WO2017081808A1 - Measurement method and device - Google Patents

Measurement method and device Download PDF

Info

Publication number
WO2017081808A1
WO2017081808A1 PCT/JP2015/081956 JP2015081956W WO2017081808A1 WO 2017081808 A1 WO2017081808 A1 WO 2017081808A1 JP 2015081956 W JP2015081956 W JP 2015081956W WO 2017081808 A1 WO2017081808 A1 WO 2017081808A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
distance
measurement
unit
Prior art date
Application number
PCT/JP2015/081956
Other languages
French (fr)
Japanese (ja)
Inventor
達雄 針山
渡辺 正浩
敦史 谷口
啓晃 笠井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/081956 priority Critical patent/WO2017081808A1/en
Priority to JP2016563148A priority patent/JP6303026B2/en
Publication of WO2017081808A1 publication Critical patent/WO2017081808A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Definitions

  • the present invention relates to a distance measurement method and a distance measurement device for measuring a distance to a measurement object in a non-contact manner.
  • FMCW Frequency Modulated Continuous Waves
  • Patent Document 1 The technique described in Patent Document 1 is an example of distance measurement using the FMCW method.
  • a calibration optical system is provided in addition to the measurement optical system, thereby correcting a distance error due to a change with time of the semiconductor laser.
  • FIG. 2 shows a configuration example of the FMCW system.
  • a triangular wave current is injected from the oscillator 102 to the semiconductor laser 101 and the drive current is modulated, FM light that is temporally frequency swept at a constant modulation speed is generated.
  • the FM light is divided by the beam splitter 202, a part of the output light is irradiated onto the measurement object 114, and a part is reflected by the reference mirror 201.
  • the return light from the measurement object and the interference light of the reference light are detected by the light receiver 203, and the detected beat signal is analyzed by the PC 119 and displayed on the screen 120.
  • FIG. 3 shows the beat signal 301 observed by the light receiver.
  • the horizontal axis of the graph is the observed beat frequency
  • the vertical axis is the signal intensity.
  • FIG. 4 shows the principle of distance measurement.
  • the time change of the optical frequency in the light receiver of the reference light 401 and the measuring light 402 is shown, the horizontal axis of the graph is time, and the vertical axis is the optical frequency.
  • the beat frequency fb, the difference ⁇ t in the arrival time of the reference beam 401 and the measuring beam 402 at the light receiver ⁇ t, the frequency sweep width ⁇ , and the modulation period T have the following relationship.
  • the distance L to the measurement object can be calculated as follows using the light velocity c in the atmosphere.
  • the beat frequency fb In order to accurately measure the distance L from Equation (2), the beat frequency fb needs to be constant during the modulation period T. However, as a characteristic of the semiconductor laser, since the change amount of the optical frequency is nonlinear with respect to the change amount of the injection current, there is a problem that the measurement accuracy is deteriorated.
  • the distance error when the change in the optical frequency sweep becomes nonlinear will be described with reference to FIG.
  • the description will be made assuming that the non-linearity is second-order (actually, it may be a high-order non-linearity, but for the sake of explanation, it is assumed that it is second-order).
  • the optical frequency of the reference light 501 is expressed by the following equation.
  • a is a secondary coefficient of time t
  • b is a primary coefficient
  • the optical frequency of the measuring light 502 is expressed by the following equation.
  • the interference beat frequency generated when the reference light 501 and the measurement light 502 are received by the light receiver is represented by the following equation.
  • the optical frequency is swept linearly from equation (5), only the third term is obtained, and the beat frequency is proportional to ⁇ t, that is, proportional to the distance to the measurement object. It becomes possible.
  • the first and second terms are generated, and therefore the distance cannot be obtained accurately from the beat frequency. Therefore, generally, a method is adopted in which the injection current of the semiconductor laser is made into a non-linear waveform and the sweep frequency is adjusted to be linear.
  • the characteristics of the semiconductor laser with respect to the injection current change with time. When it changes over time, the coefficients a and b in Equation (5) fluctuate, so the distance cannot be determined accurately from the beat frequency.
  • Patent Document 1 corrects the influence of the semiconductor laser over time by providing an optical system for calibration in addition to the optical system for measuring the target.
  • FIG. 1 of Patent Document 1 for explanation, it is shown in FIG.
  • the light emitted from the semiconductor laser light source passes through a beam splitter and then passes through another beam splitter.
  • the second beam splitter measures the distance to the reflecting surface whose distance is accurately known at the same time as the object to be measured.
  • a beat signal detected in FIG. 4 of Patent Document 1 is shown.
  • the coefficient b in Equation (5) fluctuates due to the change of the semiconductor laser with time and the frequency fluctuates linearly.
