WO2017082040A1 - Control device for vehicle and control method for vehicle32 - Google Patents

Control device for vehicle and control method for vehicle32 Download PDF

Info

Publication number
WO2017082040A1
WO2017082040A1 PCT/JP2016/081564 JP2016081564W WO2017082040A1 WO 2017082040 A1 WO2017082040 A1 WO 2017082040A1 JP 2016081564 W JP2016081564 W JP 2016081564W WO 2017082040 A1 WO2017082040 A1 WO 2017082040A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive source
vehicle
control
vehicle control
control device
Prior art date
Application number
PCT/JP2016/081564
Other languages
French (fr)
Japanese (ja)
Inventor
義祐 西廣
中崎 勝啓
小林 直樹
太田 雄介
伸太郎 大塩
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2017082040A1 publication Critical patent/WO2017082040A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/18Preventing unintentional or unsafe shift, e.g. preventing manual shift from highest gear to reverse gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • JP2013-213557A discloses a vehicle control device that executes driving source stop control during traveling by stopping the engine and releasing the clutch when the accelerator pedal is not depressed.
  • the engine is stopped, so that oil is not discharged from the oil pump driven by the engine, and the hydraulic circuit is not filled with oil.
  • a pilot pressure and a feedback pressure are supplied to a hydraulic control valve that controls the hydraulic pressure supplied to the clutch.
  • the spool is moved by the force generated by these differential pressures, and the hydraulic pressure supplied to the clutch is controlled. Therefore, when the hydraulic circuit is not filled with oil, the pilot pressure or the like supplied to the hydraulic control valve is not stable, and there is a possibility that the control will be out of control. That is, the hydraulic circuit may be out of control while the drive source is stopped during traveling such as sailing stop control.
  • the present invention has been invented to solve such a problem.
  • the R range is selected while the driving source is stopped during traveling, such as sailing stop control, an abnormal behavior of the vehicle occurs.
  • the purpose is to prevent the driver from feeling uncomfortable.
  • a vehicle control device is a vehicle control device that controls a vehicle including a drive source, an automatic transmission connected to the drive source, and an oil pump driven by the drive source.
  • the first control unit that executes the traveling drive source stop control for stopping the drive source and setting the automatic transmission to the neutral state, and reverse during the traveling drive source stop control.
  • a second control unit that inhibits starting of the drive source when the range is selected.
  • a vehicle control method is a vehicle control method for controlling a vehicle including a drive source, an automatic transmission connected to the drive source, and an oil pump driven by the drive source. If the drive source stop condition during travel is satisfied, the drive source stop control is executed to stop the drive source and set the automatic transmission to the neutral state, and the reverse range is selected during the drive source stop control during travel. Then, starting of the drive source is prohibited.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the first embodiment.
  • FIG. 2 is a time chart when the shift lever is changed to the R range during the sailing stop control in the first embodiment.
  • FIG. 3 is a time chart showing a comparative example.
  • FIG. 4 is a time chart when the shift lever is changed to the R range during the sailing stop control in the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • the vehicle includes an engine 1 as a drive source, a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a hydraulic control circuit 5, an oil pump 6, an engine controller 10, and a transmission controller 11.
  • rotation generated by the engine 1 is transmitted to a wheel (not shown) via a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a gear set 8, and a differential gear device 9.
  • the forward / reverse switching mechanism 3 and the continuously variable transmission 4 constitute an automatic transmission.
  • the torque converter 2 has a lockup clutch 2a.
  • the lockup clutch 2a When the lockup clutch 2a is engaged, the input shaft and the output shaft of the torque converter 2 are directly connected, and the input shaft and the output shaft rotate at the same speed. .
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear set as a main component, and the sun gear is coupled to the engine 1 via the torque converter 2 and the carrier is coupled to the primary pulley 4a.
  • the forward / reverse switching mechanism 3 further includes a forward clutch 3a that directly connects the sun gear and the carrier of the double pinion planetary gear set, and a reverse brake 3b (reverse engagement element) that fixes the ring gear.
  • the forward clutch 3a When the forward clutch 3a is engaged, the engine 1 Then, the input rotation via the torque converter 2 is transmitted to the primary pulley 4a as it is, and the input rotation via the torque converter 2 from the engine 1 is transmitted to the primary pulley 4a under reverse deceleration when the reverse brake 3b is engaged.
  • the continuously variable transmission 4 includes a primary pulley 4a, a secondary pulley 4b, and a belt 4c.
  • the continuously variable transmission 4 by controlling the hydraulic pressure supplied to the primary pulley 4a and the hydraulic pressure supplied to the secondary pulley 4b, the contact radii between the pulleys 4a, 4b and the belt 4c are changed. The ratio is changed.
  • the oil pump 6 is driven by using a part of the power of the engine 1 when the rotation of the engine 1 is inputted.
  • the oil discharged from the oil pump 6 is supplied to the hydraulic control circuit 5 by driving the oil pump 6.
  • the oil pump 6 is not driven and oil is not discharged.
  • the hydraulic control circuit 5 includes a plurality of flow paths and a plurality of hydraulic actuators.
  • the hydraulic actuator includes a solenoid and a hydraulic control valve.
  • the hydraulic actuator is controlled based on a control signal from the transmission controller 11 to switch the hydraulic pressure supply path, and the necessary hydraulic pressure is adjusted from the hydraulic pressure generated by the oil discharged from the oil pump 6.
  • the hydraulic control circuit 5 supplies the adjusted hydraulic pressure to each part of the continuously variable transmission 4, the forward / reverse switching mechanism 3, and the torque converter 2.
  • Supply / discharge of hydraulic pressure to the forward / reverse switching mechanism 3 is performed by connecting the shift lever 40 via a linkage or a control cable or the like, and operating the manual valve 5a and the pilot pressure and spring controlled by the solenoids 5b and 5c.
  • Hydraulic control valves 5d and 5e that operate in accordance with the urging force and feedback pressure.
  • the hydraulic control valve 5e that controls the hydraulic pressure supplied to the reverse brake 3b is a normally high control valve that forms an oil passage so as to supply hydraulic pressure to the reverse brake 3b when no current is supplied to the solenoid 5c. . Therefore, when the shift lever 40 is in the R range, no current is supplied to the solenoid 5c, and the hydraulic control valve 5e supplies hydraulic pressure to the reverse brake 3b. Thereby, the reverse brake 3b is fastened. On the other hand, when the shift lever 40 is in a range other than the R range, a current is supplied to the solenoid 5c, and the hydraulic control valve 5e forms an oil passage so as to discharge (drain) the hydraulic pressure from the reverse brake 3b. . As a result, the reverse brake 3b is released.
  • the transmission controller 11 includes a CPU, a ROM, a RAM, and the like. In the transmission controller 11, the function of the transmission controller 11 is exhibited by the CPU reading and executing a program stored in the ROM.
  • the transmission controller 11 corresponds to the first control unit and the second control unit in the claims. Note that the first control unit and the second control unit may be configured as separate controllers.
  • the transmission controller 11 includes a signal from the accelerator opening sensor 21 that detects the accelerator opening APO, a signal from the brake hydraulic pressure sensor 22 that detects the brake hydraulic pressure BRP corresponding to the operation amount of the brake pedal, and a shift lever 40.
  • a signal from the inhibitor switch 23 for detecting the position of is input.
  • a signal related to the engine torque Te from the engine controller 10 that controls the engine 1 is input to the transmission controller 11.
  • the fuel injection to the engine 1 is stopped and the engine 1 is stopped, and the forward / reverse switching mechanism 3 releases the forward clutch 3a and the reverse brake 3b.
  • the sailing stop control for setting the neutral state is executed.
  • Sailing stop control is executed by the transmission controller 11 (first control unit).
  • Sailing stop conditions are, for example, the following conditions.
  • the shift lever 40 is in the D range.
  • the vehicle speed VSP is equal to or higher than the first predetermined vehicle speed V1.
  • the accelerator pedal is not depressed.
  • the brake pedal is not depressed.
  • the first predetermined vehicle speed V1 is a medium or high vehicle speed and is set in advance.
  • the sailing stop condition is satisfied when all of the above conditions (a) to (d) are satisfied, and is not satisfied when any of the above (a) to (d) is not satisfied.
  • the hydraulic control valve 5e of the present embodiment is a normally high control valve. However, during the sailing stop control, the engine 1 is stopped, the oil pump 6 is not driven, and hydraulic pressure is not supplied to the reverse brake 3b. The supply of current to 5c is stopped, and the power consumed by the solenoid 5c is reduced.
  • the sailing stop control is terminated and the engine 1 is started. That is, the sailing stop condition is also a sailing stop cancellation condition for canceling the sailing stop control.
  • the sailing stop condition and the sailing stop cancellation condition may be different conditions.
