a como venía girando durante su movimiento a través de la primera porción (3) delgada del nanohilo (1 ), y con mucha mayor intensidad. With respect to the frequency of oscillation of the domain wall (2) it is observed that its rotation speed is much weaker when the wall is driven by electric current than by magnetic field, obtaining that for any current density employed, while the domain wall (2) moves along the first portion (3) more thin of the modulated nanowire (1) and does not feel the effects of the demagnetizing field, it will rotate with a low angular velocity. However, once the domain wall (2) approaches the region of diameter change (5) formed by a conical shape that splices both portions (3, 4), it begins to feel the field stronger and stronger demagnetizing, which will rotate it in the opposite direction as it had been rotating during its movement through the first thin portion (3) of the nanowire (1), and with much greater intensity.
Esto puede ser explicado debido al factor ( ? - ) que se encuentra en el segundo término de la ecuación (3). Una vez que la pared de dominio llega a la zona de modulación, la velocidad de rotación de la pared de dominio (2) se incrementa abruptamente, proporcional a la intensidad del campo demagnetizante, pudiendo alcanzar velocidades angulares que pueden sobrepasar los 80 rad/ns, ~10 MHz. En la Fig. 9 se muestra el avance de las paredes de dominio (2) a través de la primera porción (3) hacia la segunda porción (4). En las figuras 1 0, 1 1 y 1 2, se observa una perspectiva esquemática con el cambio en la dirección (rotación) de la magnetización como función del tiempo antes de la región de cambio de diámetro (5) con forma cónica con diámetros entre D y D2, lugar donde la pared de dominio (2) detiene su desplazamiento y sólo exhibe un movimiento rotacional. Para los casos de densidad de corriente en que la pared continuó su propagación hacia la segunda porción (4) más gruesa del nanohilo (1 ), el fenómeno de alta velocidad de rotación tuvo duración sólo mientras la pared de dominio (2) se desplazaba por ¡a región de cambio de diámetro (5) conformada por una forma cónica que empalma ambas porciones (3, 4). Sin embargo, para densidades de corriente menores, donde la pared de dominio (2) encuentra una posición de equilibro, la pared permanecerá rotando como función del tiempo, tal y como se muestra en e! gráfico de la Fig. 18. En este gráfico se registra e! valor de la velocidad angular de la pared de dominio (2) mientras avanza por el nanohilo (1 ), mostrando que inicialmente, cuando la pared avanza por el nanohilo y no siente el campo demagnetizante, la velocidad angular alcanzada es cercana a 1 rad/ns para ambas densidades de corriente. Sin embargo, conforme la pared de dominio (2) se acerca a la región de cambio de diámetro (5) de forma cónica que empalma ambas porciones (3, 4) y es influenciada por el campo demagnetizante, la rotación se acelera fuertemente. Estos resultados fueron invariantes por más de 300 ns de simulación, no registrándose ningún cambio en la estabilidad de la rotación de la pared de dominio (2). This can be explained due to the factor (? -) found in the second term of equation (3). Once the domain wall reaches the modulation zone, the speed of rotation of the domain wall (2) increases steeply, proportional to the intensity of the demagnetizing field, being able to reach angular speeds that can exceed 80 rad / ns , ~ 10 MHz. The advance of the domain walls (2) through the first portion (3) towards the second portion (4) is shown in Fig. 9. In Figures 1 0, 1 1 and 1 2, a schematic perspective is observed with the change in the direction (rotation) of the magnetization as a function of time before the region of diameter change (5) with a conical shape with diameters between D and D 2 , where the domain wall (2) stops its displacement and only exhibits a rotational movement. For the cases of current density in which the wall continued its propagation towards the second thickest portion (4) of the nanowire (1), the phenomenon of high rotation speed lasted only as long as the domain wall (2) moved by the region of change in diameter (5) formed by a conical shape that splices both portions (3, 4). However, for lower current densities, where the domain wall (2) finds an equilibrium position, the wall will remain rotating as a function of time, as shown in e! graph in Fig. 18. This graph records e! value of the angular velocity of the domain wall (2) while advancing through the nanowire (1), showing that initially, when the wall advances through the nanowire and does not feel the demagnetizing field, the angular velocity reached is close to 1 rad / ns for both current densities. However, as the domain wall (2) approaches the region of diameter change (5) in a conical shape that splices both portions (3, 4) and is influenced by the demagnetizing field, the rotation accelerates strongly. These results were invariant for more than 300 ns of simulation, with no change in the stability of the rotation of the domain wall (2).
