WO2017082033A1 - Multiphase converter - Google Patents

Multiphase converter Download PDF

Info

Publication number
WO2017082033A1
WO2017082033A1 PCT/JP2016/081469 JP2016081469W WO2017082033A1 WO 2017082033 A1 WO2017082033 A1 WO 2017082033A1 JP 2016081469 W JP2016081469 W JP 2016081469W WO 2017082033 A1 WO2017082033 A1 WO 2017082033A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
temperature
conversion unit
phase
voltage
Prior art date
Application number
PCT/JP2016/081469
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 長谷川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017082033A1 publication Critical patent/WO2017082033A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a polyphase converter.
  • a multiphase DCDC converter having a configuration in which a plurality of voltage conversion units are connected in parallel is known.
  • this type of multi-phase DCDC converter for example, there is a technique as disclosed in Patent Document 1.
  • Patent Document 1 employs a method of determining a voltage converter to be driven based on each element temperature of a plurality of voltage converters, so that the voltage converter with lower temperature is used with priority. The voltage converter to be driven is determined.
  • the present invention has been made on the basis of the above-described circumstances, and it is possible to select a voltage conversion unit that is driven by a method that easily suppresses the operation of the voltage conversion unit that increases in temperature. It aims at providing the structure which can suppress the temperature rise of an apparatus reliably.
  • the polyphase converter of the present invention is A multi-phase converter having a plurality of voltage converters that convert and output an input voltage; and A method for determining a reference phase number serving as a driving reference according to the state of the polyphase conversion unit is determined in advance, and based on the reference phase number determined according to the state of the polyphase conversion unit, the polyphase conversion A control unit for determining the number of drive phases in the unit, and individually controlling the voltage conversion unit of the determined number of drive phases by a control signal; A plurality of individual temperature detectors for detecting respective temperatures of the plurality of voltage converters constituting the polyphase converter; Based on detection results by the plurality of individual temperature detection units, a specifying unit for specifying the voltage conversion unit having a temperature equal to or higher than a predetermined threshold from among the plurality of voltage conversion units, Positions that are fixed and arranged directly or indirectly via other members with respect to components that constitute at least one of the polyphase conversion unit, the control unit, the individual temperature detection unit, and the specific unit A device temperature detecting unit for detecting the
  • the reference phase is selected after selecting the voltage conversion unit specified by the specifying unit as a non-driving phase.
  • the multiple voltage converters are driven by the first control method, and when the device temperature is higher than the threshold temperature, the output is limited by the second control method. Drives the phase converter.
  • the apparatus temperature is relative.
  • the voltage conversion unit whose temperature is lower than the predetermined threshold is specified by the specific unit
  • the voltage conversion unit specified by at least the specific unit as the non-driving phase (the voltage whose temperature is equal to or higher than the predetermined threshold) Conversion unit) is selected, and the voltage conversion unit having the number of reference phases excluding the non-driven phase is driven. Therefore, it is possible to select the voltage converter to be driven by a method that easily suppresses the operation of the voltage converter that increases in temperature.
  • the device temperature is higher than the threshold temperature
  • the multi-phase conversion unit is driven by the second control method in which the output is limited. Therefore, when the device temperature becomes high, the temperature rise of the device is surely suppressed. can do.
  • FIG. 1 is a circuit diagram schematically illustrating a multiphase converter of Example 1.
  • FIG. 3 is a flowchart illustrating drive control of a multiphase conversion unit in the multiphase converter according to the first embodiment.
  • 4 is a flowchart illustrating detection control of a non-priority phase as a non-driving phase in the multiphase converter according to the first embodiment.
  • the control unit determines the number of drive phases before switching when the device temperature detected by the device temperature detection unit is higher than the threshold temperature.
  • the voltage converter may be driven by the second control method while maintaining.
  • the number of phases before switching can be maintained when the apparatus temperature is relatively high, and the temperature can be suppressed by limiting the output. That is, when the apparatus temperature is relatively high, the temperature rise caused by the change in the number of drive phases can be suppressed, and the temperature rise can be surely suppressed by the output restriction.
  • the control unit detects that the device temperature detected by the device temperature detection unit is lower than the threshold temperature and is applied by the specifying unit.
  • the voltage conversion unit having the maximum number of phases may be driven by a control method in which the output is limited more than in the first control method.
  • the concentration of the load on the remaining voltage conversion unit may increase the device temperature.
  • the present invention may include a notification unit that notifies the outside when the heat generation state of the voltage conversion unit specified by the specifying unit becomes a predetermined abnormal state.
  • the multiphase converter 1 shown in FIG. 1 is configured as, for example, an on-vehicle multiphase DCDC converter, and a DC voltage (input voltage) applied to the input-side conductive path 6 is converted into a voltage by a multiphase method and a step-down method.
  • the output voltage obtained by converting and stepping down the input voltage is output to the output-side conductive path 7.
  • the multiphase converter 1 includes a power supply line 5 having an input-side conductive path 6 and an output-side conductive path 7, and n voltage conversion units CV1, CV2,... CVn that convert and output an input voltage.
  • the multi-phase conversion unit 2 and the control unit 3 that individually controls the voltage conversion units CV1, CV2,.
  • the input side conductive path 6 is configured as, for example, a primary side (high voltage side) power supply line to which a relatively high voltage is applied, and is connected to a high potential side terminal of the primary side power supply unit 91 and the primary side thereof.
  • a predetermined DC voltage for example, 48V
  • the input side conductive path 6 is connected to the individual input paths LA1, LA2, LA3, LA4 of the voltage converters CV1, CV2, CV3, CV4, respectively.
  • the primary power supply unit 91 is configured by power storage means such as a lithium ion battery or an electric double layer capacitor, for example, the high potential side terminal is maintained at, for example, 48V, and the low potential side terminal is at, for example, the ground potential (0V). It is kept in.
  • the output side conductive path 7 is configured as a secondary (low voltage side) power supply line to which a relatively low voltage is applied.
  • a load 92 such as an in-vehicle electric device is connected to the output side conductive path 7.
  • the output side conductive path 7 may be connected to a storage means (such as a lead storage battery) that outputs a DC voltage (for example, 12 V) smaller than the output voltage of the primary side power supply unit 91.
  • the multiphase converter 2 includes n voltage converters CV1, CV2,... CVn connected in parallel between the input side conductive path 6 and the output side conductive path 7.
  • the n voltage converters CV1, CV2,... CVn have the same configuration and all function as a synchronous rectification step-down converter.
  • the individual output paths LB1, LB2,... LBn of the n voltage conversion units CV1, CV2,... CVn are connected to the output side conductive path 7 that is a common output path.
  • the n voltage converters CV1, CV2,... CVn are in the first phase, the second phase, and the n phase, respectively.
  • the “voltage conversion unit corresponding to the phase” may be simply referred to as “phase”.
  • the k-th phase voltage conversion unit CVk includes a high-side switching element SAk, a low-side switching element SBk, an inductor Lk, and a protective switching element SCk.
  • the first-phase voltage conversion unit CV1 includes a high-side switching element SA1, a low-side switching element SB1, an inductor L1, and a protective switching element SC1.
  • the conversion unit CV2 includes a high-side switching element SA2, a low-side switching element SB2, an inductor L2, and a protective switching element SC2. The same applies to the third phase and the fourth phase.
  • the switching element SAk is configured as an N-channel MOSFET, and the individual input path LAk branched from the input-side conductive path 6 is connected to the drain of the switching element SAk.
  • the source of the switching element SAk is connected to the drain of the low-side switching element SBk and one end of the inductor Lk.
  • the switching element SBk has a drain connected to a connection point between the switching element SAk and the inductor Lk, and a source grounded.
  • the other end of the inductor Lk is connected to the source of the switching element SCk.
  • the drain of the switching element SCk is connected to the output side conductive path 7.
  • the switching element SCk functions to cut off the conduction of the path when there is an abnormality such as overcurrent, overvoltage, or reverse flow.
  • control lines connected to the gates of the switching elements SAk, SBk, and SCk are omitted.
  • the control unit 3 mainly includes a control circuit 10 and a PWM drive unit 18.
  • the control circuit 10 includes a microcomputer having a CPU, for example.
  • the control circuit 10 includes a part (CPU or the like) that functions as a specifying unit and a notification unit, which will be described later, a storage unit configured by a ROM, a RAM, and the like, and an A / D converter 16 that converts an analog voltage into a digital signal.
  • the A / D converter 16 receives voltage values output from a current detection unit 9A, a voltage detection unit 9B, a temperature sensor 20, and the like, which will be described later.
  • the control circuit 10 has a function of determining a duty ratio and a function of generating and outputting a PWM signal of the determined duty ratio.
  • the n voltage conversion units CV1, A PWM signal for each of CV2... CVn is generated and output.
  • the control circuit 10 when driving all the n voltage converters CV1, CV2,... CVn in a steady output state, the control circuit 10 generates PWM signals having phases different by 2 ⁇ / n, and the n voltage converters CV1, CV1, CV1,. Output to each of CV2... CVn.
  • the polyphase converter 2 is constituted by four voltage converters CV1, CV2, CV3, and CV4 as in the example of FIG. 1, PWM signals having phases different from each other by 2 ⁇ / 4 from the controller 3 respectively. Is given.
  • the PWM drive unit 18 Based on the PWM signal for each phase generated by the control circuit 10, the PWM drive unit 18 turns on each of the switching elements SAk, SBk (k is a natural number of 1 to n) of each phase alternately. Is applied to the gates of the switching elements SAk and SBk. The phase of the signal applied to the gate of the switching element SBk during the output of the PWM signal to the switching elements SAk and SBk is reversed with respect to the signal applied to the gate of the switching element SAk after ensuring the dead time.
  • the multi-phase converter 1 includes detection units that respectively detect values reflecting output current and output voltage in a common output path (output-side conductive path 7) from the plurality of voltage conversion units CV1, CV2,... CVn.
  • the current detection unit 9A may be configured to output a voltage value corresponding to the current flowing through the output-side conductive path 7 as a detection value.
  • the current detection unit 9A has a resistor and a differential amplifier that are interposed in the output-side conductive path 7, and the voltage across the resistor is input to the differential amplifier, and a resistance is generated by the current flowing through the output-side conductive path 7.
  • the voltage drop generated in the converter is amplified by the differential amplifier, and this is output as a detection value to the A / D converter 16 of the control circuit 10.
  • the voltage detection unit 9B outputs, for example, a value reflecting the voltage of the output-side conductive path 7 (for example, the voltage of the output-side conductive path 7 or a divided value) to the A / D converter 16 of the control circuit 10. Configured as part.
  • the detection value output from the current detection unit 9A will be described as “current value”
  • the detection value output from the voltage detection unit 9B will be described as “voltage value”.
  • the multiphase converter 1 includes a temperature sensor 20.
  • the temperature sensor 20 corresponds to an example of a device temperature detection unit that detects a device temperature.
  • the temperature sensor 20 may be directly fixed to a component constituting at least one of the polyphase conversion unit 2, the control unit 3, and the individual temperature sensor (individual temperature detection unit) TH1, TH2, TH3, TH4. Of course, it may be indirectly fixed to a component constituting any one of them through another member different from the component constituting any one.
  • the temperature sensor 20 is mounted on a substrate on which any or all of the polyphase conversion unit 2, the control unit 3, and individual temperature sensors (individual temperature detection units) TH1, TH2, TH3, and TH4 are mounted.
  • the temperature sensor 20 is disposed at a location away from each of the switching elements of the n voltage conversion units CV1, CV2,... CVn, and specifically, for example, in the vicinity of the output capacitor 8 or in the vicinity of an input capacitor (not shown). Has been placed.
  • the individual temperature sensors (individual temperature detectors) TH1, TH2,..., THn, and the respective voltage converters CV1, CV2,.
  • Each distance to the temperature sensor 20 is larger.
  • the temperature sensor 20 arranged in this way functions to detect the temperature (apparatus temperature) at the arranged position.
  • the multiphase converter 1 includes a plurality of individual temperature sensors TH1, TH2,.
  • the plurality of individual temperature sensors TH1, TH2,... THn are sensors that detect the temperatures of the n voltage conversion units CV1, CV2,... CVn that constitute the multiphase conversion unit, and each corresponds to an individual temperature detection unit.
  • Each detected temperature (temperature of each voltage conversion unit) by the plurality of individual temperature sensors TH1, TH2,... THn is input to the control unit 3.
  • the individual temperature sensor THk is a sensor that detects the temperature of any element that constitutes the voltage conversion unit CVk (for example, the temperature of the switching element SAk), and is disposed in the vicinity of the temperature detection target element. Such an arrangement is applied to any case where k is 1 to n.
  • the control unit 3 complementarily outputs a PWM signal in a form in which a dead time is set for each of the n voltage conversion units CV1, CV2,... CVn. For example, for each gate of the switching elements SAk and SBk constituting the k-th phase voltage conversion unit CVk, the control unit 3 sets the dead time and then outputs an ON signal to the gate of the switching element SAk. During this time, an OFF signal is output to the gate of the switching element SBk, and an ON signal is output to the gate of the switching element SBk while the OFF signal is output to the gate of the switching element SAk.
  • the voltage conversion unit CVk performs switching between the ON operation and the OFF operation of the switching element SAk in synchronization with the switching between the OFF operation and the ON operation of the switching element SBk.
  • the DC voltage applied to the individual input path LAk is stepped down and output to the individual output path LBk.
  • the output voltage of the individual output path LBk is determined according to the duty ratio of the PWM signal applied to each gate of the switching elements SAk and SBk.
  • Such control is similarly performed in any of the above-described natural numbers k from 1 to n, that is, in any voltage conversion unit from the first phase to the n-th phase.
  • the controller 3 When operating the polyphase converter 2, the controller 3 individually controls some or all of the plurality of voltage converters CV1, CV2,... CVn with a control signal (PWM signal). The feedback control is performed so that the output becomes the set target value. Specifically, the control unit 3 performs feedback calculation using a known PID control method based on the current value of the output-side conductive path 7 input to the control circuit 10 and the target value (target current value) of the output current. Determine the control amount (duty ratio). For example, in a steady output state when the number of drive phases is m, a PWM signal having a duty ratio determined by feedback calculation is output to each of the m voltage conversion units with a phase difference of 2 ⁇ / m. A method for determining the number m of drive phases and a method for setting a target value (target current value) will be described later.
  • the drive control shown in FIG. 2 is a control that is repeatedly performed after an operation start condition for driving the multiphase converter 1 is established.
  • the operation start condition is, for example, switching of the ignition signal from off to on, and other operation start conditions may be used.
  • the number m of drive phases immediately after the operation of the multiphase converter 1 is started is, for example, “1”.
  • control unit 3 When executing the drive control of FIG. 2, the control unit 3 first determines whether or not it is necessary to switch the number of drive phases (S1).
  • a method for determining the number of reference phases serving as a reference for driving according to the state of the polyphase converter 2 is determined in advance.
  • the output power amount of the polyphase converter 2 is The relationship between the amount of output power and the number of reference phases is determined so that the reference phase number increases as the value increases.
  • the reference phase number is 1, when the output power amount is in the second range, the reference phase number is 2, and when the output power is in the third range, the reference phase number is 3.
  • the reference phase number is set to 4 in the range of. Note that the method of determining the number of phases according to the state of the multiphase converter 2 is not limited to this example, and various known determination methods may be used instead.
  • the control unit 3 performs the detection control of FIG. 3 in parallel with the drive control of FIG. 2, and first, the number i (phase of the voltage conversion unit of interest among the n voltage conversion units CV1, CV2,... CVn. Number) is selected (S21).
  • the phase number of the first phase voltage converter CV1 is 1
  • the phase number of the second phase voltage converter CV2 is 2
  • the phase number of the voltage converter CV4 of the fourth phase is 4.
  • the value of i is 1.
  • the value updated in the immediately preceding S31 becomes the value of i.
  • the control unit 3 determines whether or not the element temperature confirmed in S22 (the detected temperature Ti detected by the individual temperature sensor THi) exceeds the threshold temperature Tt2 after the process of S22. Advances to Yes in S23, and if not exceeded, advances to No in S23. When the process proceeds to No in S23, the value of i is incremented and the phase number is incremented by 1 (S31).
  • the detected temperature Ti (element temperature) detected by the associated individual temperature sensor THi exceeds the threshold value Tt2.
  • a “predetermined high temperature state” of the voltage converter of the eye may be set. For example, when the detected temperature T1 detected by the individual temperature sensor TH1 exceeds the threshold value Tt2, the “predetermined high temperature state” of the voltage converter of the first phase is set, and the detected temperature T2 detected by the individual temperature sensor TH2 is the threshold value. The case where Tt2 is exceeded may be the “predetermined high temperature state” of the voltage converter of the second phase. In this case, when the process proceeds to Yes in S23, the process after S27 is performed, and the control may be changed so that the processes of S24, S25, and S26 are omitted.
  • the control unit 3 sets the non-priority flag for the i-phase in S27, and increments the non-priority count CAi for the i-phase when the i-phase is set to the “high temperature voltage conversion unit” (S28).
  • information on the number of non-priority times is stored in association with each phase number, and information in this way is stored in a nonvolatile memory or the like.
  • CA1 is stored as information on the non-priority number of the first phase
  • CA2 as information on the non-priority number of the second phase
  • CA3 as information on the non-priority number of the third phase
  • information on the non-priority number of the fourth phase As CA4.
  • the non-priority number CAi of the i-phase is 0 regardless of whether i is a natural number equal to or less than n.
  • the non-priority count CAi for the i-phase is a value indicating the sum of the non-priority flags set for the i-phase (the number of times that the voltage converter in the i-phase has entered a “predetermined high temperature state”).
  • the ratio Cz / CAi between the non-priority number CAi of the i-phase and Cz which is the sum of the non-priority number of all n phases constituting the multiphase conversion unit 2 (ie, CA1 + CA2 +... CAn) is obtained. (S29). If the ratio Cz / CAi is equal to or greater than the threshold value D, the process proceeds to No in S29 and increments the value of i (S31). If the ratio Cz / CAi is smaller than the threshold D, the process proceeds to Yes in S29, and an abnormal flag is set in the i-phase (S30). In this case, the voltage converter in the i-th phase is treated as “a voltage converter in which the heat generation state has become a predetermined abnormal state”.
  • the information transmitted in S4 may be information indicating that an abnormality has occurred, for example, or may be information indicating the type of abnormality (for example, the occurrence of abnormal heating). Alternatively, it may be information that specifies the number of phases that have stopped driving due to an abnormality, or information that specifies the number of phases that can be driven.
  • control unit 3 functions as a notification unit, and operates to notify the outside when the heat generation state of the identified “high temperature voltage conversion unit” becomes a predetermined abnormal state.
  • the voltage converters may be selected from all the n phases constituting the multiphase converter 2 by the number of reference phases (the number of drive phases m) and driven. Note that the selection of the m voltage converters may be switched over time so as to be equalized.
  • the m voltage converters are driven by the first control method.
  • the first control method is control for setting a target current value when feedback control is performed on the multiphase converter 2 in a steady output state to a target value associated with the number of drive phases.
  • Each target value for each number of phases is determined in advance. For example, in the first control method when the number of drive phases is m, the control unit 3 performs feedback control so that the output current becomes a target value associated with the number m of drive phases.
  • the phase for which the non-priority flag is set (the voltage conversion unit that has become the “high temperature voltage conversion unit”) is selected as the non-driven phase, and the reference phase number determined in S1 is driven.
  • the m voltage converters are driven as the number of phases m (S6).
  • the m voltage converters are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
  • non-driving phases may be selected from those other than the phase for which the non-priority flag is set.
  • m voltages are set as phases to drive some phases with the non-priority flag set.
  • the conversion unit may be driven, and all phases for which the non-priority flag is set may be set as non-driving phases.
  • the process proceeds to No in S2, it is determined in S8 whether or not the apparatus temperature is lower than the threshold value. Specifically, it is determined whether or not the detection value (device temperature Td) detected by the temperature sensor 20 at the time of performing the determination process of S8 is lower than the threshold temperature Tt1, and if Td ⁇ Tt1, the process proceeds to S8. Proceed to Yes. Conversely, if Td ⁇ Tt1, the process proceeds to No in S8.
  • the drive phase number m is increased to the required value (reference phase number determined in S1) (S9).
  • movement which drives the m phase of the polyphase conversion part 2 is performed (S10).
  • the m-phase drive operation of S10 executes the control of FIG. 4 when m is smaller than the maximum number of phases n (that is, m ⁇ n), and when m is the maximum number of phases n, FIG. 5 is executed.
  • the process of S10 is performed according to the flow of FIG. 4, and first, a non-priority flag is referred (S41). Then, in S42, it is determined whether or not there is a phase (voltage conversion unit that has become a “high temperature voltage conversion unit”) in which the non-priority flag is set by the process of S27 in FIG. The process proceeds to No in S42, and if it exists, the process proceeds to Yes in S42. When the process proceeds to No in S42, the voltage conversion unit having the number m of driving phases (the number of reference phases) is selected and driven from all n phases constituting the multiphase conversion unit 2 (S43).
  • selection of m voltage conversion units from all n phases is switched according to the passage of time so as to be equalized.
  • the m voltage conversion units are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
  • the phase in which the non-priority flag is set (the voltage conversion unit that has become the “high temperature voltage conversion unit”) is selected as the non-driving phase, and the number m of driving phases from all n phases ( The voltage conversion unit (reference phase number) is selected and driven (S44).
  • the m voltage converters are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
  • the number of phases excluding the phase with the non-priority flag set is greater than the number m of driving phases, select m voltage converters from the remaining multiple phases excluding the phase with the non-priority flag set To do. In this case, the selection of m voltage conversion units from the remaining plurality of phases is switched according to the passage of time so as to be equalized. If the number of phases that should not be driven is less than the number of phases for which the non-priority flag is set, a non-driving phase may be selected from other than the phases for which the non-priority flag is set.
  • m voltages are set as phases to drive some phases with the non-priority flag set.
  • the conversion unit may be driven, and all phases for which the non-priority flag is set may be set as non-driving phases.
  • the process of S10 is performed according to the flow of FIG. 5, and first, the non-priority flag is referred (S51). Then, in S52, it is determined whether or not there is a phase (voltage conversion unit that has become a “high temperature voltage conversion unit”) in which the non-priority flag is set by the process of S27 in FIG. The process proceeds to No in S52, and if it exists, the process proceeds to Yes in S52.
  • the m voltage converters that is, all n phases
  • the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
  • the m voltage converters (that is, all n phases) are driven by the second control method (S53).
  • the target current value when the multiphase converter 2 is feedback-controlled in a steady output state is set to a target value lower than the target value associated with the number of drive phases, and the output is limited.
  • Control That is, when driving m voltage converters, in the first control method, feedback control is performed after setting the target current value It1 corresponding to the m voltage converters, and in the second control method, Feedback control is performed after setting a target current value It2 lower than the target current value It1 corresponding to the m voltage converters.
  • the non-priority phase is set when the drive phase number m is the total phase number n, the output current is limited and all the n phases are driven.
  • the number of drive phases is not updated to the reference phase number switched in S1, and the output current is limited while maintaining the current drive phase number m.
  • the voltage conversion unit having the number m of driving phases is driven by the second control method. That is, m voltage conversion units are feedback-controlled after setting a target current value It2 lower than m target current values It1.
  • control unit 3 determines the drive phase number m in the multiphase conversion unit 2 based on the reference phase number determined according to the state of the multiphase conversion unit 2, and the determined drive phase number m
  • the voltage converter is individually controlled by a control signal.
  • the control unit 3 increases the number of reference phases to a number of phases smaller than the maximum number of phases n of the multiphase conversion unit 2 due to a change in the state of the multiphase conversion unit 2 as in the case of proceeding to No in S2 of FIG.
  • the device temperature Td detected by the temperature sensor 20 device temperature detection unit
  • the threshold temperature Tt1 threshold temperature
  • the “high temperature voltage conversion unit” is specified by the detection control of FIG. 4
  • the voltage of the reference phase number (driving phase number m) set in S1 The conversion unit is driven by the first control method.
  • control unit 3 determines that the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) is the threshold temperature Tt1 when the reference phase number is switched to the maximum phase number n due to a change in the state of the multiphase conversion unit 2. 3 and the “high temperature voltage conversion unit” is specified by the detection control of FIG. 3, the voltage conversion unit having the maximum number of phases n is output as compared with the first control method as in S53 of FIG. 5. Is driven by a second control method that is limited.
  • the number of reference phases is smaller than the maximum phase number n of the polyphase conversion unit 2 due to the change in the state of the polyphase conversion unit 2.
  • the polyphase conversion unit 2 is controlled by the second control method in which the output is limited compared to the first control method, as in S11 of FIG. Drive. Specifically, the m voltage conversion units are driven by the second control method while maintaining the number m of drive phases before switching in S1.
  • the multiphase converter 1 of this configuration is a device in which the number of reference phases serving as a reference for driving is smaller than the maximum number of phases n of the multiphase converter 2, that is, when the number of phases can be reduced and driven.
  • the voltage conversion unit high-temperature voltage conversion unit
  • voltage conversion specified by at least the specifying unit as a non-driving phase Part is selected, and the voltage converter having the number of reference phases excluding the non-driven phase is driven.
  • the voltage converter it is possible to select the voltage converter to be driven by a method that easily suppresses the operation of the voltage converter that increases in temperature.
  • the apparatus temperature Td is higher than the threshold temperature Tt1
  • the multi-phase conversion unit 2 is driven by the second control method in which the output is limited. Therefore, when the apparatus temperature Td increases, the apparatus temperature rises. Can be reliably suppressed.
  • the control unit 3 when the reference phase number is switched due to a change in the state of the multiphase conversion unit 2, the control unit 3 has the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) higher than the threshold temperature Tt1.
  • the m voltage converters are driven by the second control method while maintaining the number m of drive phases before switching. According to this configuration, even when the number of reference phases is switched, the number of phases before switching can be maintained when the apparatus temperature Td is relatively high, and the temperature can be suppressed by limiting the output. That is, when the device temperature Td is relatively high, the temperature increase due to the change in the number of drive phases can be suppressed, and the temperature increase can be surely suppressed by the output restriction.
  • control unit 3 determines that the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) is the threshold temperature Tt1 when the reference phase number is switched to the maximum phase number n due to a change in the state of the multiphase conversion unit 2.
  • the voltage conversion unit the voltage conversion unit whose temperature is equal to or higher than a predetermined threshold
  • the output of the voltage conversion unit with the maximum number of phases n is more limited than in the first control method. It is configured to be driven by the control method.
  • the voltage converter the voltage converter having a temperature equal to or higher than a predetermined threshold
  • this configuration is external when the heat generation state of the voltage conversion unit (the voltage conversion unit whose temperature is equal to or higher than a predetermined threshold value) specified by the control unit 3 corresponding to the specification unit becomes a “predetermined abnormal state”. Is provided with a notification unit for performing notification. According to this configuration, in the multiphase converter 1, it can be recognized to the outside that a predetermined high temperature abnormality has occurred in any of the voltage conversion units.
  • the step-down type multi-phase converter is exemplified, but it may be a step-up type multi-phase converter or a step-up / step-down type multi-phase converter.
  • k is a natural number of 1 to n and the switching element SBk is provided on the low side of each phase. However, it can be replaced with a diode whose anode is connected to the ground potential.
  • the switching elements SAk and SBk may be P-channel MOSFETs or other switching elements such as bipolar transistors.
  • the primary power source 91 and the load 92 in the first embodiment are merely examples, and various devices and electronic components can be connected to the input-side conductive path and the output-side conductive path. (4) In FIG.
  • the four-phase multiphase converter 1 in which the four voltage converters CV1, CV2, CV3, and CV4 are connected in parallel is illustrated as a representative example, but the number of voltage converters is less than four. There may be a plurality, or a plurality of five or more.
  • the device temperature detection unit and the individual temperature detection unit are configured as separate sensors (temperature sensor 20 and individual temperature sensors TH1, TH2,... THk), but the individual temperature detection unit is used as the device temperature detection unit. You may also use it.
  • the configuration may be such that the average value of all the detected temperatures detected by the individual temperature detector is used as the apparatus temperature.
  • the process proceeds to Yes in S29 of FIG.
  • the voltage conversion unit of the i-phase is set to “voltage conversion unit whose heat generation state has become a predetermined abnormal state”, but is counted as a non-priority phase.
  • the voltage conversion unit in which the number of times (ie, “the number of times when the“ predetermined high temperature state ”is reached)” exceeds a certain value is defined as the “voltage conversion unit where the heat generation state is a predetermined abnormal state”, and an abnormality flag is set. Also good.
  • the voltage conversion unit that has been “predetermined high temperature state” continuously for a predetermined number of times in a predetermined period may be referred to as “voltage conversion unit in which the heat generation state is a predetermined abnormal state”, and the abnormality flag may be set.
  • the temperature sensor 20 detects Control is performed when the device temperature Td to be applied is lower than the threshold temperature Tt1 and the non-priority flag is set in the detection control of FIG. 3 (that is, the “high-temperature voltage conversion unit” is specified by the specifying unit).
  • the unit 3 performs the process of S6, selects the “high temperature voltage conversion unit” specified by the specification unit as the non-driven phase, and drives the voltage conversion unit of the reference phase number by the first control method. It will be.
  • the second control method in which the output of the m voltage conversion units is limited as compared with the first control method without changing the number m of drive phases. Drive with.
  • the decrease in the number of phases is suppressed when the device temperature is high, and the load concentration due to the decrease in the number of phases, and hence the associated temperature increase, is suppressed. Can do.
  • the output is limited, a further suppression effect can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a configuration that makes it possible to select a voltage conversion unit for driving according to a method by which it is possible to easily suppress the operation of voltage conversion units in which the temperature increases, and, in a case where there is an increase in the device temperature, to reliably suppress the increase in the temperature of the device. When a change in the state of a multiphase conversion unit (2) causes the number of reference phases to change to a number smaller than the maximum number of phases (n) of the multiphase conversion unit (2), and when the device temperature (Td) is lower than a threshold temperature (Tt1) and a high-temperature voltage conversion unit has been specified, a control unit (3) selects the specified high-temperature voltage conversion unit as a non-drive phase, and drives voltage conversion units corresponding to the number of reference phases using a first control scheme. If the device temperature (Td) is higher than the threshold temperature (Tt1), the multiphase conversion unit (2) is driven using a second control scheme in which the output is more restricted than in the first control scheme.