  • the transmission controller 11 (second control unit) prohibits the start of the engine 1 even if the shift lever 40 is changed to the R range during the sailing stop control. The engine 1 is not started and the sailing stop control is continued. This is due to the following reason.
  • Oil pump 6 is not driven during sailing stop control. Therefore, a part of the hydraulic control circuit 5 is not filled with oil, the pilot pressure supplied to the hydraulic control valve 5e is not stable, and the control may be out of control. In such a case, when the engine 1 is started and oil is discharged from the oil pump 6, the hydraulic pressure is rapidly supplied to the reverse brake 3b, the torque capacity of the reverse brake 3b is increased, and an abnormal behavior of the vehicle occurs. Or the driver may feel uncomfortable.
  • the R-INH control is a control for setting the forward / reverse switching mechanism 3 to the neutral state when the shift lever 40 is changed to the R range during forward travel when the vehicle speed VSP is equal to or higher than the second predetermined vehicle speed V2.
  • the second predetermined vehicle speed V2 is lower than the first predetermined vehicle speed V1. Accordingly, at least R-INH control can be executed during the sailing stop control.
  • the R-INH control is set so as to operate normally on condition that the oil passage for supplying hydraulic pressure to the reverse brake 3b is filled with oil, and the control is in a malfunction state during the sailing stop control. In such a case, the R-INH control may not operate normally. For this reason, when the engine 1 is started by supplying current to the solenoid 5c so that the hydraulic pressure is discharged from the reverse brake 3b in the hydraulic control valve 5e, the forward / reverse switching mechanism 3 does not enter the neutral state, and the reverse brake 3b There is a possibility that hydraulic pressure is supplied, abnormal behavior of the vehicle occurs, or the driver feels uncomfortable. In particular, when the engine 1 is started earlier than the current supply to the solenoid 5c by executing the R-INH control, abnormal behavior of the vehicle is likely to occur.
  • the start of the engine 1 is prohibited, the engine 1 is not started immediately, and the sailing stop control is continued.
  • the prohibition of starting the engine 1 means that when the shift lever 40 is in the R range, for example, when another sailing stop condition is not satisfied, for example, when the accelerator pedal is depressed. This includes not starting 1.
  • FIG. 2 is a time chart for explaining the case where the sailing stop control of the present embodiment is used.
  • FIG. 3 is a time chart illustrating a comparative example that does not use the sailing stop control of the present embodiment. In each time chart, sailing stop control is executed.
  • the shift lever 40 is operated, and at time t1, the shift lever 40 is changed from the D range to the R range through the N range.
  • the manual valve 5a forms an oil passage so that hydraulic pressure can be supplied to the reverse brake 3b.
  • a current is supplied to the solenoid 5c, and an oil passage is formed in the hydraulic control valve 5e so that the hydraulic pressure is discharged from the reverse brake 3b.
  • an oil passage capable of supplying hydraulic pressure to the reverse brake 3b is formed by the manual valve 5a, for example, at a timing (time t0) when the shift lever 40 is in the N range, current is supplied to the solenoid 5c, An oil passage may be formed so that the hydraulic pressure is discharged from the reverse brake 3b in the control valve 5e.
  • the sailing stop control is terminated and the engine 1 is started. If the shift lever 40 is changed to the R range during the sailing stop control, the R-INH control is executed, so that the forward / reverse switching mechanism 3 is instructed to enter the neutral state. However, during the sailing stop control, there is a possibility that the control is in a malfunctioning state. Even if the R-INH control is executed, the hydraulic pressure is supplied to the reverse brake 3b, and an abnormal behavior of the vehicle occurs, or the driver May give a sense of incongruity.
  • the start of the engine 1 is prohibited and the engine 1 is not started. Therefore, the hydraulic pressure is not supplied to the reverse brake 3b, and the abnormal behavior of the vehicle can be prevented.
  • the shift lever 40 is operated, and at time t3, the shift lever 40 changes from the R range to the N range to the D range.
  • the engine 1 is started, and at time t3, the forward clutch 3a is engaged and the sailing stop control is terminated.
  • the shift lever 40 is in the N range, the current supply to the solenoid 5c is stopped. Even if the current supply to the solenoid 5c is stopped and the oil passage is formed so that the hydraulic pressure is supplied to the reverse brake 3b, the hydraulic pressure is not supplied to the hydraulic control valve 5e by the manual valve 5a. It is never supplied.
  • the shift lever 40 is changed to the R range to prohibit the start of the engine 1 (the engine 1 start prohibition state), and supply current to the solenoid 5c that is an instruction to release the reverse brake 3b.
  • the sailing stop control may be terminated and the engine 1 may be started.
  • the predetermined time is a preset time, and is a time when preparation for forming the oil passage is completed so that the hydraulic pressure is not supplied to the reverse brake 3b. Even if oil flows rapidly into the hydraulic control circuit 5, the engine 1 is started after the hydraulic pressure is not supplied to the reverse brake 3b, so that the occurrence of abnormal behavior of the vehicle can be suppressed. Corresponding effect).
  • the reverse brake 3b As soon as the shift lever 40 is changed to the R range during the sailing stop control and the sailing stop control is terminated and the engine 1 is started, the reverse brake 3b generates a torque capacity, thereby generating a braking force and causing an abnormality of the vehicle. There is a risk that behavior may occur or the driver may feel uncomfortable.
  • the shift lever 40 when the shift lever 40 is changed to the R range during the sailing stop control, the start of the engine 1 is prohibited. Accordingly, it is possible to prevent occurrence of abnormal behavior of the vehicle or to give the driver a sense of incongruity (effect corresponding to claim 1).
  • the sailing stop control the supply of current to the solenoid 5c is stopped while the shift lever 40 is in the D range.
  • the hydraulic control valve 5e that supplies and discharges hydraulic pressure to the reverse brake 3b is a normally high control valve
  • the power consumed by the solenoid 5c can be reduced.
  • the electric power supplied to the solenoid 5c is supplied from the battery, and for example, the alternator is driven when the stored amount of the battery decreases. Since the alternator is driven by the engine 1, the sailing stop control may end in order to drive the alternator.
  • by reducing the power consumed by the solenoid 5c during the sailing stop control it is possible to suppress the start of the engine 1 and improve the fuel consumption in the engine 1 (effect corresponding to claim 4). .
  • the hydraulic control valve 5e that controls the hydraulic pressure supplied to the reverse brake 3b forms an oil passage so that the hydraulic pressure is discharged to the reverse brake 3b when no current is supplied to the solenoid 5c.
  • This is a normally low control valve. Accordingly, when the shift lever 40 is in the R range, current is supplied to the solenoid 5c, and the hydraulic control valve 5e supplies hydraulic pressure to the reverse brake 3b.
  • the automatic transmission having the forward / reverse switching mechanism 3 has been described.
  • the automatic transmission may have an auxiliary transmission mechanism.
  • the automatic transmission may be configured to include a stepped transmission or a toroidal type continuously variable transmission instead of the continuously variable transmission 4.
  • the sailing stop control is described as an example of the driving source stop control during traveling.
  • the driving source stop control during traveling may be coast stop control, for example. That is, the above control can be applied when the shift lever 40 is changed to the R range during the driving source stop control during traveling.
  • Coast stop control is executed by the transmission controller 11 when the coast stop establishment condition is satisfied.
  • the coast stop establishment conditions are, for example, the following (a) to (d).
  • (A) The shift lever 40 is in the D range.
  • (B) The vehicle speed VSP is less than a predetermined vehicle speed.
  • (C) The accelerator pedal is not depressed.
  • (D) The brake pedal is depressed.
  • the predetermined vehicle speed is a low vehicle speed and is a vehicle speed equal to or lower than the vehicle speed at which the lockup clutch 2a is released.
  • the coast stop establishment condition is satisfied when all of the conditions (a) to (d) are satisfied, and is not satisfied when any of the conditions (a) to (d) is not satisfied.
  • the coast stop cancellation condition is, for example, that any of (a) to (d) is not established during the coast stop control, but the coast stop establishment condition and the coast stop cancellation condition may be different. .
  • the drive source may be, for example, a motor, the engine 1 and the motor.
  • the transmission controller 11 and the engine controller 10 may constitute a single controller. Further, the transmission controller 11 may be constituted by a plurality of controllers.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

A vehicle control device that controls vehicles comprising a drive source, an automatic transmission connected to the drive source, and an oil pump driven by the drive source. The vehicle control device comprises: a first control unit that, when traveling drive source stop conditions are met, stops the drive source and puts the automatic transmission into neutral; and a second control unit that, when a reverse range is selected during traveling drive source stop control, prohibits starting of the drive source.

