WO2017082636A1 - 영상을 부호화/복호화 하는 방법 및 그 장치 - Google Patents

영상을 부호화/복호화 하는 방법 및 그 장치 Download PDF

Info

Publication number
WO2017082636A1
WO2017082636A1 PCT/KR2016/012885 KR2016012885W WO2017082636A1 WO 2017082636 A1 WO2017082636 A1 WO 2017082636A1 KR 2016012885 W KR2016012885 W KR 2016012885W WO 2017082636 A1 WO2017082636 A1 WO 2017082636A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
coding unit
reference block
picture
current
Prior art date
Application number
PCT/KR2016/012885
Other languages
English (en)
French (fr)
Inventor
알쉰알렉산더
미슈로브스키미카엘
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1020187013115A priority Critical patent/KR20180067598A/ko
Priority to US15/775,627 priority patent/US10645414B2/en
Publication of WO2017082636A1 publication Critical patent/WO2017082636A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures

Definitions

  • the method and apparatus may encode or decode an image by using various data units included in the image.
  • the image data is encoded by a codec according to a predetermined data compression standard, for example, the Moving Picture Expert Group (MPEG) standard, and then stored in a recording medium in the form of a bitstream or transmitted through a communication channel.
  • MPEG Moving Picture Expert Group
  • the standard related to the codec provides a technique for efficiently compressing the amount of information of an original image.
  • a prediction process of determining a sample value to be currently decoded using image data already decoded is performed.
  • Such a prediction process may include an intra prediction process in which spatial prediction is performed and an inter prediction process in which temporal prediction is performed.
  • the prediction signal generated according to the prediction performance result may be added to the residual signal for reconstruction of the image data, and the residual signal may be obtained by inverse transform and inverse quantization on transformed and quantized information.
  • a method of decoding an image comprising: determining at least one prediction block included in a current picture, which is one of pictures constituting an image; Determining a first motion vector associated with a current prediction block that is one of the at least one prediction block; Determining a first reference block included in the first reference picture based on the first motion vector; Determining a second reference block included in the second reference picture based on the position of the first reference block; And decoding the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, wherein the second reference picture includes a prediction value of the first reference picture.
  • An image decoding method may be provided.
  • a method of encoding an image comprising: determining at least one prediction block included in a current picture, which is one of pictures constituting an image; Determining a first motion vector associated with a current prediction block that is one of the at least one prediction block; Determining a first reference block included in the first reference picture based on the first motion vector; Determining a second reference block included in the second reference picture based on the position of the first reference block; And encoding the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, wherein the second reference picture includes a prediction value of the first reference picture.
  • An image encoding method may be provided.
  • At least one prediction block included in a current picture is determined and associated with a current prediction block, which is one of at least one prediction block.
  • a decoder configured to determine a first motion vector;
  • a reference block determiner configured to determine a first reference block included in the first reference picture based on the first motion vector, and determine a second reference block included in the second reference picture based on the position of the first reference block.
  • the decoder decodes the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, and the second reference picture decodes the prediction value of the first reference picture.
  • An image decoding apparatus may be provided.
  • an apparatus for encoding an image includes determining at least one prediction block included in a current picture, which is one of pictures constituting the image, and related to the current prediction block, which is one of the at least one prediction block.
  • An encoder which determines a first motion vector; And a reference block determiner configured to determine a first reference block included in the first reference picture based on the first motion vector, and determine a second reference block included in the second reference picture based on the position of the first reference block.
  • the decoder decodes the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, and the second reference picture decodes the prediction value of the first reference picture.
  • An image encoding apparatus may be provided.
  • a reference picture used for inter prediction may be variously determined, thereby reducing noise included in the residual signal, and reducing an error with an original signal due to inter prediction in blocks, thereby reducing inter prediction performance. Can be improved.
  • FIG. 1A is a block diagram of an image decoding apparatus capable of determining an first reference block and a second reference block and performing inter prediction on at least one of a first reference block and a second reference block according to an embodiment. Shows.
  • FIG. 1B is a block diagram of an image encoding apparatus that may determine an first reference block and a second reference block and perform inter prediction of a current prediction block with at least one of a first reference block and a second reference block, according to an embodiment. Shows.
  • FIG. 2 is a flowchart illustrating a process of decoding an image using at least one of a first reference block and a second reference block, according to an embodiment.
  • FIG 3 illustrates a process of performing an inter prediction of a current prediction block by using a first reference picture and a second reference picture, according to an embodiment.
  • FIG. 4 is a block diagram illustrating a process of decoding an image in an image decoding apparatus according to an embodiment.
  • FIG. 5 is a block diagram illustrating a process of encoding an image in an image encoding apparatus, according to an exemplary embodiment.
  • FIG. 6 is a flowchart of a process of performing inter prediction on a current prediction block by using at least one reference block that may be determined based on reference block information, according to an embodiment.
  • FIG. 7 is a flowchart illustrating a specific process of determining at least one reference block to be used for inter prediction by an image decoding apparatus, according to an embodiment.
  • 8A is a diagram for describing a process of determining at least one of a first reference block and a second reference block as at least one reference block used to perform inter prediction of a current prediction block, according to an embodiment.
  • 8B illustrates that bidirectional prediction is performed for inter prediction of a current prediction block, according to an embodiment.
  • FIG. 9 illustrates a method of generating a noise reduction reference picture using a first reference picture and a second reference picture, according to an exemplary embodiment.
  • FIG. 10 illustrates a process of determining at least one coding unit by dividing a current coding unit according to an embodiment.
  • FIG. 11 is a diagram illustrating a process of dividing a coding unit having a non-square shape and determining at least one coding unit according to an embodiment.
  • FIG. 12 illustrates a process of splitting a coding unit based on at least one of block shape information and split shape information, according to an embodiment.
  • FIG. 13 illustrates a method of determining a predetermined coding unit among odd number of coding units according to an embodiment.
  • FIG. 14 illustrates an order in which a plurality of coding units are processed when a current coding unit is divided and a plurality of coding units are determined according to an embodiment.
  • FIG. 15 illustrates a process of determining that a current coding unit is divided into odd coding units when the coding units cannot be processed in a predetermined order, according to an embodiment.
  • 16 is a diagram illustrating a process of determining at least one coding unit by dividing a first coding unit according to an embodiment.
  • FIG. 17 illustrates that a form in which a second coding unit may be split is limited when the second coding unit having a non-square shape determined by splitting the first coding unit satisfies a predetermined condition according to an embodiment. .
  • FIG. 18 illustrates a process of splitting a coding unit having a square shape when split information cannot be divided into four square coding units according to an embodiment.
  • FIG. 19 illustrates that a processing order between a plurality of coding units may vary according to a splitting process of coding units, according to an embodiment.
  • 20 is a diagram illustrating a process of determining a depth of a coding unit as a shape and a size of a coding unit change when a coding unit is recursively divided and a plurality of coding units are determined according to an embodiment.
  • FIG. 21 illustrates a depth index and a part index (PID) for classifying coding units, which may be determined according to shapes and sizes of coding units, according to an embodiment.
  • PID part index
  • FIG. 22 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • FIG. 23 illustrates a processing block serving as a reference for determining a determination order of reference coding units included in a picture, according to an embodiment.
  • a method of decoding an image comprising: determining at least one prediction block included in a current picture, which is one of pictures constituting an image; Determining a first motion vector associated with a current prediction block that is one of the at least one prediction block; Determining a first reference block included in the first reference picture based on the first motion vector; Determining a second reference block included in the second reference picture based on the position of the first reference block; And decoding the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, wherein the second reference picture includes a prediction value of the first reference picture.
  • An image decoding method may be provided.
  • the second reference picture may include a sample obtained by performing motion estimation and motion compensation in the encoding process of the first reference picture.
  • decoding a current picture may include determining at least one reference block used for performing inter prediction based on reference block information obtained from a bitstream; And performing inter prediction using at least one reference block used to perform inter prediction, wherein the reference block information is based on any reference block of the first reference block and the second reference block. It may be characterized by indicating whether or not inter prediction is performed.
  • the determining of the at least one reference block includes a second reference block used to perform inter prediction when the reference block information indicates that inter prediction is performed by a prediction method using a second reference block. And determining at least one reference block based on a predetermined condition.
  • the determining of the at least one reference block based on a predetermined condition may include the magnitude of the first condition and the first motion vector that the difference between the first reference picture and the second reference picture should be smaller than the first threshold. Determining a second reference block, or a first reference block and a second reference block, used for performing inter prediction, based on at least one of the second conditions that must be smaller than the second threshold. .
  • decoding a current picture may include generating a third reference picture using a first reference picture and a second reference picture; And performing inter prediction on the current prediction block by using a third reference block included in the third reference picture.
  • the generating of the third reference picture may include: determining a first weight and a second weight using a neighboring sample value of the first reference block and a neighboring sample value of the second reference block; And determining a third reference block included in the third reference picture by applying the first weight value and the second weight value to the first reference block and the second reference block, respectively.
  • the determining of the first weight and the second weight may be performed using at least one sample adjacent to the left boundary of the first reference block and at least one sample adjacent to the left boundary of the first reference block. Determining a first weight and a second weight.
  • the decoding of the current picture may include decoding the current picture by performing inter prediction using at least one of a first reference picture and a second reference picture stored in separate buffers.
  • decoding the current picture may include decoding the current picture by performing inter prediction using at least one of a first reference picture and a second reference picture stored in the same buffer.
  • an image decoding method includes determining a second motion vector associated with a current prediction block, which is one of at least one prediction block; Determining a fourth reference block included in the fourth reference picture based on the second motion vector; And determining a fifth reference block in the fifth reference picture based on the position of the fourth reference block, wherein the fifth reference picture may include a predicted value of the fourth reference picture. have.
  • the decoding of the current picture may include performing bidirectional inter prediction on a current prediction block using at least one of a first reference block and a second reference block, and at least one of a fourth reference block and a fifth reference block. It may include the step.
  • a method of encoding an image comprising: determining at least one prediction block included in a current picture, which is one of pictures constituting an image; Determining a first motion vector associated with a current prediction block that is one of the at least one prediction block; Determining a first reference block included in the first reference picture based on the first motion vector; Determining a second reference block included in the second reference picture based on the position of the first reference block; And encoding the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, wherein the second reference picture includes a prediction value of the first reference picture.
  • An image encoding method may be provided.
  • At least one prediction block included in a current picture is determined and associated with a current prediction block, which is one of at least one prediction block.
  • a decoder configured to determine a first motion vector;
  • a reference block determiner configured to determine a first reference block included in the first reference picture based on the first motion vector, and determine a second reference block included in the second reference picture based on the position of the first reference block.
  • the decoder decodes the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, and the second reference picture decodes the prediction value of the first reference picture.
  • An image decoding apparatus may be provided.
  • an apparatus for encoding an image includes determining at least one prediction block included in a current picture, which is one of pictures constituting the image, and related to the current prediction block, which is one of the at least one prediction block.
  • An encoder which determines a first motion vector; And a reference block determiner configured to determine a first reference block included in the first reference picture based on the first motion vector, and determine a second reference block included in the second reference picture based on the position of the first reference block.
  • the decoder decodes the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block, and the second reference picture decodes the prediction value of the first reference picture.
  • An image encoding apparatus may be provided.
  • part refers to a hardware component, such as software, FPGA or ASIC, and “part” plays certain roles. However, “part” is not meant to be limited to software or hardware.
  • the “unit” may be configured to be in an addressable storage medium and may be configured to play one or more processors.
  • a “part” refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, procedures, Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays and variables.
  • the functionality provided within the components and “parts” may be combined into a smaller number of components and “parts” or further separated into additional components and “parts”.
  • the "image” may be a static image such as a still image of a video or may represent a dynamic image such as a video, that is, the video itself.
  • sample means data to be processed as data allocated to a sampling position of an image.
  • pixel values and transform coefficients on a transform region may be samples in an image of a spatial domain.
  • a unit including the at least one sample may be defined as a block.
  • FIG. 1A illustrates an image decoding apparatus 100 that may determine an first reference block and a second reference block and perform inter prediction on at least one of a first reference block and a second reference block according to an embodiment. Shows a block diagram of.
  • the image decoding apparatus 100 may determine at least one prediction block included in a current picture, which is one of pictures constituting an image, according to an exemplary embodiment.
  • the image decoding apparatus 100 may determine a first motion vector associated with a current prediction block, which is one of at least one prediction block, and determine a first reference block included in the first reference picture based on the first motion vector.
  • the image decoding apparatus 100 determines a second reference block included in the second reference picture based on the position of the first reference block and uses at least one of the first reference block and the second reference block in the current prediction block.
  • the current picture may be decoded by performing inter prediction.
  • the reference block determiner 110 of the image decoding apparatus 100 may determine the first reference block based on the first motion vector, and determine the second reference picture based on the position of the first reference block. Can be. Also, the decoder 120 of the image decoding apparatus 100 may determine at least one prediction block, determine a first motion vector associated with a current prediction block which is one of the at least one prediction block, and determine the determined first reference. Inter prediction may be performed using at least one of a block and a second reference block. According to an embodiment, the second reference picture may be a picture including a predicted value of the first reference picture. A process of decoding an image based on the relationship between the first reference picture and the second reference picture will be described with reference to various embodiments below.
  • FIG. 2 is a flowchart illustrating a process of decoding an image using at least one of a first reference block and a second reference block by the image decoding apparatus 100 according to an embodiment.
  • the decoder 120 may determine at least one prediction block included in a current picture, which is one of pictures constituting an image, according to an exemplary embodiment.
  • the process of determining the prediction block may include a process using various data units for dividing the current picture. As an example, the process of determining the prediction block based on the maximum coding unit or the coding unit will be described later.
  • the decoder 120 may determine a first motion vector associated with the current prediction block, which is one of at least one prediction block.
  • the process of determining the motion vector associated with the current prediction block may include various decoding processes.
  • the decoder 120 may determine the motion vector of the current prediction block by obtaining information about the motion vector from the neighboring block adjacent to the vicinity of the current prediction block. That is, in order to determine the first motion vector associated with the current prediction block, the image decoding apparatus 100 may determine which neighboring block to obtain information about the motion vector from using information or an index obtained from the bitstream.
  • the first motion vector for the current prediction block may be determined by obtaining information about the motion vector from the determined neighboring block.
  • the above-described method of determining the motion vector of the current prediction block is only an embodiment, and it should be interpreted that the motion vector determination method can be performed through various methods including the above-described process.
  • the reference block determiner 110 may determine a first reference block included in the first reference picture based on the first motion vector, according to an embodiment.
  • the first reference block on the first reference picture indicated by the first motion vector determined by the decoder 120 may be determined and used as information for determining a prediction value of the samples included in the current prediction block.
  • the reference block determiner 110 may determine a second reference block in the second reference picture based on the position of the first reference block. According to an embodiment, the reference block determiner 110 may determine the second reference block on the second reference picture in consideration of the position of the first reference block on the first reference picture. For example, the reference block determiner 110 may determine a second reference block on the second reference picture at the same position as the first reference block on the first reference picture.
  • the decoder 120 may decode the current picture by performing inter prediction using at least one of the first reference block and the second reference block in the current prediction block.
  • the decoder 120 uses the first reference block determined by the reference block determiner 110, uses the first reference block and the second reference block, or uses only the second reference block to determine the current prediction block.
  • Inter prediction may be performed. Since such inter prediction is performed based on the first motion vector that can be used for inter prediction of the current prediction block, it may correspond to uni-prediction.
  • the decoder 120 may perform bi-prediction related to the current prediction block, which will be described in detail later.
  • FIG 3 illustrates a process of performing inter prediction of the current prediction block 322 by using the first reference picture 310 and the second reference picture 300 by the image decoding apparatus 100 according to an exemplary embodiment.
  • the decoder 120 of the image decoding apparatus 100 may determine a current prediction block 322 which is one of at least one prediction block included in the current picture 320.
  • the decoder 120 may determine a first motion vector 325 associated with the current prediction block, and determine the first reference block 312 on the first reference picture 310 based on the first motion vector 325.
  • First reference block 312 on 310 may be determined.
  • the decoder 120 may perform inter prediction on the current prediction block 322 using the first reference picture 310, which is one of pictures stored in a decoded picture buffer. .
  • the image decoding apparatus 100 may perform inter prediction of the current prediction block 322 by using the second reference picture 300 associated with the first reference picture 310.
  • the reference block determiner 110 may determine the second reference block 302 on the second reference picture 300 at the same position 315 as the first reference block 312 on the first reference picture 310.
  • the second reference picture 300 may include a prediction value determined through motion compensation during the prediction of the first reference picture 310, and the prediction value may include the motion compensation of the first reference picture 310. It may include information before reconstruction by adding a post residual signal. A detailed description of this process will be described later through specific embodiments of the decoding process.
  • FIG. 4 is a block diagram illustrating a process of decoding an image in the image decoding apparatus 100 according to an exemplary embodiment.
  • the image decoding apparatus 100 may obtain a residual signal from a bitstream. According to an embodiment, the image decoding apparatus 100 may further include a bitstream receiver (not shown) for receiving the bitstream.
  • the image decoding apparatus 100 may include an inverse quantizer 410 for inverse quantization of a received bitstream and an inverse transformer 420 for inversely transforming inverse quantized information.
  • the image decoding apparatus 100 may obtain a result of parsing the data about the encoded image data to be decoded and the encoding information necessary for decoding the image from the bitstream.
  • the data may be a quantized transform coefficient.
  • the inverse quantization unit 410 of the image decoding apparatus 100 may generate a residual signal as data corresponding to data before being quantized in the encoding process through inverse quantization of the inverse transformed residual signal. have.
  • the inverse transformer 420 of the image decoding apparatus 100 may read transform unit information having a tree structure for each coding unit and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each coding unit.
  • the inverse transform may restore the pixel value of the spatial region of the current picture.
  • the inverse transformer 420 and the inverse quantizer 410 may be included in the decoder 120 of the image decoding apparatus 100. Accordingly, the operations of the inverse transformer 420 and the inverse quantizer 410 may be performed. It may be performed by the decoder 120.
  • the inter prediction unit 450 of the image decoding apparatus 100 may perform inter prediction on the current prediction block to be decoded.
  • the inter prediction unit 450 may use a reference picture that is already reconstructed and stored in the reconstructed picture buffer 440 to determine a prediction value for the current prediction block through inter prediction.
  • the reconstructed picture is filtered by the in-loop filtering unit 430 to filter the reconstructed information by adding the residual signal determined through inverse transform and inverse quantization and the predicted value of the reference picture. Can be.
  • the in-loop filtering unit 430 and the inter prediction unit 450 may be included in the decoder 120.
  • the operations of the in-loop filtering unit 430 and the inter prediction unit 450 are described. May be performed by the decoder 120.
  • the first reference picture and the second reference picture can be stored and used in the reconstruction picture buffer 440 as a reference picture that can be used in the current prediction block will be described.
  • the reconstructed picture buffer 440 of the image decoding apparatus 100 may include a first picture buffer 442 for storing a first reference picture and a second picture buffer 444 for storing a second reference picture. It may include.
  • the inter prediction unit 450 of the apparatus for decoding an image may include a first reference picture and a second picture buffer included in the first picture buffer 442 in order to determine a prediction value of the current prediction block included in the current picture. At least one of the second reference pictures included in 444 may be used.
  • the first reference picture stored in the first picture buffer 442 may include a reconstruction signal generated by performing in-loop filtering on a result of adding a residual signal related to the first reference picture and a predicted value of the first reference picture. have.
  • the image decoding apparatus 100 stores the prediction value of the first reference picture in the second picture buffer 444 before adding the residual signal related to the first reference picture and the prediction value of the first reference picture to predict the current picture. It can be used as a second reference picture. By separating and storing the first reference picture and the second reference picture, it is possible to control an error due to noise that can be inserted in relation to the residual signal during the reconstruction of the first reference picture, and thus objective and subjective image quality. The effect of the improvement can be obtained.
  • the image decoding apparatus 100 may determine whether to perform inter prediction using the second reference picture based on the reference block information.
  • the image decoding apparatus 100 may determine a reference block referred to in inter prediction with respect to the current prediction block, and whether or not the second reference picture is used in the process of determining the reference block according to an embodiment. It may determine based on the reference block information obtained from.
  • the reference block information may include information indicating whether the inter prediction in the current prediction block is performed based on which reference block among the first reference block and the second reference block.
  • FIG. 6 is a flowchart of a process of performing inter prediction on a current prediction block by using the at least one reference block that may be determined based on reference block information, by the image decoding apparatus 100 according to an embodiment. Since the features of steps S610 to S616 in FIG. 6 may be the features described above in steps S210 to S216 in FIG. 2, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine at least one reference block used for performing inter prediction on the basis of reference block information obtained from the bitstream in step S618.
  • the decoder 120 of the image decoding apparatus 100 may determine whether or not inter prediction is used for the second reference block according to whether the value of the reference block information is 0 or not.
  • the reference block determiner 110 may determine a first reference block of the first reference picture indicated by the first motion vector as a reference block used to perform inter prediction in the current prediction block when the reference block information is zero.
  • the reference block determiner 110 may determine at least one reference block including the second reference block on the second reference picture as a reference block used for performing inter prediction in the current prediction block when the reference block information is 1. have.
  • the reference block information is 1, only the second reference block or the first reference block and the second reference block may be used in the inter prediction process of the current prediction block. Description of this will be described later. Determination of whether only the second reference block or the first reference block and the second reference block are to be used in the inter prediction process will be described later through embodiments.
  • the decoder 120 of the image decoding apparatus 100 may perform inter prediction using at least one reference block determined to be used for performing inter prediction in operation S620.
  • FIG. 7 is a flowchart illustrating a specific process of determining at least one reference block to be used for inter prediction by the image decoding apparatus 100 according to an embodiment.
  • steps S710 to S716 in FIG. 7 may be the features described above in steps S210 to S216 in FIG. 2, and thus detailed descriptions thereof will be omitted.
  • the image decoding apparatus 100 may determine whether inter-prediction is performed as reference method in which reference block information is used as a second reference block in step S718.
  • the reference block determiner 110 of the image decoding apparatus 100 obtains reference block information from the received bitstream to include whether a second reference block is included among at least one reference block used for inter prediction. Can be determined.
  • the reference block determiner 110 is a first reference block as a reference block to be used for inter prediction of the current prediction block.
  • the decoder 120 may perform inter prediction on the current prediction block using the first reference block.
  • the reference block determiner 110 may refer to the reference block to be used for inter prediction of the current prediction block. As a second reference block can be determined as. In addition, the reference block determiner 110 may determine whether only the second reference block or the first reference block and the second reference block are used in the inter prediction process of the current prediction block in step S722.
