WO2017082515A1 - Method for processing reception signal from base station by terminal in wireless communication system - Google Patents

Method for processing reception signal from base station by terminal in wireless communication system Download PDF

Info

Publication number
WO2017082515A1
WO2017082515A1 PCT/KR2016/008394 KR2016008394W WO2017082515A1 WO 2017082515 A1 WO2017082515 A1 WO 2017082515A1 KR 2016008394 W KR2016008394 W KR 2016008394W WO 2017082515 A1 WO2017082515 A1 WO 2017082515A1
Authority
WO
WIPO (PCT)
Prior art keywords
res
terminal
base station
channel information
equation
Prior art date
Application number
PCT/KR2016/008394
Other languages
French (fr)
Korean (ko)
Inventor
이길봄
강지원
김기태
김희진
김규석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017082515A1 publication Critical patent/WO2017082515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for processing a received signal from a base station by a terminal in a wireless communication system.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • an object of the present invention is to improve the process of processing the downlink received signal by the terminal to improve the received signal processing performance.
  • Another object of the present invention is to improve the efficiency of accuracy to the maximum with only low complexity in the process of improving the reception signal processing performance.
  • Another object of the present invention is to minimize the increase in complexity required through the proposed invention.
  • a method of processing a received signal comprising: obtaining channel information on a part of a resource element (RE) in a subframe by using a DeModulation Reference Signal (DMRS) transmitted through a downlink subframe, and part of the RE Parameter for obtaining channel information on the remaining REs in the subframe using the channel information for the Determining the parameters Compensating the initial value until the error of the applied initial value is less than the threshold value, and determining the channel information for the remaining RE using the compensated result.
  • DMRS DeModulation Reference Signal
  • the received signal processing method may further include decoding downlink data included in a subframe using channel results for some REs and channel results for the remaining REs.
  • the compensating step may be performed using a conjugate gradient algorithm or a Newton method.
  • the initial filter and acceleration filter applied to the CG algorithm are parameters Can be.
  • the cross-covariance matrix By applying to the cross-covariance matrix May be a matrix representing a correlation between some REs and others.
  • I a covariance matrix representing the correlations between some REs. Is determined by using an autocovariance matrix. silver Can be calculated using an approximated formula of the function.
  • the terminal for solving the above technical problem includes a transmitter, a receiver, and a processor operating in connection with the transmitter and the receiver, wherein the processor is configured for some REs in the subframe using DMRS transmitted through a downlink subframe.
  • Parameter for acquiring channel information and using the channel information of some REs to acquire channel information of the remaining REs in a subframe To determine the parameters Compensate for the initial value until the error of the applied initial value is less than the threshold value, and determine the channel information for the remaining RE using the compensated result.
  • the added complexity can be minimized while improving the accuracy of downlink channel estimation.
  • 1 is a diagram illustrating a Doppler spectrum.
  • FIG. 2 is a diagram illustrating narrow beamforming according to the invention.
  • 3 is a diagram illustrating Doppler spectra when narrow beamforming is performed.
  • FIG. 4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
  • 5 is an example of a frame structure proposed in a communication environment using mmWave.
  • OVSF Orthogonal Variable Spreading Factor
  • FIG. 7 is a diagram illustrating an example of an arrangement of terminals.
  • DMRS DeModulation Reference Signal
  • FIG. 9 is a flowchart illustrating a downlink signal processing method according to an exemplary embodiment.
  • FIG. 10 is a flowchart illustrating a channel interpolation process according to an exemplary embodiment.
  • FIG. 11 is a diagram illustrating a configuration of a terminal and a base station related to the proposed embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a 'mobile station (MS)' may be a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, an advanced mobile station (AMS), a terminal. (Terminal) or a station (STAtion, STA) and the like can be replaced.
  • UE user equipment
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • Terminal or a station (STAtion, STA) and the like can be replaced.
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • the description that the device communicates with the 'cell' may mean that the device transmits and receives a signal with the base station of the cell. That is, a substantial target for the device to transmit and receive a signal may be a specific base station, but for convenience of description, it may be described as transmitting and receiving a signal with a cell formed by a specific base station.
  • the description of 'macro cell' and / or 'small cell' may not only mean specific coverage, but also 'macro base station supporting macro cell' and / or 'small cell supporting small cell', respectively. It may mean 'base station'.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • the error value of the oscillator of the terminal and the base station is defined as a requirement, and is described as follows.
  • the UE modulated carrier frequency shall be accurate to within ⁇ 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
  • Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
  • the maximum difference of the oscillator between the base station and the terminal is ⁇ 0.1ppm, and when an error occurs in one direction, a maximum offset value of 0.2 ppm may occur.
  • This offset value is multiplied by the center frequency and converted into Hz units for each center frequency.
  • the CFO value is shown differently by subcarrier spacing, and in general, even if the CFO value is large, the effect of the OFDM system with a sufficiently large subcarrier spacing is relatively small. Therefore, the actual CFO value (absolute value) needs to be expressed as a relative value affecting the OFDM system, which is called a normalized CFO.
  • the normalized CFO is expressed by dividing the CFO value by the subcarrier spacing. Table 2 below shows the CFO and normalized CFO for each center frequency and oscillator error value.
  • Center frequency (subcarrier spacing) Oscillator offset ⁇ 0.05ppm ⁇ 0.1ppm ⁇ 10 ppm ⁇ 20ppm 2 GHz (15 kHz) ⁇ 100 Hz ( ⁇ 0.0067) ⁇ 200 Hz ( ⁇ 0.0133) ⁇ 20 kHz ( ⁇ 1.3) ⁇ 40 kHz ( ⁇ 2.7) 30 GHz (104.25 kHz) ⁇ 1.5 kHz ( ⁇ 0.014) ⁇ 3 kHz ( ⁇ 0.029) ⁇ 300 kHz ( ⁇ 2.9) ⁇ 600 kHz ( ⁇ 5.8) 60 GHz (104.25 kHz) ⁇ 3 kHz ( ⁇ 0.029) ⁇ 6 kHz ( ⁇ 0.058) ⁇ 600 kHz ( ⁇ 5.8) ⁇ 1.2 MHz ( ⁇ 11.5)
  • a subcarrier spacing (15 kHz) is assumed for a center frequency of 2 GHz (for example, LTE Rel-8 / 9/10), and a subcarrier spacing of 104.25 kHz for a center frequency of 30 GHz or 60 GHz. This prevents performance degradation considering the Doppler effect for each center frequency.
  • Table 2 above is a simple example and it is apparent that other subcarrier spacings may be used for the center frequency.
  • Doppler dispersion causes dispersion in the frequency domain, resulting in distortion of the received signal at the receiver's point of view.
  • Doppler dispersion It can be expressed as.
  • v is the moving speed of the terminal
  • means the wavelength of the center frequency of the transmitted radio waves.
  • means the angle between the received radio wave and the moving direction of the terminal. The following description is based on the assumption that ⁇ is zero.
  • the coherence time is in inverse proportion to the Doppler variance. If the coherence time is defined as a time interval in which the correlation value of the channel response in the time domain is 50% or more, It is expressed as In a wireless communication system, Equation 1 below is mainly used which represents a geometric mean between the equation for Doppler variance and the equation for coherence time.
  • 1 is a diagram illustrating a Doppler spectrum.
  • the Doppler spectrum or Doppler power spectrum density, which represents a change in Doppler value according to the frequency change, may have various shapes according to a communication environment.
  • a communication environment such as downtown
  • the Doppler spectrum appears in the U-shape as shown in FIG. 1 shows the center frequency
  • the maximum Doppler variance U-shaped Doppler spectra are shown.
  • FIG. 2 is a diagram showing narrow beamforming according to the present invention
  • FIG. 3 is a diagram showing Doppler spectrum when narrow beamforming is performed.
  • an antenna array including a plurality of antennas may be installed in a small space with a small antenna. This feature enables pin-point beamforming, pencil beamforming, narrow beamforming, or thin beamforming using tens to hundreds of antennas. This narrow beamforming means that the received signal is received only at a certain angle, not in the same direction.
  • FIG. 2A illustrates a case where the Doppler spectrum is U-shaped according to a signal received in an equal direction
  • FIG. 2B illustrates a case where narrow beamforming using a plurality of antennas is performed.
  • the Doppler spectrum also appears narrower than the U-shape due to the reduced angular spread.
  • FIG. 3 it can be seen that Doppler variance appears only in a certain band when the narrow beamforming is performed.
  • the center frequency operates in the band of several GHz to several tens of GHz. This characteristic of the center frequency makes the influence of the CFO due to the Doppler effect or the oscillator difference between the transmitter / receiver caused by the movement of the terminal more serious.
  • FIG. 4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
  • the terminal performs synchronization with the base station by using a downlink (DL) synchronization signal transmitted by the base station.
  • DL downlink
  • timing and frequency are synchronized between the base station and the terminal.
  • the base station transmits the synchronization signal by configuring the beam width as wide as possible so that terminals in a specific cell can receive and use the synchronization signal.
  • path loss is greater than that of a low frequency band in synchronizing signal transmission. That is, in the case of a system using a high frequency band, a cell radius that can be supported compared to a conventional cellular system (for example, LTE / LTE-A) using a relatively low frequency band (for example, 6 GHz or less). This is greatly toned.
  • a conventional cellular system for example, LTE / LTE-A
  • a relatively low frequency band for example, 6 GHz or less
  • a synchronization signal transmission method using beamforming may be used.
  • the cell radius is increased, but the beam width is reduced. Equation 2 below shows the change in the received signal SINR according to the beam width.
  • Equation 2 is the beam width according to the beamforming If received decreases, the received SINR is Fold improvement.
  • Another method for solving the reduction of the cell radius may be considered to repeatedly transmit the same sync signal. This method requires additional resource allocation on the time axis, but has the advantage of increasing the cell radius without reducing the beam width.
  • the base station allocates resources to each terminal by scheduling frequency resources and time resources located in a specific area.
  • this specific zone is defined as a sector.
  • A1, A2, A3, and A4 represent sectors having a radius of 0 to 200 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively.
  • B1, B2, B3, and B4 represent sectors having a radius of 200 to 500 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively.
  • sector 1 is defined as ⁇ A1, A2, A3, A4 ⁇
  • sector 2 is defined as ⁇ A1, A2, A3, A4, B1, B2, B3, B4 ⁇ .
  • the synchronization signal service area of the current base station is sector 1, it is assumed that an additional power of 6 dB or more is required for transmission of the synchronization signal in order for the base station to service the synchronization signal in sector 2.
  • the base station can obtain an additional gain of 6 dB using the beamforming technique to serve sector 2.
  • the service radius can be increased from A1 to B1.
  • A2, A3, and A4 cannot be serviced at the same time. Therefore, when beamforming is performed, a synchronization signal should be separately transmitted to the A2 to B2, A3 to B3, and A4 to B4 sectors. In other words, the base station must transmit a synchronization signal four times beamforming to serve sector 2.
  • the base station can transmit the synchronization signal to all sectors 2, but must transmit the synchronization signal four times on the time axis.
  • the resources required to service sector 2 are the same for both beamforming and iterative transmission.
  • the beam width is narrow, it is difficult for a terminal moving at a high speed or a terminal at the boundary of a sector to stably receive a synchronization signal. Instead, if the ID of the beam in which the terminal is located can be distinguished, there is an advantage that the terminal can determine its own position through a synchronization signal.
  • the repetitive transmission scheme since the beam width is wide, it is very unlikely that the terminal misses the synchronization signal. Instead, the terminal cannot determine its location.
  • 5 is an example of a frame structure proposed in a communication environment using mmWave.
  • one frame consists of Q subframes and one subframe consists of P slots.
  • One slot consists of T OFDM symbols.
  • the first subframe in the frame uses the 0 th slot (slot indicated by 'S') for synchronization purposes.
  • the 0 th slot is composed of A OFDM symbols for timing and frequency synchronization, B OFDM symbols for beam scanning, and C OFDM symbols for informing the UE of system information. The remaining D OFDM symbols are used for data transmission to each terminal.
  • Q, P, T, S, A, B, C, and D may each be arbitrary values and may be values set by a user or automatically set on a system.
  • N g , i represent the length of an OFDM symbol, the length of a cyclic prefix (CP), and the index of an OFDM symbol, respectively.
  • the algorithm of Equation 3 operates under the condition that two adjacent OFDM received signals in time are the same.
  • Such an algorithm can use a sliding window method, which can be implemented with low complexity, and has a strong characteristic of frequency offset.
  • Equation 4 represents an algorithm for performing timing synchronization by using a correlation between a received signal and a signal transmitted by a base station.
  • Equation 4 denotes a signal transmitted by the base station and is a signal vector previously promised between the terminal and the base station. Equation 4 may produce better performance than Equation 3, but may not be implemented as a sliding window method, and thus requires high complexity. It also has a feature that is vulnerable to frequency offset.
  • Beam scanning refers to the operation of the transmitter and / or receiver to find the direction of the beam that maximizes the receiver's received SINR.
  • the base station determines the direction of the beam through beam scanning before transmitting data to the terminal.
  • FIG. 4 illustrates a sector served by one base station divided into eight regions.
  • the base station transmits beams in the areas (A1 + B1), (A2 + B2), (A3 + B3), and (A4 + B4), respectively, and the terminal can distinguish beams transmitted by the base station.
  • the beam scanning process can be embodied in four processes. First, i) the base station transmits a beam in four areas in sequence. ii) The terminal determines the beam that is determined to be the most suitable among the beams in view of the received SINR. iii) The terminal feeds back information on the selected beam to the base station. iv) The base station transmits data using the beam having the feedback direction. Through the above beam scanning process, the UE can receive downlink data through the beam with optimized reception SINR.
  • the Zadoff-Chu sequence is called a chu sequence or ZC sequence and is defined by Equation 5 below.
  • N is the length of the sequence
  • r is the root value
  • a characteristic of the ZC sequence is that all elements have the same size (constant amplitude).
  • the DFT results of the ZC sequence also appear the same for all elements.
  • Equation (6) the ZC sequence and the cyclic shifted version of the ZC sequence have a correlation as shown in Equation (6).
  • the ZC sequence also has a zero auto-correlation property, it is also expressed as having a constant Amplitude Zero Auto Correlation (CAZAC).
  • Hadamard matrix is defined as Equation 8 below.
  • Equation (8) Denotes the size of the matrix.
  • Equation 9 It can be seen from Equation 9 that the columns are orthogonal to each other.
  • the OVSF code is generated based on the Hadamard matrix and has a specific rule.
  • the first code when branching to the right side of the OVSF code (lower branch), the first code repeats the upper code on the left side twice (mother code), and the second code repeats the high code code once and inverts it once. Is generated. 6 shows a tree structure of the OVSF code.
  • All of these OVSF codes are orthogonal except for the relationship between adjacent higher and lower codes on the code tree.
  • the code [1 -1 1 -1] is orthogonal to [1 1], [1 1 1 1], and [1 1 -1 -1].
  • the OVSF code has the same length as the code length. That is, in FIG. 6, it can be seen that the length of a specific code is equal to the total number of branches to which the corresponding code belongs.
  • RACH random access channel
  • the base station defines a parameter called 'preambleInitialReceivedTargetPower', and broadcasts the parameter to all terminals in the cell through SIB (System Information Block) 2.
  • SIB System Information Block
  • the UE calculates a path loss using a reference signal, and determines the transmission power of the RACH signal by using the calculated path loss and the 'preambleInitialReceivedTargetPower' parameter as shown in Equation 10 below.
  • P_PRACH_Initial, P_CMAX, and PL represent the transmission power of the RACH signal, the maximum transmission power of the terminal, and the path loss, respectively.
  • Equation 10 it is assumed that the maximum transmit power of the terminal is 23 dBm and the RACH reception power of the base station is -104 dBm. In addition, it is assumed that the terminal is arranged as shown in FIG.
  • the terminal calculates a path loss using the received synchronization signal and the beam scanning signal, and determines the transmission power based on this.