Description

車両の制御装置、及び車両の制御方法Vehicle control apparatus and vehicle control method
 本発明は車両の制御装置、及び車両の制御方法に関するものである。 The present invention relates to a vehicle control device and a vehicle control method.
 従来、アクセルペダルが踏み込まれていない場合に、エンジンを停止し、クラッチを解放して走行中駆動源停止制御を実行する車両の制御装置がJP2013-213557Aに開示されている。 Conventionally, JP2013-213557A discloses a vehicle control device that executes driving source stop control during traveling by stopping the engine and releasing the clutch when the accelerator pedal is not depressed.
 上記のような走行中駆動源停止制御としては、例えばセレクトレバーがDレンジであり、車速が中、高車速であり、アクセルペダルが踏み込まれておらず、かつブレーキペダルが踏み込まれていない場合に、エンジンを停止し、クラッチを解放するセーリングストップ制御なども知られている。 As the drive source stop control during traveling as described above, for example, when the select lever is in the D range, the vehicle speed is medium, the vehicle speed is high, the accelerator pedal is not depressed, and the brake pedal is not depressed. Sailing stop control for stopping the engine and releasing the clutch is also known.
 例えばセーリングストップ制御中は、エンジンが停止するので、エンジンによって駆動されるオイルポンプからは油が吐出されず、油圧回路に油が満たされない状態となる。例えば、クラッチに供給される油圧を制御する油圧制御弁にはパイロット圧と、フィードバック圧とが供給される。この油圧制御弁では、これらの差圧によって発生する力によってスプールが移動し、クラッチに供給される油圧が制御される。そのため、油圧回路に油が満たされていない場合には、油圧制御弁に供給されるパイロット圧などが安定せず、制御不調状態となるおそれがある。つまり、セーリングストップ制御などの走行中駆動源停止中は、油圧回路が制御不調状態となっているおそれがある。 For example, during sailing stop control, the engine is stopped, so that oil is not discharged from the oil pump driven by the engine, and the hydraulic circuit is not filled with oil. For example, a pilot pressure and a feedback pressure are supplied to a hydraulic control valve that controls the hydraulic pressure supplied to the clutch. In this hydraulic control valve, the spool is moved by the force generated by these differential pressures, and the hydraulic pressure supplied to the clutch is controlled. Therefore, when the hydraulic circuit is not filled with oil, the pilot pressure or the like supplied to the hydraulic control valve is not stable, and there is a possibility that the control will be out of control. That is, the hydraulic circuit may be out of control while the drive source is stopped during traveling such as sailing stop control.
 走行中駆動源停止制御が終了し、エンジンが始動されオイルポンプから油が吐出されると、油圧回路に急速に油が流れ込む。制御不調状態の油圧回路に急速に油が流れ込むと、意図しない回路の油圧が急速に高くなるおそれがある。 ∙ When the drive source stop control is finished during running, the engine is started, and when oil is discharged from the oil pump, the oil quickly flows into the hydraulic circuit. If oil flows rapidly into a hydraulic circuit that is out of control, the hydraulic pressure of an unintended circuit may increase rapidly.
 走行中駆動源停止制御中にシフトレバーがRレンジに変更されて走行中駆動源停止制御を終了する場合には、後進ブレーキに供給される油圧が急速に増加する。そのため、車速が中、高車速であるにも関わらず、後進ブレーキのトルク容量が増加して後進ブレーキによる制動力が発生するおそれがある。これにより、車両の異常挙動が発生し、又は運転者に違和感を与えるおそれがある。 When the shift lever is changed to the R range during the driving source stop control during traveling and the driving source stop control during traveling ends, the hydraulic pressure supplied to the reverse brake increases rapidly. Therefore, although the vehicle speed is medium and high, there is a risk that the torque capacity of the reverse brake increases and a braking force is generated by the reverse brake. Thereby, abnormal behavior of the vehicle may occur, or the driver may feel uncomfortable.
 これを防止するために、例えば車速が中、高車速であり、シフトレバーがRレンジに変更された場合に、後進ブレーキを締結せずにニュートラル状態とするR-INH制御を実行することが知られている。しかし、制御不調状態となっている油圧回路では、後進ブレーキがニュートラル状態とならず、R-INH制御が正常に実行されないおそれがあり、車両の異常挙動が発生し、又は運転者に違和感を与えるおそれがある。 In order to prevent this, for example, when the vehicle speed is medium and high, and the shift lever is changed to the R range, it is known to execute R-INH control for setting the neutral state without engaging the reverse brake. It has been. However, in a hydraulic circuit that is out of control, the reverse brake is not in a neutral state, and there is a possibility that R-INH control may not be executed normally, causing abnormal behavior of the vehicle, or causing the driver to feel uncomfortable. There is a fear.
 本発明はこのような問題点を解決するために発明されたもので、セーリングストップ制御などの走行中駆動源停止中に、Rレンジが選択された場合に、車両の異常挙動が発生することを防止し、運転者に違和感を与えることを防止することを目的とする。 The present invention has been invented to solve such a problem. When the R range is selected while the driving source is stopped during traveling, such as sailing stop control, an abnormal behavior of the vehicle occurs. The purpose is to prevent the driver from feeling uncomfortable.
 本発明のある態様に係る車両の制御装置は、駆動源と、駆動源と接続される自動変速機と、駆動源によって駆動されるオイルポンプとを備えた車両を制御する車両の制御装置であって、走行中駆動源停止条件が成立すると、駆動源を停止すると共に自動変速機をニュートラル状態とする走行中駆動源停止制御を実行する第1制御部と、走行中駆動源停止制御中に後進レンジが選択されると、駆動源の始動を禁止する第2制御部と、を備える。 A vehicle control device according to an aspect of the present invention is a vehicle control device that controls a vehicle including a drive source, an automatic transmission connected to the drive source, and an oil pump driven by the drive source. When the traveling drive source stop condition is satisfied, the first control unit that executes the traveling drive source stop control for stopping the drive source and setting the automatic transmission to the neutral state, and reverse during the traveling drive source stop control. A second control unit that inhibits starting of the drive source when the range is selected.
 本発明の別の態様に係る車両の制御方法は、駆動源と、駆動源と接続される自動変速機と、駆動源によって駆動されるオイルポンプとを備えた車両を制御する車両の制御方法であって、走行中駆動源停止条件が成立すると、駆動源を停止すると共に自動変速機をニュートラル状態とする走行中駆動源停止制御を実行し、走行中駆動源停止制御中に後進レンジが選択されると、駆動源の始動を禁止する。 A vehicle control method according to another aspect of the present invention is a vehicle control method for controlling a vehicle including a drive source, an automatic transmission connected to the drive source, and an oil pump driven by the drive source. If the drive source stop condition during travel is satisfied, the drive source stop control is executed to stop the drive source and set the automatic transmission to the neutral state, and the reverse range is selected during the drive source stop control during travel. Then, starting of the drive source is prohibited.
 これら態様によると、走行中駆動源停止制御中に後進レンジが選択された場合に、駆動源が始動することによりオイルポンプから油が吐出されることを防止し、後進ブレーキのトルク容量が増加することを防止する。これにより、車両の異常挙動の発生を防止し、運転者に違和感を与えることを防止することができる。 According to these aspects, when the reverse range is selected during the driving source stop control during traveling, oil is not discharged from the oil pump by starting the driving source, and the torque capacity of the reverse brake increases. To prevent that. Thereby, generation | occurrence | production of the abnormal behavior of a vehicle can be prevented and it can prevent giving a discomfort to a driver | operator.
図1は、第1実施形態の車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to the first embodiment. 図2は、第1実施形態におけるセーリングストップ制御中にシフトレバーがRレンジに変更された場合のタイムチャートである。FIG. 2 is a time chart when the shift lever is changed to the R range during the sailing stop control in the first embodiment. 図3は、比較例を示すタイムチャートである。FIG. 3 is a time chart showing a comparative example. 図4は、第2実施形態におけるセーリングストップ制御中にシフトレバーがRレンジに変更された場合のタイムチャートである。FIG. 4 is a time chart when the shift lever is changed to the R range during the sailing stop control in the second embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本実施形態の車両の概略構成図である。車両は、駆動源としてのエンジン1と、トルクコンバータ2と、前後進切替機構3と、無段変速機4と、油圧制御回路5と、オイルポンプ6と、エンジンコントローラ10と、変速機コントローラ11とを備える。車両においては、エンジン1で発生した回転が、トルクコンバータ2、前後進切替機構3、無段変速機4、歯車組8、ディファレンシャルギヤ装置9を経て図示しない車輪に伝達される。前後進切替機構3と無段変速機4とによって自動変速機が構成される。 FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment. The vehicle includes an engine 1 as a drive source, a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a hydraulic control circuit 5, an oil pump 6, an engine controller 10, and a transmission controller 11. With. In the vehicle, rotation generated by the engine 1 is transmitted to a wheel (not shown) via a torque converter 2, a forward / reverse switching mechanism 3, a continuously variable transmission 4, a gear set 8, and a differential gear device 9. The forward / reverse switching mechanism 3 and the continuously variable transmission 4 constitute an automatic transmission.
 トルクコンバータ2は、ロックアップクラッチ2aを有しており、ロックアップクラッチ2aが締結されると、トルクコンバータ2の入力軸と出力軸とが直結し、入力軸と出力軸とが同速回転する。 The torque converter 2 has a lockup clutch 2a. When the lockup clutch 2a is engaged, the input shaft and the output shaft of the torque converter 2 are directly connected, and the input shaft and the output shaft rotate at the same speed. .