  • the image decoding apparatus 100 determines whether a predetermined condition is satisfied in operation S722 to determine whether only the second reference block is used in the inter prediction process of the current prediction block. It can be determined whether all of them are used.
  • the reference block determiner 110 of the image decoding apparatus 100 may determine whether a predetermined condition is satisfied, and the predetermined condition may be a combination of at least one condition.
  • the reference block determiner 110 determines whether the difference between the first reference block and the second reference block is less than a threshold (hereinafter, referred to as a first threshold value) as one of predetermined conditions to determine inter prediction. At least one reference block to be used may be determined. According to an exemplary embodiment, the reference block determiner 110 of the image decoding apparatus 100 may determine an absolute value of a difference between a sample value of a sample included in a first reference block and a sample value of a sample included in a second reference block. It can be determined whether the addition calculation result is less than the first threshold.
  • a threshold hereinafter, referred to as a first threshold value
  • the decoder 120 may perform inter prediction of the current prediction block using the first reference block and the second reference block in operation S726, and the calculation result is greater than or equal to the first threshold value.
  • inter prediction of the current prediction block may be performed using only the second reference block.
  • the reference block determiner 110 determines whether the magnitude of the first motion vector associated with the current prediction block is less than a threshold (hereinafter, referred to as a second threshold) as another one of predetermined conditions. At least one reference block used for inter prediction may be determined. According to an embodiment, the reference block determiner 110 of the image decoding apparatus 100 may determine the size of a first motion vector in which the current prediction block indicates the first reference block, and the determined size of the first motion vector 2 thresholds can be compared.
  • the magnitude of the first motion vector may be at least one of the magnitude in the lateral direction and the length in the longitudinal direction of the vector, or may represent an absolute value of the first motion vector.
  • the decoder 120 may perform inter prediction of the current prediction block using the first reference block and the second reference block in operation S726, and may include the first motion vector. If the size of M is greater than or equal to the second threshold, inter prediction of the current prediction block may be performed using only the second reference block in step S724.
  • the image decoding apparatus 100 may determine whether only the second reference block or the first reference block and the second reference block are used in the inter prediction process of the current prediction block by combining predetermined conditions. have.
  • the reference block determiner 110 of the image decoding apparatus 100 may predict whether the difference between the first reference block and the second reference block is less than the first threshold as the first condition, and the current prediction as the second condition.
  • At least one reference block used for inter prediction may be determined by determining whether the magnitude of the first motion vector associated with the block is less than the second threshold.
  • the reference block determiner 110 may determine that the first reference block and the second reference block are used to perform inter prediction of the current prediction block when both the first condition and the second condition are satisfied. have.
  • the reference block determiner 120 may determine that the first reference block and the second reference block are used in the inter prediction process of the current prediction block based on predetermined conditions, and in this case, the reference block determination The unit 120 may generate a third reference block, which is a new reference block by using information included in the first reference block and the second reference block, and use the inter-prediction. A process of determining the third reference block will be described later.
  • 8A is a diagram for describing a process of determining at least one of a first reference block and a second reference block as at least one reference block used to perform inter prediction of a current prediction block, according to an embodiment.
  • the decoder 120 of the image decoding apparatus 100 may determine a current prediction block 822 which is one of at least one prediction block included in the current picture 820.
  • the decoder 120 may determine a first motion vector 825 related to the current prediction block, and determine the first reference block 812 on the first reference picture 810 based on the first motion vector 825. Can be. That is, the decoder 120 may determine the first motion vector using information obtained from the neighboring blocks of the current prediction block 822, and based on the first motion vector 825, the first reference picture 810.
  • the first reference block 812 on the image may be determined.
  • the decoder 120 may perform inter prediction on the current prediction block 822 using the first reference picture 810, which is one of pictures stored in the reconstructed picture buffer.
  • the image decoding apparatus 100 may perform inter prediction of the current prediction block 822 using the second reference picture 800 associated with the first reference picture 810.
  • the reference block determiner 110 may determine the second reference block 802 on the second reference picture 800 at the same position 815 as the first reference block 812 on the first reference picture 810.
  • the second reference picture 800 may include a prediction value determined through motion compensation during the prediction of the first reference picture 810.
  • the reference block determiner 110 of the image decoding apparatus refers to neighboring samples of the current prediction block 822, the first reference block 812, and the second reference block 802 in the current prediction block.
  • a reference block to be used in the inter prediction process may be determined.
  • the reference block may be a first reference block 812 or a second reference block 802 and further newly determined using information included in the first reference block 812 and the second reference block 802.
  • the reference block determiner 110 may generate a third reference block, and the neighboring sample 824 of the current prediction block 822 (hereinafter, referred to as P0) and the vicinity of the first reference block 812 may be used to generate the third reference block.
  • the sample 814 (hereinafter P1) and the peripheral sample 804 (hereinafter P2) of the second reference block 802 may be used.
  • P0, P1, and P2 values used by the reference block determiner 110 are adjacent to the left boundary of the current prediction block 822, the first reference block 812, and the second reference block 802. It may be the average of the sample values already decoded.
  • the definitions of P0, P1, and P2 merely indicate that sample values adjacent to the current prediction block 822, the first reference block 812, and the second reference block 802 may be used in the reference block determination process.
  • the P0, P1 and P2 are not only the average of the sample values adjacent to the left boundary, but also differently defined as the average of the sample values adjacent to the other direction or the maximum and minimum values of the adjacent samples. It may be.
  • P0, P1, and P2 are sample mean values adjacent to the left boundary of the current prediction block 822, the first reference block 812, and the second reference block 802, respectively. It is explained on the premise.
  • the reference block determiner 110 may use the following equation to generate a third reference block.
  • Pred may mean a first reference block
  • Pred ' may refer to a second reference block
  • Pred ′′ may refer to a third reference block
  • W1 and W2 may refer to weights applied to each reference block.
  • the reference block determiner 110 may determine weights W1 and W2 based on P0, P1, and P2.
  • the reference block determiner 110 may determine W1 and W2 that satisfy the following equation.
  • the reference block determiner 110 may determine the ratio of W1 and W2 based on Equation 2. Can be.
  • 8B illustrates that bidirectional prediction is performed for inter prediction of a current prediction block, according to an embodiment.
  • the decoder 120 of the image decoding apparatus 100 may determine a current prediction block 872 which is one of at least one prediction block included in the current picture 870.
  • the decoder 120 may determine that the inter prediction to be performed in the current prediction block is bidirectional prediction.
  • the decoder 120 may determine whether unidirectional prediction or bidirectional prediction is performed in the current prediction block based on information obtained from the bitstream.
  • the information obtained from the bitstream may be obtained from the bitstream for each predetermined data unit (eg, picture, slice, slice segment, maximum coding unit, etc.).
  • the decoder 120 may determine a first motion vector 875 and a second motion vector 895 related to the current prediction block.
  • the decoder 120 may determine the first reference block 862 on the first reference picture 860 based on the first motion vector 875 and the fourth reference picture based on the second motion vector 895.
  • a fourth reference block 892 on 890 can be determined. That is, the decoder 120 may determine the first motion vector 875 and the second motion vector 895 using information obtained from the neighboring blocks of the current prediction block 872, and perform bidirectional prediction.
  • the first reference block 862 on the first reference picture 860 and the fourth reference block 892 on the fourth reference picture 890 are based on the first motion vector 875 and the second motion vector 895. You can decide.
  • the image decoding apparatus 100 may predict the current image using the second reference picture 850 associated with the first reference picture 860 and the fifth reference picture 880 associated with the fourth reference picture 890. Inter prediction of block 872 may be performed.
  • the reference block determiner 110 may determine the second reference block 852 on the second reference picture 850 at the same position 865 as the first reference block 862 on the first reference picture 860.
  • the fifth reference block 882 on the fifth reference picture 880 at the same position 885 as the fourth reference block 892 on the fourth reference picture 890 may be determined.
  • the second reference picture 850 and the fifth reference picture 880 include prediction values determined through motion compensation during the prediction process of the first reference picture 860 and the fourth reference picture 890, respectively. can do. Descriptions of the features between the first reference picture 860 and the second reference picture 850 or the features between the fourth reference picture 890 and the fifth reference picture 880 have been described above through various embodiments, and thus detailed descriptions thereof will be omitted. Do it.
  • the reference block determiner 110 of the apparatus for decoding an image may include a current prediction block 872, a first reference block 862, a second reference block 852, a fourth reference block 892, and a fifth reference block.
  • the reference block to be used in the inter prediction process in the current prediction block may be determined by referring to the neighboring samples of the reference block 882.
  • the reference block determiner 110 may use a third reference block newly determined by using information included in the first reference block 862 and the second reference block 852, and further, the fourth reference block The sixth reference block newly determined using the information included in the reference block 892 and the fifth reference block 882 may be further used.
  • the reference block determiner 110 includes a neighbor sample 874 (hereinafter P0) of the current prediction block 872 and a neighbor sample 864 (hereinafter P1) of the first reference block 862. And a peripheral sample 854 (hereinafter, referred to as P2) of the second reference block 852. Furthermore, in order to generate the sixth reference block, the reference block determiner 110 includes P0 which is the neighboring sample 874 of the current prediction block 872, neighboring samples 894 of the fourth reference block 892 (hereinafter, P3) and A peripheral sample 884 (hereinafter, referred to as P4) of the fifth reference block 882 may be used.
  • P0, P1, and P2 values used by the reference block determiner 110 are adjacent to left boundaries of the current prediction block 872, the first reference block 862, and the second reference block 852.
  • the P3 and P4 values may be averages of the already decoded sample values, and the P3 and P4 values may be averages of the already decoded sample values adjacent to the left boundary of the fourth reference block 892 and the fifth reference block 882.
  • the reference block determiner 110 may perform the process of determining the weights W1 and W2 using the equations (1) and (2) and the process of generating the third reference block.
  • a sixth reference block may be generated by performing a weight determination process using Equations 1 and 2 on the fourth reference block 892 and the fifth reference block 882.
  • the values of the weights W1 and W2 associated with the first reference block 862 and the second reference block 852 used in Equation 1 may be the fourth reference block 892 and the fifth reference block 882.
  • the process of generating the sixth reference block by performing the weight determination process using Equation 1 and Equation 2 on the fourth reference block 892 and the fifth reference block 882 may include: Since the reference block determiner 110 may be a process similar to the process described above with reference to FIG. 8A in which the weights W1 and W2 determined through Equation 2 are substituted into Equation 1 to generate a third reference block, detailed description thereof will be omitted.
  • FIG. 9 illustrates a method of generating a noise reduction reference picture using a first reference picture and a second reference picture, according to an exemplary embodiment.
  • the first reference picture 900 and the second reference picture 902 may be stored in one reconstruction picture buffer 930.
  • the first reference picture 900 and the second reference picture 902 may be stored in picture buffers (eg, 930 and 940) that are separated from each other.
  • the decoder 120 may generate a noise reduction reference picture 904 in which noise is reduced by performing filtering 903 using the first reference picture 900 and the second reference picture 902. And may be stored in the picture buffer 930 or 940.
  • the noise reduction reference picture 904 may correspond to a third reference picture that may be generated according to the above-described embodiments.
  • the decoder 120 may determine to perform bidirectional prediction as inter prediction to be performed in the current prediction block.
  • the decoder 120 may determine the first reference picture 900, the second reference picture 902, and the noise-reduced reference stored in the picture buffer 930 or 940.
  • the third reference picture 904 that is a picture
  • the fourth reference picture 910, the fifth reference picture 912, and the sixth reference picture 912 that is a reference picture with reduced noise may be used. Can be.
  • the decoder 120 may perform a filtering process before the reference picture to be used for inter prediction of the current prediction block is stored in the picture buffer.
  • a reference picture including a prediction value obtained through motion compensation may cause an error such as blocking artifact at a boundary of a data unit that may be a unit of a conversion process, and may reduce the error.
  • Filtering eg, deblocking filtering
  • the decoder 120 may perform filtering on the second reference picture including the motion compensation result of the first reference picture as well as the first reference picture, and then store the result in the picture buffer.
  • the third reference picture that can be generated using the first reference picture and the second reference picture may be filtered and then stored in the picture buffer. After the filtering is performed, the stored reference picture is used in the inter prediction process, thereby reducing an error such as blocking artifacts in the reconstruction process of the current picture including the current prediction block, thereby achieving an objective and subjective picture quality improvement effect.
  • the operation of the reference block determiner 110 and the operation of the decoder 120 may be performed by one decoder 120 or a processor (CPU).
  • Various embodiments described above include features that the image decoding apparatus 100 may use for image decoding.
  • various features related to the decoding process performed by the image decoding apparatus 100 will be described with respect to features in which the image encoding apparatus 150 may use image encoding.
  • FIG. 1B illustrates an image encoding apparatus 150 that may determine an first reference block and a second reference block and perform inter prediction on at least one of the first reference block and the second reference block according to an embodiment. Shows a block diagram of.
  • the image encoding apparatus 150 may determine at least one prediction block included in a current picture, which is one of pictures constituting an image, according to an embodiment.
  • the image encoding apparatus 150 may determine a first motion vector associated with a current prediction block, which is one of at least one prediction block, and determine a first reference block included in the first reference picture based on the first motion vector. .
  • the image encoding apparatus 150 determines a second reference block included in the second reference picture based on the position of the first reference block, and uses at least one of the first reference block and the second reference block in the current prediction block.
  • the current picture may be encoded by performing inter prediction.
  • the reference block determiner 160 of the image encoding apparatus 150 may determine the first reference block based on the first motion vector, and determine the second reference picture based on the position of the first reference block. Can be. Also, the encoder 170 of the image encoding apparatus 150 may determine at least one prediction block, determine a first motion vector associated with a current prediction block which is one of the at least one prediction block, and determine the determined first reference. Inter prediction may be performed using at least one of a block and a second reference block. According to an embodiment, the second reference picture may be a picture including a predicted value of the first reference picture.
  • FIG. 5 is a block diagram illustrating a process of encoding an image in the image encoding apparatus 150 according to an exemplary embodiment.
  • the image encoding apparatus 150 may determine a residual signal that is a result of subtracting the input image 500 and the prediction value.
  • the residual signal may be transformed by the transform unit 502 to transform spatial information into information about the transform region, and a quantization process may be performed on the result transformed by the quantization unit 504.
  • the bitstream including the quantized information may be delivered to the image decoding apparatus 100.
  • the transformed and quantized residual signal may be inversely transformed and inversely quantized to be stored in the reconstructed picture buffer 540 as a reference picture used in the prediction process.
  • the image encoding apparatus 150 may include an inverse quantizer 510 for inverse quantization of the inversely transformed information and an inverse transformer 520 for inverse transformation.
  • the encoded image data that is information to be inversely transformed and dequantized by the image encoding apparatus 150 may include a quantized transform coefficient.
  • the inverse quantization unit 510 of the image encoding apparatus 150 may generate a residual signal as data corresponding to data before being quantized in the encoding process through inverse quantization of the inverse transformed residual signal. have.
  • the inverse transform unit 520 of the image encoding apparatus 150 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for the inverse transform for each coding unit.
  • the inverse transform may restore the pixel value of the spatial region of the current picture.
  • the inverse quantizer 510 and the inverse transformer 520 may be included in the encoder 170 of the image encoding apparatus 150. Accordingly, the operations of the inverse quantizer 510 and the inverse transformer 520 may be performed. It may be performed by the encoder 170.
  • the characteristics of the operations of the quantization unit 510 and the inverse transform unit 520 of the image encoding apparatus 150 may be similar to those of the operations of the quantization unit 410 and the inverse transform unit 420 of the image decoding apparatus 100. Detailed descriptions are omitted.
  • the reconstructed picture buffer 540 of the image encoding apparatus 150 may include a first picture buffer 542 for storing a first reference picture and a second picture buffer 544 for storing a second reference picture. It may include.
  • the inter prediction unit 550 of the apparatus for decoding an image may include a first reference picture and a second picture buffer included in the first picture buffer 542 to determine a prediction value of the current prediction block included in the current picture. At least one of the second reference pictures included in 544 may be used.
  • the first reference picture stored in the first picture buffer 542 may include a reconstruction signal generated by performing in-loop filtering on a result obtained by adding a residual signal related to the first reference picture and a prediction value of the first reference picture. have.
  • the image encoding apparatus 150 stores the prediction value of the first reference picture in the second picture buffer 544 before adding the residual signal related to the first reference picture and the prediction value of the first reference picture to predict the current picture. It can be used as a second reference picture.
  • the inter predictor 550 of the image encoding apparatus 150 may include a motion predictor 552 for determining a motion vector associated with a current prediction block and a motion compensator for determining a predicted value using the determined motion vector. And 554. That is, the part on the reference picture indicated by the motion vector which can be determined through the motion estimation process can be determined and this can be determined as the reference block.
  • the motion compensator 554 may determine the prediction value of the current prediction block by using the determined reference block information.
  • the image encoding apparatus 150 may perform inter prediction of the current prediction block by using a motion compensation result of the first reference picture indicated by the motion vector of the current prediction block.
  • the motion predictor 552 of the image encoding apparatus 150 may determine the motion vectors of the predictive blocks of the first reference picture, and the motion compensator 554 may indicate other predicted blocks of the first reference block.
  • Motion compensation may be performed using information on the reference picture.
  • the encoder 170 of the image encoding apparatus 150 stores a prediction value, which is a result of performing motion compensation on the first reference block, in the second picture buffer 544, thereby storing the first reference buffer stored in the first picture buffer 542.
  • a second reference picture which is a separate reference picture from the picture, may be used in the inter prediction process of the current prediction block.
  • the remaining features of the operations of the reference block determiner 160 and the encoder 170 included in the image encoder 150 may be referred to as the reference block determiner 110 and the decoder included in the image decoder 100. Since 120 may be a feature for an operation similar to or opposite to the above-described operation, a detailed description thereof will be omitted.
  • the operation of the reference block determiner 160 and the operation of the encoder 170 may be performed by one encoder 170 or a processor (CPU).
  • An operation of the image encoding apparatus 150 may be similar to or opposite to various embodiments of the operation of the image decoding apparatus 100 described later.
  • FIG. 10 illustrates a process of determining, by the image decoding apparatus 100, at least one coding unit by dividing a current coding unit according to an embodiment.
  • the image decoding apparatus 100 may determine a shape of a coding unit by using block shape information, and determine in which form the coding unit is divided using the split shape information. That is, the method of dividing the coding unit indicated by the segmentation form information may be determined according to which block form the block form information used by the image decoding apparatus 100 represents.
  • the image decoding apparatus 100 may use block shape information indicating that the current coding unit is square. For example, the image decoding apparatus 100 may determine whether to split a square coding unit, to split vertically, to split horizontally, or to split into four coding units according to the split type information.
  • the decoder 1030 may have the same size as the current coding unit 1000 according to the split shape information indicating that the block shape information is not divided.
  • the split coding units 1010a may not be divided, or the split coding units 1010b, 1010c, 1010d, and the like may be determined based on split type information indicating a predetermined division method.
  • the image decoding apparatus 100 determines two coding units 1010b that split the current coding unit 1000 in the vertical direction based on split type information indicating that the image is split in the vertical direction. Can be.
  • the image decoding apparatus 100 may determine two coding units 1010c obtained by dividing the current coding unit 1000 in the horizontal direction, based on the split type information indicating the split in the horizontal direction.
  • the image decoding apparatus 100 may determine four coding units 1010d obtained by dividing the current coding unit 1000 in the vertical direction and the horizontal direction based on the split type information indicating that the image decoding apparatus 100 is split in the vertical direction and the horizontal direction.
  • the divided form in which the square coding unit may be divided should not be limited to the above-described form and may include various forms represented by the divided form information. Certain division forms in which a square coding unit is divided will be described in detail with reference to various embodiments below.
  • FIG. 11 illustrates a process of determining, by the image decoding apparatus 100, at least one coding unit by dividing a coding unit having a non-square shape according to an embodiment.
  • the image decoding apparatus 100 may use block shape information indicating that a current coding unit is a non-square shape.
  • the image decoding apparatus 100 may determine whether to divide the current coding unit of the non-square according to the split type information or to split it by a predetermined method. Referring to FIG. 11, when the block shape information of the current coding unit 1100 or 1150 indicates a non-square shape, the image decoding apparatus 100 may not split the current coding unit 1100 according to the split shape information indicating that the shape is not divided.
  • coding units 1110a, 1120b, 1130a, 1130b, 1130c, 1170a which do not divide the coding units 1110 or 1160 having the same size as that of 1150, or are divided based on the split type information indicating a predetermined division method.
  • 1170b, 1180a, 1180b, and 1180c may be determined.
  • a predetermined division method in which a non-square coding unit is divided will be described in detail with reference to various embodiments below.
  • the image decoding apparatus 100 may determine a shape in which a coding unit is divided using split shape information.
  • the split shape information may include the number of at least one coding unit generated by splitting a coding unit. Can be represented.
  • the image decoding apparatus 100 may determine the current coding unit 1100 or 1150 based on the split type information. By splitting, two coding units 1120a, 11420b, or 1170a and 1170b included in the current coding unit may be determined.
  • the image decoding apparatus 100 when the image decoding apparatus 100 splits the current coding unit 1100 or 1150 of the non-square shape based on the split shape information, the image coding apparatus 100 of the non-square current coding unit 1100 or 1150 of the non-square shape may be divided.
  • the current coding unit may be split in consideration of the position of the long side. For example, the image decoding apparatus 100 divides the current coding unit 1100 or 1150 in a direction of dividing a long side of the current coding unit 1100 or 1150 in consideration of the shape of the current coding unit 1100 or 1150. To determine a plurality of coding units.
  • the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 1100 or 1150. For example, when the split form information indicates that the current coding unit 1100 or 1150 is divided into three coding units, the image decoding apparatus 100 may divide the current coding unit 1100 or 1150 into three coding units 1130a. , 1130b, 1130c, 1180a, 1180b, and 1180c. According to an embodiment, the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 1100 or 1150, and not all sizes of the determined coding units may be the same.
  • the size of a predetermined coding unit 1130b or 1180b among the determined odd coding units 1130a, 1130b, 1130c, 1180a, 1180b, and 1180c may be different from other coding units 1130a, 1130c, 1180a, and 1180c. May have That is, a coding unit that may be determined by dividing the current coding unit 1100 or 1150 may have a plurality of types, and in some cases, odd number of coding units 1130a, 1130b, 1130c, 1180a, 1180b, and 1180c. Each may have a different size.
  • the image decoding apparatus 100 may determine an odd number of coding units included in the current coding unit 1100 or 1150.
  • the image decoding apparatus 100 may set a predetermined limit on at least one coding unit among odd-numbered coding units generated by dividing.
  • the image decoding apparatus 100 is a coding unit positioned at the center of three coding units 1130a, 1130b, 1130c, 1180a, 1180b, and 1180c generated by splitting a current coding unit 1100 or 1150.
  • the decoding process for (1130b, 1180b) may be different from other coding units 1130a, 1130c, 1180a, and 1180c.
  • the image decoding apparatus 100 may limit the coding units 1130b and 1180b to be no longer divided, or only a predetermined number of times. You can limit it to split.
  • FIG. 12 illustrates a process of splitting a coding unit by the image decoding apparatus 100 based on at least one of block shape information and split shape information, according to an embodiment.
  • the image decoding apparatus 100 may determine whether to split or not split the first coding unit 1200 having a square shape into coding units based on at least one of block shape information and split shape information. According to an embodiment, when the split type information indicates splitting the first coding unit 1200 in the horizontal direction, the image decoding apparatus 100 splits the first coding unit 1200 in the horizontal direction to thereby split the second coding unit. 1210 may be determined.
  • the first coding unit, the second coding unit, and the third coding unit used according to an embodiment are terms used to understand a before and after relationship between the coding units. For example, when the first coding unit is split, the second coding unit may be determined. When the second coding unit is split, the third coding unit may be determined.
  • the relationship between the first coding unit, the second coding unit, and the third coding unit used is based on the above-described feature.
  • the image decoding apparatus 100 may determine to divide or not split the determined second coding unit 1210 into coding units based on at least one of block shape information and split shape information. Referring to FIG. 12, the image decoding apparatus 100 may determine a second coding unit 1210 having a non-square shape determined by dividing the first coding unit 1200 based on at least one of block shape information and split shape information. It may be divided into at least one third coding unit 1220a, 1220b, 1220c, 1220d, or the like, or may not split the second coding unit 1210.
