WO2017082253A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2017082253A1
WO2017082253A1 PCT/JP2016/083127 JP2016083127W WO2017082253A1 WO 2017082253 A1 WO2017082253 A1 WO 2017082253A1 JP 2016083127 W JP2016083127 W JP 2016083127W WO 2017082253 A1 WO2017082253 A1 WO 2017082253A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection element
sensor
semiconductor
semiconductor layer
Prior art date
Application number
PCT/JP2016/083127
Other languages
French (fr)
Japanese (ja)
Inventor
和真 長尾
井口 雄一朗
村瀬 清一郎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017550336A priority Critical patent/JPWO2017082253A1/en
Publication of WO2017082253A1 publication Critical patent/WO2017082253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a sensor capable of simultaneously measuring a plurality of biological substances.
  • glycated hemoglobin hereinafter also referred to as HbA1c
  • glycoalbumin glycated albumin
  • glycated protein In diabetes, the production of glycated protein is enhanced, and the concentration of HbA1c contained in erythrocytes and glycoalbumin in serum reflect the average blood glucose level over a certain period in the past.
  • Glucose shows the current blood glucose state
  • glycoalbumin reflects the blood glucose state about 1 to 2 weeks ago
  • HbA1c reflects the blood glucose state about 1 to 2 months ago. Therefore, measurement of these glycated proteins is important for the time-dependent diagnosis or symptom management of diabetes symptoms in that the blood glucose concentration can be determined over time. Therefore, as an index for diabetes management, there is a demand for a rapid and accurate quantitative method for glucose concentration and HbA1c or glycoalbumin.
  • an electrochemical detection method As a method for measuring glucose in a biological fluid, for example, there is an electrochemical detection method called an enzyme electrode method.
  • an electrochemical detection method called an enzyme electrode method.
  • information correlated with the glucose concentration in the biological sample is output to an electrode in contact with the biological sample, and the glucose concentration is calculated based on this output. Since the enzyme electrode method can be applied to a small blood glucose level sensor, it is mainly used by diabetic patients all over the world.
  • a method for measuring HbA1c for example, a chromatography method such as HPLC, an immunoassay method using an antibody such as latex immunoagglutination, and an enzyme method using an enzyme that acts on a glycated protein are known. Both are widely used in clinical settings as detection methods using light.
  • an object of the present invention is to provide a small sensor capable of simultaneously measuring glucose and biologically related substances other than glucose such as HbA1c and glycoalbumin.
  • the present invention has the following configuration. 1. It has at least a first detection element that detects glucose in a biological fluid and a second detection element that detects a biological substance other than glucose, and the second detection element includes a semiconductor element. Sensor. 2. 2. The sensor according to 1 above, wherein the biological substance is glycated hemoglobin or glycated albumin. 3. 3. The sensor according to 1 or 2, further comprising a third detection element, wherein the third detection element detects hemoglobin. 4). 4. The sensor according to 3 above, wherein the third detection element includes a semiconductor element. 5). 5. The sensor according to any one of 1 to 4, wherein a detection part area of the second detection element is twice or more a detection part area of the third detection element. 6). 6.
  • the semiconductor element includes at least a substrate, a first electrode, a second electrode, and a semiconductor layer, and the first electrode and the second electrode each include a metal type of 80 wt% or more, a double-walled carbon nanotube, 7.
  • the semiconductor layer contains carbon nanotubes.
  • a conjugated polymer is attached to at least a part of the surface of the carbon nanotube. 10.
  • 11. The sensor according to any one of 1 to 10, wherein the sensor has a biological fluid inlet, and a path connecting the inlet to the first detection element and the second detection element.
  • 12 The sensor according to any one of 1 to 11, wherein the biological fluid is blood.
  • the path has a space for mixing the blood and a hemolytic agent between the blood inlet and the second detection element.
  • a small sensor capable of simultaneously measuring a plurality of biological substances can be provided.
  • FIG. 1 is a perspective view showing an embodiment of the sensor of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor element.
  • FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor element.
  • FIG. 4 is a schematic cross-sectional view showing an example of a semiconductor element.
  • FIG. 5A is a schematic cross-sectional view illustrating an example of a semiconductor element.
  • FIG. 5B is a cross-sectional view taken along line CC ′ of FIG. 5A.
  • FIG. 6A is a schematic cross-sectional view illustrating an example of a semiconductor element. 6B is a cross-sectional view taken along line DD ′ of FIG. 6A.
  • FIG. 7 is a schematic cross-sectional view showing an example of a semiconductor element.
  • FIG. 8 is a perspective view showing an embodiment of the sensor of the present invention.
  • FIG. 9 is a perspective view showing an embodiment of the sensor of the present invention.
  • the sensor of the present invention has at least a first detection element for detecting glucose in a biological fluid and a second detection element for detecting a biological substance other than glucose, and the second detection element is a semiconductor. Including elements.
  • FIG. 1 is a schematic perspective view of a sensor having a first detection element 401 and a second detection element 402.
  • the two detection elements are both formed on the substrate 10 and are bonded to the upper substrate 20 to form a chip.
  • the first detection element 401 detects glucose in the biological fluid.
  • the first detection element 401 includes at least a pair of electrodes 101 on the substrate 10 and a reaction layer 110 between the pair of electrodes.
  • the pair of electrodes are detection electrodes and are electrically connected to the connection portion 102 and the wiring 107. Using this connection, a voltage can be applied between the electrodes from a power source connected to the connection part, or an electric signal generated in the reaction layer can be taken out from the connection part.
  • the reaction layer contains an enzyme that reacts with glucose.
  • glucose in the biological fluid reacts with the enzyme in the reaction layer, the glucose is decomposed and further oxidized to produce hydrogen peroxide. Since the current when hydrogen peroxide is decomposed depends on the blood glucose concentration, the amount of current is detected as the glucose concentration.
  • the enzyme that reacts with glucose is not particularly limited, and examples thereof include glucose oxidase (GOD) and glucose dehydrogenase (GDH).
  • GOD glucose oxidase
  • GDH glucose dehydrogenase
  • reaction layer may contain a mediator in addition to the above enzyme.
  • the mediator temporarily receives electrons generated when glucose is decomposed, and then emits electrons when a voltage is applied between the pair of electrodes. Since the amount of current generated thereby depends on the blood glucose concentration, the amount of current is detected as the glucose concentration.
  • the mediator examples include various ions, and specific examples include ions generated from ferricyanide salts, ferrocene and derivatives thereof, methylene blue, benzoquinone and derivatives thereof, naphthoquinone, phenazine methosulfate, and thionine. Particularly preferred is ferricyan ion derived from potassium ferricyanide. When the ferricyan ion receives the electron, it is converted into ferrocyanide ion, and then returns to ferricyan ion again by applying a voltage.
  • the method using this detection element is generally called an electrode method using electrochemistry and is the mainstream of blood glucose level measuring instruments in recent years.
  • an electrode method using electrochemistry is the mainstream of blood glucose level measuring instruments in recent years.
  • the enzyme to be reacted there are a glucose oxidase method (GOD method), a glucose dehydrogenase method (GDH method) and the like, and any enzyme may be used as long as it is an electrode method.
  • Advantages of the electrode method include a short time until measurement, a small amount of blood to be collected, and a simple and easy-to-understand apparatus.
  • Examples of the material used for the substrate include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, polyparaxylene, aliphatic polyester, Examples include, but are not limited to, organic materials such as polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polysiloxane, polyvinylphenol, and polyaramide, or a mixture of inorganic material powder and organic material. Is not to be done. These materials may be used alone, or a plurality of materials may be laminated or mixed.
  • Examples of the material used for the electrode include conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (ITO), or platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, Metals such as chromium, lithium, sodium, potassium, cesium, calcium, magnesium, palladium, molybdenum, amorphous silicon, and polysilicon and their alloys, inorganic conductive materials such as copper iodide and copper sulfide, polythiophene, polypyrrole, Polyaniline, organic conductive materials such as polyethylenedioxythiophene and polystyrenesulfonic acid complexes, glassy carbon, amorphous carbon, graphite, carbon fiber, and other carbon materials such as diamond, carbon nanotube, and graphene Nano-carbon material, such as, and the like conductive carbon black, but is not limited thereto.
  • conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (
  • Electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the electrode is preferably selected from gold, platinum, palladium, an organic conductive material, and a nanocarbon material from the viewpoint of stability to an aqueous solution in contact with the sensor.
  • the electrode may be in direct contact with the substrate, or may have an adhesive layer between the electrode and the substrate.
  • the adhesive layer also serves as an insulating layer that can be electrically insulated, a metallic or semiconducting substance can be used as the substrate.
  • the material used for the connecting portion may be any conductive material that can generally be used as an electrode. Specific examples include, but are not limited to, carbon materials, metals, alloys, various compounds of metals and alloys (eg, oxides, hydroxides, halides, sulfides, nitrides, and carbides). It is not something.
  • a carbon material platinum, palladium, gold, silver, aluminum or the like is used.
  • the carbon material include CNT, graphite, pyrolytic carbon, glassy carbon, acetylene black, and carbon black.
  • the material used for the wiring may be any conductive material that can be generally used as an electrode. Specific examples include, but are not limited to, carbon materials, metals, alloys, various compounds of metals and alloys (eg, oxides, hydroxides, halides, sulfides, nitrides, and carbides). It is not something.
  • a carbon material platinum, palladium, gold, silver, aluminum or the like is used.
  • the carbon material include CNT, graphite, pyrolytic carbon, glassy carbon, acetylene black, and carbon black.
  • the second detection element 402 detects a biological substance other than glucose.
  • the second detection element 402 includes a semiconductor element including at least a first electrode 103 and a second electrode 104 on the substrate 10 and a semiconductor layer 111 between the electrodes.
  • the first electrode and the second electrode are detection electrodes, and are electrically connected to the connection portion 102 and the wiring 107.
  • a power source and a detection unit are connected to the connection unit 102. Using this connection, a voltage can be applied between the electrodes from the power source, and an electrical signal generated in the semiconductor layer can be taken out from the connection portion.
  • the current value or the electric resistance value flowing between the first electrode and the second electrode changes. By measuring the change, the biological substance can be detected. By changing the substance that selectively interacts with the biological substance contained in the semiconductor layer, various biological substances can be detected.
  • a detection element using a semiconductor element include a short time until measurement, a small amount of blood to be collected, and a simple and easy-to-understand apparatus.
  • the FET type detection element is preferable in that labeling with a phosphor or the like is unnecessary, electrical signal conversion is fast, and connection with an integrated circuit is easy.
  • the first detection element has the same characteristics and size as the sensor chip of the blood glucose sensor, and is therefore equivalent to the current chip size and small. Further, the second detection element has the same size, but has a channel and is slightly larger.
  • the size of the sensor having these two is at least larger than the current blood glucose level sensor chip size, but is not as large as the device described in Patent Document 1.
  • the measurement of glucose is an electrochemical method mainly using an electrode method
  • the measurement of biological materials other than glucose is an electrical method using a semiconductor element. Both of them are preferable in that they do not use light, so that electrical signal conversion is fast and integration is easy.
  • the first detection element and the second detection element are provided with a common substrate 10, but may be provided with different substrates.
  • the material used for the upper substrate 20 the same material as that used for the substrate 10 can be used. In one sensor, the material of the substrate 10 and the upper substrate 20 may be the same or different.
  • a third detection element 403 may be provided in addition to the first and second detection elements.
  • the third detection element 403 detects hemoglobin.
  • the third detection element 403 includes at least (I) a pair of electrodes 121 on the substrate 10 and a reaction layer 112 between the pair of electrodes, or as shown in FIG. (II) An element having the first electrode 122 and the second electrode 123 and the semiconductor element 202 including the semiconductor layer 201 between these electrodes.
  • the ratio of HbA1c or the ratio of glycohemoglobin to the total hemoglobin can be calculated from the total hemoglobin concentration in the sample.
  • Concentrations of total hemoglobin include known methods such as the methemoglobin method, cyan methemoglobin method, azide methemoglobin method, sodium dodecyl sulfonate method, alkali hematin method, green chromophore formation method, and oxyhemoglobin method. .
  • a reagent such as potassium ferricyanide is reacted and a method using light by an antigen-antibody reaction using an anti-hemoglobin antibody as an antibody have been established.
  • the detection area of the second detection element is twice or more than the detection area of the third detection element. This is because the hemoglobin detected by the third detection element is present in a large amount in the blood, and the glycated hemoglobin or glycated albumin, which is a glycated product thereof, is at most 50% or less. Therefore, if the detection area of the second detection element is twice or more larger than the third detection area, the detection reliability of hemoglobin and its saccharified product is improved.
  • they are 2 times or more and 10 times or less, More preferably, they are 2 times or more and 5 times or less, More preferably, they are 2 times or more and 3 times or less, Especially preferably, they are 2 times or more and 2.5 times or less.
  • the sensor of the present invention preferably has a biological fluid inlet 301 and a path 302 that connects the inlet to the first detection element 401, the second detection element 402, and the third detection element 403, respectively.
  • a biological fluid inlet 301 and a path 302 that connects the inlet to the first detection element 401, the second detection element 402, and the third detection element 403, respectively.
  • the injection port is provided in any part of the sensor body. Although it is provided on the upper surface of the upper substrate 20 in FIG. 1, the present invention is not limited thereto, and may be the side surface of the upper substrate 20 or the side surface of the substrate 10.
  • a depression 304 may be provided at a location corresponding to the injection port 301 provided in the upper substrate 20.
  • the path is connected from the inlet to the first detection element and the second detection element.
  • the path is provided in a groove shape on the substrate 10, and the biological fluid injected from the injection port 301 accumulates in the depression 304 and flows from there to the path 302.
  • a groove having substantially the same shape as the path 302 may be provided at a position corresponding to the path 302 on the bonding surface of the upper substrate 20 to the substrate 10.
  • the size of the groove can be increased when the upper substrate 20 and the substrate 10 are bonded together.
  • the positional relationship between the inlet and the route is not limited to these.
  • a path may be provided in a tubular shape inside the upper substrate 20 so as to be digged from the inlet toward the first detection element and the second detection element.
  • a tubular route and a groove-like route may be used in combination. If the position of the injection port changes, the position where the path is provided also changes.
  • the injection port and path are made by processing the substrate.
  • the processing method greatly depends on the material. For example, if silicon or glass is used, fine processing using photolithography, laser processing, and the like are possible. In addition to these, if it is plastic, injection molding, imprinting, hot embossing, drilling and the like are also possible. However, in any case, the processing method is not particularly limited to these.
  • the shape of the channel is typically a groove shape or a tubular shape, but is not limited to these as long as it can flow a biological fluid.
  • the processed surface may be processed so that the biological fluid can be easily flowed.
  • the width of the path is not particularly limited, but is preferably about 1 ⁇ m to 1 mm.
  • the depth of the path is not particularly limited, but is preferably about 1 ⁇ m to 1 mm.
  • Examples of a method for bonding the substrate 10 and the upper substrate 20 include a method using an adhesive. Any adhesive may be used as long as it can form a liquid layer. For example, an ultraviolet curing type, a thermosetting type, and a two-component mixed type adhesive may be used. In consideration of the affinity with the substrate, an adhesive that can be applied uniformly with a thickness of about several micrometers is preferable. For example, if the substrate is a hydrophilic glass substrate, the adhesive is also preferably hydrophilic.
  • the substrate or the upper substrate is a glass substrate
  • a method of welding the inner surfaces of them using a laser and integrating them is also mentioned.
  • Various methods, such as capillary action, pumping, pressurization, and centrifugation, can be used to cause the biological fluid to flow through the path.
  • a biological fluid is a fluid that an organism has in the body in some form. Specific examples include blood, lymph, tissue fluid, body cavity fluid, digestive fluid, sweat, tears, runny nose, urine, semen, vaginal fluid, amniotic fluid, spinal fluid, synovial fluid, cell suspension and milk as they are. Can be used. Moreover, the sample which crushed or removed the cell component etc. previously from the biological sample may be sufficient. Examples of the digestive juice include saliva, gastric juice, bile, pancreatic juice, and intestinal juice.
  • the sensor including the semiconductor element of the present invention As a sample to be used for the sensor including the semiconductor element of the present invention, among biological fluids, blood, saliva, sweat, tears, urine and the like are preferable because of easy availability, and among them blood is more preferable because it contains a lot of biological information.
  • the biological substance other than glucose is not particularly limited as long as it is detected by the second detection element, and any substance can be used. Specifically, enzyme, antigen, antibody, hapten, hapten antibody, peptide, oligopeptide, polypeptide (protein), hormone, nucleic acid, oligonucleotide, biotin, biotinylated protein, avidin, streptavidin, lipid, steroid, sugar Saccharides such as oligosaccharides and polysaccharides (excluding glucose), low molecular compounds, high molecular compounds, inorganic substances and complexes thereof, viruses, bacteria, cells, living tissues, and substances constituting these.
  • the low molecular weight compound is not particularly limited, and examples thereof include a gaseous compound at normal temperature and normal pressure such as ammonia and methane emitted from a living body and a solid compound such as uric acid.
  • a gaseous compound at normal temperature and normal pressure such as ammonia and methane emitted from a living body
  • a solid compound such as uric acid.
  • solid compounds such as uric acid are used.
  • proteins examples include PSA, hCG, IgE, BNP, NT-proBNP, AFP, CK-MB, PIVKA II, CA15-3, CYFRA, anti-p53, troponin T, procalcitonin, hemoglobin, HbA1c, glycoalbumin, Examples include apolipoprotein and C-reactive protein (CRP).
  • proteins include PSA, hCG, IgE, BNP, NT-proBNP, AFP, CK-MB, PIVKA II, CA15-3, CYFRA, anti-p53, troponin T, procalcitonin, hemoglobin, HbA1c, glycoalbumin
  • CRP C-reactive protein
  • viruses examples include HIV, influenza virus, hepatitis B virus, and hepatitis C virus.
  • bacteria examples include Chlamydia, Staphylococcus aureus, and enterohemorrhagic Escherichia coli.
  • hemoglobin, HbA1c, and glycoalbumin which are types of polypeptides, are preferable. This is because it can be a disease marker for diabetes, and it is significant to combine with a first detection element capable of detecting glucose.
  • Hemolysis When the biological fluid used for the measurement according to the present invention is blood, it is necessary to perform hemolysis of the blood. In 1 ⁇ L of blood, there are millions of red blood cells and several thousand to 10,000 white blood cells, so that hemoglobin in red blood cells cannot be detected as it is. Therefore, it is necessary to treat the cell membrane of red blood cells by damaging or lysing them by various factors such as physical, chemical, biological, etc. and causing hemoglobin or the like to leak out of the cells. This is called hemolysis.
  • Physiological factors include various mechanical stresses such as pressure and centrifugal force.
  • Typical hemolysis methods include the method of excessively negative pressure in the syringe during blood collection, the method of exposing to excessive centrifugal force during the centrifugation, and the method of agitating or foaming erythrocyte fluid roughly. is there.
  • a method of mixing red blood cells with a solution having a low osmotic pressure can also be used. Due to the difference in osmotic pressure, extracellular water continues to flow into the cell through the cell membrane, which is a semipermeable membrane, and finally erythrocytes are ruptured.
  • water, purified water, buffer solution, and the like can also be hemolytic agents.
  • Chemical factors include lipid dissolution or damage that constitutes the cell membrane due to various solvents and surfactants.
  • solvents and surfactants include alcohols such as methanol and ethanol, various organic solvents other than acetone, and soap.
  • Complement activation signal transduction begins when antibodies against erythrocytes bind or by another activation mechanism, and each component of complement is activated sequentially (cascade reaction) and finally penetrates the cell membrane. A channel-like protein complex is formed, and the cell membrane is perforated, causing hemolysis.
  • the hemolysis method applied to the present invention is not particularly limited, but an osmotic pressure method is preferable from the viewpoint of availability and cost.
  • hemolysis can be achieved by a method such as dilution by adding 2 to 100 times the volume of purified water to the blood volume.
  • the space for performing the hemolysis treatment is not particularly limited.
  • the hemolysis treatment may be performed before the injection port for injecting blood into the sensor, or may be performed between the injection port and the detection element. , Either or not.
  • the above-described path has a space for mixing blood and a hemolytic agent between the blood inlet and the second or third detection element.
  • the blood injected from the injection port and the hemolyzing agent are mixed in the space by allowing the hemolytic agent such as the surfactant, purified water, and buffer solution to exist in the space 303 in advance.
  • the mixed liquid flows into the semiconductor layer.
  • semiconductor element The semiconductor element included in the second or third detection element will be described in more detail.
  • One aspect of the semiconductor element used in the present invention includes a substrate, a first electrode, a second electrode, and a semiconductor layer, and the semiconductor layer contains carbon nanotubes (hereinafter referred to as CNT).
  • the semiconductor element further includes a third electrode and an insulating layer, and the third electrode is electrically connected to the first electrode, the second electrode, and the semiconductor layer by the insulating layer. Insulated and arranged.
  • FIG. 2 and 3 are schematic cross-sectional views showing examples of semiconductor elements.
  • a first electrode 103 and a second electrode 104 are formed on a substrate 10, and a semiconductor layer 111 is disposed between the first electrode 103 and the second electrode 104.
  • the third electrode 105 and the insulating layer 106 are formed on the substrate 10, and the first electrode 103 and the second electrode 104 are formed.
  • a semiconductor layer 111 containing CNT is disposed on the substrate.
  • the first electrode 103, the second electrode 104, and the third electrode 105 correspond to the source electrode, the drain electrode, and the gate electrode, respectively, and the insulating layer 106 corresponds to the gate insulating layer, and functions as an FET. .
  • Examples of the material used for the substrate 10 include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, polyparaxylene, aliphatic polyester, Examples include, but are not limited to, organic materials such as polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polysiloxane, polyvinylphenol, and polyaramide, or a mixture of inorganic material powder and organic material. Is not to be done. These materials may be used alone, or a plurality of materials may be laminated or mixed.
  • inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide
  • the surface of the substrate 10 may be processed.
  • hydrophilic groups having no charge such as oligoethylene glycol chain and oligo (3,4-dihydroxyphenylalanine) and hydrophilic groups having both positive and negative charges such as phosphorylcholine group are effective.
  • a biological substance other than glucose is detected by selective interaction with another biological substance, which will be described later, in order to manufacture the sensor, a solution in which the biological substance is dissolved in the semiconductor layer
  • another sensitive substance is immobilized on the sensitive part.
  • the other biological substance is selectively immobilized on the sensitive part by suppressing the other biological substance from adhering to other than the sensitive part. Thereby, it is suppressed that biological related substances other than glucose are captured by another biological related substance at a place other than the sensitive part, selective detection in the sensitive part becomes dominant, and detection sensitivity is improved.
  • Examples of materials used for the first electrode 103, the second electrode 104, and the third electrode 105 include conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (ITO), platinum, gold, silver, Metals such as copper, iron, tin, zinc, aluminum, indium, chromium, titanium, lithium, sodium, potassium, cesium, calcium, magnesium, palladium, molybdenum, amorphous silicon, and polysilicon, and alloys thereof, copper iodide, And inorganic conductive materials such as copper sulfide, organic conductive materials such as polythiophene, polypyrrole, polyaniline, and polyethylenedioxythiophene and polystyrenesulfonic acid complexes, carbon nanotubes, nanocarbon materials such as graphene, and conductive carbon black Etc. That, without being limited thereto.
  • conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (ITO)
  • ITO
  • the nanocarbon material may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes containing a metal type of 80% by weight or more. Among them, it is preferable to use double-walled carbon nanotubes in order to obtain high conductive properties.
  • These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the first electrode 103 and the second electrode 104 are made of gold, platinum, palladium, organic, from the viewpoints of electrical resistance value, ease of film formation, film stability, and stability to aqueous solutions in contact with the sensor. It is preferably selected from conductive materials and nanocarbon materials. In particular, gold or carbon nanotubes are more preferable because the difference in work function with a semiconductor element containing carbon nanotubes is small, so that low power consumption driving is possible.
  • the width, thickness, interval, and arrangement of the first electrode 103 and the second electrode 104 are arbitrary.
  • the width is preferably 1 ⁇ m to 1 mm
  • the thickness is preferably 1 nm to 1 ⁇ m
  • the electrode spacing is preferably 1 ⁇ m to 10 mm.
  • the width and thickness of the first electrode 103 and the second electrode 104 may not be the same.
  • the shape of the electrode need not be a rectangular parallelepiped, and may be bent or comb-shaped.
  • the width, thickness, distance from the semiconductor layer, and arrangement of the third electrode 105 are arbitrary.
  • the width is preferably 1 ⁇ m to 1 mm
  • the thickness is preferably 1 nm to 1 ⁇ m
  • the distance from the semiconductor layer is preferably 1 ⁇ m to 10 cm.
  • an electrode having a width of 100 ⁇ m and a thickness of 500 nm is disposed at a distance of 2 mm from the semiconductor layer, but is not limited thereto.
  • the third electrode 105 is arranged in parallel with the second electrode 104, but may be arranged vertically or at any other angle.
  • the shape of the third electrode 105 is not limited to a straight line, and may be a curved line or a curved surface.
  • the third electrode 105 is not limited to being disposed immediately above the substrate, but may be disposed on another member disposed on the substrate.
  • Examples of the material used for the insulating layer 106 include inorganic materials such as silicon oxide and alumina, and organic polymers such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, polyvinylidene fluoride, polysiloxane, and polyvinylphenol (PVP).
  • inorganic materials such as silicon oxide and alumina
  • organic polymers such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, polyvinylidene fluoride, polysiloxane, and polyvinylphenol (PVP).
  • PVP polyvinylphenol
  • the film thickness of the insulating layer 106 is preferably 10 nm or more and 5 ⁇ m or less. More preferably, they are 50 nm or more and 3 micrometers or less, More preferably, they are 100 nm or more and 1 micrometer or less.
  • the film thickness can be measured by an atomic force microscope or an ellipsometry method.
  • the semiconductor layer 111 preferably contains CNT.
  • the semiconductor layer 111 may further include an organic semiconductor or an insulating material as long as the electrical characteristics of the CNT are not impaired.
  • the thickness of the semiconductor layer 111 is preferably 1 nm to 100 nm. By being within this range, it is possible to sufficiently extract changes in electrical characteristics due to interaction with the sensing target substance as electrical signals. More preferably, they are 1 nm or more and 50 nm or less, More preferably, they are 1 nm or more and 20 nm or less.
  • a method for forming the semiconductor layer 111 dry methods such as resistance heating vapor deposition, electron beam, sputtering, and CVD can be used.
  • a coating method is used from the viewpoint of manufacturing cost and adaptability to a large area. Is preferred.
  • the coating method includes a step of forming a semiconductor layer by coating a semiconductor component.
  • a spin coating method, a blade coating method, a slit die coating method, a screen printing method, a bar coater method, a mold method, a printing transfer method, a dip pulling method, an ink jet method, and the like can be preferably used.
  • the coating method can be selected according to the properties of the coating film to be obtained, such as control and orientation control.
  • the formed coating film may be annealed in the air, under reduced pressure, or in an inert gas atmosphere (in a nitrogen or argon atmosphere).
  • the current flowing between the source electrode and the drain electrode can be controlled by changing the applied gate voltage.
  • the mobility of the FET can be calculated using the following equation (a).
  • ( ⁇ Id / ⁇ Vg) L ⁇ D / (W ⁇ ⁇ r ⁇ ⁇ ⁇ Vsd) (a)
  • Id is the current between the source and the drain
  • Vsd is the voltage between the source and the drain
  • Vg is the gate voltage
  • D is the thickness of the insulating layer
  • L is the channel length
  • W is the channel width
  • epsilon r is the ratio of the gate insulating layer
  • the dielectric constant and ⁇ are the dielectric constant of vacuum (8.85 ⁇ 10 ⁇ 12 F / m). Further, the on / off ratio can be obtained from the ratio between the maximum value of Id and the minimum value of Id.
  • CNT As the CNT, a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a two-layer CNT in which two graphene sheets are wound in a concentric circle, and a plurality of graphene sheets are concentric Any of multi-walled CNTs wound in a shape may be used, but single-walled CNTs are preferably used in order to obtain high semiconductor characteristics.
  • CNT can be obtained by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
  • the CNT contains 80% by weight or more of the semiconductor CNT. More preferably, it contains 95% by weight or more of semiconducting CNTs.
  • a known method can be used as a method for obtaining a semiconductor-type 80% by weight or more CNT. For example, a method of ultracentrifugation in the presence of a density gradient agent, a method of selectively attaching a specific compound to the surface of a semiconductor-type or metal-type CNT, and separating using a difference in solubility, a difference in electrical properties And a method of separation by electrophoresis or the like.
  • Examples of the method for measuring the content of the semiconductor CNT include a method of calculating from the absorption area ratio of the visible-near infrared absorption spectrum and a method of calculating from the intensity ratio of the Raman spectrum.
  • the length of the CNT is preferably shorter than the distance between the first electrode and the second electrode in the applied semiconductor element or sensor.
  • the average length of CNT depends on the channel length, it is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the average length of CNT refers to the average length of 20 CNTs picked up randomly.
  • 20 CNTs are randomly picked up from images obtained by an atomic force microscope, a scanning electron microscope, a transmission electron microscope, or the like, and the average of their lengths is obtained. A method for obtaining the value is mentioned.