Description

多相コンバータMultiphase converter
 本発明は、多相コンバータに関するものである。 The present invention relates to a polyphase converter.
 スイッチング素子の駆動によって直流電圧を昇圧又は降圧するDCDCコンバータでは、複数の電圧変換部を並列に接続した構成の多相DCDCコンバータが知られている。この種の多相DCDCコンバータの例としては、例えば特許文献1のような技術が存在する。 In a DCDC converter that boosts or lowers a DC voltage by driving a switching element, a multiphase DCDC converter having a configuration in which a plurality of voltage conversion units are connected in parallel is known. As an example of this type of multi-phase DCDC converter, for example, there is a technique as disclosed in Patent Document 1.
特開2006-311776号公報JP 2006-311776 A
 この種の多相コンバータでは、ある程度の温度上昇が生じた場合に何らかの対処を行う構成も提案されている。例えば、特許文献1の技術は、複数の電圧変換器の各素子温度に基づいて駆動させる電圧変換器を決定する方法を採用しており、温度の低い電圧変換器から優先して使用するように駆動させる電圧変換器を決定している。 This type of multi-phase converter has also been proposed to take some measures when a certain temperature rise occurs. For example, the technique of Patent Document 1 employs a method of determining a voltage converter to be driven based on each element temperature of a plurality of voltage converters, so that the voltage converter with lower temperature is used with priority. The voltage converter to be driven is determined.
 しかしながら、単に素子温度が高い電圧変換器を停止するという方法だけでは、問題が生じる虞がある。例えば、素子温度が高くなった電圧変換器を停止させても、駆動させる残りの電圧変換器に負荷が集中してしまうため、これらの電圧変換器の温度上昇、ひいては、装置全体の温度上昇を招いてしまうことになる。このような問題は、装置全体が駆動を停止すべき限界温度に近くなるような場合など、装置温度が無視できないレベルまで上昇している場合などにおいて特に注意が必要である。 However, simply stopping the voltage converter with a high element temperature may cause a problem. For example, even if the voltage converter whose element temperature has been raised is stopped, the load is concentrated on the remaining voltage converters to be driven. Therefore, the temperature rise of these voltage converters, and consequently the temperature rise of the entire device Will be invited. Such a problem requires special attention when the apparatus temperature has risen to a level that cannot be ignored, such as when the entire apparatus is close to the limit temperature at which driving should be stopped.
 本発明は上述した事情に基づいてなされたものであり、温度が高くなる電圧変換部の動作を抑制しやすい方法で駆動する電圧変換部を選択することができ、装置温度が高くなる場合には装置の温度上昇を確実に抑制し得る構成を提供することを目的とするものである。 The present invention has been made on the basis of the above-described circumstances, and it is possible to select a voltage conversion unit that is driven by a method that easily suppresses the operation of the voltage conversion unit that increases in temperature. It aims at providing the structure which can suppress the temperature rise of an apparatus reliably.
 本発明の多相コンバータは、
 入力された電圧を変換して出力する電圧変換部を複数備えた多相変換部と、
 前記多相変換部の状態に応じて駆動の基準となる基準相数を決定する方式が予め定められ、前記多相変換部の状態に応じて定まる前記基準相数に基づいて、前記多相変換部での駆動相数を決定し、決定した前記駆動相数の前記電圧変換部を制御信号によって個々に制御する制御部と、
 前記多相変換部を構成する複数の前記電圧変換部のそれぞれの温度を検出する複数の個別温度検出部と、
 複数の前記個別温度検出部による検出結果に基づき、複数の前記電圧変換部の中から温度が所定の閾値以上である前記電圧変換部を特定する特定部と、
 前記多相変換部、前記制御部、前記個別温度検出部、及び前記特定部のうちの少なくともいずれかを構成する部品に対して直接又は他部材を介して間接的に固定され、配置された位置における装置温度を検出する装置温度検出部と、
を備え、
 前記制御部は、前記多相変換部の状態の変化により前記基準相数が前記多相変換部の最大相数よりも少ない相数に増加又は減少する場合において、前記装置温度検出部で検出される前記装置温度が閾値温度よりも低く且つ前記特定部によって前記電圧変換部が特定されているときには、非駆動の相として前記特定部で特定された前記電圧変換部を選択した上で前記基準相数の前記電圧変換部を第1の制御方式で駆動する一方、前記装置温度が前記閾値温度よりも高いときには、前記第1の制御方式よりも出力が制限される第2の制御方式で前記多相変換部を駆動する。
The polyphase converter of the present invention is
A multi-phase converter having a plurality of voltage converters that convert and output an input voltage; and
A method for determining a reference phase number serving as a driving reference according to the state of the polyphase conversion unit is determined in advance, and based on the reference phase number determined according to the state of the polyphase conversion unit, the polyphase conversion A control unit for determining the number of drive phases in the unit, and individually controlling the voltage conversion unit of the determined number of drive phases by a control signal;
A plurality of individual temperature detectors for detecting respective temperatures of the plurality of voltage converters constituting the polyphase converter;
Based on detection results by the plurality of individual temperature detection units, a specifying unit for specifying the voltage conversion unit having a temperature equal to or higher than a predetermined threshold from among the plurality of voltage conversion units,
Positions that are fixed and arranged directly or indirectly via other members with respect to components that constitute at least one of the polyphase conversion unit, the control unit, the individual temperature detection unit, and the specific unit A device temperature detecting unit for detecting the device temperature in
With
The control unit is detected by the device temperature detection unit when the reference phase number increases or decreases to a smaller number of phases than the maximum phase number of the multiphase conversion unit due to a change in the state of the multiphase conversion unit. When the device temperature is lower than a threshold temperature and the voltage conversion unit is specified by the specifying unit, the reference phase is selected after selecting the voltage conversion unit specified by the specifying unit as a non-driving phase. When the device temperature is higher than the threshold temperature, the multiple voltage converters are driven by the first control method, and when the device temperature is higher than the threshold temperature, the output is limited by the second control method. Drives the phase converter.
 本発明の多相コンバータは、駆動の基準となる基準相数が多相変換部の最大相数よりも少ない相数である場合、即ち、相数を抑えて駆動し得る場合、装置温度が相対的に低く且つ特定部によって温度が所定の閾値以上である電圧変換部が特定されているときには、非駆動の相として少なくとも特定部によって特定された電圧変換部(温度が所定の閾値以上である電圧変換部)を選択し、非駆動の相を除いた基準相数の電圧変換部を駆動する。よって、温度が高くなる電圧変換部の動作を抑制しやすい方法で、駆動する電圧変換部を選択することができる。一方、装置温度が閾値温度よりも高い場合には、出力が制限される第2の制御方式で多相変換部を駆動するため、装置温度が高くなる場合には装置の温度上昇を確実に抑制することができる。 In the multiphase converter of the present invention, when the number of reference phases serving as a reference for driving is smaller than the maximum number of phases of the multiphase conversion unit, that is, when the number of phases can be controlled, the apparatus temperature is relative. When the voltage conversion unit whose temperature is lower than the predetermined threshold is specified by the specific unit, the voltage conversion unit specified by at least the specific unit as the non-driving phase (the voltage whose temperature is equal to or higher than the predetermined threshold) Conversion unit) is selected, and the voltage conversion unit having the number of reference phases excluding the non-driven phase is driven. Therefore, it is possible to select the voltage converter to be driven by a method that easily suppresses the operation of the voltage converter that increases in temperature. On the other hand, when the device temperature is higher than the threshold temperature, the multi-phase conversion unit is driven by the second control method in which the output is limited. Therefore, when the device temperature becomes high, the temperature rise of the device is surely suppressed. can do.
実施例1の多相コンバータを概略的に例示する回路図である。1 is a circuit diagram schematically illustrating a multiphase converter of Example 1. FIG. 実施例1の多相コンバータにおける多相変換部の駆動制御を例示するフローチャートである。3 is a flowchart illustrating drive control of a multiphase conversion unit in the multiphase converter according to the first embodiment. 実施例1の多相コンバータにおいて非駆動の相とする非優先相の検出制御を例示するフローチャートである。4 is a flowchart illustrating detection control of a non-priority phase as a non-driving phase in the multiphase converter according to the first embodiment. 図2の切り替え制御に関し、多相変換部が全n相の電圧変換部で構成され、そのうちm相の電圧変換部を使用する場合において、m<nのときのm相駆動動作を例示するフローチャートである。Regarding the switching control in FIG. 2, a flowchart illustrating an m-phase driving operation when m <n in the case where the multi-phase conversion unit is composed of all n-phase voltage conversion units and the m-phase voltage conversion unit is used. It is. 図2の切り替え制御に関し、m=nのときのm相駆動動作を例示するフローチャートである。3 is a flowchart illustrating an m-phase driving operation when m = n with respect to the switching control of FIG. 2.
 発明の望ましい形態を以下に例示する。
 本発明において、制御部は、多相変換部の状態の変化により基準相数が切り替わる場合において、装置温度検出部で検出される装置温度が閾値温度よりも高いときには、切り替わり前の駆動相数を維持しつつ電圧変換部を第2の制御方式で駆動する構成であってもよい。
The desirable form of invention is illustrated below.
In the present invention, when the reference phase number is switched due to a change in the state of the multiphase conversion unit, the control unit determines the number of drive phases before switching when the device temperature detected by the device temperature detection unit is higher than the threshold temperature. The voltage converter may be driven by the second control method while maintaining.
 この構成によれば、基準相数が切り替わる場合であっても、装置温度が相対的に高いときには切り替わり前の相数を維持し、出力制限によって温度の抑制を図ることができる。つまり、装置温度が相対的に高い場合には駆動相数の変更に起因する温度上昇を抑え、出力制限によって確実に温度上昇を抑制することができる。 According to this configuration, even when the number of reference phases is switched, the number of phases before switching can be maintained when the apparatus temperature is relatively high, and the temperature can be suppressed by limiting the output. That is, when the apparatus temperature is relatively high, the temperature rise caused by the change in the number of drive phases can be suppressed, and the temperature rise can be surely suppressed by the output restriction.
 本発明において、制御部は、多相変換部の状態の変化により基準相数が最大相数に切り替わる場合において、装置温度検出部で検出される装置温度が閾値温度よりも低く且つ特定部によって電圧変換部が特定されているときには、最大相数の電圧変換部を、第1の制御方式よりも出力が制限される制御方式で駆動する構成であってもよい。 In the present invention, when the reference phase number is switched to the maximum number of phases due to a change in the state of the multiphase conversion unit, the control unit detects that the device temperature detected by the device temperature detection unit is lower than the threshold temperature and is applied by the specifying unit. When the conversion unit is specified, the voltage conversion unit having the maximum number of phases may be driven by a control method in which the output is limited more than in the first control method.
 多相変換部の全相を駆動すべき場合において特定部によって電圧変換部が特定されているときには、この電圧変換部の駆動を停止して相数を減少させる方法も考えられるが、この方法では、残りの電圧変換部への負荷の集中により装置温度の上昇を招く虞がある。これに対し、上記構成によれば、全相の駆動によって負荷の分散化を図ることで、装置全体の温度上昇を抑え、更に出力を制限することで装置温度を一層抑制することができる。 When all the phases of the polyphase converter are to be driven and the voltage converter is specified by the specifying unit, a method of stopping the driving of the voltage converter and reducing the number of phases is conceivable. The concentration of the load on the remaining voltage conversion unit may increase the device temperature. On the other hand, according to the above configuration, it is possible to suppress the temperature rise of the entire device by distributing the load by driving all phases, and further suppress the device temperature by limiting the output.
 本発明は、特定部によって特定された電圧変換部の発熱状態が所定の異常状態となった場合に外部に通知を行う通知部を備えていてもよい。 The present invention may include a notification unit that notifies the outside when the heat generation state of the voltage conversion unit specified by the specifying unit becomes a predetermined abnormal state.
 この構成によれば、多相コンバータにおいていずれかの電圧変換部に所定の高温異常が生じていることを外部に認識させることができる。 According to this configuration, it is possible to externally recognize that a predetermined high temperature abnormality has occurred in any of the voltage conversion units in the multiphase converter.
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す多相コンバータ1は、例えば、車載用の多相型DCDCコンバータとして構成されており、入力側導電路6に印加された直流電圧(入力電圧)を多相方式且つ降圧方式で電圧変換し、入力電圧を降圧した出力電圧を出力側導電路7に出力する構成となっている。
<Example 1>
Embodiment 1 of the present invention will be described below.
The multiphase converter 1 shown in FIG. 1 is configured as, for example, an on-vehicle multiphase DCDC converter, and a DC voltage (input voltage) applied to the input-side conductive path 6 is converted into a voltage by a multiphase method and a step-down method. The output voltage obtained by converting and stepping down the input voltage is output to the output-side conductive path 7.
 多相コンバータ1は、入力側導電路6と出力側導電路7とを備えた電源ライン5と、入力された電圧を変換して出力するn個の電圧変換部CV1,CV2…CVnを備えた多相変換部2と、電圧変換部CV1,CV2…CVnを制御信号によって個々に制御する制御部3とを備える。なお、電圧変換部の個数(多相変換部2における最大相数)であるnは2以上の自然数であればよい。以下では、図1で示す構成、即ち、n=4である場合を代表例として説明する。 The multiphase converter 1 includes a power supply line 5 having an input-side conductive path 6 and an output-side conductive path 7, and n voltage conversion units CV1, CV2,... CVn that convert and output an input voltage. The multi-phase conversion unit 2 and the control unit 3 that individually controls the voltage conversion units CV1, CV2,. Note that n, which is the number of voltage conversion units (the maximum number of phases in the multiphase conversion unit 2), may be a natural number of 2 or more. In the following, the configuration shown in FIG. 1, that is, the case where n = 4 will be described as a representative example.
 入力側導電路6は、例えば、相対的に高い電圧が印加される一次側(高圧側)の電源ラインとして構成され、一次側電源部91の高電位側の端子に導通するとともに、その一次側電源部91から所定の直流電圧(例えば、48V)が印加される構成をなす。この入力側導電路6は、各電圧変換部CV1,CV2,CV3,CV4の個別入力路LA1,LA2,LA3,LA4にそれぞれ接続されている。一次側電源部91は、例えば、リチウムイオン電池、或いは電気二重層キャパシタ等の蓄電手段によって構成され、高電位側の端子は例えば48Vに保たれ、低電位側の端子は例えばグラウンド電位(0V)に保たれている。 The input side conductive path 6 is configured as, for example, a primary side (high voltage side) power supply line to which a relatively high voltage is applied, and is connected to a high potential side terminal of the primary side power supply unit 91 and the primary side thereof. A predetermined DC voltage (for example, 48V) is applied from the power supply unit 91. The input side conductive path 6 is connected to the individual input paths LA1, LA2, LA3, LA4 of the voltage converters CV1, CV2, CV3, CV4, respectively. The primary power supply unit 91 is configured by power storage means such as a lithium ion battery or an electric double layer capacitor, for example, the high potential side terminal is maintained at, for example, 48V, and the low potential side terminal is at, for example, the ground potential (0V). It is kept in.
 出力側導電路7は、相対的に低い電圧が印加される二次側(低圧側)の電源ラインとして構成されている。この出力側導電路7には、車載用電気機器などの負荷92が接続されている。なお、出力側導電路7には、一次側電源部91の出力電圧よりも小さい直流電圧(例えば12V)を出力する蓄電手段(鉛蓄電池等)が接続されていてもよい。 The output side conductive path 7 is configured as a secondary (low voltage side) power supply line to which a relatively low voltage is applied. A load 92 such as an in-vehicle electric device is connected to the output side conductive path 7. The output side conductive path 7 may be connected to a storage means (such as a lead storage battery) that outputs a DC voltage (for example, 12 V) smaller than the output voltage of the primary side power supply unit 91.