  • the image decoding apparatus 100 may obtain at least one of the block shape information and the split shape information, and the image decoding apparatus 100 may determine the first coding unit 1200 based on at least one of the obtained block shape information and the split shape information.
  • the unit 1200 may be divided according to the divided manner.
  • the second The coding unit 1210 may also be divided into third coding units (eg, 1220a, 1220b, 1220c, 1220d, etc.) based on at least one of block shape information and split shape information of the second coding unit 1210. have. That is, the coding unit may be recursively divided based on at least one of the partition shape information and the block shape information associated with each coding unit.
  • a square coding unit may be determined in a non-square coding unit, and a coding unit of a square shape may be recursively divided to determine a coding unit of a non-square shape.
  • a predetermined coding unit eg, located in the middle of odd-numbered third coding units 1220b, 1220c, and 1220d determined by dividing a second coding unit 1210 having a non-square shape
  • Coding units or coding units having a square shape may be recursively divided.
  • the third coding unit 1220c having a square shape which is one of odd third coding units 1220b, 1220c, and 1220d, may be divided in a horizontal direction and divided into a plurality of fourth coding units.
  • the fourth coding unit 1240 having a non-square shape which is one of the plurality of fourth coding units, may be divided into a plurality of coding units.
  • the fourth coding unit 1240 having a non-square shape may be divided into odd coding units 1250a, 1250b, and 1250c.
  • the image decoding apparatus 100 splits each of the third coding units 1220a, 1220b, 1220c, 1220d, etc. into coding units based on at least one of block shape information and split shape information, or performs second encoding. It may be determined that the unit 1210 is not divided. According to an embodiment, the image decoding apparatus 100 may divide the second coding unit 1210 having a non-square shape into an odd number of third coding units 1220b, 1220c, and 1220d. The image decoding apparatus 100 may place a predetermined limit on a predetermined third coding unit among the odd number of third coding units 1220b, 1220c, and 1220d.
  • the image decoding apparatus 100 may be limited to the number of coding units 1220c positioned in the middle of the odd number of third coding units 1220b, 1220c, and 1220d, or may be divided by a set number of times. It can be limited to.
  • the image decoding apparatus 100 may include a coding unit positioned at the center among odd-numbered third coding units 1220b, 1220c, and 1220d included in a second coding unit 1210 having a non-square shape.
  • the 1220c is no longer divided, or is limited to being divided into a predetermined division form (for example, only divided into four coding units or divided into a form corresponding to the divided form of the second coding unit 1210), or It can be limited to dividing only by the number of times (eg, dividing only n times, n> 0).
  • the above limitation on the coding unit 1220c located in the center is merely a mere embodiment and should not be construed as being limited to the above-described embodiments, and the coding unit 1220c located in the center may be different from the coding units 1220b and 1220d. ), It should be interpreted as including various restrictions that can be decoded.
  • the image decoding apparatus 100 may obtain at least one of block shape information and split shape information used to divide a current coding unit at a predetermined position in the current coding unit.
  • FIG. 13 illustrates a method for the image decoding apparatus 100 to determine a predetermined coding unit among odd number of coding units, according to an exemplary embodiment.
  • at least one of the block shape information and the split shape information of the current coding unit 1300 may be a sample of a predetermined position (for example, located at the center of a plurality of samples included in the current coding unit 1300). Sample 1340).
  • a predetermined position in the current coding unit 1300 from which at least one of such block shape information and split shape information may be obtained should not be interpreted as being limited to the center position shown in FIG. 13, and the current coding unit 1300 is located at the predetermined position.
  • the image decoding apparatus 100 may determine that the current coding unit is divided into coding units of various shapes and sizes by not obtaining at least one of block shape information and split shape information obtained from a predetermined position.
  • the image decoding apparatus 100 may select one coding unit from among them. Methods for selecting one of a plurality of coding units may vary, which will be described below through various embodiments.
  • the image decoding apparatus 100 may divide a current coding unit into a plurality of coding units and determine a coding unit of a predetermined position.
  • FIG. 13 illustrates a method for the image decoding apparatus 100 to determine a coding unit at a predetermined position among odd-numbered coding units according to an embodiment.
  • the image decoding apparatus 100 may use information indicating the position of each of the odd coding units to determine a coding unit located in the middle of the odd coding units. Referring to FIG. 13, the image decoding apparatus 100 may determine an odd number of coding units 1320a, 1320b, and 1320c by dividing the current coding unit 1300. The image decoding apparatus 100 may determine the central coding unit 1320b by using information about the positions of the odd number of coding units 1320a, 1320b, and 1320c. For example, the image decoding apparatus 100 determines the positions of the coding units 1320a, 1320b, and 1320c based on information indicating the positions of predetermined samples included in the coding units 1320a, 1320b, and 1320c.
  • the coding unit 1320b positioned at may be determined.
  • the image decoding apparatus 100 may determine the location of the coding units 1320a, 1320b, and 1320c based on information indicating the positions of the samples 1330a, 1330b, and 1330c in the upper left of the coding units 1320a, 1320b, and 1320c. By determining the position, the coding unit 1320b positioned in the center may be determined.
  • the information indicating the positions of the samples 1330a, 1330b, and 1330c in the upper left included in the coding units 1320a, 1320b, and 1320c, respectively may be located in the pictures of the coding units 1320a, 1320b, and 1320c. Or it may include information about the coordinates. According to an embodiment, the information indicating the positions of the samples 1330a, 1330b, and 1330c in the upper left included in the coding units 1320a, 1320b, and 1320c, respectively, may be included in the coding units 1320a and 1320b in the current coding unit 1300.
  • the image decoding apparatus 100 may directly use information about the position or coordinates in the pictures of the coding units 1320a, 1320b, and 1320c, or may provide information about the width or height of the coding unit corresponding to the difference between the coordinates. By using this, the coding unit 1320b located in the center can be determined.
  • the information indicating the position of the sample 1330a at the upper left of the upper coding unit 1320a may indicate (xa, ya) coordinates, and the sample 1330b at the upper left of the middle coding unit 1320b.
  • the information indicating the position of) may indicate the (xb, yb) coordinates, and the information indicating the position of the sample 1330c on the upper left of the lower coding unit 1320c may indicate the (xc, yc) coordinates.
  • the image decoding apparatus 100 may determine the center coding unit 1320b using the coordinates of the samples 1330a, 1330b, and 1330c in the upper left included in the coding units 1320a, 1320b, and 1320c, respectively.
  • a coding unit 1320b including (xb, yb), which is the coordinate of the sample 1330b located in the center May be determined as a coding unit located in the middle of the coding units 1320a, 1320b, and 1320c determined by splitting the current coding unit 1300.
  • the coordinates indicating the positions of the samples 1330a, 1330b, and 1330c at the upper left may indicate coordinates indicating the absolute positions in the picture, and further, the positions of the samples 1330a at the upper left of the upper coding unit 1320a.
  • the (dxb, dyb) coordinate which is information indicating the relative position of the upper left sample 1330b of the middle coding unit 1320b, and the relative position of the upper left sample 1330c of the lower coding unit 1320c.
  • Information (dxc, dyc) coordinates can also be used.
  • the method of determining the coding unit of a predetermined position by using the coordinates of the sample as information indicating the position of the sample included in the coding unit should not be construed as being limited to the above-described method, and various arithmetic operations that can use the coordinates of the sample. It should be interpreted in a way.
  • the image decoding apparatus 100 may split the current coding unit 1300 into a plurality of coding units 1320a, 1320b, and 1320c, and may determine a predetermined reference among the coding units 1320a, 1320b, and 1320c. According to the coding unit can be selected. For example, the image decoding apparatus 100 may select coding units 1320b having different sizes from among coding units 1320a, 1320b, and 1320c.
  • the image decoding apparatus 100 may include (xa, ya) coordinates, which are information indicating a position of a sample 1330a on the upper left side of the upper coding unit 1320a, and a sample on the upper left side of the center coding unit 1320b.
  • Coding unit 1320a using (xb, yb) coordinates indicating information of position of (1330b) and (xc, yc) coordinates indicating information of sample 1330c on the upper left of lower coding unit 1320c. 1320b, 1320c) may determine the width or height of each.
  • the image decoding apparatus 100 uses (xa, ya), (xb, yb), and (xc, yc) coordinates indicating the positions of the coding units 1320a, 1320b, and 1320c, and encodes the units 1320a, 1320b, and 1320c. ) Each size can be determined.
  • the image decoding apparatus 100 may determine the width of the upper coding unit 1320a as xb-xa and the height as yb-ya. According to an embodiment, the image decoding apparatus 100 may determine the width of the central coding unit 1320b as xc-xb and the height as yc-yb. According to an embodiment, the image decoding apparatus 100 may determine the width or height of the lower coding unit using the width or height of the current coding unit, and the width and height of the upper coding unit 1320a and the center coding unit 1320b. .
  • the image decoding apparatus 100 may determine a coding unit having a different size from other coding units based on the width and the height of the determined coding units 1320a, 1320b, and 1320c. Referring to FIG. 13, the image decoding apparatus 100 may determine a coding unit 1320b as a coding unit having a predetermined position while having a size different from that of the upper coding unit 1320a and the lower coding unit 1320c. However, in the above-described process of determining, by the image decoding apparatus 100, a coding unit having a different size from another coding unit, the coding unit at a predetermined position may be determined using the size of the coding unit determined based on the sample coordinates. In this regard, various processes of determining a coding unit at a predetermined position by comparing the sizes of coding units determined according to predetermined sample coordinates may be used.
  • the position of the sample to be considered for determining the position of the coding unit should not be interpreted as being limited to the upper left side described above, but may be interpreted that information on the position of any sample included in the coding unit may be used.
  • the image decoding apparatus 100 may select a coding unit of a predetermined position among odd-numbered coding units determined by dividing the current coding unit in consideration of the shape of the current coding unit. For example, if the current coding unit has a non-square shape having a width greater than the height, the image decoding apparatus 100 may determine the coding unit at a predetermined position in the horizontal direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the horizontal direction to limit the corresponding coding unit. If the current coding unit has a non-square shape having a height greater than the width, the image decoding apparatus 100 may determine a coding unit of a predetermined position in the vertical direction. That is, the image decoding apparatus 100 may determine one of the coding units having different positions in the vertical direction to limit the corresponding coding unit.
  • the image decoding apparatus 100 may use information indicating the positions of each of the even coding units to determine the coding unit of the predetermined position among the even coding units.
  • the image decoding apparatus 100 may determine an even number of coding units by dividing a current coding unit and determine a coding unit of a predetermined position by using information about the positions of the even coding units.
  • a detailed process for this may be a process corresponding to a process of determining a coding unit of a predetermined position (for example, a middle position) among the odd number of coding units described above with reference to FIG.
  • a predetermined value for a coding unit of a predetermined position in the splitting process is determined to determine a coding unit of a predetermined position among the plurality of coding units.
  • Information is available.
  • the image decoding apparatus 100 may determine block shape information and a split shape stored in a sample included in a middle coding unit in a splitting process in order to determine a coding unit located in a center among coding units in which a current coding unit is divided into a plurality. At least one of the information may be used.
  • the image decoding apparatus 100 may divide the current coding unit 1300 into a plurality of coding units 1320a, 1320b, and 1320c based on at least one of block shape information and split shape information.
  • a coding unit 1320b positioned in the center of the plurality of coding units 1320a, 1320b, and 1320c may be determined.
  • the image decoding apparatus 100 may determine a coding unit 1320b positioned in the center in consideration of a position where at least one of block shape information and split shape information is obtained.
  • At least one of the block shape information and the split shape information of the current coding unit 1300 may be obtained from a sample 1340 positioned in the center of the current coding unit 1300, and the block shape information and the split shape information may be obtained.
  • the coding unit 1320b including the sample 1340 is a coding unit positioned at the center. You can decide.
  • the information used to determine the coding unit located in the middle should not be interpreted as being limited to at least one of the block type information and the split type information, and various types of information may be used in the process of determining the coding unit located in the center. Can be.
  • predetermined information for identifying a coding unit of a predetermined position may be obtained from a predetermined sample included in the coding unit to be determined.
  • the image decoding apparatus 100 may divide a current coding unit 1300 into a plurality of coding units (eg, divided into a plurality of coding units 1320a, 1320b, and 1320c).
  • Block shape information obtained from a sample at a predetermined position (for example, a sample located in the center of the current coding unit 1300) in the current coding unit 1300 to determine a coding unit located in the center of the coding units; At least one of the partition type information may be used. .
  • the image decoding apparatus 100 may determine a sample at the predetermined position in consideration of the block block form of the current coding unit 1300, and the image decoding apparatus 100 may determine that the current coding unit 1300 is divided and determined.
  • a coding unit 1320b including a sample from which predetermined information (for example, at least one of block shape information and split shape information) may be obtained may be determined.
  • predetermined information for example, at least one of block shape information and split shape information
  • the image decoding apparatus 100 may determine a sample 1340 positioned in the center of the current coding unit 1300 as a sample from which predetermined information may be obtained.
  • the 100 may set a predetermined limit in the decoding process of the coding unit 1320b including the sample 1340.
  • the position of the sample from which the predetermined information can be obtained should not be interpreted as being limited to the above-described position, but may be interpreted as samples of arbitrary positions included in the coding unit 1320b to be determined for the purpose of limitation.
  • a position of a sample from which predetermined information may be obtained may be determined according to the shape of the current coding unit 1300.
  • the block shape information may determine whether the shape of the current coding unit is square or non-square, and determine the position of a sample from which the predetermined information may be obtained according to the shape.
  • the image decoding apparatus 100 may be positioned on a boundary that divides at least one of the width and the height of the current coding unit in half using at least one of information about the width and the height of the current coding unit.
  • the sample may be determined as a sample from which predetermined information can be obtained.
  • the image decoding apparatus 100 may select one of samples adjacent to a boundary that divides the long side of the current coding unit in half. May be determined as a sample from which information may be obtained.
  • the image decoding apparatus 100 when the image decoding apparatus 100 divides a current coding unit into a plurality of coding units, at least one of block shape information and split shape information may be used to determine a coding unit of a predetermined position among a plurality of coding units.
  • the image decoding apparatus 100 may obtain at least one of block shape information and split shape information from a sample at a predetermined position included in a coding unit, and the image decoding apparatus 100 may divide the current coding unit.
  • the generated plurality of coding units may be divided using at least one of split shape information and block shape information obtained from a sample of a predetermined position included in each of the plurality of coding units.
  • the coding unit may be recursively split using at least one of block shape information and split shape information obtained from a sample of a predetermined position included in each coding unit. Since the recursive division process of the coding unit has been described above with reference to FIG. 12, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine at least one coding unit by dividing a current coding unit, and determine an order in which the at least one coding unit is decoded in a predetermined block (for example, the current coding unit). Can be determined according to
  • FIG. 14 is a diagram illustrating an order in which a plurality of coding units are processed when the image decoding apparatus 100 determines a plurality of coding units by dividing a current coding unit.
  • the image decoding apparatus 100 determines the second coding units 1410a and 1410b by dividing the first coding unit 1400 in the vertical direction according to the block shape information and the split shape information.
  • the second coding units 1430a and 1430b may be determined by dividing the 1400 in the horizontal direction, or the second coding units 1450a, 1450b, 1450c and 1450d by dividing the first coding unit 1400 in the vertical and horizontal directions. Can be determined.
  • the image decoding apparatus 100 may determine an order such that the second coding units 1410a and 1410b determined by dividing the first coding unit 1400 in the vertical direction are processed in the horizontal direction 1410c. .
  • the image decoding apparatus 100 may determine the processing order of the second coding units 1430a and 1430b determined by dividing the first coding unit 1400 in the horizontal direction, in the vertical direction 1430c.
  • the image decoding apparatus 100 processes the coding units for positioning the second coding units 1450a, 1450b, 1450c, and 1450d determined by dividing the first coding unit 1400 in the vertical direction and the horizontal direction, in one row.
  • the coding units positioned in the next row may be determined according to a predetermined order (for example, raster scan order or z scan order 1450e).
  • the image decoding apparatus 100 may recursively split coding units.
  • the image decoding apparatus 100 may determine a plurality of coding units 1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, and 1450d by dividing the first coding unit 1400.
  • Each of the determined coding units 1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, and 1450d may be recursively divided.
  • the method of dividing the plurality of coding units 1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, and 1450d may correspond to a method of dividing the first coding unit 1400. Accordingly, the plurality of coding units 1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, and 1450d may be independently divided into a plurality of coding units. Referring to FIG. 14, the image decoding apparatus 100 may determine the second coding units 1410a and 1410b by dividing the first coding unit 1400 in the vertical direction, and further, respectively, the second coding units 1410a and 1410b. It can be decided to split independently or not.
  • the image decoding apparatus 100 may divide the second coding unit 1410a on the left side into horizontal units and divide the second coding unit 1410a into third coding units 1420a and 1420b, and the second coding unit 1410b on the right side. ) May not be divided.
  • the processing order of coding units may be determined based on a split process of the coding units.
  • the processing order of the divided coding units may be determined based on the processing order of the coding units immediately before being split.
  • the image decoding apparatus 100 may independently determine the order in which the third coding units 1420a and 1420b determined by splitting the second coding unit 1410a on the left side from the second coding unit 1410b on the right side. Since the second coding unit 1410a on the left is divided in the horizontal direction to determine the third coding units 1420a and 1420b, the third coding units 1420a and 1420b may be processed in the vertical direction 1420c.
  • the third coding unit included in the second coding unit 1410a on the left side corresponds to the horizontal direction 1410c
  • the right coding unit 1410b may be processed.
  • FIG. 15 illustrates a process of determining that a current coding unit is divided into an odd number of coding units when the image decoding apparatus 100 cannot process the coding units in a predetermined order, according to an embodiment.
  • the image decoding apparatus 100 may determine that the current coding unit is split into odd coding units based on the obtained block shape information and the split shape information.
  • a first coding unit 1500 having a square shape may be divided into second coding units 1510a and 1510b having a non-square shape, and each of the second coding units 1510a and 1510b may be independently formed.
  • the image decoding apparatus 100 may determine a plurality of third coding units 1520a and 1520b by dividing the left coding unit 1510a in the horizontal direction among the second coding units, and may include the right coding unit 1510b. ) May be divided into an odd number of third coding units 1520c, 1520d, and 1520e.
  • the image decoding apparatus 100 determines whether the third coding units 1520a, 1520b, 1520c, 1520d, and 1520e may be processed in a predetermined order to determine whether there are oddly divided coding units. You can decide. Referring to FIG. 15, the image decoding apparatus 100 may recursively divide a first coding unit 1500 to determine third coding units 1520a, 1520b, 1520c, 1520d, and 1520e.
  • the image decoding apparatus 100 may include a first coding unit 1500, a second coding unit 1510a and 1510b, or a third coding unit 1520a, 1520b, 1520c, based on at least one of block shape information and split shape information.
  • the order in which the plurality of coding units included in the first coding unit 1500 are processed may be a predetermined order (for example, a z-scan order 1530), and the image decoding apparatus ( 100 may determine whether the third coding unit 1520c, 1520d, and 1520e determined by splitting the right second coding unit 1510b into an odd number satisfies a condition in which the right coding unit 1510b is processed in the predetermined order.
  • the image decoding apparatus 100 may satisfy a condition that the third coding units 1520a, 1520b, 1520c, 1520d, and 1520e included in the first coding unit 1500 may be processed in a predetermined order. And whether the at least one of the width and the height of the second coding unit 1510a, 1510b is divided in half according to the boundary of the third coding unit 1520a, 1520b, 1520c, 1520d, or 1520e.
  • the third coding units 1520a and 1520b which are determined by dividing the height of the left second coding unit 1510a by the non-square form in half, satisfy the condition, but the right second coding unit 1510b is 3.
  • the third coding units 1520c, 1520d, and 1520e determined by dividing into two coding units may be determined not to satisfy the condition, and the image decoding apparatus 100 may determine that the scan sequence is disconnected in the case of dissatisfaction with the condition, and the right second coding unit 1510b may be determined based on the determination result. It may be determined to be divided into an odd number of coding units.
  • the image decoding apparatus 100 when the image decoding apparatus 100 is divided into an odd number of coding units, the image decoding apparatus 100 may set a predetermined limit on a coding unit of a predetermined position among the divided coding units. Since the above has been described through the embodiments, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may divide the first coding unit 1600 based on at least one of the block shape information and the split shape information obtained through the receiver 210.
  • the first coding unit 1600 having a square shape may be divided into coding units having four square shapes, or may be divided into a plurality of coding units having a non-square shape.
  • the image decoding apparatus 100 may determine the first coding unit.
  • the image decoding apparatus 100 may form a square first coding unit 1600.
  • the image decoding apparatus 100 may process the second coding units 1610a, 1610b, 1610c, 1620a, 1620b, and 1620c included in the first coding unit 1600 in a predetermined order.
  • the condition is whether the at least one of the width and height of the first coding unit 1600 is divided in half according to the boundary of the second coding unit (1610a, 1610b, 1610c, 1620a, 1620b, 1620c). It is related to whether or not.
  • a boundary between second coding units 1610a, 1610b, and 1610c which is determined by dividing a square first coding unit 1600 in a vertical direction, divides the width of the first coding unit 1600 in half.
  • the first coding unit 1600 may be determined to not satisfy a condition that may be processed in a predetermined order.
  • the boundary of the second coding units 1620a, 1620b, and 1620c which is determined by dividing the first coding unit 1600 having a square shape in the horizontal direction, does not divide the width of the first coding unit 1600 in half,
  • the one coding unit 1600 may be determined as not satisfying a condition that may be processed in a predetermined order.
  • the image decoding apparatus 100 may determine that such a condition is not satisfied as disconnection of the scan order, and determine that the first coding unit 1600 is divided into an odd number of coding units based on the determination result.
  • the image decoding apparatus 100 when the image decoding apparatus 100 is divided into an odd number of coding units, the image decoding apparatus 100 may set a predetermined limit on a coding unit of a predetermined position among the divided coding units. Since the above has been described through the embodiments, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine various coding units by dividing the first coding unit.
  • the image decoding apparatus 100 may split a first coding unit 1600 having a square shape and a first coding unit 1630 or 1650 having a non-square shape into various coding units. .
  • FIG. 17 illustrates that the second coding unit is split when the second coding unit having a non-square shape determined by splitting the first coding unit 1700 according to an embodiment satisfies a predetermined condition. It shows that the form that can be limited.
  • the image decoding apparatus 100 may determine a non-square type first coding unit 1700 having a square shape based on at least one of block shape information and segmentation shape information acquired through the receiver 210. It may be determined by dividing into two coding units 1710a, 1710b, 1720a, and 1720b. The second coding units 1710a, 1710b, 1720a, and 1720b may be split independently. Accordingly, the image decoding apparatus 100 determines whether to split or not split into a plurality of coding units based on at least one of block shape information and split shape information associated with each of the second coding units 1710a, 1710b, 1720a, and 1720b. Can be.
  • the image decoding apparatus 100 divides the left second coding unit 1710a having a non-square shape in a horizontal direction, determined by dividing the first coding unit 1700 in a vertical direction, and then converts the third coding unit ( 1712a, 1712b) can be determined.
  • the right second coding unit 1710b may have the same horizontal direction as the direction in which the left second coding unit 1710a is divided. It can be limited to not be divided into.
  • the right second coding unit 1710b is divided in the same direction and the third coding units 1714a and 1714b are determined, the left second coding unit 1710a and the right second coding unit 1710b are respectively horizontally aligned.
  • the third coding units 1712a, 1712b, 1714a, and 1714b may be determined by being split independently. However, this means that the image decoding apparatus 100 divides the first coding unit 1700 into four square second coding units 1730a, 1730b, 1730c, and 1730d based on at least one of the block shape information and the split shape information. This is the same result as the above, which may be inefficient in terms of image decoding.
  • the image decoding apparatus 100 divides a second coding unit 1720a or 1720b of a non-square shape, determined by dividing the first coding unit 11300 in a horizontal direction, into a vertical direction, and then performs a third coding unit. (1722a, 1722b, 1724a, 1724b) can be determined.
  • a third coding unit (1722a, 1722b, 1724a, 1724b)
  • the image decoding apparatus 100 divides one of the second coding units (for example, the upper second coding unit 1720a) in the vertical direction
  • another image coding unit for example, the lower end
  • the coding unit 1720b may restrict the upper second coding unit 1720a from being split in the vertical direction in the same direction as the split direction.
  • FIG. 18 illustrates a process of splitting a coding unit having a square shape by the image decoding apparatus 100 when the split shape information cannot be divided into four square coding units.
  • the image decoding apparatus 100 divides the first coding unit 1800 based on at least one of the block shape information and the split shape information to divide the second coding units 1810a, 1810b, 1820a, 1820b, and the like. You can decide.
  • the split type information may include information about various types in which a coding unit may be split, but the information on various types may not include information for splitting into four coding units having a square shape.
  • the image decoding apparatus 100 may not divide the square first coding unit 1800 into four square second coding units 1830a, 1830b, 1830c, and 1830d.
  • the image decoding apparatus 100 may determine the non-square second coding units 1810a, 1810b, 1820a, 1820b, and the like based on the split shape information.
  • the image decoding apparatus 100 may independently split second non-square second coding units 1810a, 1810b, 1820a, 1820b, and the like.
  • Each of the second coding units 1810a, 1810b, 1820a, 1820b, etc. may be divided in a predetermined order through a recursive method, which is based on at least one of the block shape information and the split shape information 1800. ) May be a division method corresponding to the division method.