  • Table 3 shows the path loss of the terminal and its transmission power.
  • the RACH signal must be transmitted with a very small power (-44 dBm) to match the RACH reception power.
  • the path loss is large, but the required transmission power is 6 dBm.
  • 8 illustrates a channel estimation process using a DeModulation Reference Signal (DMRS).
  • DMRS DeModulation Reference Signal
  • the UE directly calculates a channel for a RE (Resource Element) loaded with a DMRS in a subframe, but interpolates a channel based on a channel of the DMRS RE for other REs. Estimate. Various methods can be used for this interpolation process, and a method of using a 2D Weiner filter will be described.
  • channel interpolation is simultaneously performed on the frequency axis and the time axis as in Equation 11 below.
  • Equation (12) Denotes a channel value estimated from the DMRS of the antenna port p, and its size is 12 ⁇ 1.
  • Covariance matrix Denotes auto-covariance between DMRSs of antenna port p, The (m, n) th element of the matrix is expressed by Equation 12 below.
  • Equation (12) Denotes a maximum Doppler shift, an OFDM symbol length, a maximum delay spread, and a subcarrier spacing, respectively. And, Denotes the time axis position and the frequency axis position of the m th RE, respectively.
  • 12 REs defined by hatched lines are defined, and the 12 REs have the same structure as the DMRS of the LTE system. Since the REs are code division multiplexed (CDM), the receiver can estimate one channel value from the two REs using an orthogonal cover code (OCC).
  • CDM code division multiplexed
  • the index of the RE is indexed by increasing from left to right along the time axis, and then moved down along the frequency axis to increase again from left to right, and indexed by 0, 1, 2, ..., 5.
  • Equation 11 Denotes a cross-covariance representing the correlation between the DMRS RE and the remaining REs.
  • the (m, n) th element of the matrix is defined as in Equation 13 below.
  • Equation 11 Is Is the result generated by passing the interpolation filter, and its size is 168 ⁇ 1.
  • equation (11) Represents the power of noise.
  • Equation 11 Computing requires a lot of complexity due to the inverse computation. Accordingly, the terminal is inverse matrix Is stored in the form of a look-up table and used according to Equation 14 below.
  • the terminal is As the value is determined, the corresponding inverse is selected.
  • Is an approximated inverse value selected using the lookup table Represents the exact inverse obtained through the calculation. That is, the terminal selects an inverse matrix matching the parameters, instead of directly calculating the inverse matrix.
  • the lookup table method since the lookup table method requires a storage space, the resolution of the lookup table is inevitably limited in a terminal having a limited storage space.
  • the lower the resolution of the lookup table the lower the performance of channel estimation using the 2D Wiener filter, which is a problem.
  • an embodiment of improving the performance degradation described above will be described.
  • FIG. 9 is a flowchart illustrating a downlink signal processing method according to an exemplary embodiment.
  • the accuracy of the channel estimation result can be improved by combining the method using the 2D Wiener filter and the method using the numerical analysis algorithm.
  • the numerical analysis algorithm is an algorithm that calculates a numerical approximation value from a certain value, and examples thereof include the Newton method and the conjugate gradient method.
  • the principle of the numerical analysis algorithm may be expressed by Equation 15 below.
  • equation (15) Represents a matrix, Denote an input vector and an output vector, respectively. If there is an inverse of the matrix, the simplest way to get the input vector from the output vector is
  • Equation (17) Is an estimate of the input vector found in the nth iteration, Is Is an additional variable used in the process of calculating. As the number of repetitions in Equation 17 increases Is Converges to the error value of the inverse matrix Means smaller.
  • the UE When the UE receives the downlink signal from the base station (S910), the UE estimates a downlink channel of some REs (that is, the RE where the DMRS is located) using the DMRS included in the downlink subframe (S920). Subsequently, the UE estimates channels of the remaining REs except for the DMRS using the estimated result value for the DMRS RE (S930). This process may be understood as a process of interpolating the calculated result values for the DMRS RE. If the channels for all REs are estimated, the terminal decodes downlink data using the channel estimation result (S940).
  • the S930 that is, the 2D Wiener filter may be used in the process of interpolating the result of the channel calculated for the DMRS RE, as described above.
  • an exemplary embodiment of a channel interpolation process will be described with reference to FIG. 10.
  • the terminal from the information on the channel calculated for the DMRS RE To calculate, from Are respectively calculated (S1010).
  • This calculation process may be performed according to the process described in Equations 11 to 13. Subsequently, the terminal determines parameters in S1010. Using In step S1020, this process may be performed by using a lookup table as described in Equation 14.
  • the value obtained in S1020 instead Expressed as It means that the value can be used as the initial value of the numerical analysis algorithm to be described later.
  • the terminal is an initial interpolation value based on the result values in S1010 and S1020 To calculate (S1030).
  • the terminal And Based on the numerical algorithm, It is obtained (S1040).
  • the CG algorithm is applied as an example of a numerical analysis algorithm will be described.
  • the resulting value of the numerical algorithm Cross-covariance Is applied to the final result value Is obtained. Is the final result of the interpolation process and means the output for the channel.
  • Equation 18 more specifically illustrates a process of applying a numerical analysis algorithm (CG algorithm).
  • equation (18) Denotes an initial filter and an acceleration filter applied to the CG algorithm, respectively.
  • Values are auxiliary variables used to solve solutions in numerical algorithms and have no special meaning.
  • the numerical algorithm of Equation 18 is an initial value.
  • the process of compensating is repeatedly performed until it is smaller than the predetermined threshold. That is, in Equation 18 Is not satisfied (that is, Is the initial value If it is small enough compared to the) the end of the repetition of the compensation process.
  • the variable to control the accuracy of the result value Can be set to 0.01, The larger the value, the faster the algorithm terminates, resulting in a faster result, but less accurate. The smaller the value, the better the accuracy of the calculated result, instead of the algorithm terminating slowly.
  • the terminal can improve the accuracy of the result value by applying a numerical analysis algorithm to the result value obtained using the lookup table.
  • the initial filter and the acceleration filter of the numerical algorithm application process need not be implemented or generated separately, the computational complexity required for driving the numerical algorithm is minimized.
  • the terminal can obtain an improved channel interpolation result value with only minimal complexity, and accordingly, a disadvantage of the method of using the lookup table can be improved.
  • the covariance matrix An embodiment of calculating the approximation to is proposed.
  • the covariance matrix Each element of Is defined as Is It is expressed as a function.
  • the complexity of the function is not low, and it is important to calculate one covariance matrix.
  • the function's call is made twice as large as the total matrix. That is, if the complexity of the calculation process of the covariance matrix is improved, the complexity of the above-described embodiments may be further reduced.
  • Equation 19 The function may be redefined as in Equation 19 below.
  • Equation 19 is approximated as Equation 20 below.
  • the terminal 100 and the base station 200 may include radio frequency (RF) units 110 and 210, processors 120 and 220, and memories 130 and 230, respectively.
  • RF radio frequency
  • 11 illustrates only a 1: 1 communication environment between the terminal 100 and the base station 200, a communication environment may be established between a plurality of terminals and a plurality of base stations.
  • the base station 200 illustrated in FIG. 11 may be applied to both the macro cell base station and the small cell base station.
  • Each RF unit 110, 210 may include a transmitter 112, 212 and a receiver 114, 214, respectively.
  • the transmitting unit 112 and the receiving unit 114 of the terminal 100 are configured to transmit and receive signals with the base station 200 and other terminals, and the processor 120 is functionally connected with the transmitting unit 112 and the receiving unit 114.
  • the transmitter 112 and the receiver 114 may be configured to control a process of transmitting and receiving signals with other devices.
  • the processor 120 performs various processes on the signal to be transmitted and transmits the signal to the transmitter 112, and performs the process on the signal received by the receiver 114.
  • the processor 120 may store information included in the exchanged message in the memory 130.
  • the terminal 100 can perform the method of various embodiments of the present invention described above.
  • the transmitter 212 and the receiver 214 of the base station 200 are configured to transmit and receive signals with other base stations and terminals, and the processor 220 is functionally connected to the transmitter 212 and the receiver 214 to transmit the signal. 212 and the receiver 214 may be configured to control the process of transmitting and receiving signals with other devices.
  • the processor 220 may perform various processing on the signal to be transmitted, transmit the signal to the transmitter 212, and may perform processing on the signal received by the receiver 214. If necessary, the processor 220 may store information included in the exchanged message in the memory 230. With such a structure, the base station 200 may perform the method of the various embodiments described above.
  • Processors 120 and 220 of the terminal 100 and the base station 200 respectively instruct (eg, control, coordinate, manage, etc.) the operation in the terminal 100 and the base station 200.
  • Respective processors 120 and 220 may be connected to memories 130 and 230 that store program codes and data.
  • the memories 130 and 230 are coupled to the processors 120 and 220 to store operating systems, applications, and general files.
  • the processor 120 or 220 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 120 and 220 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium.
  • the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means.
  • Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do.
  • the computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the received signal processing method as described above may be applied to various wireless communication systems including not only 3GPP LTE and LTE-A systems, but also IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are method and terminal for processing a reception signal, the method in which channel information about some REs in a subframe is obtained by means of a DMRS transmitted through a downlink subframe, a parameter for obtaining channel information about remaining REs in the subframe is determined by means of the channel information about some REs, an initial value is compensated until the error of the initial value to which the parameter is applied is below a threshold, and the channel information about the remaining REs is determined by means of a compensation result.

Description

무선 통신 시스템에서 단말이 기지국으로부터의 수신 신호를 처리하는 방법Method in which a terminal processes a received signal from a base station in a wireless communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 무선 통신 시스템에서 단말이 기지국으로부터의 수신 신호를 처리하는 방법 및 그 장치에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a method and apparatus for processing a received signal from a base station by a terminal in a wireless communication system.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 단말이 하향링크 수신 신호를 처리하는 과정을 개선하여 수신 신호 처리 성능을 높이는 것이다.The present invention has been made to solve the above problems, an object of the present invention is to improve the process of processing the downlink received signal by the terminal to improve the received signal processing performance.
본 발명의 또 다른 목적은, 수신 신호 처리 성능을 개선하는 과정에서 낮은 복잡도만으로도 정확도의 효율을 최대한으로 개선하는 것이다.Another object of the present invention is to improve the efficiency of accuracy to the maximum with only low complexity in the process of improving the reception signal processing performance.
본 발명의 또 다른 목적은, 제안하는 발명을 통해 요구되는 복잡도 상승을 최소화하는 것이다.Another object of the present invention is to minimize the increase in complexity required through the proposed invention.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical objects to be achieved in the present invention are not limited to the above-mentioned matters, and other technical problems not mentioned above are provided to those skilled in the art from the embodiments of the present invention to be described below. May be considered.
상기 기술적 과제를 해결하기 위한 수신 신호 처리 방법은, 하향링크 서브프레임을 통해 전송되는 DMRS(DeModulation Reference Signal)를 이용하여 서브프레임 내의 일부 RE(Resource Element)에 대한 채널 정보를 획득하는 단계, 일부 RE에 대한 채널 정보를 이용하여 서브프레임 내의 나머지 RE에 대한 채널 정보를 획득하기 위한 파라미터
Figure PCTKR2016008394-appb-I000001
를 결정하는 단계, 파라미터
Figure PCTKR2016008394-appb-I000002
가 적용된 초기 값의 오차가 임계값 미만이 될 때까지 초기 값을 보상(compensate)하는 단계, 및 보상된 결과를 이용하여 나머지 RE에 대한 채널 정보를 결정하는 단계를 포함한다.
In accordance with one aspect of the present invention, there is provided a method of processing a received signal, the method comprising: obtaining channel information on a part of a resource element (RE) in a subframe by using a DeModulation Reference Signal (DMRS) transmitted through a downlink subframe, and part of the RE Parameter for obtaining channel information on the remaining REs in the subframe using the channel information for the
Figure PCTKR2016008394-appb-I000001
Determining the parameters
Figure PCTKR2016008394-appb-I000002
Compensating the initial value until the error of the applied initial value is less than the threshold value, and determining the channel information for the remaining RE using the compensated result.
수신 신호 처리 방법은 일부 RE에 대한 채널 결과 및 나머지 RE에 대한 채널 결과를 이용하여 서브프레임에 포함된 하향링크 데이터를 디코딩하는 단계를 더 포함할 수 있다.The received signal processing method may further include decoding downlink data included in a subframe using channel results for some REs and channel results for the remaining REs.
보상하는 단계는, CG(Conjugate Gradient) 알고리즘 또는 뉴턴 방식을 이용하여 수행될 수 있다.The compensating step may be performed using a conjugate gradient algorithm or a Newton method.
CG 알고리즘에 적용되는 초기 필터 및 가속 필터는 파라미터
Figure PCTKR2016008394-appb-I000003
일 수 있다.
The initial filter and acceleration filter applied to the CG algorithm are parameters
Figure PCTKR2016008394-appb-I000003
Can be.
파라미터
Figure PCTKR2016008394-appb-I000004
Figure PCTKR2016008394-appb-I000005
,
Figure PCTKR2016008394-appb-I000006
Figure PCTKR2016008394-appb-I000007
에 기초하여 룩업 테이블로부터 선택되며,
Figure PCTKR2016008394-appb-I000008
는 최대 딜레이 스프레드(max delay spread)를 나타내고,
Figure PCTKR2016008394-appb-I000009
는 최대 도플러 시프트(max Doppler shift)를 나타내고,
Figure PCTKR2016008394-appb-I000010
는 잡음의 파워를 나타낼 수 있다.
parameter
Figure PCTKR2016008394-appb-I000004
Is
Figure PCTKR2016008394-appb-I000005
,
Figure PCTKR2016008394-appb-I000006
And
Figure PCTKR2016008394-appb-I000007
Is selected from a lookup table based on
Figure PCTKR2016008394-appb-I000008
Represents the maximum delay spread,
Figure PCTKR2016008394-appb-I000009
Represents the maximum Doppler shift,
Figure PCTKR2016008394-appb-I000010
May represent the power of noise.
나머지 RE에 대한 채널 정보를 결정하는 단계는, 보상된 결과를 교차공분산 행렬
Figure PCTKR2016008394-appb-I000011
에 적용함으로써 수행되며, 교차공분산 행렬
Figure PCTKR2016008394-appb-I000012
은 일부 RE와 나머지 RE들 간의 상관관계를 나타내는 행렬일 수 있다.
Determining the channel information for the remaining RE, the cross-covariance matrix
Figure PCTKR2016008394-appb-I000011
By applying to the cross-covariance matrix
Figure PCTKR2016008394-appb-I000012
May be a matrix representing a correlation between some REs and others.
파라미터
Figure PCTKR2016008394-appb-I000013
는 일부 RE들 간의 상관관계를 나타내는 자기공분산 행렬
Figure PCTKR2016008394-appb-I000014
을 이용하여 결정되며, 자기공분산 행렬
Figure PCTKR2016008394-appb-I000015
Figure PCTKR2016008394-appb-I000016
함수의 근사화된 수식을 이용하여 산출될 수 있다.
parameter
Figure PCTKR2016008394-appb-I000013
Is a covariance matrix representing the correlations between some REs.
Figure PCTKR2016008394-appb-I000014
Is determined by using an autocovariance matrix.
Figure PCTKR2016008394-appb-I000015
silver
Figure PCTKR2016008394-appb-I000016
Can be calculated using an approximated formula of the function.
상기 기술적 과제를 해결하기 위한 단말은, 송신부, 수신부, 및 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 프로세서는, 하향링크 서브프레임을 통해 전송되는 DMRS를 이용하여 서브프레임 내의 일부 RE에 대한 채널 정보를 획득하고, 일부 RE에 대한 채널 정보를 이용하여, 서브프레임 내의 나머지 RE에 대한 채널 정보를 획득하기 위한 파라미터
Figure PCTKR2016008394-appb-I000017
를 결정하고, 파라미터
Figure PCTKR2016008394-appb-I000018
가 적용된 초기 값의 오차가 임계값 미만이 될 때까지 초기 값을 보상하며, 보상된 결과를 이용하여 나머지 RE에 대한 채널 정보를 결정한다.