El nanogenerador descrito no se remite sólo a las medidas geométricas que se han escogido para la nanoestructura simulada, sino que en principio funcionará para cualquier nanoestructura que satisfaga la ecuación 4.  The nanogenerator described does not refer only to the geometric measurements that have been chosen for the simulated nanostructure, but in principle it will work for any nanostructure that satisfies equation 4.
Ta! como se muestra en las figuras 13 y 14, una tercera modalidad del nanogenerador puede ser llevada a cabo a través de un cambio abrupto de diámetro. En la figura 13 se muestra un nanohilo (1 ) que está conformado por una primera porción (3) que tiene un diámetro D-¡ y una segunda porción (4) que tiene un diámetro D2. El diámetro D es menor que el diámetro D2. En este caso de la región de cambio de diámetro (5) de D a D2, de la primera porción (3) y ¡a segunda porción (4), respectivamente, es abrupta. Las simulaciones realizadas en esta segunda modalidad también consideran el uso de corriente espín polarizada a lo largo de este eje. Este fenómeno es explicado porque en la segunda porción (4) del nanohilo (1 ) con un diámetro D2, se genera un campo demagnetizante dirigido hacia la primera porción (3) del nanohilo (1 ) con un diámetro Dj, independiente de la región de cambio de diámetro (5). De esta forma, ya sea con una zona de modulación o no, igualmente se produce una competencia entre la corriente espín polarizada aplicada y el campo demagnetizante generado en la segunda porción (4) de diámetro D2 del nanohilo (1 ), tal como se muestra en la ecuación 3. Por esta razón, tal como se aprecia en las figura 15, 18 y 17, la pared de dominio (2) que viene avanzando por la primera porción (3) con diámetro D1 ; se detiene antes de llegar a la segunda porción (4) con un diámetro D2, y continúa girando en el mismo punto, produciendo un campo magnético alterno estable en el tiempo. Ta! As shown in Figures 13 and 14, a third mode of the nanogenerator can be carried out through an abrupt change in diameter. Figure 13 shows a nanowire (1) that is formed by a first portion (3) having a diameter D-¡and a second portion (4) having a diameter D 2 . The diameter D is smaller than the diameter D 2 . In this case of the region of change of diameter (5) from D to D 2 , of the first portion (3) and the second portion (4), respectively, is abrupt. Simulations performed in this second mode also consider the use of polarized spin current along this axis. This phenomenon is explained because in the second portion (4) of the nanowire (1) with a diameter D 2 , a demagnetizing field is generated directed towards the first portion (3) of the nanowire (1) with a diameter Dj, independent of the region diameter change (5). In this way, whether with a modulation zone or not, there is also a competition between the polarized spin current applied and the demagnetizing field generated in the second portion (4) of diameter D 2 of the nanowire (1), as shown in equation 3. For this reason, as seen in Figures 15, 18 and 17, the domain wall (2) that is advancing through the first portion (3) with diameter D 1; it stops before reaching the second portion (4) with a diameter D 2 , and continues to rotate at the same point, producing an alternating magnetic field that is stable over time.