 入力側導電路6と出力側導電路7との間には、多相変換部2が設けられている。この多相変換部2は、入力側導電路6と出力側導電路7との間に並列に接続されたn個の電圧変換部CV1,CV2…CVnを備える。n個の電圧変換部CV1,CV2…CVnは、同様の構成をなし、いずれも同期整流方式の降圧型コンバータとして機能する。入力側導電路6からはn個の電圧変換部CV1,CV2…CVnの各個別入力路LA1,LA2…LAnが分岐している。また、n個の電圧変換部CV1,CV2…CVnの各個別出力路LB1,LB2…LBnは、共通の出力路である出力側導電路7に接続されている。なお、n個の電圧変換部CV1,CV2…CVnは、それぞれ1相目、2相目…n相目とされている。なお、本明細書では、「相に対応する電圧変換部」を単に「相」と称することもある。 Between the input side conductive path 6 and the output side conductive path 7, the multiphase converter 2 is provided. The multiphase converter 2 includes n voltage converters CV1, CV2,... CVn connected in parallel between the input side conductive path 6 and the output side conductive path 7. The n voltage converters CV1, CV2,... CVn have the same configuration and all function as a synchronous rectification step-down converter. The individual input paths LA1, LA2,... LAn of the n voltage converters CV1, CV2,. The individual output paths LB1, LB2,... LBn of the n voltage conversion units CV1, CV2,... CVn are connected to the output side conductive path 7 that is a common output path. Note that the n voltage converters CV1, CV2,... CVn are in the first phase, the second phase, and the n phase, respectively. In the present specification, the “voltage conversion unit corresponding to the phase” may be simply referred to as “phase”.
 n個の電圧変換部CV1,CV2…CVnのうち、第k相の電圧変換部CVkについて説明する。以下において、kは、n以下の自然数である。第k相の電圧変換部CVkは、ハイサイド側のスイッチング素子SAkと、ローサイド側のスイッチング素子SBkと、インダクタLkと、保護用のスイッチング素子SCkとを備える。例えば、第1相の電圧変換部CV1は、ハイサイド側のスイッチング素子SA1と、ローサイド側のスイッチング素子SB1と、インダクタL1と、保護用のスイッチング素子SC1とを備えており、第2相の電圧変換部CV2は、ハイサイド側のスイッチング素子SA2と、ローサイド側のスイッチング素子SB2と、インダクタL2と、保護用のスイッチング素子SC2とを備えている。第3相、第4相も同様である。 Among the n voltage conversion units CV1, CV2,... CVn, the k-th phase voltage conversion unit CVk will be described. In the following, k is a natural number of n or less. The k-th phase voltage converter CVk includes a high-side switching element SAk, a low-side switching element SBk, an inductor Lk, and a protective switching element SCk. For example, the first-phase voltage conversion unit CV1 includes a high-side switching element SA1, a low-side switching element SB1, an inductor L1, and a protective switching element SC1. The conversion unit CV2 includes a high-side switching element SA2, a low-side switching element SB2, an inductor L2, and a protective switching element SC2. The same applies to the third phase and the fourth phase.
 第k相の電圧変換部CVkにおいて、スイッチング素子SAkは、Nチャネル型のMOSFETとして構成され、スイッチング素子SAkのドレインには、入力側導電路6から分岐した個別入力路LAkが接続されている。スイッチング素子SAkのソースには、ローサイド側のスイッチング素子SBkのドレイン及びインダクタLkの一端が接続されている。スイッチング素子SBkは、スイッチング素子SAkとインダクタLkとの接続点にドレインが接続され、ソースは接地されている。インダクタLkの他端は、スイッチング素子SCkのソースに接続されている。スイッチング素子SCkのドレインは、出力側導電路7に接続されている。スイッチング素子SCkは、過電流、過電圧、逆流等の異常時に経路の導通を遮断するように機能するものである。なお、図1ではスイッチング素子SAk,SBk,SCkの各ゲートに接続される制御線は省略している。 In the k-phase voltage conversion unit CVk, the switching element SAk is configured as an N-channel MOSFET, and the individual input path LAk branched from the input-side conductive path 6 is connected to the drain of the switching element SAk. The source of the switching element SAk is connected to the drain of the low-side switching element SBk and one end of the inductor Lk. The switching element SBk has a drain connected to a connection point between the switching element SAk and the inductor Lk, and a source grounded. The other end of the inductor Lk is connected to the source of the switching element SCk. The drain of the switching element SCk is connected to the output side conductive path 7. The switching element SCk functions to cut off the conduction of the path when there is an abnormality such as overcurrent, overvoltage, or reverse flow. In FIG. 1, control lines connected to the gates of the switching elements SAk, SBk, and SCk are omitted.
 制御部3は、主として、制御回路10とPWM駆動部18とを備える。制御回路10は、例えばCPUを有するマイクロコンピュータを含んでなる。この制御回路10は、後述する特定部及び通知部等として機能する部分(CPU等)と、ROM、RAMなどによって構成される記憶部と、アナログ電圧をデジタル信号に変換するA/D変換器16とを備える。A/D変換器16には、後述する電流検出部9A、電圧検出部9B、温度センサ20などから出力される各電圧値が入力される。 The control unit 3 mainly includes a control circuit 10 and a PWM drive unit 18. The control circuit 10 includes a microcomputer having a CPU, for example. The control circuit 10 includes a part (CPU or the like) that functions as a specifying unit and a notification unit, which will be described later, a storage unit configured by a ROM, a RAM, and the like, and an A / D converter 16 that converts an analog voltage into a digital signal. With. The A / D converter 16 receives voltage values output from a current detection unit 9A, a voltage detection unit 9B, a temperature sensor 20, and the like, which will be described later.
 制御部3において、制御回路10は、デューティ比を決定する機能、及び決定したデューティ比のPWM信号を生成し出力する機能を有しており、具体的には、n個の電圧変換部CV1,CV2…CVnのそれぞれに対するPWM信号を生成し、出力する。例えば、定常出力状態において、n個の電圧変換部CV1,CV2…CVnを全て駆動する場合、制御回路10は、位相が2π/nずつ異なるPWM信号を生成し、n個の電圧変換部CV1,CV2…CVnのそれぞれに出力する。図1の例のように多相変換部2が4個の電圧変換部CV1,CV2,CV3,CV4によって構成されていれば、制御部3からそれぞれに対して位相が2π/4ずつ異なるPWM信号が与えられる。 In the control unit 3, the control circuit 10 has a function of determining a duty ratio and a function of generating and outputting a PWM signal of the determined duty ratio. Specifically, the n voltage conversion units CV1, A PWM signal for each of CV2... CVn is generated and output. For example, when driving all the n voltage converters CV1, CV2,... CVn in a steady output state, the control circuit 10 generates PWM signals having phases different by 2π / n, and the n voltage converters CV1, CV1, CV1,. Output to each of CV2... CVn. If the polyphase converter 2 is constituted by four voltage converters CV1, CV2, CV3, and CV4 as in the example of FIG. 1, PWM signals having phases different from each other by 2π / 4 from the controller 3 respectively. Is given.
 PWM駆動部18は、制御回路10で生成された各相に対するPWM信号に基づき、各相のスイッチング素子SAk,SBk(kは、1~nの自然数)のそれぞれを交互にオンするためのオン信号をスイッチング素子SAk,SBkのゲートに印加する。スイッチング素子SAk,SBkへのPWM信号の出力中においてスイッチング素子SBkのゲートに与えられる信号は、デッドタイムが確保された上で、スイッチング素子SAkのゲートに与えられる信号に対して位相が反転する。 Based on the PWM signal for each phase generated by the control circuit 10, the PWM drive unit 18 turns on each of the switching elements SAk, SBk (k is a natural number of 1 to n) of each phase alternately. Is applied to the gates of the switching elements SAk and SBk. The phase of the signal applied to the gate of the switching element SBk during the output of the PWM signal to the switching elements SAk and SBk is reversed with respect to the signal applied to the gate of the switching element SAk after ensuring the dead time.
 多相コンバータ1は、複数の電圧変換部CV1,CV2…CVnからの共通の出力経路(出力側導電路7)における出力電流及び出力電圧を反映した値をそれぞれ検出する検出部を備える。電流検出部9Aは、出力側導電路7を流れる電流に対応する電圧値を検出値として出力する構成であればよい。例えば、電流検出部9Aは、出力側導電路7に介在する抵抗器と差動増幅器とを有し、抵抗器の両端電圧が差動増幅器に入力され、出力側導電路7を流れる電流によって抵抗器に生じた電圧降下量が差動増幅器で増幅され、これを検出値として制御回路10のA/D変換器16に出力するようになっている。電圧検出部9Bは、例えば出力側導電路7の電圧を反映した値(例えば、出力側導電路7の電圧そのもの、或いは分圧値等)を制御回路10のA/D変換器16に出力する部分として構成されている。以下では、電流検出部9Aから出力される検出値を「電流値」とし、電圧検出部9Bから出力される検出値を「電圧値」として説明する。 The multi-phase converter 1 includes detection units that respectively detect values reflecting output current and output voltage in a common output path (output-side conductive path 7) from the plurality of voltage conversion units CV1, CV2,... CVn. The current detection unit 9A may be configured to output a voltage value corresponding to the current flowing through the output-side conductive path 7 as a detection value. For example, the current detection unit 9A has a resistor and a differential amplifier that are interposed in the output-side conductive path 7, and the voltage across the resistor is input to the differential amplifier, and a resistance is generated by the current flowing through the output-side conductive path 7. The voltage drop generated in the converter is amplified by the differential amplifier, and this is output as a detection value to the A / D converter 16 of the control circuit 10. The voltage detection unit 9B outputs, for example, a value reflecting the voltage of the output-side conductive path 7 (for example, the voltage of the output-side conductive path 7 or a divided value) to the A / D converter 16 of the control circuit 10. Configured as part. Hereinafter, the detection value output from the current detection unit 9A will be described as “current value”, and the detection value output from the voltage detection unit 9B will be described as “voltage value”.
 また、多相コンバータ1は、温度センサ20を備える。この温度センサ20は、装置温度を検出する装置温度検出部の一例に相当する。温度センサ20は、多相変換部2、制御部3、個別温度センサ(個別温度検出部)TH1,TH2,TH3,TH4のうちの少なくともいずれかを構成する部品に対して直接固定されていてもよく、いずれかを構成する部品とは異なる他部材を介していずれかを構成する部品に間接的に固定されていてもよい。例えば、温度センサ20は、多相変換部2、制御部3、個別温度センサ(個別温度検出部)TH1,TH2,TH3,TH4のいずれか、又は全てが実装された基板に実装されている。例えばn個の電圧変換部CV1,CV2…CVnの各スイッチング素子から離れた場所に温度センサ20が配置されており、具体的には、例えば出力コンデンサ8の近傍、或いは図示しない入力コンデンサの近傍に配置されている。本構成では、個別温度センサ(個別温度検出部)TH1,TH2…THnの各々から、それぞれに近接する電圧変換部CV1,CV2…CVnの各スイッチング素子までの各距離よりも、それら各スイッチング素子から温度センサ20までの各距離のほうが大きくなっている。このように配置される温度センサ20は、配置された位置の温度(装置温度)を検出するように機能する。 Further, the multiphase converter 1 includes a temperature sensor 20. The temperature sensor 20 corresponds to an example of a device temperature detection unit that detects a device temperature. The temperature sensor 20 may be directly fixed to a component constituting at least one of the polyphase conversion unit 2, the control unit 3, and the individual temperature sensor (individual temperature detection unit) TH1, TH2, TH3, TH4. Of course, it may be indirectly fixed to a component constituting any one of them through another member different from the component constituting any one. For example, the temperature sensor 20 is mounted on a substrate on which any or all of the polyphase conversion unit 2, the control unit 3, and individual temperature sensors (individual temperature detection units) TH1, TH2, TH3, and TH4 are mounted. For example, the temperature sensor 20 is disposed at a location away from each of the switching elements of the n voltage conversion units CV1, CV2,... CVn, and specifically, for example, in the vicinity of the output capacitor 8 or in the vicinity of an input capacitor (not shown). Has been placed. In this configuration, the individual temperature sensors (individual temperature detectors) TH1, TH2,..., THn, and the respective voltage converters CV1, CV2,. Each distance to the temperature sensor 20 is larger. The temperature sensor 20 arranged in this way functions to detect the temperature (apparatus temperature) at the arranged position.
 更に、多相コンバータ1は、複数の個別温度センサTH1,TH2…THnを備える。これら複数の個別温度センサTH1,TH2…THnは、多相変換部を構成するn個の電圧変換部CV1,CV2…CVnのそれぞれの温度を検出するセンサであり、それぞれが個別温度検出部に相当する。これら複数の個別温度センサTH1,TH2…THnによる各検出温度(各電圧変換部の温度)は、制御部3に入力されるようになっている。例えば、個別温度センサTHkは、電圧変換部CVkを構成するいずれかの素子の温度(例えば、スイッチング素子SAkの温度)を検出するセンサであり、温度検出対象の素子近傍に配置される。このような配置は、kが1~nのいずれの場合にも適用される。 Furthermore, the multiphase converter 1 includes a plurality of individual temperature sensors TH1, TH2,. The plurality of individual temperature sensors TH1, TH2,... THn are sensors that detect the temperatures of the n voltage conversion units CV1, CV2,... CVn that constitute the multiphase conversion unit, and each corresponds to an individual temperature detection unit. To do. Each detected temperature (temperature of each voltage conversion unit) by the plurality of individual temperature sensors TH1, TH2,... THn is input to the control unit 3. For example, the individual temperature sensor THk is a sensor that detects the temperature of any element that constitutes the voltage conversion unit CVk (for example, the temperature of the switching element SAk), and is disposed in the vicinity of the temperature detection target element. Such an arrangement is applied to any case where k is 1 to n.
 このように構成される多相コンバータ1では、制御部3は、n個の電圧変換部CV1,CV2…CVnのそれぞれに対して、デッドタイムを設定した形でPWM信号を相補的に出力する。例えば、第k相の電圧変換部CVkを構成するスイッチング素子SAk,SBkの各ゲートに対しては、制御部3は、デッドタイムを設定した上で、スイッチング素子SAkのゲートへのオン信号の出力中には、スイッチング素子SBkのゲートにオフ信号を出力し、スイッチング素子SAkのゲートへのオフ信号の出力中には、スイッチング素子SBkのゲートにオン信号を出力する。電圧変換部CVkは、このような相補的なPWM信号に応じて、スイッチング素子SAkのオン動作とオフ動作との切り替えをスイッチング素子SBkのオフ動作とオン動作との切り替えと同期させて行い、これにより、個別入力路LAkに印加された直流電圧を降圧し、個別出力路LBkに出力する。個別出力路LBkの出力電圧は、スイッチング素子SAk,SBkの各ゲートに与えるPWM信号のデューティ比に応じて定まる。このような制御は、上述した自然数kが1からnのいずれの場合でも、即ち、第1相から第n相までのいずれの電圧変換部においても、同様に行われる。 In the multiphase converter 1 configured as described above, the control unit 3 complementarily outputs a PWM signal in a form in which a dead time is set for each of the n voltage conversion units CV1, CV2,... CVn. For example, for each gate of the switching elements SAk and SBk constituting the k-th phase voltage conversion unit CVk, the control unit 3 sets the dead time and then outputs an ON signal to the gate of the switching element SAk. During this time, an OFF signal is output to the gate of the switching element SBk, and an ON signal is output to the gate of the switching element SBk while the OFF signal is output to the gate of the switching element SAk. In response to such a complementary PWM signal, the voltage conversion unit CVk performs switching between the ON operation and the OFF operation of the switching element SAk in synchronization with the switching between the OFF operation and the ON operation of the switching element SBk. As a result, the DC voltage applied to the individual input path LAk is stepped down and output to the individual output path LBk. The output voltage of the individual output path LBk is determined according to the duty ratio of the PWM signal applied to each gate of the switching elements SAk and SBk. Such control is similarly performed in any of the above-described natural numbers k from 1 to n, that is, in any voltage conversion unit from the first phase to the n-th phase.
 制御部3は、多相変換部2を動作させる場合、複数の電圧変換部CV1,CV2…CVnの一部又は全部を、制御信号(PWM信号)によって個々に制御し、多相変換部2からの出力が設定された目標値となるようにフィードバック制御を行う。具体的には、制御部3は、制御回路10に入力された出力側導電路7の電流値と、出力電流の目標値(目標電流値)とに基づき、公知のPID制御方式によるフィードバック演算によって制御量(デューティ比)を決定する。例えば、駆動相数がmのときの定常出力状態では、フィードバック演算によって決定したデューティ比のPWM信号を、位相を2π/mずつ異ならせてm個の電圧変換部のそれぞれに出力する。なお、駆動相数mの決定方法と、目標値(目標電流値)の設定方法は後述する。 When operating the polyphase converter 2, the controller 3 individually controls some or all of the plurality of voltage converters CV1, CV2,... CVn with a control signal (PWM signal). The feedback control is performed so that the output becomes the set target value. Specifically, the control unit 3 performs feedback calculation using a known PID control method based on the current value of the output-side conductive path 7 input to the control circuit 10 and the target value (target current value) of the output current. Determine the control amount (duty ratio). For example, in a steady output state when the number of drive phases is m, a PWM signal having a duty ratio determined by feedback calculation is output to each of the m voltage conversion units with a phase difference of 2π / m. A method for determining the number m of drive phases and a method for setting a target value (target current value) will be described later.