The terminal for solving the above technical problem includes a transmitter, a receiver, and a processor operating in connection with the transmitter and the receiver, wherein the processor is configured for some REs in the subframe using DMRS transmitted through a downlink subframe. Parameter for acquiring channel information and using the channel information of some REs to acquire channel information of the remaining REs in a subframe
Figure PCTKR2016008394-appb-I000017
To determine the parameters
Figure PCTKR2016008394-appb-I000018
Compensate for the initial value until the error of the applied initial value is less than the threshold value, and determine the channel information for the remaining RE using the compensated result.
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.According to embodiments of the present invention, the following effects can be expected.
첫째로, 무선 통신 시스템에서 단말이 수신 신호를 처리하는 과정에서 채널 추정의 정확도를 향상시켜 정확한 하향링크 신호 처리가 가능하게 된다. First, in a wireless communication system, accurate downlink signal processing is possible by improving the accuracy of channel estimation in the process of the received signal by the terminal.
둘째로, 제안하는 발명에 따라 하향링크 채널 추정의 정확도가 개선되면서도 추가되는 복잡도가 최소화될 수 있다.Secondly, according to the proposed invention, the added complexity can be minimized while improving the accuracy of downlink channel estimation.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtained in the embodiments of the present invention are not limited to the above-mentioned effects, and other effects not mentioned above are commonly known in the art to which the present invention pertains from the description of the embodiments of the present invention. Can be clearly derived and understood by those who have In other words, unintended effects of practicing the present invention may also be derived by those skilled in the art from the embodiments of the present invention.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to help understand the present disclosure, and provide embodiments of the present disclosure with the detailed description. However, the technical features of the present invention are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment. Reference numerals in each drawing refer to structural elements.
도 1은 도플러 스펙트럼을 도시하는 도면이다.1 is a diagram illustrating a Doppler spectrum.
도 2는 발명과 관련된 좁은 빔포밍(narrow beamforming)을 도시하는 도면이다.2 is a diagram illustrating narrow beamforming according to the invention.
도 3은 좁은 빔포밍이 수행될 경우의 도플러 스펙트럼을 도시하는 도면이다.3 is a diagram illustrating Doppler spectra when narrow beamforming is performed.
도 4는 기지국의 동기 신호 서비스 구역의 예시를 도시하는 도면이다.4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
도 5는 mmWave를 사용하는 통신 환경에서 제안하는 프레임 구조의 예이다.5 is an example of a frame structure proposed in a communication environment using mmWave.
도 6은 OVSF(Orthogonal Variable Spreading Factor) 코드의 구조를 도시한다.6 shows the structure of an Orthogonal Variable Spreading Factor (OVSF) code.
도 7은 단말의 배치 상황을 예로 들어 설명하는 도면이다.7 is a diagram illustrating an example of an arrangement of terminals.
도 8은 DMRS(DeModulation Reference Signal)를 이용한 채널 추정 과정을 설명하는 도면이다.8 illustrates a channel estimation process using a DeModulation Reference Signal (DMRS).
도 9는 제안하는 실시 예에 따른 하향링크 신호 처리 방법을 설명하는 흐름도이다.9 is a flowchart illustrating a downlink signal processing method according to an exemplary embodiment.
도 10은 제안하는 실시 예에 따른 채널 보간 과정을 설명하는 흐름도이다.10 is a flowchart illustrating a channel interpolation process according to an exemplary embodiment.
도 11은 제안하는 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다.11 is a diagram illustrating a configuration of a terminal and a base station related to the proposed embodiment.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected as widely used general terms as possible in consideration of the functions in the present invention, but this may vary according to the intention or precedent of the person skilled in the art, the emergence of new technologies and the like. In addition, in certain cases, there is also a term arbitrarily selected by the applicant, in which case the meaning will be described in detail in the description of the invention. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the contents throughout the present invention, rather than the names of the simple terms.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some of the components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps which may obscure the gist of the present invention are not described, and procedures or steps that can be understood by those skilled in the art are not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising" (or including) a component, this means that it may further include other components, except to exclude other components unless specifically stated otherwise. do. In addition, the terms "... unit", "... group", "module", etc. described in the specification mean a unit for processing at least one function or operation, which is hardware or software or a combination of hardware and software. It can be implemented as. Also, "a or an", "one", "the", and the like are used differently in the context of describing the present invention (particularly in the context of the following claims). Unless otherwise indicated or clearly contradicted by context, it may be used in the sense including both the singular and the plural.
본 명세서에서 본 발명의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present invention have been described based on data transmission / reception relations between a base station and a mobile station. Here, the base station is meant as a terminal node of a network that directly communicates with a mobile station. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(Advanced Base Station, ABS) 또는 액세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. That is, various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. In this case, the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
또한, '이동국(Mobile Station, MS)'은 UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal), 발전된 이동단말(Advanced Mobile Station, AMS), 단말(Terminal) 또는 스테이션(STAtion, STA) 등의 용어로 대체될 수 있다. In addition, a 'mobile station (MS)' may be a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, an advanced mobile station (AMS), a terminal. (Terminal) or a station (STAtion, STA) and the like can be replaced.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.Also, the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service, and the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
또한, 디바이스가 '셀'과 통신을 수행한다는 기재는 디바이스가 해당 셀의 기지국과 신호를 송수신하는 것을 의미할 수 있다. 즉, 디바이스가 신호를 송신하고 수신하는 실질적인 대상은 특정 기지국이 될 수 있으나, 기재의 편의상 특정 기지국에 의해 형성되는 셀과 신호를 송수신하는 것으로 기재될 수 있다. 마찬가지로, '매크로 셀' 및/또는 '스몰 셀' 이라는 기재는 각각 특정한 커버리지(coverage)를 의미할 수 있을 뿐 아니라, '매크로 셀을 지원하는 매크로 기지국' 및/또는 '스몰 셀을 지원하는 스몰 셀 기지국'을 의미할 수도 있다. In addition, the description that the device communicates with the 'cell' may mean that the device transmits and receives a signal with the base station of the cell. That is, a substantial target for the device to transmit and receive a signal may be a specific base station, but for convenience of description, it may be described as transmitting and receiving a signal with a cell formed by a specific base station. Similarly, the description of 'macro cell' and / or 'small cell' may not only mean specific coverage, but also 'macro base station supporting macro cell' and / or 'small cell supporting small cell', respectively. It may mean 'base station'.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.In addition, all terms disclosed in the present document can be described by the above standard document. In particular, embodiments of the present invention may be supported by one or more of the standard documents P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p, and P802.16.1b standard documents of the IEEE 802.16 system. have.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present invention are provided to help the understanding of the present invention, and the use of the specific terms may be changed to other forms without departing from the technical spirit of the present invention.
1. 초고주파 대역을 이용한 통신 시스템1. Communication system using ultra high frequency band
LTE(Long Term Evolution)/LTE-A(LTE Advanced) 시스템에서는 단말과 기지국의 오실레이터의 오차값을 요구사항(requirement)로 규정하며, 아래와 같이 기술한다.In LTE (Long Term Evolution) / LTE-A (LTE Advanced) system, the error value of the oscillator of the terminal and the base station is defined as a requirement, and is described as follows.
- UE side frequency error (in TS 36.101) UE side frequency error (in TS 36.101)
The UE modulated carrier frequency shall be accurate to within ±0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node BThe UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
- eNB side frequency error (in TS 36.104) eNB side frequency error (in TS 36.104)
Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
한편, 기지국의 종류에 따른 오실레이터 정확도는 아래의 표 1과 같다. Meanwhile, the oscillator accuracy according to the type of base station is shown in Table 1 below.
BS classBS class AccuracyAccuracy
Wide Area BSWide Area BS ±0.05 ppm± 0.05 ppm
Local Area BSLocal Area BS ±0.1 ppm± 0.1 ppm
Home BSHome BS ±0.25 ppm± 0.25 ppm
따라서, 기지국과 단말 간의 오실레이터의 최대 차이는 ±0.1ppm 으로, 한쪽 한쪽 방향으로 오차가 발생하였을 경우 최대 0.2ppm의 오프셋 값이 발생할 수 있다. 이러한 오프셋 값은 중심 주파수와 곱해짐으로써 각 중심 주파수에 맞는 Hz 단위로 변환된다.Therefore, the maximum difference of the oscillator between the base station and the terminal is ± 0.1ppm, and when an error occurs in one direction, a maximum offset value of 0.2 ppm may occur. This offset value is multiplied by the center frequency and converted into Hz units for each center frequency.
한편, OFDM 시스템에서는 CFO 값이 서브캐리어 간격(subcarrier spacing)에 의해 다르게 나타나며, 일반적으로 큰 CFO 값이라 하더라도 서브캐리어 간격이 충분히 큰 OFDM 시스템에서 미치는 영향은 상대적으로 작다. 따라서, 실제 CFO 값(절대값)은 OFDM 시스템에 영향을 주는 상대적인 값으로 표현될 필요가 있으며, 이를 정규화된 CFO(normalized CFO)라 한다. 정규화된 CFO는 CFO 값을 서브캐리어 간격으로 나눈 값으로 표현되며, 아래의 표 2는 각 중심 주파수와 오실레이터의 오차 값에 대한 CFO와 정규화된 CFO를 나타낸다.On the other hand, in the OFDM system, the CFO value is shown differently by subcarrier spacing, and in general, even if the CFO value is large, the effect of the OFDM system with a sufficiently large subcarrier spacing is relatively small. Therefore, the actual CFO value (absolute value) needs to be expressed as a relative value affecting the OFDM system, which is called a normalized CFO. The normalized CFO is expressed by dividing the CFO value by the subcarrier spacing. Table 2 below shows the CFO and normalized CFO for each center frequency and oscillator error value.
Center frequency(subcarrier spacing)Center frequency (subcarrier spacing) Oscillator OffsetOscillator offset
±0.05ppm± 0.05ppm ±0.1ppm± 0.1ppm ±10ppm± 10 ppm ±20ppm± 20ppm
2GHz(15kHz)2 GHz (15 kHz) ±100Hz(±0.0067)± 100 Hz (± 0.0067) ±200Hz(±0.0133)± 200 Hz (± 0.0133) ±20kHz(±1.3)± 20 kHz (± 1.3) ±40kHz(±2.7)± 40 kHz (± 2.7)
30GHz(104.25kHz)30 GHz (104.25 kHz) ±1.5kHz(±0.014)± 1.5 kHz (± 0.014) ±3kHz(±0.029)± 3 kHz (± 0.029) ±300kHz(±2.9)± 300 kHz (± 2.9) ±600kHz(±5.8)± 600 kHz (± 5.8)
60GHz(104.25kHz)60 GHz (104.25 kHz) ±3kHz(±0.029)± 3 kHz (± 0.029) ±6kHz(±0.058)± 6 kHz (± 0.058) ±600kHz(±5.8)± 600 kHz (± 5.8) ±1.2MHz(±11.5)± 1.2 MHz (± 11.5)
표 2에서 중심 주파수가 2GHz인 경우(예를 들어, LTE Rel-8/9/10)에는 서브캐리어 간격(15kHz)를 가정하였으며, 중심 주파수가 30GHz, 60GHz인 경우에는 서브캐리어 간격을 104.25kHz를 사용함으로써 각 중심 주파수에 대해 도플러 영향을 고려한 성능 열화를 방지하였다. 위의 표 2는 단순한 예시이며, 중심 주파수에 대해 다른 서브캐리어 간격이 사용될 수 있음은 자명하다.In Table 2, a subcarrier spacing (15 kHz) is assumed for a center frequency of 2 GHz (for example, LTE Rel-8 / 9/10), and a subcarrier spacing of 104.25 kHz for a center frequency of 30 GHz or 60 GHz. This prevents performance degradation considering the Doppler effect for each center frequency. Table 2 above is a simple example and it is apparent that other subcarrier spacings may be used for the center frequency.
한편, 단말이 고속으로 이동하는 상황이나 고주파수 대역에서 이동하는 상황에서는 도플러 분산(Doppler spread) 현상이 크게 발생한다. 도플러 분산은 주파수 영역에서의 분산을 유발하며, 결과적으로 수신기 입장에서 수신 신호의 왜곡을 발생시킨다. 도플러 분산은
Figure PCTKR2016008394-appb-I000019
로 표현될 수 있다. 이때, v는 단말의 이동 속도이며, λ는 전송되는 전파의 중심 주파수의 파장을 의미한다. θ는 수신되는 전파와 단말의 이동 방향 사이의 각도를 의미한다. 이하에서는 θ가 0인 경우를 전제로 하여 설명한다.
On the other hand, in a situation where the terminal moves at a high speed or in a high frequency band, a Doppler spread phenomenon greatly occurs. Doppler dispersion causes dispersion in the frequency domain, resulting in distortion of the received signal at the receiver's point of view. Doppler dispersion
Figure PCTKR2016008394-appb-I000019
It can be expressed as. In this case, v is the moving speed of the terminal, and λ means the wavelength of the center frequency of the transmitted radio waves. θ means the angle between the received radio wave and the moving direction of the terminal. The following description is based on the assumption that θ is zero.
이때, 코히어런스 타임(coherence time)은 도플러 분산과 반비례하는 관계에 있다. 만약, 코히어런스 타임을 시간 영역에서 채널 응답의 상관관계(correlation) 값이 50% 이상인 시간 간격으로 정의하는 경우,
Figure PCTKR2016008394-appb-I000020
로 표현된다. 무선 통신 시스템에서는 도플러 분산에 대한 수식과 코히어런스 타임에 대한 수식 간의 기하 평균(geometric mean)을 나타내는 아래의 수학식 1이 주로 이용된다.
In this case, the coherence time is in inverse proportion to the Doppler variance. If the coherence time is defined as a time interval in which the correlation value of the channel response in the time domain is 50% or more,
Figure PCTKR2016008394-appb-I000020
It is expressed as In a wireless communication system, Equation 1 below is mainly used which represents a geometric mean between the equation for Doppler variance and the equation for coherence time.
[수학식 1][Equation 1]
Figure PCTKR2016008394-appb-I000021
Figure PCTKR2016008394-appb-I000021
도 1은 도플러 스펙트럼을 도시하는 도면이다.1 is a diagram illustrating a Doppler spectrum.
주파수 변화에 따른 도플러 값의 변화를 나타내는 도플러 스펙트럼(Doppler spectrum, 또는 도플러 파워 스펙트럼 밀도(Doppler power spectrum density))는 통신 환경에 따라 다양한 모양을 가질 수 있다. 일반적으로, 도심지와 같이 산란(scattering)이 많이 발생하는 환경에서, 수신 신호가 모든 방향으로 동일한 파워로 수신된다면 도플러 스펙트럼은 도 1과 같은 U-형태로 나타난다. 도 1은 중심 주파수를
Figure PCTKR2016008394-appb-I000022
라 하고 최대 도플러 분산 값을
Figure PCTKR2016008394-appb-I000023
라 할 때의 U-형태 도플러 스펙트럼을 도시한다.
The Doppler spectrum, or Doppler power spectrum density, which represents a change in Doppler value according to the frequency change, may have various shapes according to a communication environment. In general, in an environment where scattering occurs a lot, such as downtown, if the received signal is received at the same power in all directions, the Doppler spectrum appears in the U-shape as shown in FIG. 1 shows the center frequency
Figure PCTKR2016008394-appb-I000022
And the maximum Doppler variance
Figure PCTKR2016008394-appb-I000023
U-shaped Doppler spectra are shown.
도 2는 발명과 관련된 좁은 빔포밍을 도시하는 도면이며, 도 3은 좁은 빔포밍이 수행될 경우의 도플러 스펙트럼을 도시하는 도면이다.FIG. 2 is a diagram showing narrow beamforming according to the present invention, and FIG. 3 is a diagram showing Doppler spectrum when narrow beamforming is performed.