  • the image decoding apparatus 100 may determine the third coding units 1812a and 1812b having a square shape by dividing the left second coding unit 1810a in the horizontal direction, and the right second coding unit 1810b The third coding units 1814a and 1814b having a square shape may be determined by being split in the horizontal direction. Furthermore, the image decoding apparatus 100 may divide the left second coding unit 1810a and the right second coding unit 1810b in the horizontal direction to determine the third coding units 1816a, 1816b, 1816c, and 1816d having a square shape. have. In this case, the coding unit may be determined in the same form as that in which the first coding unit 1800 is divided into four second coding units 1830a, 1830b, 1830c, and 1830d.
  • the image decoding apparatus 100 may determine the third coding units 1822a and 1822b having a square shape by dividing the upper second coding unit 1820a in the vertical direction, and the lower second coding unit 1820b. ) May be divided in a vertical direction to determine third coding units 1824a and 1824b having a square shape. Furthermore, the image decoding apparatus 100 may divide the upper second coding unit 1820a and the lower second coding unit 1820b in the vertical direction to determine the third coding units 1822a, 1822b, 1824a, and 1824b having a square shape. have. In this case, the coding unit may be determined in the same form as that in which the first coding unit 1800 is divided into four second coding units 1830a, 1830b, 1830c, and 1830d.
  • FIG. 19 illustrates that a processing order between a plurality of coding units may vary according to a splitting process of coding units, according to an embodiment.
  • the image decoding apparatus 100 may divide the first coding unit 1900 based on the block shape information and the split shape information.
  • the image decoding apparatus 100 may determine the first coding unit 1900. ) May be determined to determine a second coding unit (eg, 1910a, 1910b, 1920a, 1920b, 1930a, 1930b, 1930c, 1930d, etc.).
  • a second coding unit eg, 1910a, 1910b, 1920a, 1920b, 1930a, 1930b, 1930c, 1930d, etc.
  • non-square-type second coding units 1910a, 1910b, 1920a, and 1920b which are determined by dividing the first coding unit 1900 only in the horizontal direction or the vertical direction, respectively, may include block shape information and split shape information for each. It can be divided independently based on.
  • the image decoding apparatus 100 divides the second coding units 1910a and 1910b generated by splitting the first coding unit 1900 in the vertical direction, respectively, in the horizontal direction, and then uses the third coding unit 1916a, 1916b, 1916c and 1916d, and the second coding units 1920a and 1920b generated by dividing the first coding unit 1900 in the horizontal direction are divided in the horizontal direction, respectively, and the third coding units 1926a, 1926b and 1926c. 1926d). Since the splitting process of the second coding units 1910a, 1910b, 1920a, and 1920b has been described above with reference to FIG. 17, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may process coding units in a predetermined order. Features of the processing of the coding unit according to the predetermined order have been described above with reference to FIG. 14, and thus a detailed description thereof will be omitted. Referring to FIG. 19, the image decoding apparatus 100 splits a first coding unit 1900 having a square shape to form three square third coding units 1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, and 1926d. ) Can be determined.
  • the image decoding apparatus 100 processes the processing sequence of the third coding units 1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, and 1926d according to a form in which the first coding unit 1900 is divided. You can decide.
  • the image decoding apparatus 100 determines the third coding units 1916a, 1916b, 1916c, and 1916d by dividing the second coding units 1910a and 1910b generated by dividing in the vertical direction in the horizontal direction, respectively.
  • the image decoding apparatus 100 may first process the third coding units 1916a and 1916b included in the left second coding unit 1910a in the vertical direction, and then include the right second coding unit 1910b.
  • the third coding units 1916a, 1916b, 1916c, and 1916d may be processed according to an order 1917 of processing the third coding units 1916c and 1916d in the vertical direction.
  • the image decoding apparatus 100 determines the third coding units 1926a, 1926b, 1926c, and 1926d by dividing the second coding units 1920a and 1920b generated by splitting in the horizontal direction in the vertical direction.
  • the image decoding apparatus 100 may first process the third coding units 1926a and 1926b included in the upper second coding unit 1920a in the horizontal direction, and then include the lower coding unit 1920b.
  • the third coding units 1926a, 1926b, 1926c, and 1926d may be processed according to an order 1927 of processing the third coding units 1926c and 1926d in the horizontal direction.
  • second coding units 1910a, 1910b, 1920a, and 1920b may be divided, respectively, and square third coding units 1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, and 1926d may be determined. have.
  • the second coding units 1910a and 1910b determined by dividing in the vertical direction and the second coding units 1920a and 1920b determined by dividing in the horizontal direction are divided into different forms, but are determined after the third coding unit 1916a.
  • the first coding unit 1900 is divided into coding units having the same type.
  • the apparatus 100 for decoding an image recursively splits a coding unit through a different process based on at least one of block shape information and split shape information, and as a result, even if the coding units having the same shape are determined, the plurality of pictures determined in the same shape are determined. Coding units may be processed in different orders.
  • 20 is a diagram illustrating a process of determining a depth of a coding unit as a shape and a size of a coding unit change when a coding unit is recursively divided and a plurality of coding units are determined according to an embodiment.
  • the image decoding apparatus 100 may determine the depth of a coding unit according to a predetermined criterion.
  • the predetermined criterion may be the length of the long side of the coding unit.
  • the depth of the current coding unit is greater than the depth of the coding unit before the split. It can be determined that the depth is increased by n.
  • a coding unit having an increased depth is expressed as a coding unit of a lower depth.
  • the image decoding apparatus 100 may have a square shape based on block shape information indicating a square shape (for example, block shape information may indicate '0: SQUARE').
  • the first coding unit 2000 may be divided to determine a second coding unit 2002, a third coding unit 2004, and the like of a lower depth. If the size of the square first coding unit 2000 is 2Nx2N, the second coding unit 2002 determined by dividing the width and height of the first coding unit 2000 by 1/21 times may have a size of NxN. have. Furthermore, the third coding unit 2004 determined by dividing the width and the height of the second coding unit 2002 into half sizes may have a size of N / 2 ⁇ N / 2.
  • the width and height of the third coding unit 2004 correspond to 1/22 times the first coding unit 2000.
  • the depth of the first coding unit 2000 is D
  • the depth of the second coding unit 2002 that is 1/21 times the width and the height of the first coding unit 2000 may be D + 1
  • the depth of the third coding unit 2004 that is 1/22 times the width and the height of 2000 may be D + 2.
  • block shape information indicating a non-square shape (e.g., block shape information indicates that the height is a non-square longer than the width '1: NS_VER' or the width is a non-square longer than the height).
  • 2 may indicate NS_HOR ', and the image decoding apparatus 100 may divide the first coding unit 2010 or 2020 having a non-square shape into the second coding unit 2012 or 2022 of the lower depth.
  • the third coding unit 2014 or 2024 may be determined.
  • the image decoding apparatus 100 may determine a second coding unit (for example, 2002, 2012, 2022, etc.) by dividing at least one of a width and a height of the Nx2N-sized first coding unit 2010. That is, the image decoding apparatus 100 may divide the first coding unit 2010 in the horizontal direction to determine the second coding unit 2002 having the NxN size or the second coding unit 2022 having the NxN / 2 size.
  • the second coding unit 2012 having a size of N / 2 ⁇ N may be determined by splitting in the horizontal direction and the vertical direction.
  • the image decoding apparatus 100 determines at least one of a width and a height of a 2N ⁇ N sized first coding unit 2020 to determine a second coding unit (eg, 2002, 2012, 2022, etc.). It may be. That is, the image decoding apparatus 100 may divide the first coding unit 2020 in the vertical direction to determine a second coding unit 2002 having an NxN size or a second coding unit 2012 having an N / 2xN size.
  • the second coding unit 2022 having the size of NxN / 2 may be determined by splitting in the horizontal direction and the vertical direction.
  • the image decoding apparatus 100 determines at least one of a width and a height of the NxN-sized second coding unit 2002 to determine a third coding unit (eg, 2004, 2014, 2024, etc.). It may be. That is, the image decoding apparatus 100 determines the third coding unit 2004 having a size of N / 2xN / 2 by dividing the second coding unit 2002 in the vertical direction and the horizontal direction, or makes the N / 22xN / 2 size product. The third coding unit 2014 may be determined or the third coding unit 2024 having a size of N / 2 ⁇ N / 22 may be determined.
  • a third coding unit eg, 2004, 2014, 2024, etc.
  • the image decoding apparatus 100 splits at least one of a width and a height of the N / 2 ⁇ N sized second coding unit 2012 to a third coding unit (eg, 2004, 2014, 2024, etc.). May be determined. That is, the image decoding apparatus 100 divides the second coding unit 2012 in the horizontal direction to form a third coding unit 2004 having a size of N / 2 ⁇ N / 2 or a third coding unit 2024 having a size of N / 2xN / 22. ) May be determined or divided into vertical and horizontal directions to determine a third coding unit 2014 having a size of N / 22 ⁇ N / 2.
  • the image decoding apparatus 100 splits at least one of a width and a height of the NxN / 2 sized second coding unit 2014 to a third coding unit (eg, 2004, 2014, 2024, etc.). May be determined. That is, the image decoding apparatus 100 divides the second coding unit 2012 in the vertical direction to form a third coding unit 2004 having a size of N / 2 ⁇ N / 2 or a third coding unit having a size of N / 22xN / 2 (2014). ) May be determined or divided in the vertical direction and the horizontal direction to determine the third coding unit 2024 of size N / 2 ⁇ N / 22.
  • a third coding unit eg, 2004, 2014, 2024, etc.
  • the image decoding apparatus 100 may divide a square coding unit (for example, 2000, 2002, 2004) in a horizontal direction or a vertical direction.
  • the first coding unit 2000 having a size of 2Nx2N is divided in the vertical direction to determine the first coding unit 2010 having the size of Nx2N, or the first coding unit 2020 having a size of 2NxN is determined by splitting in the horizontal direction.
  • the depth of the coding unit determined by splitting the first coding unit 2000, 2002 or 2004 having a size of 2N ⁇ 2N into the horizontal or vertical direction is determined. May be the same as the depth of the first coding unit 2000, 2002, or 2004.
  • the width and height of the third coding unit 2014 or 2024 may correspond to 1/22 times the first coding unit 2010 or 2020.
  • the depth of the first coding unit 2010 or 2020 is D
  • the depth of the second coding unit 2012 or 2014 that is 1/2 the width and height of the first coding unit 2010 or 2020 may be D + 1.
  • the depth of the third coding unit 2014 or 2024 that is 1/22 times the width and the height of the first coding unit 2010 or 2020 may be D + 2.
  • FIG. 21 illustrates a depth index and a part index (PID) for classifying coding units, which may be determined according to shapes and sizes of coding units, according to an embodiment.
  • PID part index
  • the image decoding apparatus 100 may determine a second coding unit having various forms by dividing the first coding unit 2100 having a square shape. Referring to FIG. 21, the image decoding apparatus 100 divides the first coding unit 2100 in at least one of a vertical direction and a horizontal direction according to the split type information to thereby obtain a second coding unit 2102a, 2102b, 2104a,. 2104b, 2106a, 2106b, 2106c, 2106d). That is, the image decoding apparatus 100 may determine the second coding units 2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, and 2106d based on the split shape information about the first coding unit 2100.
  • the second coding units 2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, and 2106d which are determined according to split shape information about the first coding unit 2100 having a square shape, have a long side length. Depth can be determined based on this. For example, since the length of one side of the first coding unit 2100 having a square shape and the length of the long side of the second coding units 2102a, 2102b, 2104a, and 2104b having a non-square shape are the same, the first coding unit ( 2100 and the depths of the non-square second coding units 2102a, 2102b, 2104a, and 2104b may be regarded as D.
  • the image decoding apparatus 100 divides the first coding unit 2100 into four square second coding units 2106a, 2106b, 2106c, and 2106d based on the split shape information
  • the image having the square shape may be used. Since the length of one side of the two coding units 2106a, 2106b, 2106c, and 2106d is 1/2 times the length of one side of the first coding unit 2100, the depths of the second coding units 2106a, 2106b, 2106c, and 2106d are determined. May be a depth of D + 1 that is one depth lower than D, which is a depth of the first coding unit 2100.
  • the image decoding apparatus 100 divides a first coding unit 2110 having a height greater than a width in a horizontal direction according to split shape information, thereby performing a plurality of second coding units 2112a, 2112b, 2114a, 2114b and 2114c).
  • the image decoding apparatus 100 divides a first coding unit 2120 having a shape having a width greater than a height in a vertical direction according to split shape information, and thus includes a plurality of second coding units 2122a, 2122b, 2124a, 2124b, 2124c).
  • the second coding units 2112a, 2112b, 2114a, 2114b, 2116a, 2116b, 2116c, and 2116d that are determined according to split shape information about the first coding unit 2110 or 2120 having a non-square shape may be used. Depth may be determined based on the length of the long side. For example, since the length of one side of the second coding units 2112a and 2112b having a square shape is 1/2 times the length of one side of the first coding unit 2110 having a non-square shape having a height greater than the width, the square is square.
  • the depths of the second coding units 2102a, 2102b, 2104a, and 2104b of the form are D + 1, which is one depth lower than the depth D of the first coding unit 2110 of the non-square form.
  • the image decoding apparatus 100 may divide the non-square first coding unit 2110 into odd second coding units 2114a, 2114b, and 2114c based on the split shape information.
  • the odd numbered second coding units 2114a, 2114b, and 2114c may include non-square second coding units 2114a and 2114c and square shape second coding units 2114b.
  • the length of the long side of the second coding units 2114a and 2114c of the non-square shape and the length of one side of the second coding unit 2114b of the square shape is 1 / time of the length of one side of the first coding unit 2110.
  • the depths of the second coding units 2114a, 2114b, and 2114c may be a depth of D + 1 that is one depth lower than the depth D of the first coding unit 2110.
  • the image decoding apparatus 100 corresponds to the above-described method of determining depths of coding units associated with the first coding unit 2110 and is related to the first coding unit 2120 having a non-square shape having a width greater than the height. Depth of coding units may be determined.
  • the image decoding apparatus 100 may determine the size ratio between the coding units.
  • the index can be determined based on this.
  • a coding unit 2114b positioned at the center of odd-numbered split coding units 2114a, 2114b, and 2114c may have the same width as the other coding units 2114a and 2114c but have different heights. It may be twice the height of the fields 2114a and 2114c. That is, in this case, the coding unit 2114b positioned in the center may include two of the other coding units 2114a and 2114c.
  • the image decoding apparatus 100 may determine whether odd-numbered split coding units are not the same size based on whether there is a discontinuity of an index for distinguishing between the divided coding units.
  • the image decoding apparatus 100 may determine whether the image decoding apparatus 100 is divided into a specific division type based on a value of an index for dividing the plurality of coding units determined by dividing from the current coding unit. Referring to FIG. 21, the image decoding apparatus 100 determines an even number of coding units 2112a and 2112b by dividing a first coding unit 2110 having a height greater than a width, or an odd number of coding units 2114a and 2114b. , 2114c). The image decoding apparatus 100 may use an index (PID) indicating each coding unit to distinguish each of the plurality of coding units. According to an embodiment, the PID may be obtained from a sample (eg, an upper left sample) at a predetermined position of each coding unit.
  • a sample eg, an upper left sample
  • the image decoding apparatus 100 may determine a coding unit of a predetermined position among coding units determined by splitting by using an index for dividing coding units. According to an embodiment, when the split type information of the first coding unit 2110 having a height greater than the width is divided into three coding units, the image decoding apparatus 100 may decode the first coding unit 2110. It may be divided into three coding units 2114a, 2114b, and 2114c. The image decoding apparatus 100 may allocate an index for each of three coding units 2114a, 2114b, and 2114c. The image decoding apparatus 100 may compare the indices of the respective coding units to determine the coding unit among the oddly divided coding units.
  • the image decoding apparatus 100 encodes a coding unit 2114b having an index corresponding to a center value among the indices based on the indexes of the coding units, and encodes the center position among the coding units determined by splitting the first coding unit 2110. It can be determined as a unit. According to an embodiment, when determining the indexes for distinguishing the divided coding units, the image decoding apparatus 100 may determine the indexes based on the size ratio between the coding units when the coding units are not the same size. . Referring to FIG. 21, a coding unit 2114b generated by dividing a first coding unit 2110 may include coding units 2114a and 2114c having the same width but different heights as other coding units 2114a and 2114c.
  • the image decoding apparatus 100 may determine that the image decoding apparatus 100 is divided into a plurality of coding units including a coding unit having a different size from other coding units. In this case, when the split form information is divided into odd coding units, the image decoding apparatus 100 may have a shape different from a coding unit having a different coding unit (for example, a middle coding unit) at a predetermined position among the odd coding units.
  • the current coding unit can be divided by.
  • the image decoding apparatus 100 may determine a coding unit having a different size by using an index (PID) for the coding unit.
  • PID index
  • the above-described index, the size or position of the coding unit of the predetermined position to be determined are specific to explain an embodiment and should not be construed as being limited thereto. Various indexes and positions and sizes of the coding unit may be used. Should be interpreted.
  • the image decoding apparatus 100 may use a predetermined data unit at which recursive division of coding units begins.
  • FIG. 22 illustrates that a plurality of coding units are determined according to a plurality of predetermined data units included in a picture according to an embodiment.
  • the predetermined data unit may be defined as a data unit in which a coding unit starts to be recursively divided using at least one of block shape information and split shape information. That is, it may correspond to the coding unit of the highest depth used in the process of determining a plurality of coding units for dividing the current picture.
  • a predetermined data unit will be referred to as a reference data unit.
  • the reference data unit may represent a predetermined size and shape.
  • the reference coding unit may include samples of M ⁇ N. M and N may be the same as each other, and may be an integer represented by a multiplier of two. That is, the reference data unit may represent a square or non-square shape, and then may be divided into integer coding units.
  • the image decoding apparatus 100 may divide the current picture into a plurality of reference data units. According to an embodiment, the image decoding apparatus 100 may divide a plurality of reference data units for dividing a current picture by using split information for each reference data unit. The division process of the reference data unit may correspond to the division process using a quad-tree structure.
  • the image decoding apparatus 100 may predetermine the minimum size of the reference data unit included in the current picture. Accordingly, the image decoding apparatus 100 may determine a reference data unit having various sizes having a minimum size or more, and determine at least one coding unit by using block shape information and split shape information based on the determined reference data unit. You can decide.
  • the image decoding apparatus 100 may use a reference coding unit 2200 having a square shape, or may use a reference coding unit 2202 of a non-square shape.
  • the shape and size of the reference coding unit may include various data units (eg, a sequence, a picture, a slice, and a slice segment) that may include at least one reference coding unit. slice segment, maximum coding unit, etc.).
  • the receiver 210 of the image decoding apparatus 100 may obtain at least one of information about the shape of the reference coding unit and information about the size of the reference coding unit from the bitstream for each of the various data units. .
  • a process of determining at least one coding unit included in the reference coding unit 2200 having a square shape has been described above by splitting the current coding unit 300 of FIG. 10, and refers to the reference coding unit 2200 having a non-square shape. Since the process of determining at least one coding unit included in the above is described above through the process of splitting the current coding unit 1100 or 1150 of FIG. 11, a detailed description thereof will be omitted.
  • the image decoding apparatus 100 may determine the size and shape of the reference coding unit in order to determine the size and shape of the reference coding unit according to some data unit predetermined based on a predetermined condition.
  • a predetermined condition for example, a data unit having a size less than or equal to a slice
  • the various data units eg, sequence, picture, slice, slice segment, maximum coding unit, etc.
  • an index for identifying the size and shape of the reference coding unit may be obtained.
  • the image decoding apparatus 100 may determine the size and shape of the reference data unit for each data unit satisfying the predetermined condition by using the index.
  • the use efficiency of the bitstream may not be good, and thus the shape of the reference coding unit
  • only the index may be obtained and used.
  • at least one of the size and shape of the reference coding unit corresponding to the index indicating the size and shape of the reference coding unit may be predetermined.
  • the image decoding apparatus 100 selects at least one of the predetermined size and shape of the reference coding unit according to the index, thereby selecting at least one of the size and shape of the reference coding unit included in the data unit that is the reference for obtaining the index. You can decide.
  • the image decoding apparatus 100 may use at least one reference coding unit included in one maximum coding unit. That is, at least one reference coding unit may be included in the maximum coding unit for dividing an image, and the coding unit may be determined through a recursive division process of each reference coding unit. According to an embodiment, at least one of the width and the height of the maximum coding unit may correspond to an integer multiple of at least one of the width and the height of the reference coding unit. According to an embodiment, the size of the reference coding unit may be a size obtained by dividing the maximum coding unit n times according to a quad tree structure.
  • the image decoding apparatus 100 may determine the reference coding unit by dividing the maximum coding unit n times according to the quad tree structure, and according to various embodiments, the reference coding unit may include at least one of block shape information and split shape information. Can be divided based on.
  • FIG. 23 is a diagram of a processing block serving as a reference for determining a determination order of a reference coding unit included in a picture 2300, according to an exemplary embodiment.
  • the image decoding apparatus 100 may determine at least one processing block for dividing a picture.
  • the processing block is a data unit including at least one reference coding unit for dividing an image, and the at least one reference coding unit included in the processing block may be determined in a specific order. That is, the determination order of at least one reference coding unit determined in each processing block may correspond to one of various types of order in which the reference coding unit may be determined, and the reference coding unit determination order determined in each processing block. May be different per processing block.
  • the order of determination of the reference coding units determined for each processing block is raster scan, Z-scan, N-scan, up-right diagonal scan, and horizontal scan. It may be one of various orders such as a horizontal scan, a vertical scan, etc., but the order that may be determined should not be construed as being limited to the scan orders.
  • the image decoding apparatus 100 may determine the size of at least one processing block included in the image by obtaining information about the size of the processing block.
  • the image decoding apparatus 100 may determine the size of at least one processing block included in the image by obtaining information about the size of the processing block from the bitstream.
  • the size of such a processing block may be a predetermined size of a data unit indicated by the information about the size of the processing block.
  • the receiver 210 of the image decoding apparatus 100 may obtain information about a size of a processing block from a bitstream for each specific data unit.
  • the information about the size of the processing block may be obtained from the bitstream in data units such as an image, a sequence, a picture, a slice, and a slice segment. That is, the receiver 210 may obtain information about the size of the processing block from the bitstream for each of the various data units, and the image decoding apparatus 100 may divide the picture using at least the information about the size of the acquired processing block.
  • the size of one processing block may be determined, and the size of the processing block may be an integer multiple of the reference coding unit.
  • the image decoding apparatus 100 may determine the sizes of the processing blocks 2302 and 2312 included in the picture 2300. For example, the image decoding apparatus 100 may determine the size of the processing block based on the information about the size of the processing block obtained from the bitstream. Referring to FIG. 23, the apparatus 100 for decoding an image according to an embodiment may include a horizontal size of the processing blocks 2302 and 2312 as four times the horizontal size of the reference coding unit and four times the vertical size of the reference coding unit. You can decide. The image decoding apparatus 100 may determine an order in which at least one reference coding unit is determined in at least one processing block.
  • the image decoding apparatus 100 may determine each processing block 2302 and 2312 included in the picture 2300 based on the size of the processing block, and include the processing block 2302 and 2312 in the processing block 2302 and 2312.
  • a determination order of at least one reference coding unit may be determined.
  • the determination of the reference coding unit may include the determination of the size of the reference coding unit.
  • the image decoding apparatus 100 may obtain information about a determination order of at least one reference coding unit included in at least one processing block from a bitstream, and based on the obtained determination order The order in which at least one reference coding unit is determined may be determined.
  • the information about the determination order may be defined in an order or direction in which reference coding units are determined in the processing block. That is, the order in which the reference coding units are determined may be independently determined for each processing block.
  • the image decoding apparatus 100 may obtain information about a determination order of a reference coding unit from a bitstream for each specific data unit.
  • the receiver 210 may obtain information about a determination order of a reference coding unit from a bitstream for each data unit such as an image, a sequence, a picture, a slice, a slice segment, and a processing block. Since the information about the determination order of the reference coding unit indicates the determination order of the reference coding unit in the processing block, the information about the determination order may be obtained for each specific data unit including an integer number of processing blocks.
  • the image decoding apparatus 100 may determine at least one reference coding unit based on the order determined according to the embodiment.
  • the receiver 210 may obtain information about a reference coding unit determination order from the bitstream as information related to the processing blocks 2302 and 2312, and the image decoding apparatus 100 may process the processing block ( An order of determining at least one reference coding unit included in 2302 and 2312 may be determined, and at least one reference coding unit included in the picture 2300 may be determined according to the determination order of the coding unit.
  • the image decoding apparatus 100 may determine determination orders 2304 and 2314 of at least one reference coding unit associated with each processing block 2302 and 2312. For example, when information about the determination order of the reference coding unit is obtained for each processing block, the reference coding unit determination order associated with each processing block 2302 and 2312 may be different for each processing block.
  • the reference coding unit included in the processing block 2302 may be determined according to the raster scan order.
  • the reference coding unit determination order 2314 associated with the other processing block 2312 is the reverse order of the raster scan order
  • the reference coding units included in the processing block 2312 may be determined according to the reverse order of the raster scan order.
  • the image decoding apparatus 100 may decode at least one determined reference coding unit according to an embodiment.
  • the image decoding apparatus 100 may decode an image based on the reference coding unit determined through the above-described embodiment.
  • the method of decoding the reference coding unit may include various methods of decoding an image.
  • the image decoding apparatus 100 may obtain and use block shape information indicating a shape of a current coding unit or split shape information indicating a method of dividing a current coding unit from a bitstream.
  • Block type information or split type information may be included in a bitstream associated with various data units.
  • the image decoding apparatus 100 may include a sequence parameter set, a picture parameter set, a video parameter set, a slice header, and a slice segment header. block type information or segmentation type information included in a segment header) may be used.
  • the image decoding apparatus 100 may obtain and use syntax corresponding to block type information or split type information from the bitstream from the bitstream for each maximum coding unit, reference coding unit, and processing block.
  • the above-described embodiments of the present disclosure may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer operating the program using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