 前後進切替機構3は、ダブルピニオン遊星歯車組を主たる構成要素とし、そのサンギヤをトルクコンバータ2を介してエンジン1に結合し、キャリアをプライマリプーリ4aに結合する。前後進切替機構3は更に、ダブルピニオン遊星歯車組のサンギヤおよびキャリア間を直結する前進クラッチ3a、およびリングギヤを固定する後進ブレーキ3b(後進用締結要素)を備え、前進クラッチ3aの締結時にエンジン1からトルクコンバータ2を経由した入力回転をそのままプライマリプーリ4aに伝達し、後進ブレーキ3bの締結時にエンジン1からトルクコンバータ2を経由した入力回転を逆転減速下にプライマリプーリ4aへ伝達する。 The forward / reverse switching mechanism 3 includes a double pinion planetary gear set as a main component, and the sun gear is coupled to the engine 1 via the torque converter 2 and the carrier is coupled to the primary pulley 4a. The forward / reverse switching mechanism 3 further includes a forward clutch 3a that directly connects the sun gear and the carrier of the double pinion planetary gear set, and a reverse brake 3b (reverse engagement element) that fixes the ring gear. When the forward clutch 3a is engaged, the engine 1 Then, the input rotation via the torque converter 2 is transmitted to the primary pulley 4a as it is, and the input rotation via the torque converter 2 from the engine 1 is transmitted to the primary pulley 4a under reverse deceleration when the reverse brake 3b is engaged.
 無段変速機4は、プライマリプーリ4aと、セカンダリプーリ4bと、ベルト4cとを備える。無段変速機4では、プライマリプーリ4aに供給される油圧と、セカンダリプーリ4bに供給される油圧とが制御されることで、各プーリ4a、4bとベルト4cとの接触半径が変更され、変速比が変更される。 The continuously variable transmission 4 includes a primary pulley 4a, a secondary pulley 4b, and a belt 4c. In the continuously variable transmission 4, by controlling the hydraulic pressure supplied to the primary pulley 4a and the hydraulic pressure supplied to the secondary pulley 4b, the contact radii between the pulleys 4a, 4b and the belt 4c are changed. The ratio is changed.
 オイルポンプ6は、エンジン1の回転が入力されエンジン1の動力の一部を利用して駆動される。オイルポンプ6の駆動により、オイルポンプ6から吐出された油は、油圧制御回路5に供給される。なお、エンジン1が停止している場合には、オイルポンプ6は駆動されず、油は吐出されない。 The oil pump 6 is driven by using a part of the power of the engine 1 when the rotation of the engine 1 is inputted. The oil discharged from the oil pump 6 is supplied to the hydraulic control circuit 5 by driving the oil pump 6. In addition, when the engine 1 is stopped, the oil pump 6 is not driven and oil is not discharged.
 油圧制御回路5は、複数の流路、複数の油圧アクチュエータなどで構成される。油圧アクチュエータは、ソレノイドや油圧制御弁によって構成される。油圧制御回路5では、変速機コントローラ11からの制御信号に基づき油圧アクチュエータを制御して油圧の供給経路を切り換えるとともにオイルポンプ6から吐出された油によって発生した油圧から必要な油圧を調製する。油圧制御回路5は、調整された油圧を無段変速機4、前後進切替機構3、トルクコンバータ2の各部位に供給する。 The hydraulic control circuit 5 includes a plurality of flow paths and a plurality of hydraulic actuators. The hydraulic actuator includes a solenoid and a hydraulic control valve. In the hydraulic control circuit 5, the hydraulic actuator is controlled based on a control signal from the transmission controller 11 to switch the hydraulic pressure supply path, and the necessary hydraulic pressure is adjusted from the hydraulic pressure generated by the oil discharged from the oil pump 6. The hydraulic control circuit 5 supplies the adjusted hydraulic pressure to each part of the continuously variable transmission 4, the forward / reverse switching mechanism 3, and the torque converter 2.
 前後進切替機構3への油圧の給排は、シフトレバー40にリンケージやコントロールケーブル等の連結具を介して連結して作動するマニュアルバルブ5aと、ソレノイド5b、5cによって制御されるパイロット圧とスプリングの付勢力及びフィードバック圧に応じて作動する油圧制御弁5d、5eとによって制御される。 Supply / discharge of hydraulic pressure to the forward / reverse switching mechanism 3 is performed by connecting the shift lever 40 via a linkage or a control cable or the like, and operating the manual valve 5a and the pilot pressure and spring controlled by the solenoids 5b and 5c. Are controlled by hydraulic control valves 5d and 5e that operate in accordance with the urging force and feedback pressure.
 後進ブレーキ3bに供給される油圧を制御する油圧制御弁5eは、ソレノイド5cに電流が供給されていない場合に、後進ブレーキ3bに油圧を供給するように油路を形成するノーマリハイの制御弁である。従って、シフトレバー40がRレンジとなっている場合には、ソレノイド5cに電流は供給されず、油圧制御弁5eは油圧を後進ブレーキ3bに供給する。これにより、後進ブレーキ3bが締結する。一方、シフトレバー40がRレンジ以外のレンジとなっている場合には、ソレノイド5cに電流が供給され、油圧制御弁5eは後進ブレーキ3bから油圧を排出(ドレーン)するように油路を形成する。これにより、後進ブレーキ3bが解放する。 The hydraulic control valve 5e that controls the hydraulic pressure supplied to the reverse brake 3b is a normally high control valve that forms an oil passage so as to supply hydraulic pressure to the reverse brake 3b when no current is supplied to the solenoid 5c. . Therefore, when the shift lever 40 is in the R range, no current is supplied to the solenoid 5c, and the hydraulic control valve 5e supplies hydraulic pressure to the reverse brake 3b. Thereby, the reverse brake 3b is fastened. On the other hand, when the shift lever 40 is in a range other than the R range, a current is supplied to the solenoid 5c, and the hydraulic control valve 5e forms an oil passage so as to discharge (drain) the hydraulic pressure from the reverse brake 3b. . As a result, the reverse brake 3b is released.
 変速機コントローラ11は、CPU、ROM、RAMなどから構成される。変速機コントローラ11では、CPUがROMに記憶されたプログラムを読み出して実行することで、変速機コントローラ11の機能が発揮される。変速機コントローラ11が特許請求の範囲における第1制御部及び第2制御部に対応する。なお、第1制御部及び第2制御部を別々のコントローラとして構成してもよい。 The transmission controller 11 includes a CPU, a ROM, a RAM, and the like. In the transmission controller 11, the function of the transmission controller 11 is exhibited by the CPU reading and executing a program stored in the ROM. The transmission controller 11 corresponds to the first control unit and the second control unit in the claims. Note that the first control unit and the second control unit may be configured as separate controllers.
 変速機コントローラ11には、アクセル開度APOを検出するアクセル開度センサ21からの信号、ブレーキペダルの操作量に対応したブレーキ液圧BRPを検出するブレーキ液圧センサ22からの信号、シフトレバー40の位置を検出するインヒビタスイッチ23からの信号が入力される。なお、変速機コントローラ11には、この他にも、エンジン1の制御を司るエンジンコントローラ10からのエンジントルクTeに関した信号などが入力される。 The transmission controller 11 includes a signal from the accelerator opening sensor 21 that detects the accelerator opening APO, a signal from the brake hydraulic pressure sensor 22 that detects the brake hydraulic pressure BRP corresponding to the operation amount of the brake pedal, and a shift lever 40. A signal from the inhibitor switch 23 for detecting the position of is input. In addition to this, a signal related to the engine torque Te from the engine controller 10 that controls the engine 1 is input to the transmission controller 11.
 本実施形態では、車両走行中に、セーリングストップ条件が成立すると、エンジン1への燃料噴射を中止してエンジン1を停止し、前後進切替機構3において前進クラッチ3a、及び後進ブレーキ3bを解放してニュートラル状態とするセーリングストップ制御が実行される。セーリングストップ制御は、変速機コントローラ11(第1制御部)によって実行される。 In the present embodiment, when the sailing stop condition is satisfied during traveling of the vehicle, the fuel injection to the engine 1 is stopped and the engine 1 is stopped, and the forward / reverse switching mechanism 3 releases the forward clutch 3a and the reverse brake 3b. The sailing stop control for setting the neutral state is executed. Sailing stop control is executed by the transmission controller 11 (first control unit).
 これにより、エンジン1を停止した状態での惰性走行距離が長くなり、エンジン1の燃費を向上させることができる。 This makes it possible to increase the inertial mileage when the engine 1 is stopped, and to improve the fuel consumption of the engine 1.
 セーリングストップ条件は、例えば以下の条件である。 Sailing stop conditions are, for example, the following conditions.
 (a)シフトレバー40がDレンジである。
 (b)車速VSPが第1所定車速V1以上である。
 (c)アクセルペダルが踏み込まれていない。
 (d)ブレーキペダルが踏み込まれていない。
(A) The shift lever 40 is in the D range.
(B) The vehicle speed VSP is equal to or higher than the first predetermined vehicle speed V1.
(C) The accelerator pedal is not depressed.
(D) The brake pedal is not depressed.
 第1所定車速V1は、中、高車速であり、予め設定されている。 The first predetermined vehicle speed V1 is a medium or high vehicle speed and is set in advance.
 セーリングストップ条件は上記(a)~(d)の条件を全て満たす場合に成立し、上記(a)~(d)のいずれかを満たさない場合には成立しない。 The sailing stop condition is satisfied when all of the above conditions (a) to (d) are satisfied, and is not satisfied when any of the above (a) to (d) is not satisfied.
 なお、本実施形態の油圧制御弁5eは、ノーマリハイの制御弁であるが、セーリングストップ制御中は、エンジン1が停止しオイルポンプ6が駆動されず、後進ブレーキ3bに油圧が供給されないので、ソレノイド5cへの電流の供給を停止し、ソレノイド5cで消費される電力を低減している。 The hydraulic control valve 5e of the present embodiment is a normally high control valve. However, during the sailing stop control, the engine 1 is stopped, the oil pump 6 is not driven, and hydraulic pressure is not supplied to the reverse brake 3b. The supply of current to 5c is stopped, and the power consumed by the solenoid 5c is reduced.
 通常、セーリングストップ制御中に上記(a)~(d)のいずれかを満たさなくなった場合にはセーリングストップ制御を終了し、エンジン1を始動させる。つまり、セーリングストップ条件は、セーリングストップ制御を解除するためのセーリングストップ解除条件でもある。なお、セーリングストップ条件とセーリングストップ解除条件とを異なる条件としてもよい。 Normally, if any of the above (a) to (d) is not satisfied during the sailing stop control, the sailing stop control is terminated and the engine 1 is started. That is, the sailing stop condition is also a sailing stop cancellation condition for canceling the sailing stop control. The sailing stop condition and the sailing stop cancellation condition may be different conditions.
 しかし、本実施形態では、変速機コントローラ11(第2制御部)は、セーリングストップ制御中にシフトレバー40がRレンジに変更された場合であっても、エンジン1の始動を禁止し、直ぐにはエンジン1を始動せず、セーリングストップ制御を継続する。これは以下の理由による。 However, in this embodiment, the transmission controller 11 (second control unit) prohibits the start of the engine 1 even if the shift lever 40 is changed to the R range during the sailing stop control. The engine 1 is not started and the sailing stop control is continued. This is due to the following reason.