초고주파 무선 통신 시스템은 중심 주파수가 매우 높은 대역에 위치하기 때문에, 안테나의 크기가 작고 작은 공간 내에 복수의 안테나로 구성되는 안테나 어레이를 설치할 수 있는 특징이 있다. 이러한 특징으로 인해 수십 내지 수백 개의 안테나를 이용한 핀포인트 빔포밍(pin-point beamforming), 펜슬 빔포밍(pencil beamforming), 좁은 빔포밍(narrow beamforming), 또는 얇은 빔포밍(sharp beamforming)이 가능해진다. 이러한 좁은 빔포밍은 수신되는 신호가 등방향이 아닌 일정한 각도로만 수신된다는 것을 의미한다. Since the ultrahigh frequency wireless communication system is located in a band having a very high center frequency, an antenna array including a plurality of antennas may be installed in a small space with a small antenna. This feature enables pin-point beamforming, pencil beamforming, narrow beamforming, or thin beamforming using tens to hundreds of antennas. This narrow beamforming means that the received signal is received only at a certain angle, not in the same direction.
도 2(a)는 등방향으로 수신되는 신호에 따라 도플러 스펙트럼이 U-형태로 나타나는 경우를 도시하며, 도 2(b)는 복수의 안테나를 이용한 좁은 빔포밍이 수행되는 경우를 도시한다.FIG. 2A illustrates a case where the Doppler spectrum is U-shaped according to a signal received in an equal direction, and FIG. 2B illustrates a case where narrow beamforming using a plurality of antennas is performed.
이와 같이, 좁은 빔포밍을 수행하면 줄어든 angular spread로 인하여 도플러 스펙트럼도 U-형태 보다 좁게 나타난다. 도 3에 도시된 바와 같이, 좁은 빔포밍이 수행되는 경우의 도플러 스펙트럼은 일정 대역에서만 도플러 분산이 나타남을 알 수 있다.As such, when the narrow beamforming is performed, the Doppler spectrum also appears narrower than the U-shape due to the reduced angular spread. As shown in FIG. 3, it can be seen that Doppler variance appears only in a certain band when the narrow beamforming is performed.
앞서 설명한 초고주파 대역을 이용하는 무선 통신 시스템은 중심 주파수가 수 GHz 내지 수십 GHz 대역에서 동작한다. 이러한 중심주파수의 특성은 단말의 이동에 따라 발생하는 도플러 효과나 송신기/수신기 간의 오실레이터 차이로 인한 CFO의 영향을 더욱 심각하게 한다.In the wireless communication system using the ultra-high frequency band described above, the center frequency operates in the band of several GHz to several tens of GHz. This characteristic of the center frequency makes the influence of the CFO due to the Doppler effect or the oscillator difference between the transmitter / receiver caused by the movement of the terminal more serious.
도 4는 기지국의 동기 신호 서비스 구역의 예시를 도시하는 도면이다.4 is a diagram illustrating an example of a synchronization signal service zone of a base station.
단말은 기지국이 전송하는 하향링크(Downlink, DL) 동기 신호(synchronization signal)를 이용하여 기지국과 동기화를 수행한다. 이러한 동기화 과정에서는 기지국과 단말 간에 타이밍(timing) 과 주파수가 동기화된다. 동기화 과정에서 특정 셀 내의 단말들이 동기 신호를 수신하고 이용할 수 있도록, 기지국은 빔폭을 최대한 넓게 구성하여 동기 신호를 전송한다.The terminal performs synchronization with the base station by using a downlink (DL) synchronization signal transmitted by the base station. In this synchronization process, timing and frequency are synchronized between the base station and the terminal. In the synchronization process, the base station transmits the synchronization signal by configuring the beam width as wide as possible so that terminals in a specific cell can receive and use the synchronization signal.
한편, 고주파 대역을 이용하는 mmWave 통신 시스템의 경우, 동기 신호 전송에 있어서 저주파 대역을 이용하는 경우에 비해 경로 감쇄(path loss)가 더 크게 나타난다. 즉, 고주파 대역을 이용하는 시스템의 경우, 상대적으로 낮은 주파수 대역(예를 들어, 6GHz 이하)을 이용하는 종래의 셀룰러 시스템(예를 들어, LTE/LTE-A)에 비해 지원할 수 있는 셀 반경(radius)이 큰 폭으로 축호된다.On the other hand, in the mmWave communication system using a high frequency band, path loss is greater than that of a low frequency band in synchronizing signal transmission. That is, in the case of a system using a high frequency band, a cell radius that can be supported compared to a conventional cellular system (for example, LTE / LTE-A) using a relatively low frequency band (for example, 6 GHz or less). This is greatly toned.
이러한 셀 반경의 축소를 해결하기 위한 하나의 방법으로서, 빔포밍(beam forming)을 이용한 동기 신호 전송 방법이 이용될 수 있다. 빔포밍이 이용되는 경우 셀 반경은 증가하지만, 빔 폭이 줄어드는 단점이 있다. 아래의 수학식 2는 빔 폭에 따른 수신 신호 SINR 의 변화를 나타낸다.As one method for solving such a reduction in cell radius, a synchronization signal transmission method using beamforming may be used. When beamforming is used, the cell radius is increased, but the beam width is reduced. Equation 2 below shows the change in the received signal SINR according to the beam width.
[수학식 2][Equation 2]
Figure PCTKR2016008394-appb-I000024
Figure PCTKR2016008394-appb-I000024
수학식 2은 빔포밍에 따라 빔 폭이
Figure PCTKR2016008394-appb-I000025
배 감소하는 경우, 수신 SINR이
Figure PCTKR2016008394-appb-I000026
배 향상됨을 나타낸다.
Equation 2 is the beam width according to the beamforming
Figure PCTKR2016008394-appb-I000025
If received decreases, the received SINR is
Figure PCTKR2016008394-appb-I000026
Fold improvement.
이러한 빔포밍 방식 이외에, 셀 반경의 축소를 해결하기 위한 또다른 방법으로서 동일한 동기 신호를 반복하여 전송하는 방식 또한 고려해볼 수 있다. 이러한 방식의 경우, 시간축으로 추가적인 자원할당이 필요하지만, 빔 폭의 감소 없이도 셀 반경을 증가시킬 수 있다는 장점이 있다. In addition to the beamforming method, another method for solving the reduction of the cell radius may be considered to repeatedly transmit the same sync signal. This method requires additional resource allocation on the time axis, but has the advantage of increasing the cell radius without reducing the beam width.
한편, 기지국은 특정 구역 내에 위치하는 주파수 자원 및 시간 자원을 스케쥴링함으로써 각 단말들에 자원을 할당한다. 이하에서는 이러한 특정 구역을 섹터(sector)라 정의한다. 도 4에 도시된 섹터에서 A1, A2, A3, A4는 반경 0~200m 이고 각각 폭이 0~15', 15~30', 30~45', 45~60'인 섹터들을 나타낸다. B1, B2, B3, B4는 반경 200~500m이고 각각 폭이 0~15', 15~30', 30~45', 45~60'인 섹터들을 나타낸다. 도 4에 도시된 내용들을 바탕으로, 섹터 1을 {A1, A2, A3, A4} 로 정의하고, 섹터 2를 {A1, A2, A3, A4, B1, B2, B3, B4}라 정의한다. 또한, 현재 기지국의 동기 신호 서비스 구역이 섹터 1인 경우, 기지국이 섹터 2에 동기 신호를 서비스하기 위해서는 동기 신호의 전송에 6dB 이상의 추가 파워가 요구된다고 가정한다. Meanwhile, the base station allocates resources to each terminal by scheduling frequency resources and time resources located in a specific area. Hereinafter, this specific zone is defined as a sector. In the sectors shown in FIG. 4, A1, A2, A3, and A4 represent sectors having a radius of 0 to 200 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively. B1, B2, B3, and B4 represent sectors having a radius of 200 to 500 m and widths of 0 to 15 ', 15 to 30', 30 to 45 ', and 45 to 60', respectively. Based on the contents shown in FIG. 4, sector 1 is defined as {A1, A2, A3, A4}, and sector 2 is defined as {A1, A2, A3, A4, B1, B2, B3, B4}. In addition, if the synchronization signal service area of the current base station is sector 1, it is assumed that an additional power of 6 dB or more is required for transmission of the synchronization signal in order for the base station to service the synchronization signal in sector 2.
먼저, 기지국은 섹터 2를 서비스하기 위하여 빔포밍 기법을 이용하여 6dB의 추가 이득을 얻을 수 있다. 이러한 빔포밍 과정을 통해 서비스 반경을 A1에서 B1까지 늘릴 수 있다. 그러나, 빔포밍을 통해 빔 폭이 줄어들기 때문에, A2, A3, A4는 동시에 서비스할 수 없게 된다. 따라서, 빔포밍이 수행되는 경우 A2~B2, A3~B3, A4~B4 섹터에 동기 신호가 각각 별도로 전송되어야 한다. 다시 말해서, 기지국은 섹터 2를 서비스하기 위해 동기 신호를 4번에 걸쳐 빔포밍을 수행해가며 전송해야만 한다.First, the base station can obtain an additional gain of 6 dB using the beamforming technique to serve sector 2. Through this beamforming process, the service radius can be increased from A1 to B1. However, since beam width is reduced through beamforming, A2, A3, and A4 cannot be serviced at the same time. Therefore, when beamforming is performed, a synchronization signal should be separately transmitted to the A2 to B2, A3 to B3, and A4 to B4 sectors. In other words, the base station must transmit a synchronization signal four times beamforming to serve sector 2.
반면, 앞서 설명한 동기 신호의 반복 전송을 생각해보면, 기지국이 동기 신호를 섹터 2 전부에 전송할 수 있지만, 시간축 상에서 동기 신호를 4번 반복하여 전송해야 한다. 결과적으로, 섹터 2를 서비스하기 위해 필요한 자원은 빔포밍 방식과 반복 전송 방식 모두에 있어서 동일하다.On the other hand, considering the repetitive transmission of the synchronization signal described above, the base station can transmit the synchronization signal to all sectors 2, but must transmit the synchronization signal four times on the time axis. As a result, the resources required to service sector 2 are the same for both beamforming and iterative transmission.
그러나, 빔포밍 방식의 경우 빔폭이 좁기 때문에 빠른 속도로 이동하는 단말이나 섹터의 경계에 있는 단말이 안정적으로 동기 신호를 수신하기 어렵다. 그 대신에, 단말이 위치하는 빔의 ID를 구분할 수 있다면, 동기 신호를 통해 단말이 자신의 위치를 파악할 수 있다는 장점이 있다. 반면, 반복 전송 방식의 경우 빔 폭이 넓어서 단말이 동기 신호를 놓칠 가능성은 매우 낮다. 그 대신, 단말이 자신의 위치를 파악할 수는 없게 된다.However, in the beamforming method, since the beam width is narrow, it is difficult for a terminal moving at a high speed or a terminal at the boundary of a sector to stably receive a synchronization signal. Instead, if the ID of the beam in which the terminal is located can be distinguished, there is an advantage that the terminal can determine its own position through a synchronization signal. On the other hand, in the repetitive transmission scheme, since the beam width is wide, it is very unlikely that the terminal misses the synchronization signal. Instead, the terminal cannot determine its location.
도 5는 mmWave를 사용하는 통신 환경에서 제안하는 프레임 구조의 예이다.5 is an example of a frame structure proposed in a communication environment using mmWave.
먼저, 하나의 프레임은 Q 개의 서브프레임으로 구성되며, 하나의 서브프레임은 P 개의 슬롯으로 구성된다. 하나의 슬롯은 T 개의 OFDM 심볼들로 구성된다. 이때, 다른 서브프레임들과는 달리, 프레임 내에서 첫 번째 서브프레임은 0 번째 슬롯('S'로 표시된 슬롯)을 동기화 용도로 사용한다. 이러한 0번째 슬롯은 타이밍과 주파수 동기를 위한 A개의 OFDM 심볼들, 빔 스캐닝을 위한 B 개의 OFDM 심볼들, 시스템 정보를 단말에 알리기 위한 C 개의 OFDM 심볼들로 구성된다. 나머지 D 개의 OFDM 심볼들은 각 단말에 데이터 전송을 위해 사용된다.First, one frame consists of Q subframes and one subframe consists of P slots. One slot consists of T OFDM symbols. At this time, unlike the other subframes, the first subframe in the frame uses the 0 th slot (slot indicated by 'S') for synchronization purposes. The 0 th slot is composed of A OFDM symbols for timing and frequency synchronization, B OFDM symbols for beam scanning, and C OFDM symbols for informing the UE of system information. The remaining D OFDM symbols are used for data transmission to each terminal.
한편, 이러한 프레임 구조는 단순한 예시에 불과하며, Q, P, T, S, A, B, C, D는 각각 임의의 값으로서, 사용자에 의해 설정되거나 시스템 상에서 자동적으로 설정되는 값일 수 있다.Meanwhile, such a frame structure is merely a mere example, and Q, P, T, S, A, B, C, and D may each be arbitrary values and may be values set by a user or automatically set on a system.
이하에서는 기지국과 단말 간의 타이밍 동기화 알고리즘에 대해 설명한다. 도 5에서 기지국이 동일한 동기 신호를 A 번 반복 전송하는 경우를 생각해본다. 단말은 기지국이 전송한 동기 신호를 바탕으로, 수학식 3의 알고리즘을 이용하여 타이밍 동기화를 수행한다.Hereinafter, a timing synchronization algorithm between a base station and a terminal will be described. Consider a case in which the base station repeatedly transmits the same synchronization signal A times in FIG. 5. The terminal performs timing synchronization using an algorithm of Equation 3 based on the synchronization signal transmitted from the base station.
[수학식 3][Equation 3]
Figure PCTKR2016008394-appb-I000027
Figure PCTKR2016008394-appb-I000027
수학식 3에서
Figure PCTKR2016008394-appb-I000028
, Ng, i는 각각 OFDM 심볼의 길이, CP(Cyclic Prefix)의 길이, OFDM 심볼의 인덱스를 나타낸다.
Figure PCTKR2016008394-appb-I000029
은 수신기에서 수신 신호의 벡터를 의미한다. 이때,
Figure PCTKR2016008394-appb-I000030
식은 수신 신호 벡터
Figure PCTKR2016008394-appb-I000031
Figure PCTKR2016008394-appb-I000032
번째부터
Figure PCTKR2016008394-appb-I000033
번째까지의 요소들로 정의되는 벡터이다.
In equation (3)
Figure PCTKR2016008394-appb-I000028
, N g , i represent the length of an OFDM symbol, the length of a cyclic prefix (CP), and the index of an OFDM symbol, respectively.
Figure PCTKR2016008394-appb-I000029
Denotes a vector of the received signal at the receiver. At this time,
Figure PCTKR2016008394-appb-I000030
Cold signal vector
Figure PCTKR2016008394-appb-I000031
of
Figure PCTKR2016008394-appb-I000032
From the first
Figure PCTKR2016008394-appb-I000033
Vector defined by the first element.
수학식 3의 알고리즘은 시간적으로 인접한 2개의 OFDM 수신 신호가 동일하다는 조건에서 동작한다. 이러한 알고리즘은 슬라이딩 윈도우(sliding window) 방식을 이용할 수 있어 낮은 복잡도로 구현이 가능하며, 주파수 오프셋에 강한 특징을 갖는다. The algorithm of Equation 3 operates under the condition that two adjacent OFDM received signals in time are the same. Such an algorithm can use a sliding window method, which can be implemented with low complexity, and has a strong characteristic of frequency offset.
한편, 아래의 수학식 4는 수신 신호와 기지국이 전송한 신호 간의 상관관계를 이용함으로써 타이밍 동기화를 수행하는 알고리즘을 나타낸다.Meanwhile, Equation 4 below represents an algorithm for performing timing synchronization by using a correlation between a received signal and a signal transmitted by a base station.