  • CNTs are distributed in length and may contain CNTs that are longer than between the electrodes. Therefore, it is preferable to add a step of making the CNTs shorter than the distance between the electrodes. For example, a method of cutting into short fibers by acid treatment with nitric acid, sulfuric acid or the like, ultrasonic treatment, or freeze pulverization is effective. Further, it is more preferable to use separation by a filter in view of improving purity.
  • the diameter of the CNT is not particularly limited, but is preferably 1 nm or more and 100 nm or less, and more preferably 50 nm or less.
  • the present invention it is preferable to provide a step of uniformly dispersing CNT in a solvent and filtering the dispersion with a filter.
  • a membrane filter is preferably used as the filter.
  • the pore diameter of the filter used for the filtration may be smaller than the channel length, and is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • Other methods for shortening CNT include acid treatment, freeze pulverization treatment, and the like.
  • the semiconductor layer of the present invention preferably contains carbon nanotubes having a high mobility and a large specific surface area.
  • conjugated polymer In the present invention, it is preferable that a conjugated polymer is attached to at least a part of the CNT surface.
  • the conjugated polymer prevents an unexpected change in electrical characteristics from directly contacting the sample solution with the semiconductor component, and also plays a role of assisting electron transfer of the semiconductor component by the conjugated system.
  • conjugated polymer examples include a polythiophene polymer, a polypyrrole polymer, a polyaniline polymer, a polyacetylene polymer, a poly-p-phenylene polymer, and a poly-p-phenylene vinylene polymer. Although it is mentioned, it is not specifically limited. As the polymer, those in which single monomer units are arranged are preferably used, but those obtained by block copolymerization or random copolymerization of different monomer units are also used. Further, graft-polymerized products can also be used.
  • a polythiophene polymer that is easy to adhere to CNT and easily forms a complex with CNT is particularly preferable.
  • the preferred molecular weight of the conjugated polymer is 800 or more and 100,000 or less in terms of number average molecular weight.
  • the polymer need not necessarily have a high molecular weight, and may be an oligomer composed of a linear conjugated system.
  • the conjugated polymer contains a side chain, and at least a part of the side chain is a hydroxyl group, a carboxy group, an amino group, a mercapto group, a sulfo group, a phosphonic acid group, an organic salt or an inorganic salt thereof, a formyl group.
  • Preferably containing at least one functional group selected from the group consisting of a maleimide group and a succinimide group Preferably containing at least one functional group selected from the group consisting of a maleimide group and a succinimide group, and particularly preferably containing at least one functional group selected from the group consisting of an amino group, a maleimide group and a succinimide group.
  • the amino group, maleimide group, and succinimide group may or may not have a substituent.
  • the substituent include an alkyl group, and this substituent may be further substituted.
  • These functional groups may be bonded to form a ring.
  • the other compound having the functional group may adhere to at least a part of the CNT surface.
  • the side chain in the present invention refers to a chain containing at least one carbon atom connected by substitution with an atom constituting the main chain of the conjugated polymer.
  • the term “containing a functional group in a side chain” means that the functional group is included at the end of the side chain, or that the functional group is branched from the side chain and includes the functional group.
  • a chain is a chain in which two or more atoms are connected in series. At this time, one of the atoms contained in the functional group can be included in the atoms constituting the molecular chain.
  • a group represented by CH 2 —COOH is linked to the main chain, this is a side chain containing a carboxy group.
  • This side chain preferably contains an alkylene group in at least a part of the chain.
  • the alkylene group may be directly bonded to the atoms constituting the conjugated polymer that is the main chain, or may be bonded via an ether bond, an ester bond, or the like.
  • the alkylene group includes, for example, a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, a sec-butylene group, a tert-butylene group, a cyclopropylene group, a cyclohexylene group, and a norbornylene group.
  • a divalent saturated aliphatic hydrocarbon group such as, may or may not have a substituent.
  • the additional substituent is not particularly limited, and examples thereof include an alkyl group, an alkoxy group such as a methoxy group and an ethoxy group, and these further have a substituent. May be.
  • carbon number of an alkylene group is not specifically limited, 1 or more and 20 or less are preferable from the point of availability or cost, More preferably, it is 1 or more and 8 or less.
  • conjugated polymer having the functional group in the side chain include the following structures.
  • n in each structure shows the number of repetitions, and is the range of 2 or more and 1000 or less.
  • the conjugated polymer may be a single polymer of each structure or a copolymer.
  • the copolymer of each structure and the structure which does not have a side chain may be sufficient.
  • the conjugated polymer used in the present invention can be synthesized by a known method.
  • a method of linking thiophene and a thiophene derivative in which an alkyl group having a carboxy group at the end is introduced into the side chain a halogenated thiophene derivative and thiophene boronic acid or thiophene boronic acid ester are used as palladium catalysts.
  • a method of coupling a halogenated thiophene derivative and a thiophene Grignard reagent under a nickel or palladium catalyst are examples of synthesize monomers.
  • thiophene when thiophene is linked to another unit having a functional group introduced, it can be coupled in the same manner using a halogenated unit.
  • a conjugated polymer can be obtained by introducing a polymerizable substituent at the terminal of the monomer thus obtained and allowing the polymerization to proceed under a palladium catalyst or a nickel catalyst.
  • the conjugated polymer used in the present invention preferably removes impurities such as raw materials and by-products used in the synthesis process.
  • impurities such as raw materials and by-products used in the synthesis process.
  • silica gel columnography, Soxhlet extraction, filtration, ion exchange, chelation, and the like can be used. Two or more of these methods may be combined.
  • a CNT composite is used as a semiconductor component in the semiconductor layer of the present invention
  • the CNT by attaching an organic substance to at least a part of the CNT surface, the CNT can be put into a solution without impairing the high electrical properties possessed by the CNT. It becomes possible to disperse uniformly. Further, a uniformly dispersed CNT film can be formed from a solution in which CNTs are uniformly dispersed by a coating method. Thereby, a high semiconductor characteristic is realizable.
  • (III) CNTs are predispersed in advance with ultrasonic waves, etc., and organic substances are added and mixed therewith, and (IV) organic substances and CNTs are placed in a solvent, and this mixed system is irradiated with ultrasonic waves.
  • the method of mixing etc. is mentioned. In the present invention, any method may be used, and any method may be combined.
  • the organic substance is not particularly limited, but specifically, polyvinyl alcohol, celluloses such as carboxymethyl cellulose, polyalkylene glycols such as polyethylene glycol, and acrylic resins such as polyhydroxymethyl methacrylate, poly Examples include conjugated polymers such as -3-hexylthiophene, polycyclic aromatic compounds such as anthracene derivatives and pyrene derivatives, and long-chain alkyl organic salts such as sodium dodecyl sulfate and sodium cholate.
  • a conjugated polymer is particularly preferred. If it is a conjugated polymer, the effect of uniformly dispersing CNT in the solution and the effect of high semiconductor properties are further improved without impairing the high electrical properties possessed by the CNTs.
  • the semiconductor layer may be treated with a reagent (referred to as “protective agent”) for preventing the approach and adsorption of substances other than the detection target substance.
  • a reagent referred to as “protective agent”
  • the protective agent may be physically adsorbed on the semiconductor layer, or may be introduced somewhere in the semiconductor layer through a bond.
  • Examples of the method for attaching the protective agent to the semiconductor layer include: (I) a method in which a semiconductor component is preliminarily dispersed with ultrasonic waves or the like, and a protective agent is added thereto and mixed; (II) a protective agent in a solvent. And a semiconductor component, and a method of mixing the mixed system by irradiating ultrasonic waves to this mixed system, (III) a method of immersing the semiconductor component coated on the substrate in a molten protective agent, and (IV) a protective agent in a solvent And a method of immersing the semiconductor component coated on the substrate in the solution.
  • any method may be used, and any method may be combined. From the viewpoint of detection sensitivity, a method of attaching a protective agent to a semiconductor component using a solid-liquid reaction such as (III) or (IV) is preferable.
  • the conjugated polymer and the protective agent may be the same compound or different compounds. From the viewpoint of detection sensitivity, different compounds are preferable.
  • the protective agent include proteins such as bovine serum albumin, casein, and skim milk, celluloses such as carboxymethyl cellulose, polyalkylene glycols such as polyethylene glycol, ethanolamine, and polyvinyl alcohol.
  • the order of attaching the conjugated polymer and the protective agent to the semiconductor component is not particularly limited, but it is preferable to attach the protective agent after attaching the conjugated polymer.
  • another biological substance that selectively interacts with the biological substance that is a sensing target substance is preferably fixed to the semiconductor layer.
  • another biological substance is referred to as “receptor”.
  • the receptor is not particularly limited as long as it can selectively interact with the sensing target substance, and any substance can be used. Specifically, enzyme, antigen, antibody, hapten, hapten antibody, peptide, oligopeptide, polypeptide (protein), hormone, nucleic acid, oligonucleotide, biotin, biotinylated protein, avidin, streptavidin, sugar, oligosaccharide, And saccharides such as polysaccharides, low-molecular compounds, high-molecular compounds, inorganic substances and complexes thereof, viruses, bacteria, cells, biological tissues, and substances constituting them.
  • enzyme antigen, antibody, hapten, hapten antibody, peptide, oligopeptide, polypeptide (protein), hormone, nucleic acid, oligonucleotide, biotin, biotinylated protein, avidin, streptavidin, sugar, oligosaccharide, And saccharides such as polysaccharides, low-mol
  • antibodies, aptamers, enzymes, low molecular compounds, proteins, and oligonucleotides are preferable, low molecular compounds, antibodies, aptamers, and enzymes are more preferable, and biotin, antibodies, and aptamers are particularly preferable.
  • low molecular weight compound examples include compounds having a molecular weight of about 100 to 1000, and biotin, pyrenebutanoic acid succinimide ester, pyrenebutanoic acid maleimide ester, and the like.
  • antibodies include anti-PSA, anti-hCG, anti-IgE, anti-BNP, anti-NT-proBNP, anti-AFP, anti-CK-MB, anti-PIVKA II, anti-CA15-3, anti-CA15-3, -CYFRA, anti-HIV, anti-troponin T, anti-procalcitonin, anti-HbA1c, anti-apolipoprotein, and anti-C reactive protein (CRP).
  • the IgG type is preferable, and an antibody having only a variable site (Fab) fragment is particularly preferable.
  • aptamers include oligonucleotide aptamers and peptide aptamers. Specific examples include IgE aptamer, PSA aptamer, and thrombin aptamer. Examples of the enzyme include glucose oxidase and peroxidase. Of these, biotin, anti-IgE, anti-PSA, and IgE aptamer are more preferable.
  • the method for immobilizing the receptor to the semiconductor layer is not particularly limited, but biologically related substances other than glucose and functional groups contained in the semiconductor layer, that is, hydroxyl group, carboxy group, amino group, mercapto group, sulfo group. It is preferable to utilize a reaction or interaction with at least one functional group selected from the group consisting of a group, a phosphonic acid group, an organic salt or an inorganic salt thereof, a formyl group, a maleimide group and a succinimide group.
  • a reaction or interaction between a biological substance other than glucose and a functional group contained in the semiconductor layer it is preferable to use a reaction or interaction between a biological substance other than glucose and a functional group contained in the semiconductor layer.
  • a bio-related substance other than glucose contains an amino group
  • examples thereof include a carboxy group, an aldehyde group, and a succinimide group.
  • a thiol group, a maleimide group and the like can be mentioned.
  • the carboxy group and the amino group can easily utilize the reaction or interaction with the receptor, making it easy to fix the receptor to the semiconductor layer. Therefore, it is preferable that the functional group contained in at least a part of the CNT is a carboxy group and an amino group.
  • reaction or interaction examples include chemical bond, hydrogen bond, ionic bond, coordination bond, electrostatic force, van der Waals force, etc., but are not particularly limited.
  • the type of functional group and the chemical structure of the receptor Appropriate selection may be made according to the situation. Further, if necessary, a part of the functional group and / or receptor may be converted into another suitable functional group and then fixed. Further, a linker such as terephthalic acid may be used between the functional group and the receptor.
  • the length of the functional group contained in the CNT is preferably short so that the receptor can be held close to the semiconductor component. This is because the sensing target substance is captured by the receptor closer to the semiconductor layer, and the detection signal becomes larger. More specifically, the length of the functional group contained in the CNT is preferably from 0.1 nm to 5 nm, more preferably from 0.15 nm to 3.1 nm, and particularly preferably from 0.3 nm to 1.6 nm.
  • the functional group contained in the CNT contains a bond having a high affinity with water.
  • a bond examples include an ether bond, a thioether bond, an ester bond, an amide bond, a thioester bond, a dithioester bond, an acid anhydride bond, and an imide bond.
  • an ether bond, an ester bond, an amide bond, and an imide bond are particularly preferable from the viewpoints of stability and affinity with water.
  • the ring structure may exist in the functional group which CNT contains.
  • the fixing process is not particularly limited, but a solution containing the receptor is dropped on the semiconductor layer containing CNTs, and after fixing the receptor while applying heating, cooling, vibration, etc. as necessary, excess components are removed.
  • cleaning or drying are mentioned.
  • the combination of the functional group / receptor / sensing target substance contained in CNT is, for example, carboxy group / T-PSA-mAb (monoclonal antibody for prostate specific antigen) / PSA.
  • IgE aptamer / IgE Combinations of biotin / avidin, stop preavidin / biotin, natriuretic peptide receptor / BNP (brain natriuretic peptide) and the like can be mentioned.
  • target substances having great significance to be detected together with glucose are hemoglobin, HbA1c, and glycoalbumin, and it is particularly preferable to use a sensor for detecting these.
  • the senor of the present invention includes at least a first detection element that detects glucose in a biological fluid and a second detection element that detects a biological substance other than glucose, and the second detection element. It is a small sensor that can be measured on the same substrate including a semiconductor element. Furthermore, even when the third detection element includes a semiconductor element, it is a small sensor that can be measured on the same substrate.
  • a sensor part containing a semiconductor element will be described in detail.
  • the sensor part includes a substrate, a first electrode, a second electrode, and a semiconductor layer, and the first electrode, the second electrode, and the semiconductor layer are formed on the substrate.
  • the semiconductor layer contains a semiconductor element disposed between the first electrode and the second electrode. Furthermore, it is preferable that the semiconductor layer has another biological substance that selectively interacts with a biological substance other than glucose.
  • a sensor including a semiconductor element formed as shown in FIG. 2 includes a first electrode 103 and a second electrode 104 when a substance to be detected or a solution, gas or solid containing the substance to be detected is disposed in the vicinity of the semiconductor layer 111.
  • the current value or electric resistance value flowing between the two changes. By measuring the change, the detection target substance can be detected.
  • the value of the current flowing through the semiconductor layer 111 can be controlled by the voltage of the third electrode 105. Accordingly, when the value of the current flowing between the first electrode 103 and the second electrode 104 when the voltage of the third electrode 105 is changed, a two-dimensional graph (IV graph) is obtained.
  • the detection target substance may be detected using part or all of the characteristic values, or the detection target substance may be detected using the ratio between the maximum current and the minimum current, that is, the on / off ratio. Furthermore, known electrical characteristics obtained from a semiconductor element such as resistance value, threshold voltage change, impedance, mutual conductance, and capacitance may be used.
  • the detection target substance may be used alone, or may be mixed with other substances or solvents.
  • a substance to be detected or a solution, gas or solid containing the substance to be detected is disposed in the vicinity of the semiconductor layer 111.
  • the electrical characteristics of the semiconductor layer 111 change due to the interaction between the semiconductor layer 111 and the substance to be detected, and this is detected as a change in any one of the electrical signals described above.
  • the senor of the present invention further includes a covering member that covers at least a part of the substrate on the substrate.
  • a covering member that covers at least a part of the substrate on the substrate.
  • FIGS. 5A and 5B it is preferable to include an upper substrate 20 that forms an internal space between the substrate 10 and the substrate 10 as shown in FIGS. 5A and 5B.
  • a broken line in the upper substrate 20 in FIG. 5A indicates a boundary between the upper substrate 20 and the internal space.
  • FIG. 5B is a cross-sectional view taken along line CC ′ of FIG. 5A and shows an internal space 108 between the substrate 10 and the upper substrate 20.
  • FIG. 6B is a cross-sectional view taken along line DD ′ of FIG. 6A.
  • the above-mentioned upper substrate or covering member is provided on a substrate, and a third electrode is provided on the surface of the upper substrate or covering member facing the semiconductor layer.
  • the substrate includes a substrate, a first electrode, a second electrode, and a semiconductor layer formed between the first electrode and the second electrode, and further includes an upper substrate or a covering member on the substrate,
  • a third electrode is provided on a surface of the substrate or covering member that faces the semiconductor layer, and the semiconductor layer has another biological substance that selectively interacts with a biological substance other than glucose.
  • a gas layer, a liquid layer, a solid layer, or a combination thereof may exist, Good.
  • FIG. 7 is a schematic cross-sectional view showing an example of a sensor portion containing the semiconductor element of the present invention.
  • the first electrode 103 and the second electrode 104 are formed on the substrate 10
  • the semiconductor layer 111 is disposed between the first electrode 103 and the second electrode 104
  • the upper substrate 20 is on the substrate 10.
  • the third electrode 105 is arranged on the upper substrate 20.
  • the arrangement of the third electrode 105 on the upper substrate 20 is not limited to the position immediately above the semiconductor layer, but may be an oblique upper side.
  • the upper substrate 20 is not limited to the upper surface portion when viewed from the semiconductor layer, and may be disposed on the side surface.
  • the third electrode 105 is not limited to being disposed on the upper substrate 20, and may be disposed on the substrate 10.
  • the material used for the upper substrate 20 or the covering member examples include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, and polyparaxylene. However, it is not limited to these. These materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the manufacturing method of the sensor containing the 1st detection element 401 shown in FIG. 1 and the 2nd detection element 402 is shown.
  • the sensor manufacturing method includes a step of forming a semiconductor layer by applying and drying a semiconductor component on a substrate.
  • the manufacturing method is not limited to the following.
  • the first electrode 103 and the second electrode 104 are formed on the substrate 10.
  • the forming method include known methods such as metal deposition, spin coating method, blade coating method, slit die coating method, screen printing method, bar coater method, mold method, printing transfer method, immersion pulling method, and ink jet method.
  • the connection portion 102 and the wiring 107 may be formed by the same formation method as the formation method of the first electrode and the second electrode, or each may be formed in a lump.
  • connection part 102, the wiring 107 and the first electrode 103 are electrically connected by the second electrode 104, the wiring 107 and the connection part 102 through the semiconductor layer 111.
  • a power source and a detection unit are connected to the connection unit 102. Using this connection, a voltage can be applied between the electrodes from the power source, and an electrical signal generated in the semiconductor layer can be taken out from the connection portion.
  • the semiconductor layer 111 is formed.
  • a manufacturing method comprising: attaching a semiconductor layer to a compound containing a linking group on the semiconductor layer; and forming a bond between the linking group and another bio-related substance that selectively interacts with the bio-related substance. Is preferred.
  • a method for attaching a compound containing a linking group to the semiconductor layer for example, a method of vapor-depositing a compound containing a linking group in a vacuum, or by immersing the semiconductor layer in a solution in which the compound containing the linking group is dissolved.
  • a method for applying a compound containing a linking group to the semiconductor layer for example, a method of applying a compound containing a linking group to the semiconductor layer, and a method of applying a solution in which the compound containing the linking group is dissolved in the semiconductor layer.
  • Examples of the step of forming a bond between another biological substance that selectively interacts with the biological substance and the linking group include, for example, a method of causing another biological substance to collide with the semiconductor layer in a vacuum to cause a reaction. And a method in which the semiconductor layer is immersed in a solution in which another biological substance is dissolved, and a method in which a solution in which another biological substance is dissolved is applied to the semiconductor layer.
  • the formation of the semiconductor layer and the fixation of another biological substance may be performed separately or collectively.
  • a method of forming a semiconductor layer using a semiconductor component in which another biological substance is bonded or attached in advance through a linking group can be used.
  • the shape of the sensor As the shape of the sensor, the shape shown in FIG. 1 of the present invention is preferable. Specific shapes include a shape like a sensor chip used in a blood glucose level sensor and a portable cassette type. These shapes are preferable because the size of the main body having the power source to be connected and the analysis algorithm can be reduced.
  • a light source is required, and the device is enlarged because a unit for diffusing heat generated by the light source is required, but according to the present invention, a light source is not used.
  • the size can be reduced as compared with the conventional apparatus.
  • Another embodiment of the present invention includes a sensor having a detection element that detects at least one selected from the group consisting of hemoglobin, glycated hemoglobin, and glycated albumin, and the detection element includes a semiconductor element.
  • the detection element includes a semiconductor element.
  • the functional group / receptor / sensing target substance combination contained in the CNT complex in the semiconductor element is, for example, carboxy group / anti-human hemoglobin monoclonal antibody / hemoglobin, carboxy group, carboxy group / anti-antibody.
  • Examples include mouse hemoglobin A1c monoclonal antibody / glycohemoglobin, carboxy group / anti-human albumin antibody / albumin, and carboxy group / anti-glycoalbumin antibody / glycoalbumin.
  • blood as a measurement sample is injected into the sensor from the injection port 301.
  • the injected blood flows through the path 302 and branches in the middle of the first detection element direction and the second detection element direction.
  • glucose in the blood reacts with glucose degrading enzyme in the reaction layer 110. Utilizing this, the glucose concentration is measured.
  • the blood flowing toward the second detection element is mixed with a hemolytic agent in a space 303 in the middle.
  • HbA1c is taken out from the red blood cells.
  • the semiconductor layer 111 contains a CNT complex, and an anti-mouse hemoglobin A1c monoclonal antibody that selectively interacts with HbA1c is immobilized on the CNT complex.
  • HbA1c extracted from the red blood cells in the space 303 reaches the semiconductor layer 111, the value of the current flowing through the semiconductor layer 111 changes due to the interaction with the anti-mouse hemoglobin A1c monoclonal antibody. Using this, the HbA1c concentration is measured.
  • the blood flowing in the direction of the third detection element is mixed with the hemolytic agent in the space 303 in the middle. Thereby, hemoglobin is taken out from the red blood cells.
  • the semiconductor layer 201 contains a CNT complex, and an anti-hemoglobin antibody that selectively interacts with hemoglobin is immobilized on the CNT complex.
  • CNTs are as follows. SWCNT: Meijo Nano Carbon Co., Ltd., single-walled CNT, semiconducting CNT purity> 95% DWCNT: Two-layer CNT manufactured by Toray Industries, Inc. MWCNT: Multi-layer CNT, manufactured by Meijo Nanocarbon
  • P3HT poly-3-hexylthiophene
  • PBS phosphate buffered saline
  • BSA bovine serum albumin
  • IgE immunoglobulin
  • FBS fetal bovine serum
  • NT-proBNP human brain natriuretic peptide precursor N-terminal fragment
  • PBSE 1-pyrenebutanoic acid-N-hydroxysuccinimide ester
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate o-DCB: o-dichlorobenzene
  • the sensor shown in FIG. 1 was produced, and in Examples 14 to 27, the sensor shown in FIG. 9 was produced and used for evaluation.
  • the first detection element was produced in the same manner as the production method of the conventional blood glucose level sensor, and it was confirmed that it could be detected.
  • Example 1 Preparation of semiconductor solution Add 1.5 mg of CNT and 1.5 mg of P3HT into 15 mL of chloroform, and use an ultrasonic homogenizer (VCX-500, manufactured by Tokyo Rika Kikai Co., Ltd.) while cooling with ice at an output of 250 W. The mixture was ultrasonically stirred for 30 minutes to obtain CNT dispersion A (CNT complex concentration of 0.1 g / l with respect to the solvent). Next, a semiconductor solution for forming a semiconductor layer was prepared.
  • VCX-500 ultrasonic homogenizer
  • the CNT dispersion A was filtered using a membrane filter (pore size: 10 ⁇ m, diameter: 25 mm, Omnipore membrane manufactured by Millipore), and then a membrane filter (pore size: 3 ⁇ m, diameter: 25 mm, Omnipore membrane manufactured by Millipore) was used. And filtered. 45 mL of o-DCB was added to 5 mL of the obtained filtrate to obtain a semiconductor solution A (CNT complex concentration of 0.01 g / l with respect to the solvent).
  • the internal temperature was raised to 90 ° C., and a component mainly composed of methanol produced as a by-product was distilled off.
  • the bath was heated at 130 ° C. for 2.0 hours, the internal temperature was raised to 118 ° C., and a component mainly composed of water and propylene glycol monobutyl ether was distilled off, and then cooled to room temperature, and the solid content concentration was 26.0.
  • a weight percent polymer solution A was obtained.
  • polymer solution A 50 g of the obtained polymer solution A was weighed, mixed with 16.6 g of propylene glycol monobutyl ether (boiling point 170 ° C.), stirred at room temperature for 2 hours, and polymer solution B (solid content concentration 19.5 wt%) was obtained. Obtained.
  • the semiconductor element shown in FIG. 3 was fabricated. On the glass substrate 10 (film thickness 0.7 mm), gold was vacuum-deposited by 50 nm through a mask by a resistance heating method, and the first electrode 103 and the second electrode 104 were formed. The width (channel width) of the first electrode and the second electrode was 400 ⁇ m, and the distance (channel length) between the first electrode and the second electrode was 60 ⁇ m.
  • a semiconductor layer 111 is formed by dropping 400 pl of the semiconductor solution A produced by the method described in (1) above on the organic film on which the electrode is formed using an inkjet apparatus (manufactured by Cluster Technology Co., Ltd.), and a hot plate
  • the semiconductor device A was obtained by performing a heat treatment at 120 ° C.
  • the semiconductor layer was immersed overnight at 4 ° C. in a solution of Anti-HbA1c (manufactured by Funakoshi) at 0.01 ug / mL with 0.01 M PBS. Thereafter, the semiconductor layer was thoroughly rinsed with 0.01M PBS. Next, BSA (manufactured by Wako Pure Chemical Industries, Ltd.) 5.0 mg in 0.01 M PBS 5.0 mL was immersed for 2 hours. Thereafter, the semiconductor layer was sufficiently rinsed with 0.01 M PBS to obtain a semiconductor element in which the semiconductor layer was modified with Anti-HbA1c, which is a biological substance that selectively interacts with the sensing target substance, and BSA, which is a protective agent.
  • Anti-HbA1c manufactured by Funakoshi
  • BSA manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 (1) Production of Semiconductor Element
  • Semiconductor element A was produced in the same manner as in Example 1. Next, the semiconductor layer was immersed in 1.0 mL of 1-pyrenebutanoic acid-N-hydroxysuccinimide ester (anaspec Co., Ltd., PBSE) in 6.0 mL of acetonitrile (Wako Pure Chemical Industries, Ltd.) for 1 hour. . Thereafter, the semiconductor layer was sufficiently rinsed with acetonitrile and methanol (manufactured by Wako Pure Chemical Industries, Ltd.). The semiconductor layer was immersed overnight at 4 ° C.
  • Example 3 Fabrication of Semiconductor Element
  • the semiconductor element shown in FIG. 3 was fabricated.
  • a glass substrate 10 (film thickness 0.7 mm) was subjected to ultraviolet ozone treatment (photo surface processor, PL30-200, manufactured by SEN LIGHTTS CORP.) For 30 minutes, and a polyethylene glycol chain-containing silane coupling agent (SIH6188, manufactured by Gelest) It was immersed in a 10 wt% ethanol solution for 1 hour. After washing with ethanol for 30 seconds, the organic film 106 was formed by drying at 120 ° C. for 30 minutes. The first electrode 103 and the second electrode 104 were formed on the organic film by mask vapor deposition so that the film thickness was 50 nm.
  • the width (channel width) of the first electrode and the electric two electrode was 400 ⁇ m, and the distance (channel length) between the first electrode and the electric two electrode was 60 ⁇ m.
  • a semiconductor layer 4 is formed by dropping 400 pl of the semiconductor solution A produced by the method described in (1) above on the organic film on which the electrode is formed using an inkjet apparatus (manufactured by Cluster Technology Co., Ltd.), and a hot plate A heat treatment was performed at 150 ° C. for 30 minutes under a nitrogen stream to obtain a semiconductor element B.
  • the semiconductor layer was immersed in a 1.0 mL solution of 6.0 mg of 1-pyrenebutanoic acid-N-hydroxysuccinimide ester (manufactured by Anaspec Co., Ltd.) in acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) for 1 hour. Thereafter, the semiconductor layer was sufficiently rinsed with acetonitrile and methanol (manufactured by Wako Pure Chemical Industries, Ltd.). The semiconductor layer was immersed overnight at 4 ° C. in a solution of Anti-HbA1c (manufactured by Funakoshi) made 100 ug / mL with 0.01 M PBS.
  • Anti-HbA1c manufactured by Funakoshi
  • the semiconductor layer was thoroughly rinsed with 0.01M PBS.
  • BSA manufactured by Wako Pure Chemical Industries, Ltd.
  • 5.0 mg in 0.01 M PBS 5.0 mL was immersed for 30 minutes.
  • the semiconductor layer was sufficiently rinsed with 0.01 M PBS to obtain a semiconductor element in which the semiconductor layer was modified with Anti-HbA1c, which is a biological substance that selectively interacts with the sensing target substance, and BSA, which is a protective agent.
  • Example 4 (1) Fabrication of semiconductor device A semiconductor layer was formed in the same manner as in Example 3 except that Anti-HbA1c fragment antibody (Fab) was used instead of Anti-HbA1c.