일 실시예에 따른, 영상을 복호화 하는 방법에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계; 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계; 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계; 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 단계를 포함하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 방법이 제공될 수 있다. 또 다른 실시예로서 상기 영상 복호화 방법을 수행하는 영상 복호화 장치가 제공될 수 있으며, 상기 영상 복호화 방법 및 장치에 대응하는 영상 부호화 방법 및 장치가 제공될 수 있다.

Description

영상을 부호화/복호화 하는 방법 및 그 장치
일 실시예에 따른 방법 및 장치는 영상에 포함되는 다양한 데이터 단위를 이용하여, 영상을 부호화 또는 복호화 할 수 있다.
영상 데이터는 소정의 데이터 압축 표준, 예를 들면 MPEG(Moving Picture Expert Group) 표준에 따른 코덱에 의하여 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
코덱에 관련된 표준은 원본 영상의 정보량을 효율적으로 압축하는 방법에 대한 기술을 제공하며, 이러한 압축 과정에는 이미 복호화된 영상 데이터를 이용하여 현재 복호화하려는 샘플값을 결정하는 예측 과정이 수행된다. 이러한 예측 과정에서는 공간적 예측이 수행되는 인트라(intra) 예측 과정 및 시간적 예측이 수행되는 인터(inter) 예측 과정이 포함될 수 있다. 예측 수행 결과에 따라 생성되는 예측 신호는 영상 데이터의 복원을 위해 레지듀얼 신호와 더해질 수 있으며 이러한 레지듀얼 신호는 변환 및 양자화된 정보에 대하여 다시 역변환 및 역양자화하여 획득할 수 있다.
종래의 인터 예측이 이용되는 경우, 현재 예측블록에 대한 하나의 움직임 벡터가 가리키는 하나의 참조픽쳐를 이용하는 단방향 예측(uni-prediction)거나 두 개의 움직임 벡터가 가리키는 두개의 참조픽쳐를 이용하는 양방향 예측(bi-prediction)이 수행될 수 있었다.
다만 영상의 복원을 위해 인터 예측에서 이용되는 레지듀얼 신호가 가지고 있는 노이즈에 따른 화질 열화를 개선함으로써 인터 예측 성능을 향상시킬 필요가 있다.
일 실시예에 따른, 영상을 복호화 하는 방법에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계; 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계; 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계; 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 단계를 포함하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 방법이 제공될 수 있다.
일 실시예에 따른, 영상을 부호화 하는 방법에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계; 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계; 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계; 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 부호화 하는 단계를 포함하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 방법이 제공될 수 있다.
일 실시예에 따른, 영상을 복호화 하는 장치에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 복호화부; 및 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고, 복호화부는 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 것을 특징으로 하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 장치가 제공될 수 있다.
일 실시예에 따른, 영상을 부호화 하는 장치에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 부호화부; 및 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고, 복호화부는 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 것을 특징으로 하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 장치가 제공될 수 있다.
일 실시예에 따라 인터 예측에 이용되는 참조픽쳐를 다양하게 결정할 수 있고, 이에 따라 레지듀얼 신호에 포함되는 노이즈를 줄일 수 있고, 블록 단위의 인터 예측에 따른 원본신호와의 오차를 줄여 인터 예측 성능을 개선할 수 있다.
도 1a는 일 실시예에 따라 제1 참조블록 및 제2 참조블록을 결정하여 제1 참조블록 및 제2 참조블록 중 적어도 하나를 현재 예측블록의 인터 예측을 수행할 수 있는 영상 복호화 장치의 블록도를 도시한다.
도 1b는 일 실시예에 따라 제1 참조블록 및 제2 참조블록을 결정하여 제1 참조블록 및 제2 참조블록 중 적어도 하나를 현재 예측블록의 인터 예측을 수행할 수 있는 영상 부호화 장치의 블록도를 도시한다.
도 2는 일 실시예에 따라 영상 복호화 장치가 제1 참조블록 및 제2 참조 블록 중 적어도 하나를 이용하여 영상을 복호화 하는 과정을 나타내는 흐름도이다.
도 3은 일 실시예에 따라 영상 복호화 장치가 제1 참조픽쳐 및 제2 참조픽쳐를 이용하여 현재 예측블록의 인터 예측을 수행하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치에서 영상이 복호화 되는 과정을 설명하기 위한 블록도이다.
도 5는 일 실시예에 따라 영상 부호화 장치에서 영상이 부호화 되는 과정을 설명하기 위한 블록도이다.
도 6은 일 실시예에 따라 영상 복호화 장치가 참조블록 정보에 기초하여 결정될 수 있는 적어도 하나의 참조블록을 이용하여 현재 예측블록에서의 인터 예측을 수행하는 과정에 대한 흐름도를 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 인터 예측에 이용할 적어도 하나의 참조블록을 결정하는 구체적인 과정을 나타내는 흐름도이다.
도 8a는 일 실시예에 따라 현재 예측블록의 인터 예측을 수행하는 데 이용되는 적어도 하나의 참조블록으로서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 결정하는 과정을 설명하기 위한 도면이다.
도 8b는 일 실시예에 따라 현재 예측블록의 인터 예측을 위하여 양방향 예측이 수행되는 것을 도시한다.
도 9는 일 실시예에 따라 제1 참조픽쳐, 제2 참조픽쳐를 이용하여 노이즈 저감 참조픽쳐를 생성하는 방법을 도시한다.
도 10은 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 11은 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 12는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 13은 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 14는 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 15는 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 16은 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 17은 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 18은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 19는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 20은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 21은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 22는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 23은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따른, 영상을 복호화 하는 방법에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계; 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계; 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계; 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 단계를 포함하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 방법이 제공될 수 있다.
일 실시예에 따른 영상 복호화 방법에서 제2 참조픽쳐는 제1 참조픽쳐의 부호화 과정에서 움직임 추정 및 움직임 보상을 수행하여 획득되는 샘플을 포함할 수 있다.
일 실시예에 따라 현재픽쳐를 복호화 하는 단계는 비트스트림으로부터 획득되는 참조블록 정보에 기초하여 인터 예측 수행에 이용되는 적어도 하나의 참조블록을 결정하는 단계; 및 인터 예측 수행에 이용되는 적어도 하나의 참조블록을 이용하여 인터 예측을 수행하는 단계를 포함할 수 있고, 참조블록 정보는 제1 참조블록 및 제2 참조블록 중 어느 참조블록에 기초하여 현재 예측블록에서의 인터 예측이 수행되는지를 나타내는 것을 특징으로 할 수 있다.
일 실시예에 따라 적어도 하나의 참조블록을 결정하는 단계는 참조블록 정보가 제2 참조블록이 이용되는 예측 방법으로 인터 예측이 수행되는 것을 나타내는 경우, 인터 예측 수행에 이용되는 제2 참조블록을 포함하는 적어도 하나의 참조블록을 미리 결정된 조건에 기초하여 결정하는 단계를 포함할 수 있다.
일 실시예에 따라 적어도 하나의 참조블록을 미리 결정된 조건에 기초하여 결정하는 단계는 제1 참조픽쳐 및 제2 참조픽쳐의 차이가 제1 임계값보다 작아야 한다는 제1 조건 및 제1 움직임 벡터의 크기가 제2 임계값보다 작아야 한다는 제2 조건 중 적어도 하나의 조건에 기초하여, 인터 예측 수행에 이용되는 제2 참조블록, 또는 제1 참조블록 및 제2 참조블록을 결정하는 단계를 포함할 수 있다.
일 실시예에 따라 현재픽쳐를 복호화 하는 단계는 제1 참조픽쳐 및 제2 참조픽쳐를 이용하여 제3 참조픽쳐를 생성하는 단계; 및 제3 참조픽쳐에 포함되는 제3 참조블록을 이용하여 현재 예측블록에서 인터 예측을 수행하는 단계를 포함할 수 있다.
일 실시예에 따라 제3 참조픽쳐를 생성하는 단계는 제1 참조블록의 주변 샘플값 및 제2 참조블록의 주변 샘플값을 이용하여 제1 가중치 및 제2 가중치를 결정하는 단계; 및 제1 가중치 및 제2 가중치를 각각 제1 참조블록 및 제2 참조블록에 적용하여 제3 참조픽쳐에 포함되는 제3 참조블록을 결정하는 단계를 포함할 수 있다.
일 실시예에 따라 제1 가중치 및 제2 가중치를 결정하는 단계는 제1 참조블록의 좌측 경계에 인접하는 적어도 하나의 샘플들 및 제1 참조블록의 좌측 경계에 인접하는 적어도 하나의 샘플들을 이용하여 제1 가중치 및 제2 가중치를 결정하는 단계를 포함할 수 있다.
일 실시예에 따라 현재픽쳐를 복호화 하는 단계는 서로 구분되는 버퍼에 저장된 제1 참조픽쳐 및 제2 참조픽쳐 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화하는 단계를 포함할 수 있다.
일 실시예에 따라 현재픽쳐를 복호화 하는 단계는 동일한 버퍼에 저장된 제1 참조픽쳐 및 제2 참조픽쳐 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화하는 단계를 포함할 수 있다.
일 실시예에 따라 영상 복호화 방법은 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제2 움직임 벡터를 결정하는 단계; 제2 움직임 벡터에 기초하여 제4 참조픽쳐에 포함되는 제4 참조블록을 결정하는 단계; 및 제4 참조블록의 위치에 기초하여 제5 참조픽쳐에서의 제5 참조블록을 결정하는 단계를 더 포함할 수 있고, 제5 참조픽쳐는 제4 참조픽쳐의 예측값을 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라 현재픽쳐를 복호화 하는 단계는 제1 참조블록 및 제2 참조블록 중 적어도 하나, 및 제4 참조블록 및 제5 참조블록 중 적어도 하나를 이용하여 현재 예측블록에서 양방향 인터 예측을 수행하는 단계를 포함할 수 있다.
일 실시예에 따른, 영상을 부호화 하는 방법에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계; 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계; 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계; 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 부호화 하는 단계를 포함하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 방법이 제공될 수 있다.
일 실시예에 따른, 영상을 복호화 하는 장치에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 복호화부; 및 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고, 복호화부는 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 것을 특징으로 하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 장치가 제공될 수 있다.
일 실시예에 따른, 영상을 부호화 하는 장치에 있어서, 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 부호화부; 및 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고, 복호화부는 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 하는 것을 특징으로 하고, 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 장치가 제공될 수 있다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 명세서는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 개시에 대해 구체적으로 설명하기로 한다.
본 개시에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
아래에서는 첨부한 도면을 참고하여 실시예들에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
도 1a는 일 실시예에 따라 제1 참조블록 및 제2 참조블록을 결정하여 제1 참조블록 및 제2 참조블록 중 적어도 하나를 현재 예측블록의 인터 예측을 수행할 수 있는 영상 복호화 장치(100)의 블록도를 도시한다.
도 1a을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하고, 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정할 수 있다. 또한 영상 복호화 장치(100)는 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하고, 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 할 수 있다. 구체적으로, 영상 복호화 장치(100)의 참조블록 결정부(110)는 제1 움직임 벡터에 기초하여 제1 참조블록을 결정할 수 있고, 이러한 제1 참조블록의 위치에 기초하여 제2 참조픽쳐를 결정할 수 있다. 또한 영상 복호화 장치(100)의 복호화부(120)는 적어도 하나의 예측블록을 결정할 수 있고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정할 수 있고, 결정된 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하여 인터 예측을 수행할 수 있다. 일 실시예에 따라 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 픽쳐일 수 있다. 제1 참조픽쳐 및 제2 참조픽쳐와의 관계에 기초하여 영상을 복호화하는 과정은 이하의 다양한 실시예를 통해 설명하도록 한다.
도 2는 일 실시예에 따라 영상 복호화 장치(100)가 제1 참조블록 및 제2 참조 블록 중 적어도 하나를 이용하여 영상을 복호화 하는 과정을 나타내는 흐름도이다.
S210단계에서 복호화부(120)는 일 실시예에 따라 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정할 수 있다. 예측블록을 결정하는 과정은 현재픽쳐를 분할하는 다양한 데이터 단위들을 이용한 과정이 포함될 수 있으며, 이에 대한 일 실시예로서 최대부호화단위 또는 부호화단위에 기초하여 예측블록을 결정하는 과정에 대하여 후술하도록 한다.
S212단계에서 복호화부(120)는 적어도 하나의 예측 블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정할 수 있다. 현재 예측 블록과 관련된 움직임 벡터를 결정하는 과정에는 다양한 디코딩과정이 포함될 수 있다. 예를 들면, 복호화부(120)는 현재 예측블록의 주변에 인접하는 주변블록으로부터 움직임 벡터에 대한 정보를 획득하여 현재 예측블록의 움직임 벡터를 결정할 수 있다. 즉, 현재 예측블록과 관련된 제1 움직임 벡터를 결정하기 위하여, 영상 복호화 장치(100)는 비트스트림으로부터 획득되는 정보 또는 인덱스를 이용하여 어느 주변 블록으로부터 움직임 벡터에 대한 정보를 획득할지를 결정할 수 있고, 결정된 주변 블록으로부터 움직임 벡터에 대한 정보를 획득하여 현재 예측블록에 대한 제1 움직임 벡터를 결정할 수 있다. 다만 상술한 현재 예측블록의 움직임 벡터를 결정하는 방법은 일 실시예에 불과하며 움직임 벡터 결정 방법은 상술한 과정을 포함하는 다양한 방법을 통해 수행될 수 있는 것으로 해석되어야 한다.
S214단계에서 참조블록 결정부(110)는 일 실시예에 따라 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정할 수 있다. 복호화부(120)에서 결정한 제1 움직임 벡터가 가리키는 제1 참조픽쳐 상의 제1 참조블록을 결정하여, 현재 예측블록에 포함된 샘플들의 예측값을 결정하기 위한 정보로서 이용할 수 있다.
S216단계에서 참조블록 결정부(110)는 일 실시예에 따라 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에서의 제2 참조블록을 결정할 수 있다. 일 실시예에 따라 참조블록 결정부(110)는 제1 참조픽쳐 상의 제1 참조블록의 위치를 고려하여 제2 참조픽쳐 상의 제2 참조블록을 결정할 수 있다. 예를 들면, 참조블록 결정부(110)는 제1 참조픽쳐 상의 제1 참조블록과 동일한 위치에 있는 제2 참조픽쳐 상의 제2 참조블록을 결정할 수 있다.
S220단계에서 복호화부(120)는 일 실시예에 따라 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 복호화 할 수 있다. 일 실시예에 따라 복호화부(120)는 참조블록 결정부(110)가 결정한 제1 참조블록을 이용하거나 제1 참조블록 및 제2 참조블록을 이용하거나 또는 제2 참조블록만을 이용하여 현재 예측블록을 위한 인터 예측을 수행할 수 있다. 이러한 인터 예측은 현재 예측블록의 인터 예측을 위하여 이용될 수 있는 제1 움직임 벡터에 기초하여 수행되므로, 단방향 예측(uni-prediction)에 해당할 수 있다. 일 실시예에 따라 복호화부(120)는 현재 예측블록과 관련된 양방향 예측(bi-prediction)을 수행할 수도 있으며 이에 대한 자세한 설명은 후술하도록 한다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 제1 참조픽쳐(310) 및 제2 참조픽쳐(300)를 이용하여 현재 예측블록(322)의 인터 예측을 수행하는 과정을 도시한다.
도 3를 참조하면, 영상 복호화 장치(100)의 복호화부(120)는 현재픽쳐(320)에 포함되는 적어도 하나의 예측블록 중 하나인 현재 예측블록(322)을 결정할 수 있다. 복호화부(120)는 현재 예측블록과 관련된 제1 움직임 벡터(325)를 결정할 수 있고, 제1 움직임 벡터(325)에 기초하여 제1 참조픽쳐(310) 상의 제1 참조블록(312)을 결정할 수 있다. 즉, 복호화부(120)는 현재 예측블록(322)의 주변블록으로부터 획득한 정보를 이용하여 제1 움직임 벡터(325)를 결정할 수 있고, 제1 움직임 벡터(325)에 기초하여 제1 참조픽쳐(310) 상의 제1 참조블록(312)을 결정할 수 있다. 일 실시예에 따라 복호화부(120)는 복원 픽쳐 버퍼(decoded picture buffer)에 저장된 픽쳐 중 하나인 제1 참조픽쳐(310)를 이용하여 현재 예측블록(322)에 대한 인터 예측을 수행할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 참조픽쳐(310)와 관련된 제2 참조픽쳐(300)를 이용하여 현재 예측블록(322)의 인터 예측을 수행할 수 있다. 참조블록 결정부(110)는 제1 참조픽쳐(310)상의 제1 참조블록(312)와 동일한 위치(315)에 있는 제2 참조픽쳐(300) 상의 제2 참조블록(302)을 결정할 수 있다. 일 실시예에 따라 제2 참조픽쳐(300)는 제1 참조픽쳐(310)의 예측과정에서 움직임 보상을 통해 결정되는 예측값을 포함할 수 있으며, 이러한 예측값은 제1 참조픽쳐(310)의 움직임 보상 후 레지듀얼(residual)신호를 더함으로써 복원되기 전의 정보를 포함할 수 있다. 이러한 과정에 대한 구체적인 설명은 복호화 과정에 대한 구체적인 실시예를 통해 후술하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)에서 영상이 복호화 되는 과정을 설명하기 위한 블록도이다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 레지듀얼 신호를 획득할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 비트스트림을 수신하기 위한 비트스트림 수신부(미도시)를 더 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수신한 비트스트림을 역양자화 하기 위한 역양자화부(410) 및 역양자화된 정보를 역변환하기 위한 역변환부(420)를 포함할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 복호화 대상인 부호화된 영상 데이터에 관한 데이터 및 영상의 복호화에 필요한 부호화 정보 등을 비트스트림으로부터 파싱(parsing)한 결과를 획득할 수 있으며, 부호화된 영상 데이터는 양자화된 변환계수일 수 있다. 일 실시예에 따라 영상 복호화 장치(100)의 역양자화부(410)는 역변환된 레지듀얼 신호에 대한 역양자화를 통해, 부호화 과정에서 양자화 되기 전의 데이터에 대응하는 데이터로서 레지듀얼 신호를 생성할 수 있다. 영상 복호화 장치(100)의 역변환부(420)는 최대 부호화단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환단위정보를 판독하여 부호화단위마다 변환단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해 현재 픽쳐의 공간 영역의 화소값이 복원될 수 있다. 이러한 역변환부(420) 및 역양자화부(410)는 영상 복호화 장치(100)의 복호화부(120)에 포함될 수 있으며, 이에 따라 상술한 역변환부(420) 및 역양자화부(410)의 동작은 복호화부(120)에 의해 수행될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 인터 예측부(450)는 복호화 하려는 현재 예측블록에 대한 인터 예측을 수행할 수 있다. 인터 예측부(450)는 인터 예측을 통해 현재 예측블록에 대한 예측값을 결정하기 위하여 이미 복원되어 복원 픽쳐 버퍼(440)에 저장된 참조 픽쳐를 이용할 수 있다. 이러한 복원 픽쳐 버퍼에 저장된 참조픽쳐는, 역변환 및 역양자화 과정을 통해 결정되는 레지듀얼 신호 및 상기 참조픽쳐의 예측값을 더함으로써 복원된 정보를 인루프필터링부(430)에서 필터링을 수행함으로써 복원된 픽쳐일 수 있다. 일 실시예에 따라 인루프필터링부(430) 및 인터 예측부(450)는 복호화부(120)에 포함될 수 있으며, 이에 따라 상술한 인루프필터링부(430) 및 인터 예측부(450)의 동작은 복호화부(120)에 의해 수행될 수 있다. 이하에서는 현재 예측블록에서 이용될 수 있는 참조픽쳐로서 제1 참조픽쳐 및 제2 참조픽쳐가 어떻게 복원 픽쳐 버퍼(440)에 저장되어 이용될 수 있는지에 대하여 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)의 복원 픽쳐 버퍼(440)는 제1 참조픽쳐를 저장하기 위한 제1 픽쳐버퍼(442) 및 제2 참조픽쳐를 저장하기 위한 제2 픽쳐버퍼(444)를 포함할 수 있다. 일 실시예에 따라 영상 복호화 장치의 인터 예측부(450)는 현재 픽쳐에 포함되는 현재 예측블록의 예측값을 결정하기 위하여 제1 픽쳐버퍼(442)에 포함되는 제1 참조픽쳐 및 제2 픽쳐버퍼(444)에 포함되는 제2 참조픽쳐 중 적어도 하나를 이용할 수 있다. 제1 픽쳐버퍼(442)에 저장되는 제1 참조픽쳐는 제1 참조픽쳐와 관련된 레지듀얼 신호와 제1 참조픽쳐의 예측값을 더한 결과에 대한 인루프 필터링이 수행됨으로써 생성된 복원신호를 포함할 수 있다. 영상 복호화 장치(100)는 제1 참조픽쳐와 관련된 레지듀얼 신호와 제1 참조픽쳐의 예측값을 더하기 전에 제1 참조픽쳐의 예측값을 제2 픽쳐버퍼(444)에 저장하여 현재픽쳐를 예측하는 과정에서 제2 참조픽쳐로서 이용할 수 있다. 이러한 제1 참조픽쳐와 제2 참조픽쳐를 분리하여 저장함으로써, 제1 참조픽쳐의 복원과정에서 레지듀얼 신호와 관련하여 삽입될 수 있는 노이즈에 의한 오차를 제어할 수 있고 이에 따라 객관적, 주관적 영상 화질 개선의 효과를 얻을 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제2 참조픽쳐를 이용하여 인터 예측을 수행할지 여부를 참조블록 정보에 기초하여 결정할 수 있다. 구체적으로 영상 복호화 장치(100)는 일 실시예에 따라 현재 예측블록에 대한 인터 예측에서 참조되는 참조 블록을 결정할 수 있으며, 이러한 참조 블록을 결정하는 과정에서 제2 참조픽쳐가 이용되는지 여부를 비트스트림으로부터 획득되는 참조블록 정보에 기초하여 결정할 수 있다. 일 실시예에 따라 참조블록 정보는 제1 참조블록 및 제2 참조블록 중 어느 참조블록에 기초하여 상기 현재 예측블록에서의 상기 인터 예측이 수행되는지를 나타내는 정보를 포함할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 참조블록 정보에 기초하여 결정될 수 있는 적어도 하나의 참조블록을 이용하여 현재 예측블록에서의 인터 예측을 수행하는 과정에 대한 흐름도를 도시한다. 도 6에서의 S610단계 내지 S616 단계에 대한 특징은 도 2에서의 S210단계 내지 S216단계에서 상술한 특징일 수 있으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 S618단계에서 비트스트림으로부터 획득되는 참조블록 정보에 기초하여 인터 예측 수행에 이용되는 적어도 하나의 참조블록을 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)의 복호화부(120)는 참조블록 정보의 값이 0인지 아닌지에 따라 제2 참조블록이 인터 예측이 이용되는지 이용되지 않는지를 결정할 수 있다. 참조블록 결정부(110)는 참조블록 정보가 0인 경우 현재 예측블록에서 인터 예측을 수행하기 위해 이용되는 참조블록으로서 제1 움직임 벡터가 가리키는 제1 참조픽쳐의 제1 참조블록을 결정할 수 있다. 참조블록 결정부(110)는 참조블록 정보가 1인 경우 현재 예측블록에서 인터 예측을 수행하기 위해 이용되는 참조블록으로서 제2 참조픽쳐 상의 제2 참조블록을 포함하는 적어도 하나의 참조블록을 결정할 수 있다. 즉, 참조블록 정보가 1인 경우에 현재 예측블록의 인터 예측 과정에 제2 참조블록만이 이용되거나 또는 제1 참조블록 및 제2 참조블록이 모두 이용될 수도 있다. 이에 대한 설명은 후술하도록 한다. 인터 예측 과정에서 제2 참조블록만이 이용될지 제1 참조블록 및 제2 참조블록이 모두 이용될지에 대한 결정과정은 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)의 복호화부(120)는 S620 단계에서 인터 예측의 수행에 이용되는 것으로 결정된 적어도 하나의 참조블록을 이용하여 인터 예측을 수행할 수 있다.
도 7은 일 실시예에 따라 영상 복호화 장치(100)가 인터 예측에 이용할 적어도 하나의 참조블록을 결정하는 구체적인 과정을 나타내는 흐름도이다. 도 7에서의 S710단계 내지 S716 단계에 대한 특징은 도 2에서의 S210단계 내지 S216단계에서 상술한 특징일 수 있으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 S718단계에서 참조블록 정보가 제2 참조블록이 이용되는 예측 방법으로 인터 예측이 수행되는지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 참조블록 결정부(110)는 수신된 비트스트림으로부터 참조블록 정보를 획득하여 인터 예측에 이용되는 적어도 하나의 참조블록 중 제2 참조블록이 포함되는지 여부를 결정할 수 있다. 참조블록 정보가 인터 예측에 이용되는 적어도 하나의 참조블록 중 제2 참조블록이 포함되지 않음을 나타내는 경우 참조블록 결정부(110)는 현재 예측블록의 인터 예측에 이용될 참조블록으로서 제1 참조블록을 결정할 수 있고, 이에 따라 복호화부(120)는 S720 단계에서 제1 참조블록을 이용하여 현재 예측블록의 인터 예측을 수행할 수 있다.
일 실시예에 따라 참조블록 정보가 인터 예측에 이용되는 적어도 하나의 참조블록 중 제2 참조블록이 포함되는 것을 나타내는 경우, 참조블록 결정부(110)는 현재 예측블록의 인터 예측에 이용될 참조블록으로서 제2 참조블록을 결정할 수 있다. 또한, 참조블록 결정부(110)는 현재 예측블록의 인터 예측 과정에서 제2 참조블록만 이용되는지 제1 참조블록 및 제2 참조블록이 모두 이용되는지에 대하여 S722단계에서 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 S722단계에서 미리 결정된 조건을 만족하는지 여부를 결정하여, 현재 예측블록의 인터 예측 과정에서 제2 참조블록만 이용되는지 제1 참조블록 및 제2 참조블록이 모두 이용되는지에 대하여 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 참조블록 결정부(110)는 미리 결정된 조건을 만족하는지 여부를 결정할 수 있으며, 이러한 미리 결정된 조건은 적어도 하나의 조건들의 조합일 수 있다.
일 실시예에 따라 참조블록 결정부(110)는 미리 결정된 조건 중 하나로서 제1 참조블록 및 제2 참조블록의 차이가 임계값(이하, 제1 임계값) 미만인지 여부를 결정하여 인터 예측에 이용되는 적어도 하나의 참조블록을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)의 참조블록 결정부(110)는 제1 참조블록에 포함된 샘플의 샘플값 및 제2 참조블록에 포함된 샘플의 샘플값 각각의 차이의 절대값을 더한 계산 결과가 제1 임계값 미만인지를 결정할 수 있다. 복호화부(120)는 계산 결과가 제1 임계값 미만인 경우 S726단계에서 제1 참조블록 및 제2 참조블록을 이용하여 현재 예측블록의 인터 예측을 수행할 수 있고, 계산 결과가 제1 임계값 이상인 경우 S724단계에서 제2 참조블록만을 이용하여 현재 예측블록의 인터 예측을 수행할 수 있다.
일 실시예에 따라 참조블록 결정부(110)는 미리 결정된 조건 중 또 다른 하나로서, 현재 예측블록과 관련된 제1 움직임 벡터의 크기가 임계값(이하, 제2 임계값)미만인지 여부를 결정하여 인터 예측에 이용되는 적어도 하나의 참조블록을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)의 참조블록 결정부(110)는 현재 예측블록이 제1 참조블록을 가리키는 제1 움직임 벡터의 크기를 결정할 수 있고, 결정된 제1 움직임 벡터의 크기는 제2 임계값과 비교될 수 있다. 여기서 제1 움직임 벡터의 크기란 벡터의 횡 방향의 크기 및 종 방향의 크기 중 적어도 하나일 수 있고, 또는 제1 움직임 벡터의 절대값을 나타낼 수 있다. 복호화부(120)는 제1 움직임 벡터의 크기가 제2 임계값 미만인 경우 S726단계에서 제1 참조블록 및 제2 참조블록을 이용하여 현재 예측블록의 인터 예측을 수행할 수 있고, 제1 움직임 벡터의 크기가 제2 임계값 이상인 경우 S724단계에서 제2 참조블록만을 이용하여 현재 예측블록의 인터 예측을 수행할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 미리 결정된 조건들을 조합하여 현재 예측블록의 인터 예측 과정에서 제2 참조블록만 이용되는지 제1 참조블록 및 제2 참조블록이 모두 이용되는지에 대하여 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)의 참조블록 결정부(110)는 제1 조건으로서 제1 참조블록 및 제2 참조블록의 차이가 제1 임계값 미만인지 여부, 및 제2 조건으로서 현재 예측블록과 관련된 제1 움직임 벡터의 크기가 제2 임계값 미만인지 여부를 판단함으로써 인터 예측에 이용되는 적어도 하나의 참조블록을 결정할 수 있다. 일 실시예에 따라 참조블록 결정부(110)는 제1 조건 및 제2 조건을 모두 만족하는경우에 현재 예측블록의 인터 예측을 수행하기 위하여 제1 참조블록 및 제2 참조블록을 이용하는 것으로 결정할 수 있다.
일 실시예에 따라 참조블록 결정부(120)는 미리 결정된 조건들에 기초하여 현재 예측블록의 인터 예측 과정에서 제1 참조블록 및 제2 참조블록이 이용되는 것으로 결정할 수 있고, 이러한 경우 참조블록 결정부(120)는 제1 참조블록 및 제2 참조블록에 포함된 정보를 이용하여 새로운 참조블록인 제3 참조블록을 생성하여 인터 예측에 이용할 수 있다. 이러한 제3 참조블록이 결정되는 과정에 대하여는 후술하도록 한다.
도 8a는 일 실시예에 따라 현재 예측블록의 인터 예측을 수행하는 데 이용되는 적어도 하나의 참조블록으로서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 결정하는 과정을 설명하기 위한 도면이다.
일 실시예에 영상 복호화 장치(100)의 복호화부(120)는 현재픽쳐(820)에 포함되는 적어도 하나의 예측블록 중 하나인 현재 예측블록(822)을 결정할 수 있다. 복호화부(120)는 현재 예측블록과 관련된 제1 움직임 벡터(825)를 결정할 수 있고, 제1 움직임 벡터(825)에 기초하여 제1 참조픽쳐(810) 상의 제1 참조블록(812)을 결정할 수 있다. 즉, 복호화부(120)는 현재 예측블록(822)의 주변블록으로부터 획득한 정보를 이용하여 제1 움직임 벡터를 결정할 수 있고, 제1 움직임 벡터(825)에 기초하여 제1 참조픽쳐(810) 상의 제1 참조블록(812)을 결정할 수 있다. 일 실시예에 따라 복호화부(120)는 복원 픽쳐 버퍼에 저장된 픽쳐 중 하나인 제1 참조픽쳐(810)를 이용하여 현재 예측블록(822)에 대한 인터 예측을 수행할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 참조픽쳐(810)와 관련된 제2 참조픽쳐(800)를 이용하여 현재 예측블록(822)의 인터 예측을 수행할 수 있다. 참조블록 결정부(110)는 제1 참조픽쳐(810)상의 제1 참조블록(812)과 동일한 위치(815)에 있는 제2 참조픽쳐(800) 상의 제2 참조블록(802)을 결정할 수 있다. 일 실시예에 따라 제2 참조픽쳐(800)는 제1 참조픽쳐(810)의 예측과정에서 움직임 보상을 통해 결정되는 예측값을 포함할 수 있다.