 セーリングストップ制御中はオイルポンプ6が駆動されない。そのため、油圧制御回路5の一部に油が満たされておらず、油圧制御弁5eに供給されるパイロット圧などが安定せず、制御不調状態となっている場合がある。このような場合に、エンジン1が始動し、オイルポンプ6から油が吐出されると、後進ブレーキ3bに油圧が急速に供給され、後進ブレーキ3bのトルク容量が増加し、車両の異常挙動が発生し、又は運転者に違和感を与えるおそれがある。 オ イ ル Oil pump 6 is not driven during sailing stop control. Therefore, a part of the hydraulic control circuit 5 is not filled with oil, the pilot pressure supplied to the hydraulic control valve 5e is not stable, and the control may be out of control. In such a case, when the engine 1 is started and oil is discharged from the oil pump 6, the hydraulic pressure is rapidly supplied to the reverse brake 3b, the torque capacity of the reverse brake 3b is increased, and an abnormal behavior of the vehicle occurs. Or the driver may feel uncomfortable.
 一般的に、前進中にシフトレバー40がRレンジに変更されて、車両の異常挙動などが発生することを防止するために、R-INH制御を実行することが知られている。 Generally, it is known to execute R-INH control in order to prevent the shift lever 40 from being changed to the R range during forward movement and causing abnormal behavior of the vehicle.
 R-INH制御とは、車速VSPが第2所定車速V2以上の場合に前進中にシフトレバー40がRレンジに変更された場合に前後進切替機構3をニュートラル状態にする制御である。第2所定車速V2は、第1所定車速V1よりも低い。従って、セーリングストップ制御中は、少なくともR-INH制御が実行可能となっている。 The R-INH control is a control for setting the forward / reverse switching mechanism 3 to the neutral state when the shift lever 40 is changed to the R range during forward travel when the vehicle speed VSP is equal to or higher than the second predetermined vehicle speed V2. The second predetermined vehicle speed V2 is lower than the first predetermined vehicle speed V1. Accordingly, at least R-INH control can be executed during the sailing stop control.
 セーリングストップ制御中にシフトレバー40がRレンジに変更された場合に、R-INH制御が実行されると、前後進切替機構3はニュートラル状態となるように制御される。従って、油圧制御弁5eにおいて後進ブレーキ3bから油圧を排出する油路が形成されるように、ソレノイド5cに電流が供給される。 When the shift lever 40 is changed to the R range during the sailing stop control and the R-INH control is executed, the forward / reverse switching mechanism 3 is controlled to be in the neutral state. Accordingly, a current is supplied to the solenoid 5c so that an oil passage for discharging the hydraulic pressure from the reverse brake 3b is formed in the hydraulic control valve 5e.
 しかし、R-INH制御は、後進ブレーキ3bに油圧を供給する油路に油が満たされていることを条件に正常に作動するように設定されており、セーリングストップ制御中に制御不調状態となっている場合には、R-INH制御が正常に作動しないおそれがある。そのため、油圧制御弁5eにおいて後進ブレーキ3bから油圧を排出するように、ソレノイド5cに電流を供給して、エンジン1を始動すると、前後進切替機構3がニュートラル状態とはならず、後進ブレーキ3bに油圧が供給され、車両の異常挙動が発生し、又は運転者に違和感を与えるおそれがある。特にエンジン1の始動がR-INH制御の実行によるソレノイド5cへの電流供給よりも早い場合には、車両の異常挙動などが発生しやすい。 However, the R-INH control is set so as to operate normally on condition that the oil passage for supplying hydraulic pressure to the reverse brake 3b is filled with oil, and the control is in a malfunction state during the sailing stop control. In such a case, the R-INH control may not operate normally. For this reason, when the engine 1 is started by supplying current to the solenoid 5c so that the hydraulic pressure is discharged from the reverse brake 3b in the hydraulic control valve 5e, the forward / reverse switching mechanism 3 does not enter the neutral state, and the reverse brake 3b There is a possibility that hydraulic pressure is supplied, abnormal behavior of the vehicle occurs, or the driver feels uncomfortable. In particular, when the engine 1 is started earlier than the current supply to the solenoid 5c by executing the R-INH control, abnormal behavior of the vehicle is likely to occur.
 本実施形態では、上記理由により、セーリングストップ制御中にシフトレバー40がRレンジに変更された場合には、エンジン1の始動を禁止し、直ぐにはエンジン1を始動せず、セーリングストップ制御を継続する。なお、エンジン1の始動の禁止とは、シフトレバー40がRレンジとなっている場合に、例えばアクセルペダルが踏み込まれた場合などの他のセーリングストップ条件が不成立となった場合であってもエンジン1を始動しないことが含まれる。 In the present embodiment, for the above reason, when the shift lever 40 is changed to the R range during the sailing stop control, the start of the engine 1 is prohibited, the engine 1 is not started immediately, and the sailing stop control is continued. To do. The prohibition of starting the engine 1 means that when the shift lever 40 is in the R range, for example, when another sailing stop condition is not satisfied, for example, when the accelerator pedal is depressed. This includes not starting 1.
 次に、セーリングストップ制御中にシフトレバー40がRレンジに変更された場合について図2、3のタイムチャートを用いて説明する。図2は本実施形態のセーリングストップ制御を用いた場合を説明するタイムチャートである。図3は本実施形態のセーリングストップ制御を用いない比較例を説明するタイムチャートである。各タイムチャートにおいて、セーリングストップ制御が実行されている。 Next, the case where the shift lever 40 is changed to the R range during the sailing stop control will be described with reference to the time charts of FIGS. FIG. 2 is a time chart for explaining the case where the sailing stop control of the present embodiment is used. FIG. 3 is a time chart illustrating a comparative example that does not use the sailing stop control of the present embodiment. In each time chart, sailing stop control is executed.
 時間t0においてシフトレバー40が操作され、時間t1においてシフトレバー40がDレンジからNレンジを経てRレンジに変更される。本実施形態では、セーリングストップ制御中にシフトレバー40がRレンジに変更された場合には、エンジン1の始動を禁止し、エンジン1は始動しない。また、シフトレバー40がRレンジとなることでマニュアルバルブ5aでは後進ブレーキ3bに油圧を供給可能となるように油路が形成される。また、シフトレバー40がRレンジになるとソレノイド5cに電流が供給され、油圧制御弁5eでは後進ブレーキ3bから油圧を排出するように油路が形成される。なお、マニュアルバルブ5aによって後進ブレーキ3bに油圧を供給可能となる油路が形成される前、例えばシフトレバー40がNレンジとなったタイミング(時間t0)で、ソレノイド5cに電流を供給し、油圧制御弁5eにおいて後進ブレーキ3bから油圧を排出するように油路を形成してもよい。 At time t0, the shift lever 40 is operated, and at time t1, the shift lever 40 is changed from the D range to the R range through the N range. In the present embodiment, when the shift lever 40 is changed to the R range during the sailing stop control, the start of the engine 1 is prohibited and the engine 1 is not started. Further, when the shift lever 40 is in the R range, the manual valve 5a forms an oil passage so that hydraulic pressure can be supplied to the reverse brake 3b. Further, when the shift lever 40 is in the R range, a current is supplied to the solenoid 5c, and an oil passage is formed in the hydraulic control valve 5e so that the hydraulic pressure is discharged from the reverse brake 3b. It should be noted that, before an oil passage capable of supplying hydraulic pressure to the reverse brake 3b is formed by the manual valve 5a, for example, at a timing (time t0) when the shift lever 40 is in the N range, current is supplied to the solenoid 5c, An oil passage may be formed so that the hydraulic pressure is discharged from the reverse brake 3b in the control valve 5e.
 比較例では、シフトレバー40がRレンジに変更されると、セーリングストップ制御を終了し、エンジン1を始動する。セーリングストップ制御中にシフトレバー40がRレンジに変更されると、R-INH制御が実行されるので、前後進切替機構3がニュートラル状態となるように指示される。しかし、セーリングストップ制御中は、制御不調状態となっている可能性があり、R-INH制御が実行されても、後進ブレーキ3bに油圧が供給され、車両の異常挙動が発生し、又は運転者に違和感を与えるおそれがある。 In the comparative example, when the shift lever 40 is changed to the R range, the sailing stop control is terminated and the engine 1 is started. If the shift lever 40 is changed to the R range during the sailing stop control, the R-INH control is executed, so that the forward / reverse switching mechanism 3 is instructed to enter the neutral state. However, during the sailing stop control, there is a possibility that the control is in a malfunctioning state. Even if the R-INH control is executed, the hydraulic pressure is supplied to the reverse brake 3b, and an abnormal behavior of the vehicle occurs, or the driver May give a sense of incongruity.
 一方、本実施形態では、エンジン1の始動が禁止され、エンジン1が始動していないので、後進ブレーキ3bに油圧が供給されることはなく、車両の異常挙動などを防止することができる。 On the other hand, in the present embodiment, the start of the engine 1 is prohibited and the engine 1 is not started. Therefore, the hydraulic pressure is not supplied to the reverse brake 3b, and the abnormal behavior of the vehicle can be prevented.
 時間t2においてシフトレバー40が操作され、時間t3においてシフトレバー40がRレンジからNレンジを経てDレンジになる。本実施形態では、時間t2において、シフトレバー40がNレンジになるとエンジン1を始動し、時間t3になると前進クラッチ3aを締結してセーリングストップ制御を終了する。シフトレバー40がNレンジになるとソレノイド5cへの電流供給を停止する。ソレノイド5cへの電流供給を停止し、後進ブレーキ3bに油圧が供給されるように油路を形成しても、マニュアルバルブ5aによって油圧制御弁5eに油圧が供給されないので、後進ブレーキ3bに油が供給されることはない。シフトレバー40がDレンジになるとマニュアルバルブ5aでは前進クラッチ3aに油圧を供給可能となるように油路が形成され、油圧制御弁5dでも前進クラッチ3aに油圧を供給可能となるように油路が形成される。 At time t2, the shift lever 40 is operated, and at time t3, the shift lever 40 changes from the R range to the N range to the D range. In the present embodiment, at time t2, when the shift lever 40 is in the N range, the engine 1 is started, and at time t3, the forward clutch 3a is engaged and the sailing stop control is terminated. When the shift lever 40 is in the N range, the current supply to the solenoid 5c is stopped. Even if the current supply to the solenoid 5c is stopped and the oil passage is formed so that the hydraulic pressure is supplied to the reverse brake 3b, the hydraulic pressure is not supplied to the hydraulic control valve 5e by the manual valve 5a. It is never supplied. When the shift lever 40 is in the D range, an oil path is formed in the manual valve 5a so that the hydraulic pressure can be supplied to the forward clutch 3a, and the oil path is also set so that the hydraulic control valve 5d can supply hydraulic pressure to the forward clutch 3a. It is formed.