  • Fab Anti-HbA1c fragment antibody
  • Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.5% was observed from the current value before the addition.
  • Example 5 Fabrication of semiconductor element A semiconductor element was obtained by forming a semiconductor layer in the same manner as in Example 4 except that single-walled carbon nanotubes (SWCNT) containing 90% by weight of a metal mold were used instead of gold. .
  • SWCNT single-walled carbon nanotubes
  • Example 5 Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 5.8% was observed from the current value before the addition.
  • Example 6 (1) Production of Semiconductor Element A semiconductor element was obtained by forming a semiconductor layer in the same manner as in Example 4 except that double-walled carbon nanotubes (DWCNT) were used instead of gold. (2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, the current value increased by 6.0% from the current value before the addition.
  • DWCNT double-walled carbon nanotubes
  • Example 7 (1) Production of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that multi-walled carbon nanotubes (MWCNT) were used instead of gold to obtain a semiconductor element.
  • MWCNT multi-walled carbon nanotubes
  • Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 5.7% was observed from the current value before the addition.
  • Example 8 (1) Preparation of semiconductor solution Semiconductor solution B (CNT complex concentration 0.01 g / l with respect to the solvent) was carried out in the same manner as in Example 1 except that the compound represented by formula (69) was used instead of P3HT. It was. (2) Fabrication of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that the semiconductor solution B was used instead of the semiconductor solution A to obtain a semiconductor element. (3) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.6% was observed from the current value before the addition.
  • Example 9 (1) Preparation of semiconductor solution Semiconductor solution C (CNT complex concentration 0.01 g / l with respect to the solvent) was carried out in the same manner as in Example 1 except that the compound represented by formula (71) was used instead of P3HT. It was. (2) Production of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that the semiconductor solution C was used in place of the semiconductor solution A to obtain a semiconductor element. (3) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.9% was observed from the current value before the addition.
  • Example 10 (1) Fabrication of semiconductor device A semiconductor layer was formed in the same manner as in Example 9 except that anti-glycoalbumin was used instead of Anti-HbA1c. (2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 10. The results are shown in Table 1. Only when glycoalbumin was added, the current value increased by 8.1% from the current value before the addition.
  • Example 13 (1) Production of Semiconductor Device A semiconductor layer was formed in the same manner as in Example 10 except that anti-NT-proBNP was used instead of anti-glycoalbumin to obtain a semiconductor device. (2) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 12. The results are shown in Table 1. Only when NT-proBNP was added, the current value increased by 7.5% from the current value before the addition.
  • Example 14 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. In addition, a semiconductor layer was formed in the same manner as in Example 10 except that anti-hemoglobin was used instead of anti-glycoalbumin, thereby producing a third detection element. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) The semiconductor layer of the manufactured semiconductor element was immersed in 100 ⁇ l of 0.01M PBS, and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used.
  • 60 ⁇ m after the start of measurement 20 ⁇ l of 5 ⁇ g / mL BSA-0.01M PBS solution, 75 ⁇ m after 5 ⁇ g / mL HbA1c (manufactured by Funakoshi) -0.01 M PBS solution 20 ⁇ l, 90 ⁇ m after 5 ⁇ g / mL hemoglobin (manufactured by Funakoshi) -0 20 ⁇ l of 0.01 M PBS solution was added to 0.01 M PBS soaked in the semiconductor layer.
  • Table 1 Only when hemoglobin was added, a current value increase of 3.2% was observed from the current value before the addition.
  • Example 15 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electric two electrode was 400 ⁇ m and the interval (channel length) between the first electrode and the electric two electrode was 40 ⁇ m. A semiconductor element was manufactured to obtain a third detection element. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.0% was observed from the current value before the addition.
  • Example 16 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 ⁇ m and the interval (channel length) between the first electrode and the electrode 2 was 30 ⁇ m. A semiconductor element was manufactured to obtain a third detection element. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.8% was observed from the current value before the addition.
  • Example 17 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 ⁇ m and the interval (channel length) between the first electrode and the electrode 2 was 25 ⁇ m. A semiconductor element was manufactured to obtain a third detection element. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 5.1% was observed from the current value before the addition.
  • Example 18 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 16 except that the substrate was made of glass, a semiconductor element was produced, and a third detection element was obtained. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.5% was observed from the current value before the addition.
  • Example 19 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. A semiconductor layer was formed in the same manner as in Example 16 except that the substrate was a PET film, a semiconductor element was produced, and a third detection element was obtained. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.7% was observed from the current value before the addition.
  • Example 20 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 16 except that the substrate was a PEN film, a semiconductor element was produced, and a third detection element was obtained. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.6% was observed from the current value before the addition.
  • Example 21 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) The semiconductor layer of the produced semiconductor element was immersed in 100 ⁇ l of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used.
  • FBS manufactured by BioWest
  • Vsd a voltage between the first electrode and the second electrode
  • Vg a voltage between the first electrode and the third electrode
  • Example 22 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained. (2) Evaluation as a sensor (second detection element) The semiconductor layer of the produced semiconductor element was immersed in 100 ⁇ l of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used.
  • FBS manufactured by BioWest
  • Vsd a voltage between the first electrode and the second electrode
  • Vg a voltage between the first electrode and the third electrode
  • 60 minutes after the start of the measurement 20 ⁇ l of a 5 ⁇ g / mL BSA-FBS solution was added to FBS soaked with 20 ⁇ l of healthy human blood in a semiconductor layer 75 minutes later.
  • the results are shown in Table 1. Only when a healthy person added blood, an increase in current value of 8.0% was observed from the current value before addition, and blood HbA1c was selectively detected.
  • the semiconductor layer of the produced semiconductor element was immersed in 100 ⁇ l of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured.
  • FBS manufactured by BioWest
  • a semiconductor characteristic evaluation system 4200-SCS type manufactured by Keithley Instruments Co., Ltd.
  • Example 23 (1) Production of Semiconductor Element
  • the second detection element was produced in the same manner as in Example 9. Also, implementation was performed except that anti-hemoglobin was used instead of Anti-HbA1c, the width of the first electrode and the electric two electrode (channel width) was 400 ⁇ m, and the distance between the first electrode and the electric two electrode (channel length) was 120 ⁇ m.
  • a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
  • Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained.
  • (Third detection element) In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 1.7% was observed from the current value before the addition.
  • Example 24 (1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 ⁇ m and the interval (channel length) between the first electrode and the electrode 2 was 600 ⁇ m. A semiconductor element was manufactured to obtain a third detection element. (2) Evaluation as a sensor (second detection element) The same results as in Example 9 were obtained. (Third detection element) Measurement was carried out in the same manner as in Example 14 in order to evaluate the semiconductor element produced above as a sensor. With each addition of BSA, HbA1c, and hemoglobin, a current value increase of 0.3% was observed from the current value before the addition. The results are shown in Table 1.
  • Example 25 Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor. The second detection element was produced in the same manner as in Example 9. Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
  • Example 26 (1) Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor.
  • the second detection element was produced in the same manner as in Example 9. Further, in the same manner as in Example 17, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
  • (2) Evaluation as sensor The sensor shown in FIG. 9 was prepared, and 200 ⁇ l of FBS (manufactured by BioWest) was filled in the flow path, and the current value flowing between the electrodes of the second detection element and the third detection element was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used.
  • Example 27 (1) Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor. The second detection element was produced in the same manner as in Example 9. Further, a semiconductor layer was formed in the same manner as in Example 14 to produce a semiconductor element, thereby obtaining a third detection element.
  • Comparative Example 1 HbA1c and hemoglobin were measured using a 7180 Hitachi automatic analyzer described in the examples of Japanese Patent Application Laid-Open No. 2015-165827 without using semiconductor elements for the second and third detection elements.
  • the analysis device is an optical instrument and the measures are large, it is difficult to perform electrical measurement using the same chip as glucose measurement.
  • the sensor using the present invention can be applied to various types of sensing such as chemical analysis, physical analysis, and biological analysis, and is particularly suitably used as a medical sensor or biosensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention addresses the problem of providing a compact sensor with which it is possible to perform simultaneous measurements of glucose and biologically relevant substances other than glucose. The present invention pertains to a sensor characterized by having at least: a first detection element for detecting glucose in a biological liquid; and a second detection element for detecting biologically relevant substances other than glucose, the second detection element including a semiconductor element.

Description

センサSensor
 本発明は、複数の生体関連物質を同時に測定できるセンサに関する。 The present invention relates to a sensor capable of simultaneously measuring a plurality of biological substances.
 糖尿病のスクリーニング検査および治療を行なうために、血液中のグルコースとともに重要である、糖化ヘモグロビン(以下、HbA1cともいう)や糖化アルブミン(以下、グリコアルブミンという)などを測定することが行なわれている。 In order to conduct screening tests and treatments for diabetes, glycated hemoglobin (hereinafter also referred to as HbA1c), glycated albumin (hereinafter referred to as glycoalbumin) and the like, which are important together with glucose in blood, are measured.
 糖尿病では糖化タンパク質の生成が亢進しており、赤血球に含まれるHbA1cや血清中のグリコアルブミンの濃度は、過去の一定期間の平均血糖値を反映している。グルコースは、現在の血糖状態を示すのに対し、グリコアルブミンは約1~2週間前の血糖状態を、HbA1cは約1~2ヶ月前の血糖状態を、それぞれ反映する。そのため、これらの糖化タンパク質の測定は、血中グルコース濃度を経時的に判断できるという点で、糖尿病の症状の経時的診断あるいは症状管理に重要である。したがって、糖尿病管理の指標として、グルコース濃度と、HbA1cやグリコアルブミンの迅速かつ正確な定量法が求められている。 In diabetes, the production of glycated protein is enhanced, and the concentration of HbA1c contained in erythrocytes and glycoalbumin in serum reflect the average blood glucose level over a certain period in the past. Glucose shows the current blood glucose state, whereas glycoalbumin reflects the blood glucose state about 1 to 2 weeks ago, and HbA1c reflects the blood glucose state about 1 to 2 months ago. Therefore, measurement of these glycated proteins is important for the time-dependent diagnosis or symptom management of diabetes symptoms in that the blood glucose concentration can be determined over time. Therefore, as an index for diabetes management, there is a demand for a rapid and accurate quantitative method for glucose concentration and HbA1c or glycoalbumin.
 生体液中のグルコースを測定する方法としては、例えば、酵素電極法と呼ばれる電気化学による検出方法がある。これは、生体試料中のグルコース濃度に相関した情報を、生体試料に接触させた電極に出力させ、この出力に基づいてグルコース濃度を演算する方法である。酵素電極法は小型の血糖値センサに適用できるため、世界中の糖尿病患者が主として使用している。 As a method for measuring glucose in a biological fluid, for example, there is an electrochemical detection method called an enzyme electrode method. In this method, information correlated with the glucose concentration in the biological sample is output to an electrode in contact with the biological sample, and the glucose concentration is calculated based on this output. Since the enzyme electrode method can be applied to a small blood glucose level sensor, it is mainly used by diabetic patients all over the world.
 一方、HbA1cを測定する方法としては、例えば、HPLC等のクロマトグラフィ法、ラテックス免疫凝集法などの抗体を利用する免疫測定方法、及び糖化タンパク質に作用する酵素を用いる酵素法などが知られている。いずれも光を用いた検出方式として臨床現場などで広く利用されている。 On the other hand, as a method for measuring HbA1c, for example, a chromatography method such as HPLC, an immunoassay method using an antibody such as latex immunoagglutination, and an enzyme method using an enzyme that acts on a glycated protein are known. Both are widely used in clinical settings as detection methods using light.
 また、臨床現場においては、グルコースおよびグリコヘモグロビン(HbA1cを含む糖化ヘモグロビン)の双方を測定する装置が一部で導入されている。そのような装置には、グルコースおよびグリコヘモグロビンをそれぞれ測定する装置を連結したものや、一台の装置で双方の測定が可能なものなどがある(例えば、特許文献1参照)。 In clinical practice, some devices for measuring both glucose and glycohemoglobin (glycated hemoglobin containing HbA1c) have been introduced. Examples of such a device include a device in which devices for measuring glucose and glycated hemoglobin are connected, and a device in which both devices can be measured (see, for example, Patent Document 1).
日本国特開2014-95715号公報Japanese Laid-Open Patent Publication No. 2014-95715
 特許文献1に記載されている技術では、グルコースおよびグリコヘモグロビンを測定するのに種々の要素を共用することで装置の大型化を抑制している。しかし、それぞれの測定機構においては、例えば光源が必要である等の理由により装置をさらに小型化するのは困難であった。 In the technique described in Patent Document 1, an increase in the size of the apparatus is suppressed by sharing various elements for measuring glucose and glycohemoglobin. However, in each measurement mechanism, for example, it is difficult to further reduce the size of the apparatus because a light source is necessary.
 本発明は、上記課題を鑑み、グルコースと、HbA1cやグリコアルブミンなどのグルコース以外の生体関連物質を同時に測定できる小型のセンサを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a small sensor capable of simultaneously measuring glucose and biologically related substances other than glucose such as HbA1c and glycoalbumin.
 上記課題を解決するため、本発明は以下の構成を有する。
1.少なくとも、生体液中のグルコースを検出する第一の検出素子と、グルコース以外の生体関連物質を検出する第二の検出素子とを有し、前記第二の検出素子が半導体素子を含むことを特徴とするセンサ。
2.前記生体関連物質が糖化ヘモグロビンまたは糖化アルブミンである前記1記載のセンサ。
3.さらに第三の検出素子を有し、前記第三の検出素子がヘモグロビンを検出することを特徴とする前記1または2記載のセンサ。
4.前記第三の検出素子が半導体素子を含むことを特徴とする前記3記載のセンサ。
5.前記第二の検出素子の検出部面積が前記第三の検出素子の検出部面積の2倍以上であることを特徴とする前記1~4のいずれか1に記載のセンサ。
6.前記半導体素子がカーボンナノチューブを含有する前記1~5のいずれか1に記載のセンサ。
7.前記半導体素子が、少なくとも基板、第1電極、第2電極および半導体層を含有し、前記第1電極および前記第2電極が金属型を80重量%以上含む単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブから選ばれる少なくとも1つを含有する前記1~6のいずれか1に記載のセンサ。
8.前記半導体層がカーボンナノチューブを含有する前記1~7のいずれか1に記載のセンサ。
9.前記カーボンナノチューブの表面の少なくとも一部に共役系重合体が付着している前記6~8のいずれか1に記載のセンサ。
10.前記半導体層に、前記生体関連物質と選択的に相互作用する別の生体関連物質が固定化されている前記7~9のいずれか1に記載のセンサ。
11.前記センサが、生体液の注入口と、前記注入口と前記第一の検出素子および前記第二の検出素子とをそれぞれ接続する経路とを有する前記1~10のいずれか1に記載のセンサ。
12.前記生体液が血液である前記1~11のいずれか1に記載のセンサ。
13.前記経路が、前記血液の注入口と前記第二の検出素子の間に、前記血液と溶血剤を混合する空間を有する前記1~12のいずれか1に記載のセンサ。
In order to solve the above problems, the present invention has the following configuration.
1. It has at least a first detection element that detects glucose in a biological fluid and a second detection element that detects a biological substance other than glucose, and the second detection element includes a semiconductor element. Sensor.
2. 2. The sensor according to 1 above, wherein the biological substance is glycated hemoglobin or glycated albumin.
3. 3. The sensor according to 1 or 2, further comprising a third detection element, wherein the third detection element detects hemoglobin.
4). 4. The sensor according to 3 above, wherein the third detection element includes a semiconductor element.
5). 5. The sensor according to any one of 1 to 4, wherein a detection part area of the second detection element is twice or more a detection part area of the third detection element.
6). 6. The sensor according to any one of 1 to 5, wherein the semiconductor element contains a carbon nanotube.
7). The semiconductor element includes at least a substrate, a first electrode, a second electrode, and a semiconductor layer, and the first electrode and the second electrode each include a metal type of 80 wt% or more, a double-walled carbon nanotube, 7. The sensor according to any one of 1 to 6, containing at least one selected from multi-walled carbon nanotubes.
8). 8. The sensor according to any one of 1 to 7, wherein the semiconductor layer contains carbon nanotubes.
9. 9. The sensor according to any one of 6 to 8, wherein a conjugated polymer is attached to at least a part of the surface of the carbon nanotube.
10. 10. The sensor according to any one of 7 to 9, wherein another biological substance that selectively interacts with the biological substance is immobilized on the semiconductor layer.
11. 11. The sensor according to any one of 1 to 10, wherein the sensor has a biological fluid inlet, and a path connecting the inlet to the first detection element and the second detection element.
12 12. The sensor according to any one of 1 to 11, wherein the biological fluid is blood.
13. The sensor according to any one of 1 to 12, wherein the path has a space for mixing the blood and a hemolytic agent between the blood inlet and the second detection element.
 本発明によれば、複数の生体関連物質を同時に測定できる小型のセンサを提供できる。 According to the present invention, a small sensor capable of simultaneously measuring a plurality of biological substances can be provided.
図1は、本発明のセンサの一実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the sensor of the present invention. 図2は、半導体素子の例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor element. 図3は、半導体素子の例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor element. 図4は、半導体素子の例を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a semiconductor element. 図5Aは、半導体素子の例を示す模式断面図である。FIG. 5A is a schematic cross-sectional view illustrating an example of a semiconductor element. 図5Bは、図5Aの線CC’での断面図である。FIG. 5B is a cross-sectional view taken along line CC ′ of FIG. 5A. 図6Aは、半導体素子の例を示す模式断面図である。FIG. 6A is a schematic cross-sectional view illustrating an example of a semiconductor element. 図6Bは、図6Aの線DD’での断面図である。6B is a cross-sectional view taken along line DD ′ of FIG. 6A. 図7は、半導体素子の例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing an example of a semiconductor element. 図8は、本発明のセンサの一実施形態を示す斜視図である。FIG. 8 is a perspective view showing an embodiment of the sensor of the present invention. 図9は、本発明のセンサの一実施形態を示す斜視図である。FIG. 9 is a perspective view showing an embodiment of the sensor of the present invention.
 本発明のセンサは、少なくとも、生体液中のグルコースを検出する第一の検出素子と、グルコース以外の生体関連物質を検出する第二の検出素子とを有し、前記第二の検出素子が半導体素子を含む。 The sensor of the present invention has at least a first detection element for detecting glucose in a biological fluid and a second detection element for detecting a biological substance other than glucose, and the second detection element is a semiconductor. Including elements.
 本発明のセンサについて、その一実施形態を示す図1を参照して説明する。図1は、第一の検出素子401および第二の検出素子402を有するセンサの概略斜視図である。二つの検出素子はいずれも基板10の上に形成されており、上基板20と貼り合わされてチップ状になる。 The sensor of the present invention will be described with reference to FIG. 1 showing an embodiment thereof. FIG. 1 is a schematic perspective view of a sensor having a first detection element 401 and a second detection element 402. The two detection elements are both formed on the substrate 10 and are bonded to the upper substrate 20 to form a chip.
 (第一の検出素子)
 第一の検出素子401は、生体液中のグルコースを検出する。第一の検出素子401は、基板10上に少なくとも一対の電極101と、該一対の電極の間に反応層110を有する。
 一対の電極は検出電極であり、接続部102と配線107により電気的に接続されている。この接続を利用して、接続部に接続される電源から電極間に電圧を印加したり、反応層で生じた電気信号を接続部から取り出したりすることができる。
(First detection element)
The first detection element 401 detects glucose in the biological fluid. The first detection element 401 includes at least a pair of electrodes 101 on the substrate 10 and a reaction layer 110 between the pair of electrodes.
The pair of electrodes are detection electrodes and are electrically connected to the connection portion 102 and the wiring 107. Using this connection, a voltage can be applied between the electrodes from a power source connected to the connection part, or an electric signal generated in the reaction layer can be taken out from the connection part.
 反応層には、グルコースと反応する酵素が含まれる。生体液中のグルコースが反応層において酵素と反応すると、グルコースが分解され、さらに酸化されて過酸化水素を生じる。この過酸化水素が分解されるときの電流が血中グルコース濃度に応じることから、電流量がグルコース濃度として検出される。 The reaction layer contains an enzyme that reacts with glucose. When glucose in the biological fluid reacts with the enzyme in the reaction layer, the glucose is decomposed and further oxidized to produce hydrogen peroxide. Since the current when hydrogen peroxide is decomposed depends on the blood glucose concentration, the amount of current is detected as the glucose concentration.
 グルコースと反応する酵素は特に制限されないが、例えば、グルコースオキシダーゼ(GOD)、及びグルコースデヒドロゲナーゼ(GDH)等が挙げられる。 The enzyme that reacts with glucose is not particularly limited, and examples thereof include glucose oxidase (GOD) and glucose dehydrogenase (GDH).
 また、反応層には上記酵素以外にメディエーターが含まれていてもよい。メディエーターは、グルコースが分解する際に生じる電子を一旦受け取り、その後、一対の電極間に電圧をかけたときに電子を放出するものである。それによって生じる電流量が血中グルコース濃度に応じることから、電流量がグルコース濃度として検出される。 In addition, the reaction layer may contain a mediator in addition to the above enzyme. The mediator temporarily receives electrons generated when glucose is decomposed, and then emits electrons when a voltage is applied between the pair of electrodes. Since the amount of current generated thereby depends on the blood glucose concentration, the amount of current is detected as the glucose concentration.
 メディエーターとしては各種イオンが挙げられ、具体的には、フェリシアン化物塩、フェロセンおよびその誘導体、メチレンブルー、ベンゾキノンおよびその誘導体、ナフトキノン、フェナジンメトサルフェート、及びチオニンなどから生じるイオンが挙げられる。特に好ましくは、フェリシアン化カリウムから生じるフェリシアンイオンである。フェリシアンイオンは電子を受け取るとフェロシアン化イオンに変換され、その後の電圧印加により再びフェリシアンイオンに戻る。 Examples of the mediator include various ions, and specific examples include ions generated from ferricyanide salts, ferrocene and derivatives thereof, methylene blue, benzoquinone and derivatives thereof, naphthoquinone, phenazine methosulfate, and thionine. Particularly preferred is ferricyan ion derived from potassium ferricyanide. When the ferricyan ion receives the electron, it is converted into ferrocyanide ion, and then returns to ferricyan ion again by applying a voltage.
 この検出素子を用いた方法は一般的に電気化学を用いた電極法と呼ばれ、近年の血糖値測定器の主流である。反応させる酵素によって、グルコースオキシダーゼ法(GOD法)、及びグルコースデヒドロゲナーゼ法(GDH法)等があるが、電極法であれば、いずれの酵素を用いてもよい。電極法のメリットとして、測定までの時間が短いこと、採取する血液量が少なくて済むこと、装置が簡便で分かりやすいことが挙げられる。 The method using this detection element is generally called an electrode method using electrochemistry and is the mainstream of blood glucose level measuring instruments in recent years. Depending on the enzyme to be reacted, there are a glucose oxidase method (GOD method), a glucose dehydrogenase method (GDH method) and the like, and any enzyme may be used as long as it is an electrode method. Advantages of the electrode method include a short time until measurement, a small amount of blood to be collected, and a simple and easy-to-understand apparatus.
 基板に用いられる材料としては、例えば、シリコンウエハ、ガラス、及びアルミナ焼結体等の無機材料、ポリイミド、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン、脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール、及びポリアラミド等の有機材料、あるいは無機材料粉末と有機材料の混合物が挙げられるが、これらに限定されるものではない。これらの材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 Examples of the material used for the substrate include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, polyparaxylene, aliphatic polyester, Examples include, but are not limited to, organic materials such as polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polysiloxane, polyvinylphenol, and polyaramide, or a mixture of inorganic material powder and organic material. Is not to be done. These materials may be used alone, or a plurality of materials may be laminated or mixed.
 電極に用いられる材料としては、例えば、酸化錫、酸化インジウム、及び酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、パラジウム、モリブデン、アモルファスシリコン、及びポリシリコンなどの金属やこれらの合金、ヨウ化銅、及び硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリン、及びポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体などの有機導電性物質、グラッシーカーボン、アモルファスカーボン、グラファイト、カーボンファイバー、及びダイヤモンドなどのカーボン材料、カーボンナノチューブ、及びグラフェンなどのナノカーボン材料、及び導電性カーボンブラックなどが挙げられるが、これらに限定されるものではない。 Examples of the material used for the electrode include conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (ITO), or platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, Metals such as chromium, lithium, sodium, potassium, cesium, calcium, magnesium, palladium, molybdenum, amorphous silicon, and polysilicon and their alloys, inorganic conductive materials such as copper iodide and copper sulfide, polythiophene, polypyrrole, Polyaniline, organic conductive materials such as polyethylenedioxythiophene and polystyrenesulfonic acid complexes, glassy carbon, amorphous carbon, graphite, carbon fiber, and other carbon materials such as diamond, carbon nanotube, and graphene Nano-carbon material, such as, and the like conductive carbon black, but is not limited thereto.
 これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。センサとして用いる場合、接触する水溶液などへの安定性の観点から電極は金、白金、パラジウム、有機導電性物質およびナノカーボン材料から選ばれることが好ましい。 These electrode materials may be used alone, or a plurality of materials may be laminated or mixed. When used as a sensor, the electrode is preferably selected from gold, platinum, palladium, an organic conductive material, and a nanocarbon material from the viewpoint of stability to an aqueous solution in contact with the sensor.
 電極は基板に直接密着していてもよいし、電極と基板との間に接着層を有していてもよい。接着層が電気的に絶縁することができる絶縁層の役割を兼ねている場合は、金属性や半導体性の物質を基板として用いることもできる。 The electrode may be in direct contact with the substrate, or may have an adhesive layer between the electrode and the substrate. In the case where the adhesive layer also serves as an insulating layer that can be electrically insulated, a metallic or semiconducting substance can be used as the substrate.
 接続部に用いられる材料としては、一般的に電極としても使用されうる導電材料であればいかなるものでもよい。具体的には、炭素材料、金属、合金、金属および合金の種々の化合物(例えば酸化物、水酸化物、ハロゲン化物、硫化物、窒化物、及び炭化物)などが挙げられるが、これらに限定されるものではない。 The material used for the connecting portion may be any conductive material that can generally be used as an electrode. Specific examples include, but are not limited to, carbon materials, metals, alloys, various compounds of metals and alloys (eg, oxides, hydroxides, halides, sulfides, nitrides, and carbides). It is not something.
 好適には炭素材料、白金、パラジウム、金、銀、及びアルミニウムなどが用いられる。炭素材料としては、CNT、グラファイト、熱分解炭素、グラッシーカーボン、アセチレンブラック、及びカーボンブラックなどが挙げられる。 Preferably, a carbon material, platinum, palladium, gold, silver, aluminum or the like is used. Examples of the carbon material include CNT, graphite, pyrolytic carbon, glassy carbon, acetylene black, and carbon black.
 配線に用いられる材料としては、一般的に電極としても使用されうる導電材料であればいかなるものでもよい。具体的には、炭素材料、金属、合金、金属および合金の種々の化合物(例えば酸化物、水酸化物、ハロゲン化物、硫化物、窒化物、及び炭化物)などが挙げられるが、これらに限定されるものではない。 The material used for the wiring may be any conductive material that can be generally used as an electrode. Specific examples include, but are not limited to, carbon materials, metals, alloys, various compounds of metals and alloys (eg, oxides, hydroxides, halides, sulfides, nitrides, and carbides). It is not something.
 好適には炭素材料、白金、パラジウム、金、銀、及びアルミニウムなどが用いられる。炭素材料としては、CNT、グラファイト、熱分解炭素、グラッシーカーボン、アセチレンブラック、及びカーボンブラックなどが挙げられる。 Preferably, a carbon material, platinum, palladium, gold, silver, aluminum or the like is used. Examples of the carbon material include CNT, graphite, pyrolytic carbon, glassy carbon, acetylene black, and carbon black.
 (第二の検出素子)
 第二の検出素子402は、グルコース以外の生体関連物質を検出する。第二の検出素子402は、基板10上に少なくとも第1電極103および第2電極104と、それらの電極の間に半導体層111を含む半導体素子を有する。第1電極および第2電極は検出電極であり、接続部102と配線107により電気的に接続されている。接続部102には、図示しないが、電源や検出部を接続する。この接続を利用して、電源から電極間に電圧を印加したり、半導体層で生じた電気信号を接続部から取り出したりすることができる。
(Second detection element)
The second detection element 402 detects a biological substance other than glucose. The second detection element 402 includes a semiconductor element including at least a first electrode 103 and a second electrode 104 on the substrate 10 and a semiconductor layer 111 between the electrodes. The first electrode and the second electrode are detection electrodes, and are electrically connected to the connection portion 102 and the wiring 107. Although not shown, a power source and a detection unit are connected to the connection unit 102. Using this connection, a voltage can be applied between the electrodes from the power source, and an electrical signal generated in the semiconductor layer can be taken out from the connection portion.
 グルコース以外の生体関連物質が半導体層の近傍に配置されると、第1電極と第2電極との間に流れる電流値または電気抵抗値が変化する。その変化を測定することによって、生体関連物質の検出を行うことができる。半導体層に含まれる生体関連物質と選択的に相互作用する物質を変更することにより、様々な生体関連物質を検知することが可能となる。 When a biological substance other than glucose is disposed in the vicinity of the semiconductor layer, the current value or the electric resistance value flowing between the first electrode and the second electrode changes. By measuring the change, the biological substance can be detected. By changing the substance that selectively interacts with the biological substance contained in the semiconductor layer, various biological substances can be detected.