Para que dicho nanogenerador funcione, se requiere proveer una pared de dominio (2) tipo bloch o transversal en un nanohilo (1 ). Se debe aplicar una corriente espín polarizada a lo largo del eje del nanohilo (1 ), con el objetivo de producir una traslación y rotación de la pared de dominio (2). La corriente debe ser suficientemente intensa para producir los dos movimientos arriba descritos, pero no superior al límite en que el nanohilo pierda su magnetización debido a efectos térmicos. Además, se debe someter la pared de dominio (2) a un campo magnético en sentido opuesto a la propagación de la pared de dominio (2) hasta producir una competencia entre la corriente espín polarizado y el campo magnético en sentido opuesto, de forma ta! que la pared de dominio deje de trasladarse, se ancle en un punto del nanohilo (1 ) y mantenga su rotación. En general, el campo magnético en sentido opuesto a la propagación de la pared de dominio (2) puede ser un campo desmagnetizante producido en la región de modulación de! nanohilo. Esto puede funcionar con ¡a primera modalidad, es decir un nanohilo (1 ) conformado por una sola porción (3) y de manera cercana o empalmada con un medio magnético (9), como ejemplo un imán natural o artificial, imán permanente o un electroimán cuyo campo magnético puede ser rápidamente manipulado en un amplio rango, controlando la cantidad de corriente eléctrica. Desde dicho medio magnético se genera dicho campo magnético (1 1 ) opuesto al sentido de la corriente de espín polarizado. También es posible que funciones con la segunda modalidad, es decir, con un solo nanohilo (1 ) conformada por dos porciones de diferente diámetro, teniendo entre ambos diámetros un región de empalme de diámetro modulado, o bien, bajo la tercera modalidad en donde las dos porciones de diferente diámetro, empalman directa mente sin una porción de modulación. En todos los casos, la detención de la pared de dominio (2), se obtiene controlando la corriente de espín polarizado, aplicada entre los extremos del nanohilo (1 ). In order for said nanogenerator to work, it is necessary to provide a block wall (2) of a bloch or transverse type in a nanowire (1). A polarized spin current must be applied along the axis of the nanowire (1), in order to produce a translation and rotation of the domain wall (2). The current must be intense enough to produce the two movements described above, but not exceeding the limit in which the nanowire loses its magnetization due to thermal effects. In addition, the domain wall (2) must be subjected to a magnetic field in the opposite direction to the propagation of the domain wall (2) until competition occurs between the spin current polarized and the magnetic field in the opposite direction, so ta! that the domain wall stops moving, is anchored at a point of the nanowire (1) and maintains its rotation. In general, the magnetic field in the opposite direction to the propagation of the domain wall (2) can be a demagnetizing field produced in the modulation region of! nano thread This can work with the first modality, that is to say a nanowire (1) formed by a single portion (3) and closely or spliced with a magnetic medium (9), as an example a natural or artificial magnet, permanent magnet or a electromagnet whose magnetic field can be quickly manipulated over a wide range, controlling the amount of electric current. From said magnetic means said magnetic field (1 1) is generated opposite the direction of the polarized spin current. It is also possible that functions with the second modality, that is, with a single nanowire (1) formed by two portions of different diameter, having between both diameters a region of splicing of modulated diameter, or, under the third modality where the Two portions of different diameter, spliced directly without a modulation portion. In all cases, the arrest of the domain wall (2) is obtained by controlling the polarized spin current, applied between the ends of the nanowire (1).
En las simulaciones efectuadas con el nanogenerador de la presente invención, las frecuencias de rotación de la magnetización obtenidas son del orden de 10 GHz, por lo tanto, el sistema descrito podría tener aplicaciones en el rango de las microondas, donde podría cumplir diferentes roles, ya sea como un nano-generador de campo magnético alterno; también podría ser utilizado para inducir corriente eléctrica alterna en los metales; o en aplicaciones de tipo wire-less en dispositivos a escala nanométrica para telecomunicaciones. In the simulations carried out with the nanogenerator of the present invention, the magnetization rotation frequencies obtained are of the order of 10 GHz, therefore, the described system could have applications in the microwave range, where it could fulfill different roles, either as an alternating magnetic field nano-generator; It could also be used to induce alternating electric current in metals; or in wire-less applications in nanometric scale devices for telecommunications.
Como se señaló en un comienzo de esta presentación, los componentes electrónicos a nanoescala, tienen un patrón común, y es que todos ellos funcionan en base a pulsos de corriente directa, DC, debido a que aún no es posible producir corriente alterna, AC, en forma localizada a estas escalas. Es por esto que una señal eléctrica o magnética alterna podría generar una nueva revolución tecnológica a nanoescala, cambiando el paradigma en la forma de operar de los dispositivos tecnológicos futuros.  As noted at the beginning of this presentation, the nanoscale electronic components have a common pattern, and they all work based on direct current pulses, DC, because it is not yet possible to produce alternating current, AC, in a localized way at these scales. This is why an alternating electrical or magnetic signal could generate a new technological revolution at the nanoscale, changing the paradigm in the way of operating future technological devices.