[수학식 4][Equation 4]
Figure PCTKR2016008394-appb-I000034
Figure PCTKR2016008394-appb-I000034
수학식 4에서 s는 기지국이 전송한 신호를 의미하며, 단말과 기지국 사이에 미리 약속된 신호 벡터이다. 수학식 4의 방식은 수학식 3에 비해 더 좋은 성능을 낳을 수 있으나, 슬라이딩 윈도우 방식으로 구현될 수 없어 복잡도가 높게 요구된다. 또한, 주파수 오프셋에 취약한 특징을 갖는다.In Equation 4, s denotes a signal transmitted by the base station and is a signal vector previously promised between the terminal and the base station. Equation 4 may produce better performance than Equation 3, but may not be implemented as a sliding window method, and thus requires high complexity. It also has a feature that is vulnerable to frequency offset.
타이밍 동기화 방식의 설명에 이어서, 빔 스캐닝 과정을 설명한다. 빔 스캐닝(beam scanning)이란 수신기의 수신 SINR을 최대화하는 빔의 방향을 찾는 송신기 및/또는 수신기의 동작을 의미한다. 예를 들어, 기지국은 단말에 데이터를 전송하기 전에 빔 스캐닝을 통해 빔의 방향을 결정한다. Following the description of the timing synchronization method, the beam scanning process will be described. Beam scanning refers to the operation of the transmitter and / or receiver to find the direction of the beam that maximizes the receiver's received SINR. For example, the base station determines the direction of the beam through beam scanning before transmitting data to the terminal.
도 4를 예로 들어 더 설명하면, 도 4에서는 하나의 기지국이 서비스하는 섹터를 8 개의 영역으로 나누어 도시한다. 이때, 기지국은 (A1+B1), (A2+B2), (A3+B3), (A4+B4) 영역에 각각 빔을 전송하며, 단말은 기지국이 전송하는 빔들을 구분이 가능하다. 이러한 조건에서, 빔 스캐닝 과정은 4가지 과정으로 구체화될 수 있다. 먼저, i) 기지국은 4개의 영역에 차례로 빔을 전송한다. ii) 단말은 수신 SINR 관점에서 빔들 중 가장 적합하다고 판단되는 빔을 결정한다. iii) 단말은 선택된 빔에 대한 정보를 기지국으로 피드백한다. iv) 기지국은 피드백된 방향을 갖는 빔을 이용하여 데이터를 전송한다. 위의 빔 스캐닝 과정을 통해 단말은 수신 SINR이 최적화된 빔을 통해 하향링크 데이터를 수신할 수 있게 된다.Referring to FIG. 4 as an example, FIG. 4 illustrates a sector served by one base station divided into eight regions. At this time, the base station transmits beams in the areas (A1 + B1), (A2 + B2), (A3 + B3), and (A4 + B4), respectively, and the terminal can distinguish beams transmitted by the base station. In this condition, the beam scanning process can be embodied in four processes. First, i) the base station transmits a beam in four areas in sequence. ii) The terminal determines the beam that is determined to be the most suitable among the beams in view of the received SINR. iii) The terminal feeds back information on the selected beam to the base station. iv) The base station transmits data using the beam having the feedback direction. Through the above beam scanning process, the UE can receive downlink data through the beam with optimized reception SINR.
이하에서는 Zadoff-Chu 시퀀스에 대해 설명한다. Zadoff-Chu 시퀀스는 추(chu) 시퀀스 또는 ZC 시퀀스라 불리며, 아래의 수학식 5로 정의된다.Hereinafter, the Zadoff-Chu sequence will be described. The Zadoff-Chu sequence is called a chu sequence or ZC sequence and is defined by Equation 5 below.
[수학식 5][Equation 5]
Figure PCTKR2016008394-appb-I000035
Figure PCTKR2016008394-appb-I000035
수학식 5에서 N은 시퀀스의 길이, r은 루트 값,
Figure PCTKR2016008394-appb-I000036
은 ZC 시퀀스의 n 번째 요소를 나타낸다. ZC 시퀀스가 갖는 특징으로는, 먼저 모든 요소의 크기가 동일하다는 점을 들 수 있다(constant amplitude). 또한, ZC 시퀀스의 DFT 결과 또한 모든 요소에 대해 동일하게 나타난다.
In Equation 5, N is the length of the sequence, r is the root value,
Figure PCTKR2016008394-appb-I000036
Represents the n th element of the ZC sequence. A characteristic of the ZC sequence is that all elements have the same size (constant amplitude). In addition, the DFT results of the ZC sequence also appear the same for all elements.
다음으로, ZC 시퀀스와 ZC 시퀀스의 원형 시프팅(cyclic shifting)된 버전 은 수학식 6과 같은 상관관계를 갖는다.Next, the ZC sequence and the cyclic shifted version of the ZC sequence have a correlation as shown in Equation (6).
[수학식 6][Equation 6]
Figure PCTKR2016008394-appb-I000037
Figure PCTKR2016008394-appb-I000037
수학식 6에서
Figure PCTKR2016008394-appb-I000038
Figure PCTKR2016008394-appb-I000039
를 i 만큼 원형 시프팅한 시퀀스이며, ZC 시퀀스의 자기 상관관계가 i=j인 경우를 제외하고는 0임을 나타낸다. 또한, ZC 시퀀스는 zero auto-correlation 특성 또한 가져, CAZAC (Constant Amplitude Zero Auto Correlation)특성을 갖는다고 표현하기도 한다.
In equation (6)
Figure PCTKR2016008394-appb-I000038
Is
Figure PCTKR2016008394-appb-I000039
Is a sequence of circular shifted by i, and represents 0 except that the autocorrelation of the ZC sequence is i = j. In addition, the ZC sequence also has a zero auto-correlation property, it is also expressed as having a constant Amplitude Zero Auto Correlation (CAZAC).
ZC 시퀀스의 마지막 특징으로, 시퀀스의 길이 N과 서로소인 루트 값을 갖는 ZC 시퀀스들 간에는 아래의 수학식 7과 같은 상관관계를 갖는다.As a final feature of the ZC sequence, there is a correlation between the length N of the sequence and the ZC sequences having root values that are mutually smaller than Equation 7 below.
[수학식 7][Equation 7]
Figure PCTKR2016008394-appb-I000040
Figure PCTKR2016008394-appb-I000040
수학식 7에서
Figure PCTKR2016008394-appb-I000041
는 N과 서로소이다. 예를 들어, N=111인 경우,
Figure PCTKR2016008394-appb-I000042
은 수학식 7을 항상 만족한다. 수학식 6의 자기 상관관계와는 달리, ZC 시퀀스의 상호 상관관계는 완전히 0이 되지는 않는다.
In equation (7)
Figure PCTKR2016008394-appb-I000041
Is mutually different from N. For example, if N = 111
Figure PCTKR2016008394-appb-I000042
Always satisfies equation (7). Unlike the autocorrelation of Equation 6, the cross-correlation of the ZC sequence is not completely zero.
ZC 시퀀스에 이어 하다마드(Hadamard) 행렬을 설명한다. 하다마드 행렬은 아래의 수학식 8과 같이 정의된다. Following the ZC sequence, the Hadamard matrix is described. Hadamard matrix is defined as Equation 8 below.
[수학식 8][Equation 8]
Figure PCTKR2016008394-appb-I000043
Figure PCTKR2016008394-appb-I000043
수학식 8에서
Figure PCTKR2016008394-appb-I000044
는 행렬의 크기를 나타낸다. 하다마드 행렬은 사이즈 n과 무관하게 항상
Figure PCTKR2016008394-appb-I000045
을 만족하는 단위 행렬(unitary matrix)이다. 또한, 하다마드 행렬에서 모든 열(column)과 모든 행(row)끼리는 서로 직교한다. 일 예로, n=4인 경우 하다마드 행렬은 수학식 9와 같이 정의된다.
In equation (8)
Figure PCTKR2016008394-appb-I000044
Denotes the size of the matrix. Hadamard matrices are always independent of size n
Figure PCTKR2016008394-appb-I000045
Is a unitary matrix that satisfies. Also, in the Hadamard matrix, all columns and all rows are orthogonal to each other. For example, when n = 4, the Hadamard matrix is defined as in Equation 9.
[수학식 9][Equation 9]
Figure PCTKR2016008394-appb-I000046
Figure PCTKR2016008394-appb-I000046
수학식 9로부터 각 열들끼리, 각 행들끼리 서로 직교함을 알 수 있다. It can be seen from Equation 9 that the columns are orthogonal to each other.
도 6은 OVSF(Orthogonal Variable Spreading Factor) 코드의 구조를 도시한다. OVSF 코드는 하다마드 행렬을 기반으로 생성되는 코드이며, 특정한 규칙을 갖는다.6 shows the structure of an Orthogonal Variable Spreading Factor (OVSF) code. The OVSF code is generated based on the Hadamard matrix and has a specific rule.
먼저, OVSF 코드에서 오른쪽으로 분기할 때(lower branch), 첫 번째 코드는 좌측의 상위 코드(mother code)를 그대로 2번 반복하며, 두 번째 코드는 상위 코드를 1번 반복하고 반전하여 1번 반복함으로써 생성된다. 도 6은 OVSF 코드의 트리 구조(tree structure)를 나타낸다.First, when branching to the right side of the OVSF code (lower branch), the first code repeats the upper code on the left side twice (mother code), and the second code repeats the high code code once and inverts it once. Is generated. 6 shows a tree structure of the OVSF code.
이러한 OVSF 코드는 코드 트리 상의 인접한 상위 코드와 하위 코드(child code) 간의 관계를 제외하고는 모두 직교성이 보장된다. 예를 들어, 도 6에서 [1 -1 1 -1] 코드는 [1 1], [1 1 1 1], [1 1 -1 -1]과 모두 직교한다. 또한, OVSF 코드는 코드의 길이와 사용 가능한 코드의 개수가 동일하다. 즉, 도 6에서 특정 코드의 길이와 해당 코드가 속한 분기(branch)에서의 총 개수가 동일함을 확인할 수 있다. All of these OVSF codes are orthogonal except for the relationship between adjacent higher and lower codes on the code tree. For example, in FIG. 6, the code [1 -1 1 -1] is orthogonal to [1 1], [1 1 1 1], and [1 1 -1 -1]. In addition, the OVSF code has the same length as the code length. That is, in FIG. 6, it can be seen that the length of a specific code is equal to the total number of branches to which the corresponding code belongs.
도 7은 단말의 배치 상황을 예로 들어 설명하는 도면이다. 도 7에서는 RACH(Random Access CHannel)에 대해 설명한다. 7 is a diagram illustrating an example of an arrangement of terminals. In FIG. 7, a random access channel (RACH) will be described.
LTE 시스템의 경우, 단말들이 전송한 RACH 신호가 기지국으로 도착할 때, 기지국이 수신한 단말들의 RACH 신호 파워는 동일해야 한다. 이를 위해, 기지국은 'preambleInitialReceivedTargetPower'라는 파라미터를 정의함으로써, SIB(System Information Block)2를 통해 해당 셀 내의 모든 단말에 파라미터를 방송한다. 단말은 기준 신호(reference signal)을 이용하여 경로 손실을 계산하며, 계산된 경로 손실과 'preambleInitialReceivedTargetPower' 파라미터를 아래의 수학식 10과 같이 이용함으로써 RACH 신호의 송신 파워를 결정한다.In the LTE system, when the RACH signals transmitted by the terminals arrive at the base station, the RACH signal power of the terminals received by the base station should be the same. To this end, the base station defines a parameter called 'preambleInitialReceivedTargetPower', and broadcasts the parameter to all terminals in the cell through SIB (System Information Block) 2. The UE calculates a path loss using a reference signal, and determines the transmission power of the RACH signal by using the calculated path loss and the 'preambleInitialReceivedTargetPower' parameter as shown in Equation 10 below.
[수학식 10][Equation 10]
Figure PCTKR2016008394-appb-I000047
Figure PCTKR2016008394-appb-I000047
수학식 10에서 P_PRACH_Initial, P_CMAX, PL은 각각 RACH 신호의 송신 파워, 단말의 최대 송신 파워, 경로 손실을 나타낸다. In Equation 10, P_PRACH_Initial, P_CMAX, and PL represent the transmission power of the RACH signal, the maximum transmission power of the terminal, and the path loss, respectively.
수학식 10을 예로 들어 설명하면, 단말의 최대 전송 가능한 파워는 23dBm 이고 기지국의 RACH 수신 파워는 -104dBm 이라고 가정한다. 또한, 도 7에 도시된 바와 같이 단말이 배치된 상황을 가정한다.Referring to Equation 10 as an example, it is assumed that the maximum transmit power of the terminal is 23 dBm and the RACH reception power of the base station is -104 dBm. In addition, it is assumed that the terminal is arranged as shown in FIG.
먼저, 단말은 수신 동기 신호와 빔 스캐닝 신호를 이용하여 경로 손실을 계산하며, 이를 바탕으로 송신 파워를 결정한다. 아래의 표 3은 단말의 경로 손실과 그에 따른 송신 파워를 나타낸다.First, the terminal calculates a path loss using the received synchronization signal and the beam scanning signal, and determines the transmission power based on this. Table 3 below shows the path loss of the terminal and its transmission power.
단말Terminal preambleInitialReceivedTargetPowerpreambleInitialReceivedTargetPower 경로 손실Path loss 필요한송신파워Transmission power required 송신파워Transmission power 추가 필요 파워Extra power needed
K1K1 -104dBm-104dBm 60dB60 dB -44dBm-44 dBm -44dBm-44 dBm 0dBm0 dBm
K2K2 -104dBm-104dBm 110dB110 dB 6dBm6 dBm 6dBm6 dBm 0dBm0 dBm
K3K3 -104dBm-104dBm 130dB130 dB 26dBm26 dBm 23dBm23 dBm 3dBm3 dBm
표 3에서 K1 단말의 경우 경로 손실이 매우 작지만, RACH 수신 파워를 맞추기 위해 매우 작은 파워(-44dBm)로 RACH 신호를 전송해야 한다. 한편, K2 단말의 경우 경로 손실이 크지만, 필요 송신 파워는 6dBm이다. 그러나, K3단말의 경우 경로 손실이 매우 커, 필요한 송신 파워가 단말의 P_CMAX=23dBm을 초과하게 된다. 이러한 경우, 단말은 최대 송신 파워인 23dBm으로 전송해야만 하며, 단말의 RACH 액세스 성공률은 3dB 열화된다.In Table 3, although the path loss is very small in the case of the K1 terminal, the RACH signal must be transmitted with a very small power (-44 dBm) to match the RACH reception power. Meanwhile, in the case of the K2 terminal, the path loss is large, but the required transmission power is 6 dBm. However, in the case of the K3 terminal, the path loss is so large that the required transmission power exceeds the P_CMAX = 23 dBm of the terminal. In this case, the terminal should transmit at 23 dBm, which is the maximum transmission power, and the RACH access success rate of the terminal is degraded by 3 dB.
2. 제안하는 하향링크 신호처리 방법2. Proposed Downlink Signal Processing Method
이하에서는, 단말이 기지국으로부터 수신한 하향링크 신호를 처리하는 방법에 대해 설명한다. 도 8은 DMRS(DeModulation Reference Signal)를 이용한 채널 추정 과정을 설명하는 도면이다. 단말은 하향링크 서브프레임에 포함된 DMRS를 이용하여 하향링크 채널을 추정하며, 추정된 채널에 따라 하향링크 데이터를 디코딩한다. Hereinafter, a method of processing a downlink signal received by a terminal from a base station will be described. 8 illustrates a channel estimation process using a DeModulation Reference Signal (DMRS). The UE estimates the downlink channel using the DMRS included in the downlink subframe, and decodes downlink data according to the estimated channel.