 半導体素子を用いた検出素子のメリットとして、測定までの時間が短いこと、採取する血液量が少なくて済むこと、装置が簡便で分かりやすいことが挙げられる。特にFET型の検出素子は、蛍光体等による標識化が不要であり、電気的な信号の転換が速く、集積回路との接続が容易であるという点で好ましい。 Advantages of a detection element using a semiconductor element include a short time until measurement, a small amount of blood to be collected, and a simple and easy-to-understand apparatus. In particular, the FET type detection element is preferable in that labeling with a phosphor or the like is unnecessary, electrical signal conversion is fast, and connection with an integrated circuit is easy.
 第一の検出素子は血糖値センサのセンサーチップと同等の特性・サイズが得られるため、現行のチップサイズと同等であり、小型である。さらに第二の検出素子も同程度のサイズであるが、流路を有するため、若干大きい程度である。 The first detection element has the same characteristics and size as the sensor chip of the blood glucose sensor, and is therefore equivalent to the current chip size and small. Further, the second detection element has the same size, but has a channel and is slightly larger.
 この二つを有するセンサの大きさは、少なくとも現行の血糖値センサーチップサイズよりも大きいが、特許文献1記載の装置ほど大きな装置にはならない。グルコースの測定は上述のように主に電極法を用いた電気化学的手法であり、グルコース以外の生体関連物質の測定は半導体素子を用いた電気的手法である。両方とも光を用いないため電気的な信号の転換が速く、集積化が容易にできるという点で好ましい。 The size of the sensor having these two is at least larger than the current blood glucose level sensor chip size, but is not as large as the device described in Patent Document 1. As described above, the measurement of glucose is an electrochemical method mainly using an electrode method, and the measurement of biological materials other than glucose is an electrical method using a semiconductor element. Both of them are preferable in that they do not use light, so that electrical signal conversion is fast and integration is easy.
 図1において、第一の検出素子と第二の検出素子は共通の基板10を備えているが、それぞれ異なる基板を備えていてもよい。上基板20についても同様である。
 なお、上基板20に用いられる材料としては、基板10に用いられる材料と同じものが挙げられる。1つのセンサにおいて、基板10と上基板20の材質は同じでも異なっていてもよい。
In FIG. 1, the first detection element and the second detection element are provided with a common substrate 10, but may be provided with different substrates. The same applies to the upper substrate 20.
In addition, as the material used for the upper substrate 20, the same material as that used for the substrate 10 can be used. In one sensor, the material of the substrate 10 and the upper substrate 20 may be the same or different.
 (第三の検出素子)
 本発明では、図8及び図9に示すように、上記第一及び第二の検出素子の他、第三の検出素子403を設けてもよい。第三の検出素子403は、ヘモグロビンを検出する。第三の検出素子403は、図8に示すように、基板10上に少なくとも(I)一対の電極121と、該一対の電極の間に反応層112を有する素子、または図9に示すように、(II)第1電極122および第2電極123と、それらの電極の間に半導体層201を含む半導体素子202を有する素子などが挙げられる。
(Third detection element)
In the present invention, as shown in FIGS. 8 and 9, a third detection element 403 may be provided in addition to the first and second detection elements. The third detection element 403 detects hemoglobin. As shown in FIG. 8, the third detection element 403 includes at least (I) a pair of electrodes 121 on the substrate 10 and a reaction layer 112 between the pair of electrodes, or as shown in FIG. (II) An element having the first electrode 122 and the second electrode 123 and the semiconductor element 202 including the semiconductor layer 201 between these electrodes.
 本発明では、いずれの方法を用いてもよい。ここで、試料中の総ヘモグロビン濃度から、総ヘモグロビンに対するHbA1cの割合またはグリコヘモグロビンの割合を算出することができる。 Any method may be used in the present invention. Here, the ratio of HbA1c or the ratio of glycohemoglobin to the total hemoglobin can be calculated from the total hemoglobin concentration in the sample.
 総ヘモグロビンの濃度は、例えばメトヘモグロビン法、シアンメトヘモグロビン法、アザイドメトヘモグロビン法、ドデシルスルホン酸ナトリウム法、アルカリヘマチン法、緑色発色団形成法、及びオキシヘモグロビン法などの公知の方法が挙げられる。中でも、ヘモグロビンの測定はフェリシアン化カリウムなどの試薬と反応させる電気化学的手法と、抗体として抗ヘモグロビン抗体を用いた抗原抗体反応による、光を用いた手法が確立されている。 Concentrations of total hemoglobin include known methods such as the methemoglobin method, cyan methemoglobin method, azide methemoglobin method, sodium dodecyl sulfonate method, alkali hematin method, green chromophore formation method, and oxyhemoglobin method. . Among them, for the measurement of hemoglobin, an electrochemical method in which a reagent such as potassium ferricyanide is reacted and a method using light by an antigen-antibody reaction using an anti-hemoglobin antibody as an antibody have been established.
 しかしながら、第二の検出素子で述べた半導体素子を用いたヘモグロビン検出の具体的手法はこれまで報告されておらず、本発明によって初めて検出可能となった。第二の検出素子と第三の検出素子においては、後述する血液の溶血が必要なことと、センサーチップの製造の観点から、図9に示すように、(II)第1電極122および第2電極123と、それらの電極の間に半導体層201を含む半導体素子を有する素子202が好ましい。 However, a specific method of hemoglobin detection using the semiconductor element described in the second detection element has not been reported so far, and it has been detected for the first time by the present invention. In the second detection element and the third detection element, from the viewpoint of hemolysis of blood, which will be described later, and from the viewpoint of manufacturing the sensor chip, as shown in FIG. 9, (II) the first electrode 122 and the second detection element An element 202 having a semiconductor element including the electrode 123 and the semiconductor layer 201 between these electrodes is preferable.
 また、第二の検出素子の検出部面積が第三の検出素子の検出部面積の2倍以上であることが好ましい。これは、第三の検出素子で検出するヘモグロビンが血中に多量に存在し、その糖化物である糖化ヘモグロビンまたは糖化アルブミンは多くても50%以下の存在割合である。そのため、第二の検出素子の検出部面積が第三の検出部面積よりも2倍以上大きいと、ヘモグロビンとその糖化物の検出信頼性が向上するためである。より好ましくは2倍以上10倍以下、さらに好ましくは2倍以上5倍以下、さらに好ましくは2倍以上3倍以下、特に好ましくは2倍以上2.5倍以下である。 Further, it is preferable that the detection area of the second detection element is twice or more than the detection area of the third detection element. This is because the hemoglobin detected by the third detection element is present in a large amount in the blood, and the glycated hemoglobin or glycated albumin, which is a glycated product thereof, is at most 50% or less. Therefore, if the detection area of the second detection element is twice or more larger than the third detection area, the detection reliability of hemoglobin and its saccharified product is improved. More preferably, they are 2 times or more and 10 times or less, More preferably, they are 2 times or more and 5 times or less, More preferably, they are 2 times or more and 3 times or less, Especially preferably, they are 2 times or more and 2.5 times or less.
 (注入口および経路)
 本発明のセンサは、生体液の注入口301と、注入口と第一の検出素子401および第二の検出素子402および第三の検出素子403とをそれぞれ接続する経路302とを有することが好ましい。この経路により、一回の生体液の注入で第一の検出素子と第二の検出素子と第三の検出素子のそれぞれに生体液を届けることが可能となり、操作性に優れる。また、一回の生体液の採取ですむため、生体液を採取する量を少なくすることが可能となる。さらに、同一状態の生体液を用いた測定が可能となり、生体液の時間変動や採取方法による測定間誤差を極力減らすことが可能となる。
(Inlet and path)
The sensor of the present invention preferably has a biological fluid inlet 301 and a path 302 that connects the inlet to the first detection element 401, the second detection element 402, and the third detection element 403, respectively. . With this route, it is possible to deliver the biological fluid to each of the first detection element, the second detection element, and the third detection element by one injection of the biological fluid, and the operability is excellent. Further, since it is only necessary to collect the biological fluid once, the amount of biological fluid collected can be reduced. Furthermore, it is possible to perform measurement using biological fluid in the same state, and it is possible to reduce as much as possible time variation of biological fluid and errors between measurements due to collection methods.
 注入口は、センサ本体のいずれかの部分に設けられる。図1では上基板20の上面に設けられているがこれに限られず、例えば上基板20の側面や、基板10の側面であってもよい。 The injection port is provided in any part of the sensor body. Although it is provided on the upper surface of the upper substrate 20 in FIG. 1, the present invention is not limited thereto, and may be the side surface of the upper substrate 20 or the side surface of the substrate 10.
 図1に示すように、基板10において、上基板20に設けられた注入口301に対応する箇所に窪み304が設けられていてもよい。 As shown in FIG. 1, in the substrate 10, a depression 304 may be provided at a location corresponding to the injection port 301 provided in the upper substrate 20.
 経路は、注入口から第一の検出素子および第二の検出素子にそれぞれ繋がる。図1では、経路が基板10上に溝状に設けられており、注入口301から注入された生体液が窪み304に溜まり、そこから経路302へ流れる。 The path is connected from the inlet to the first detection element and the second detection element. In FIG. 1, the path is provided in a groove shape on the substrate 10, and the biological fluid injected from the injection port 301 accumulates in the depression 304 and flows from there to the path 302.
 このとき、上基板20の、基板10との貼り合わせ面において、経路302に対応する箇所に、経路302と概略同じ形状の溝が設けられていてもよい。これにより上基板20と基板10を貼り合わせた際に溝のサイズを大きくできる。 At this time, a groove having substantially the same shape as the path 302 may be provided at a position corresponding to the path 302 on the bonding surface of the upper substrate 20 to the substrate 10. Thus, the size of the groove can be increased when the upper substrate 20 and the substrate 10 are bonded together.
 また、注入口と経路の位置関係はこれらに限られない。例えば、上基板20の内部に、注入口から第一の検出素子および第二の検出素子に向かってそれぞれ掘り進められるように経路が管状に設けられていてもよい。管状の経路と溝状の経路が併用されていてもよい。注入口の位置が変われば経路が設けられる位置も異なる。 Also, the positional relationship between the inlet and the route is not limited to these. For example, a path may be provided in a tubular shape inside the upper substrate 20 so as to be digged from the inlet toward the first detection element and the second detection element. A tubular route and a groove-like route may be used in combination. If the position of the injection port changes, the position where the path is provided also changes.
 注入口および経路は、基板の加工により作製される。加工方法は、材質に大きく依存する。例えば、シリコンやガラスであればフォトリソグラフィーを用いた微細加工、及びレーザー加工などが可能である。また、プラスチックであればこれらの他、射出成型、インプリント、ホットエンボス、及びドリル加工なども可能である。ただし、いずれの場合も加工方法はこれらに特に限定されない。 The injection port and path are made by processing the substrate. The processing method greatly depends on the material. For example, if silicon or glass is used, fine processing using photolithography, laser processing, and the like are possible. In addition to these, if it is plastic, injection molding, imprinting, hot embossing, drilling and the like are also possible. However, in any case, the processing method is not particularly limited to these.
 経路の形状は、溝状や管状が代表的であるが、生体液を流すことができるものであればこれらに限定されない。
 基板を加工した後に、その加工表面を、生体液を流しやすいように処理してもよい。
 経路の幅は特に制限はないが、1μm~1mm程度であることが好ましい。また、経路の深さは特に制限はないが、1μm~1mm程度であることが好ましい。
The shape of the channel is typically a groove shape or a tubular shape, but is not limited to these as long as it can flow a biological fluid.
After processing the substrate, the processed surface may be processed so that the biological fluid can be easily flowed.
The width of the path is not particularly limited, but is preferably about 1 μm to 1 mm. The depth of the path is not particularly limited, but is preferably about 1 μm to 1 mm.
 基板10と上基板20を貼り合わせる方法としては、例えば、接着剤を用いる方法が挙げられる。接着剤は、液体の層を形成できるものであればよい。例えば、紫外線硬化型、熱硬化型、及び2液混合型の接着剤などが挙げられる。基板との親和性を考慮し、数マイクロメートル程度の厚さで一様に塗布できる接着剤が好ましい。例えば、基板が親水的なガラス基板であれば、接着剤も親水的であることが好ましい。 Examples of a method for bonding the substrate 10 and the upper substrate 20 include a method using an adhesive. Any adhesive may be used as long as it can form a liquid layer. For example, an ultraviolet curing type, a thermosetting type, and a two-component mixed type adhesive may be used. In consideration of the affinity with the substrate, an adhesive that can be applied uniformly with a thickness of about several micrometers is preferable. For example, if the substrate is a hydrophilic glass substrate, the adhesive is also preferably hydrophilic.
 基板や上基板がガラス基板である場合は、それらを貼り合わせる別の方法として、レーザーを用いてそれらの内面を溶着し、両者を一体化させる方法も挙げられる。
 経路中に生体液を流すには、毛細管現象、ポンプ、加圧、及び遠心など、種々の方法をとることができる。
When the substrate or the upper substrate is a glass substrate, as another method of bonding them together, a method of welding the inner surfaces of them using a laser and integrating them is also mentioned.
Various methods, such as capillary action, pumping, pressurization, and centrifugation, can be used to cause the biological fluid to flow through the path.
 (生体液)
 生体液とは、生物がなんらかの形で体内に持っている液体である。具体的には、血液、リンパ液、組織液、体腔液、消化液、汗、涙、鼻水、尿、精液、膣液、羊水、髄液、滑液、細胞懸濁液および乳汁などが挙げられ、そのまま用いることができる。また、生体試料中から細胞成分等を予め破砕または除去した試料であってもよい。消化液の中には、例えば、唾液、胃液、胆汁、膵液、及び腸液などが含まれる。
(Biological fluid)
A biological fluid is a fluid that an organism has in the body in some form. Specific examples include blood, lymph, tissue fluid, body cavity fluid, digestive fluid, sweat, tears, runny nose, urine, semen, vaginal fluid, amniotic fluid, spinal fluid, synovial fluid, cell suspension and milk as they are. Can be used. Moreover, the sample which crushed or removed the cell component etc. previously from the biological sample may be sufficient. Examples of the digestive juice include saliva, gastric juice, bile, pancreatic juice, and intestinal juice.
 本発明の半導体素子を含むセンサに供する試料としては、生体液の中でも、血液、唾液、汗、涙、及び尿などが入手の容易性で好ましく、中でも血液が生体情報を数多く含むためより好ましい。 As a sample to be used for the sensor including the semiconductor element of the present invention, among biological fluids, blood, saliva, sweat, tears, urine and the like are preferable because of easy availability, and among them blood is more preferable because it contains a lot of biological information.
 (生体関連物質)
 グルコース以外の生体関連物質としては、第二の検出素子で検出されるものであれば特に限定されず、任意の物質を用いることができる。具体的には、酵素、抗原、抗体、ハプテン、ハプテン抗体、ペプチド、オリゴペプチド、ポリペプチド(タンパク質)、ホルモン、核酸、オリゴヌクレオチド、ビオチン、ビオチン化タンパク、アビジン、ストレプトアビジン、脂質、ステロイド、糖、オリゴ糖、多糖などの糖類(ただしグルコースを除く)、低分子化合物、高分子化合物、無機物質およびこれらの複合体、ウイルス、細菌、細胞、生体組織およびこれらを構成する物質などが挙げられる。
(Biological substances)
The biological substance other than glucose is not particularly limited as long as it is detected by the second detection element, and any substance can be used. Specifically, enzyme, antigen, antibody, hapten, hapten antibody, peptide, oligopeptide, polypeptide (protein), hormone, nucleic acid, oligonucleotide, biotin, biotinylated protein, avidin, streptavidin, lipid, steroid, sugar Saccharides such as oligosaccharides and polysaccharides (excluding glucose), low molecular compounds, high molecular compounds, inorganic substances and complexes thereof, viruses, bacteria, cells, living tissues, and substances constituting these.
 これらは、ヒドロキシル基、カルボキシ基、アミノ基、メルカプト基、スルホ基、ホスホン酸基、それらの有機塩もしくは無機塩、ホルミル基、マレイミド基およびスクシンイミド基などの官能基、または生体関連物質のいずれかとの反応もしくは相互作用により、本発明のセンサにおける半導体層の電気特性に変化をもたらす。 These are either hydroxyl groups, carboxy groups, amino groups, mercapto groups, sulfo groups, phosphonic acid groups, organic or inorganic salts thereof, functional groups such as formyl groups, maleimide groups and succinimide groups, or biologically related substances. This reaction or interaction causes a change in the electrical characteristics of the semiconductor layer in the sensor of the present invention.
 上記低分子化合物としては、特に限定されるものではないが、例えば、生体から発せられるアンモニアやメタンなどの常温常圧で気体の化合物や尿酸などの固体化合物が挙げられる。好ましくは尿酸などの固体化合物が挙げられる。 The low molecular weight compound is not particularly limited, and examples thereof include a gaseous compound at normal temperature and normal pressure such as ammonia and methane emitted from a living body and a solid compound such as uric acid. Preferably, solid compounds such as uric acid are used.
 中でも、センシング対象物質としては、タンパク質、ウイルス、及び細菌が好ましい。タンパク質としては、例えば、PSA、hCG、IgE、BNP、NT-proBNP、AFP、CK-MB、PIVKA II、CA15-3、CYFRA、anti-p53、トロポニンT、プロカルシトニン、ヘモグロビン、HbA1c、グリコアルブミン、アポリポ蛋白、及びC反応性蛋白(CRP)などが挙げられる。 Among these, proteins, viruses, and bacteria are preferable as the sensing target substance. Examples of proteins include PSA, hCG, IgE, BNP, NT-proBNP, AFP, CK-MB, PIVKA II, CA15-3, CYFRA, anti-p53, troponin T, procalcitonin, hemoglobin, HbA1c, glycoalbumin, Examples include apolipoprotein and C-reactive protein (CRP).
 ウイルスとしては、例えば、HIV、インフルエンザウイルス、B型肝炎ウイルス、及びC型肝炎ウイルスなどが挙げられる。細菌としては、例えば、クラミジア、黄色ブドウ球菌、及び腸管出血性大腸菌などが挙げられる。 Examples of viruses include HIV, influenza virus, hepatitis B virus, and hepatitis C virus. Examples of bacteria include Chlamydia, Staphylococcus aureus, and enterohemorrhagic Escherichia coli.
 上記の中でも、ポリペプチドの一種であるヘモグロビン、HbA1cおよびグリコアルブミンであることが好ましい。これらは糖尿病の疾病マーカーとなりうるからであり、グルコースを検出出来る第一の検出素子と組み合わす意義が大きい。 Among the above, hemoglobin, HbA1c, and glycoalbumin, which are types of polypeptides, are preferable. This is because it can be a disease marker for diabetes, and it is significant to combine with a first detection element capable of detecting glucose.
 (溶血)
 本発明による測定に用いる生体液を血液とする場合、血液の溶血処理を行う必要がある。血液1μL中には、赤血球が数百万個、白血球が数千~1万個程度存在しているため、一般的には赤血球中のヘモグロビン等をそのまま検出できない。そのため、赤血球の細胞膜を物理的または化学的、生物学的など様々な要因によって損傷または溶解させ、ヘモグロビン等を細胞外に漏出させる処理が必要である。これは溶血と呼ばれる。
(Hemolysis)
When the biological fluid used for the measurement according to the present invention is blood, it is necessary to perform hemolysis of the blood. In 1 μL of blood, there are millions of red blood cells and several thousand to 10,000 white blood cells, so that hemoglobin in red blood cells cannot be detected as it is. Therefore, it is necessary to treat the cell membrane of red blood cells by damaging or lysing them by various factors such as physical, chemical, biological, etc. and causing hemoglobin or the like to leak out of the cells. This is called hemolysis.
 物理的な要因としては、圧力や遠心力その他、各種の機械的なストレスが挙げられる。代表的な溶血方法としては、採血時に注射器内を過剰に陰圧にする方法や、遠心分離の過程で過剰な遠心力に曝す方法、及び赤血球液を乱暴に撹拌したり泡立てたりする方法などがある。また、浸透圧が低い溶液(低張液)に赤血球を混ぜる方法も利用できる。浸透圧の違いによって、細胞外の水が半透膜である細胞膜を通過して細胞内に流れ込みつづけ、最終的に赤血球が破裂する。この場合、水、精製水、及び緩衝液なども溶血剤となりうる。 Physiological factors include various mechanical stresses such as pressure and centrifugal force. Typical hemolysis methods include the method of excessively negative pressure in the syringe during blood collection, the method of exposing to excessive centrifugal force during the centrifugation, and the method of agitating or foaming erythrocyte fluid roughly. is there. In addition, a method of mixing red blood cells with a solution having a low osmotic pressure (hypotonic solution) can also be used. Due to the difference in osmotic pressure, extracellular water continues to flow into the cell through the cell membrane, which is a semipermeable membrane, and finally erythrocytes are ruptured. In this case, water, purified water, buffer solution, and the like can also be hemolytic agents.
 化学的な要因としては、各種の溶媒や界面活性剤による、細胞膜を構成する脂質溶解または損傷が挙げられる。そのような溶媒や界面活性剤の例としては、メタノール、及びエタノールなどのアルコール類や、アセトンほか各種の有機溶媒、及び石けんなどが挙げられる。 Chemical factors include lipid dissolution or damage that constitutes the cell membrane due to various solvents and surfactants. Examples of such solvents and surfactants include alcohols such as methanol and ethanol, various organic solvents other than acetone, and soap.
 生物学的な要因としては、抗体や補体によって起きる溶血が知られる。赤血球に対する抗体が結合することで、あるいは別の活性化機構によって補体活性化のシグナル伝達が始まると、補体の各成分が順次活性化されていき(カスケード反応)、最終的に細胞膜を貫通するチャネル様のタンパク質複合体が形成されて細胞膜に孔があき、溶血を起こす。 As a biological factor, hemolysis caused by antibodies and complement is known. Complement activation signal transduction begins when antibodies against erythrocytes bind or by another activation mechanism, and each component of complement is activated sequentially (cascade reaction) and finally penetrates the cell membrane. A channel-like protein complex is formed, and the cell membrane is perforated, causing hemolysis.
 本発明に適用される溶血の方法は特に限定されないが、入手の容易性やコストの点から、浸透圧を利用する方法が好ましい。例えば、血液の体積に対し、2~100倍体積量の精製水を添加することによる希釈などの方法で、溶血が可能である。 The hemolysis method applied to the present invention is not particularly limited, but an osmotic pressure method is preferable from the viewpoint of availability and cost. For example, hemolysis can be achieved by a method such as dilution by adding 2 to 100 times the volume of purified water to the blood volume.
 溶血処理を行う空間は特に限定されないが、例えば血液をセンサに注入する注入口の前段階で行う場合や注入口と検出素子の間で行う場合があり、予め溶血剤がセンサに備わっていても、備わっていなくてもどちらであってもよい。 The space for performing the hemolysis treatment is not particularly limited. For example, the hemolysis treatment may be performed before the injection port for injecting blood into the sensor, or may be performed between the injection port and the detection element. , Either or not.
 注入口と検出素子の間で溶血処理を行うためには、前述の経路が、血液の注入口と第二又は第三の検出素子の間に血液と溶血剤を混合する空間を有することが好ましい。
 例えば、図1において、空間303に上記界面活性剤、精製水、及び緩衝液等の溶血剤を予め存在させておくことにより注入口より注入された血液と溶血剤が、該空間内で混合され、混合液が半導体層に流れていく。
In order to perform hemolysis between the injection port and the detection element, it is preferable that the above-described path has a space for mixing blood and a hemolytic agent between the blood inlet and the second or third detection element. .
For example, in FIG. 1, the blood injected from the injection port and the hemolyzing agent are mixed in the space by allowing the hemolytic agent such as the surfactant, purified water, and buffer solution to exist in the space 303 in advance. The mixed liquid flows into the semiconductor layer.
 (半導体素子)
 第二又は第三の検出素子に含まれる半導体素子についてより詳細に説明する。本発明に用いられる半導体素子の一態様としては、基板、第1電極、第2電極および半導体層を含有し、前記半導体層がカーボンナノチューブ(以下、CNTという)を含有する。また、別の態様としては、上記半導体素子がさらに第3電極および絶縁層を含有し、前記第3電極は前記絶縁層により、前記第1電極、前記第2電極および前記半導体層と電気的に絶縁されて配置されている。
(Semiconductor element)
The semiconductor element included in the second or third detection element will be described in more detail. One aspect of the semiconductor element used in the present invention includes a substrate, a first electrode, a second electrode, and a semiconductor layer, and the semiconductor layer contains carbon nanotubes (hereinafter referred to as CNT). As another aspect, the semiconductor element further includes a third electrode and an insulating layer, and the third electrode is electrically connected to the first electrode, the second electrode, and the semiconductor layer by the insulating layer. Insulated and arranged.
 図2および図3は、半導体素子の例を示す模式断面図である。
 図2の半導体素子は基板10の上に第1電極103と第2電極104が形成され、第1電極103と第2電極104の間に半導体層111が配置されている。
2 and 3 are schematic cross-sectional views showing examples of semiconductor elements.
In the semiconductor element of FIG. 2, a first electrode 103 and a second electrode 104 are formed on a substrate 10, and a semiconductor layer 111 is disposed between the first electrode 103 and the second electrode 104.
 図3の半導体素子は基板10の上に第3電極105、絶縁層106が形成された上に、第1電極103と第2電極104が形成され、第1電極103と第2電極104の間にCNTを含有する半導体層111が配置されている。図3の半導体素子は、第1電極103、第2電極104および第3電極105がそれぞれソース電極、ドレイン電極およびゲート電極に、絶縁層106がゲート絶縁層に該当し、FETとしての機能を有する。 In the semiconductor element of FIG. 3, the third electrode 105 and the insulating layer 106 are formed on the substrate 10, and the first electrode 103 and the second electrode 104 are formed. A semiconductor layer 111 containing CNT is disposed on the substrate. In the semiconductor element of FIG. 3, the first electrode 103, the second electrode 104, and the third electrode 105 correspond to the source electrode, the drain electrode, and the gate electrode, respectively, and the insulating layer 106 corresponds to the gate insulating layer, and functions as an FET. .
 基板10に用いる材料としては、例えば、シリコンウエハ、ガラス、及びアルミナ焼結体等の無機材料、ポリイミド、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン、脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール、及びポリアラミド等の有機材料、あるいは無機材料粉末と有機材料の混合物が挙げられるが、これらに限定されるものではない。これらの材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 Examples of the material used for the substrate 10 include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, polyparaxylene, aliphatic polyester, Examples include, but are not limited to, organic materials such as polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polysiloxane, polyvinylphenol, and polyaramide, or a mixture of inorganic material powder and organic material. Is not to be done. These materials may be used alone, or a plurality of materials may be laminated or mixed.
 測定試料溶液中のタンパク質の非特異的な吸着を抑制するために、基板10の表面に加工を施してもよい。例えば、オリゴエチレングリコール鎖やオリゴ(3,4-ジヒドロキシフェニルアラニン)のような電荷を持たない親水性基や、ホスホリルコリン基のような正電荷と負電荷の両方を有する親水性基が有効である。 In order to suppress non-specific adsorption of proteins in the measurement sample solution, the surface of the substrate 10 may be processed. For example, hydrophilic groups having no charge such as oligoethylene glycol chain and oligo (3,4-dihydroxyphenylalanine) and hydrophilic groups having both positive and negative charges such as phosphorylcholine group are effective.
 グルコース以外の生体関連物質が、後述する別の生体関連物質との選択的な相互作用により検出される場合においては、そのセンサを製造するために、半導体層を別の生体関連物質が溶解した溶液にさらして感応部に別の生体関連物質を固定化させる場合がある。その場合、当該別の生体関連物質が感応部以外へ付着するのが抑制されることにより、別の生体関連物質が感応部に選択的に固定化される。これにより、グルコース以外の生体関連物質が感応部以外の箇所で別の生体関連物質に捕捉されることが抑制され、感応部における選択的な検出が優勢となり、検出感度が向上する。 When a biological substance other than glucose is detected by selective interaction with another biological substance, which will be described later, in order to manufacture the sensor, a solution in which the biological substance is dissolved in the semiconductor layer In some cases, another sensitive substance is immobilized on the sensitive part. In this case, the other biological substance is selectively immobilized on the sensitive part by suppressing the other biological substance from adhering to other than the sensitive part. Thereby, it is suppressed that biological related substances other than glucose are captured by another biological related substance at a place other than the sensitive part, selective detection in the sensitive part becomes dominant, and detection sensitivity is improved.
 第1電極103、第2電極104および第3電極105に用いる材料としては、例えば、酸化錫、酸化インジウム、及び酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、チタン、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、パラジウム、モリブデン、アモルファスシリコン、及びポリシリコンなどの金属やこれらの合金、ヨウ化銅、及び硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリン、及びポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体などの有機導電性物質、カーボンナノチューブ、及びグラフェンなどのナノカーボン材料、及び導電性カーボンブラック等が挙げられるが、これらに限定されるものではない。 Examples of materials used for the first electrode 103, the second electrode 104, and the third electrode 105 include conductive metal oxides such as tin oxide, indium oxide, and indium tin oxide (ITO), platinum, gold, silver, Metals such as copper, iron, tin, zinc, aluminum, indium, chromium, titanium, lithium, sodium, potassium, cesium, calcium, magnesium, palladium, molybdenum, amorphous silicon, and polysilicon, and alloys thereof, copper iodide, And inorganic conductive materials such as copper sulfide, organic conductive materials such as polythiophene, polypyrrole, polyaniline, and polyethylenedioxythiophene and polystyrenesulfonic acid complexes, carbon nanotubes, nanocarbon materials such as graphene, and conductive carbon black Etc. That, without being limited thereto.