도 8a를 참조하면, 영상 복호화 장치의 참조블록 결정부(110)는 현재 예측블록(822), 제1 참조블록(812) 및 제2 참조블록(802)의 주변 샘플들을 참조하여 현재 예측블록에서 인터 예측 과정에서 이용할 참조블록을 결정할 수 있다. 참조할 수 있는 블록은 제1 참조블록(812), 제2 참조블록(802)일 수 있으며 나아가 제1 참조블록(812) 및 제2 참조블록(802)에 포함된 정보를 이용하여 새롭게 결정되는 제3 참조블록일 수 있으며, 제3 참조블록을 생성하기 위하여 참조블록 결정부(110)는 현재 예측블록(822)의 주변샘플(824)(이하 P0), 제1 참조블록(812)의 주변샘플(814)(이하 P1) 및 제2 참조블록(802)의 주변샘플(804)(이하 P2)를 이용할 수 있다. 일 실시예에 따라, 참조블록 결정부(110)가 이용하는 P0, P1 및 P2 값은 현재 예측블록(822), 제1 참조블록(812) 및 제2 참조블록(802)의 좌측 경계에 인접하는 이미 복호화된 샘플값들의 평균일 수 있다. 다만 상기 P0, P1 및 P2에 대한 정의는 단지 현재 예측블록(822), 제1 참조블록(812) 및 제2 참조블록(802)에 인접하는 샘플값이 참조블록 결정과정에 이용될 수 있음을 설명하기 위한 실시예일뿐이므로, 상기 P0, P1 및 P2는 좌측 경계에 인접하는 샘플값의 평균일뿐만 아니라, 다른 방향에 인접하는 샘플값의 평균이거나 또는 인접 샘플들의 최대, 최소값 등과 같이 다르게 정의될 수도 있다. 설명 상 편의를 위하여, 이하 실시예에서는 P0, P1 및 P2는 각각 현재 예측블록(822), 제1 참조블록(812) 및 제2 참조블록(802)의 좌측 경계에 인접하는 샘플값 평균인 것을 전제로 설명하도록 한다.
일 실시예에 따라 참조블록 결정부(110)는 제3 참조블록을 생성하기 위하여 아래와 같은 수학식을 이용할 수 있다.
Figure PCTKR2016012885-appb-M000001
여기서 Pred는 제1 참조블록, Pred'는 제2 참조블록, 그리고 Pred''는 제3 참조블록을 의미하고, W1 및 W2는 각각의 참조블록에 적용되는 가중치를 의미하는 것일 수 있다. 일 실시예에 따라 참조블록 결정부(110)는 P0, P1 및 P2에 기초하여 가중치 W1 및 W2를 결정할 수 있다. 일 실시예에 따라 참조블록 결정부(110)는 아래의 수학식을 만족시키는 W1 및 W2를 결정할 수 있다.
Figure PCTKR2016012885-appb-M000002
일 실시예에 따라 P0, P1 및 P2는 이미 복호화된 샘플값들에 의해 결정될 수 있으므로 이미 알고 있는 값일 수 있으므로, 참조블록 결정부(110)는 수학식 2에 기초하여 W1 및 W2의 비율을 결정할 수 있다. 참조블록 결정부(110)는 수학식 2에 따라 결정된 W1 및 W2의 비율을 수학식 1에 적용함으로써 제3 참조블록을 결정할 수 있다. 예를 들면, P0의 값이 4, P1의 값이 3.5, P2의 값이 4.5인 경우, (W1*3.5 + W2*4.5)/(W1+W2)= 4이어야 하므로, W1 및 W2 간의 비율은 1:1인 것(W1=W2)으로 결정될 수 있다. 참조블록 결정부(110)는 수학식2 를 이용하여 결정한 W1 및 W2의 비율을 수학식 1에 적용((Pred+Pred')/2 = Pred'')하여 제3 참조블록을 결정할 수 있다.
도 8b는 일 실시예에 따라 현재 예측블록의 인터 예측을 위하여 양방향 예측이 수행되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)의 복호화부(120)는 현재픽쳐(870)에 포함되는 적어도 하나의 예측블록 중 하나인 현재 예측블록(872)을 결정할 수 있다. 복호화부(120)는 현재 예측블록에서 수행될 인터 예측이 양방향 예측인 것으로 결정할 수 있다. 일 실시예에 따라 복호화부(120)는 비트스트림으로부터 획득되는 정보에 기초하여 현재 예측블록에서 단방향 예측이 수행될지 양방향 예측이 수행될지를 결정할 수 있다. 일 실시예에 따라 비트스트림으로부터 획득되는 정보는 소정의 데이터 단위(예를 들면, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등)마다 비트스트림으로부터 획득될 수 있다. 복호화부(120)는 현재 예측블록과 관련된 제1 움직임 벡터(875) 및 제2 움직임 벡터(895)를 결정할 수 있다. 나아가 복호화부(120)는 제1 움직임 벡터(875)에 기초하여 제1 참조픽쳐(860) 상의 제1 참조블록(862)을 결정할 수 있고 제2 움직임 벡터(895)에 기초하여 제4 참조픽쳐(890) 상의 제4 참조블록(892)을 결정할 수 있다. 즉, 복호화부(120)는 현재 예측블록(872)의 주변블록으로부터 획득한 정보를 이용하여 제1 움직임 벡터(875) 및 제2 움직임 벡터(895)를 결정할 수 있고, 양방향 예측을 수행하기 위하여 제1 움직임 벡터(875) 및 제2 움직임 벡터(895)에 기초하여 제1 참조픽쳐(860) 상의 제1 참조블록(862) 및 제4 참조픽쳐(890) 상의 제4 참조블록(892)을 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 참조픽쳐(860)와 관련된 제2 참조픽쳐(850) 및 제4 참조픽쳐(890)와 관련된 제5 참조픽쳐(880)를 이용하여 현재 예측블록(872)의 인터 예측을 수행할 수 있다. 참조블록 결정부(110)는 제1 참조픽쳐(860)상의 제1 참조블록(862)과 동일한 위치(865)에 있는 제2 참조픽쳐(850) 상의 제2 참조블록(852)을 결정할 수 있고, 제4 참조픽쳐(890)상의 제4 참조블록(892)과 동일한 위치(885)에 있는 제5 참조픽쳐(880)상의 제5 참조블록(882)을 결정할 수 있다. 일 실시예에 따라 제2 참조픽쳐(850) 및 제5 참조픽쳐(880)는 각각 제1 참조픽쳐(860) 및 제4 참조픽쳐(890)의 예측과정에서 움직임 보상을 통해 결정되는 예측값을 포함할 수 있다. 제1 참조픽쳐(860) 및 제2 참조픽쳐(850) 간의 특징 또는 제4 참조픽쳐(890) 및 제5 참조픽쳐(880)간의 특징에 대한 설명은 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치의 참조블록 결정부(110)는 현재 예측블록(872), 제1 참조블록(862), 제2 참조블록(852), 제4 참조블록(892) 및 제5 참조블록(882)의 주변 샘플들을 참조하여 현재 예측블록에서 인터 예측 과정에서 이용할 참조블록을 결정할 수 있다. 일 실시예에 따라 참조블록 결정부(110)는 제1 참조블록(862) 및 제2 참조블록(852)에 포함된 정보를 이용하여 새롭게 결정되는 제3 참조블록을 이용할 수 있으며, 나아가 제4 참조블록(892) 및 제5 참조블록(882)에 포함된 정보를 이용하여 새롭게 결정되는 제6 참조블록을 더 이용할 수도 있다. 제3 참조블록을 생성하기 위하여 참조블록 결정부(110)는 현재 예측블록(872)의 주변샘플(874)(이하 P0), 제1 참조블록(862)의 주변샘플(864)(이하 P1) 및 제2 참조블록(852)의 주변샘플(854)(이하 P2)를 이용할 수 있다. 나아가 제6 참조블록을 생성하기 위하여 참조블록 결정부(110)는 현재 예측블록(872)의 주변샘플(874)인 P0, 제4 참조블록(892)의 주변샘플(894)(이하 P3) 및 제5 참조블록(882)의 주변샘플(884)(이하 P4)를 이용할 수 있다. 일 실시예에 따라, 참조블록 결정부(110)가 이용하는 P0, P1 및 P2 값은 현재 예측블록(872), 제1 참조블록(862) 및 제2 참조블록(852)의 좌측 경계에 인접하는 이미 복호화된 샘플값들의 평균일 수 있고, P3 및 P4 값은 제4 참조블록(892) 및 제5 참조블록(882)의 좌측 경계에 인접하는 이미 복호화된 샘플값들의 평균일 수 있다.
일 실시예에 따라 참조블록 결정부(110)는 수학식 1 및 수학식 2를 이용한 가중치 W1 및 W2를 결정하는 과정 및 제3 참조블록을 생성하는 과정을 수행할 수 있고, 나아가 현재 예측블록에서 수행될 인터 예측이 양방향 예측인 경우, 제4 참조블록(892) 및 제5 참조블록(882)에 대하여 수학식 1 및 수학식 2를 이용한 가중치 결정 과정을 수행함으로써 제6 참조블록을 생성할 수도 있다. 일 실시예에 따라 수학식 1에서 이용되는 제1 참조블록(862) 및 제2 참조블록(852)과 관련된 가중치 W1 및 W2의 값은, 제4 참조블록(892) 및 제5 참조블록(882)과 관련된 가중치와 다른 값일 수 있다. 참조블록 결정부(110)가 제4 참조블록(892) 및 제5 참조블록(882)에 대하여 수학식 1 및 수학식 2를 이용한 가중치 결정 과정을 수행함으로써 제6 참조블록을 생성하는 과정은, 참조블록 결정부(110)가 수학식 2를 통해 결정된 가중치 W1 및 W2를 수학식 1에 대입하여 제3 참조블록을 생성하는 도 8a에서 상술한 과정과 유사한 과정일 수 있으므로 자세한 설명은 생략한다.
도 9는 일 실시예에 따라 제1 참조픽쳐, 제2 참조픽쳐를 이용하여 노이즈 저감 참조픽쳐를 생성하는 방법을 도시한다.
일 실시예에 따라 제1 참조픽쳐(900), 제2 참조픽쳐(902)는 하나의 복원 픽쳐 버퍼(930)에 저장될 수 있다. 또 다른 실시예에 따라 제1 참조픽쳐(900) 및 제2 참조픽쳐(902)는 서로 구분되는 픽쳐 버퍼(예를 들면, 930 및 940)에 저장될 수도 있다.
일 실시예에 따라 복호화부(120)는 제1 참조픽쳐(900) 및 제2 참조픽쳐(902)를 이용하여 필터링(903)을 수행함으로써 노이즈가 감소된 노이즈 저감 참조픽쳐(904)를 생성할 수 있고 픽쳐 버퍼(930 또는 940)에 저장할 수 있다. 여기서 노이즈 저감 참조 픽쳐(904)는 상술한 실시예들에 따라 생성될 수 있는 제3 참조픽쳐에 해당할 수 있다.
일 실시예에 따라 복호화부(120)는 현재 예측블록에서 수행할 인터 예측으로서 양방향 예측을 수행하는 것으로 결정할 수 있다. 현재 예측블록에서 양방향 예측이 수행되는 것으로 결정되는 경우, 복호화부(120)는 픽쳐 버퍼(930 또는 940)에 저장된 제1 참조픽쳐(900), 제2 참조픽쳐(902), 노이즈가 저감된 참조픽쳐인 제3 참조픽쳐(904)가 이용될 수 있을 뿐만 아니라, 제4 참조픽쳐(910), 제5 참조픽쳐(912), 노이즈가 저감된 참조픽쳐인 제6 참조픽쳐(912)가 이용될 수 있다.
일 실시예에 따라 복호화부(120)는 현재 예측블록의 인터 예측에 이용될 참조픽쳐가 픽쳐 버퍼에 저장되기 전 필터링 과정을 수행할 수 있다. 일 실시예에 따라 움직임 보상을 통해 획득되는 예측값을 포함하는 참조픽쳐에는, 변환 과정의 단위가 될 수 있는 데이터 단위의 경계에서 블로킹 아티팩트(blocking artifact)와 같은 오차가 생길 수 있으며 이러한 오차를 감쇄시키기 위한 필터링(예를 들면, 디블록킹 필터링)이 수행될 수 있다. 즉, 복호화부(120)는 제1 참조픽쳐뿐만 아니라, 제1 참조픽쳐에 대한 움직임 보상 결과를 포함하는 제2 참조픽쳐에 대하여 필터링을 수행한 후 픽쳐 버퍼에 저장할 수 있다. 나아가 제1 참조픽쳐 및 제2 참조픽쳐를 이용하여 생성될 수 있는 제3 참조픽쳐에 대하여 필터링을 수행한 후 픽쳐 버퍼에 저장할 수 있다. 이렇게 필터링이 수행된 후 저장된 참조픽쳐를 인터 예측 과정에서 이용하여 현재 예측블록이 포함되는 현재픽쳐의 복원 과정에서의 블로킹 아티팩트와 같은 오차가 줄어들게 함으로써 객관적, 주관적 화질 향상의 효과를 얻을 수 있다.
일 실시예에 따라 상술한 참조블록 결정부(110)의 동작 및 복호화부(120)의 동작은 하나의 복호화부(120) 또는 프로세서(CPU)에 의해 수행될 수도 있다.
상술한 다양한 실시예들은 영상 복호화 장치(100)가 영상 복호화를 위해 이용할 수 있는 특징들을 포함한다. 이하에서는 이러한 영상 복호화 장치(100)가 수행하는 복호화 과정과 관련되는 다양한 실시예로서, 영상 부호화 장치(150)가 영상 부호화를 이용할 수 있는 특징들에 대하여 설명하도록 한다.
도 1b는 일 실시예에 따라 제1 참조블록 및 제2 참조블록을 결정하여 제1 참조블록 및 제2 참조블록 중 적어도 하나를 현재 예측블록의 인터 예측을 수행할 수 있는 영상 부호화 장치(150)의 블록도를 도시한다.
도 1b를 참조하면, 영상 부호화 장치(150)는 일 실시예에 따라 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정할 수 있다. 영상 부호화 장치(150)는 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하고, 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정할 수 있다. 또한 영상 부호화 장치(150)는 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하고, 현재 예측블록에서 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 현재픽쳐를 부호화 할 수 있다. 구체적으로, 영상 부호화 장치(150)의 참조블록 결정부(160)는 제1 움직임 벡터에 기초하여 제1 참조블록을 결정할 수 있고, 이러한 제1 참조블록의 위치에 기초하여 제2 참조픽쳐를 결정할 수 있다. 또한 영상 부호화 장치(150)의 부호화부(170)는 적어도 하나의 예측블록을 결정할 수 있고, 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정할 수 있고, 결정된 제1 참조블록 및 제2 참조블록 중 적어도 하나를 이용하여 인터 예측을 수행할 수 있다. 일 실시예에 따라 제2 참조픽쳐는 제1 참조픽쳐의 예측값을 포함하는 픽쳐일 수 있다.
도 5는 일 실시예에 따라 영상 부호화 장치(150)에서 영상이 부호화 되는 과정을 설명하기 위한 블록도이다.
일 실시예에 따라 영상 부호화 장치(150)는 입력 영상(500) 및 예측값을 뺀 결과인 레지듀얼 신호를 결정할 수 있다. 레지듀얼 신호는 변환부(502)에 의해 변환을 수행함으로써 공간적 정보를 변환 영역에 대한 정보로 변환할 수 있고, 양자화부(504)에 의해 변환된 결과에 대한 양자화 과정이 수행될 수 있다. 양자화 된 정보를 포함하는 비트스트림은 영상 복호화 장치(100) 측으로 전달될 수 있다. 변환 및 양자화된 레지듀얼 신호는 예측과정에서 이용되는 참조픽쳐로서 복원 픽쳐 버퍼(540)에 저장되기 위하여 역변환 및 역양자화가 수행될 수 있다. 영상 부호화 장치(150)는 역변환된 정보를 역양자화하기 위한 역양자화부(510)및 역변환하기 위한 역변환부(520)를 포함할 수 있다. 일 실시예에 따라, 영상 부호화 장치(150)가 역변환 및 역양자화할 정보인 부호화된 영상 데이터는 양자화된 변환계수를 포함할 수 있다. 일 실시예에 따라 영상 부호화 장치(150)의 역양자화부(510)는 역변환된 레지듀얼 신호에 대한 역양자화를 통해, 부호화 과정에서 양자화 되기 전의 데이터에 대응하는 데이터로서 레지듀얼 신호를 생성할 수 있다. 영상 부호화 장치(150)의 역변환부(520)는 최대 부호화단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환단위정보를 판독하여 부호화단위마다 변환단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해 현재 픽쳐의 공간 영역의 화소값이 복원될 수 있다. 이러한 역양자화부(510) 및 역변환부(520)는 영상 부호화 장치(150)의 부호화부(170)에 포함될 수 있으며, 이에 따라 상술한 역양자화부(510) 및 역변환부(520)의 동작은 부호화부(170)에 의해 수행될 수 있다. 영상 부호화 장치(150)의 양자화부(510) 및 역변환부(520) 의 동작에 대한 특징은 영상 복호화 장치(100)의 양자화부(410) 및 역변환부(420) 의 동작에 대한 특징과 유사할 수 있으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 부호화 장치(150)의 복원 픽쳐 버퍼(540)는 제1 참조픽쳐를 저장하기 위한 제1 픽쳐버퍼(542) 및 제2 참조픽쳐를 저장하기 위한 제2 픽쳐버퍼(544)를 포함할 수 있다. 일 실시예에 따라 영상 복호화 장치의 인터 예측부(550)는 현재 픽쳐에 포함되는 현재 예측블록의 예측값을 결정하기 위하여 제1 픽쳐버퍼(542)에 포함되는 제1 참조픽쳐 및 제2 픽쳐버퍼(544)에 포함되는 제2 참조픽쳐 중 적어도 하나를 이용할 수 있다. 제1 픽쳐버퍼(542)에 저장되는 제1 참조픽쳐는 제1 참조픽쳐와 관련된 레지듀얼 신호와 제1 참조픽쳐의 예측값을 더한 결과에 대한 인루프 필터링이 수행됨으로써 생성된 복원신호를 포함할 수 있다. 영상 부호화 장치(150)는 제1 참조픽쳐와 관련된 레지듀얼 신호와 제1 참조픽쳐의 예측값을 더하기 전에 제1 참조픽쳐의 예측값을 제2 픽쳐버퍼(544)에 저장하여 현재픽쳐를 예측하는 과정에서 제2 참조픽쳐로서 이용할 수 있다.
일 실시예에 따라 영상 부호화 장치(150)의 인터 예측부(550)는 현재 예측블록과 관련된 움직임 벡터를 결정하기 위한 움직임 예측부(552) 및 결정된 움직임 벡터를 이용하여 예측값을 결정하는 움직임 보상부(554)를 포함할 수 있다. 즉, 움직임 예측(motion estimation) 과정을 통해 결정될 수 있는 움직임 벡터가 가리키는 참조픽쳐 상의 부분을 결정하고 이를 참조블록으로 결정할 수 있다. 움직임 보상부(554)는 결정된 참조블록에 대한 정보를 이용하여 현재 예측블록의 예측값으로 결정할 수 있다.
일 실시예에 따라 영상 부호화 장치(150)는 현재 예측블록에 대한 움직임 벡터가 가리키는 제1 참조픽쳐의 움직임 보상 결과를 이용하여 현재 예측블록의 인터 예측을 수행할 수 있다. 구체적으로, 영상 부호화 장치(150)의 움직임 예측부(552)는 제1 참조픽쳐의 예측블록들의 움직임 벡터를 결정할 수 있고, 움직임 보상부(554)는 이러한 제1 참조블록의 예측블록들이 가리키는 다른 참조픽쳐에 대한 정보를 이용하여 움직임 보상을 수행할 수 있다. 영상 부호화 장치(150)의 부호화부(170)는 제1 참조블록에 대한 움직임 보상 수행 결과인 예측값을 제2 픽쳐버퍼(544)에 저장함으로써, 제1 픽쳐버퍼(542)에 저장되는 제1 참조픽쳐와는 별개의 참조픽쳐인 제2 참조픽쳐를 현재 예측블록의 인터 예측 과정에서 이용할 수 있다.
영상 부호화 장치(150)에 포함되는 참조블록 결정부(160) 및 부호화부(170)의 동작에 대한 나머지 특징은, 영상 복호화 장치(100)에 포함되는 참조블록 결정부(110) 및 복호화부(120)가 수행하는 것으로서 상술한 동작과 유사하거나 반대되는 동작에 대한 특징일 수 있으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 상술한 참조블록 결정부(160)의 동작 및 부호화부(170)의 동작은 하나의 부호화부(170) 또는 프로세서(CPU)에 의해 수행될 수도 있다.
이하, 도 10 내지 도 23을 참조하여 일 실시예에 따른 영상 복호화 장치(100)가 영상을 복호화하는 과정에서 이용할 수 있는 데이터 단위를 결정하는 방법을 설명하도록 한다. 영상 부호화 장치(150)의 동작은 후술하는 영상 복호화 장치(100)의 동작에 대한 다양한 실시예와 유사하거나 반대되는 동작이 될 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 10을 참조하면, 현재 부호화 단위(1000)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(1030)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(1000)와 동일한 크기를 가지는 부호화 단위(1010a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 기초하여 분할된 부호화 단위(1010b, 1010c, 1010d 등)를 결정할 수 있다.
도 10을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수직방향으로 분할한 두개의 부호화 단위(1010b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수평방향으로 분할한 두개의 부호화 단위(1010c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 정보에 기초하여 현재 부호화 단위(1000)를 수직방향 및 수평방향으로 분할한 네개의 부호화 단위(1010d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 11은 일 실시예에 따라 영상 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 11을 참조하면, 현재 부호화 단위(1100 또는 1150)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 정보에 따라 현재 부호화 단위(1100 또는 1150)와 동일한 크기를 가지는 부호화 단위(1110 또는 1160)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 정보에 따라 기초하여 분할된 부호화 단위(1120a, 1120b, 1130a, 1130b, 1130c, 1170a, 1170b, 1180a, 1180b, 1180c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 11를 참조하면 분할 형태 정보가 두개의 부호화 단위로 현재 부호화 단위(1100 또는 1150)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 정보에 기초하여 현재 부호화 단위(1100 또는 1150)를 분할하여 현재 부호화 단위에 포함되는 두개의 부호화 단위(1120a, 11420b, 또는 1170a, 1170b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(1100 또는 1150)를 분할하는 경우, 비-정사각형의 현재 부호화 단위(1100 또는 1150)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)의 형태를 고려하여 현재 부호화 단위(1100 또는 1150)의 긴 변을 분할하는 방향으로 현재 부호화 단위(1100 또는 1150)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 정보가 홀수개의 블록으로 부호화 단위를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 정보가 3개의 부호화 단위로 현재 부호화 단위(1100 또는 1150)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)를 3개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c) 중 소정의 부호화 단위(1130b 또는 1180b)의 크기는 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(1100 또는 1150)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 11을 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(1100 또는 1150)가 분할되어 생성된 3개의 부호화 단위(1130a, 1130b, 1130c, 1180a, 1180b, 1180c)들 중 중앙에 위치하는 부호화 단위(1130b, 1180b)에 대한 복호화 과정을 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(1130b, 1180b)에 대하여는 다른 부호화 단위(1130a, 1130c, 1180a, 1180c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 12는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1200)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 정보가 수평 방향으로 제1 부호화 단위(1200)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 수평 방향으로 분할하여 제2 부호화 단위(1210)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(1210)를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 12를 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(1210)를 적어도 하나의 제3 부호화 단위(1220a, 1220b, 1220c, 1220d 등)로 분할하거나 제2 부호화 단위(1210)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 1210)를 분할할 수 있으며, 제2 부호화 단위(1210)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1200)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(1200)가 제1 부호화 단위(1200)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제2 부호화 단위(1210)로 분할된 경우, 제2 부호화 단위(1210) 역시 제2 부호화 단위(1210)에 대한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 1220a, 1220b, 1220c, 1220d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다. 도 12를 참조하면, 비-정사각형 형태의 제2 부호화 단위(1210)가 분할되어 결정되는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 하나인 정사각형 형태의 제3 부호화 단위(1220c)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위 중 하나인 비-정사각형 형태의 제4 부호화 단위(1240)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(1240)는 홀수개의 부호화 단위(1250a, 1250b, 1250c)로 다시 분할될 수도 있다.
부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제3 부호화 단위(1220a, 1220b, 1220c, 1220d 등) 각각을 부호화 단위들로 분할하거나 제2 부호화 단위(1210)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(1210)를 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d) 중 가운데에 위치하는 부호화 단위(1220c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다. 도 12를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1210)에 포함되는 홀수개의 제3 부호화 단위(1220b, 1220c, 1220d)들 중 가운데에 위치하는 부호화 단위(1220c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(1210)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(1220c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(1220c)가 다른 부호화 단위(1220b, 1220d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 13은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다. 도 13을 참조하면, 현재 부호화 단위(1300)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(1300)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(1340))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(1300) 내의 소정 위치가 도 13에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(1300)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
도 13은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위한 방법을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 13을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(1300)를 분할하여 홀수개의 부호화 단위들(1320a, 1320b, 1320c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(1320a, 1320b, 1320c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(1320b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(1320a, 1320b, 1320c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(1320a, 1320b, 1320c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(1320a, 1320b, 1320c)의 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보에 기초하여 부호화 단위(1320a, 1320b, 1320c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 정보는 현재 부호화 단위(1300)에 포함되는 부호화단위(1320a, 1320b, 1320c)들의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위(1320a, 1320b, 1320c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위(1320a, 1320b, 1320c)에 각각 포함되는 좌측 상단의 샘플(1330a, 1330b, 1330c)의 좌표를 이용하여 가운데 부호화 단위(1320b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(1330a, 1330b, 1330c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(1330b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(1320b)를 현재 부호화 단위(1300)가 분할되어 결정된 부호화 단위(1320a, 1320b, 1320c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(1330a, 1330b, 1330c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 기준으로, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(1300)를 복수개의 부호화 단위(1320a, 1320b, 1320c)로 분할할 수 있고, 부호화 단위(1320a, 1320b, 1320c)들 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위(1320a, 1320b, 1320c) 중 크기가 다른 부호화 단위(1320b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(1320a)의 좌측 상단의 샘플(1330a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(1320b)의 좌측 상단의 샘플(1330b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(1320c)의 좌측 상단의 샘플(1330c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위(1320a, 1320b, 1320c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위(1320a, 1320b, 1320c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위(1320a, 1320b, 1320c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(1320a)의 너비를 xb-xa로 결정할 수 있고 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(1320b)의 너비를 xc-xb로 결정할 수 있고 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(1320a) 및 가운데 부호화 단위(1320b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위(1320a, 1320b, 1320c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 13을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(1320a) 및 하단 부호화 단위(1320c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(1320b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 13에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다.
도 13을 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(1300)를 복수개의 부호화 단위들(1320a, 1320b, 1320c)로 분할할 수 있으며, 복수개의 부호화 단위들(1320a, 1320b, 1320c) 중 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(1320b)를 결정할 수 있다. 즉, 현재 부호화 단위(1300)의 블록 형태 정보 및 분할 형태 정보 중 적어도 하나는 현재 부호화 단위(1300)의 가운데에 위치하는 샘플(1340)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 정보 중 적어도 하나에 기초하여 현재 부호화 단위(1300)가 복수개의 부호화 단위들(1320a, 1320b, 1320c)로 분할된 경우 상기 샘플(1340)을 포함하는 부호화 단위(1320b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 13을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(1300)가 분할되어 결정된 복수개의 부호화 단위들(1320a, 1320b, 1320c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(1300) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(1300)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. . 즉, 영상 복호화 장치(100)는 현재 부호화 단위(1300)의 블록 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(1300)가 분할되어 결정되는 복수개의 부호화 단위(1320a, 1320b, 1320c)들 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(1320b)를 결정하여 소정의 제한을 둘 수 있다. 도 13을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(1300)의 가운데에 위치하는 샘플(1340)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(1340)이 포함되는 부호화 단위(1320b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(1320b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(1300)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 12를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 14는 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보에 따라 제1 부호화 단위(1400)를 수직 방향으로 분할하여 제2 부호화 단위(1410a, 1410b)를 결정하거나 제1 부호화 단위(1400)를 수평 방향으로 분할하여 제2 부호화 단위(1430a, 1430b)를 결정하거나 제1 부호화 단위(1400)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(1450a, 1450b, 1450c, 1450d)를 결정할 수 있다.