 なお、セーリングストップ制御中にシフトレバー40がRレンジに変更されてエンジン1の始動を禁止し(エンジン1の始動の禁止状態)、後進ブレーキ3bを解放する指示であるソレノイド5cへ電流を供給した状態(解放指示状態)が所定時間経過すると、セーリングストップ制御を終了し、エンジン1を始動してもよい。所定時間は予め設定された時間であり、後進ブレーキ3bに油圧が供給されないように油路を形成する準備が完了する時間である。油圧制御回路5に急速に油が流れ込んでも、後進ブレーキ3bに油圧が供給されない状態とした後にエンジン1を始動することで、車両の異常挙動が発生などを抑制することができる(請求項3に対応する効果)。 During the sailing stop control, the shift lever 40 is changed to the R range to prohibit the start of the engine 1 (the engine 1 start prohibition state), and supply current to the solenoid 5c that is an instruction to release the reverse brake 3b. When the state (release instruction state) has elapsed for a predetermined time, the sailing stop control may be terminated and the engine 1 may be started. The predetermined time is a preset time, and is a time when preparation for forming the oil passage is completed so that the hydraulic pressure is not supplied to the reverse brake 3b. Even if oil flows rapidly into the hydraulic control circuit 5, the engine 1 is started after the hydraulic pressure is not supplied to the reverse brake 3b, so that the occurrence of abnormal behavior of the vehicle can be suppressed. Corresponding effect).
 本発明の第1実施形態の効果について説明する。 The effect of the first embodiment of the present invention will be described.
 セーリングストップ制御中にシフトレバー40がRレンジに変更されて直ぐにセーリングストップ制御を終了し、エンジン1を始動すると、後進ブレーキ3bでトルク容量が発生することにより、制動力が発生し、車両の異常挙動が発生し、または運転者に違和感を与えるおそれがある。本実施形態では、セーリングストップ制御中にシフトレバー40がRレンジに変更されると、エンジン1の始動を禁止する。これにより、車両の異常挙動の発生を防止し、または運転者に違和感を与えることを防止することができる(請求項1に対応する効果)。 As soon as the shift lever 40 is changed to the R range during the sailing stop control and the sailing stop control is terminated and the engine 1 is started, the reverse brake 3b generates a torque capacity, thereby generating a braking force and causing an abnormality of the vehicle. There is a risk that behavior may occur or the driver may feel uncomfortable. In the present embodiment, when the shift lever 40 is changed to the R range during the sailing stop control, the start of the engine 1 is prohibited. Accordingly, it is possible to prevent occurrence of abnormal behavior of the vehicle or to give the driver a sense of incongruity (effect corresponding to claim 1).
 セーリングストップ制御中にシフトレバー40がRレンジに変更されてエンジン1の始動を禁止している場合に、シフトレバー40がDレンジ(前進レンジ)に変更されると、エンジン1を始動し、セーリングストップ制御を終了する。これにより、シフトレバー40がDレンジに変更された際の運転性の低下を抑制することができる(請求項2に対応する効果)。 When the shift lever 40 is changed to the R range and the start of the engine 1 is prohibited during the sailing stop control, if the shift lever 40 is changed to the D range (forward range), the engine 1 is started and the sailing is performed. Stop control ends. Thereby, the fall of the operativity at the time of the shift lever 40 being changed to D range can be suppressed (effect corresponding to Claim 2).
 セーリングストップ制御中にシフトレバー40がDレンジとなっている間、ソレノイド5cへの電流の供給を停止する。これにより、後進ブレーキ3bに油圧を給排する油圧制御弁5eがノーマリハイの制御弁である場合に、ソレノイド5cで消費される電力を少なくすることができる。ソレノイド5cに供給される電力はバッテリーから供給されており、バッテリーの蓄電量が少なくなると例えばオルタネータが駆動される。オルタネータはエンジン1によって駆動されるので、オルタネータを駆動させるためにセーリングストップ制御が終了する場合がある。本実施形態では、セーリングストップ制御中にソレノイド5cで消費される電力を少なくすることで、エンジン1の始動を抑制し、エンジン1における燃費を向上させることができる(請求項4に対応する効果)。 During the sailing stop control, the supply of current to the solenoid 5c is stopped while the shift lever 40 is in the D range. Thereby, when the hydraulic control valve 5e that supplies and discharges hydraulic pressure to the reverse brake 3b is a normally high control valve, the power consumed by the solenoid 5c can be reduced. The electric power supplied to the solenoid 5c is supplied from the battery, and for example, the alternator is driven when the stored amount of the battery decreases. Since the alternator is driven by the engine 1, the sailing stop control may end in order to drive the alternator. In the present embodiment, by reducing the power consumed by the solenoid 5c during the sailing stop control, it is possible to suppress the start of the engine 1 and improve the fuel consumption in the engine 1 (effect corresponding to claim 4). .
 次に本発明の第2実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 第2実施形態については図1と異なる部分を説明する。第2実施形態では、後進ブレーキ3bに供給される油圧を制御する油圧制御弁5eは、ソレノイド5cに電流が供給されていない場合に、後進ブレーキ3bに油圧を排出するように油路を形成するノーマリローの制御弁である。従って、シフトレバー40がRレンジとなっている場合には、ソレノイド5cに電流が供給され、油圧制御弁5eは油圧を後進ブレーキ3bに供給する。 The second embodiment will be described with respect to the differences from FIG. In the second embodiment, the hydraulic control valve 5e that controls the hydraulic pressure supplied to the reverse brake 3b forms an oil passage so that the hydraulic pressure is discharged to the reverse brake 3b when no current is supplied to the solenoid 5c. This is a normally low control valve. Accordingly, when the shift lever 40 is in the R range, current is supplied to the solenoid 5c, and the hydraulic control valve 5e supplies hydraulic pressure to the reverse brake 3b.
 第2実施形態では、図4に示すように、セーリングストップ制御中にシフトレバー40がRレンジに変更された場合であっても、ソレノイド5cに電流は供給されず、セーリングストップ制御中にソレノイド5cで消費される電力を少なくすることで、エンジン1の始動を抑制し、エンジン1における燃費を向上させることができる。 In the second embodiment, as shown in FIG. 4, even if the shift lever 40 is changed to the R range during the sailing stop control, no current is supplied to the solenoid 5c, and the solenoid 5c is not controlled during the sailing stop control. By reducing the power consumed by the engine 1, the start of the engine 1 can be suppressed, and the fuel efficiency of the engine 1 can be improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 上記実施形態では、前後進切替機構3を有する自動変速機について説明したが、副変速機構を有する自動変速機に適用してもよい。また、自動変速機は、無段変速機4ではなく、有段変速機、トロイダル型の無段変速機を有して構成されてもよい。 In the above embodiment, the automatic transmission having the forward / reverse switching mechanism 3 has been described. However, the automatic transmission may have an auxiliary transmission mechanism. The automatic transmission may be configured to include a stepped transmission or a toroidal type continuously variable transmission instead of the continuously variable transmission 4.
 また、上記実施形態は、走行中駆動源停止制御の一例としてセーリングストップ制御について説明した。しかし、走行中駆動源停止制御は、例えばコーストストップ制御であってもよい。つまり、走行中駆動源停止制御中にシフトレバー40がRレンジに変更された場合に上記制御を適用することができる。 In the above embodiment, the sailing stop control is described as an example of the driving source stop control during traveling. However, the driving source stop control during traveling may be coast stop control, for example. That is, the above control can be applied when the shift lever 40 is changed to the R range during the driving source stop control during traveling.
 コーストストップ制御は、コーストストップ成立条件が成立すると変速機コントローラ11によって実行される。コーストストップ成立条件は、例えば以下の(a)~(d)である。(a)シフトレバー40がDレンジである。(b)車速VSPが所定車速未満である。(c)アクセルペダルが踏み込まれていない。(d)ブレーキペダルが踏み込まれている。所定車速は、低車速であり、ロックアップクラッチ2aが解放される車速以下の車速である。 Coast stop control is executed by the transmission controller 11 when the coast stop establishment condition is satisfied. The coast stop establishment conditions are, for example, the following (a) to (d). (A) The shift lever 40 is in the D range. (B) The vehicle speed VSP is less than a predetermined vehicle speed. (C) The accelerator pedal is not depressed. (D) The brake pedal is depressed. The predetermined vehicle speed is a low vehicle speed and is a vehicle speed equal to or lower than the vehicle speed at which the lockup clutch 2a is released.
 コーストストップ成立条件は、(a)~(d)の条件を全て満たす場合に成立し、(a)~(d)のいずれかを満たさない場合には成立しない。また、コーストストップ解除条件は、コーストストップ制御中に、例えば(a)~(d)のいずれかが不成立になることであるが、コーストストップ成立条件とコーストストップ解除条件とを異なる条件としてもよい。 The coast stop establishment condition is satisfied when all of the conditions (a) to (d) are satisfied, and is not satisfied when any of the conditions (a) to (d) is not satisfied. The coast stop cancellation condition is, for example, that any of (a) to (d) is not established during the coast stop control, but the coast stop establishment condition and the coast stop cancellation condition may be different. .
 上記実施形態では、エンジン1が駆動源である場合について説明した。しかし、駆動源は、例えば、モータや、エンジン1及びモータであってもよい。 In the above embodiment, the case where the engine 1 is a drive source has been described. However, the drive source may be, for example, a motor, the engine 1 and the motor.
 上記実施形態では、変速機コントローラ11とエンジンコントローラ10とにより単一のコントローラを構成してもよい。また、変速機コントローラ11を複数のコントローラによって構成してもよい。 In the above embodiment, the transmission controller 11 and the engine controller 10 may constitute a single controller. Further, the transmission controller 11 may be constituted by a plurality of controllers.
 本願は、2015年11月10日に日本国特許庁に出願された特願2015-220251号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-220251 filed with the Japan Patent Office on November 10, 2015, the entire contents of which are incorporated herein by reference.