 ナノカーボン材料は、金属型を80重量%以上含む単層カーボンナノチューブ、二層カーボンナノチューブ、及び多層カーボンナノチューブのいずれを用いてもよい。中でも高い導電特性を得るためには二層カーボンナノチューブを用いるのが好ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 The nanocarbon material may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes containing a metal type of 80% by weight or more. Among them, it is preferable to use double-walled carbon nanotubes in order to obtain high conductive properties. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
 センサとして用いる場合、電気抵抗値や製膜しやすさ、膜の安定性、接触する水溶液などへの安定性の観点から、第1電極103および第2電極104は、金、白金、パラジウム、有機導電性物質およびナノカーボン材料から選ばれることが好ましい。特に金またはカーボンナノチューブで構成されると、カーボンナノチューブを含有する半導体素子との仕事関数の差が小さくなるため低消費電力駆動が可能となるためより好ましい。 When used as a sensor, the first electrode 103 and the second electrode 104 are made of gold, platinum, palladium, organic, from the viewpoints of electrical resistance value, ease of film formation, film stability, and stability to aqueous solutions in contact with the sensor. It is preferably selected from conductive materials and nanocarbon materials. In particular, gold or carbon nanotubes are more preferable because the difference in work function with a semiconductor element containing carbon nanotubes is small, so that low power consumption driving is possible.
 第1電極103および第2電極104の幅、厚み、間隔、及び配置は任意である。幅は1μm以上1mm以下、厚みは1nm以上1μm以下、電極間隔は1μm以上10mm以下がそれぞれ好ましい。また、第1電極103および第2電極104の幅、厚みは同一でなくてもよい。電極の形状は直方体である必要は無く、曲がっていても、櫛形になっていてもよい。 The width, thickness, interval, and arrangement of the first electrode 103 and the second electrode 104 are arbitrary. The width is preferably 1 μm to 1 mm, the thickness is preferably 1 nm to 1 μm, and the electrode spacing is preferably 1 μm to 10 mm. Further, the width and thickness of the first electrode 103 and the second electrode 104 may not be the same. The shape of the electrode need not be a rectangular parallelepiped, and may be bent or comb-shaped.
 第3電極105の幅、厚み、半導体層との距離、及び配置は任意である。幅は1μm以上1mm以下、厚みは1nm以上1μm以下、半導体層との距離は1μm以上10cm以下が好ましい。例えば、幅100μm、厚み500nmの電極を半導体層から2mmの距離を置いて配置するが、これに限られない。 The width, thickness, distance from the semiconductor layer, and arrangement of the third electrode 105 are arbitrary. The width is preferably 1 μm to 1 mm, the thickness is preferably 1 nm to 1 μm, and the distance from the semiconductor layer is preferably 1 μm to 10 cm. For example, an electrode having a width of 100 μm and a thickness of 500 nm is disposed at a distance of 2 mm from the semiconductor layer, but is not limited thereto.
 図3においては、第3電極105は第2電極104と平行に配置されているが、垂直またはそれ以外の任意の角度に配置されてもよい。第3電極105の形状は直線に限らず、曲線でも曲面でもよい。第3電極105は基板の直上への配置に限らず、基板上に配置された別の部材上に配置されてもよい。 In FIG. 3, the third electrode 105 is arranged in parallel with the second electrode 104, but may be arranged vertically or at any other angle. The shape of the third electrode 105 is not limited to a straight line, and may be a curved line or a curved surface. The third electrode 105 is not limited to being disposed immediately above the substrate, but may be disposed on another member disposed on the substrate.
 絶縁層106に用いる材料としては、例えば、酸化シリコン、及びアルミナ等の無機材料、ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサン、及びポリビニルフェノール(PVP)等の有機高分子材料、あるいは無機材料粉末と有機高分子材料の混合物を用いることができる。 Examples of the material used for the insulating layer 106 include inorganic materials such as silicon oxide and alumina, and organic polymers such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, polyvinylidene fluoride, polysiloxane, and polyvinylphenol (PVP). A material or a mixture of inorganic material powder and organic polymer material can be used.
 絶縁層106の膜厚は10nm以上5μm以下が好ましい。より好ましくは、50nm以上3μm以下、さらに好ましくは100nm以上1μm以下である。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。 The film thickness of the insulating layer 106 is preferably 10 nm or more and 5 μm or less. More preferably, they are 50 nm or more and 3 micrometers or less, More preferably, they are 100 nm or more and 1 micrometer or less. The film thickness can be measured by an atomic force microscope or an ellipsometry method.
 半導体層111は、CNTを含有することが好ましい。半導体層111はCNTの電気特性を阻害しない範囲であれば、さらに有機半導体や絶縁性材料を含んでもよい。
 半導体層111の膜厚は1nm以上100nm以下が好ましい。この範囲内にあることで、センシング対象物質との相互作用による電気特性の変化を十分に電気信号として取り出すことが可能となる。より好ましくは1nm以上50nm以下、さらに好ましくは1nm以上20nm以下である。
The semiconductor layer 111 preferably contains CNT. The semiconductor layer 111 may further include an organic semiconductor or an insulating material as long as the electrical characteristics of the CNT are not impaired.
The thickness of the semiconductor layer 111 is preferably 1 nm to 100 nm. By being within this range, it is possible to sufficiently extract changes in electrical characteristics due to interaction with the sensing target substance as electrical signals. More preferably, they are 1 nm or more and 50 nm or less, More preferably, they are 1 nm or more and 20 nm or less.
 半導体層111の形成方法としては、抵抗加熱蒸着、電子線ビーム、スパッタリング、及びCVDなど乾式の方法を用いることも可能であるが、製造コストや大面積への適合の観点から塗布法を用いることが好ましい。 As a method for forming the semiconductor layer 111, dry methods such as resistance heating vapor deposition, electron beam, sputtering, and CVD can be used. However, a coating method is used from the viewpoint of manufacturing cost and adaptability to a large area. Is preferred.
 塗布法では、半導体成分を塗布することにより半導体層を形成する工程を含む。具体的には、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、及びインクジェット法などを好ましく用いることができ、塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択できる。また、形成した塗膜に対して、大気下、減圧下または不活性ガス雰囲気下(窒素やアルゴン雰囲気下)でアニーリング処理を行ってもよい。 The coating method includes a step of forming a semiconductor layer by coating a semiconductor component. Specifically, a spin coating method, a blade coating method, a slit die coating method, a screen printing method, a bar coater method, a mold method, a printing transfer method, a dip pulling method, an ink jet method, and the like can be preferably used. The coating method can be selected according to the properties of the coating film to be obtained, such as control and orientation control. In addition, the formed coating film may be annealed in the air, under reduced pressure, or in an inert gas atmosphere (in a nitrogen or argon atmosphere).
 一般的なFETの理論について説明する。ソース電極とドレイン電極との間に流れる電流を、印加するゲート電圧を変化させることによって制御することができる。FETの移動度は、下記の(a)式を用いて算出することができる。
 μ=(δId/δVg)L・D/(W・ε・ε・Vsd)   (a)
 ただし、Idはソース・ドレイン間の電流、Vsdはソース・ドレイン間の電圧、Vgはゲート電圧、Dは絶縁層の厚み、Lはチャネル長、Wはチャネル幅、εはゲート絶縁層の比誘電率、及びεは真空の誘電率(8.85×10-12F/m)である。
 また、Idの最大値と、Idの最小値の比からオンオフ比を求めることができる。
A general FET theory will be described. The current flowing between the source electrode and the drain electrode can be controlled by changing the applied gate voltage. The mobility of the FET can be calculated using the following equation (a).
μ = (δId / δVg) L · D / (W · ε r · ε · Vsd) (a)
However, Id is the current between the source and the drain, Vsd is the voltage between the source and the drain, Vg is the gate voltage, D is the thickness of the insulating layer, L is the channel length, W is the channel width, epsilon r is the ratio of the gate insulating layer The dielectric constant and ε are the dielectric constant of vacuum (8.85 × 10 −12 F / m).
Further, the on / off ratio can be obtained from the ratio between the maximum value of Id and the minimum value of Id.
 (CNT)
 CNTとしては、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、及び複数のグラフェン・シートが同心円状に巻かれた多層CNTのいずれを用いてもよいが、高い半導体特性を得るためには単層CNTを用いるのが好ましい。CNTは、アーク放電法、化学気相成長法(CVD法)、及びレーザー・アブレーション法等により得ることができる。
(CNT)
As the CNT, a single-layer CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape, a two-layer CNT in which two graphene sheets are wound in a concentric circle, and a plurality of graphene sheets are concentric Any of multi-walled CNTs wound in a shape may be used, but single-walled CNTs are preferably used in order to obtain high semiconductor characteristics. CNT can be obtained by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like.
 また、CNTは半導体型CNTを80重量%以上含むことがより好ましい。さらに好ましくは半導体型CNTを95重量%以上含むことである。半導体型80重量%以上のCNTを得る方法としては、既知の方法を用いることができる。例えば、密度勾配剤の共存下で超遠心する方法、特定の化合物を選択的に半導体型もしくは金属型CNTの表面に付着させ、溶解性の差を利用して分離する方法、電気的性質の差を利用し電気泳動等により分離する方法などが挙げられる。半導体型CNTの含有率を測定する方法としては、可視-近赤外吸収スペクトルの吸収面積比から算出する方法や、ラマンスペクトルの強度比から算出する方法等が挙げられる。 Further, it is more preferable that the CNT contains 80% by weight or more of the semiconductor CNT. More preferably, it contains 95% by weight or more of semiconducting CNTs. A known method can be used as a method for obtaining a semiconductor-type 80% by weight or more CNT. For example, a method of ultracentrifugation in the presence of a density gradient agent, a method of selectively attaching a specific compound to the surface of a semiconductor-type or metal-type CNT, and separating using a difference in solubility, a difference in electrical properties And a method of separation by electrophoresis or the like. Examples of the method for measuring the content of the semiconductor CNT include a method of calculating from the absorption area ratio of the visible-near infrared absorption spectrum and a method of calculating from the intensity ratio of the Raman spectrum.
 本発明において、CNTの長さは、適用される半導体素子やセンサにおける第1電極と第2電極間の距離よりも短いことが好ましい。具体的には、CNTの平均長さは、チャネル長によるが、好ましくは2μm以下、より好ましくは1μm以下である。CNTの平均長さとは、ランダムにピックアップした20本のCNTの長さの平均値を言う。CNT平均長さの測定方法としては、原子間力顕微鏡、走査型電子顕微鏡、又は透過型電子顕微鏡等で得た画像の中から、20本のCNTをランダムにピックアップし、それらの長さの平均値を得る方法が挙げられる。 In the present invention, the length of the CNT is preferably shorter than the distance between the first electrode and the second electrode in the applied semiconductor element or sensor. Specifically, although the average length of CNT depends on the channel length, it is preferably 2 μm or less, more preferably 1 μm or less. The average length of CNT refers to the average length of 20 CNTs picked up randomly. As a method for measuring the average CNT length, 20 CNTs are randomly picked up from images obtained by an atomic force microscope, a scanning electron microscope, a transmission electron microscope, or the like, and the average of their lengths is obtained. A method for obtaining the value is mentioned.
 一般に市販されているCNTは長さに分布があり、電極間よりも長いCNTが含まれることがあるため、CNTを電極間距離よりも短くする工程を加えることが好ましい。例えば、硝酸、硫酸などによる酸処理、超音波処理、または凍結粉砕法などにより短繊維状にカットする方法が有効である。またフィルターによる分離を併用することは、純度を向上させる点でさらに好ましい。 In general, commercially available CNTs are distributed in length and may contain CNTs that are longer than between the electrodes. Therefore, it is preferable to add a step of making the CNTs shorter than the distance between the electrodes. For example, a method of cutting into short fibers by acid treatment with nitric acid, sulfuric acid or the like, ultrasonic treatment, or freeze pulverization is effective. Further, it is more preferable to use separation by a filter in view of improving purity.
 また、CNTの直径は特に限定されないが、1nm以上100nm以下が好ましく、より好ましくは50nm以下である。 Further, the diameter of the CNT is not particularly limited, but is preferably 1 nm or more and 100 nm or less, and more preferably 50 nm or less.
 本発明では、CNTを溶媒中に均一分散させ、分散液をフィルターによってろ過する工程を設けることが好ましい。フィルター孔径よりも小さいCNTを濾液から得ることで、電極間よりも短いCNTを効率よく得られる。この場合、フィルターとしてはメンブレンフィルターが好ましく用いられる。ろ過に用いるフィルターの孔径は、チャネル長よりも小さければよく、0.5μm以上10μm以下が好ましい。
 他にCNTを短小化する方法として、酸処理、及び凍結粉砕処理などが挙げられる。
 本発明の半導体層中には、移動度が大きく、比表面積が大きい、カーボンナノチューブが含有されていることが好ましい。
In the present invention, it is preferable to provide a step of uniformly dispersing CNT in a solvent and filtering the dispersion with a filter. By obtaining CNT smaller than the filter pore diameter from the filtrate, CNT shorter than between the electrodes can be obtained efficiently. In this case, a membrane filter is preferably used as the filter. The pore diameter of the filter used for the filtration may be smaller than the channel length, and is preferably 0.5 μm or more and 10 μm or less.
Other methods for shortening CNT include acid treatment, freeze pulverization treatment, and the like.
The semiconductor layer of the present invention preferably contains carbon nanotubes having a high mobility and a large specific surface area.
 (共役系重合体)
 本発明において、CNT表面の少なくとも一部に共役系重合体が付着していることが好ましい。共役系重合体は、半導体成分が直接試料溶液に触れることによって予期せぬ電気特性変化が起こることを防ぐとともに、共役系によって半導体成分の電子伝達を補助する役割も担う。
(Conjugated polymer)
In the present invention, it is preferable that a conjugated polymer is attached to at least a part of the CNT surface. The conjugated polymer prevents an unexpected change in electrical characteristics from directly contacting the sample solution with the semiconductor component, and also plays a role of assisting electron transfer of the semiconductor component by the conjugated system.
 共役系重合体としては、例えば、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ-p-フェニレン系重合体、及びポリ-p-フェニレンビニレン系重合体などが挙げられるが、特に限定されない。上記重合体は単一のモノマーユニットが並んだものが好ましく用いられるが、異なるモノマーユニットをブロック共重合したもの、ランダム共重合したものも用いられる。また、グラフト重合したものも用いることができる。 Examples of the conjugated polymer include a polythiophene polymer, a polypyrrole polymer, a polyaniline polymer, a polyacetylene polymer, a poly-p-phenylene polymer, and a poly-p-phenylene vinylene polymer. Although it is mentioned, it is not specifically limited. As the polymer, those in which single monomer units are arranged are preferably used, but those obtained by block copolymerization or random copolymerization of different monomer units are also used. Further, graft-polymerized products can also be used.
 本発明においては、上記重合体の中でも、CNTへの付着が容易であり、CNTと複合体を形成しやすいポリチオフェン系重合体が特に好ましい。共役系重合体の好ましい分子量は数平均分子量で800以上100,000以下である。また、上記重合体は必ずしも高分子量である必要はなく、直鎖状共役系からなるオリゴマーであってもよい。 In the present invention, among the above polymers, a polythiophene polymer that is easy to adhere to CNT and easily forms a complex with CNT is particularly preferable. The preferred molecular weight of the conjugated polymer is 800 or more and 100,000 or less in terms of number average molecular weight. Further, the polymer need not necessarily have a high molecular weight, and may be an oligomer composed of a linear conjugated system.
 また、共役系重合体が側鎖を含有し、その側鎖の少なくとも一部にヒドロキシル基、カルボキシ基、アミノ基、メルカプト基、スルホ基、ホスホン酸基、それらの有機塩もしくは無機塩、ホルミル基、マレイミド基およびスクシンイミド基からなる群より選ばれる少なくとも一つの官能基を含有することが好ましく、アミノ基、マレイミド基およびスクシンイミド基からなる群より選ばれる少なくとも一つの官能基を含有することが特に好ましい。これにより、センシング対象物質と選択的に相互作用する生体関連物質を固定しやすくなる。 The conjugated polymer contains a side chain, and at least a part of the side chain is a hydroxyl group, a carboxy group, an amino group, a mercapto group, a sulfo group, a phosphonic acid group, an organic salt or an inorganic salt thereof, a formyl group. , Preferably containing at least one functional group selected from the group consisting of a maleimide group and a succinimide group, and particularly preferably containing at least one functional group selected from the group consisting of an amino group, a maleimide group and a succinimide group. . Thereby, it becomes easy to fix the biological substance which selectively interacts with the sensing target substance.
 上記官能基のうちアミノ基、マレイミド基、スクシンイミド基は置換基を有していても、有していなくてもよい。置換基は、例えば、アルキル基などが挙げられ、この置換基はさらに置換されていてもよい。これらの官能基どうしが結合して環を形成していてもよい。さらに前記官能基を有する他の化合物がCNT表面の少なくとも一部に付着していていもよい。 Of the above functional groups, the amino group, maleimide group, and succinimide group may or may not have a substituent. Examples of the substituent include an alkyl group, and this substituent may be further substituted. These functional groups may be bonded to form a ring. Furthermore, the other compound having the functional group may adhere to at least a part of the CNT surface.
 本発明における側鎖とは、共役系重合体の主鎖を構成する原子に置換して連結された少なくとも一つの炭素原子を含む鎖を示す。また、側鎖に官能基を含むとは、側鎖の末端に上記官能基を含むことや、側鎖から枝分かれして上記官能基を含むことをいう。そして鎖とは2つ以上の原子が直列して連結したものをいう。このとき、上記官能基に含まれる原子の1つを、分子鎖を構成する原子に含めることができる。したがって、例えば、主鎖にCH-COOHで表される基が連結している場合、これはカルボキシ基を含有する側鎖である。 The side chain in the present invention refers to a chain containing at least one carbon atom connected by substitution with an atom constituting the main chain of the conjugated polymer. The term “containing a functional group in a side chain” means that the functional group is included at the end of the side chain, or that the functional group is branched from the side chain and includes the functional group. A chain is a chain in which two or more atoms are connected in series. At this time, one of the atoms contained in the functional group can be included in the atoms constituting the molecular chain. Thus, for example, when a group represented by CH 2 —COOH is linked to the main chain, this is a side chain containing a carboxy group.
 この側鎖はアルキレン基を鎖の少なくとも一部に含有することが好ましい。アルキレン基は主鎖である共役系重合体を構成する原子に直接結合していてもよいし、エーテル結合、エステル結合などを介して結合していてもよい。 This side chain preferably contains an alkylene group in at least a part of the chain. The alkylene group may be directly bonded to the atoms constituting the conjugated polymer that is the main chain, or may be bonded via an ether bond, an ester bond, or the like.
 ここでアルキレン基とは、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、sec-ブチレン基、tert-ブチレン基、シクロプロピレン基、シクロヘキシレン基、及びノルボルニレン基などの2価の飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換基を有している場合の追加の置換基には特に制限はなく、例えば、アルキル基やメトキシ基、エトキシ基などのアルコキシ基などを挙げることができ、これらはさらに置換基を有していてもよい。また、アルキレン基の炭素数は、特に限定されないが、入手の容易性やコストの点から、1以上20以下が好ましく、より好ましくは1以上8以下である。 Here, the alkylene group includes, for example, a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, a sec-butylene group, a tert-butylene group, a cyclopropylene group, a cyclohexylene group, and a norbornylene group. A divalent saturated aliphatic hydrocarbon group such as, may or may not have a substituent. In the case of having a substituent, the additional substituent is not particularly limited, and examples thereof include an alkyl group, an alkoxy group such as a methoxy group and an ethoxy group, and these further have a substituent. May be. Moreover, although carbon number of an alkylene group is not specifically limited, 1 or more and 20 or less are preferable from the point of availability or cost, More preferably, it is 1 or more and 8 or less.
 上記官能基を側鎖に有する共役系重合体として、具体的に下記のような構造が挙げられる。なお、各構造中のnは繰り返し数を示し、2以上1000以下の範囲である。また、共役系重合体は各構造の単一の重合体でもよく、共重合体でもよい。また、各構造と、その構造で側鎖を有しないものとの共重合体であってもよい。 Specific examples of the conjugated polymer having the functional group in the side chain include the following structures. In addition, n in each structure shows the number of repetitions, and is the range of 2 or more and 1000 or less. Further, the conjugated polymer may be a single polymer of each structure or a copolymer. Moreover, the copolymer of each structure and the structure which does not have a side chain may be sufficient.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 本発明で用いられる共役系重合体は公知の方法により合成することができる。モノマーを合成するには、例えば、チオフェンとカルボキシ基を末端に有するアルキル基を側鎖に導入したチオフェン誘導体を連結する方法として、ハロゲン化したチオフェン誘導体とチオフェンボロン酸またはチオフェンボロン酸エステルをパラジウム触媒下でカップリングする方法、及びハロゲン化したチオフェン誘導体とチオフェングリニヤール試薬をニッケルまたはパラジウム触媒下でカップリングする方法が挙げられる。また、官能基を導入した他のユニットとチオフェンを連結する場合も、ハロゲン化したユニットを用い同様の方法でカップリングすることができる。また、そのようにして得られたモノマーの末端に重合性置換基を導入し、パラジウム触媒やニッケル触媒下で重合を進行させることで共役系重合体を得ることができる。 The conjugated polymer used in the present invention can be synthesized by a known method. To synthesize monomers, for example, as a method of linking thiophene and a thiophene derivative in which an alkyl group having a carboxy group at the end is introduced into the side chain, a halogenated thiophene derivative and thiophene boronic acid or thiophene boronic acid ester are used as palladium catalysts. And a method of coupling a halogenated thiophene derivative and a thiophene Grignard reagent under a nickel or palladium catalyst. In addition, when thiophene is linked to another unit having a functional group introduced, it can be coupled in the same manner using a halogenated unit. In addition, a conjugated polymer can be obtained by introducing a polymerizable substituent at the terminal of the monomer thus obtained and allowing the polymerization to proceed under a palladium catalyst or a nickel catalyst.
 本発明で用いられる共役系重合体は、合成過程で使用した原料や副生成物などの不純物を除去することが好ましい。例えば、シリカゲルカラムグラフィー法、ソクスレー抽出法、ろ過法、イオン交換法、及びキレート法などを用いることができる。これらの方法を2種以上組み合わせてもよい。 The conjugated polymer used in the present invention preferably removes impurities such as raw materials and by-products used in the synthesis process. For example, silica gel columnography, Soxhlet extraction, filtration, ion exchange, chelation, and the like can be used. Two or more of these methods may be combined.
 本発明中の半導体層中の半導体成分としてCNT複合体を用いた場合、CNT表面の少なくとも一部に有機物を付着させることにより、CNTの保有する高い電気的特性を損なうことなくCNTを溶液中に均一に分散することが可能になる。また、CNTが均一に分散した溶液から塗布法により、均一に分散したCNT膜を形成することが可能になる。これにより、高い半導体特性を実現できる。 When a CNT composite is used as a semiconductor component in the semiconductor layer of the present invention, by attaching an organic substance to at least a part of the CNT surface, the CNT can be put into a solution without impairing the high electrical properties possessed by the CNT. It becomes possible to disperse uniformly. Further, a uniformly dispersed CNT film can be formed from a solution in which CNTs are uniformly dispersed by a coating method. Thereby, a high semiconductor characteristic is realizable.
 CNTに有機物を付着させる方法は、例えば、(I)溶融した有機物中にCNTを添加して混合する方法、(II)有機物を溶媒中に溶解させ、この中にCNTを添加して混合する方法、(III)CNTをあらかじめ超音波等で予備分散させておき、そこへ有機物を添加し混合する方法、及び(IV)溶媒中に有機物とCNTを入れ、この混合系へ超音波を照射して混合する方法などが挙げられる。本発明では、いずれの方法を用いてもよく、いずれかの方法を組み合わせてもよい。 For example, (I) a method of adding and mixing CNT in a molten organic material, and (II) a method of dissolving an organic material in a solvent and adding and mixing CNT therein. , (III) CNTs are predispersed in advance with ultrasonic waves, etc., and organic substances are added and mixed therewith, and (IV) organic substances and CNTs are placed in a solvent, and this mixed system is irradiated with ultrasonic waves. The method of mixing etc. is mentioned. In the present invention, any method may be used, and any method may be combined.
 有機物としては、特に限定されるものではないが、具体的にはポリビニルアルコール、及びカルボキシメチルセルロールなどのセルロース類、ポリエチレングリコールなどのポリアルキレングリコール類、及びポリヒドロキシメチルメタクリレートなどのアクリル樹脂、ポリ-3-ヘキシルチオフェンなどの共役系重合体、アントラセン誘導体、及びピレン誘導体などの多環芳香族化合物、ドデシル硫酸ナトリウム、及びコール酸ナトリウムなどの長鎖アルキル有機塩などが挙げられる。 The organic substance is not particularly limited, but specifically, polyvinyl alcohol, celluloses such as carboxymethyl cellulose, polyalkylene glycols such as polyethylene glycol, and acrylic resins such as polyhydroxymethyl methacrylate, poly Examples include conjugated polymers such as -3-hexylthiophene, polycyclic aromatic compounds such as anthracene derivatives and pyrene derivatives, and long-chain alkyl organic salts such as sodium dodecyl sulfate and sodium cholate.
 CNTとの相互作用の観点から、アルキル基、及び芳香族炭化水素基などの疎水基を有するものや共役構造を有するものが好ましく、共役系重合体が特に好ましい。共役系重合体であれば、CNTの保有する高い電気的特性を損なうことなくCNTを溶液中に均一に分散する効果や高い半導体特性といった効果がより向上する。 From the viewpoint of interaction with CNT, those having a hydrophobic group such as an alkyl group and an aromatic hydrocarbon group or those having a conjugated structure are preferred, and a conjugated polymer is particularly preferred. If it is a conjugated polymer, the effect of uniformly dispersing CNT in the solution and the effect of high semiconductor properties are further improved without impairing the high electrical properties possessed by the CNTs.
 (保護剤)
 本発明の半導体素子を含有するセンサを利用する場合、半導体層に、検出対象物質以外の物質の接近、吸着を妨げるための試薬(「保護剤」という)による処理を施してもよい。これにより、検出対象物質を選択的に検出できるようになる。保護剤は、半導体層に物理的に吸着させてもよいし、半導体層中のどこかに結合を介して導入してもよい。
(Protective agent)
When the sensor containing the semiconductor element of the present invention is used, the semiconductor layer may be treated with a reagent (referred to as “protective agent”) for preventing the approach and adsorption of substances other than the detection target substance. As a result, the detection target substance can be selectively detected. The protective agent may be physically adsorbed on the semiconductor layer, or may be introduced somewhere in the semiconductor layer through a bond.
 半導体層に保護剤を付着させる方法としては、例えば、(I)半導体成分をあらかじめ超音波等で予備分散させておき、そこへ保護剤を添加し混合する方法、(II)溶媒中に保護剤と半導体成分を入れ、この混合系へ超音波を照射して混合する方法、(III)溶融した保護剤に、基板上に塗布した半導体成分を浸漬する方法、及び(IV)保護剤を溶媒中に溶解させ、この中に基板上に塗布した半導体成分を浸漬する方法などが挙げられる。本発明では、いずれの方法を用いてもよく、いずれかの方法を組み合わせてもよい。検出感度の観点から、(III)や(IV)といった固液反応を利用して半導体成分に保護剤を付着させる方法が好ましい。 Examples of the method for attaching the protective agent to the semiconductor layer include: (I) a method in which a semiconductor component is preliminarily dispersed with ultrasonic waves or the like, and a protective agent is added thereto and mixed; (II) a protective agent in a solvent. And a semiconductor component, and a method of mixing the mixed system by irradiating ultrasonic waves to this mixed system, (III) a method of immersing the semiconductor component coated on the substrate in a molten protective agent, and (IV) a protective agent in a solvent And a method of immersing the semiconductor component coated on the substrate in the solution. In the present invention, any method may be used, and any method may be combined. From the viewpoint of detection sensitivity, a method of attaching a protective agent to a semiconductor component using a solid-liquid reaction such as (III) or (IV) is preferable.
 共役系重合体と保護剤は同一の化合物でも異なる化合物でもかまわない。検出感度の観点から、異なる化合物であることが好ましい。保護剤の例としては、ウシ血清アルブミン、カゼイン、及びスキムミルクなどのタンパク質、カルボキシメチルセルロールなどのセルロース類、ポリエチレングリコールなどのポリアルキレングリコール類、エタノールアミン、及びポリビニルアルコール、などが挙げられる。
 共役系重合体と保護剤を半導体成分に付着させる順序は特に限定されるものではないが、共役系重合体を付着させた後に保護剤を付着させることが好ましい。
The conjugated polymer and the protective agent may be the same compound or different compounds. From the viewpoint of detection sensitivity, different compounds are preferable. Examples of the protective agent include proteins such as bovine serum albumin, casein, and skim milk, celluloses such as carboxymethyl cellulose, polyalkylene glycols such as polyethylene glycol, ethanolamine, and polyvinyl alcohol.