한편, 단말은 서브프레임 내에서 DMRS가 실려오는 RE(Resource Element) 에 대해서는 채널을 직접적으로 계산하지만, 그 이외의 RE들에 대해서는 DMRS RE의 채널을 기준으로 보간(interpolate)하는 방식을 통해 채널을 추정한다. 이러한 보간 과정에는 여러 가지 방식이 이용될 수 있으며, 그 중 2D 와이너(Wiener) 필터를 이용하는 방식을 설명한다.Meanwhile, the UE directly calculates a channel for a RE (Resource Element) loaded with a DMRS in a subframe, but interpolates a channel based on a channel of the DMRS RE for other REs. Estimate. Various methods can be used for this interpolation process, and a method of using a 2D Weiner filter will be described.
2D Winer 필터를 이용한 채널 보간 방식은, 아래의 수학식 11과 같이 주파수축과 시간축에서 채널 보간이 동시에 진행된다.In the channel interpolation method using the 2D Winer filter, channel interpolation is simultaneously performed on the frequency axis and the time axis as in Equation 11 below.
[수학식 11][Equation 11]
Figure PCTKR2016008394-appb-I000048
Figure PCTKR2016008394-appb-I000048
수학식 11에서
Figure PCTKR2016008394-appb-I000049
는 안테나 포트 p 의 DMRS로부터 추정된 채널 값을 의미하며, 그 크기는 12X1 이다. 공분산 행렬
Figure PCTKR2016008394-appb-I000050
는 안테나 포트 p의 DMRS들 간의 자기공분산(auto-covariance)을 나타내며,
Figure PCTKR2016008394-appb-I000051
행렬의 (m, n) 번째 요소는 아래의 수학식 12와 같이 표현된다.
In equation (11)
Figure PCTKR2016008394-appb-I000049
Denotes a channel value estimated from the DMRS of the antenna port p, and its size is 12 × 1. Covariance matrix
Figure PCTKR2016008394-appb-I000050
Denotes auto-covariance between DMRSs of antenna port p,
Figure PCTKR2016008394-appb-I000051
The (m, n) th element of the matrix is expressed by Equation 12 below.
[수학식 12][Equation 12]
Figure PCTKR2016008394-appb-I000052
Figure PCTKR2016008394-appb-I000052
수학식 12에서
Figure PCTKR2016008394-appb-I000053
는 각각 최대 도플러 시프트(max Doppler shift), OFDM 심볼 길이, 최대 딜레이 스프레드(max delay spread), 서브캐리어 간격(subcarrier spacing)을 나타낸다. 그리고,
Figure PCTKR2016008394-appb-I000054
은 각각 m 번째 RE의 시간축 위치 및 주파수축 위치를 나타낸다. 예를 들어, 도 8에서 점선으로 표시된 박스 810 및 820 안에는 빗금으로 표시되는 12개의 RE가 정의되며, 12개의 RE들은 LTE 시스템의 DMRS와 동일한 구조를 갖는다 이때, 동일한 서브캐리어에서 시간축으로 인접한 두 개의 RE들은 CDM(Code Division Multiplexing) 되어 있기 때문에, 수신기는 OCC(Orthogonal Cover Code)를 이용하여 두 RE로부터 하나의 채널 값을 추정해낼 수 있다. 도 8에서 RE의 인덱스는 시간축을 따라 왼쪽부터 오른쪽으로 증가하며 인덱싱되고, 이어서 주파수축을 따라 아래로 이동하여 다시 왼쪽부터 오른쪽으로 증가하며 0, 1, 2, ..., 5로 인덱싱된다. 이 경우, t(0)-t(1)=5, f(0)-f(1)=0인 관계에 있다. 만약 m=0, n=3이라면, t(0)-t(3)=5, f(0)-f(3)5=가 된다.
In equation (12)
Figure PCTKR2016008394-appb-I000053
Denotes a maximum Doppler shift, an OFDM symbol length, a maximum delay spread, and a subcarrier spacing, respectively. And,
Figure PCTKR2016008394-appb-I000054
Denotes the time axis position and the frequency axis position of the m th RE, respectively. For example, in boxes 810 and 820 indicated by dotted lines in FIG. 8, 12 REs defined by hatched lines are defined, and the 12 REs have the same structure as the DMRS of the LTE system. Since the REs are code division multiplexed (CDM), the receiver can estimate one channel value from the two REs using an orthogonal cover code (OCC). In FIG. 8, the index of the RE is indexed by increasing from left to right along the time axis, and then moved down along the frequency axis to increase again from left to right, and indexed by 0, 1, 2, ..., 5. In this case, t (0) -t (1) = 5 and f (0) -f (1) = 0. If m = 0 and n = 3, then t (0) -t (3) = 5 and f (0) -f (3) 5 =.
한편, 수학식 11에서
Figure PCTKR2016008394-appb-I000055
는 DMRS RE와 나머지 RE들의 상관관계를 나타내는 교차공분산(cross-covariance)을 나타내며,
Figure PCTKR2016008394-appb-I000056
행렬의 (m, n)번째 요소는 아래의 수학식 13과 같이 정의된다.
Meanwhile, in Equation 11
Figure PCTKR2016008394-appb-I000055
Denotes a cross-covariance representing the correlation between the DMRS RE and the remaining REs.
Figure PCTKR2016008394-appb-I000056
The (m, n) th element of the matrix is defined as in Equation 13 below.
[수학식 13][Equation 13]
Figure PCTKR2016008394-appb-I000057
Figure PCTKR2016008394-appb-I000057
수학식 11에서,
Figure PCTKR2016008394-appb-I000058
Figure PCTKR2016008394-appb-I000059
가 보간 필터를 통과함으로써 생성되는 결과값이며, 그 크기는 168X1이다. 수학식 11에서
Figure PCTKR2016008394-appb-I000060
는 잡음의 파워를 나타낸다.
In Equation 11,
Figure PCTKR2016008394-appb-I000058
Is
Figure PCTKR2016008394-appb-I000059
Is the result generated by passing the interpolation filter, and its size is 168 × 1. In equation (11)
Figure PCTKR2016008394-appb-I000060
Represents the power of noise.
한편, 수학식 11에서
Figure PCTKR2016008394-appb-I000061
를 계산하는 것은 역행렬의 계산으로 인해 많은 복잡도를 요구한다. 이에 따라, 단말은 역행렬
Figure PCTKR2016008394-appb-I000062
을 룩업 테이블(look-up table) 형태로 저장한뒤 아래의 수학식 14에 따라 이용한다.
Meanwhile, in Equation 11
Figure PCTKR2016008394-appb-I000061
Computing requires a lot of complexity due to the inverse computation. Accordingly, the terminal is inverse matrix
Figure PCTKR2016008394-appb-I000062
Is stored in the form of a look-up table and used according to Equation 14 below.
[수학식 14][Equation 14]
Figure PCTKR2016008394-appb-I000063
Figure PCTKR2016008394-appb-I000063
수학식 14에 의하면, 단말은
Figure PCTKR2016008394-appb-I000064
값이 결정됨에 따라 대응되는 역행렬을 선택한다. 이때,
Figure PCTKR2016008394-appb-I000065
는 룩업 테이블을 이용하여 선택된 근사화된 역행렬 값이고,
Figure PCTKR2016008394-appb-I000066
는 계산을 통해 얻어진 정확한 역행렬을 나타낸다. 즉, 단말은 직접적으로 역행렬을 계산하는 과정 대신, 파라미터들과 매칭되는 역행렬을 선택하는 것이다.
According to Equation 14, the terminal is
Figure PCTKR2016008394-appb-I000064
As the value is determined, the corresponding inverse is selected. At this time,
Figure PCTKR2016008394-appb-I000065
Is an approximated inverse value selected using the lookup table,
Figure PCTKR2016008394-appb-I000066
Represents the exact inverse obtained through the calculation. That is, the terminal selects an inverse matrix matching the parameters, instead of directly calculating the inverse matrix.
한편, 이러한 룩업 테이블 방식은 저장 공간을 필요로 하기 때문에, 저장 공간이 제한되는 단말의 경우 룩업 테이블의 resolution이 한계가 있을 수밖에 없다. 룩업 테이블의 resolution 이 낮을수록 2D Wiener 필터를 이용한 채널 추정의 성능이 저하되어 문제가 되며, 이하에서는 상술한 성능 저하를 개선하는 실시 예에 대해 설명한다.On the other hand, since the lookup table method requires a storage space, the resolution of the lookup table is inevitably limited in a terminal having a limited storage space. The lower the resolution of the lookup table, the lower the performance of channel estimation using the 2D Wiener filter, which is a problem. Hereinafter, an embodiment of improving the performance degradation described above will be described.
도 9는 제안하는 실시 예에 따른 하향링크 신호 처리 방법을 설명하는 흐름도이다. 제안하는 실시 예에 의하면, 2D Wiener 필터를 이용하는 방식과 수치해석 알고리즘을 이용하는 방식을 결합함으로써 채널 추정 결과의 정확도가 개선될 수 있다.9 is a flowchart illustrating a downlink signal processing method according to an exemplary embodiment. According to the proposed embodiment, the accuracy of the channel estimation result can be improved by combining the method using the 2D Wiener filter and the method using the numerical analysis algorithm.
실시 예를 설명하기에 앞서, 수치 해석 알고리즘은 어떠한 값으로부터 수치적인 근사값을 계산해내는 알고리즘이며, Newton 방식, CG(conjugate gradient) 방식 등을 예로 들 수 있다. 수치 해석 알고리즘의 원리는 아래의 수학식 15로 표현될 수 있다. Before describing an embodiment, the numerical analysis algorithm is an algorithm that calculates a numerical approximation value from a certain value, and examples thereof include the Newton method and the conjugate gradient method. The principle of the numerical analysis algorithm may be expressed by Equation 15 below.
[수학식 15][Equation 15]
Figure PCTKR2016008394-appb-I000067
Figure PCTKR2016008394-appb-I000067
수학식 15에서
Figure PCTKR2016008394-appb-I000068
는 행렬을 나타내며,
Figure PCTKR2016008394-appb-I000069
는 각각 입력 벡터 및 출력 벡터를 나타낸다.
Figure PCTKR2016008394-appb-I000070
행렬의 역행렬이 존재하는 경우, 출력 벡터로부터 입력 벡터를 얻어내는 가장 간단한 방법은 아래의 수학식 16이 된다.
In equation (15)
Figure PCTKR2016008394-appb-I000068
Represents a matrix,
Figure PCTKR2016008394-appb-I000069
Denote an input vector and an output vector, respectively.
Figure PCTKR2016008394-appb-I000070
If there is an inverse of the matrix, the simplest way to get the input vector from the output vector is
[수학식 16][Equation 16]
Figure PCTKR2016008394-appb-I000071
Figure PCTKR2016008394-appb-I000071
한편, 수치 해석 알고리즘은 역행렬
Figure PCTKR2016008394-appb-I000072
을 직접 계산하지 않고, 아래의 수학식 17과 같이 반복적인 계산 과정을 통해
Figure PCTKR2016008394-appb-I000073
로부터
Figure PCTKR2016008394-appb-I000074
를 찾아낸다.
On the other hand, the numerical algorithm is inverse matrix
Figure PCTKR2016008394-appb-I000072
Instead of calculating directly, the iterative calculation process is performed as shown in Equation 17 below.
Figure PCTKR2016008394-appb-I000073
from
Figure PCTKR2016008394-appb-I000074
Find it.
[수학식 17][Equation 17]
Figure PCTKR2016008394-appb-I000075
Figure PCTKR2016008394-appb-I000075
수학식 17에서
Figure PCTKR2016008394-appb-I000076
는 n 번째 반복에서 찾은 입력 벡터의 추정치이며,
Figure PCTKR2016008394-appb-I000077
Figure PCTKR2016008394-appb-I000078
를 계산하는 과정에서 이용되는 부가 변수이다. 수학식 17에서의 반복 횟수가 커질수록
Figure PCTKR2016008394-appb-I000079
Figure PCTKR2016008394-appb-I000080
에 수렴하며, 이는 수학식 16에 따라 역행렬을 직접 계산해낸 경우와의 오차 값인
Figure PCTKR2016008394-appb-I000081
가 작아짐을 의미한다.
In equation (17)
Figure PCTKR2016008394-appb-I000076
Is an estimate of the input vector found in the nth iteration,
Figure PCTKR2016008394-appb-I000077
Is
Figure PCTKR2016008394-appb-I000078
Is an additional variable used in the process of calculating. As the number of repetitions in Equation 17 increases
Figure PCTKR2016008394-appb-I000079
Is
Figure PCTKR2016008394-appb-I000080
Converges to the error value of the inverse matrix
Figure PCTKR2016008394-appb-I000081
Means smaller.
상술한 수치 해석 알고리즘을 활용한 실시 예를 도 9를 통해 구체적으로 설명한다. An embodiment using the above-described numerical analysis algorithm will be described in detail with reference to FIG. 9.
단말은 기지국으로부터 하향링크 신호를 수신하면(S910), 하향링크 서브프레임에 포함된 DMRS를 이용하여 일부 RE(즉, DMRS가 위치하는 RE)의 하향링크 채널을 추정한다(S920). 이어서, 단말은 DMRS RE에 대하여 추정된 결과 값을 이용하여 DMRS를 제외한 나머지 RE들의 채널을 추정하며(S930), 이러한 과정은 DMRS RE에 대하여 계산된 결과 값들을 보간하는 과정으로 이해될 수 있다. 모든 RE에 대한 채널이 추정되면, 단말은 채널 추정 결과를 이용하여 하향링크 데이터를 디코딩한다(S940). When the UE receives the downlink signal from the base station (S910), the UE estimates a downlink channel of some REs (that is, the RE where the DMRS is located) using the DMRS included in the downlink subframe (S920). Subsequently, the UE estimates channels of the remaining REs except for the DMRS using the estimated result value for the DMRS RE (S930). This process may be understood as a process of interpolating the calculated result values for the DMRS RE. If the channels for all REs are estimated, the terminal decodes downlink data using the channel estimation result (S940).
상술한 일련의 과정 중에서, S930, 즉 단말이 DMRS RE에 대하여 계산된 채널의 결과를 보간하는 과정에서 2D Wiener 필터가 이용될 수 있음은 앞서 설명한 바와 같다. 이하에서는 채널 보간 과정에 대하여 제안하는 실시 예를 도 10을 통해서 설명한다. In the above-described series of processes, the S930, that is, the 2D Wiener filter may be used in the process of interpolating the result of the channel calculated for the DMRS RE, as described above. Hereinafter, an exemplary embodiment of a channel interpolation process will be described with reference to FIG. 10.
먼저, 단말은 DMRS RE에 대해 계산된 채널에 대한 정보로부터
Figure PCTKR2016008394-appb-I000082
을 계산하며,
Figure PCTKR2016008394-appb-I000083
로부터
Figure PCTKR2016008394-appb-I000084
을 각각 계산한다(S1010). 이러한 계산 과정은 수학식 11 내지 수학식 13에서 설명한 과정에 따라 이루어질 수 있다. 이어서, 단말은 S1010에서 파라미터
Figure PCTKR2016008394-appb-I000085
들을 이용하여
Figure PCTKR2016008394-appb-I000086
을 계산하며(S1020), 이러한 과정은 수학식 14에서 설명한 바와 같이 룩업 테이블을 이용함으로써 수행될 수 있다.
First, the terminal from the information on the channel calculated for the DMRS RE
Figure PCTKR2016008394-appb-I000082
To calculate,
Figure PCTKR2016008394-appb-I000083
from
Figure PCTKR2016008394-appb-I000084
Are respectively calculated (S1010). This calculation process may be performed according to the process described in Equations 11 to 13. Subsequently, the terminal determines parameters in S1010.
Figure PCTKR2016008394-appb-I000085
Using
Figure PCTKR2016008394-appb-I000086
In step S1020, this process may be performed by using a lookup table as described in Equation 14.