 次に、制御部3によって行われる多相変換部2の駆動制御について説明する。
 図2で示す駆動制御は、多相コンバータ1を駆動させるための動作開始条件が成立した後に繰り返し行われる制御である。動作開始条件は、例えばイグニッション信号のオフからオンへの切り替わり等であり、これ以外の動作開始条件であってもよい。また、多相コンバータ1の動作が開始した直後の駆動相数mは、例えば「1」とされている。
Next, drive control of the multiphase converter 2 performed by the controller 3 will be described.
The drive control shown in FIG. 2 is a control that is repeatedly performed after an operation start condition for driving the multiphase converter 1 is established. The operation start condition is, for example, switching of the ignition signal from off to on, and other operation start conditions may be used. Further, the number m of drive phases immediately after the operation of the multiphase converter 1 is started is, for example, “1”.
 制御部3は、図2の駆動制御を実行した場合、まず、駆動相数を切り替える必要があるか否かを判断する(S1)。 When executing the drive control of FIG. 2, the control unit 3 first determines whether or not it is necessary to switch the number of drive phases (S1).
 本構成では、多相変換部2の状態に応じて駆動の基準となる基準相数を決定する方式が予め定められており、具体的には、例えば、多相変換部2の出力電力量が大きくなるほど基準相数を大きくするように出力電力量と基準相数との関係が定められている。例えば、出力電力量が第1の範囲のときに基準相数を1とし、第2の範囲のときに基準相数を2とし、第3の範囲のときに基準相数を3とし、第4の範囲のときに基準相数を4とするように定められている。なお、多相変換部2の状態に応じて相数を決定する方法は、この例に限定されず、公知の様々な決定方法で代用してもよい。 In this configuration, a method for determining the number of reference phases serving as a reference for driving according to the state of the polyphase converter 2 is determined in advance. Specifically, for example, the output power amount of the polyphase converter 2 is The relationship between the amount of output power and the number of reference phases is determined so that the reference phase number increases as the value increases. For example, when the output power amount is in the first range, the reference phase number is 1, when the output power amount is in the second range, the reference phase number is 2, and when the output power is in the third range, the reference phase number is 3. The reference phase number is set to 4 in the range of. Note that the method of determining the number of phases according to the state of the multiphase converter 2 is not limited to this example, and various known determination methods may be used instead.
 S1の判断処理では、まず、S1の判断処理の実行を開始する時点での電流検出部9Aによる検出値(電流値Iout)及び電圧検出部9Bによる検出値(電圧値Vout)を確認し、例えばこれらを乗算して出力電力値Pout(Pout=Iout×Vout)を求める。そして、上述した決定方式に基づき、この出力電力値Poutに対応する基準相数を求める。更に、このように決定した基準相数Zbと、S1の判断処理を実行する時点での現在の駆動相数mとを比較し、これらが同一であればS1にてNoに進み、これらが異なっていればS1にてYesに進む。 In the determination process of S1, first, the detection value (current value Iout) by the current detection unit 9A and the detection value (voltage value Vout) by the voltage detection unit 9B at the time of starting execution of the determination process of S1 are confirmed. These are multiplied to obtain an output power value Pout (Pout = Iout × Vout). Based on the determination method described above, the number of reference phases corresponding to the output power value Pout is obtained. Further, the reference phase number Zb determined in this way is compared with the current drive phase number m at the time when the determination process of S1 is executed, and if they are the same, the process proceeds to No in S1, and these are different. If yes, proceed to Yes at S1.
 S1にてYesに進む場合、相数を減少する要求が生じているか否かを判断する(S2)。S1で決定した基準相数Zbが現在の駆動相数mよりも小さい場合、即ちZb<mである場合、S2にてYesに進む。逆に、S1で決定した基準相数Zbが現在の駆動相数mよりも大きい場合、即ちZb>mである場合、S2にてNoに進む。図2の制御では、相数減少要求の場合(即ちZb<mである場合)、S3の処理及びこれに関連する処理を行い、相数増加要求の場合(即ちZb>mである場合)、S8の処理及びこれに関連する処理を行うようになっている。 When proceeding to Yes in S1, it is determined whether or not a request for reducing the number of phases has occurred (S2). If the reference phase number Zb determined in S1 is smaller than the current drive phase number m, that is, if Zb <m, the process proceeds to Yes in S2. Conversely, if the reference phase number Zb determined in S1 is larger than the current drive phase number m, that is, if Zb> m, the process proceeds to No in S2. In the control of FIG. 2, in the case of a phase number decrease request (that is, when Zb <m), the process of S3 and the related process are performed, and in the case of a phase number increase request (that is, when Zb> m), The processing of S8 and related processing are performed.
 ここで、図3を参照し、非優先相の検出制御について説明する。
 多相コンバータ1では、制御部3が図2の駆動制御と並列的に図3の検出制御を行う。制御部3は、図2の駆動制御の開始に伴って図3の検出制御を開始し、まず、n個の電圧変換部CV1,CV2…CVnのうちの着目する電圧変換部の番号i(相番号)を選択する(S21)。なお、図1の代表例では、第1相の電圧変換部CV1の相番号が1であり、第2相の電圧変換部CV2の相番号が2、第3相の電圧変換部CV3の相番号が3、第4相の電圧変換部CV4の相番号が4である。図3の制御が開始した後に最初に行われるS21の処理では、iの値は1であり、その後に行われるS21の処理では、直前のS31で更新された値がiの値となる。
Here, the non-priority phase detection control will be described with reference to FIG.
In the polyphase converter 1, the control unit 3 performs the detection control of FIG. 3 in parallel with the drive control of FIG. The control unit 3 starts the detection control of FIG. 3 with the start of the drive control of FIG. 2, and first, the number i (phase of the voltage conversion unit of interest among the n voltage conversion units CV1, CV2,... CVn. Number) is selected (S21). In the representative example of FIG. 1, the phase number of the first phase voltage converter CV1 is 1, the phase number of the second phase voltage converter CV2 is 2, and the phase number of the third phase voltage converter CV3. Is 3, and the phase number of the voltage converter CV4 of the fourth phase is 4. In the process of S21 performed first after the control of FIG. 3 is started, the value of i is 1. In the process of S21 performed thereafter, the value updated in the immediately preceding S31 becomes the value of i.
 制御部3は、S21の処理の後に、S21で設定された相番号の電圧変換部における素子温度を測定する(S22)。具体的には、第i相の電圧変換部に設けられた個別温度センサTHiで検出された検出温度Tiを確認する。例えば、i=1であれば、第1相の電圧変換部CV1に設けられた個別温度センサTH1で検出された検出温度T1を確認し、i=2であれば、第2相の電圧変換部CV2に設けられた個別温度センサTH2で検出された検出温度T2を確認し、 The control unit 3 measures the element temperature in the voltage conversion unit having the phase number set in S21 after the processing in S21 (S22). Specifically, the detected temperature Ti detected by the individual temperature sensor THi provided in the i-th phase voltage converter is confirmed. For example, if i = 1, the detected temperature T1 detected by the individual temperature sensor TH1 provided in the first-phase voltage converter CV1 is confirmed. If i = 2, the second-phase voltage converter Check the detected temperature T2 detected by the individual temperature sensor TH2 provided in the CV2,
 制御部3は、S22の処理の後に、S22で確認された素子温度(個別温度センサTHiで検出された検出温度Ti)が閾値温度Tt2を超えているか否かを判断し、超えている場合には、S23にてYesに進み、超えていない場合にはS23にてNoに進む。S23にてNoに進む場合、iの値をインクリメントし、相番号を1加算する(S31)。 The control unit 3 determines whether or not the element temperature confirmed in S22 (the detected temperature Ti detected by the individual temperature sensor THi) exceeds the threshold temperature Tt2 after the process of S22. Advances to Yes in S23, and if not exceeded, advances to No in S23. When the process proceeds to No in S23, the value of i is incremented and the phase number is incremented by 1 (S31).
 S23でYesに進む場合、着目するi相目の検出温度Ti(素子温度)がTi>Tt2となっているか否かの判定を所定の短時間毎に行い、このような判定を特定の期間にわたって繰り返す。この特定の期間において、Ti>Tt2であるとの判定が連続してなされた回数Crが閾値Ctを超える場合、S25にてYesに進み、そうでない場合にはS25にてNoに進む。S25にてNoに進む場合、連続した閾値超え回数Crをクリアし、Crを0に戻す(S26)。S26の処理の終了後には、iの値をインクリメントする(S31)。 When the process proceeds to Yes in S23, it is determined whether or not the detected temperature Ti (element temperature) of the i-phase of interest satisfies Ti> Tt2, and such determination is performed over a specific period. repeat. In this specific period, if the number of times Cr successively determined that Ti> Tt2 exceeds the threshold Ct, the process proceeds to Yes in S25, and if not, the process proceeds to No in S25. When the process proceeds to No in S25, the continuous threshold value exceeding number Cr is cleared and Cr is returned to 0 (S26). After the process of S26 is completed, the value of i is incremented (S31).
 S25にてYesに進む場合、着目しているi相目に対応付けて非優先フラグをセットする(S27)。つまり、この場合、i相目の電圧変換部が非優先相となり、「温度が所定の閾値以上である電圧変換部(高温の電圧変換部)」に相当する。例えば、i=1であれば、1相目の電圧変換部CV1が非優先相となり、「高温の電圧変換部」に相当することになり、i=2であれば、2相目の電圧変換部CV2が非優先相となり、「高温の電圧変換部」に相当することになる。 When the process proceeds to Yes in S25, a non-priority flag is set in association with the focused i-phase (S27). That is, in this case, the i-th phase voltage conversion unit is a non-priority phase, and corresponds to a “voltage conversion unit whose temperature is equal to or higher than a predetermined threshold (high-temperature voltage conversion unit)”. For example, if i = 1, the voltage converter CV1 of the first phase becomes a non-priority phase and corresponds to a “high temperature voltage converter”, and if i = 2, the voltage conversion of the second phase The part CV2 becomes a non-priority phase and corresponds to a “high temperature voltage conversion part”.
 図3の制御を実行する制御部3は、特定部の一例に相当し、複数の個別温度センサTH1,TH2…THn(個別温度検出部)による検出結果に基づき、複数の電圧変換部CV1,CV2…CVnの中から温度が所定の閾値以上である電圧変換部(高温の電圧変換部)を特定するように機能する。また、この例では、特定の期間においてTi>Tt2であるか否かの判定を所定の短時間毎に行った場合に、Ti>Tt2であるとの判定が連続してなされた回数Crが閾値Ctを超える状態が、i相目の電圧変換部の「所定の高温状態」である。例えば、i=1の場合、特定の期間においてT1>Tt2であるか否かの判定を所定の短時間毎に行った場合に、T1>Tt2であるとの判定が連続してなされた回数Crが閾値Ctを超える状態が、1相目の電圧変換部の「所定の高温状態」である。 The control unit 3 that executes the control of FIG. 3 corresponds to an example of a specifying unit, and a plurality of voltage conversion units CV1, CV2 based on detection results by a plurality of individual temperature sensors TH1, TH2,... THn (individual temperature detection units). ... functions to specify a voltage conversion unit (high temperature voltage conversion unit) having a temperature equal to or higher than a predetermined threshold value from CVn. Further, in this example, when it is determined whether or not Ti> Tt2 in a specific period every predetermined short time, the number of times Cr is continuously determined that Ti> Tt2 is the threshold value. The state exceeding Ct is the “predetermined high temperature state” of the i-th phase voltage converter. For example, when i = 1, the number of times Cr is continuously determined that T1> Tt2 when T1> Tt2 is determined every predetermined short period in a specific period. Is a “predetermined high temperature state” of the voltage converter of the first phase.
 なお、この例はあくまで一例であり、iがn以下の自然数の場合において、対応付けられた個別温度センサTHiで検出された検出温度Ti(素子温度)が、閾値Tt2を超える場合を、i相目の電圧変換部の「所定の高温状態」としてもよい。例えば、個別温度センサTH1で検出された検出温度T1が閾値Tt2を超える場合を1相目の電圧変換部の「所定の高温状態」とし、個別温度センサTH2で検出された検出温度T2が、閾値Tt2を超える場合を2相目の電圧変換部の「所定の高温状態」としてもよい。この場合、S23でYesに進む場合にS27以降の処理を行い、S24、S25、S26の処理を省略するように制御を変更すればよい。 This example is merely an example. When i is a natural number equal to or less than n, the detected temperature Ti (element temperature) detected by the associated individual temperature sensor THi exceeds the threshold value Tt2. A “predetermined high temperature state” of the voltage converter of the eye may be set. For example, when the detected temperature T1 detected by the individual temperature sensor TH1 exceeds the threshold value Tt2, the “predetermined high temperature state” of the voltage converter of the first phase is set, and the detected temperature T2 detected by the individual temperature sensor TH2 is the threshold value. The case where Tt2 is exceeded may be the “predetermined high temperature state” of the voltage converter of the second phase. In this case, when the process proceeds to Yes in S23, the process after S27 is performed, and the control may be changed so that the processes of S24, S25, and S26 are omitted.
 制御部3は、S27においてi相目に非優先フラグをセットし、i相目を「高温の電圧変換部」とした場合、i相目の非優先回数CAiをインクリメントする(S28)。本構成では、各相番号に対応付けて非優先回数の情報が記憶され、このように対応付けた情報が不揮発性メモリなどに記憶されている。例えば、1相目の非優先回数の情報としてCA1が記憶され、2相目の非優先回数の情報としてCA2、3相目の非優先回数の情報としてCA3、4相目の非優先回数の情報としてCA4がそれぞれ記憶されている。S28では、このような相毎の非優先回数の情報の中からi相目の非優先回数の情報を選択し、これをインクリメントするように更新する。なお、多相コンバータ1の製造直後の時点では、iがn以下の自然数のいずれであっても、i相目の非優先回数CAiは0である。そして、i相目の非優先回数CAiは、i相目に非優先フラグがセットされた総和(i相目の電圧変換部が「所定の高温状態」となった回数)を示す値となる。 The control unit 3 sets the non-priority flag for the i-phase in S27, and increments the non-priority count CAi for the i-phase when the i-phase is set to the “high temperature voltage conversion unit” (S28). In this configuration, information on the number of non-priority times is stored in association with each phase number, and information in this way is stored in a nonvolatile memory or the like. For example, CA1 is stored as information on the non-priority number of the first phase, CA2 as information on the non-priority number of the second phase, CA3 as information on the non-priority number of the third phase, information on the non-priority number of the fourth phase As CA4. In S28, information on the non-priority number of the i-th phase is selected from the information on the non-priority number for each phase, and the information is updated so as to be incremented. Note that at the time immediately after the manufacture of the multiphase converter 1, the non-priority number CAi of the i-phase is 0 regardless of whether i is a natural number equal to or less than n. The non-priority count CAi for the i-phase is a value indicating the sum of the non-priority flags set for the i-phase (the number of times that the voltage converter in the i-phase has entered a “predetermined high temperature state”).
 S28の後には、i相目の非優先回数CAiと、多相変換部2を構成する全n相の非優先回数の総和(即ち、CA1+CA2+…CAn)であるCzとの比率Cz/CAiを求める(S29)。比率Cz/CAiが閾値D以上であれば、S29にてNoに進み、iの値をインクリメントする(S31)。比率Cz/CAiが閾値Dよりも小さければS29においてYesに進み、i相目に異常フラグをセットする(S30)。この場合、i相目の電圧変換部を「発熱状態が所定の異常状態となった電圧変換部」として扱う。 After S28, the ratio Cz / CAi between the non-priority number CAi of the i-phase and Cz which is the sum of the non-priority number of all n phases constituting the multiphase conversion unit 2 (ie, CA1 + CA2 +... CAn) is obtained. (S29). If the ratio Cz / CAi is equal to or greater than the threshold value D, the process proceeds to No in S29 and increments the value of i (S31). If the ratio Cz / CAi is smaller than the threshold D, the process proceeds to Yes in S29, and an abnormal flag is set in the i-phase (S30). In this case, the voltage converter in the i-th phase is treated as “a voltage converter in which the heat generation state has become a predetermined abnormal state”.