The order of attaching the conjugated polymer and the protective agent to the semiconductor component is not particularly limited, but it is preferable to attach the protective agent after attaching the conjugated polymer.
 (別の生体関連物質)
 本発明のセンサはセンシング対象物質である生体関連物質と選択的に相互作用する別の生体関連物質が半導体層に固定されていることが好ましい。以下、別の生体関連物質を「レセプター」と称する。
(Another biological substance)
In the sensor of the present invention, another biological substance that selectively interacts with the biological substance that is a sensing target substance is preferably fixed to the semiconductor layer. Hereinafter, another biological substance is referred to as “receptor”.
 レセプターとしては、センシング対象物質と選択的に相互作用できるものであれば特に限定されず、任意の物質を用いることができる。具体的には、酵素、抗原、抗体、ハプテン、ハプテン抗体、ペプチド、オリゴペプチド、ポリペプチド(タンパク質)、ホルモン、核酸、オリゴヌクレオチド、ビオチン、ビオチン化タンパク、アビジン、ストレプトアビジン、糖、オリゴ糖、及び多糖などの糖類、低分子化合物、高分子化合物、無機物質およびこれらの複合体、ウイルス、細菌、細胞、生体組織およびこれらを構成する物質などが挙げられる。 The receptor is not particularly limited as long as it can selectively interact with the sensing target substance, and any substance can be used. Specifically, enzyme, antigen, antibody, hapten, hapten antibody, peptide, oligopeptide, polypeptide (protein), hormone, nucleic acid, oligonucleotide, biotin, biotinylated protein, avidin, streptavidin, sugar, oligosaccharide, And saccharides such as polysaccharides, low-molecular compounds, high-molecular compounds, inorganic substances and complexes thereof, viruses, bacteria, cells, biological tissues, and substances constituting them.
 中でも、抗体、アプタマー、酵素、低分子化合物、タンパク質、及びオリゴヌクレオチドが好ましく、より好ましくは低分子化合物、抗体、アプタマー、及び酵素であり、特に好ましくは、ビオチン、抗体及びアプタマーである。 Of these, antibodies, aptamers, enzymes, low molecular compounds, proteins, and oligonucleotides are preferable, low molecular compounds, antibodies, aptamers, and enzymes are more preferable, and biotin, antibodies, and aptamers are particularly preferable.
 低分子化合物としては、例えば、分子量100から1000程度の化合物が挙げられ、ビオチン、ピレンブタン酸スクシンイミドエステル、ピレンブタン酸マレイミドエステルなどが挙げられる。 Examples of the low molecular weight compound include compounds having a molecular weight of about 100 to 1000, and biotin, pyrenebutanoic acid succinimide ester, pyrenebutanoic acid maleimide ester, and the like.
 抗体としては、例えば、anti-PSA、anti-hCG、anti-IgE、anti-BNP、anti-NT-proBNP、anti-AFP、anti-CK-MB、anti-PIVKA II、anti-CA15-3、anti-CYFRA、anti-HIV、anti-トロポニンT、anti-プロカルシトニン、anti-HbA1c、anti-アポリポ蛋白、及びanti-C反応性蛋白(CRP)などが挙げられる。中でも、IgGタイプが好ましく、特に、可変部位(Fab)フラグメントのみの抗体が好ましい。 Examples of antibodies include anti-PSA, anti-hCG, anti-IgE, anti-BNP, anti-NT-proBNP, anti-AFP, anti-CK-MB, anti-PIVKA II, anti-CA15-3, anti-CA15-3, -CYFRA, anti-HIV, anti-troponin T, anti-procalcitonin, anti-HbA1c, anti-apolipoprotein, and anti-C reactive protein (CRP). Among them, the IgG type is preferable, and an antibody having only a variable site (Fab) fragment is particularly preferable.
 アプタマーとしては、例えば、オリゴヌクレオチドアプタマーやペプチドアプタマーが挙げられる。具体的には、IgEアプタマー、PSAアプタマー、及びトロンビンアプタマーなどが挙げられる。酵素としては、例えば、グルコースオキシダーゼ、及びペルオキシダーゼなどが挙げられる。中でもビオチン、anti-IgE、anti-PSA、及びIgEアプタマーがより好ましい。 Examples of aptamers include oligonucleotide aptamers and peptide aptamers. Specific examples include IgE aptamer, PSA aptamer, and thrombin aptamer. Examples of the enzyme include glucose oxidase and peroxidase. Of these, biotin, anti-IgE, anti-PSA, and IgE aptamer are more preferable.
 レセプターを半導体層へ固定する方法としては、特に限定されるものではないが、グルコース以外の生体関連物質と半導体層が含有する官能基、すなわち、ヒドロキシル基、カルボキシ基、アミノ基、メルカプト基、スルホ基、ホスホン酸基、それらの有機塩もしくは無機塩、ホルミル基、マレイミド基およびスクシンイミド基からなる群より選ばれる少なくとも一つの官能基との反応もしくは相互作用を利用することが好ましい。 The method for immobilizing the receptor to the semiconductor layer is not particularly limited, but biologically related substances other than glucose and functional groups contained in the semiconductor layer, that is, hydroxyl group, carboxy group, amino group, mercapto group, sulfo group. It is preferable to utilize a reaction or interaction with at least one functional group selected from the group consisting of a group, a phosphonic acid group, an organic salt or an inorganic salt thereof, a formyl group, a maleimide group and a succinimide group.
 固定化の強さの観点から、グルコース以外の生体関連物質と半導体層が含有する官能基との反応もしくは相互作用を利用することが好ましい。例えば、グルコース以外の生体関連物質にアミノ基が含まれる場合は、カルボキシ基、アルデヒド基、及びスクシンイミド基が挙げられる。チオール基の場合は、マレイミド基等が挙げられる。 From the viewpoint of immobilization strength, it is preferable to use a reaction or interaction between a biological substance other than glucose and a functional group contained in the semiconductor layer. For example, when a bio-related substance other than glucose contains an amino group, examples thereof include a carboxy group, an aldehyde group, and a succinimide group. In the case of a thiol group, a maleimide group and the like can be mentioned.
 上記の中でも、カルボキシ基およびアミノ基はレセプターとの反応もしくは相互作用を利用しやすく、レセプターを半導体層へ固定するのを容易とする。したがって、CNTの少なくとも一部に含まれる官能基はカルボキシ基およびアミノ基であることが好ましい。 Among the above, the carboxy group and the amino group can easily utilize the reaction or interaction with the receptor, making it easy to fix the receptor to the semiconductor layer. Therefore, it is preferable that the functional group contained in at least a part of the CNT is a carboxy group and an amino group.
 反応もしくは相互作用の具体例としては、化学結合、水素結合、イオン結合、配位結合、静電気力、及びファンデルワールス力などが挙げられるが特に限定されず、官能基の種類とレセプターの化学構造に応じて適切に選択すればよい。また、必要に応じて官能基および/またはレセプターの一部を別の適当な官能基に変換してから固定してもよい。また、官能基とレセプターの間にテレフタル酸などのリンカーを活用しても構わない。 Specific examples of the reaction or interaction include chemical bond, hydrogen bond, ionic bond, coordination bond, electrostatic force, van der Waals force, etc., but are not particularly limited. The type of functional group and the chemical structure of the receptor Appropriate selection may be made according to the situation. Further, if necessary, a part of the functional group and / or receptor may be converted into another suitable functional group and then fixed. Further, a linker such as terephthalic acid may be used between the functional group and the receptor.
 CNTが含有する官能基の長さは、レセプターが半導体成分の近くに繋ぎ留められるよう、短い方が好ましい。これは、レセプターによるセンシング対象物質の捕捉が半導体層のより近くで起こり、検出シグナルが大きくなるからである。より具体的には、CNTが含有する官能基の長さは0.1nm以上5nm以下が好ましく、0.15nm以上3.1nm以下がより好ましく、0.3nm以上1.6nm以下が特に好ましい。 The length of the functional group contained in the CNT is preferably short so that the receptor can be held close to the semiconductor component. This is because the sensing target substance is captured by the receptor closer to the semiconductor layer, and the detection signal becomes larger. More specifically, the length of the functional group contained in the CNT is preferably from 0.1 nm to 5 nm, more preferably from 0.15 nm to 3.1 nm, and particularly preferably from 0.3 nm to 1.6 nm.
 試料溶液中でのCNTが含有する官能基の可動性を確保するために、CNTが含有する官能基中に水との親和性が大きい結合が含まれていることが好ましい。そのような結合として、例えば、エーテル結合、チオエーテル結合、エステル結合、アミド結合、チオエステル結合、ジチオエステル結合、酸無水物結合、及びイミド結合などが挙げられる。これらの中でも、安定性や水との親和性の観点から、エーテル結合、エステル結合、アミド結合、及びイミド結合が特に好ましい。また、CNTが含有する官能基中に環構造が存在していてもよい。 In order to ensure the mobility of the functional group contained in the CNT in the sample solution, it is preferable that the functional group contained in the CNT contains a bond having a high affinity with water. Examples of such a bond include an ether bond, a thioether bond, an ester bond, an amide bond, a thioester bond, a dithioester bond, an acid anhydride bond, and an imide bond. Among these, an ether bond, an ester bond, an amide bond, and an imide bond are particularly preferable from the viewpoints of stability and affinity with water. Moreover, the ring structure may exist in the functional group which CNT contains.
 固定するプロセスとしては、特に限定されないが、CNTを含む半導体層上にレセプターを含む溶液を滴下し、必要に応じて加熱、冷却、振動等を加えながらレセプターを固定させた後、余剰な成分を洗浄または乾燥により除去するプロセス等が挙げられる。 The fixing process is not particularly limited, but a solution containing the receptor is dropped on the semiconductor layer containing CNTs, and after fixing the receptor while applying heating, cooling, vibration, etc. as necessary, excess components are removed. The process etc. which are removed by washing | cleaning or drying are mentioned.
 本発明のセンサの第二の検出素子において、CNTに含まれる官能基/レセプター/センシング対象物質の組み合わせとしては、例えば、カルボキシ基/T-PSA-mAb(前立腺特異抗原用のモノクローナル抗体)/PSA(前立腺特異抗原)、カルボキシ基/anti-hCG-mAb(抗ヒト絨毛性ゴナドトロピン抗体)/hCG(ヒト絨毛性ゴナドトロピン)、カルボキシ基/人工オリゴヌクレオチド/IgE(免疫グロブリンE)、カルボキシ基/ジイソプロピルカルボジイミド/IgE、カルボキシ基/アミノ基末端RNA/HIV-1(ヒト免疫不全ウイルス)、カルボキシ基/抗ナトリウム利尿ペプチド抗体/BNP(脳性ナトリウム利尿ペプチド)、カルボキシ基/抗AFPポリクローナル抗体(ヒト組織免疫染色用抗体)/αフェトプロテイン、カルボキシ基/anti-トロポニンT(抗トロポニンT抗体)/トロポニンT、カルボキシ基/anti-CK-MB(抗クレアチニンキナーゼMB抗体)/CK-MB(クレアチニンキナーゼMB)、カルボキシ基/anti-PIVKA-II(抗protein induced by vitamin K absence or antagonist(PIVKA)-II抗体)/PIVKA-II、カルボキシ基/anti-CA15-3(乳癌C腫瘍マーカー)抗体/CA15-3、カルボキシ基/anti-CEA(抗癌胎児性抗原抗体)/CEA(癌胎児性抗原)、anti-CYFRA(抗サイトケラチン19フラグメント抗体)/CYFRA(サイトケラチン19フラグメント)、カルボキシ基/anti-p53(抗p53タンパク質抗体)/p53(p53タンパク質)、カルボキシ基/抗ヒトヘモグロビンモノクローナル抗体/ヘモグロビン、カルボキシ基/抗マウスヘモグロビンA1cモノクローナル抗体/HbA1c、カルボキシ基/抗ヒトアルブミン抗体/アルブミン、カルボキシ基/抗グリコアルブミン抗体/グリコアルブミン、アミノ基/RNA/HIV-1、アミノ基/ビオチン/アビジン、メルカプト基/T-PSA-mAb/PSA、メルカプト基/hCG-mAb/hCG、スルホ基/T-PSA-mAb/PSA、スルホ基/hCG-mAb/hCG、ホスホン酸基/T-PSA-mAb/PSA、ホスホン酸基/hCG-mAb/hCG、アルデヒド基/オリゴヌクレオチド/核酸、アルデヒド基/抗AFPポリクローナル抗体(ヒト組織免疫染色用抗体)/αフェトプロテイン、マレイミド基/システイン/、及びスクシンイミドエステル/ストレプトアビジン/ビオチン等が挙げられる。 In the second detection element of the sensor of the present invention, the combination of the functional group / receptor / sensing target substance contained in CNT is, for example, carboxy group / T-PSA-mAb (monoclonal antibody for prostate specific antigen) / PSA. (Prostate specific antigen), carboxy group / anti-hCG-mAb (anti-human chorionic gonadotropin antibody) / hCG (human chorionic gonadotropin), carboxy group / artificial oligonucleotide / IgE (immunoglobulin E), carboxy group / diisopropylcarbodiimide / IgE, carboxy group / amino group terminal RNA / HIV-1 (human immunodeficiency virus), carboxy group / anti-natriuretic peptide antibody / BNP (brain natriuretic peptide), carboxy group / anti-AFP polyclonal antibody (human tissue immunostaining for Body) / α-fetoprotein, carboxy group / anti-troponin T (anti-troponin T antibody) / troponin T, carboxy group / anti-CK-MB (anti-creatinine kinase MB antibody) / CK-MB (creatinine kinase MB), carboxy group / Anti-PIVKA-II (anti-protein induced by vitamin K absence or antagonist (PIVKA) -II antibody) / PIVKA-II, carboxy group / anti-CA15-3 (breast cancer C tumor marker) antibody / CA15-3, carboxy group / Anti-CEA (anti-carcinoembryonic antigen antibody) / CEA (carcinoembryonic antigen), anti-CYFRA (anti-cytokeratin 19 fragment antibody) / CYFRA (cytokeratin 19 fragment), Ruboxy group / anti-p53 (anti-p53 protein antibody) / p53 (p53 protein), carboxy group / anti-human hemoglobin monoclonal antibody / hemoglobin, carboxy group / anti-mouse hemoglobin A1c monoclonal antibody / HbA1c, carboxy group / anti-human albumin antibody / Albumin, carboxy group / anti-glycalbumin antibody / glycoalbumin, amino group / RNA / HIV-1, amino group / biotin / avidin, mercapto group / T-PSA-mAb / PSA, mercapto group / hCG-mAb / hCG, sulfo Group / T-PSA-mAb / PSA, sulfo group / hCG-mAb / hCG, phosphonic acid group / T-PSA-mAb / PSA, phosphonic acid group / hCG-mAb / hCG, aldehyde group / oligonucleotide / nucleic acid, aldehyde Group / anti-AFP polyclonal antibody (human tissue immunostaining antibody) / alpha-fetoprotein, a maleimide group / cysteine /, and ester / streptavidin / biotin and the like.
 また、レセプターが官能基を含有する場合には、官能基を含有する化合物(=別の生体関連物質)/センシング対象物質の組み合わせも好ましく用いることができ、具体的には、IgEアプタマー/IgE、ビオチン/アビジン、ストプレトアビジン/ビオチン、ナトリウム利尿ペプチド受容体/BNP(脳性ナトリウム利尿ペプチド)などの組み合わせが挙げられる。これらの中でも、本発明のセンサにおいて、グルコースと共に検出する意義の大きなターゲット物質は、ヘモグロビン、HbA1cとグリコアルブミンであり、これらを検出対象としたセンサとすることが特に好ましい。 In addition, when the receptor contains a functional group, a combination of a compound containing the functional group (= another biological substance) / sensing target substance can be preferably used. Specifically, IgE aptamer / IgE, Combinations of biotin / avidin, stop preavidin / biotin, natriuretic peptide receptor / BNP (brain natriuretic peptide) and the like can be mentioned. Among these, in the sensor of the present invention, target substances having great significance to be detected together with glucose are hemoglobin, HbA1c, and glycoalbumin, and it is particularly preferable to use a sensor for detecting these.
 (センサ)
 本発明のセンサは、上述の通り、少なくとも、生体液中のグルコースを検出する第一の検出素子と、グルコース以外の生体関連物質を検出する第二の検出素子とを有し、第二の検出素子が半導体素子を含む、同一基板上で測定できる小型のセンサである。さらに、第三の検出素子が半導体素子を含む場合も、同一基板上で測定できる小型のセンサである。特に半導体素子を含有するセンサ部分について詳細を記載すると、基板、第1電極、第2電極および半導体層を含有し、前記第1電極、前記第2電極および前記半導体層が前記基板上に形成され、前記半導体層が前記第1電極と前記第2電極の間に配置された半導体素子を含有する。さらに、半導体層にグルコース以外の生体関連物質と選択的に相互作用する別の生体関連物質を有することが好ましい。
(Sensor)
As described above, the sensor of the present invention includes at least a first detection element that detects glucose in a biological fluid and a second detection element that detects a biological substance other than glucose, and the second detection element. It is a small sensor that can be measured on the same substrate including a semiconductor element. Furthermore, even when the third detection element includes a semiconductor element, it is a small sensor that can be measured on the same substrate. In particular, a sensor part containing a semiconductor element will be described in detail. The sensor part includes a substrate, a first electrode, a second electrode, and a semiconductor layer, and the first electrode, the second electrode, and the semiconductor layer are formed on the substrate. The semiconductor layer contains a semiconductor element disposed between the first electrode and the second electrode. Furthermore, it is preferable that the semiconductor layer has another biological substance that selectively interacts with a biological substance other than glucose.
 図2のように形成された半導体素子を含有するセンサは、検出対象物質またはそれを含む溶液、気体もしくは固体が半導体層111の近傍に配置されたときに、第1電極103と第2電極104との間に流れる電流値または電気抵抗値が変化する。その変化を測定することによって、検出対象物質の検出を行うことができる。 A sensor including a semiconductor element formed as shown in FIG. 2 includes a first electrode 103 and a second electrode 104 when a substance to be detected or a solution, gas or solid containing the substance to be detected is disposed in the vicinity of the semiconductor layer 111. The current value or electric resistance value flowing between the two changes. By measuring the change, the detection target substance can be detected.
 また、図3の半導体素子を含有するセンサにおいては、半導体層111に流れる電流値を第3電極105の電圧により制御できる。従って、第3電極105の電圧を変化させた際の第1電極103と第2電極104との間に流れる電流値を測定すると2次元のグラフ(I-Vグラフ)が得られる。 In the sensor containing the semiconductor element of FIG. 3, the value of the current flowing through the semiconductor layer 111 can be controlled by the voltage of the third electrode 105. Accordingly, when the value of the current flowing between the first electrode 103 and the second electrode 104 when the voltage of the third electrode 105 is changed, a two-dimensional graph (IV graph) is obtained.
 その一部または全部の特性値を用いて検出対象物質の検出を行ってもよいし、最大電流と最小電流の比すなわちオンオフ比を用いて検出対象物質の検出を行ってもよい。さらに、抵抗値、閾値電圧変化、インピーダンス、相互コンダクタンス、キャパシンタンス等、半導体素子から得られる既知の電気特性を用いても構わない。 The detection target substance may be detected using part or all of the characteristic values, or the detection target substance may be detected using the ratio between the maximum current and the minimum current, that is, the on / off ratio. Furthermore, known electrical characteristics obtained from a semiconductor element such as resistance value, threshold voltage change, impedance, mutual conductance, and capacitance may be used.
 検出対象物質はそれ単独で用いてもよいし、他の物質や溶媒と混合されていてもよい。検出対象物質またはそれを含む溶液、気体もしくは固体は、半導体層111の近傍に配置される。前述したとおり、半導体層111と検出対象物質が相互作用することにより、半導体層111の電気特性が変化し、上記のいずれかの電気信号の変化として検出される。 The detection target substance may be used alone, or may be mixed with other substances or solvents. A substance to be detected or a solution, gas or solid containing the substance to be detected is disposed in the vicinity of the semiconductor layer 111. As described above, the electrical characteristics of the semiconductor layer 111 change due to the interaction between the semiconductor layer 111 and the substance to be detected, and this is detected as a change in any one of the electrical signals described above.
 本発明のセンサは、さらに基板上に、当該基板の少なくとも一部を覆う覆い部材を備えることが好ましい。例えば、図4に示されるような構成の変形例として、図5A、図5Bに示すように、基板10の上に当該基板10との間に内部空間を形成する上基板20を備えることが好ましい。図5Aでの上基板20中の破線は上基板20と内部空間との境を示す。図5Bは図5Aの線CC’での断面図であり、基板10と上基板20との間に内部空間108が示される。 It is preferable that the sensor of the present invention further includes a covering member that covers at least a part of the substrate on the substrate. For example, as a modification of the configuration shown in FIG. 4, it is preferable to include an upper substrate 20 that forms an internal space between the substrate 10 and the substrate 10 as shown in FIGS. 5A and 5B. . A broken line in the upper substrate 20 in FIG. 5A indicates a boundary between the upper substrate 20 and the internal space. FIG. 5B is a cross-sectional view taken along line CC ′ of FIG. 5A and shows an internal space 108 between the substrate 10 and the upper substrate 20.
 また、図4に示されるような構成の別の変形例として、図6A、図6Bに示すように、基板10の上に半導体層111を取り囲む空間108を形成する覆い部材21を備えることが好ましい。図6Bは図6Aの線DD’での断面図である。これにより、半導体層111と検出対象物質を含む液体を効率的に接触させることが可能となる。 As another modification of the configuration shown in FIG. 4, it is preferable to include a covering member 21 that forms a space 108 surrounding the semiconductor layer 111 on the substrate 10 as shown in FIGS. 6A and 6B. . FIG. 6B is a cross-sectional view taken along line DD ′ of FIG. 6A. Thereby, it becomes possible to efficiently contact the semiconductor layer 111 and the liquid containing the detection target substance.
 本発明のセンサの別の実施態様としては、基板上に前述の上基板または覆い部材を有し、その上基板または覆い部材の、半導体層と対向する面に第3電極を備えることが好ましい。すなわち、基板、第1電極、第2電極および前記第1電極と前記第2電極の間に形成されてなる半導体層を含有し、さらに前記基板上に上基板または覆い部材を含有し、前記上基板または覆い部材の前記半導体層と対向する面に第3電極を備え、前記半導体層に、グルコース以外の生体関連物質と選択的に相互作用する別の生体関連物質を有することが好ましい。第1電極、第2電極および半導体層と第3電極との間の空間には気体層、液体層、固体層のいずれか、あるいはこれらの組み合わせが存在していてもよく、真空であってもよい。 As another embodiment of the sensor of the present invention, it is preferable that the above-mentioned upper substrate or covering member is provided on a substrate, and a third electrode is provided on the surface of the upper substrate or covering member facing the semiconductor layer. That is, the substrate includes a substrate, a first electrode, a second electrode, and a semiconductor layer formed between the first electrode and the second electrode, and further includes an upper substrate or a covering member on the substrate, It is preferable that a third electrode is provided on a surface of the substrate or covering member that faces the semiconductor layer, and the semiconductor layer has another biological substance that selectively interacts with a biological substance other than glucose. In the space between the first electrode, the second electrode, and the semiconductor layer and the third electrode, either a gas layer, a liquid layer, a solid layer, or a combination thereof may exist, Good.
 図7は、本発明の半導体素子を含有するセンサ部分の例を示す模式断面図である。図7のセンサは基板10の上に第1電極103と第2電極104が形成され、第1電極103と第2電極104の間に半導体層111が配置され、さらに上基板20が基板10上に配置された第1電極103、第2電極104および半導体層111と同じ側に配置され、上基板20上に第3電極105が配置されている。上基板20上での第3電極105の配置は、前記半導体層の直上に限らず、斜め上側などでもよい。また、上基板20のうち半導体層から見て上面の部分には限られず、側面上に配置されてもよい。第3電極105は上基板20上での配置に限らず、基板10上に配置してもよい。 FIG. 7 is a schematic cross-sectional view showing an example of a sensor portion containing the semiconductor element of the present invention. In the sensor of FIG. 7, the first electrode 103 and the second electrode 104 are formed on the substrate 10, the semiconductor layer 111 is disposed between the first electrode 103 and the second electrode 104, and the upper substrate 20 is on the substrate 10. Are arranged on the same side as the first electrode 103, the second electrode 104, and the semiconductor layer 111, and the third electrode 105 is arranged on the upper substrate 20. The arrangement of the third electrode 105 on the upper substrate 20 is not limited to the position immediately above the semiconductor layer, but may be an oblique upper side. Further, the upper substrate 20 is not limited to the upper surface portion when viewed from the semiconductor layer, and may be disposed on the side surface. The third electrode 105 is not limited to being disposed on the upper substrate 20, and may be disposed on the substrate 10.
 上基板20または覆い部材に用いる材料としては、例えば、シリコンウエハ、ガラス、アルミナ焼結体等の無機材料、ポリイミド、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリフェニレンスルフィド、及びポリパラキシレン等の有機材料が挙げられるが、これらに限定されるものではない。これらの材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 Examples of the material used for the upper substrate 20 or the covering member include inorganic materials such as silicon wafer, glass, and alumina sintered body, polyimide, polyester, polycarbonate, polysulfone, polyethersulfone, polyethylene, polyphenylene sulfide, and polyparaxylene. However, it is not limited to these. These materials may be used alone, or a plurality of materials may be laminated or mixed.
 (センサの製造方法)
 図1に示す第一の検出素子401と第二の検出素子402を含有するセンサの製造方法を示す。このセンサの製造方法は、半導体成分を基板上に塗布および乾燥して半導体層を形成する工程を含む。なお、製造方法は下記に限定されるものではない。
(Sensor manufacturing method)
The manufacturing method of the sensor containing the 1st detection element 401 shown in FIG. 1 and the 2nd detection element 402 is shown. The sensor manufacturing method includes a step of forming a semiconductor layer by applying and drying a semiconductor component on a substrate. The manufacturing method is not limited to the following.
 特に半導体素子を含有するセンサ部分について詳細を記載すると、基板10に第1電極103および第2電極104を形成する。形成方法は、例えば金属蒸着やスピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、及びインクジェット法などの公知の方法が挙げられる。なお、マスクなどを用いて直接パターン形成してもよいし、基板上にレジストを塗布し、レジスト膜を所望のパターンに露光・現像後、エッチングすることによりゲート電極をパターニングすることも可能である。ここで、第1電極および第2電極の形成方法と同一の形成方で接続部102と配線107が形成されてもよく、それぞれが一括で形成されてもよい。 In particular, when describing details of a sensor portion containing a semiconductor element, the first electrode 103 and the second electrode 104 are formed on the substrate 10. Examples of the forming method include known methods such as metal deposition, spin coating method, blade coating method, slit die coating method, screen printing method, bar coater method, mold method, printing transfer method, immersion pulling method, and ink jet method. . It is also possible to directly form a pattern using a mask or the like, or to apply a resist on a substrate, expose and develop the resist film in a desired pattern, and then pattern the gate electrode by etching. . Here, the connection portion 102 and the wiring 107 may be formed by the same formation method as the formation method of the first electrode and the second electrode, or each may be formed in a lump.
 接続部102および配線107および第1電極103は半導体層111を介して、第2電極104および配線107および接続部102により電気的に接続されている。接続部102には、図示しないが、電源や検出部を接続する。この接続を利用して、電源から電極間に電圧を印加したり、半導体層で生じた電気信号を接続部から取り出したりすることができる。 The connection part 102, the wiring 107 and the first electrode 103 are electrically connected by the second electrode 104, the wiring 107 and the connection part 102 through the semiconductor layer 111. Although not shown, a power source and a detection unit are connected to the connection unit 102. Using this connection, a voltage can be applied between the electrodes from the power source, and an electrical signal generated in the semiconductor layer can be taken out from the connection portion.
 次に半導体層111を形成する。半導体層を、半導体層に連結基を含む化合物を付着させる工程と、生体関連物質と選択的に相互作用する別の生体関連物質と連結基との間に結合を形成させる工程とを含む製造方法が好ましい。 Next, the semiconductor layer 111 is formed. A manufacturing method, comprising: attaching a semiconductor layer to a compound containing a linking group on the semiconductor layer; and forming a bond between the linking group and another bio-related substance that selectively interacts with the bio-related substance. Is preferred.
 半導体層に連結基を含む化合物を付着させる方法としては、例えば、真空中で連結基を含む化合物を蒸着する方法、半導体層を、連結基を含む化合物が溶解した溶液に浸漬することによって付着させる方法、半導体層に連結基を含む化合物を塗布する方法、及び半導体層に連結基を含む化合物が溶解した溶液を塗布する方法などが挙げられる。 As a method for attaching a compound containing a linking group to the semiconductor layer, for example, a method of vapor-depositing a compound containing a linking group in a vacuum, or by immersing the semiconductor layer in a solution in which the compound containing the linking group is dissolved. Examples thereof include a method, a method of applying a compound containing a linking group to the semiconductor layer, and a method of applying a solution in which the compound containing the linking group is dissolved in the semiconductor layer.