Por ejemplo, tal como se muestra en la figura 19, una de las grandes aplicaciones aplicaciones de esta invención, es la generación de corriente alterna, para alimentar diferentes elementos de un circuito electrónico a nanoescala. En el caso de la figura 19, el campo magnético alterno (1 1 ) generado en la región de modulación de diámetro variable (5), entre las primera y segunda porción (3, 4) del nanohilo (1 ), al acercarse a una bobina (17), provoca un voltaje alterno, lo que a su vez produce una corriente alterna entre los extremos (18, 19), lo que permite alimentar diferentes elementos de un circuito electrónico a nanoescala.  For example, as shown in Figure 19, one of the great applications of this invention is the generation of alternating current, to power different elements of a nanoscale electronic circuit. In the case of Figure 19, the alternating magnetic field (1 1) generated in the region of modulation of variable diameter (5), between the first and second portion (3, 4) of the nanowire (1), when approaching a coil (17), causes an alternating voltage, which in turn produces an alternating current between the ends (18, 19), which allows to feed different elements of a nanoscale electronic circuit.
Además, dado que el campo magnético alterno, puede llegar a escalas de los Ghz, esta invención es posible aplicarla en comunicaciones del tipo wire- less en dispositivos a escala nanométrica para telecomunicaciones. En el ámbito de las telecomunicaciones para telefonía móvil, el rango de emisión/transmisión de la señal electromagnética de las antenas de estos dispositivos, se produce entre aproximadamente 0.9 GHz a 1 .8 GHz para la banda 2G/GSM, entre 0.3 GHz a 2.1 GHz para la banda de frecuencia 3G/WCDMA y entre 0.3 GHz a 2.0 GHz para la banda 4G/LTE. En este ámbito, el nanogenerador de campo magnético alterno, podría servir como un componente base para la creación de una antena emisora y/o receptora de señal electromagnética. Si bien, el rango de la frecuencia de la señal electromagnética puede variar ligeramente para distintos países, en términos prácticos la tecnología del nanogenerador cubre ampliamente el espectro de frecuencias mencionado. El nanogenerador podrá modificar su frecuencia de emisión de la señal electromagnética por medio de la variación de la densidad de corriente aplicada. La Figura 20 muestra una estimación de la variación de la rotación de la pared de dominio y del campo magnético de anclaje para distintas densidades de corriente aplicadas. Como se puede observar en la Figura 20, la frecuencia de rotación de la pared de dominio, ω, aumenta con el incremento de la densidad de corriente. Como sabemos que ω=2 ττ ί, donde f es la frecuencia, se espera que la frecuencia que varíe proporcionalmente a la velocidad de rotación de la pared de dominio. Para este caso, el rango de frecuencia estimado en la Figura 20 varía entre aproximadamente 0.058 GHz y 58 GHz, cubriendo por completo el rango de frecuencias utilizado en la telefonía móvil. Análogamente, en la misma Figura podemos observar el campo magnético necesario para detener la propagación de la pared, el cual también aumenta a mayor densidad de corriente. In addition, since the alternating magnetic field can reach GHz scales, this invention can be applied in wire-less communications in nanometer-scale devices for telecommunications. In the field of telecommunications for mobile telephony, the emission / transmission range of the electromagnetic signal of the antennas of these devices occurs between approximately 0.9 GHz to 1 .8 GHz for the 2G / GSM band, between 0.3 GHz to 2.1 GHz for the 3G / WCDMA frequency band and between 0.3 GHz to 2.0 GHz for the 4G / LTE band. In this area, the alternating magnetic field nanogenerator could serve as a base component for the creation of an electromagnetic signal emitting and / or receiving antenna. Although the frequency range of the electromagnetic signal may vary slightly for different countries, in practical terms the nanogenerator technology covers the mentioned frequency spectrum widely. The nanogenerator may modify its frequency of emission of the electromagnetic signal by means of the variation of the applied current density. Figure 20 shows an estimate of the variation of the rotation of the domain wall and the magnetic anchor field for different applied current densities. As can be seen in Figure 20, the frequency of rotation of the domain wall, ω, increases with increasing current density. As we know that ω = 2 ττ ί, where f is the frequency, the frequency is expected to vary proportionally to the speed of rotation of the domain wall. For this case, the frequency range estimated in Figure 20 varies between approximately 0.058 GHz and 58 GHz, completely covering the frequency range used in mobile telephony. Similarly, in the same Figure we can observe the field Magnetic needed to stop wall propagation, which also increases at higher current density.