 なお、図3の制御では、S31で相番号iのインクリメントを行い、相番号iのインクリメント後にiの値が全相数n(多相変換部2の最大相数)を超えない場合には、インクリメント後の新たなiの値でS21以降の処理を再び行う。逆に、S31において相番号iのインクリメント後にiの値が全相数nを超える場合には、図3の制御を終了する。なお、図3の制御を終了した後には、時間をあけずに再び図3の制御を行い、新たに実行される図3の制御では、最初に行われるS21において相番号が「1」に設定される。 In the control of FIG. 3, when the phase number i is incremented in S31 and the value of i does not exceed the total number of phases n (the maximum number of phases of the multiphase conversion unit 2) after the phase number i is incremented, The processing after S21 is performed again with the new i value after the increment. Conversely, if the value of i exceeds the total number of phases n after incrementing the phase number i in S31, the control of FIG. 3 is terminated. Note that after the control of FIG. 3 is completed, the control of FIG. 3 is performed again without taking time, and in the newly executed control of FIG. 3, the phase number is set to “1” in S21 performed first. Is done.
 ここで、図2を参照し、図2の駆動制御の説明を続ける。
 S2にてYesに進む場合、S3において異常相があるか否かを判断する。S3の判断処理では、図3におけるS30の処理で異常フラグがセットされた相(発熱状態が所定の異常状態となった電圧変換部)が存在するか否かを判断し、存在しない場合には、S3にてNoに進み、存在する場合には、S3にてYesに進む。S3にてYesに進む場合には、多相コンバータ1の外部に設けられた外部装置に対して異常情報を送信するように異常通知処理を行う(S4)。S4において制御部3から異常を通知する相手は特に限定されず、上位システムであってもよく、他の車載用電子機器(例えばECUなど)であってもよい。また、S4で送信する情報は、例えば、異常が発生していることを示す情報であってもよく、異常の種類(例えば、発熱異常が生じていること)を示す情報であってもよい。或いは、異常によって駆動停止となった相数を特定する情報、或いは駆動可能な相数を特定する情報であってもよい。
Here, the description of the drive control in FIG. 2 will be continued with reference to FIG.
When the process proceeds to Yes in S2, it is determined whether or not there is an abnormal phase in S3. In the determination process of S3, it is determined whether or not there is a phase in which the abnormality flag has been set in the process of S30 in FIG. The process proceeds to No in S3, and if it exists, the process proceeds to Yes in S3. When the process proceeds to Yes in S3, abnormality notification processing is performed so that abnormality information is transmitted to an external device provided outside the multiphase converter 1 (S4). The partner who notifies the abnormality from the control unit 3 in S4 is not particularly limited, and may be a host system or other in-vehicle electronic device (for example, ECU). Further, the information transmitted in S4 may be information indicating that an abnormality has occurred, for example, or may be information indicating the type of abnormality (for example, the occurrence of abnormal heating). Alternatively, it may be information that specifies the number of phases that have stopped driving due to an abnormality, or information that specifies the number of phases that can be driven.
 このように制御部3は、通知部として機能し、特定された「高温の電圧変換部」の発熱状態が所定の異常状態となった場合に外部に通知を行うように動作する。 In this way, the control unit 3 functions as a notification unit, and operates to notify the outside when the heat generation state of the identified “high temperature voltage conversion unit” becomes a predetermined abnormal state.
 S3でNoに進む場合、S5において非優先相があるか否かを判断する。S5の判断処理では、図3におけるS27の処理で非優先フラグがセットされた相(「高温の電圧変換部」となった電圧変換部)が存在するか否かを判断し、存在しない場合には、S5にてNoに進み、存在する場合には、S5にてYesに進む。S5にてNoに進む場合、駆動相数mを要求値(S1で決定した基準相数)に減少させ、S1で決定した基準相数の数だけ電圧変換部を駆動させる(S7)。この場合、多相変換部2を構成する全n相から基準相数の数(駆動相数m)だけ電圧変換部を選択し、それぞれを駆動すればよい。なお、m個の電圧変換部の選択は、均等化されるように時間経過に応じて切り替えてもよい。 When proceeding to No in S3, it is determined whether or not there is a non-priority phase in S5. In the determination process of S5, it is determined whether or not there is a phase in which the non-priority flag is set in the process of S27 in FIG. 3 (a voltage conversion unit that has become a “high temperature voltage conversion unit”). Advances to No in S5, and if present, advances to Yes in S5. When the process proceeds to No in S5, the number m of drive phases is reduced to the required value (the number of reference phases determined in S1), and the voltage converter is driven by the number of reference phases determined in S1 (S7). In this case, the voltage converters may be selected from all the n phases constituting the multiphase converter 2 by the number of reference phases (the number of drive phases m) and driven. Note that the selection of the m voltage converters may be switched over time so as to be equalized.
 S7では、m個の電圧変換部の駆動を第1の制御方式で行う。第1の制御方式は、多相変換部2を定常出力状態でフィードバック制御するときの目標電流値を、駆動相数に対応付けられた目標値に設定する制御である。なお、相数毎の各目標値は予め決められている。例えば、駆動相数がmのときの第1の制御方式では、制御部3は、出力電流が駆動相数mに対応付けられた目標値となるようにフィードバック制御を行う。 In S7, the m voltage converters are driven by the first control method. The first control method is control for setting a target current value when feedback control is performed on the multiphase converter 2 in a steady output state to a target value associated with the number of drive phases. Each target value for each number of phases is determined in advance. For example, in the first control method when the number of drive phases is m, the control unit 3 performs feedback control so that the output current becomes a target value associated with the number m of drive phases.
 S5にてYesに進む場合、非優先フラグがセットされた相(「高温の電圧変換部」となった電圧変換部)を、非駆動の相として選択し、S1で決定した基準相数を駆動相数mとしてm個の電圧変換部を駆動させる(S6)。S6では、m個の電圧変換部の駆動を第1の制御方式で行う。即ち、制御部3は、出力電流が駆動相数mに対応付けられた目標値となるようにフィードバック制御を行う。 When the process proceeds to Yes in S5, the phase for which the non-priority flag is set (the voltage conversion unit that has become the “high temperature voltage conversion unit”) is selected as the non-driven phase, and the reference phase number determined in S1 is driven. The m voltage converters are driven as the number of phases m (S6). In S6, the m voltage converters are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
 なお、非優先フラグがセットされた相だけでは非駆動とすべき相数に満たない場合には、非優先フラグがセットされた相以外からも非駆動の相を選択すればよい。また、非優先フラグがセットされた相の数が、非駆動とすべき相数よりも多い場合には、非優先フラグがセットされた一部の相を駆動すべき相として、m個の電圧変換部を駆動させてもよく、非優先フラグがセットされた相を全て非駆動の相としてもよい。 If the number of phases that should not be driven is less than the number of phases for which the non-priority flag is set, non-driving phases may be selected from those other than the phase for which the non-priority flag is set. In addition, when the number of phases set with the non-priority flag is larger than the number of phases to be non-driven, m voltages are set as phases to drive some phases with the non-priority flag set. The conversion unit may be driven, and all phases for which the non-priority flag is set may be set as non-driving phases.
 S2にてNoに進む場合、S8において装置温度が閾値未満であるか否かを判断する。具体的には、S8の判断処理を行う時点において温度センサ20によって検出される検出値(装置温度Td)が閾値温度Tt1未満であるか否かを判断し、Td<Tt1であればS8にてYesに進む。逆に、Td≧Tt1であればS8にてNoに進む。 If the process proceeds to No in S2, it is determined in S8 whether or not the apparatus temperature is lower than the threshold value. Specifically, it is determined whether or not the detection value (device temperature Td) detected by the temperature sensor 20 at the time of performing the determination process of S8 is lower than the threshold temperature Tt1, and if Td <Tt1, the process proceeds to S8. Proceed to Yes. Conversely, if Td ≧ Tt1, the process proceeds to No in S8.
 S8にてYesに進む場合、駆動相数mを要求値(S1で決定した基準相数)に増加させる(S9)。そして、S9の処理の後には、多相変換部2のうちのm相を駆動する動作を行う(S10)。S10のm相駆動動作は、mが最大相数nよりも少ない場合(即ち、m<n)の場合には、図4の制御を実行し、mが最大相数nである場合には図5の制御を実行する。 When proceeding to Yes in S8, the drive phase number m is increased to the required value (reference phase number determined in S1) (S9). And after the process of S9, the operation | movement which drives the m phase of the polyphase conversion part 2 is performed (S10). The m-phase drive operation of S10 executes the control of FIG. 4 when m is smaller than the maximum number of phases n (that is, m <n), and when m is the maximum number of phases n, FIG. 5 is executed.
 駆動相数mが最大相数nよりも少ない場合(m<m)のS10の処理は、図4の流れで行い、まず、非優先フラグを参照する(S41)。そして、S42では、図3におけるS27の処理によって非優先フラグがセットされた相(「高温の電圧変換部」となった電圧変換部)が存在するか否かを判断し、存在しない場合には、S42にてNoに進み、存在する場合には、S42にてYesに進む。S42にてNoに進む場合、多相変換部2を構成する全n相から駆動相数m(基準相数)の電圧変換部を選択し駆動する(S43)。この場合、全n相からのm個の電圧変換部の選択は、均等化されるように時間経過に応じて切り替える。S43では、m個の電圧変換部の駆動を第1の制御方式で行う。即ち、制御部3は、出力電流が駆動相数mに対応付けられた目標値となるようにフィードバック制御を行う。 When the drive phase number m is smaller than the maximum phase number n (m <m), the process of S10 is performed according to the flow of FIG. 4, and first, a non-priority flag is referred (S41). Then, in S42, it is determined whether or not there is a phase (voltage conversion unit that has become a “high temperature voltage conversion unit”) in which the non-priority flag is set by the process of S27 in FIG. The process proceeds to No in S42, and if it exists, the process proceeds to Yes in S42. When the process proceeds to No in S42, the voltage conversion unit having the number m of driving phases (the number of reference phases) is selected and driven from all n phases constituting the multiphase conversion unit 2 (S43). In this case, selection of m voltage conversion units from all n phases is switched according to the passage of time so as to be equalized. In S43, the m voltage conversion units are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
 S42にてYesに進む場合、非優先フラグがセットされた相(「高温の電圧変換部」となった電圧変換部)を、非駆動の相として選択し、全n相から駆動相数m(基準相数)の電圧変換部を選択して駆動する(S44)。S44では、m個の電圧変換部の駆動を第1の制御方式で行う。即ち、制御部3は、出力電流が駆動相数mに対応付けられた目標値となるようにフィードバック制御を行う。 When the process proceeds to Yes in S42, the phase in which the non-priority flag is set (the voltage conversion unit that has become the “high temperature voltage conversion unit”) is selected as the non-driving phase, and the number m of driving phases from all n phases ( The voltage conversion unit (reference phase number) is selected and driven (S44). In S44, the m voltage converters are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
 非優先フラグがセットされた相を除いた相数が、駆動相数mよりも大きい場合、非優先フラグがセットされた相を除いた残余の複数相の中からm個の電圧変換部を選択する。この場合、残余の複数相の中からのm個の電圧変換部の選択は、均等化されるように時間経過に応じて切り替える。なお、非優先フラグがセットされた相だけでは非駆動とすべき相数に満たない場合には、非優先フラグがセットされた相以外からも非駆動の相を選択すればよい。また、非優先フラグがセットされた相の数が、非駆動とすべき相数よりも多い場合には、非優先フラグがセットされた一部の相を駆動すべき相として、m個の電圧変換部を駆動させてもよく、非優先フラグがセットされた相を全て非駆動の相としてもよい。 If the number of phases excluding the phase with the non-priority flag set is greater than the number m of driving phases, select m voltage converters from the remaining multiple phases excluding the phase with the non-priority flag set To do. In this case, the selection of m voltage conversion units from the remaining plurality of phases is switched according to the passage of time so as to be equalized. If the number of phases that should not be driven is less than the number of phases for which the non-priority flag is set, a non-driving phase may be selected from other than the phases for which the non-priority flag is set. In addition, when the number of phases set with the non-priority flag is larger than the number of phases to be non-driven, m voltages are set as phases to drive some phases with the non-priority flag set. The conversion unit may be driven, and all phases for which the non-priority flag is set may be set as non-driving phases.
 駆動相数mが最大相数nである場合(m=n)のS10の処理は、図5の流れで行い、まず、非優先フラグを参照する(S51)。そして、S52では、図3におけるS27の処理によって非優先フラグがセットされた相(「高温の電圧変換部」となった電圧変換部)が存在するか否かを判断し、存在しない場合には、S52にてNoに進み、存在する場合には、S52にてYesに進む。S52にてNoに進む場合、m個の電圧変換部(即ち、全n相)の駆動を第1の制御方式で行う。即ち、制御部3は、出力電流が駆動相数mに対応付けられた目標値となるようにフィードバック制御を行う。 When the drive phase number m is the maximum phase number n (m = n), the process of S10 is performed according to the flow of FIG. 5, and first, the non-priority flag is referred (S51). Then, in S52, it is determined whether or not there is a phase (voltage conversion unit that has become a “high temperature voltage conversion unit”) in which the non-priority flag is set by the process of S27 in FIG. The process proceeds to No in S52, and if it exists, the process proceeds to Yes in S52. When the process proceeds to No in S52, the m voltage converters (that is, all n phases) are driven by the first control method. That is, the control unit 3 performs feedback control so that the output current becomes a target value associated with the drive phase number m.
 一方、S52にてYesに進む場合、m個の電圧変換部(即ち、全n相)の駆動を第2の制御方式で行う(S53)。第2の制御方式は、多相変換部2を定常出力状態でフィードバック制御するときの目標電流値を、駆動相数に対応付けられた目標値よりも低い目標値に設定し、出力を制限する制御である。つまり、m個の電圧変換部を駆動する場合、第1の制御方式では、m個の電圧変換部に対応する目標電流値It1を設定した上でフィードバック制御を行い、第2の制御方式では、m個の電圧変換部に対応する目標電流値It1よりも低い目標電流値It2を設定した上でフィードバック制御を行う。このように、駆動相数mが全相数nである場合において非優先相が設定されている場合、出力電流を制限した上で全n相を駆動する。 On the other hand, when the process proceeds to Yes in S52, the m voltage converters (that is, all n phases) are driven by the second control method (S53). In the second control method, the target current value when the multiphase converter 2 is feedback-controlled in a steady output state is set to a target value lower than the target value associated with the number of drive phases, and the output is limited. Control. That is, when driving m voltage converters, in the first control method, feedback control is performed after setting the target current value It1 corresponding to the m voltage converters, and in the second control method, Feedback control is performed after setting a target current value It2 lower than the target current value It1 corresponding to the m voltage converters. As described above, when the non-priority phase is set when the drive phase number m is the total phase number n, the output current is limited and all the n phases are driven.
 図2の駆動制御のS8においてNoに進む場合、駆動相数を、S1で切り替えられた基準相数には更新せず、現在の駆動相数mを維持したまま出力電流を制限する。具体的には、駆動相数mの電圧変換部を第2の制御方式で駆動する。つまり、m個に対応する目標電流値It1よりも低い目標電流値It2を設定した上で、m個の電圧変換部をフィードバック制御する。 When the process proceeds to No in S8 of the drive control in FIG. 2, the number of drive phases is not updated to the reference phase number switched in S1, and the output current is limited while maintaining the current drive phase number m. Specifically, the voltage conversion unit having the number m of driving phases is driven by the second control method. That is, m voltage conversion units are feedback-controlled after setting a target current value It2 lower than m target current values It1.
 以上のように、制御部3は、多相変換部2の状態に応じて定まる基準相数に基づいて、多相変換部2での駆動相数mを決定し、決定した駆動相数mの電圧変換部を制御信号によって個々に制御するようになっている。 As described above, the control unit 3 determines the drive phase number m in the multiphase conversion unit 2 based on the reference phase number determined according to the state of the multiphase conversion unit 2, and the determined drive phase number m The voltage converter is individually controlled by a control signal.