 生体関連物質と選択的に相互作用する別の生体関連物質と連結基との間に結合を形成させる工程としては、例えば、真空中で半導体層に別の生体関連物質を衝突させて反応させる方法、半導体層を別の生体関連物質が溶解した溶液に浸漬する方法、及び半導体層に別の生体関連物質が溶解した溶液を塗布する方法などが挙げられる。 Examples of the step of forming a bond between another biological substance that selectively interacts with the biological substance and the linking group include, for example, a method of causing another biological substance to collide with the semiconductor layer in a vacuum to cause a reaction. And a method in which the semiconductor layer is immersed in a solution in which another biological substance is dissolved, and a method in which a solution in which another biological substance is dissolved is applied to the semiconductor layer.
 半導体層の形成と別の生体関連物質の固定は別々に行ってもよいし、一括して行ってもよい。一括して行うには、例えば、あらかじめ別の生体関連物質が連結基を介して結合または付着している半導体成分を用いて半導体層を形成する方法等が挙げられる。 The formation of the semiconductor layer and the fixation of another biological substance may be performed separately or collectively. For example, a method of forming a semiconductor layer using a semiconductor component in which another biological substance is bonded or attached in advance through a linking group can be used.
 (センサの形状)
 センサの形状として、本発明の図1で示される形状が好ましい。具体的な形状としては、血糖値センサで使われるセンサーチップのような形状や、持ち運び可能なカセット型などが挙げられる。これらの形状であれば、接続される電源および解析アルゴリズムを有する本体のサイズを小型化できるため、好ましい。
(Sensor shape)
As the shape of the sensor, the shape shown in FIG. 1 of the present invention is preferable. Specific shapes include a shape like a sensor chip used in a blood glucose level sensor and a portable cassette type. These shapes are preferable because the size of the main body having the power source to be connected and the analysis algorithm can be reduced.
 従来の光を用いた装置では、光源が必要であり、さらに光源が発する熱を拡散するユニットが必要であるために装置が大型化してしまうが、本発明によれば、光源を用いないため、従来装置よりも小型化が可能となる。 In a device using conventional light, a light source is required, and the device is enlarged because a unit for diffusing heat generated by the light source is required, but according to the present invention, a light source is not used. The size can be reduced as compared with the conventional apparatus.
 (ヘモグロビン、糖化ヘモグロビンおよび糖化アルブミン等を検出するセンサ)
 本発明の別の実施形態として、ヘモグロビン、糖化ヘモグロビンおよび糖化アルブミンからなる群より選ばれる少なくとも1種を検出する検出素子を有し、その検出素子が半導体素子を含むセンサが挙げられる。これは、上述した第二の検出素子部分を単独のセンサとして適用したものである。従って、このセンサの構造、このセンサに用いられる材料、およびこのセンサの作用等は上述した説明と共通する。
(Sensor that detects hemoglobin, glycated hemoglobin, glycated albumin, etc.)
Another embodiment of the present invention includes a sensor having a detection element that detects at least one selected from the group consisting of hemoglobin, glycated hemoglobin, and glycated albumin, and the detection element includes a semiconductor element. This is an application of the above-described second detection element portion as a single sensor. Therefore, the structure of the sensor, the material used for the sensor, the action of the sensor, and the like are the same as described above.
 なお、本実施形態において、半導体素子内のCNT複合体に含まれる官能基/レセプター/センシング対象物質の組み合わせとしては、例えば、カルボキシ基/抗ヒトヘモグロビンモノクローナル抗体/ヘモグロビン、カルボキシ基、カルボキシ基/抗マウスヘモグロビンA1cモノクローナル抗体/グリコヘモグロビン、カルボキシ基/抗ヒトアルブミン抗体/アルブミン、及びカルボキシ基/抗グリコアルブミン抗体/グリコアルブミン等が挙げられる。 In the present embodiment, the functional group / receptor / sensing target substance combination contained in the CNT complex in the semiconductor element is, for example, carboxy group / anti-human hemoglobin monoclonal antibody / hemoglobin, carboxy group, carboxy group / anti-antibody. Examples include mouse hemoglobin A1c monoclonal antibody / glycohemoglobin, carboxy group / anti-human albumin antibody / albumin, and carboxy group / anti-glycoalbumin antibody / glycoalbumin.
 以下に、本発明のセンサを用いて血液中のグルコース、糖化ヘモグロビンまたは糖化アルブミン、およびヘモグロビンを検出する場合の具体的な実施例を挙げる。なお、以下の実施例は本発明の一例であり、半導体層に用いられる材料や溶血剤などの種類を、本明細書に記載のごとく適宜変更することが可能である。また、第二の検出素子および第三の検出素子で検出する生体関連物質の種類に応じて、本明細書に記載の如く種々の変更を加えることも可能である。 Hereinafter, specific examples in the case of detecting glucose, glycated hemoglobin or glycated albumin, and hemoglobin in blood using the sensor of the present invention will be described. The following examples are examples of the present invention, and the types of materials and hemolytic agents used for the semiconductor layer can be appropriately changed as described in this specification. In addition, various modifications can be made as described in the present specification depending on the types of biological substances detected by the second detection element and the third detection element.
 まず、測定試料である血液を注入口301からセンサ内に注入する。注入された血液は、経路302を流れていき、途中で、第一の検出素子方面と第二の検出素子方面に分岐する。
 第一の検出素子方面に流れる血液が反応層110に到達すると、血液中のグルコースと反応層110におけるグルコース分解酵素が反応する。これを利用してグルコース濃度が測定される。
First, blood as a measurement sample is injected into the sensor from the injection port 301. The injected blood flows through the path 302 and branches in the middle of the first detection element direction and the second detection element direction.
When the blood flowing toward the first detection element reaches the reaction layer 110, glucose in the blood reacts with glucose degrading enzyme in the reaction layer 110. Utilizing this, the glucose concentration is measured.
 第二の検出素子方面に流れる血液は、途中の空間303で溶血剤と混合される。これにより赤血球細胞内からHbA1cが取り出される。
 第二の検出素子において、半導体層111にはCNT複合体が含まれ、そのCNT複合体にはHbA1cと選択的に相互作用する抗マウスヘモグロビンA1cモノクローナル抗体が固定化されている。空間303で赤血球細胞内から取り出されたHbA1cが半導体層111に到達すると、抗マウスヘモグロビンA1cモノクローナル抗体との相互作用により、半導体層111を流れる電流値が変化する。これを利用してHbA1c濃度が測定される。
The blood flowing toward the second detection element is mixed with a hemolytic agent in a space 303 in the middle. Thereby, HbA1c is taken out from the red blood cells.
In the second detection element, the semiconductor layer 111 contains a CNT complex, and an anti-mouse hemoglobin A1c monoclonal antibody that selectively interacts with HbA1c is immobilized on the CNT complex. When HbA1c extracted from the red blood cells in the space 303 reaches the semiconductor layer 111, the value of the current flowing through the semiconductor layer 111 changes due to the interaction with the anti-mouse hemoglobin A1c monoclonal antibody. Using this, the HbA1c concentration is measured.
 第三の検出素子方面に流れる血液は、途中の空間303で溶血剤と混合される。これにより赤血球細胞内からヘモグロビンが取り出される。
 第三の検出素子において、半導体層201にはCNT複合体が含まれ、そのCNT複合体にはヘモグロビンと選択的に相互作用する抗ヘモグロビン抗体が固定化されている。空間303で赤血球細胞内から取り出されたヘモグロビンが半導体層201に到達すると、抗ヘモグロビン抗体との相互作用により、半導体層201を流れる電流値が変化する。これを利用してヘモグロビン濃度が測定される。
The blood flowing in the direction of the third detection element is mixed with the hemolytic agent in the space 303 in the middle. Thereby, hemoglobin is taken out from the red blood cells.
In the third detection element, the semiconductor layer 201 contains a CNT complex, and an anti-hemoglobin antibody that selectively interacts with hemoglobin is immobilized on the CNT complex. When hemoglobin extracted from the red blood cells in the space 303 reaches the semiconductor layer 201, the value of current flowing through the semiconductor layer 201 changes due to the interaction with the anti-hemoglobin antibody. Using this, the hemoglobin concentration is measured.
 以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。なお、用いたCNTは次の通りである。
SWCNT:名城ナノカーボン社製、単層CNT、半導体型CNT純度>95%
DWCNT:東レ社製、2層CNT
MWCNT:名城ナノカーボン社製、多層CNT
Hereinafter, the present invention will be described more specifically based on examples. In addition, this invention is not limited to the following Example. The used CNTs are as follows.
SWCNT: Meijo Nano Carbon Co., Ltd., single-walled CNT, semiconducting CNT purity> 95%
DWCNT: Two-layer CNT manufactured by Toray Industries, Inc.
MWCNT: Multi-layer CNT, manufactured by Meijo Nanocarbon
 また、実施例及び比較例に用いた化合物のうち略語を使用したものについて、以下に示す。
P3HT:ポリ-3-ヘキシルチオフェン
PBS:リン酸塩緩衝生理食塩水
BSA:牛血清アルブミン
IgE:免疫グロブリンE
FBS:ウシ胎児血清
NT-proBNP:ヒト脳性ナトリウム利尿ペプチド前駆体N端フラグメント
PBSE:1-ピレンブタン酸-N-ヒドロキシスクシンイミドエステル
PET:ポリエチレンテレフタレート
PEN:ポリエチレンナフタレート
o-DCB:o-ジクロロベンゼン
 さらに、実施例1~13においては図1に示すセンサを作製し、実施例14~27においては図9に示すセンサを作製し、評価に用いた。また、実施例1~27において、第一の検出素子は従来の血糖値センサの作製方法と同様にして作製し、検出可能であることを確認した。
Moreover, it shows below about what used the abbreviation among the compounds used for the Example and the comparative example.
P3HT: poly-3-hexylthiophene PBS: phosphate buffered saline BSA: bovine serum albumin IgE: immunoglobulin E
FBS: fetal bovine serum NT-proBNP: human brain natriuretic peptide precursor N-terminal fragment PBSE: 1-pyrenebutanoic acid-N-hydroxysuccinimide ester PET: polyethylene terephthalate PEN: polyethylene naphthalate o-DCB: o-dichlorobenzene In Examples 1 to 13, the sensor shown in FIG. 1 was produced, and in Examples 14 to 27, the sensor shown in FIG. 9 was produced and used for evaluation. In Examples 1 to 27, the first detection element was produced in the same manner as the production method of the conventional blood glucose level sensor, and it was confirmed that it could be detected.
 実施例1
 (1)半導体溶液の作製
 CNTを1.5mgと、P3HT1.5mgを15mLのクロロホルム中に加え、氷冷しながら超音波ホモジナイザー(東京理化器械(株)製VCX-500)を用いて出力250Wで30分間超音波撹拌し、CNT分散液A(溶媒に対するCNT複合体濃度0.1g/l)を得た。
 次に、半導体層を形成するための半導体溶液の作製を行った。上記CNT分散液Aをメンブレンフィルター(孔径10μm、直径25mm、ミリポア社製オムニポアメンブレン)を用いてろ過を行った後、さらにメンブレンフィルター(孔径3μm、直径25mm、ミリポア社製オムニポアメンブレン)を用いてろ過を行った。得られた濾液5mLにo-DCB45mLを加え、半導体溶液A(溶媒に対するCNT複合体濃度0.01g/l)とした。
Example 1
(1) Preparation of semiconductor solution Add 1.5 mg of CNT and 1.5 mg of P3HT into 15 mL of chloroform, and use an ultrasonic homogenizer (VCX-500, manufactured by Tokyo Rika Kikai Co., Ltd.) while cooling with ice at an output of 250 W. The mixture was ultrasonically stirred for 30 minutes to obtain CNT dispersion A (CNT complex concentration of 0.1 g / l with respect to the solvent).
Next, a semiconductor solution for forming a semiconductor layer was prepared. The CNT dispersion A was filtered using a membrane filter (pore size: 10 μm, diameter: 25 mm, Omnipore membrane manufactured by Millipore), and then a membrane filter (pore size: 3 μm, diameter: 25 mm, Omnipore membrane manufactured by Millipore) was used. And filtered. 45 mL of o-DCB was added to 5 mL of the obtained filtrate to obtain a semiconductor solution A (CNT complex concentration of 0.01 g / l with respect to the solvent).
 (2)絶縁層用ポリマー溶液の作製
 メチルトリメトキシシラン61.29g(0.45モル)、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン12.31g(0.05モル)、およびフェニルトリメトキシシラン99.15g(0.5モル)をプロピレングリコールモノブチルエーテル(沸点170℃)203.36gに溶解し、これに、水54.90g、リン酸0.864gを撹拌しながら加えた。得られた溶液をバス温105℃で2時間加熱し、内温を90℃まで上げて、主として副生するメタノールからなる成分を留出せしめた。次いでバス温130℃で2.0時間加熱し、内温を118℃まで上げて、主として水とプロピレングリコールモノブチルエーテルからなる成分を留出せしめた後、室温まで冷却し、固形分濃度26.0重量%のポリマー溶液Aを得た。
 得られたポリマー溶液Aを50gはかり取り、プロピレングリコールモノブチルエーテル(沸点170℃)16.6gを混合して、室温にて2時間撹拌し、ポリマー溶液B(固形分濃度19.5重量%)を得た。
(2) Preparation of polymer solution for insulating layer 61.29 g (0.45 mol) of methyltrimethoxysilane, 12.31 g (0.05 mol) of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and phenyl 99.15 g (0.5 mol) of trimethoxysilane was dissolved in 203.36 g of propylene glycol monobutyl ether (boiling point 170 ° C.), and 54.90 g of water and 0.864 g of phosphoric acid were added thereto with stirring. The obtained solution was heated at a bath temperature of 105 ° C. for 2 hours, the internal temperature was raised to 90 ° C., and a component mainly composed of methanol produced as a by-product was distilled off. Next, the bath was heated at 130 ° C. for 2.0 hours, the internal temperature was raised to 118 ° C., and a component mainly composed of water and propylene glycol monobutyl ether was distilled off, and then cooled to room temperature, and the solid content concentration was 26.0. A weight percent polymer solution A was obtained.
50 g of the obtained polymer solution A was weighed, mixed with 16.6 g of propylene glycol monobutyl ether (boiling point 170 ° C.), stirred at room temperature for 2 hours, and polymer solution B (solid content concentration 19.5 wt%) was obtained. Obtained.
 (3)半導体素子の作製
 図3に示す半導体素子を作製した。ガラス製の基板10(膜厚0.7mm)上に、抵抗加熱法により、マスクを通して金を50nm真空蒸着し、第1電極103、第2電極104を形成した。第1電極および第2電極の幅(チャネル幅)400μm、第1電極および第2電極の間隔(チャネル長)は60μmとした。
 電極が形成された有機膜上に上記(1)に記載の方法で作製した半導体溶液Aをインクジェット装置(クラスターテクノロジー(株)製)を用いて400pl滴下して半導体層111を形成し、ホットプレート上で窒素気流下、120℃で30分の熱処理を行い、半導体素子Aを得た。
 次に、Anti-HbA1c(フナコシ製)を0.01M PBSにより100ug/mLとした溶液に半導体層を4℃一晩浸した。その後、半導体層を0.01M PBSで十分にすすいだ。次にBSA(和光純薬工業(株)製)5.0mgの0.01M PBS5.0mL溶液に2時間浸した。その後、半導体層を0.01M PBSで十分にすすぎ、半導体層をセンシング対象物質と選択的に相互作用する生体関連物質であるAnti-HbA1cおよび保護剤であるBSAで修飾した半導体素子を得た。
(3) Fabrication of Semiconductor Element The semiconductor element shown in FIG. 3 was fabricated. On the glass substrate 10 (film thickness 0.7 mm), gold was vacuum-deposited by 50 nm through a mask by a resistance heating method, and the first electrode 103 and the second electrode 104 were formed. The width (channel width) of the first electrode and the second electrode was 400 μm, and the distance (channel length) between the first electrode and the second electrode was 60 μm.
A semiconductor layer 111 is formed by dropping 400 pl of the semiconductor solution A produced by the method described in (1) above on the organic film on which the electrode is formed using an inkjet apparatus (manufactured by Cluster Technology Co., Ltd.), and a hot plate The semiconductor device A was obtained by performing a heat treatment at 120 ° C. for 30 minutes under a nitrogen stream.
Next, the semiconductor layer was immersed overnight at 4 ° C. in a solution of Anti-HbA1c (manufactured by Funakoshi) at 0.01 ug / mL with 0.01 M PBS. Thereafter, the semiconductor layer was thoroughly rinsed with 0.01M PBS. Next, BSA (manufactured by Wako Pure Chemical Industries, Ltd.) 5.0 mg in 0.01 M PBS 5.0 mL was immersed for 2 hours. Thereafter, the semiconductor layer was sufficiently rinsed with 0.01 M PBS to obtain a semiconductor element in which the semiconductor layer was modified with Anti-HbA1c, which is a biological substance that selectively interacts with the sensing target substance, and BSA, which is a protective agent.
 (4)センサとしての評価
 作製した半導体素子の半導体層を0.01M PBS100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-0.01M PBS溶液20μl、75分後に5μg/mL アビジン(和光純薬工業(株)製)-0.01M PBS溶液20μl、90分後に5μg/mL HbA1c(フナコシ製)-0.01M PBS溶液20μlを半導体層に浸した0.01M PBSに添加した。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から5.0%の電流値増加が見られた。
(4) Evaluation as sensor The semiconductor layer of the produced semiconductor element was immersed in 100 μl of 0.01M PBS, and the value of the current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 μm after the start of measurement, 20 μl of 5 μg / mL BSA-0.01M PBS solution, 75 μm after 5 μg / mL Avidin (manufactured by Wako Pure Chemical Industries, Ltd.) — 0.01 μM PBS solution 20 μl, 90 μm after 5 μg / mL HbA1c (Funakoshi) —0.01 μM PBS solution 20 μl was added to 0.01 M PBS soaked in a semiconductor layer. The results are shown in Table 1. Only when HbA1c was added, the current value increased by 5.0% from the current value before the addition.
 実施例2
 (1)半導体素子の作製
 実施例1と同様にして半導体素子Aを作製した。
 次に、1-ピレンブタン酸-N-ヒドロキシスクシンイミドエステル(アナスペック(株)製、PBSE)6.0mgのアセトニトリル(和光純薬工業(株)製)1.0mL溶液に半導体層を1時間浸した。その後、半導体層をアセトニトリル及びメタノール(和光純薬工業(株)製)で十分にすすいだ。Anti-HbA1c(フナコシ製)を0.01M PBSにより100ug/mLとした溶液に半導体層を4℃一晩浸した。その後、半導体層を0.01M PBSで十分にすすいだ。次にBSA(和光純薬工業(株)製)5.0mgの0.01M PBS5.0mL溶液に30分浸した。その後、半導体層を0.01M PBSで十分にすすぎ、半導体層をセンシング対象物質と選択的に相互作用する生体関連物質であるAnti-HbA1cおよび保護剤であるBSAで修飾した半導体素子を得た。
Example 2
(1) Production of Semiconductor Element Semiconductor element A was produced in the same manner as in Example 1.
Next, the semiconductor layer was immersed in 1.0 mL of 1-pyrenebutanoic acid-N-hydroxysuccinimide ester (anaspec Co., Ltd., PBSE) in 6.0 mL of acetonitrile (Wako Pure Chemical Industries, Ltd.) for 1 hour. . Thereafter, the semiconductor layer was sufficiently rinsed with acetonitrile and methanol (manufactured by Wako Pure Chemical Industries, Ltd.). The semiconductor layer was immersed overnight at 4 ° C. in a solution of Anti-HbA1c (manufactured by Funakoshi) made 100 ug / mL with 0.01 M PBS. Thereafter, the semiconductor layer was thoroughly rinsed with 0.01M PBS. Next, BSA (manufactured by Wako Pure Chemical Industries, Ltd.) 5.0 mg in 0.01 M PBS 5.0 mL was immersed for 30 minutes. Thereafter, the semiconductor layer was sufficiently rinsed with 0.01 M PBS to obtain a semiconductor element in which the semiconductor layer was modified with Anti-HbA1c, which is a biological substance that selectively interacts with the sensing target substance, and BSA, which is a protective agent.
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から4.8%の電流値増加が見られた。
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 4.8% was observed from the current value before the addition.
 実施例3
(1)半導体素子の作製
 図3に示す半導体素子を作製した。ガラス製の基板10(膜厚0.7mm)を30分間紫外線オゾン処理(photo surface processor,PL30-200,SEN LIGHTS CORP.製)し、ポリエチレングリコール鎖含有シランカップリング剤(SIH6188、Gelest製)の10重量%エタノール溶液に1時間浸漬した。エタノールで30秒間洗浄後、120℃で30分間乾燥することで、有機膜106を形成した。有機膜上に、金を膜厚50nmになるようにマスク蒸着することで第1電極103、第2電極104を形成した。第1電極および電2電極の幅(チャネル幅)は400μm、第1電極および電2電極の間隔(チャネル長)は60μmとした。
 電極が形成された有機膜上に上記(1)に記載の方法で作製した半導体溶液Aをインクジェット装置(クラスターテクノロジー(株)製)を用いて400pl滴下して半導体層4を形成し、ホットプレート上で窒素気流下、150℃で30分の熱処理を行い、半導体素子Bを得た。
 次に、1-ピレンブタン酸-N-ヒドロキシスクシンイミドエステル(アナスペック(株)製)6.0mgのアセトニトリル(和光純薬工業(株)製)1.0mL溶液に半導体層を1時間浸した。その後、半導体層をアセトニトリル及びメタノール(和光純薬工業(株)製)で十分にすすいだ。Anti-HbA1c(フナコシ製)を0.01M PBSにより100ug/mLとした溶液に半導体層を4℃一晩浸した。その後、半導体層を0.01M PBSで十分にすすいだ。次にBSA(和光純薬工業(株)製)5.0mgの0.01M PBS5.0mL溶液に30分浸した。その後、半導体層を0.01M PBSで十分にすすぎ、半導体層をセンシング対象物質と選択的に相互作用する生体関連物質であるAnti-HbA1cおよび保護剤であるBSAで修飾した半導体素子を得た。
Example 3
(1) Fabrication of Semiconductor Element The semiconductor element shown in FIG. 3 was fabricated. A glass substrate 10 (film thickness 0.7 mm) was subjected to ultraviolet ozone treatment (photo surface processor, PL30-200, manufactured by SEN LIGHTTS CORP.) For 30 minutes, and a polyethylene glycol chain-containing silane coupling agent (SIH6188, manufactured by Gelest) It was immersed in a 10 wt% ethanol solution for 1 hour. After washing with ethanol for 30 seconds, the organic film 106 was formed by drying at 120 ° C. for 30 minutes. The first electrode 103 and the second electrode 104 were formed on the organic film by mask vapor deposition so that the film thickness was 50 nm. The width (channel width) of the first electrode and the electric two electrode was 400 μm, and the distance (channel length) between the first electrode and the electric two electrode was 60 μm.
A semiconductor layer 4 is formed by dropping 400 pl of the semiconductor solution A produced by the method described in (1) above on the organic film on which the electrode is formed using an inkjet apparatus (manufactured by Cluster Technology Co., Ltd.), and a hot plate A heat treatment was performed at 150 ° C. for 30 minutes under a nitrogen stream to obtain a semiconductor element B.
Next, the semiconductor layer was immersed in a 1.0 mL solution of 6.0 mg of 1-pyrenebutanoic acid-N-hydroxysuccinimide ester (manufactured by Anaspec Co., Ltd.) in acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) for 1 hour. Thereafter, the semiconductor layer was sufficiently rinsed with acetonitrile and methanol (manufactured by Wako Pure Chemical Industries, Ltd.). The semiconductor layer was immersed overnight at 4 ° C. in a solution of Anti-HbA1c (manufactured by Funakoshi) made 100 ug / mL with 0.01 M PBS. Thereafter, the semiconductor layer was thoroughly rinsed with 0.01M PBS. Next, BSA (manufactured by Wako Pure Chemical Industries, Ltd.) 5.0 mg in 0.01 M PBS 5.0 mL was immersed for 30 minutes. Thereafter, the semiconductor layer was sufficiently rinsed with 0.01 M PBS to obtain a semiconductor element in which the semiconductor layer was modified with Anti-HbA1c, which is a biological substance that selectively interacts with the sensing target substance, and BSA, which is a protective agent.
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から6.0%の電流値増加が見られた。
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, the current value increased by 6.0% from the current value before the addition.
 実施例4
 (1)半導体素子の作製
 Anti-HbA1cの代わりにAnti-HbA1cフラグメント抗体(Fab)を用いたこと以外は、実施例3と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から6.5%の電流値増加が見られた。
Example 4
(1) Fabrication of semiconductor device A semiconductor layer was formed in the same manner as in Example 3 except that Anti-HbA1c fragment antibody (Fab) was used instead of Anti-HbA1c.
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.5% was observed from the current value before the addition.
 実施例5
 (1)半導体素子の作製
 金の代わりに金属型を90重量%含む単層カーボンナノチューブ(SWCNT)を用いたこと以外は、実施例4と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から5.8%の電流値増加が見られた。
Example 5
(1) Fabrication of semiconductor element A semiconductor element was obtained by forming a semiconductor layer in the same manner as in Example 4 except that single-walled carbon nanotubes (SWCNT) containing 90% by weight of a metal mold were used instead of gold. .
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 5.8% was observed from the current value before the addition.
 実施例6
 (1)半導体素子の作製
 金の代わりに二層カーボンナノチューブ(DWCNT)を用いたこと以外は、実施例4と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から6.0%の電流値増加が見られた。
Example 6
(1) Production of Semiconductor Element A semiconductor element was obtained by forming a semiconductor layer in the same manner as in Example 4 except that double-walled carbon nanotubes (DWCNT) were used instead of gold.
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, the current value increased by 6.0% from the current value before the addition.
 実施例7
 (1)半導体素子の作製
 金の代わりに多層カーボンナノチューブ(MWCNT)を用いたこと以外は、実施例4と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から5.7%の電流値増加が見られた。
Example 7
(1) Production of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that multi-walled carbon nanotubes (MWCNT) were used instead of gold to obtain a semiconductor element.
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 5.7% was observed from the current value before the addition.
 実施例8
 (1)半導体溶液の作製
 P3HTの代わりに、式(69)で示される化合物を用いたこと以外は、実施例1と同様にして半導体溶液B(溶媒に対するCNT複合体濃度0.01g/l)とした。
 (2)半導体素子の作製
 半導体溶液Aの代わりに半導体溶液Bを用いたこと以外は、実施例4と同様にして半導体層を形成し、半導体素子を得た。
 (3)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から6.6%の電流値増加が見られた。
Example 8
(1) Preparation of semiconductor solution Semiconductor solution B (CNT complex concentration 0.01 g / l with respect to the solvent) was carried out in the same manner as in Example 1 except that the compound represented by formula (69) was used instead of P3HT. It was.
(2) Fabrication of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that the semiconductor solution B was used instead of the semiconductor solution A to obtain a semiconductor element.
(3) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.6% was observed from the current value before the addition.
 実施例9
 (1)半導体溶液の作製
 P3HTの代わりに、式(71)で示される化合物を用いたこと以外は、実施例1と同様にして半導体溶液C(溶媒に対するCNT複合体濃度0.01g/l)とした。
 (2)半導体素子の作製
 半導体溶液Aの代わりに半導体溶液Cを用いたこと以外は、実施例4と同様にして半導体層を形成し、半導体素子を得た。
 (3)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例1と同様にして測定を行った。その結果を表1に示す。HbA1c添加の時のみ添加前の電流値から6.9%の電流値増加が見られた。
Example 9
(1) Preparation of semiconductor solution Semiconductor solution C (CNT complex concentration 0.01 g / l with respect to the solvent) was carried out in the same manner as in Example 1 except that the compound represented by formula (71) was used instead of P3HT. It was.
(2) Production of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 4 except that the semiconductor solution C was used in place of the semiconductor solution A to obtain a semiconductor element.
(3) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 1. The results are shown in Table 1. Only when HbA1c was added, a current value increase of 6.9% was observed from the current value before the addition.
 実施例10
 (1)半導体素子の作製
 Anti-HbA1cの代わりに抗グリコアルブミンを用いたこと以外は、実施例9と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例10と同様にして測定を行った。その結果を表1に示す。グリコアルブミン添加の時のみ添加前の電流値から8.1%の電流値増加が見られた。
Example 10
(1) Fabrication of semiconductor device A semiconductor layer was formed in the same manner as in Example 9 except that anti-glycoalbumin was used instead of Anti-HbA1c.
(2) Evaluation as a sensor In order to evaluate the semiconductor element produced above as a sensor, the measurement was performed in the same manner as in Example 10. The results are shown in Table 1. Only when glycoalbumin was added, the current value increased by 8.1% from the current value before the addition.
 実施例11
 (1)半導体素子の作製
 PBSEを用いなかったこと以外は、実施例10と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 作製した半導体素子の半導体層を0.01M PBS100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-0.01M PBS溶液20μl、75分後に5μg/mL HbA1c(フナコシ製)-0.01M PBS溶液20μl、90分後に5μg/mL グリコアルブミン(フナコシ製)-0.01M PBS溶液20μlを半導体層に浸した0.01M PBSに添加した。その結果を表1に示す。グリコアルブミン添加の時のみ添加前の電流値から9.8%の電流値増加が見られた。
Example 11
(1) Production of Semiconductor Element A semiconductor layer was formed in the same manner as in Example 10 except that PBSE was not used to obtain a semiconductor element.