Claims (5)

  1.  駆動源と、
     前記駆動源と接続される自動変速機と、
     前記駆動源によって駆動されるオイルポンプとを備えた車両を制御する車両の制御装置であって、
     走行中駆動源停止条件が成立すると、前記駆動源を停止すると共に前記自動変速機をニュートラル状態とする走行中駆動源停止制御を実行する第1制御部と、
     前記走行中駆動源停止制御中に後進レンジが選択されると、前記駆動源の始動を禁止する第2制御部と、
    を備える車両の制御装置。
    A driving source;
    An automatic transmission connected to the drive source;
    A vehicle control device for controlling a vehicle including an oil pump driven by the drive source,
    A first control unit that executes driving source stop control during traveling to stop the driving source and to set the automatic transmission in a neutral state when the driving source stop condition during traveling is satisfied;
    A second control unit that prohibits starting of the drive source when a reverse range is selected during the drive source stop control during traveling;
    A vehicle control apparatus comprising:
  2.  請求項1に記載の車両の制御装置であって、
     前記第2制御部は、前記駆動源の始動を禁止中に前進レンジが選択されると、前記駆動源を始動する、
    車両の制御装置。
    The vehicle control device according to claim 1,
    The second control unit starts the drive source when a forward range is selected while the start of the drive source is prohibited.
    Vehicle control device.
  3.  請求項1または2に記載の車両の制御装置であって、
     前記自動変速機は後進用締結要素を備え、
     前記第2制御部は、前記駆動源の始動の禁止状態及び前記後進用締結要素への解放指示状態が所定時間経過すると、前記駆動源の始動する、
    車両の制御装置。
    The vehicle control device according to claim 1 or 2,
    The automatic transmission comprises a reverse fastening element;
    The second control unit starts the drive source when a predetermined time elapses when the drive source start prohibition state and the reverse fastening element release instruction state are passed.
    Vehicle control device.
  4.  請求項1から3のいずれか1つに記載の車両の制御装置であって、
     前記自動変速機は後進用締結要素を備え、
     前記車両の制御装置は、前記後進用締結要素への油圧供給を制御する油圧アクチュエータを備え、
     前記油圧アクチュエータは、電流が供給されると前記後進用締結要素を解放指示し、
     前記走行中駆動源停止制御中は、前記油圧アクチュエータへの電流の供給が停止される、
    車両の制御装置。
    A vehicle control device according to any one of claims 1 to 3,
    The automatic transmission comprises a reverse fastening element;
    The vehicle control device includes a hydraulic actuator that controls a hydraulic pressure supply to the reverse fastening element,
    When the hydraulic actuator is supplied with current, the hydraulic actuator instructs the release of the reverse fastening element,
    During the traveling drive source stop control, the supply of current to the hydraulic actuator is stopped.
    Vehicle control device.
  5.  駆動源と、
     前記駆動源と接続される自動変速機と、
     前記駆動源によって駆動されるオイルポンプとを備えた車両を制御する車両の制御方法であって、
     走行中駆動源停止条件が成立すると、前記駆動源を停止すると共に前記自動変速機をニュートラル状態とする走行中駆動源停止制御を実行し、
     前記走行中駆動源停止制御中に後進レンジが選択されると、前記駆動源の始動を禁止する、
    車両の制御方法。
    A driving source;
    An automatic transmission connected to the drive source;
    A vehicle control method for controlling a vehicle including an oil pump driven by the drive source,
    When the driving source stop condition during traveling is satisfied, the driving source stop control during traveling is performed to stop the driving source and set the automatic transmission to a neutral state.
    When a reverse range is selected during the driving source stop control during traveling, starting of the driving source is prohibited.
    Vehicle control method.
PCT/JP2016/081564 2015-11-10 2016-10-25 Control device for vehicle and control method for vehicle32 WO2017082040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-220251 2015-11-10
JP2015220251A JP6725234B2 (en) 2015-11-10 2015-11-10 Vehicle control device and vehicle control method