 制御部3は、図2のS2においてNoに進む場合のように、多相変換部2の状態の変化により基準相数が多相変換部2の最大相数nよりも少ない相数に増加する場合において、温度センサ20(装置温度検出部)で検出される装置温度Tdが閾値温度Tt1よりも低く且つ図3の検出制御で「高温の電圧変換部」が特定されている場合には、図4のS44のように、非駆動の相として図3の検出制御で特定された「高温の電圧変換部」を選択した上で、S1で設定された基準相数(駆動相数m)の電圧変換部を第1の制御方式で駆動する。 The control unit 3 increases the number of reference phases to a number of phases smaller than the maximum number of phases n of the multiphase conversion unit 2 due to a change in the state of the multiphase conversion unit 2 as in the case of proceeding to No in S2 of FIG. In this case, when the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) is lower than the threshold temperature Tt1 and the “high temperature voltage conversion unit” is specified by the detection control of FIG. 4, after selecting the “high temperature voltage conversion unit” specified by the detection control of FIG. 3 as the non-driving phase, the voltage of the reference phase number (driving phase number m) set in S1 The conversion unit is driven by the first control method.
 また、制御部3は、多相変換部2の状態の変化により基準相数が最大相数nに切り替わる場合において、温度センサ20(装置温度検出部)で検出される装置温度Tdが閾値温度Tt1よりも低く且つ図3の検出制御によって「高温の電圧変換部」が特定されている場合、図5のS53のように、最大相数nの電圧変換部を、第1の制御方式よりも出力が制限される第2の制御方式で駆動するようになっている。 Further, the control unit 3 determines that the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) is the threshold temperature Tt1 when the reference phase number is switched to the maximum phase number n due to a change in the state of the multiphase conversion unit 2. 3 and the “high temperature voltage conversion unit” is specified by the detection control of FIG. 3, the voltage conversion unit having the maximum number of phases n is output as compared with the first control method as in S53 of FIG. 5. Is driven by a second control method that is limited.
 また、制御部3は、図2のS2においてNoに進む場合のように、多相変換部2の状態の変化により基準相数が多相変換部2の最大相数nよりも少ない相数に増加する場合において、装置温度Tdが閾値温度Tt1よりも高い場合には、図2のS11のように、第1の制御方式よりも出力が制限される第2の制御方式で多相変換部2を駆動する。具体的には、S1で切り替わる前の駆動相数mを維持しつつ、m個の電圧変換部を第2の制御方式で駆動する。 Further, as in the case where the control unit 3 proceeds to No in S2 of FIG. 2, the number of reference phases is smaller than the maximum phase number n of the polyphase conversion unit 2 due to the change in the state of the polyphase conversion unit 2. If the device temperature Td is higher than the threshold temperature Tt1 in the case of increasing, the polyphase conversion unit 2 is controlled by the second control method in which the output is limited compared to the first control method, as in S11 of FIG. Drive. Specifically, the m voltage conversion units are driven by the second control method while maintaining the number m of drive phases before switching in S1.
 以下、本構成の効果を例示する。
 本構成の多相コンバータ1は、駆動の基準となる基準相数が多相変換部2の最大相数nよりも少ない相数である場合、即ち、相数を抑えて駆動し得る場合、装置温度Tdが相対的に低く且つ特定部によって温度が所定の閾値以上である電圧変換部(高温の電圧変換部)が特定されているときには、非駆動の相として少なくとも特定部によって特定された電圧変換部(温度が所定の閾値以上である電圧変換部)を選択し、非駆動の相を除いた基準相数の電圧変換部を駆動する。よって、温度が高くなる電圧変換部の動作を抑制しやすい方法で、駆動する電圧変換部を選択することができる。一方、装置温度Tdが閾値温度Tt1よりも高い場合には、出力が制限される第2の制御方式で多相変換部2を駆動するため、装置温度Tdが高くなる場合には装置の温度上昇を確実に抑制することができる。
Hereinafter, the effect of this configuration will be exemplified.
The multiphase converter 1 of this configuration is a device in which the number of reference phases serving as a reference for driving is smaller than the maximum number of phases n of the multiphase converter 2, that is, when the number of phases can be reduced and driven. When the voltage conversion unit (high-temperature voltage conversion unit) whose temperature Td is relatively low and whose temperature is equal to or higher than a predetermined threshold is specified by the specifying unit, voltage conversion specified by at least the specifying unit as a non-driving phase Part (voltage converter having a temperature equal to or higher than a predetermined threshold) is selected, and the voltage converter having the number of reference phases excluding the non-driven phase is driven. Therefore, it is possible to select the voltage converter to be driven by a method that easily suppresses the operation of the voltage converter that increases in temperature. On the other hand, when the apparatus temperature Td is higher than the threshold temperature Tt1, the multi-phase conversion unit 2 is driven by the second control method in which the output is limited. Therefore, when the apparatus temperature Td increases, the apparatus temperature rises. Can be reliably suppressed.
 本構成において、制御部3は、多相変換部2の状態の変化により基準相数が切り替わる場合において、温度センサ20(装置温度検出部)で検出される装置温度Tdが閾値温度Tt1よりも高いときには、切り替わり前の駆動相数mを維持しつつ、m個の電圧変換部を第2の制御方式で駆動する構成となっている。この構成によれば、基準相数が切り替わる場合であっても、装置温度Tdが相対的に高い場合には切り替わり前の相数を維持し、出力制限によって温度の抑制を図ることができる。つまり、装置温度Tdが相対的に高い場合には駆動相数の変更に起因する温度上昇を抑え、出力制限によって確実に温度上昇を抑制することができる。 In this configuration, when the reference phase number is switched due to a change in the state of the multiphase conversion unit 2, the control unit 3 has the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) higher than the threshold temperature Tt1. In some cases, the m voltage converters are driven by the second control method while maintaining the number m of drive phases before switching. According to this configuration, even when the number of reference phases is switched, the number of phases before switching can be maintained when the apparatus temperature Td is relatively high, and the temperature can be suppressed by limiting the output. That is, when the device temperature Td is relatively high, the temperature increase due to the change in the number of drive phases can be suppressed, and the temperature increase can be surely suppressed by the output restriction.
 また、制御部3は、多相変換部2の状態の変化により基準相数が最大相数nに切り替わる場合において、温度センサ20(装置温度検出部)で検出される装置温度Tdが閾値温度Tt1よりも低く且つ特定部によって電圧変換部(温度が所定の閾値以上である電圧変換部)が特定されているときには、最大相数nの電圧変換部を、第1の制御方式よりも出力が制限される制御方式で駆動する構成となっている。多相変換部2の全n相を駆動すべき場合において特定部によって電圧変換部(温度が所定の閾値以上である電圧変換部)が特定されているときには、この電圧変換部の駆動を停止して相数を減少させる方法も考えられるが、この方法では、残りの電圧変換部への負荷の集中により装置温度の上昇を招く虞がある。これに対し、上記構成によれば、全相の駆動によって負荷の分散化を図ることで、装置全体の温度上昇を抑え、更に出力を制限することで装置温度を一層抑制することができる。 Further, the control unit 3 determines that the device temperature Td detected by the temperature sensor 20 (device temperature detection unit) is the threshold temperature Tt1 when the reference phase number is switched to the maximum phase number n due to a change in the state of the multiphase conversion unit 2. When the voltage conversion unit (the voltage conversion unit whose temperature is equal to or higher than a predetermined threshold) is specified by the specifying unit, the output of the voltage conversion unit with the maximum number of phases n is more limited than in the first control method. It is configured to be driven by the control method. When all n phases of the multiphase converter 2 are to be driven and the voltage converter (the voltage converter having a temperature equal to or higher than a predetermined threshold) is specified by the specifying unit, the driving of the voltage converter is stopped. Although a method of reducing the number of phases is also conceivable, in this method, there is a possibility that the apparatus temperature rises due to the concentration of the load on the remaining voltage conversion unit. On the other hand, according to the above configuration, it is possible to suppress the temperature rise of the entire device by distributing the load by driving all phases, and further suppress the device temperature by limiting the output.
 更に、本構成は、特定部に相当する制御部3によって特定された電圧変換部(温度が所定の閾値以上である電圧変換部)の発熱状態が「所定の異常状態」となった場合に外部に通知を行う通知部を備えている。この構成によれば、多相コンバータ1においていずれかの電圧変換部に所定の高温異常が生じていることを外部に認識させることができる。 Furthermore, this configuration is external when the heat generation state of the voltage conversion unit (the voltage conversion unit whose temperature is equal to or higher than a predetermined threshold value) specified by the control unit 3 corresponding to the specification unit becomes a “predetermined abnormal state”. Is provided with a notification unit for performing notification. According to this configuration, in the multiphase converter 1, it can be recognized to the outside that a predetermined high temperature abnormality has occurred in any of the voltage conversion units.
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1)実施例1では、降圧型の多相コンバータを例示したが、昇圧型の多相コンバータであってもよく昇降圧型の多相コンバータであってもよい。
(2)実施例1では、kを1~nの自然数とし、各相のローサイド側にスイッチング素子SBkを設けたが、接地電位にアノードが接続されたダイオードに置き換えることが可能である。また、スイッチング素子SAk,SBkは、Pチャネル型のMOSFETであってもよく、バイポーラトランジスタ等の他のスイッチング素子であってもよい。
(3)実施例1における一次側電源部91や負荷92はあくまで一例であり、様々な装置や電子部品を入力側導電路や出力側導電路に接続することができる。
(4)図1では、4つの電圧変換部CV1,CV2,CV3,CV4が並列に接続された4相構造の多相コンバータ1を代表例として例示したが、電圧変換部の数は4未満の複数であってもよく、5以上の複数であってもよい。
(5)実施例1では、装置温度検出部と個別温度検出部を別々のセンサ(温度センサ20及び個別温度センサTH1,TH2…THk)として構成したが、個別温度検出部を装置温度検出部として兼用してもよい。例えば、個別温度検出部で検出された全ての検出温度の平均値を装置温度とするような構成であってもよい。
(6)実施例1では、図3のS29においてYesに進む場合、i相目の電圧変換部を「発熱状態が所定の異常状態となった電圧変換部」としたが、非優先相としてカウントされる回数(即ち、「所定の高温状態」となった回数)が一定値を超える電圧変換部を、「発熱状態が所定の異常状態となった電圧変換部」とし、異常フラグをセットしてもよい。或いは、所定期間において所定回数連続して「所定の高温状態」となった電圧変換部を、「発熱状態が所定の異常状態となった電圧変換部」とし、異常フラグをセットしてもよい。
(7)実施例1の構成に加え、更なる制御を付加してもよい。例えば、図2の駆動制御において、S1でYes、S2でYes、S3でNoに進む場合に、温度センサ20で検出される装置温度Tdが閾値温度Tt1未満であるか否かを判断する処理を付加し、装置温度Tdが閾値温度Tt1未満であればS5の処理を行い、装置温度Tdが閾値温度Tt1以上であれば、S1で切り替わる前の駆動相数mを維持しつつ、m個の電圧変換部を第2の制御方式で駆動するようにしてもよい。
 この例では、多相変換部2の状態の変化により基準相数が多相変換部2の最大相数nよりも少ない相数に減少する場合において、温度センサ20(装置温度検出部)で検出される装置温度Tdが閾値温度Tt1よりも低く且つ図3の検出制御で非優先フラグがセットされている場合(即ち、特定部によって「高温の電圧変換部」が特定されている場合)、制御部3は、S6の処理を行い、非駆動の相として、特定部で特定された「高温の電圧変換部」を選択した上で基準相数の電圧変換部を第1の制御方式で駆動することになる。一方、装置温度Tdが閾値温度Tt1よりも高い場合には、駆動相数mを変更せずに、m個の電圧変換部を第1の制御方式よりも出力が制限される第2の制御方式で駆動する。この構成では、相数を減らして駆動できる場合であっても、装置温度が高い場合には相数の減少を抑え、相数の減少に起因する負荷の集中、ひいてはそれに伴う温度上昇を抑えることができる。更に、出力制限もなされるため、一層の抑制効果が期待できる。
(1) In the first embodiment, the step-down type multi-phase converter is exemplified, but it may be a step-up type multi-phase converter or a step-up / step-down type multi-phase converter.
(2) In the first embodiment, k is a natural number of 1 to n and the switching element SBk is provided on the low side of each phase. However, it can be replaced with a diode whose anode is connected to the ground potential. The switching elements SAk and SBk may be P-channel MOSFETs or other switching elements such as bipolar transistors.
(3) The primary power source 91 and the load 92 in the first embodiment are merely examples, and various devices and electronic components can be connected to the input-side conductive path and the output-side conductive path.
(4) In FIG. 1, the four-phase multiphase converter 1 in which the four voltage converters CV1, CV2, CV3, and CV4 are connected in parallel is illustrated as a representative example, but the number of voltage converters is less than four. There may be a plurality, or a plurality of five or more.
(5) In the first embodiment, the device temperature detection unit and the individual temperature detection unit are configured as separate sensors (temperature sensor 20 and individual temperature sensors TH1, TH2,... THk), but the individual temperature detection unit is used as the device temperature detection unit. You may also use it. For example, the configuration may be such that the average value of all the detected temperatures detected by the individual temperature detector is used as the apparatus temperature.
(6) In the first embodiment, when the process proceeds to Yes in S29 of FIG. 3, the voltage conversion unit of the i-phase is set to “voltage conversion unit whose heat generation state has become a predetermined abnormal state”, but is counted as a non-priority phase. The voltage conversion unit in which the number of times (ie, “the number of times when the“ predetermined high temperature state ”is reached)” exceeds a certain value is defined as the “voltage conversion unit where the heat generation state is a predetermined abnormal state”, and an abnormality flag is set. Also good. Alternatively, the voltage conversion unit that has been “predetermined high temperature state” continuously for a predetermined number of times in a predetermined period may be referred to as “voltage conversion unit in which the heat generation state is a predetermined abnormal state”, and the abnormality flag may be set.
(7) In addition to the configuration of the first embodiment, further control may be added. For example, in the drive control of FIG. 2, when the process proceeds to Yes in S1, Yes in S2, and No in S3, a process of determining whether or not the device temperature Td detected by the temperature sensor 20 is less than the threshold temperature Tt1. In addition, if the apparatus temperature Td is lower than the threshold temperature Tt1, the process of S5 is performed. If the apparatus temperature Td is equal to or higher than the threshold temperature Tt1, m voltages are maintained while maintaining the number m of driving phases before switching in S1. The conversion unit may be driven by the second control method.
In this example, when the reference phase number decreases to a number of phases smaller than the maximum phase number n of the polyphase conversion unit 2 due to a change in the state of the multiphase conversion unit 2, the temperature sensor 20 (device temperature detection unit) detects Control is performed when the device temperature Td to be applied is lower than the threshold temperature Tt1 and the non-priority flag is set in the detection control of FIG. 3 (that is, the “high-temperature voltage conversion unit” is specified by the specifying unit). The unit 3 performs the process of S6, selects the “high temperature voltage conversion unit” specified by the specification unit as the non-driven phase, and drives the voltage conversion unit of the reference phase number by the first control method. It will be. On the other hand, when the device temperature Td is higher than the threshold temperature Tt1, the second control method in which the output of the m voltage conversion units is limited as compared with the first control method without changing the number m of drive phases. Drive with. In this configuration, even if the number of phases can be reduced and driven, the decrease in the number of phases is suppressed when the device temperature is high, and the load concentration due to the decrease in the number of phases, and hence the associated temperature increase, is suppressed. Can do. Furthermore, since the output is limited, a further suppression effect can be expected.
 1…多相コンバータ
 2…多相変換部
 3…制御部(特定部、通知部)
 20…温度センサ(装置温度検出部)
 CV1,CV2,CV3,CV4…電圧変換部
 TH1,TH2,TH3,TH4…個別温度センサ(個別温度検出部)
DESCRIPTION OF SYMBOLS 1 ... Polyphase converter 2 ... Polyphase conversion part 3 ... Control part (specification part, notification part)
20 ... Temperature sensor (apparatus temperature detector)
CV1, CV2, CV3, CV4 ... Voltage converter TH1, TH2, TH3, TH4 ... Individual temperature sensor (Individual temperature detector)