도 14를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(1400)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(1410a, 1410b)를 수평 방향(1410c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1400)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(1430a, 1430b)의 처리 순서를 수직 방향(1430c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1400)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(1450a, 1450b, 1450c, 1450d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(1450e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(1400)를 분할하여 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)을 분할하는 방법은 제1 부호화 단위(1400)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(1410a, 1410b, 1430a, 1430b, 1450a, 1450b, 1450c, 1450d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(1400)를 수직 방향으로 분할하여 제2 부호화 단위(1410a, 1410b)를 결정할 수 있고, 나아가 제2 부호화 단위(1410a, 1410b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(1410a)를 수평 방향으로 분할하여 제3 부호화 단위(1420a, 1420b)로 분할할 수 있고, 우측의 제2 부호화 단위(1410b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(1410a)가 분할되어 결정된 제3 부호화 단위(1420a, 1420b)가 처리되는 순서를 우측의 제2 부호화 단위(1410b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(1410a)가 수평 방향으로 분할되어 제3 부호화 단위(1420a, 1420b)가 결정되었으므로 제3 부호화 단위(1420a, 1420b)는 수직 방향(1420c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(1410a) 및 우측의 제2 부호화 단위(1410b)가 처리되는 순서는 수평 방향(1410c)에 해당하므로, 좌측의 제2 부호화 단위(1410a)에 포함되는 제3 부호화 단위(1420a, 1420b)가 수직 방향(1420c)으로 처리된 후에 우측 부호화 단위(1410b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 15는 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 15를 참조하면 정사각형 형태의 제1 부호화 단위(1500)가 비-정사각형 형태의 제2 부호화 단위(1510a, 1510b)로 분할될 수 있고, 제2 부호화 단위(1510a, 1510b)는 각각 독립적으로 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(1510a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(1520a, 1520b)를 결정할 수 있고, 우측 부호화 단위(1510b)는 홀수개의 제3 부호화 단위(1520c, 1520d, 1520e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(1520a, 1520b, 1520c, 1520d, 1520e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 15를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(1500)를 재귀적으로 분할하여 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(1500), 제2 부호화 단위(1510a, 1510b) 또는 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(1510a, 1510b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(1520c, 1520d, 1520e)로 분할될 수 있다. 제1 부호화 단위(1500)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(1530))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(1510b)가 홀수개로 분할되어 결정된 제3 부호화 단위(1520c, 1520d, 1520e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1500)에 포함되는 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(1520a, 1520b, 1520c, 1520d, 1520e)의 경계에 따라 제2 부호화 단위(1510a, 1510b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(1510a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(1520a, 1520b)는 조건을 만족하지만, 우측 제2 부호화 단위(1510b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(1520c, 1520d, 1520e)들의 경계가 우측 제2 부호화 단위(1510b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(1520c, 1520d, 1520e)는 조건을 만족하지 못하는 것으로 결정될 수 있고, 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(1510b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 16은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1600)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다. 일 실시예에 따라 영상 복호화 장치(100)는 수신부(210)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1600)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(1600)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 16을 참조하면, 블록 형태 정보가 제1 부호화 단위(1600)는 정사각형임을 나타내고 분할 형태 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1600)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 정보가 제1 부호화 단위(1600)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1600)을 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(1610a, 1610b, 1610c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(1620a, 1620b, 1620c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1600)에 포함되는 제2 부호화 단위(1610a, 1610b, 1610c, 1620a, 1620b, 1620c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(1610a, 1610b, 1610c, 1620a, 1620b, 1620c)의 경계에 따라 제1 부호화 단위(1600)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 16를 참조하면 정사각형 형태의 제1 부호화 단위(1600)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(1610a, 1610b, 1610c)들의 경계가 제1 부호화 단위(1600)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(1600)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(1600)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(1620a, 1620b, 1620c)들의 경계가 제1 부호화 단위(1600)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(1600)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(1600)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 16을 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1600), 비-정사각형 형태의 제1 부호화 단위(1630 또는 1650)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 17은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1700)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(210)를 통해 획득한 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1700)를 비-정사각형 형태의 제2 부호화 단위(1710a, 1710b, 1720a, 1720b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1710a, 1710b, 1720a, 1720b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1710a, 1710b, 1720a, 1720b) 각각에 관련된 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1700)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1710a)를 수평 방향으로 분할하여 제3 부호화 단위(1712a, 1712b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1710a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1710b)는 좌측 제2 부호화 단위(1710a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1710b)가 동일한 방향으로 분할되어 제3 부호화 단위(1714a, 1714b)가 결정된 경우, 좌측 제2 부호화 단위(1710a) 및 우측 제2 부호화 단위(1710b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1712a, 1712b, 1714a, 1714b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1700)를 4개의 정사각형 형태의 제2 부호화 단위(1730a, 1730b, 1730c, 1730d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(11300)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1720a 또는 1720b)를 수직 방향으로 분할하여 제3 부호화 단위(1722a, 1722b, 1724a, 1724b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1720a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1720b))는 상단 제2 부호화 단위(1720a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 18은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1800)를 분할하여 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 결정할 수 있다. 분할 형태 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1800)를 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할하지 못한다. 분할 형태 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1810a, 1810b, 1820a, 1820b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1800)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1810a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1812a, 1812b)를 결정할 수 있고, 우측 제2 부호화 단위(1810b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1814a, 1814b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1810a) 및 우측 제2 부호화 단위(1810b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1816a, 1816b, 1816c, 1816d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1800)가 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1820a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1822a, 1822b)를 결정할 수 있고, 하단 제2 부호화 단위(1820b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1824a, 1824b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1820a) 및 하단 제2 부호화 단위(1820b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1822a, 1822b, 1824a, 1824b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1800)가 4개의 정사각형 형태의 제2 부호화 단위(1830a, 1830b, 1830c, 1830d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 19는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보에 기초하여 제1 부호화 단위(1900)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 정보가 제1 부호화 단위(1900)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1900)를 분할하여 제2 부호화 단위(예를 들면, 1910a, 1910b, 1920a, 1920b, 1930a, 1930b, 1930c, 1930d 등)를 결정할 수 있다. 도 19를 참조하면 제1 부호화 단위1900)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)는 각각에 대한 블록 형태 정보 및 분할 형태 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1900)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1910a, 1910b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 결정할 수 있고, 제1 부호화 단위(1900)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1920a, 1920b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 결정할 수 있다. 이러한 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)의 분할 과정은 도 17과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 14과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 19를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1900)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1900)가 분할되는 형태에 따라 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1910a, 1910b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1910a)에 포함되는 제3 부호화 단위(1916a, 1916b)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1910b)에 포함되는 제3 부호화 단위(1916c, 1916d)를 수직 방향으로 처리하는 순서(1917)에 따라 제3 부호화 단위(1916a, 1916b, 1916c, 1916d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1920a, 1920b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1920a)에 포함되는 제3 부호화 단위(1926a, 1926b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1920b)에 포함되는 제3 부호화 단위(1926c, 1926d)를 수평 방향으로 처리하는 순서(1927)에 따라 제3 부호화 단위(1926a, 1926b, 1926c, 1926d)를 처리할 수 있다.
도 19를 참조하면, 제2 부호화 단위(1910a, 1910b, 1920a, 1920b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1910a, 1910b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1920a, 1920b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1916a, 1916b, 1916c, 1916d, 1926a, 1926b, 1926c, 1926d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1900)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 20은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 20을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(2000)를 분할하여 하위 심도의 제2 부호화 단위(2002), 제3 부호화 단위(2004) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(2000)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(2000)의 너비 및 높이를 1/21배로 분할하여 결정된 제2 부호화 단위(2002)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(2002)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(2004)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(2004)의 너비 및 높이는 제1 부호화 단위(2000)의 1/22배에 해당한다. 제1 부호화 단위(2000)의 심도가 D인 경우 제1 부호화 단위(2000)의 너비 및 높이의 1/21배인 제2 부호화 단위(2002)의 심도는 D+1일 수 있고, 제1 부호화 단위(2000)의 너비 및 높이의 1/22배인 제3 부호화 단위(2004)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(2010 또는 2020)를 분할하여 하위 심도의 제2 부호화 단위(2012 또는 2022), 제3 부호화 단위(2014 또는 2024) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(2010)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 2002, 2012, 2022 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(2010)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(2002) 또는 NxN/2 크기의 제2 부호화 단위(2022)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(2012)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(2020) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 2002, 2012, 2022 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(2020)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(2002) 또는 N/2xN 크기의 제2 부호화 단위(2012)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(2022)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(2002) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(2002)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004)를 결정하거나 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정하거나 N/2xN/22 크기의 제3 부호화 단위(2024)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(2012)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(2012)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004) 또는 N/2xN/22 크기의 제3 부호화 단위(2024)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(2014)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 2004, 2014, 2024 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(2012)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(2004) 또는 N/22xN/2 크기의 제3 부호화 단위(2014)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/22크기의 제3 부호화 단위(2024)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 2000, 2002, 2004)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(2000)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(2010)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(2020)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(2000, 2002 또는 2004)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(2000, 2002 또는 2004)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(2014 또는 2024)의 너비 및 높이는 제1 부호화 단위(2010 또는 2020)의 1/22배에 해당할 수 있다. 제1 부호화 단위(2010 또는 2020)의 심도가 D인 경우 제1 부호화 단위(2010 또는 2020)의 너비 및 높이의 1/2배인 제2 부호화 단위(2012 또는 2014)의 심도는 D+1일 수 있고, 제1 부호화 단위(2010 또는 2020)의 너비 및 높이의 1/22배인 제3 부호화 단위(2014 또는 2024)의 심도는 D+2일 수 있다.
도 21은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(2100)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 21를 참조하면, 영상 복호화 장치(100)는 분할 형태 정보에 따라 제1 부호화 단위(2100)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(2100)에 대한 분할 형태 정보에 기초하여 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(2100)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(2102a, 2102b, 2104a, 2104b, 2106a, 2106b, 2106c, 2106d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(2100)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(2100)와 비-정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 정보에 기초하여 제1 부호화 단위(2100)를 4개의 정사각형 형태의 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)의 한 변의 길이는 제1 부호화 단위(2100)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(2106a, 2106b, 2106c, 2106d)의 심도는 제1 부호화 단위(2100)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(2110)를 분할 형태 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(2112a, 2112b, 2114a, 2114b, 2114c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(2120)를 분할 형태 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(2122a, 2122b, 2124a, 2124b, 2124c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(2110 또는 2120)에 대한 분할 형태 정보에 따라 결정되는 제2 부호화 단위(2112a, 2112b, 2114a, 2114b, 2116a, 2116b, 2116c, 2116d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(2112a, 2112b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(2110)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(2102a, 2102b, 2104a, 2104b)의 심도는 비-정사각형 형태의 제1 부호화 단위(2110)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(2110)를 홀수개의 제2 부호화 단위(2114a, 2114b, 2114c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(2114a, 2114b, 2114c)는 비-정사각형 형태의 제2 부호화 단위(2114a, 2114c) 및 정사각형 형태의 제2 부호화 단위(2114b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(2114a, 2114c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(2114b)의 한 변의 길이는 제1 부호화 단위(2110)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(2114a, 2114b, 2114c)의 심도는 제1 부호화 단위(2110)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(2110)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(2120)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 21를 참조하면, 홀수개로 분할된 부호화 단위들(2114a, 2114b, 2114c) 중 가운데에 위치하는 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)와 너비는 동일하지만 높이가 다른 부호화 단위들(2114a, 2114c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(2114b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(2114c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 21를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(2110)를 분할하여 짝수개의 부호화 단위(2112a, 2112b)를 결정하거나 홀수개의 부호화 단위(2114a, 2114b, 2114c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(2110)에 대한 분할 형태 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(2110)를 3개의 부호화 단위(2114a, 2114b, 2114c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(2114a, 2114b, 2114c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(2114b)를, 제1 부호화 단위(2110)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 21를 참조하면, 제1 부호화 단위(2110)가 분할되어 생성된 부호화 단위(2114b)는 다른 부호화 단위들(2114a, 2114c)와 너비는 동일하지만 높이가 다른 부호화 단위들(2114a, 2114c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(2114b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(2114c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 22는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 22를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(2200)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(2202)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(210)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(2200)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 10의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(2200)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 11의 현재 부호화 단위(1100 또는 1150)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(210)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 23은 일 실시예에 따라 픽쳐(2300)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(210)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(210)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(2300)에 포함되는 프로세싱 블록(2302, 2312)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 23을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(2302, 2312)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(2300)에 포함되는 각각의 프로세싱 블록(2302, 2312)을 결정할 수 있고, 프로세싱 블록(2302, 2312)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(210)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(210)는 비트스트림으로부터 프로세싱 블록(2302, 2312)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(2302, 2312)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(2300)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 23을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(2302, 2312)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(2304, 2314)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(2302, 2312)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(2302)과 관련된 기준 부호화 단위 결정 순서(2304)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(2302)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(2312)과 관련된 기준 부호화 단위 결정 순서(2314)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(2312)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 블록 형태 정보 또는 분할 형태 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 정보에 대응하는 신택스를 비트스트림으로부터 획득하여 이용할 수 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.