Publications (1)

Publication Number Publication Date
WO2017082040A1 true WO2017082040A1 (en) 2017-05-18

Family

ID=58696112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081564 WO2017082040A1 (en) 2015-11-10 2016-10-25 Control device for vehicle and control method for vehicle32

Country Status (2)

Country Link
JP (1) JP6725234B2 (en)
WO (1) WO2017082040A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239679A (en) * 2006-03-10 2007-09-20 Honda Motor Co Ltd Engine automatic stop controller for vehicle
JP2008075468A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Controller and control method for vehicle, program for realizing the method by computer, and recording medium recording the program
JP2012030779A (en) * 2010-06-28 2012-02-16 Mazda Motor Corp Idle stop control device of vehicle
JP2012225466A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Hydraulic control device
WO2013140847A1 (en) * 2012-03-22 2013-09-26 ジヤトコ株式会社 Automatic engine-stopping vehicle and control method therefor
JP2013199963A (en) * 2012-03-23 2013-10-03 Fuji Heavy Ind Ltd Shift-by-wire control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237550A (en) * 1985-08-11 1987-02-18 Hino Motors Ltd Automatic transmission
JP3845910B2 (en) * 1996-09-05 2006-11-15 株式会社デンソー Engine automatic stop start device and method
JP3616979B2 (en) * 1997-03-06 2005-02-02 ジヤトコ株式会社 Shift control hydraulic circuit for automatic transmission
JP5252317B2 (en) * 2010-05-19 2013-07-31 株式会社デンソー Vehicle control device
JP2015048895A (en) * 2013-09-02 2015-03-16 株式会社デンソー Vehicle system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239679A (en) * 2006-03-10 2007-09-20 Honda Motor Co Ltd Engine automatic stop controller for vehicle
JP2008075468A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Controller and control method for vehicle, program for realizing the method by computer, and recording medium recording the program
JP2012030779A (en) * 2010-06-28 2012-02-16 Mazda Motor Corp Idle stop control device of vehicle
JP2012225466A (en) * 2011-04-21 2012-11-15 Toyota Motor Corp Hydraulic control device
WO2013140847A1 (en) * 2012-03-22 2013-09-26 ジヤトコ株式会社 Automatic engine-stopping vehicle and control method therefor
JP2013199963A (en) * 2012-03-23 2013-10-03 Fuji Heavy Ind Ltd Shift-by-wire control system

Also Published As

Publication number Publication date
JP6725234B2 (en) 2020-07-15
JP2017089744A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP4506655B2 (en) Hydraulic control device for automatic transmission for vehicle
JP5983466B2 (en) Vehicle hydraulic control device
JP2010025160A (en) Control device of vehicle
KR20080022515A (en) Breakdown control device upon jamming of automatic transmission
WO2011161757A1 (en) Control device of automatic transmission for vehicle
EP2860073B1 (en) Vehicle control device and vehicle control method
JP2015186997A (en) Vehicle control device
JP2014052034A (en) Hydraulic control device for automatic transmission
JP2009068655A (en) Shift device
US10501083B2 (en) Vehicle control device and vehicle control method
JP5084870B2 (en) Vehicle torque-down control device
JP4211723B2 (en) Hydraulic control device for automatic transmission
WO2014112308A1 (en) Transmission control device
WO2017082040A1 (en) Control device for vehicle and control method for vehicle32
CA3011678C (en) Control device for vehicle and control method of the same
JP6725254B2 (en) Vehicle control device
JP6633929B2 (en) Vehicle control device and vehicle control method
JP6725255B2 (en) Vehicle control device and vehicle control method
JP6560758B2 (en) Vehicle control apparatus and vehicle control method
US20190162304A1 (en) Control device of vehicle
WO2014196145A1 (en) Oil pressure control device for automatic transmission
WO2018016256A1 (en) Vehicle control device and vehicle control method
JP6694286B2 (en) Vehicle control device and vehicle control method
JP2007008230A (en) Control device of vehicle
JP6488404B2 (en) Vehicle control apparatus and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864004

Country of ref document: EP

Kind code of ref document: A1