Claims (4)

  1.  入力された電圧を変換して出力する電圧変換部を複数備えた多相変換部と、
     前記多相変換部の状態に応じて駆動の基準となる基準相数を決定する方式が予め定められ、前記多相変換部の状態に応じて定まる前記基準相数に基づいて、前記多相変換部での駆動相数を決定し、決定した前記駆動相数の前記電圧変換部を制御信号によって個々に制御する制御部と、
     前記多相変換部を構成する複数の前記電圧変換部のそれぞれの温度を検出する複数の個別温度検出部と、
     複数の前記個別温度検出部による検出結果に基づき、複数の前記電圧変換部の中から温度が所定の閾値以上である前記電圧変換部を特定する特定部と、
     前記多相変換部、前記制御部、前記個別温度検出部、及び前記特定部のうちの少なくともいずれかを構成する部品に対して直接又は他部材を介して間接的に固定され、配置された位置における装置温度を検出する装置温度検出部と、
    を備え、
     前記制御部は、前記多相変換部の状態の変化により前記基準相数が前記多相変換部の最大相数よりも少ない相数に増加又は減少する場合において、前記装置温度検出部で検出される前記装置温度が閾値温度よりも低く且つ前記特定部によって前記電圧変換部が特定されているときには、非駆動の相として前記特定部で特定された前記電圧変換部を選択した上で前記基準相数の前記電圧変換部を第1の制御方式で駆動する一方、前記装置温度が前記閾値温度よりも高いときには、前記第1の制御方式よりも出力が制限される第2の制御方式で前記多相変換部を駆動する多相コンバータ。
    A multi-phase converter having a plurality of voltage converters that convert and output an input voltage; and
    A method for determining a reference phase number serving as a driving reference according to the state of the polyphase conversion unit is determined in advance, and based on the reference phase number determined according to the state of the polyphase conversion unit, the polyphase conversion A control unit for determining the number of drive phases in the unit, and individually controlling the voltage conversion unit of the determined number of drive phases by a control signal;
    A plurality of individual temperature detectors for detecting respective temperatures of the plurality of voltage converters constituting the polyphase converter;
    Based on detection results by the plurality of individual temperature detection units, a specifying unit for specifying the voltage conversion unit having a temperature equal to or higher than a predetermined threshold from among the plurality of voltage conversion units,
    Positions that are fixed and arranged directly or indirectly via other members with respect to components that constitute at least one of the polyphase conversion unit, the control unit, the individual temperature detection unit, and the specific unit A device temperature detecting unit for detecting the device temperature in
    With
    The control unit is detected by the device temperature detection unit when the reference phase number increases or decreases to a smaller number of phases than the maximum phase number of the multiphase conversion unit due to a change in the state of the multiphase conversion unit. When the device temperature is lower than a threshold temperature and the voltage conversion unit is specified by the specifying unit, the reference phase is selected after selecting the voltage conversion unit specified by the specifying unit as a non-driving phase. When the device temperature is higher than the threshold temperature, the multiple voltage converters are driven by the first control method, and when the device temperature is higher than the threshold temperature, the output is limited by the second control method. A multiphase converter that drives the phase converter.
  2.  前記制御部は、前記多相変換部の状態の変化により前記基準相数が切り替わる場合において、前記装置温度検出部で検出される前記装置温度が前記閾値温度よりも高いときには、切り替わり前の前記駆動相数を維持しつつ前記電圧変換部を前記第2の制御方式で駆動する請求項1に記載の多相コンバータ。 In the case where the reference phase number is switched due to a change in the state of the multiphase conversion unit, the control unit is configured to drive the drive before switching when the device temperature detected by the device temperature detection unit is higher than the threshold temperature. The multiphase converter according to claim 1, wherein the voltage conversion unit is driven by the second control method while maintaining the number of phases.
  3.  前記制御部は、前記多相変換部の状態の変化により前記基準相数が前記最大相数に切り替わる場合において、前記装置温度検出部で検出される前記装置温度が前記閾値温度よりも低く且つ前記特定部によって前記電圧変換部が特定されているときには、前記最大相数の前記電圧変換部を、前記第1の制御方式よりも出力が制限される制御方式で駆動する請求項1又は請求項2に記載の多相コンバータ。 In the case where the reference phase number is switched to the maximum phase number due to a change in the state of the multiphase conversion unit, the control unit is configured such that the device temperature detected by the device temperature detection unit is lower than the threshold temperature and the 3. When the voltage conversion unit is specified by the specifying unit, the voltage conversion unit having the maximum number of phases is driven by a control method in which an output is more limited than that of the first control method. The multiphase converter described in 1.
  4.  前記特定部によって特定された前記電圧変換部の発熱状態が所定の異常状態となった場合に外部に通知を行う通知部を備える請求項1から請求項3のいずれか一項に記載の多相コンバータ。 The polyphase according to any one of claims 1 to 3, further comprising a notification unit configured to notify the outside when a heat generation state of the voltage conversion unit specified by the specification unit has become a predetermined abnormal state. converter.
PCT/JP2016/081469 2015-11-13 2016-10-24 Multiphase converter WO2017082033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222657A JP2017093202A (en) 2015-11-13 2015-11-13 Polyphase converter
JP2015-222657 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017082033A1 true WO2017082033A1 (en) 2017-05-18