(2) Evaluation as sensor The semiconductor layer of the manufactured semiconductor element was immersed in 100 μl of 0.01M PBS, and the value of the current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 μm after the start of measurement, 20 μl of 5 μg / mL BSA-0.01M PBS solution, 75 μm after 5 μg / mL HbA1c (manufactured by Funakoshi) —0.01 μM PBS solution 20 μl, 90 min after 5 μg / mL glycoalbumin (manufactured by Funakoshi) — 20 μl of 0.01 M PBS solution was added to 0.01 M PBS soaked in the semiconductor layer. The results are shown in Table 1. Only when glycoalbumin was added, the current value increased by 9.8% from the current value before the addition.
 実施例12
 (1)半導体素子の作製
 抗グリコアルブミンの代わりに抗NT-proBNPを用いたこと以外は、実施例11と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 作製した半導体素子の半導体層を0.01M PBS100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-0.01M PBS溶液20μl、75分後に5μg/mL HbA1c(フナコシ製)-0.01M PBS溶液20μl、90分後に5μg/mL NT-proBNP(フナコシ製)-0.01M PBS溶液20μlを半導体層に浸した0.01M PBSに添加した。その結果を表1に示す。NT-proBNP添加の時のみ添加前の電流値から7.7%の電流値増加が見られた。
Example 12
(1) Production of Semiconductor Device A semiconductor layer was formed in the same manner as in Example 11 except that anti-NT-proBNP was used instead of anti-glycoalbumin.
(2) Evaluation as sensor The semiconductor layer of the manufactured semiconductor element was immersed in 100 μl of 0.01M PBS, and the value of the current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 μm after the start of measurement, 20 μl of 5 μg / mL BSA-0.01M PBS solution, 75 μm after 5 μg / mL HbA1c (manufactured by Funakoshi) -0.01 M PBS solution 20 μl, 90 min after 5 μg / mL NT-proBNP (manufactured by Funakoshi) -20 μl of 0.01 M PBS solution was added to 0.01 M PBS soaked in the semiconductor layer. The results are shown in Table 1. Only when NT-proBNP was added, a current value increase of 7.7% was observed from the current value before the addition.
 実施例13
 (1)半導体素子の作製
 抗グリコアルブミンの代わりに抗NT-proBNPを用いたこと以外は、実施例10と同様にして半導体層を形成し、半導体素子を得た。
 (2)センサとしての評価
 上記で作製した半導体素子をセンサとして評価するため実施例12と同様にして測定を行った。その結果を表1に示す。NT-proBNP添加の時のみ添加前の電流値から7.5%の電流値増加が見られた。
Example 13
(1) Production of Semiconductor Device A semiconductor layer was formed in the same manner as in Example 10 except that anti-NT-proBNP was used instead of anti-glycoalbumin to obtain a semiconductor device.
(2) Evaluation as sensor In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 12. The results are shown in Table 1. Only when NT-proBNP was added, the current value increased by 7.5% from the current value before the addition.
 実施例14
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、抗グリコアルブミンの代わりに抗ヘモグロビンを用いたこと以外は、実施例10と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 作製した半導体素子の半導体層を0.01M PBS100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-0.01M PBS溶液20μl、75分後に5μg/mL HbA1c(フナコシ製)-0.01M PBS溶液20μl、90分後に5μg/mL ヘモグロビン(フナコシ製)-0.01M PBS溶液20μlを半導体層に浸した0.01M PBSに添加した。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から3.2%の電流値増加が見られた。
Example 14
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
In addition, a semiconductor layer was formed in the same manner as in Example 10 except that anti-hemoglobin was used instead of anti-glycoalbumin, thereby producing a third detection element.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
The semiconductor layer of the manufactured semiconductor element was immersed in 100 μl of 0.01M PBS, and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 μm after the start of measurement, 20 μl of 5 μg / mL BSA-0.01M PBS solution, 75 μm after 5 μg / mL HbA1c (manufactured by Funakoshi) -0.01 M PBS solution 20 μl, 90 μm after 5 μg / mL hemoglobin (manufactured by Funakoshi) -0 20 μl of 0.01 M PBS solution was added to 0.01 M PBS soaked in the semiconductor layer. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 3.2% was observed from the current value before the addition.
 実施例15
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、第1電極および電2電極の幅(チャネル幅)を400μm、第1電極および電2電極の間隔(チャネル長)を40μmとした以外は、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から4.0%の電流値増加が見られた。
Example 15
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electric two electrode was 400 μm and the interval (channel length) between the first electrode and the electric two electrode was 40 μm. A semiconductor element was manufactured to obtain a third detection element.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.0% was observed from the current value before the addition.
 実施例16
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、第1電極および電2電極の幅(チャネル幅)を400μm、第1電極および電2電極の間隔(チャネル長)を30μmとした以外は、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から4.8%の電流値増加が見られた。
Example 16
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 μm and the interval (channel length) between the first electrode and the electrode 2 was 30 μm. A semiconductor element was manufactured to obtain a third detection element.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.8% was observed from the current value before the addition.
 実施例17
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、第1電極および電2電極の幅(チャネル幅)を400μm、第1電極および電2電極の間隔(チャネル長)を25μmとした以外は、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から5.1%の電流値増加が見られた。
Example 17
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 μm and the interval (channel length) between the first electrode and the electrode 2 was 25 μm. A semiconductor element was manufactured to obtain a third detection element.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 5.1% was observed from the current value before the addition.
 実施例18
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、基板をガラスとした以外は実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から4.5%の電流値増加が見られた。
Example 18
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 16 except that the substrate was made of glass, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.5% was observed from the current value before the addition.
 実施例19
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、基板をPETフィルムとした以外は実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から4.7%の電流値増加が見られた。
Example 19
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
A semiconductor layer was formed in the same manner as in Example 16 except that the substrate was a PET film, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.7% was observed from the current value before the addition.
 実施例20
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、基板をPENフィルムとした以外は実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から4.6%の電流値増加が見られた。
Example 20
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 16 except that the substrate was a PEN film, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 4.6% was observed from the current value before the addition.
 実施例21
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 作製した半導体素子の半導体層をFBS(BioWest社製)100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-FBS溶液20μl、75分後に5μg/mL HbA1c(フナコシ製)-FBS溶液20μl、90分後に健常人血液20μlを半導体層に浸したFBSに添加した。その結果を表1に示す。健常人血液添加の時のみ添加前の電流値から5.2%の電流値増加が見られ、血中ヘモグロビンを選択的に検出した。
Example 21
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
The semiconductor layer of the produced semiconductor element was immersed in 100 μl of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 μm after the start of measurement, 20 μl of 5 μg / mL BSA-FBS solution, 75 μm after 5 μg / mL HbA1c (Funakoshi) -FBS solution 20 μl, 90 minutes later, 20 μl of healthy human blood were added to the FBS soaked in the semiconductor layer. The results are shown in Table 1. Only when blood was added to healthy people, a current value increase of 5.2% was observed from the current value before the addition, and blood hemoglobin was selectively detected.
 実施例22
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 作製した半導体素子の半導体層をFBS(BioWest社製)100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-FBS溶液20μl、75分後に健常人血液20μlを半導体層に浸したFBSに添加した。その結果を表1に示す。健常人血液添加の時のみ添加前の電流値から8.0%の電流値増加が見られ、血中HbA1cを選択的に検出した。
(第三の検出素子)
 作製した半導体素子の半導体層をFBS(BioWest社製)100μlに浸し、第1電極と第2電極の間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に5μg/mL BSA-FBS溶液20μl、75分後に健常人血液20μlを半導体層に浸したFBSに添加した。その結果を表1に示す。健常人血液添加の時のみ添加前の電流値から5.3%の電流値増加が見られ、血中ヘモグロビンを選択的に検出した。
Example 22
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The semiconductor layer of the produced semiconductor element was immersed in 100 μl of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 minutes after the start of the measurement, 20 μl of a 5 μg / mL BSA-FBS solution was added to FBS soaked with 20 μl of healthy human blood in a semiconductor layer 75 minutes later. The results are shown in Table 1. Only when a healthy person added blood, an increase in current value of 8.0% was observed from the current value before addition, and blood HbA1c was selectively detected.
(Third detection element)
The semiconductor layer of the produced semiconductor element was immersed in 100 μl of FBS (manufactured by BioWest), and the value of current flowing between the first electrode and the second electrode was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The measurement was performed at a voltage between the first electrode and the second electrode (Vsd) = − 0.2V and a voltage between the first electrode and the third electrode (Vg) = − 0.7V. 60 minutes after the start of the measurement, 20 μl of a 5 μg / mL BSA-FBS solution was added to FBS soaked with 20 μl of healthy human blood in a semiconductor layer 75 minutes later. The results are shown in Table 1. Only when blood was added to a healthy person, a current value increase of 5.3% was observed from the current value before the addition, and blood hemoglobin was selectively detected.
 実施例23
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、Anti-HbA1cの代わりに抗ヘモグロビンを用い、第1電極および電2電極の幅(チャネル幅)を400μm、第1電極および電2電極の間隔(チャネル長)を120μmとした以外は、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)
 上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。その結果を表1に示す。ヘモグロビン添加の時のみ添加前の電流値から1.7%の電流値増加が見られた。
Example 23
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Also, implementation was performed except that anti-hemoglobin was used instead of Anti-HbA1c, the width of the first electrode and the electric two electrode (channel width) was 400 μm, and the distance between the first electrode and the electric two electrode (channel length) was 120 μm. In the same manner as in Example 14, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element)
In order to evaluate the semiconductor element produced above as a sensor, measurement was performed in the same manner as in Example 14. The results are shown in Table 1. Only when hemoglobin was added, a current value increase of 1.7% was observed from the current value before the addition.
 実施例24
 (1)半導体素子の作製
 第二の検出素子は実施例9と同様にして作製した。
 また、第1電極および電2電極の幅(チャネル幅)を400μm、第1電極および電2電極の間隔(チャネル長)を600μmとした以外は、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
(第二の検出素子)
 実施例9と同様の結果を得た。
(第三の検出素子)上記で作製した半導体素子をセンサとして評価するため実施例14と同様にして測定を行った。BSA、HbA1c、ヘモグロビン添加のそれぞれで添加前の電流値から0.3%の電流値増加が見られた。その結果を表1に示す。
Example 24
(1) Production of Semiconductor Element The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 14 except that the width (channel width) of the first electrode and the electrode 2 was 400 μm and the interval (channel length) between the first electrode and the electrode 2 was 600 μm. A semiconductor element was manufactured to obtain a third detection element.
(2) Evaluation as a sensor (second detection element)
The same results as in Example 9 were obtained.
(Third detection element) Measurement was carried out in the same manner as in Example 14 in order to evaluate the semiconductor element produced above as a sensor. With each addition of BSA, HbA1c, and hemoglobin, a current value increase of 0.3% was observed from the current value before the addition. The results are shown in Table 1.
 実施例25
 (1)半導体素子の作製
 第一の検出素子は既存の血糖値センサと同様の製法で作製した。
 第二の検出素子は実施例9と同様にして作製した。
 また、実施例16と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
 図9に示すセンサを作製し、流路にFBS(BioWest社製)200μlを充填し、第二の検出素子、第三の検出素子のそれぞれの電極間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第二の検出素子、第三の検出素子のそれぞれの第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に健常人血液20μlをFBSに添加した。血液は流路中の空間で溶血を行った後に、それぞれの検出素子に到達した。その結果を表1に示す。第一の検出素子からは血糖値由来の電流値変化が得られ、また、第二の検出素子からは添加前の電流値から8.4%の電流値増加が見られ、血中HbA1cを選択的に検出した。さらに、第三の検出素子からは加前の電流値から5.5%の電流値増加が見られ、血中ヘモグロビンを選択的に検出した。
Example 25
(1) Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor.
The second detection element was produced in the same manner as in Example 9.
Further, in the same manner as in Example 16, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as sensor The sensor shown in FIG. 9 was prepared, and 200 μl of FBS (manufactured by BioWest) was filled in the flow path, and the current value flowing between the electrodes of the second detection element and the third detection element Was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The voltage between the first and second electrodes (Vsd) of each of the second and third sensing elements (Vsd) = − 0.2V, and the voltage between the first and third electrodes (Vg) = − 0.7V. It was measured. Sixty minutes after the start of measurement, 20 μl of healthy human blood was added to FBS. The blood reached each detection element after hemolysis in the space in the flow path. The results are shown in Table 1. A change in current value derived from blood glucose level is obtained from the first detection element, and a current value increase of 8.4% is seen from the current value before addition from the second detection element, and blood HbA1c is selected. Detected. Furthermore, the current value increased by 5.5% from the current value before the third detection element, and blood hemoglobin was selectively detected.
 実施例26
 (1)半導体素子の作製
 第一の検出素子は既存の血糖値センサと同様の製法で作製した。
 第二の検出素子は実施例9と同様にして作製した。
 また、実施例17と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
 図9に示すセンサを作製し、流路にFBS(BioWest社製)200μlを充填し、第二の検出素子、第三の検出素子のそれぞれの電極間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第二の検出素子、第三の検出素子のそれぞれの第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に健常人血液20μlをFBSに添加した。その結果を表1に示す。
 第一の検出素子からは血糖値由来の電流値変化が得られ、また、第二の検出素子からは添加前の電流値から8.5%の電流値増加が見られ、血中HbA1cを選択的に検出した。さらに、第三の検出素子からは加前の電流値から5.8%の電流値増加が見られ、血中ヘモグロビンを選択的に検出した。
Example 26
(1) Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor.
The second detection element was produced in the same manner as in Example 9.
Further, in the same manner as in Example 17, a semiconductor layer was formed, a semiconductor element was produced, and a third detection element was obtained.
(2) Evaluation as sensor The sensor shown in FIG. 9 was prepared, and 200 μl of FBS (manufactured by BioWest) was filled in the flow path, and the current value flowing between the electrodes of the second detection element and the third detection element Was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The voltage between the first and second electrodes (Vsd) of each of the second and third sensing elements (Vsd) = − 0.2V, and the voltage between the first and third electrodes (Vg) = − 0.7V. It was measured. Sixty minutes after the start of measurement, 20 μl of healthy human blood was added to FBS. The results are shown in Table 1.
A change in current value derived from blood sugar level is obtained from the first detection element, and a current value increase of 8.5% from the current value before addition is seen from the second detection element, and blood HbA1c is selected. Detected. Furthermore, the current value increased by 5.8% from the current value before the third detection element, and blood hemoglobin was selectively detected.
 実施例27
 (1)半導体素子の作製
 第一の検出素子は既存の血糖値センサと同様の製法で作製した。
 第二の検出素子は実施例9と同様にして作製した。
 また、実施例14と同様にして半導体層を形成し、半導体素子を作製し、第三の検出素子を得た。
 (2)センサとしての評価
 図9に示すセンサを作製し、流路にFBS(BioWest社製)200μlを充填し、第二の検出素子、第三の検出素子のそれぞれの電極間に流れる電流値を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ(株)製)を用いた。第二の検出素子、第三の検出素子のそれぞれの第1電極・第2電極間電圧(Vsd)=-0.2V、第1電極・第3電極間電圧(Vg)=-0.7Vで測定した。測定開始から60分後に健常人血液20μlをFBSに添加した。その結果を表1に示す。
 第一の検出素子からは血糖値由来の電流値変化が得られ、また、第二の検出素子からは添加前の電流値から8.5%の電流値増加が見られ、血中HbA1cを選択的に検出した。さらに、第三の検出素子からは加前の電流値から3.7%の電流値増加が見られ、血中ヘモグロビンを選択的に検出した。
Example 27
(1) Production of semiconductor element The first detection element was produced by the same production method as that of an existing blood glucose level sensor.
The second detection element was produced in the same manner as in Example 9.
Further, a semiconductor layer was formed in the same manner as in Example 14 to produce a semiconductor element, thereby obtaining a third detection element.
(2) Evaluation as sensor The sensor shown in FIG. 9 was prepared, and 200 μl of FBS (manufactured by BioWest) was filled in the flow path, and the current value flowing between the electrodes of the second detection element and the third detection element Was measured. For the measurement, a semiconductor characteristic evaluation system 4200-SCS type (manufactured by Keithley Instruments Co., Ltd.) was used. The voltage between the first and second electrodes (Vsd) of each of the second and third sensing elements (Vsd) = − 0.2V, and the voltage between the first and third electrodes (Vg) = − 0.7V. It was measured. Sixty minutes after the start of measurement, 20 μl of healthy human blood was added to FBS. The results are shown in Table 1.
A change in current value derived from blood sugar level is obtained from the first detection element, and a current value increase of 8.5% from the current value before addition is seen from the second detection element, and blood HbA1c is selected. Detected. Further, the third detection element showed a 3.7% increase in the current value from the current value before the addition, and blood hemoglobin was selectively detected.
 比較例1
 第二の検出素子と第三の検出素子に半導体素子を用いることなく、日本国特開2015-165827の実施例記載の7180形日立自動分析装置を用いてHbA1c、ヘモグロビンを測定した。その結果、前記分析装置が光学機器であることと措置が大型であるために、グルコース測定との同一チップ化による電気的測定が困難であった。
Comparative Example 1
HbA1c and hemoglobin were measured using a 7180 Hitachi automatic analyzer described in the examples of Japanese Patent Application Laid-Open No. 2015-165827 without using semiconductor elements for the second and third detection elements. As a result, since the analysis device is an optical instrument and the measures are large, it is difficult to perform electrical measurement using the same chip as glucose measurement.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年11月9日付で出願された日本特許出願(特願2015-219207)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 9, 2015 (Japanese Patent Application No. 2015-219207), which is incorporated by reference in its entirety.
 本発明を用いたセンサは、化学分析、物理分析、生物分析などの多種多様なセンシングに応用することができ、特に医療用センサやバイオセンサとして好適に用いられる。 The sensor using the present invention can be applied to various types of sensing such as chemical analysis, physical analysis, and biological analysis, and is particularly suitably used as a medical sensor or biosensor.
10 基板
20 上基板
21 覆い部材
101 電極
102 接続部
103 第1電極
104 第2電極
105 第3電極
106 絶縁層
107 配線
108 内部空間
110 反応層
111 半導体層
112 反応層
121 電極
122 第1電極
123 第2電極
200 半導体素子
201 半導体層
202 半導体素子
301 注入口
302 経路
303 空間
304 窪み
401 第一の検出素子
402 第二の検出素子
403 第三の検出素子
10 substrate 20 upper substrate 21 covering member 101 electrode 102 connecting portion 103 first electrode 104 second electrode 105 third electrode 106 insulating layer 107 wiring 108 internal space 110 reaction layer 111 semiconductor layer 112 reaction layer 121 electrode 122 first electrode 123 first 2 electrode 200 semiconductor element 201 semiconductor layer 202 semiconductor element 301 inlet 302 path 303 space 304 recess 401 first detection element 402 second detection element 403 third detection element

Claims (13)

  1.  少なくとも、生体液中のグルコースを検出する第一の検出素子と、グルコース以外の生体関連物質を検出する第二の検出素子とを有し、前記第二の検出素子が半導体素子を含むことを特徴とするセンサ。 It has at least a first detection element that detects glucose in a biological fluid and a second detection element that detects a biological substance other than glucose, and the second detection element includes a semiconductor element. Sensor.
  2.  前記生体関連物質が糖化ヘモグロビンまたは糖化アルブミンである請求項1記載のセンサ。 The sensor according to claim 1, wherein the biological substance is glycated hemoglobin or glycated albumin.
  3.  さらに第三の検出素子を有し、前記第三の検出素子がヘモグロビンを検出することを特徴とする請求項1または2記載のセンサ。 3. The sensor according to claim 1, further comprising a third detection element, wherein the third detection element detects hemoglobin.
  4.  前記第三の検出素子が半導体素子を含むことを特徴とする請求項3記載のセンサ。 4. The sensor according to claim 3, wherein the third detection element includes a semiconductor element.
  5.  前記第二の検出素子の検出部面積が前記第三の検出素子の検出部面積の2倍以上であることを特徴とする請求項1~4のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 4, wherein a detection part area of the second detection element is twice or more a detection part area of the third detection element.
  6.  前記半導体素子がカーボンナノチューブを含有する請求項1~5のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 5, wherein the semiconductor element contains carbon nanotubes.
  7.  前記半導体素子が、少なくとも基板、第1電極、第2電極および半導体層を含有し、前記第1電極および前記第2電極が金属型を80重量%以上含む単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブから選ばれる少なくとも1つを含有する請求項1~6のいずれか1項に記載のセンサ。 The semiconductor element includes at least a substrate, a first electrode, a second electrode, and a semiconductor layer, and the first electrode and the second electrode each include a metal type of 80 wt% or more, a double-walled carbon nanotube, The sensor according to any one of claims 1 to 6, comprising at least one selected from multi-walled carbon nanotubes.
  8.  前記半導体層がカーボンナノチューブを含有する請求項1~7のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 7, wherein the semiconductor layer contains carbon nanotubes.
  9.  前記カーボンナノチューブの表面の少なくとも一部に共役系重合体が付着している請求項6~8のいずれか1項に記載のセンサ。 The sensor according to any one of claims 6 to 8, wherein a conjugated polymer is attached to at least a part of the surface of the carbon nanotube.
  10.  前記半導体層に、前記生体関連物質と選択的に相互作用する別の生体関連物質が固定化されている請求項7~9のいずれか1項に記載のセンサ。 10. The sensor according to claim 7, wherein another biological substance that selectively interacts with the biological substance is immobilized on the semiconductor layer.
  11.  前記センサが、生体液の注入口と、前記注入口と前記第一の検出素子および前記第二の検出素子とをそれぞれ接続する経路とを有する請求項1~10のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 10, wherein the sensor has a biological fluid inlet, and a path connecting the inlet to the first detection element and the second detection element. Sensor.
  12.  前記生体液が血液である請求項1~11のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 11, wherein the biological fluid is blood.
  13.  前記経路が、前記血液の注入口と前記第二の検出素子の間に、前記血液と溶血剤を混合する空間を有する請求項1~12のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 12, wherein the path has a space for mixing the blood and a hemolytic agent between the blood inlet and the second detection element.
PCT/JP2016/083127 2015-11-09 2016-11-08 Sensor WO2017082253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550336A JPWO2017082253A1 (en) 2015-11-09 2016-11-08 Sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015219207 2015-11-09
JP2015-219207 2015-11-09

Publications (1)

Publication Number Publication Date
WO2017082253A1 true WO2017082253A1 (en) 2017-05-18

Family

ID=58695405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083127 WO2017082253A1 (en) 2015-11-09 2016-11-08 Sensor

Country Status (3)

Country Link
JP (1) JPWO2017082253A1 (en)
TW (1) TW201716779A (en)
WO (1) WO2017082253A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531131A4 (en) * 2016-10-24 2019-12-25 Toray Industries, Inc. Semiconductor sensor and manufacturing method for same, and compound sensor
CN111225958A (en) * 2017-07-27 2020-06-02 哈佛大学校长及研究员协会 Conductive antifouling coating composition
CN113588750A (en) * 2021-07-16 2021-11-02 成都云芯医联科技有限公司 Electrochemical test card for simultaneously measuring hemoglobin and glycosylated hemoglobin and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505115A (en) * 2020-12-17 2021-03-16 东北农业大学 Preparation and detection method of three-dimensional photosensitive electrode for detecting phospholipids in crude oil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242900A (en) * 2005-03-07 2006-09-14 Mitsubishi Chemicals Corp Sensor unit, reaction field cell unit and analyzing apparatus
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube
WO2007094354A1 (en) * 2006-02-14 2007-08-23 National Institute Of Advanced Industrial Science And Technology HEMOGLOBIN A1c SENSOR
JP2008082988A (en) * 2006-09-28 2008-04-10 Hokkaido Univ Detecting method utilizing multistage amplification
CN101358982A (en) * 2007-08-01 2009-02-04 中国科学院电子学研究所 Saccharification hemoglobin immune sensor based on field effect tube
WO2014069551A1 (en) * 2012-10-31 2014-05-08 日立化成株式会社 Sensor chip, and measurement device and measurement method using same
US20140170675A1 (en) * 2011-06-06 2014-06-19 Yeda Research And Development Co. Ltd Protein detector based on molecular controlled semiconductor resistor
WO2015012186A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Carbon nanotube composite, semiconductor device, and sensor using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242900A (en) * 2005-03-07 2006-09-14 Mitsubishi Chemicals Corp Sensor unit, reaction field cell unit and analyzing apparatus
JP2006317360A (en) * 2005-05-16 2006-11-24 National Institute Of Advanced Industrial & Technology Biosensor using bamboo-shaped carbon nanotube
WO2007094354A1 (en) * 2006-02-14 2007-08-23 National Institute Of Advanced Industrial Science And Technology HEMOGLOBIN A1c SENSOR
JP2008082988A (en) * 2006-09-28 2008-04-10 Hokkaido Univ Detecting method utilizing multistage amplification
CN101358982A (en) * 2007-08-01 2009-02-04 中国科学院电子学研究所 Saccharification hemoglobin immune sensor based on field effect tube
US20140170675A1 (en) * 2011-06-06 2014-06-19 Yeda Research And Development Co. Ltd Protein detector based on molecular controlled semiconductor resistor
WO2014069551A1 (en) * 2012-10-31 2014-05-08 日立化成株式会社 Sensor chip, and measurement device and measurement method using same
WO2015012186A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Carbon nanotube composite, semiconductor device, and sensor using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOKO TSUKUBE: "On Chip-gata Flow Immunoassay ni yoru HbAlc no Kan'i Sokuteiho no Kaihatsu", THE ELECTROCHEMICAL SOCIETY OF JAPAN KOEN YOSHISHU DAI 71 KAI TAIKAI, 2013, pages 98 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3531131A4 (en) * 2016-10-24 2019-12-25 Toray Industries, Inc. Semiconductor sensor and manufacturing method for same, and compound sensor
CN111225958A (en) * 2017-07-27 2020-06-02 哈佛大学校长及研究员协会 Conductive antifouling coating composition
JP2020528950A (en) * 2017-07-27 2020-10-01 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Electrically conductive antifouling coating composition
CN111225958B (en) * 2017-07-27 2023-06-20 哈佛大学校长及研究员协会 Conductive antifouling coating composition
JP7365330B2 (en) 2017-07-27 2023-10-19 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Electrically conductive antifouling coating composition
CN113588750A (en) * 2021-07-16 2021-11-02 成都云芯医联科技有限公司 Electrochemical test card for simultaneously measuring hemoglobin and glycosylated hemoglobin and manufacturing method thereof
CN113588750B (en) * 2021-07-16 2024-01-19 成都云芯医联科技有限公司 Electrochemical test card for simultaneously measuring hemoglobin and glycosylated hemoglobin and manufacturing method thereof

Also Published As

Publication number Publication date
TW201716779A (en) 2017-05-16
JPWO2017082253A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
Ramadan et al. Carbon-dot-enhanced graphene field-effect transistors for ultrasensitive detection of exosomes
Verma et al. Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer
Veetil et al. Development of immunosensors using carbon nanotubes
Augustine et al. Amine-functionalized MoO3@ RGO nanohybrid-based biosensor for breast cancer detection
Khan et al. Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock-co-polymers and Au electrodes
WO2015012186A1 (en) Carbon nanotube composite, semiconductor device, and sensor using same
TWI760377B (en) Semiconductor sensor, method for manufacturing the same, and composite sensor
TW541416B (en) Multi-array, multi-specific electrochemiluminescence testing
JP6922222B2 (en) Semiconductor devices, their manufacturing methods, and sensors using them
WO2017082253A1 (en) Sensor
Hampitak et al. A point-of-care immunosensor based on a quartz crystal microbalance with graphene biointerface for antibody assay
Malathi et al. Disposable biosensors based on metal nanoparticles
JP6634827B2 (en) Carbon nanotube composite, semiconductor element, method for producing the same, and sensor using the same
Lee et al. Fabrication and Functionalisation of Nanocarbon‐Based Field‐Effect Transistor Biosensors
JP2009002939A (en) Amperometric biosensor
Rabbani et al. Serum CRP biomarker detection by using carbon nanotube field-effect transistor (CNT-FET) immunosensor
Wang et al. Multifunctional nanolabels based on polydopamine nanospheres for sensitive alpha fetoprotein electrochemical detection
Sun et al. Recent Advances in Graphene Field‐Effect Transistor Toward Biological Detection
US20240002679A1 (en) Applications, methods, and tools for development, rapid preparation and deposition of a nanocomposite coating on surfaces for diagnostic devices including electrochemical sensors
Song et al. Highly effective and efficient self-assembled multilayer-based electrode passivation for operationally stable and reproducible electrolyte-gated transistor biosensors
JP2008105978A (en) Method for direct surface immobilization of saccharide, and method for detecting interaction between saccharide and protein
Palaniappan et al. Functionalized Carbon Nanotubes: Applications in Biosensing
Frias Development of flexible biosensors for diagnostic applications
임재흥 A Biosensor platform based on the Carbon Nanotube Network for detecting antibody antigen reaction
Shi et al. Signal-Boosted Electrochemical Lateral Flow Immunoassay for Early Point-of-Care Detection of Liver Cancer Biomarker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864214

Country of ref document: EP

Kind code of ref document: A1