  • the coefficient a in Equation (5) fluctuates and the frequency fluctuates nonlinearly, there is no information on the beat frequency for calibration during the distance to the target, so calibration cannot be performed with high accuracy.
  • a measuring device is a light source that emits light, a separation unit that separates light into reference light and measurement light, and measurement.
  • a measurement target installation unit for installing a target, a first optical system that emits reference light and reflected light reflected by the measurement target, a separation unit that separates the light into reference light and measurement light, and a position previously determined
  • a second optical system that emits the reference light and the reflected light reflected by the respective reflective units, and the first optical system and the second optical system are selected.
  • An optical system selection unit a light receiving unit that receives a plurality of light beams emitted from the first optical system or the second optical system, and an analysis of the light received by the light receiving unit to determine the distance to the measurement target or the reflection unit Using the distance calculation unit to calculate and the distance to the reflection unit calculated by the distance calculation unit A correction value calculation unit for calculating a correction value, and having a correction unit for correcting the distance to the measurement object by using the correction value.
  • the optical system selection unit selects the optical path of the light emitted from the light source, and when the optical system selection unit selects the first optical system, the light is the first reference light.
  • the first measurement light the second step of emitting the first reflected light and the first reference light reflected by the first measurement light on the measurement target to the light receiving unit, and the optical system selection unit is the second optical
  • the second reference light and the second reference light are separated from the second reference light and the second measurement light, and the second reflected light and the second reference light are reflected by the plurality of reflection portions whose positions are known in advance.
  • the fifth step of calculating the correction value using the distance and the distance to the measurement object are corrected using the correction value.
  • the distance can be measured with high accuracy.
  • FIG. 3 is a diagram illustrating a configuration of a control unit in the first embodiment. It is a figure which quotes and demonstrates patent document 2.
  • FIG. It is the figure which showed the reflective surface of the fiber in a 1st Example. It is the figure which showed the beat signal which generate
  • a sweep waveform signal is transmitted from the control unit 119 to the arbitrary signal generator 102.
  • the optical signal is swept by modulating the drive current of the semiconductor laser 101 by the arbitrary signal generator 102.
  • a part of the light emitted from the semiconductor laser is guided to the reference optical system 132 by the fiber coupler 103.
  • the laser beam is further branched into two by the fiber coupler 104, provided with a certain optical path difference by the optical fiber 105, and then combined again by the fiber coupler 106 and received by the light receiver 107.
  • This has the structure of a Mach-Zehnder interferometer, and the light receiver 107 generates a constant beat signal proportional to the optical path difference.
  • the beat frequency generated by the light receiver 107 is as follows.
  • ⁇ t 0 is the time during which light propagates through the optical path difference of the reference optical system.
  • the light that has not been guided to the reference optical system passes through the circulator 108 and is selectively transmitted to the measurement optical system (first optical system) 131 and the calibration optical system (second optical system) 130 by the optical switch 110.
  • the measurement optical system 131 When guided to the measurement optical system 131, it is branched by the fiber coupler 111, part of it is reflected by the reference mirror 112 and becomes reference light, and most of the rest is irradiated to the space by the collimator lens 113, and the measurement target installation unit 133
  • the object 114 installed in The measurement object installation unit 133 can move the object installation position 133 within a certain range.
  • the light reflected from the object 114 passes through the collimator lens 113 again, merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, passes through the optical switch 110, and reaches the light receiver 109 by the circulator 108.
  • the light is guided and a beat signal is generated by the interference between the reference light and the measurement light.
  • the beat signal received by the light receiver 109 is expressed by Equation (5).
  • Equation (5) when sampling is performed with the beat signal received by the light receiver 107, the following equation is obtained.
  • the second term becomes zero, so the beat frequency when measuring the target and the beat frequency generated by the reference optical system It is possible to calculate the distance from the ratio. However, if the distance to the measurement object is away from the optical path difference of the reference optical system, the second term cannot be ignored, resulting in a distance error. Therefore, by making the current waveform applied to the semiconductor laser non-linear and making the sweep frequency as linear as possible, the coefficient a in equation (7) is reduced and the influence of the second term is suppressed. However, since the current characteristics of the semiconductor laser change with time, the value of a may fluctuate and a distance error may occur. Therefore, a calibration optical system is provided separately.
  • the light guided to the calibration optical system 130 by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the rest is engraved with a reflecting surface at equal intervals. It passes through the optical fiber 117. In the optical fiber 117, reflecting surfaces are engraved at equal intervals, a part of the light is reflected at each point, and most of the light is transmitted. As a result, light is reflected at a plurality of points.
  • the distance to each reflecting surface in the calibration optical system 130 is known, and the distance measured by the measurement optical system 131 is calibrated using this value. Details of the calibration method will be described later.