Family

ID=58695096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081469 WO2017082033A1 (en) 2015-11-13 2016-10-24 Multiphase converter

Country Status (2)

Country Link
JP (1) JP2017093202A (en)
WO (1) WO2017082033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3576275A1 (en) * 2018-05-31 2019-12-04 Yazaki Corporation Dc/dc conversion unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102413234B1 (en) * 2017-06-30 2022-06-24 현대모비스 주식회사 Poly phase Converter with Fault Detection
JP6922635B2 (en) * 2017-10-10 2021-08-18 株式会社デンソー Power converter
JP6966498B2 (en) 2019-03-05 2021-11-17 ファナック株式会社 Power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141535A (en) * 1992-10-21 1994-05-20 Nec Corp Dc-dc converter
JP2006311776A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Multiple-phase voltage converter and vehicle
WO2013011560A1 (en) * 2011-07-19 2013-01-24 トヨタ自動車株式会社 Power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141535A (en) * 1992-10-21 1994-05-20 Nec Corp Dc-dc converter
JP2006311776A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Multiple-phase voltage converter and vehicle
WO2013011560A1 (en) * 2011-07-19 2013-01-24 トヨタ自動車株式会社 Power supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3576275A1 (en) * 2018-05-31 2019-12-04 Yazaki Corporation Dc/dc conversion unit
CN110557017A (en) * 2018-05-31 2019-12-10 矢崎总业株式会社 DC/DC conversion unit
US10933762B2 (en) 2018-05-31 2021-03-02 Yazaki Corporation DC/DC conversion unit
CN110557017B (en) * 2018-05-31 2021-06-29 矢崎总业株式会社 DC/DC conversion unit

Also Published As

Publication number Publication date
JP2017093202A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6459901B2 (en) Multiphase converter
JP6281553B2 (en) DCDC converter
JP5314100B2 (en) Power supply
JP4241852B2 (en) Power conversion circuit, driving method thereof, and driving apparatus
JP6436055B2 (en) Multiphase converter
WO2017082033A1 (en) Multiphase converter
JP6232935B2 (en) Power supply apparatus and abnormality determination method for power supply apparatus
JP6766506B2 (en) Anomaly detection device and in-vehicle power supply device
KR20100130161A (en) System and method for oring phases to overcome duty cycle limitations in a multiphase boost converter
US10103723B2 (en) Driving apparatus for switches
JP2010148291A (en) Dc-dc converter
WO2017199900A1 (en) Voltage converting device
JP2011160618A (en) Power supply device
JP2016208770A (en) Power converter
JP5177019B2 (en) Switching power supply
WO2019181422A1 (en) Automotive multiphase converter
US11707997B2 (en) In-vehicle DC-DC converter
US20190288515A1 (en) Power conditioner
JP2017212805A (en) Vehicular voltage conversion device
JP6181578B2 (en) Inverter
JP2008035620A (en) Bidirectional dc-dc converter
JP6677905B2 (en) Abnormality detection device and power supply device
JP7312088B2 (en) Power conversion device and power conversion control device
US11476750B2 (en) Vehicle power supply device with charge circuit section
JP2010220309A (en) Bidirectional voltage step-up/down converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863997

Country of ref document: EP

Kind code of ref document: A1