Claims

REIVINDICACIONES
1 . - Un nanogenerador de campo magnético alterno nanométrico estable en el tiempo, que permite ser aplicado en la generación corriente alterna a nivel de nanoescala o en sistema de comunicaciones como wire-less o telecomunicaciones para telefonía móvil, el cual está conformado por un nanohilo (1 ) que posee una porción (3) con un primer extremo (7) y un segundo extremo (8), y una pared de dominio (2), en donde en los extremos (7, 8) de dicho nanohilo (1 ) es aplicada una corriente espín polarizada (12), generando que dicha pared de domino (2) se mueva a lo largo de dicho nanohilo (1 ) con un movimiento de traslación, y simultáneamente, con un movimiento rotacional en el plano perpendicular al eje de simetría de dicho nanohilo (1 ), CARACTERIZADO porque dicho nanogenerador está conformado por dicho nanohilo (1 ) cuyo segundo extremo (8) tiene de manera cercana o acoplada un extremo de salida (10) de un campo magnético proveniente de un medio magnético (9).  one . - A time-stable nanometric alternating magnetic field nanogenerator, which can be applied in the generation of alternating current at the nanoscale level or in communications systems such as wire-less or telecommunications for mobile telephony, which is made up of a nano-wire (1 ) which has a portion (3) with a first end (7) and a second end (8), and a domain wall (2), where at the ends (7, 8) of said nanowire (1) is applied a polarized spin current (12), generating said domino wall (2) to move along said nanowire (1) with a translation movement, and simultaneously, with a rotational movement in the plane perpendicular to the axis of symmetry of said nanowire (1), CHARACTERIZED because said nanogenerator is formed by said nanowire (1) whose second end (8) has a close or coupled end of an outlet (10) of a magnetic field from a magnetic medium (9).
2. - Un nanogenerador de campo magnético alterno nanométrico estable en el tiempo, según la reivindicación 1 , CARACTERIZADO porque dicho medio magnético (9) es un imán natural o artificial, imán permanente o un electroimán cuyo campo magnético puede ser rápidamente manipulado en un amplio rango, controlando la cantidad de corriente eléctrica.  2. - A time-stable nanometric alternating magnetic field nanogenerator according to claim 1, CHARACTERIZED because said magnetic medium (9) is a natural or artificial magnet, permanent magnet or an electromagnet whose magnetic field can be quickly manipulated in a wide range, controlling the amount of electric current.
3. - Un nanogenerador de campo magnético alterno nanométrico estable en el tiempo, según la reivindicación 1 , CARACTERIZADO porque dicho nanogenerador está conformado por un solo nanohilo (1 ) que está constituido por una primera porción (3) que tiene un primer extremo (7) y un segundo extremo (8) con un diámetro D y una segunda porción (4) que tiene un primer extremo (13) y un segundo extremo (14) con un diámetro D2, en donde el diámetro D es menor que el diámetro D2, teniendo entre dicha primera porción (3) y dicha segunda porción (4), una región de cambio de diámetro (5), que tiene un diámetro menor igual a D y un diámetro mayor igual a D2. 3. - A time-stable nanometric alternating magnetic field nanogenerator according to claim 1, CHARACTERIZED because said nanogenerator is formed by a single nanowire (1) which is constituted by a first portion (3) having a first end (7) and a second end (8) with a diameter D and a second portion (4) having a first end (13) and a second end (14) with a diameter D 2 , wherein the diameter D is smaller than the diameter D 2 , having between said first portion (3) and said second portion (4), a region of diameter change (5), which has an equal smaller diameter to D and a larger diameter equal to D 2 .
4. - Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 3, CARACTERIZADO porque dicha región de cambio de diámetro (5) es una región de modulación de diámetro variable de tipo cónica que tiene un diámetro menor igual a D y un diámetro mayor igual a D2. 4. - A time-stable alternating magnetic field nanogenerator according to claim 3, CHARACTERIZED because said diameter change region (5) is a conical variable diameter modulation region having a smaller diameter equal to D and a larger diameter equal to D 2 .
5. - Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 1 , CARACTERIZADO porque dicho nanogenerador está conformado por un solo nanohilo (1 ) que está constituido por una primera porción (3) que tiene un primer extremo (7) y un segundo extremo (8) con un diámetro D y una segunda porción (4) que tiene un primer extremo (13) y un segundo extremo (14) con un diámetro D2, en donde el diámetro D es menor que el diámetro D2, estando la primera porción (3) y la segunda porción (4), empalmadas directamente a través del segundo extremo (8) y del primer extremo (13). 5. - A time-stable alternating magnetic field nanogenerator according to claim 1, CHARACTERIZED in that said nanogenerator is formed by a single nanowire (1) that is constituted by a first portion (3) having a first end (7) and a second end (8) with a diameter D and a second portion (4) having a first end (13) and a second end (14) with a diameter D 2 , where the diameter D is smaller than the diameter D 2 , the first portion (3) and the second portion (4) being spliced directly through the second end (8) and the first end (13).
6. - Un método para generar un campo magnético alterno estable en el tiempo a escala nanométrica, que permite ser aplicado en la generación corriente alterna a nivel de nanoescala o en sistema de comunicaciones como wire-less o telecomunicaciones para telefonía móvil, CARACTERIZADO porque comprende los siguientes pasos: 6. - A method to generate a time-stable alternating magnetic field on a nanometric scale, which allows it to be applied in the generation AC power at the nanoscale level or in communications systems such as wire-less or telecommunications for mobile telephony, CHARACTERIZED because it comprises the following steps:
(a) proveer de un nanogenerador de campo magnético;  (a) provide a magnetic field nanogenerator;
(b) proveer una pared de dominio (2) en dicha primera porción (3) del nanohilo (1 );  (b) providing a domain wall (2) in said first portion (3) of the nanowire (1);
(c) aplicar una corriente continua de espín polarizado (12) entre los extremos de un nanohilo (1 );  (c) apply a polarized spin direct current (12) between the ends of a nanowire (1);
(d) mover dicha pared de dominio (2) a lo largo de dicho nanohilo (1 ) con un movimiento de traslación y rotación:  (d) moving said domain wall (2) along said nanowire (1) with a translation and rotation movement:
(e) detener el movimiento de traslación de dicha pared de dominio (2) por medio de la aplicación de un campo magnético (1 1 ), controlando la intensidad de la corriente continua de espín polarizado (12).  (e) stop the translational movement of said domain wall (2) by means of the application of a magnetic field (1 1), controlling the intensity of the polarized spin direct current (12).
7.- Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 6, CARACTERIZADO porque en la etapa (a) dicho nanogenerador está conformado por un nanohilo (1 ) que posee una 'porción (3) con un primer extremo (7) y un segundo extremo (8), que tiene de manera cercana o acoplada un extremo de salida (10) de un campo magnético proveniente de un medio magnético (9). 7. A time-stable alternating magnetic field nanogenerator according to claim 6, CHARACTERIZED because in step (a) said nanogenerator is formed by a nanowire (1) having a ' portion (3) with a first end ( 7) and a second end (8), which has a close or coupled end of an output (10) of a magnetic field from a magnetic medium (9).
8.- Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 7, CARACTERIZADO porque en la etapa (a) dicho medio magnético (9) es un imán natural o artificial, imán permanente o un electroimán cuyo campo magnético puede ser rápidamente manipulado en un amplio rango, controlando la cantidad de corriente eléctrica. 8. A time-stable alternating magnetic field nanogenerator according to claim 7, CHARACTERIZED because in step (a) said magnetic medium (9) is a natural or artificial magnet, permanent magnet or a electromagnet whose magnetic field can be quickly manipulated over a wide range, controlling the amount of electric current.
9. - Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 6, CARACTERIZADO porque en la etapa (a) dicho nanogenerador está conformado por un solo nanohilo (1 ) que está constituido por una primera porción (3) que tiene un primer extremo (7) y un segundo extremo (8) con un diámetro D y una segunda porción (4) que tiene un primer extremo (13) y un segundo extremo (14) con un diámetro D2, en donde el diámetro D es menor que el diámetro D2, teniendo entre dicha primera porción (3) y dicha segunda porción (4), una región de cambio de diámetro (5), que tiene un diámetro menor igual a D y un diámetro mayor igual a D2. 9. - A time-stable alternating magnetic field nanogenerator according to claim 6, CHARACTERIZED because in step (a) said nanogenerator is formed by a single nanowire (1) that is constituted by a first portion (3) having a first end (7) and a second end (8) with a diameter D and a second portion (4) having a first end (13) and a second end (14) with a diameter D 2 , where the diameter D it is smaller than the diameter D 2 , having between said first portion (3) and said second portion (4), a region of diameter change (5), which has a smaller diameter equal to D and a larger diameter equal to D 2 .
10. Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 9, CARACTERIZADO porque en la etapa (a) dicha región de cambio de diámetro (5) es una región de modulación de diámetro variable de tipo cónica que tiene un diámetro menor igual a D y un diámetro mayor igual a D2. 10. A time-stable alternating magnetic field nanogenerator according to claim 9, CHARACTERIZED because in step (a) said diameter change region (5) is a conical-type variable diameter modulation region having a diameter smaller equal to D and a larger diameter equal to D 2 .
1 1 . Un nanogenerador de campo magnético alterno estable en el tiempo, según la reivindicación 6, CARACTERIZADO porque en la etapa (a) dicho nanogenerador está conformado por un solo nanohilo (1 ) que está constituido por una primera porción (3) que tiene un primer extremo (7) y un segundo extremo (8) con un diámetro D y una segunda porción (4) que tiene un primer extremo (13) y un segundo extremo (14) con un diámetro D2, en donde el diámetro D es menor que el diámetro D2, estando la primera porción (3) y la segunda porción (4), empalmadas directamente a través del segundo extremo (8) y del primer extremo (13). eleven . A time-stable alternating magnetic field nanogenerator according to claim 6, CHARACTERIZED because in step (a) said nanogenerator is formed by a single nanowire (1) that is constituted by a first portion (3) having a first end (7) and a second end (8) with a diameter D and a second portion (4) having a first end (13) and a second end (14) with a diameter D 2 , in where the diameter D is smaller than the diameter D 2 , the first portion (3) and the second portion (4) being spliced directly through the second end (8) and the first end (13).
1 1 . Un método para generar un campo magnético alterno estable, según la reivindicación 8 o 9, CARACTERIZADO porque en dicha etapa (e) de detener el movimiento de traslación de dicha pared de dominio (2) dicho campo magnético opuesto (1 1 ) al sentido de la corriente continua de espín polarizado (12) es un campo demagnetizante generado en la segunda porción (4) hasta la región de cambio de diámetro (5).  eleven . A method for generating a stable alternating magnetic field, according to claim 8 or 9, CHARACTERIZED because in said step (e) of stopping the translational movement of said domain wall (2) said magnetic field opposite (1 1) in the direction of The polarized spin direct current (12) is a demagnetizing field generated in the second portion (4) to the region of diameter change (5).
12. Un método para generar un campo magnético alterno estable, según la reivindicación 8 ó 9, CARACTERIZADO porque en dicha etapa (e) de detener el movimiento de traslación de dicha pared de dominio (2) dicho campo magnético opuesto (1 1 ) al sentido de la corriente continua de espín polarizado (12) es un campo demagnetizante generado en la segunda porción (4) hasta la región de empalme directo a través del segundo extremo (8) y del primer extremo (13).  12. A method for generating a stable alternating magnetic field according to claim 8 or 9, CHARACTERIZED because in said step (e) of stopping the translational movement of said domain wall (2) said magnetic field opposite (1 1) to the The direction of the polarized spin direct current (12) is a demagnetizing field generated in the second portion (4) to the direct splice region through the second end (8) and the first end (13).