  • the position of the reflection surface closest to the light source among the plurality of reflection surfaces is closer to the light source than the end of the movable range of the measurement target installation unit 133 on the light source side.
  • the position of the reflective surface farthest from the light source among the reflective surfaces is farther from the light source than the end of the movable range of the measurement target installation unit 133 that is far from the light source.
  • a fiber attenuator 118 is installed at the end of the fiber 117 (the end far from the light source) so that light is absorbed and not reflected at the end.
  • the light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light
  • a beat signal is generated by the interference.
  • the beat signal received by the light receiver 109 is sampled with the beat signal received by the light receiver 107.
  • FIG. 9 shows a beat signal 901 generated by light reflected at each point of the fiber 117. Multiple beat signals are generated according to the distance.
  • the beat signal 902 obtained when the fiber switch 110 is switched and the target is irradiated with light is also shown in FIG.
  • the length of the fiber 117 is determined so that the maximum distance to the object is within the length of the fiber 117.
  • the coefficient a in Equation (5) fluctuates, and the frequency fluctuates nonlinearly, there is a lot of information on the beat frequency for calibration between the distance to the target. It can be calibrated well.
  • the calibration method will be described with reference to FIG. First, it is necessary to accurately obtain the distance of each reflection carved in the fiber 117.
  • a fiber switch is used to guide light to the measurement optical system, and a mirror mounted on a positioning stage with higher accuracy than that required for FMCW measurement is used as a measurement target to drive the stage and measure the distance to the mirror. .
  • the injection current of the semiconductor laser is adjusted so that the distance measurement result by FMCW becomes equal to the moving distance of the stage.
  • the calibration optical system 130 is measured by the fiber switch 110, and the distance calculation unit 601 calculates the distance to each reflection point.
  • 1001 indicates the distance obtained in FIG. 10, and 1101 indicates the distance measured before the measurement. If the distance between 1001 and 1101 is not shifted, calibration is not necessary. However, if 1001 and 1101 are misaligned, calibration is required.
  • the calibration method will be described with reference to FIG.
  • a distance calculation unit 601 calculates the distance to each reflection of the calibration optical system.
  • the correction value calculation unit 602 obtains the difference or ratio between the distance data recorded in the memory of the PC at the time of the first calibration and the distance data calculated by the distance calculation unit 601.
  • a correction value is calculated from the obtained difference or ratio.
  • the correction value for example, data of an area where no reflection point exists is calculated using polynomial approximation or the like.
  • the object is measured by the fiber switch 110, and the correction value obtained by the correction value calculation unit 602 is corrected by the distance correction unit 603 with respect to the distance obtained by the distance calculation unit 601.
  • a method of correcting by changing the injection current of the semiconductor laser is also possible. By using multiple points for calibration at this time, it is possible to calibrate even higher-order nonlinearities.
  • FIG. 8 shows an example of carving a reflection surface on the fiber 117.
  • a method of processing into a fiber by irradiating ultraviolet rays This method is a method used when manufacturing FBG (Fiber Bragg Grating) fiber, and is a general method.
  • FBG Fiber Bragg Grating
  • the measurement apparatus described in the present embodiment includes a light source 101 that emits light, a separation unit 111 that separates light into reference light and measurement light, and a measurement target installation unit. And a first optical system 131 that emits reflected light reflected by the measurement object, a separation unit 111 that separates the light into reference light and measurement light, and a plurality of reflection units 117 whose positions are known in advance, A second optical system 130 that emits the reference light and the reflected light reflected by the respective reflecting units; an optical system selecting unit 110 that selects one of the first optical system 131 and the second optical system 130; A light receiving unit 109 that receives a plurality of lights emitted from one optical system or the second optical system, and a distance calculation unit 601 that analyzes the light received by the light receiving unit and calculates the distance to the measurement target or the reflection unit. And a correction value calculation unit 6 that calculates a correction value using the distance to the reflection unit calculated by the distance calculation unit 02 and a correction unit 603 that corrects the
  • the measurement method described in the present embodiment includes a first step in which the optical system selection unit 110 selects the optical path of light emitted from the light source 101, and the optical system selection unit 110 selects the first optical system 131.
  • the light is separated into the first reference light and the first measurement light, and the first reflected light and the first reference light reflected by the measurement object 114 are emitted to the light receiving unit 109.
  • the optical system selection unit 110 selects the second optical system 130, the light is separated into the second reference light and the second measurement light, and a plurality of reflection units 117 whose positions are known in advance are used.
  • Example 2 The distance measuring method and apparatus in Example 2 will be described with reference to FIG.
  • the difference from the first embodiment described in FIG. 1 is the position of the reference mirror 116.