한편, S1020에서 얻어진 값은
Figure PCTKR2016008394-appb-I000087
대신
Figure PCTKR2016008394-appb-I000088
로 표현되며, 이는
Figure PCTKR2016008394-appb-I000089
값이 후술할 수치해석 알고리즘의 초기값으로 이용될 수 있음을 의미한다. 단말은 S1010 및 S1020에서의 결과 값들을 바탕으로 초기 보간 값인
Figure PCTKR2016008394-appb-I000090
을 산출한다(S1030).
On the other hand, the value obtained in S1020
Figure PCTKR2016008394-appb-I000087
instead
Figure PCTKR2016008394-appb-I000088
Expressed as
Figure PCTKR2016008394-appb-I000089
It means that the value can be used as the initial value of the numerical analysis algorithm to be described later. The terminal is an initial interpolation value based on the result values in S1010 and S1020
Figure PCTKR2016008394-appb-I000090
To calculate (S1030).
이어서, 단말은
Figure PCTKR2016008394-appb-I000091
Figure PCTKR2016008394-appb-I000092
을 바탕으로 수치해석 알고리즘을 수행하여
Figure PCTKR2016008394-appb-I000093
를 획득한다(S1040). 도시된 실시 예에서, 수치해석 알고리즘의 예시로서 CG 알고리즘이 적용되는 경우를 설명한다. 이어서, 수치해석 알고리즘의 결과 값인
Figure PCTKR2016008394-appb-I000094
을 교차공분산
Figure PCTKR2016008394-appb-I000095
에 적용함으로써 최종 결과 값인
Figure PCTKR2016008394-appb-I000096
이 획득된다.
Figure PCTKR2016008394-appb-I000097
는 보간 과정의 최종 결과 값으로써, 채널에 대한 아웃풋을 의미한다.
Subsequently, the terminal
Figure PCTKR2016008394-appb-I000091
And
Figure PCTKR2016008394-appb-I000092
Based on the numerical algorithm,
Figure PCTKR2016008394-appb-I000093
It is obtained (S1040). In the illustrated embodiment, a case where the CG algorithm is applied as an example of a numerical analysis algorithm will be described. The resulting value of the numerical algorithm
Figure PCTKR2016008394-appb-I000094
Cross-covariance
Figure PCTKR2016008394-appb-I000095
Is applied to the final result value
Figure PCTKR2016008394-appb-I000096
Is obtained.
Figure PCTKR2016008394-appb-I000097
Is the final result of the interpolation process and means the output for the channel.
수학식 18은 수치해석 알고리즘(CG 알고리즘)이 적용되는 과정을 더 구체적으로 나타낸다.Equation 18 more specifically illustrates a process of applying a numerical analysis algorithm (CG algorithm).
[수학식 18]Equation 18
Figure PCTKR2016008394-appb-I000098
Figure PCTKR2016008394-appb-I000098
수학식 18에서
Figure PCTKR2016008394-appb-I000099
은 각각 CG 알고리즘에 적용되는 초기 필터 및 가속 필터를 나타낸다. 일 실시 예에 의하면, 도 18의 CG 알고리즘에 적용되는 초기 필터 및 가속 필터는 앞서 파라미터
Figure PCTKR2016008394-appb-I000100
들에 의해 계산되는
Figure PCTKR2016008394-appb-I000101
이 될 수 있다(즉,
Figure PCTKR2016008394-appb-I000102
). 수학식 18에서
Figure PCTKR2016008394-appb-I000103
값들은 수치해석 알고리즘에서 해를 구할 때 이용되는 보조 변수(auxiliary variance)이며, 특별한 의미를 갖는 것은 아니다.
In equation (18)
Figure PCTKR2016008394-appb-I000099
Denotes an initial filter and an acceleration filter applied to the CG algorithm, respectively. According to one embodiment, the initial filter and the acceleration filter applied to the CG algorithm of FIG.
Figure PCTKR2016008394-appb-I000100
Calculated by
Figure PCTKR2016008394-appb-I000101
Can be (i.e.
Figure PCTKR2016008394-appb-I000102
). In equation (18)
Figure PCTKR2016008394-appb-I000103
Values are auxiliary variables used to solve solutions in numerical algorithms and have no special meaning.
수학식 18의 수치해석 알고리즘은 초기 값
Figure PCTKR2016008394-appb-I000104
이 소정의 임계값 보다 작아질 때까지 보상(compensate)하는 과정을 반복하여 수행한다. 즉, 수학식 18에서는
Figure PCTKR2016008394-appb-I000105
을 만족하지 않는 경우(즉,
Figure PCTKR2016008394-appb-I000106
가 초기 값
Figure PCTKR2016008394-appb-I000107
에 비해 충분히 작아진 경우)에 보상 과정의 반복을 종료한다. 이 때, 결과 값의 정확도를 조절하는 변수
Figure PCTKR2016008394-appb-I000108
은 0.01로 설정될 수 있으며,
Figure PCTKR2016008394-appb-I000109
값이 클수록 알고리즘이 빠르게 종료하여 결과 값이 빨리 얻어지는 대신 산출한 결과 값의 정확도는 떨어지며, 반대로
Figure PCTKR2016008394-appb-I000110
값이 작을수록 알고리즘이 느리게 종료하는 대신 산출한결과 값의 정확도가 향상된다.
The numerical algorithm of Equation 18 is an initial value.
Figure PCTKR2016008394-appb-I000104
The process of compensating is repeatedly performed until it is smaller than the predetermined threshold. That is, in Equation 18
Figure PCTKR2016008394-appb-I000105
Is not satisfied (that is,
Figure PCTKR2016008394-appb-I000106
Is the initial value
Figure PCTKR2016008394-appb-I000107
If it is small enough compared to the) the end of the repetition of the compensation process. At this time, the variable to control the accuracy of the result value
Figure PCTKR2016008394-appb-I000108
Can be set to 0.01,
Figure PCTKR2016008394-appb-I000109
The larger the value, the faster the algorithm terminates, resulting in a faster result, but less accurate.
Figure PCTKR2016008394-appb-I000110
The smaller the value, the better the accuracy of the calculated result, instead of the algorithm terminating slowly.
상술한 실시 예에 의하면, 단말은 룩업 테이블을 이용하여 얻어진 결과 값에 수치해석 알고리즘을 적용함으로써 결과 값의 정확도를 향상시킬 수 있게 된다. 또한, 수치해석 알고리즘 적용과정의 초기 필터 및 가속 필터를 별도로 구현하거나 생성하지 않아도 되어 수치해석 알고리즘의 구동에 요구되는 계산 복잡도도 최소화된다. 결과적으로, 단말은 최소한의 복잡도만으로도 개선된 채널 보간 결과 값을 얻을 수 있으며, 이에 따라 룩업 테이블을 이용하는 방식의 단점이 개선될 수 있다.According to the embodiment described above, the terminal can improve the accuracy of the result value by applying a numerical analysis algorithm to the result value obtained using the lookup table. In addition, since the initial filter and the acceleration filter of the numerical algorithm application process need not be implemented or generated separately, the computational complexity required for driving the numerical algorithm is minimized. As a result, the terminal can obtain an improved channel interpolation result value with only minimal complexity, and accordingly, a disadvantage of the method of using the lookup table can be improved.
이하에서는, 공분산 행렬
Figure PCTKR2016008394-appb-I000111
을 근사화시켜 계산하는 실시 예를 제안한다. 앞서 수학식 12에서 설명한 바와 같이, 공분산 행렬
Figure PCTKR2016008394-appb-I000112
의 각 요소들은
Figure PCTKR2016008394-appb-I000113
로 정의되며,
Figure PCTKR2016008394-appb-I000114
Figure PCTKR2016008394-appb-I000115
함수로 표현된다. 이때,
Figure PCTKR2016008394-appb-I000116
함수의 복잡도는 낮지 않으며, 하나의 공분산 행렬을 계산하는 데에
Figure PCTKR2016008394-appb-I000117
함수의 콜(call)이 총 행렬의 크기의 2배만큼 이루어진다. 즉, 공분산 행렬의 계산 과정의 복잡도를 개선한다면 상술한 실시 예들의 복잡도가 더 줄어들 수 있다.
Hereinafter, the covariance matrix
Figure PCTKR2016008394-appb-I000111
An embodiment of calculating the approximation to is proposed. As previously described in Equation 12, the covariance matrix
Figure PCTKR2016008394-appb-I000112
Each element of
Figure PCTKR2016008394-appb-I000113
Is defined as
Figure PCTKR2016008394-appb-I000114
Is
Figure PCTKR2016008394-appb-I000115
It is expressed as a function. At this time,
Figure PCTKR2016008394-appb-I000116
The complexity of the function is not low, and it is important to calculate one covariance matrix.
Figure PCTKR2016008394-appb-I000117
The function's call is made twice as large as the total matrix. That is, if the complexity of the calculation process of the covariance matrix is improved, the complexity of the above-described embodiments may be further reduced.
한편,
Figure PCTKR2016008394-appb-I000118
함수는 아래의 수학식 19와 같이 재정의될 수 있다.
Meanwhile,
Figure PCTKR2016008394-appb-I000118
The function may be redefined as in Equation 19 below.
[수학식 19][Equation 19]
Figure PCTKR2016008394-appb-I000119
Figure PCTKR2016008394-appb-I000119
수학식 19에서 c값이 1보다 상대적으로 많이 작은 경우, 수학식 19는 아래의 수학식 20과 같이 근사화된다. If c is much smaller than 1 in Equation 19, Equation 19 is approximated as Equation 20 below.
[수학식 20][Equation 20]
Figure PCTKR2016008394-appb-I000120
Figure PCTKR2016008394-appb-I000120
실질적으로 공분산 행렬
Figure PCTKR2016008394-appb-I000121
에서 사용하는 c의 값은 매우 작으며, Q=3인 경우에도 큰 오차가 발생하지 않는다. 결과적으로,
Figure PCTKR2016008394-appb-I000122
함수 기반의 공분산 행렬을 수학식 20과 같이 근사화시켜 적용하는 경우, 제안하는 실시 예에 따른 공분산 행렬 계산 과정의 복잡도 증가를 최소화할 수 있다.
Substantially covariance matrix
Figure PCTKR2016008394-appb-I000121
The value of c used in is very small and there is no big error even when Q = 3. As a result,
Figure PCTKR2016008394-appb-I000122
When the function-based covariance matrix is approximated and applied as in Equation 20, an increase in the complexity of the covariance matrix calculation process according to the present embodiment can be minimized.
3. 장치 구성3. Device Configuration
도 11은 본 발명의 일 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다. 도 11에서 단말(100) 및 기지국(200)은 각각 무선 주파수(RF) 유닛(110, 210), 프로세서(120, 220) 및 메모리(130, 230)를 포함할 수 있다. 도 11에서는 단말(100)와 기지국(200) 간의 1:1 통신 환경만을 도시하였으나, 다수의 단말과 다수의 기지국 간에도 통신 환경이 구축될 수 있다. 또한, 도 11에 도시된 기지국(200)은 매크로 셀 기지국과 스몰 셀 기지국에 모두 적용될 수 있다.11 is a diagram illustrating a configuration of a terminal and a base station according to an embodiment of the present invention. In FIG. 11, the terminal 100 and the base station 200 may include radio frequency (RF) units 110 and 210, processors 120 and 220, and memories 130 and 230, respectively. 11 illustrates only a 1: 1 communication environment between the terminal 100 and the base station 200, a communication environment may be established between a plurality of terminals and a plurality of base stations. In addition, the base station 200 illustrated in FIG. 11 may be applied to both the macro cell base station and the small cell base station.
각 RF 유닛(110, 210)은 각각 송신부(112, 212) 및 수신부(114, 214)를 포함할 수 있다. 단말(100)의 송신부(112) 및 수신부(114)는 기지국(200) 및 다른 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(120)는 송신부(112) 및 수신부(114)와 기능적으로 연결되어 송신부(112) 및 수신부(114)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(120)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(112)로 전송하며, 수신부(114)가 수신한 신호에 대한 처리를 수행한다.Each RF unit 110, 210 may include a transmitter 112, 212 and a receiver 114, 214, respectively. The transmitting unit 112 and the receiving unit 114 of the terminal 100 are configured to transmit and receive signals with the base station 200 and other terminals, and the processor 120 is functionally connected with the transmitting unit 112 and the receiving unit 114. In connection, the transmitter 112 and the receiver 114 may be configured to control a process of transmitting and receiving signals with other devices. In addition, the processor 120 performs various processes on the signal to be transmitted and transmits the signal to the transmitter 112, and performs the process on the signal received by the receiver 114.
필요한 경우 프로세서(120)는 교환된 메시지에 포함된 정보를 메모리(130)에 저장할 수 있다. 이와 같은 구조를 가지고 단말(100)은 이상에서 설명한 본 발명의 다양한 실시 형태의 방법을 수행할 수 있다.If necessary, the processor 120 may store information included in the exchanged message in the memory 130. With such a structure, the terminal 100 can perform the method of various embodiments of the present invention described above.
기지국(200)의 송신부(212) 및 수신부(214)는 다른 기지국 및 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(220)는 송신부(212) 및 수신부(214)와 기능적으로 연결되어 송신부(212) 및 수신부(214)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(220)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(212)로 전송하며 수신부(214)가 수신한 신호에 대한 처리를 수행할 수 있다. 필요한 경우 프로세서(220)는 교환된 메시지에 포함된 정보를 메모리(230)에 저장할 수 있다. 이와 같은 구조를 가지고 기지국(200)은 앞서 설명한 다양한 실시 형태의 방법을 수행할 수 있다.The transmitter 212 and the receiver 214 of the base station 200 are configured to transmit and receive signals with other base stations and terminals, and the processor 220 is functionally connected to the transmitter 212 and the receiver 214 to transmit the signal. 212 and the receiver 214 may be configured to control the process of transmitting and receiving signals with other devices. In addition, the processor 220 may perform various processing on the signal to be transmitted, transmit the signal to the transmitter 212, and may perform processing on the signal received by the receiver 214. If necessary, the processor 220 may store information included in the exchanged message in the memory 230. With such a structure, the base station 200 may perform the method of the various embodiments described above.
단말(100) 및 기지국(200) 각각의 프로세서(120, 220)는 각각 단말(100) 및 기지국(200)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(120, 220)은 프로그램 코드들 및 데이터를 저장하는 메모리(130, 230)들과 연결될 수 있다. 메모리(130, 230)는 프로세서(120, 220)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다. Processors 120 and 220 of the terminal 100 and the base station 200 respectively instruct (eg, control, coordinate, manage, etc.) the operation in the terminal 100 and the base station 200. Respective processors 120 and 220 may be connected to memories 130 and 230 that store program codes and data. The memories 130 and 230 are coupled to the processors 120 and 220 to store operating systems, applications, and general files.
본 발명의 프로세서(120, 220)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(120, 220)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. The processor 120 or 220 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. The processors 120 and 220 may be implemented by hardware or firmware, software, or a combination thereof.
하드웨어를 이용하여 본 발명의 실시 예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(120, 220)에 구비될 수 있다. When implementing an embodiment of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), and programmable logic devices (PLDs) configured to perform the present invention. Field programmable gate arrays (FPGAs) may be provided in the processors 120 and 220.
한편, 상술한 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터 판독 가능 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 방법에서 사용된 데이터의 구조는 컴퓨터 판독 가능 매체에 여러 수단을 통하여 기록될 수 있다. 본 발명의 다양한 방법들을 수행하기 위한 실행 가능한 컴퓨터 코드를 포함하는 저장 디바이스를 설명하기 위해 사용될 수 있는 프로그램 저장 디바이스들은, 반송파(carrier waves)나 신호들과 같이 일시적인 대상들은 포함하는 것으로 이해되지는 않아야 한다. 상기 컴퓨터 판독 가능 매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, DVD 등)와 같은 저장 매체를 포함한다.Meanwhile, the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium. In addition, the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means. Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do. The computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).
본원 발명의 실시 예 들과 관련된 기술 분야에서 통상의 지식을 가진 자는 상기 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that embodiments of the present invention can be implemented in a modified form without departing from the essential characteristics of the above description. Therefore, the disclosed methods should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the detailed description of the invention, and all differences within the equivalent scope should be construed as being included in the scope of the present invention.