PCT/CL2016/050061 2015-11-16 2016-11-11 Alternating magnetic field nanogenerator using a nanowire, which can be used to generate current, and associated method WO2017083994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3361-2015 2015-11-16
CL2015003361A CL2015003361A1 (en) 2015-11-16 2015-11-16 Alternate magnetic field nanogenerator that uses a nanowire that allows it to be applied in the alternating current generation at the nanoscale level; and associated method

Publications (1)

Publication Number Publication Date
WO2017083994A1 true WO2017083994A1 (en) 2017-05-26

Family

ID=58717125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/050061 WO2017083994A1 (en) 2015-11-16 2016-11-11 Alternating magnetic field nanogenerator using a nanowire, which can be used to generate current, and associated method

Country Status (2)

Country Link
CL (1) CL2015003361A1 (en)
WO (1) WO2017083994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027268A1 (en) * 2018-08-01 2021-09-09 国立研究開発法人理化学研究所 Inductor element and equipment including it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052240A2 (en) * 2005-11-02 2007-05-10 Commissariat A L'energie Atomique Radio-frequency oscillator with spin-polarised electric current
EP1430484B1 (en) * 2001-09-20 2007-11-14 Centre National De La Recherche Scientifique (Cnrs) Magnetic memory with spin-polarized current writing, using amorphous ferromagnetic alloys, writing method for same
US20120098534A1 (en) * 2009-05-14 2012-04-26 Riccardo Hertel Magnetoelectronic components and measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1430484B1 (en) * 2001-09-20 2007-11-14 Centre National De La Recherche Scientifique (Cnrs) Magnetic memory with spin-polarized current writing, using amorphous ferromagnetic alloys, writing method for same
WO2007052240A2 (en) * 2005-11-02 2007-05-10 Commissariat A L'energie Atomique Radio-frequency oscillator with spin-polarised electric current
US20120098534A1 (en) * 2009-05-14 2012-04-26 Riccardo Hertel Magnetoelectronic components and measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, M. ET AL.: "Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires.", PHYSICAL REVIEW LETTERS, vol. 104, no. 5, pages 057201, XP055383070 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020027268A1 (en) * 2018-08-01 2021-09-09 国立研究開発法人理化学研究所 Inductor element and equipment including it
JP7385283B2 (en) 2018-08-01 2023-11-22 国立研究開発法人理化学研究所 Inductor elements and devices containing them

Also Published As

Publication number Publication date
CL2015003361A1 (en) 2017-08-04

Similar Documents

Publication Publication Date Title
Jiang et al. Skyrmions in magnetic multilayers
JP6116043B2 (en) Skyrmion driving method and microelement
Ivanov et al. Magnon modes for thin circular vortex-state magnetic dots
Lin Edge instability in a chiral stripe domain under an electric current and skyrmion generation
Sheka et al. Torsion-induced effects in magnetic nanowires
TWI284901B (en) Ferromagnetic resonance switching for magnetic random access memory
JP6312925B2 (en) SKILLMION GENERATION DEVICE, SKILLMION GENERATION METHOD, AND MAGNETIC STORAGE DEVICE
Cambel et al. Control of vortex chirality and polarity in magnetic nanodots with broken rotational symmetry
Vedmedenko Dynamics of bound monopoles in artificial spin ice: How to store energy in Dirac strings
Chen et al. Magnetization configurations and reversal of thin magnetic nanotubes with uniaxial anisotropy
Wysin Magnetic Excitations and Geometric Confinement
JP2014078560A (en) Insulation material and manufacturing method therefor
Li et al. Tunable terahertz oscillation arising from Bloch-point dynamics in chiral magnets
JP2007122856A (en) Rotating write magnetic field generated by circulating magnetic domain wall in magnetic ring, and dc-driven high-frequency oscillator
WO2017083994A1 (en) Alternating magnetic field nanogenerator using a nanowire, which can be used to generate current, and associated method
JP2015100106A (en) Magnetoresistive effect oscillator
Cambel et al. The influence of shape anisotropy on vortex nucleation in Pacman-like nanomagnets
Kim et al. Low-power selective control of ultrafast vortex-core switching by circularly rotating magnetic fields: Circular–rotational eigenmodes
Zhou et al. Insights into fluidic endogenous magnetism and magnetic monopoles from a liquid metal droplet machine
Wang et al. Stabilization of skyrmions in two-dimensional systems with next-nearest-neighbor exchange interactions
Sadrara et al. Faraday rotation spectrum of magneto-optical nanoparticle aggregates
WO2016138600A1 (en) Magnetic nano-transistor
Dagras et al. The influence of thermal activation and the intrinsic temperature dependence of the spin torque effect in current-induced domain wall motion
Sepioni et al. Dipolar interaction in dense chains of submicrometric rectangular dots
Butta et al. Two-domain model for orthogonal fluxgate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865369

Country of ref document: EP

Kind code of ref document: A1