Claims (15)

  1. 영상을 복호화 하는 방법에 있어서,
    상기 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계;
    상기 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계;
    상기 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계;
    상기 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및
    상기 현재 예측블록에서 상기 제1 참조블록 및 상기 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 복호화 하는 단계를 포함하고,
    상기 제2 참조픽쳐는 상기 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 방법.
  2. 제 1 항에 있어서, 상기 제2 참조픽쳐는 상기 제1 참조픽쳐의 부호화 과정에서 움직임 추정 및 움직임 보상을 수행하여 획득되는 샘플을 포함하는 영상 복호화 방법.
  3. 제 1 항에 있어서, 상기 현재픽쳐를 복호화 하는 단계는
    비트스트림으로부터 획득되는 참조블록 정보에 기초하여 상기 인터 예측 수행에 이용되는 적어도 하나의 참조블록을 결정하는 단계; 및
    상기 인터 예측 수행에 이용되는 적어도 하나의 참조블록을 이용하여 상기 인터 예측을 수행하는 단계를 포함하고,
    상기 참조블록 정보는 상기 제1 참조블록 및 상기 제2 참조블록 중 어느 참조블록에 기초하여 상기 현재 예측블록에서의 상기 인터 예측이 수행되는지를 나타내는 것을 특징으로 하는 영상 복호화 방법.
  4. 제 3 항에 있어서, 적어도 하나의 참조블록을 결정하는 단계는
    상기 참조블록 정보가 상기 제2 참조블록이 이용되는 예측 방법으로 상기 인터 예측이 수행되는 것을 나타내는 경우, 상기 인터 예측 수행에 이용되는 상기 제2 참조블록을 포함하는 적어도 하나의 참조블록을 미리 결정된 조건에 기초하여 결정하는 단계를 포함하는 영상 복호화 방법.
  5. 제 4 항에 있어서, 적어도 하나의 참조블록을 미리 결정된 조건에 기초하여 결정하는 단계는
    상기 제1 참조픽쳐 및 상기 제2 참조픽쳐의 차이가 제1 임계값보다 작아야 한다는 제1 조건 및 상기 제1 움직임 벡터의 크기가 제2 임계값보다 작아야 한다는 제2 조건 중 적어도 하나의 조건에 기초하여, 상기 인터 예측 수행에 이용되는 상기 제2 참조블록, 또는 상기 제1 참조블록 및 상기 제2 참조블록을 결정하는 단계를 포함하는 영상 복호화 방법.
  6. 제 1 항에 있어서, 상기 현재픽쳐를 복호화 하는 단계는
    상기 제1 참조픽쳐 및 상기 제2 참조픽쳐를 이용하여 제3 참조픽쳐를 생성하는 단계; 및
    상기 제3 참조픽쳐에 포함되는 제3 참조블록을 이용하여 상기 현재 예측블록에서 상기 인터 예측을 수행하는 단계를 포함하는 영상 복호화 방법.
  7. 제 6 항에 있어서, 상기 제3 참조픽쳐를 생성하는 단계는
    상기 제1 참조블록의 주변 샘플값 및 상기 제2 참조블록의 주변 샘플값을 이용하여 제1 가중치 및 제2 가중치를 결정하는 단계; 및
    상기 제1 가중치 및 상기 제2 가중치를 각각 상기 제1 참조블록 및 상기 제2 참조블록에 적용하여 상기 제3 참조픽쳐에 포함되는 상기 제3 참조블록을 결정하는 단계를 포함하는 영상 복호화 방법.
  8. 제 7 항에 있어서, 상기 제1 가중치 및 제2 가중치를 결정하는 단계는
    상기 제1 참조블록의 좌측 경계에 인접하는 적어도 하나의 샘플들 및 상기 제1 참조블록의 좌측 경계에 인접하는 적어도 하나의 샘플들을 이용하여 상기 제1 가중치 및 상기 제2 가중치를 결정하는 단계를 포함하는 영상 복호화 방법.
  9. 제 1 항에 있어서, 상기 현재픽쳐를 복호화 하는 단계는
    서로 구분되는 버퍼에 저장된 상기 제1 참조픽쳐 및 상기 제2 참조픽쳐 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 복호화하는 단계를 포함하는 영상 복호화 방법.
  10. 제 1 항에 있어서, 상기 현재픽쳐를 복호화 하는 단계는
    동일한 버퍼에 저장된 상기 제1 참조픽쳐 및 상기 제2 참조픽쳐 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 복호화하는 단계를 포함하는 영상 복호화 방법.
  11. 제 1 항에 있어서, 상기 영상 복호화 방법은
    상기 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제2 움직임 벡터를 결정하는 단계;
    상기 제2 움직임 벡터에 기초하여 제4 참조픽쳐에 포함되는 제4 참조블록을 결정하는 단계; 및
    상기 제4 참조블록의 위치에 기초하여 제5 참조픽쳐에서의 제5 참조블록을 결정하는 단계를 더 포함하고,
    상기 제5 참조픽쳐는 상기 제4 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 방법.
  12. 제 11 항에 있어서, 상기 현재픽쳐를 복호화 하는 단계는
    상기 제1 참조블록 및 상기 제2 참조블록 중 적어도 하나, 및 상기 제4 참조블록 및 상기 제5 참조블록 중 적어도 하나를 이용하여 상기 현재 예측블록에서 양방향 인터 예측을 수행하는 단계를 포함하는 영상 복호화 방법.
  13. 영상을 부호화 하는 방법에 있어서,
    상기 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하는 단계;
    상기 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 단계;
    상기 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하는 단계;
    상기 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 단계; 및
    상기 현재 예측블록에서 상기 제1 참조블록 및 상기 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 부호화 하는 단계를 포함하고,
    상기 제2 참조픽쳐는 상기 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 방법.
  14. 영상을 복호화 하는 장치에 있어서,
    상기 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 상기 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 복호화부; 및
    상기 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 상기 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고,
    상기 복호화부는 상기 현재 예측블록에서 상기 제1 참조블록 및 상기 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 복호화 하는 것을 특징으로 하고,
    상기 제2 참조픽쳐는 상기 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 복호화 장치.
  15. 영상을 부호화 하는 장치에 있어서,
    상기 영상을 구성하는 픽쳐들 중 하나인 현재픽쳐에 포함되는 적어도 하나의 예측블록을 결정하고, 상기 적어도 하나의 예측블록 중 하나인 현재 예측블록과 관련된 제1 움직임 벡터를 결정하는 부호화부; 및
    상기 제1 움직임 벡터에 기초하여 제1 참조픽쳐에 포함되는 제1 참조블록을 결정하고, 상기 제1 참조블록의 위치에 기초하여 제2 참조픽쳐에 포함되는 제2 참조블록을 결정하는 참조블록 결정부를 포함하고,
    상기 복호화부는 상기 현재 예측블록에서 상기 제1 참조블록 및 상기 제2 참조블록 중 적어도 하나를 이용하는 인터 예측을 수행하여 상기 현재픽쳐를 복호화 하는 것을 특징으로 하고,
    상기 제2 참조픽쳐는 상기 제1 참조픽쳐의 예측값을 포함하는 것을 특징으로 하는 영상 부호화 장치.
PCT/KR2016/012885 2015-11-11 2016-11-10 영상을 부호화/복호화 하는 방법 및 그 장치 WO2017082636A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187013115A KR20180067598A (ko) 2015-11-11 2016-11-10 영상을 부호화/복호화 하는 방법 및 그 장치
US15/775,627 US10645414B2 (en) 2015-11-11 2016-11-10 Method for encoding/decoding image, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562253815P 2015-11-11 2015-11-11
US62/253,815 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017082636A1 true WO2017082636A1 (ko) 2017-05-18

Family

ID=58695849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012885 WO2017082636A1 (ko) 2015-11-11 2016-11-10 영상을 부호화/복호화 하는 방법 및 그 장치

Country Status (3)

Country Link
US (1) US10645414B2 (ko)
KR (1) KR20180067598A (ko)
WO (1) WO2017082636A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496429A (zh) * 2017-12-29 2019-03-19 深圳市大疆创新科技有限公司 视频编码方法、视频解码方法及相关装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690001B (zh) 2018-07-11 2024-04-12 三星电子株式会社 用于视频解码的方法和设备以及用于视频编码的方法和设备
US11445174B2 (en) * 2019-05-06 2022-09-13 Tencent America LLC Method and apparatus for video coding
EP3972258A4 (en) * 2019-06-25 2022-06-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD AND DEVICE, APPARATUS, AND STORAGE MEDIUM
KR102297479B1 (ko) * 2020-04-10 2021-09-03 삼성전자주식회사 움직임 벡터의 부호화 장치 및 방법, 및 움직임 벡터의 복호화 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064007A (ko) * 2007-01-03 2008-07-08 삼성전자주식회사 움직임 벡터 트랙킹을 이용한 영상의 부호화, 복호화 방법및 장치
US20120106645A1 (en) * 2009-06-26 2012-05-03 Huawei Technologies Co., Ltd Method, apparatus and device for obtaining motion information of video images and template
KR20140123980A (ko) * 2012-01-31 2014-10-23 브이아이디 스케일, 인크. 스케일러블 고효율 비디오 코딩(hevc)을 위한 참조 픽처 세트(rps) 시그널링
KR20150000073A (ko) * 2013-06-21 2015-01-02 주식회사 에스원 영상 부호화/복호화 방법 및 장치
KR20150060619A (ko) * 2011-07-02 2015-06-03 삼성전자주식회사 콜로케이티드 영상을 이용한 인터 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US106645A (en) * 1870-08-23 Improvement in adjustable fruit-ladders
US336399A (en) * 1886-02-16 Machine
US7512182B2 (en) 2004-08-30 2009-03-31 General Instrument Corporation Method and apparatus for performing motion compensated temporal filtering in video encoding
US8369417B2 (en) 2006-05-19 2013-02-05 The Hong Kong University Of Science And Technology Optimal denoising for video coding
US9319679B2 (en) * 2012-06-07 2016-04-19 Qualcomm Incorporated Signaling data for long term reference pictures for video coding
US20150023436A1 (en) 2013-07-22 2015-01-22 Texas Instruments Incorporated Method and apparatus for noise reduction in video systems
KR20180008445A (ko) 2015-06-10 2018-01-24 삼성전자주식회사 적응적 가중치 예측을 위한 신택스 시그널링을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064007A (ko) * 2007-01-03 2008-07-08 삼성전자주식회사 움직임 벡터 트랙킹을 이용한 영상의 부호화, 복호화 방법및 장치
US20120106645A1 (en) * 2009-06-26 2012-05-03 Huawei Technologies Co., Ltd Method, apparatus and device for obtaining motion information of video images and template
KR20150060619A (ko) * 2011-07-02 2015-06-03 삼성전자주식회사 콜로케이티드 영상을 이용한 인터 예측을 수반하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20140123980A (ko) * 2012-01-31 2014-10-23 브이아이디 스케일, 인크. 스케일러블 고효율 비디오 코딩(hevc)을 위한 참조 픽처 세트(rps) 시그널링
KR20150000073A (ko) * 2013-06-21 2015-01-02 주식회사 에스원 영상 부호화/복호화 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496429A (zh) * 2017-12-29 2019-03-19 深圳市大疆创新科技有限公司 视频编码方法、视频解码方法及相关装置

Also Published As

Publication number Publication date
US20180324456A1 (en) 2018-11-08
US10645414B2 (en) 2020-05-05
KR20180067598A (ko) 2018-06-20

Similar Documents

Publication Publication Date Title
WO2017122997A1 (ko) 영상 부호화 방법 및 장치와 영상 복호화 방법 및 장치
WO2018070550A1 (ko) 픽처 외곽선의 부호화 단위를 부호화 또는 복호화하는 방법 및 장치
WO2018070554A1 (ko) 루마 블록 및 크로마 블록을 부호화 또는 복호화하는 방법 및 장치
WO2017105097A1 (ko) 머지 후보 리스트를 이용한 비디오 복호화 방법 및 비디오 복호화 장치
WO2018221817A1 (ko) 영상 코딩 시스템에서 인트라 예측에 따른 영상 디코딩 방법 및 장치
WO2017082636A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
WO2018105757A1 (ko) 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
WO2014171713A1 (ko) 인트라 예측을 이용한 비디오 부호화/복호화 방법 및 장치
WO2019009449A1 (ko) 영상을 부호화/복호화 하는 방법 및 그 장치
WO2018124653A1 (ko) 인트라 예측에서 참조 샘플을 필터링하는 방법 및 장치
WO2012173415A2 (ko) 움직임 정보의 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2017082443A1 (ko) 영상 코딩 시스템에서 임계값을 이용한 적응적 영상 예측 방법 및 장치
WO2017142319A1 (ko) 영상 부호화 방법 및 장치와 영상 복호화 방법 및 장치
WO2017091016A1 (ko) 비디오 복호화 방법 및 장치, 그 부호화 방법 및 장치
WO2013109123A1 (ko) 인트라 예측 처리 속도 향상을 위한 비디오의 부호화 방법 및 장치, 비디오의 복호화 방법 및 장치
WO2011053022A2 (en) Method and apparatus for encoding/decoding image with reference to a plurality of frames
WO2018212569A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2015020504A1 (ko) 병합 모드 결정 방법 및 장치
WO2019013434A1 (ko) 움직임벡터를 부호화 또는 복호화하기 위한 장치 및 방법
WO2017142326A1 (ko) 비디오 부호화 방법 및 장치, 그 복호화 방법 및 장치
WO2015102367A1 (ko) 다시점 비디오를 부호화하는 방법 및 그 장치, 다시점 비디오를 복호화하는 방법 및 그 장치
WO2017090961A1 (ko) 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
WO2017091001A1 (ko) 픽셀의 기울기에 기초하여 인트라 또는 인터 예측 블록을 후처리하는 방법 및 장치
WO2015152503A1 (ko) 영상 복호화 장치 및 그 방법
WO2017091023A1 (ko) 비디오 복호화 방법 및 장치, 그 부호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15775627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864562

Country of ref document: EP

Kind code of ref document: A1