상술한 바와 같은 수신 신호 처리 방법은 3GPP LTE, LTE-A 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.The received signal processing method as described above may be applied to various wireless communication systems including not only 3GPP LTE and LTE-A systems, but also IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Claims (14)

  1. 단말이 기지국으로부터 수신되는 수신 신호를 처리하는 방법에 있어서,In the method for the terminal to process the received signal received from the base station,
    하향링크 서브프레임을 통해 전송되는 DMRS(DeModulation Reference Signal)를 이용하여 상기 서브프레임 내의 일부 RE(Resource Element)에 대한 채널 정보를 획득하는 단계;Acquiring channel information on some resource elements (REs) in the subframe using a DeModulation Reference Signal (DMRS) transmitted through a downlink subframe;
    상기 일부 RE에 대한 채널 정보를 이용하여, 상기 서브프레임 내의 나머지 RE에 대한 채널 정보를 획득하기 위한 파라미터
    Figure PCTKR2016008394-appb-I000123
    를 결정하는 단계;
    A parameter for obtaining channel information on the remaining REs in the subframe using the channel information on the some REs
    Figure PCTKR2016008394-appb-I000123
    Determining;
    상기 파라미터
    Figure PCTKR2016008394-appb-I000124
    가 적용된 초기 값의 오차가 임계값 미만이 될 때까지 상기 초기 값을 보상(compensate)하는 단계; 및
    The parameter
    Figure PCTKR2016008394-appb-I000124
    Compensating the initial value until the error of the initial value to which the applied value is less than the threshold value; And
    상기 보상된 결과를 이용하여 상기 나머지 RE에 대한 채널 정보를 결정하는 단계를 포함하는, 수신 신호 처리 방법.And determining channel information for the remaining REs using the compensated results.
  2. 제1항에 있어서,The method of claim 1,
    상기 수신 신호 처리 방법은 상기 일부 RE에 대한 채널 결과 및 상기 나머지 RE에 대한 채널 결과를 이용하여 상기 서브프레임에 포함된 하향링크 데이터를 디코딩하는 단계를 더 포함하는, 수신 신호 처리 방법.The received signal processing method further includes decoding downlink data included in the subframe using the channel result for the partial RE and the channel result for the remaining RE.
  3. 제1항에 있어서,The method of claim 1,
    상기 보상하는 단계는, CG(Conjugate Gradient) 알고리즘 또는 뉴턴 방식(newton method)을 이용하여 수행되는 것인, 수신 신호 처리 방법.The compensating step is performed using a Conjugate Gradient (CG) algorithm or a Newton method.
  4. 제3항에 있어서,The method of claim 3,
    상기 CG 알고리즘에 적용되는 초기 필터 및 가속 필터는 상기 파라미터
    Figure PCTKR2016008394-appb-I000125
    인 것인, 수신 신호 처리 방법.
    The initial filter and the acceleration filter applied to the CG algorithm are the parameters
    Figure PCTKR2016008394-appb-I000125
    The received signal processing method.
  5. 제1항에 있어서,The method of claim 1,
    상기 파라미터
    Figure PCTKR2016008394-appb-I000126
    Figure PCTKR2016008394-appb-I000127
    ,
    Figure PCTKR2016008394-appb-I000128
    Figure PCTKR2016008394-appb-I000129
    에 기초하여 룩업 테이블로부터 선택되며, 상기
    Figure PCTKR2016008394-appb-I000130
    는 최대 딜레이 스프레드(max delay spread)를 나타내고, 상기
    Figure PCTKR2016008394-appb-I000131
    는 최대 도플러 시프트(max Doppler shift)를 나타내고, 상기
    Figure PCTKR2016008394-appb-I000132
    는 잡음의 파워를 나타내는 것인, 수신 신호 처리 방법.
    The parameter
    Figure PCTKR2016008394-appb-I000126
    Is
    Figure PCTKR2016008394-appb-I000127
    ,
    Figure PCTKR2016008394-appb-I000128
    And
    Figure PCTKR2016008394-appb-I000129
    Is selected from a lookup table based on
    Figure PCTKR2016008394-appb-I000130
    Represents a maximum delay spread, and
    Figure PCTKR2016008394-appb-I000131
    Represents the maximum Doppler shift, and
    Figure PCTKR2016008394-appb-I000132
    Is a signal representing the power of noise.
  6. 제1항에 있어서,The method of claim 1,
    상기 나머지 RE에 대한 채널 정보를 결정하는 단계는, 상기 보상된 결과를 교차공분산 행렬
    Figure PCTKR2016008394-appb-I000133
    에 적용함으로써 수행되며, 상기 교차공분산 행렬
    Figure PCTKR2016008394-appb-I000134
    은 상기 일부 RE와 상기 나머지 RE들 간의 상관관계를 나타내는 행렬인 것인, 수신 신호 처리 방법.
    Determining the channel information for the remaining RE, cross-covariance matrix of the compensated result
    Figure PCTKR2016008394-appb-I000133
    Performed by applying to the cross-covariance matrix
    Figure PCTKR2016008394-appb-I000134
    Is a matrix representing a correlation between the some REs and the remaining REs.
  7. 제1항에 있어서,The method of claim 1,
    상기 파라미터
    Figure PCTKR2016008394-appb-I000135
    는 상기 일부 RE들 간의 상관관계를 나타내는 자기공분산 행렬
    Figure PCTKR2016008394-appb-I000136
    을 이용하여 결정되며, 상기 자기공분산 행렬
    Figure PCTKR2016008394-appb-I000137
    Figure PCTKR2016008394-appb-I000138
    함수의 근사화된 수식을 이용하여 산출되는 것인, 수신 신호 처리 방법.
    The parameter
    Figure PCTKR2016008394-appb-I000135
    Is a covariance matrix representing the correlation between some REs
    Figure PCTKR2016008394-appb-I000136
    Determined by using the self-covariance matrix
    Figure PCTKR2016008394-appb-I000137
    silver
    Figure PCTKR2016008394-appb-I000138
    The received signal processing method, which is calculated using an approximated formula of the function.
  8. 기지국으로부터 수신되는 수신 신호를 처리하는 단말에 있어서,A terminal for processing a received signal received from a base station,
    송신부; A transmitter;
    수신부; 및Receiver; And
    상기 송신부 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되,A processor operating in connection with the transmitter and the receiver,
    상기 프로세서는, The processor,
    하향링크 서브프레임을 통해 전송되는 DMRS를 이용하여 상기 서브프레임 내의 일부 RE에 대한 채널 정보를 획득하고,Obtaining channel information on some REs in the subframe using DMRS transmitted through a downlink subframe,
    상기 일부 RE에 대한 채널 정보를 이용하여, 상기 서브프레임 내의 나머지 RE에 대한 채널 정보를 획득하기 위한 파라미터
    Figure PCTKR2016008394-appb-I000139
    를 결정하고,
    A parameter for obtaining channel information on the remaining REs in the subframe using the channel information on the some REs
    Figure PCTKR2016008394-appb-I000139
    To determine,
    상기 파라미터
    Figure PCTKR2016008394-appb-I000140
    가 적용된 초기 값의 오차가 임계값 미만이 될 때까지 상기 초기 값을 보상하며,
    The parameter
    Figure PCTKR2016008394-appb-I000140
    Compensates for the initial value until the error of the applied initial value is below the threshold,
    상기 보상된 결과를 이용하여 상기 나머지 RE에 대한 채널 정보를 결정하는 것인, 단말.And determining channel information on the remaining REs using the compensated result.
  9. 제8항에 있어서,The method of claim 8,
    상기 프로세서는, 상기 일부 RE에 대한 채널 결과 및 상기 나머지 RE에 대한 채널 결과를 이용하여 상기 서브프레임에 포함된 하향링크 데이터를 디코딩하는 것인, 단말.The processor decodes downlink data included in the subframe using the channel result for the partial RE and the channel result for the remaining RE.
  10. 제8항에 있어서,The method of claim 8,
    상기 프로세서는, CG 알고리즘 또는 뉴턴 방식을 이용하여 상기 초기 값을 보상하는 것인, 단말.The processor is to compensate for the initial value using a CG algorithm or Newton scheme.
  11. 제10항에 있어서,The method of claim 10,
    상기 CG 알고리즘에 적용되는 초기 필터 및 가속 필터는 상기 파라미터
    Figure PCTKR2016008394-appb-I000141
    인 것인, 단말.
    The initial filter and the acceleration filter applied to the CG algorithm are the parameters
    Figure PCTKR2016008394-appb-I000141
    It is a terminal.
  12. 제8항에 있어서,The method of claim 8,
    상기 파라미터
    Figure PCTKR2016008394-appb-I000142
    Figure PCTKR2016008394-appb-I000143
    ,
    Figure PCTKR2016008394-appb-I000144
    Figure PCTKR2016008394-appb-I000145
    에 기초하여 룩업 테이블로부터 선택되며, 상기
    Figure PCTKR2016008394-appb-I000146
    는 최대 딜레이 스프레드(max delay spread)를 나타내고, 상기
    Figure PCTKR2016008394-appb-I000147
    는 최대 도플러 시프트(max Doppler shift)를 나타내고, 상기
    Figure PCTKR2016008394-appb-I000148
    는 잡음의 파워를 나타내는 것인, 단말.
    The parameter
    Figure PCTKR2016008394-appb-I000142
    Is
    Figure PCTKR2016008394-appb-I000143
    ,
    Figure PCTKR2016008394-appb-I000144
    And
    Figure PCTKR2016008394-appb-I000145
    Is selected from a lookup table based on
    Figure PCTKR2016008394-appb-I000146
    Represents a maximum delay spread, and
    Figure PCTKR2016008394-appb-I000147
    Represents the maximum Doppler shift, and
    Figure PCTKR2016008394-appb-I000148
    Denotes the power of noise.
  13. 제8항에 있어서,The method of claim 8,
    상기 프로세서는, 상기 보상된 결과를 교차공분산 행렬
    Figure PCTKR2016008394-appb-I000149
    에 적용함으로써 상기 나머지 RE에 대한 채널 정보를 결정하며, 상기 교차공분산 행렬
    Figure PCTKR2016008394-appb-I000150
    은 상기 일부 RE와 상기 나머지 RE들 간의 상관관계를 나타내는 행렬인 것인, 단말.
    The processor cross-compensates the compensated result.
    Figure PCTKR2016008394-appb-I000149
    Determine channel information for the remaining REs by applying to the cross covariance matrix.
    Figure PCTKR2016008394-appb-I000150
    Is a matrix representing a correlation between the some REs and the remaining REs.
  14. 제8항에 있어서,The method of claim 8,
    상기 파라미터
    Figure PCTKR2016008394-appb-I000151
    는 상기 일부 RE들 간의 상관관계를 나타내는 자기공분산 행렬
    Figure PCTKR2016008394-appb-I000152
    을 이용하여 결정되며, 상기 자기공분산 행렬
    Figure PCTKR2016008394-appb-I000153
    Figure PCTKR2016008394-appb-I000154
    함수의 근사화된 수식을 이용하여 산출되는 것인, 단말.
    The parameter
    Figure PCTKR2016008394-appb-I000151
    Is a covariance matrix representing the correlation between some REs
    Figure PCTKR2016008394-appb-I000152
    Determined by using the self-covariance matrix
    Figure PCTKR2016008394-appb-I000153
    silver
    Figure PCTKR2016008394-appb-I000154
    Terminal, which is calculated using an approximated formula of the function.
PCT/KR2016/008394 2015-11-12 2016-07-29 Method for processing reception signal from base station by terminal in wireless communication system WO2017082515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562254186P 2015-11-12 2015-11-12
US62/254,186 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017082515A1 true WO2017082515A1 (en) 2017-05-18

Family

ID=58695712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008394 WO2017082515A1 (en) 2015-11-12 2016-07-29 Method for processing reception signal from base station by terminal in wireless communication system

Country Status (1)

Country Link
WO (1) WO2017082515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679362A (en) * 2022-04-08 2022-06-28 中山大学 Self-adaptive adjustment method for multi-carrier waveform parameters of communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067345A1 (en) * 2011-11-04 2013-05-10 Research In Motion Limited Pusch reference signal design for high doppler frequency
US20140247799A1 (en) * 2011-10-04 2014-09-04 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, wireless communication method, and integrated circuit
US20150003356A1 (en) * 2012-01-16 2015-01-01 Lg Electronics Inc. Demodulation-reference-signal transmission method and device in a wireless communication system
WO2015167118A1 (en) * 2014-04-27 2015-11-05 Lg Electronics Inc. Method of processing reception signal using preprocessing filter of mimo receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247799A1 (en) * 2011-10-04 2014-09-04 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, wireless communication method, and integrated circuit
WO2013067345A1 (en) * 2011-11-04 2013-05-10 Research In Motion Limited Pusch reference signal design for high doppler frequency
US20150003356A1 (en) * 2012-01-16 2015-01-01 Lg Electronics Inc. Demodulation-reference-signal transmission method and device in a wireless communication system
WO2015167118A1 (en) * 2014-04-27 2015-11-05 Lg Electronics Inc. Method of processing reception signal using preprocessing filter of mimo receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on DMRS Density and Structure to Handle High Doppler Case", R1-156894, 3GPP TSG RAN WG1 MEETING #83, 7 November 2015 (2015-11-07), Anaheim, USA, XP051022577 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679362A (en) * 2022-04-08 2022-06-28 中山大学 Self-adaptive adjustment method for multi-carrier waveform parameters of communication system

Similar Documents

Publication Publication Date Title
WO2017188591A1 (en) Signal transmission method for estimating phase noise in wireless communication system
WO2017213382A1 (en) Signal transmission method for estimating phase noise in wireless communication system
WO2021157998A1 (en) Method and apparatus for performing communication in wireless communication system
WO2021006688A1 (en) Method and apparatus for wideband prach configuration for nr unlicensed
WO2018030847A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
WO2014010841A1 (en) Controlling transmit power of uplink sounding reference signal
WO2019083344A1 (en) Method for transmitting positioning information by terminal in wireless communication system supporting sidelink, and device therefor
WO2020166891A1 (en) Method and apparatus for bwp switching and pusch resource overhead reducing for 2 step rach in wireless communication system
WO2010117116A1 (en) Method for generating signal pattern using modulus or sequence, and device thereof
WO2019031937A1 (en) Method and apparatus of determining frequency resources in next generation cellular networks
WO2020139056A1 (en) Random access method, user equipment and base station
EP2850757A1 (en) Method and apparatus for transmitting and receiving reference signal in wireless communication system
WO2017209417A1 (en) Method for transmitting uplink control information in wireless communication system and device therefor
WO2021162398A1 (en) Method and apparatus for random access procedure in wireless communication system
WO2016195292A1 (en) Method for performing random access at adaptive transmission point in wireless communication system that uses mmwave band
WO2021071215A1 (en) Method for transmitting reference signal and apparatus using the same
WO2020027591A1 (en) Method and apparatus for vehicular microwave imaging by mirror reflection in wireless communication system
WO2016178469A1 (en) Phase pattern-based synchronization signal transmitting/receiving method in wireless communication system
WO2018124685A1 (en) Srs transmission method for uplink beam correction, and terminal therefor
WO2016167447A1 (en) Method for transmitting and receiving synchronization signal in wireless communication system
WO2016159713A1 (en) Method for executing rstd measurement-related operation in wireless communication system
EP3497872A1 (en) Method and apparatus for transmitting/receiving positioning reference signal in wireless communication system
WO2018048250A1 (en) Method and device for performing beam refinement in wireless communication system
WO2016178502A1 (en) Method for transmitting and receiving synchronization signal by using nested orthogonal phase pattern vector in wireless communication system
WO2017052026A1 (en) Method for accessing millimeter wave cell in wireless communication system and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864441

Country of ref document: EP

Kind code of ref document: A1