  • the reference mirror 116 By attaching the reference mirror 116 to the tip of the calibration fiber 117, the light reflected at each point and the light transmitted through the fiber and reflected by the reference mirror 116 interfere to generate a beat signal.
  • the fiber coupler 115 and the optical attenuator 118 described with reference to FIG. 1 are not necessary, the configuration is simpler than that of the first embodiment, and the measurement apparatus can be easily manufactured.
  • Example 3 A distance measuring method and apparatus in Example 3 will be described with reference to FIG.
  • the difference from the first embodiment described with reference to FIG. 1 is that, in FIG. 1, the distance between the reflection points of the fiber 117 is uniform, but in FIG. 13, the distance between the reflection points of the fiber 1401 is non-uniform. .
  • the intervals are uniform in the wavelength order, the structure is similar to that of the FBG, so that a certain wavelength band within the sweep wavelength is reflected by the fiber 117 with high intensity, and there is a possibility that the reference mirror is not irradiated. In this case, no beat signal is generated, and the distance cannot be measured. Therefore, by making the intervals between the reflecting surfaces non-uniform so that the intervals are not uniform in the wavelength order, the possibility that a beat signal is not generated and the calibration accuracy is reduced is reduced.
  • a polarization beam splitter 1501 is used in place of the switch 110 between the measurement optical system and the calibration optical system.
  • the light irradiated from the semiconductor laser is set to a polarization state in which S polarization and P polarization are mixed.
  • the polarization beam splitter 1501 introduces the S polarization component into the measurement optical system, and introduces the P polarization component into the calibration optical system.
  • the P-polarized component is introduced into the measurement optical system, and the S-polarized component is introduced into the calibration optical system.
  • the light introduced into the measurement optical system passes through the circulator 108 and is branched by the fiber coupler 111. A part of the light is reflected by the reference mirror 112 to become reference light, and most of the rest is irradiated to the space by the collimator lens 113.
  • the object 114 is irradiated.
  • the light reflected from the object 114 passes through the collimator lens 113 again and merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, and then guided to the light receiver 109 by the circulator 108 to be measured with the reference light.
  • a beat signal is generated by light interference.
  • the light introduced into the calibration optical system passes through the circulator 1502 and is branched by the fiber coupler 115. A part of the light is reflected by the reference mirror 116 to become reference light, and most of the rest is engraved with a reflecting surface at equal intervals. It passes through the optical fiber 117. In the optical fiber 117, reflecting surfaces are engraved at equal intervals, a part of the light is reflected at each point, and most of the light is transmitted.
  • a fiber attenuator 118 is installed at the end of the fiber 117, and the light is absorbed.
  • the light reflected at each point is merged with the reference light from the reference mirror 116 at the fiber coupler 115 portion, and then guided to the light receiver 1503 by the circulator 1502 to generate a beat signal due to interference between the reference light and the measurement light. .
  • the signals of the light receivers 109 and 1503 can be switched.
  • the 109 signal can be selected during the target measurement, and the 1503 signal can be selected during calibration.
  • the polarization beam splitter 1501 may be a fiber coupler.
  • Example 5 A distance measuring method and apparatus in Example 5 will be described with reference to FIG.
  • the difference from the first embodiment described in FIG. 1 is that the position of the optical switch 110 is arranged after the fiber coupler 115.
  • the reference mirror 116 can be shared by the measurement optical system and the calibration optical system to be one. This has the advantage that the number of parts can be reduced.
  • the distance between the reference mirror and the measurement target may be increased, causing a variation in the distance, and the reflected light generated by the optical switch 110 may be noise.
  • a distance measuring method and apparatus in Example 6 will be described with reference to FIG.
  • the difference from the first embodiment described in FIG. 1 is a calibration fiber.
  • the light guided to the calibration optical system by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the remaining part is further the fiber coupler 1701.
  • the light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light A beat signal is generated by the interference.
  • Example 7 A distance measuring method and apparatus in Example 7 will be described with reference to FIG.
  • the difference from the first embodiment described in FIG. 1 is a calibration fiber.
  • the light guided to the calibration optical system by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the rest is by the fiber coupler 1801. Loop through the resonator.
  • a reflecting surface 1802 is provided in the resonator, and a plurality of reflecting surfaces having different distances can be formed by looping the resonator a plurality of times.
  • the light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light
  • a beat signal is generated by the interference.
  • Example 8 A distance measuring method and apparatus in Example 8 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is that the temperature control boxes 1901 and 1902 are provided in the eighth embodiment.
  • the standard of distance is a calibration fiber and a reference fiber. Therefore, if the fiber length changes with temperature, a distance error occurs.
  • the fiber coupler 104, the fiber 105, and the fiber coupler 106 are put in the temperature control box 1902 to keep the temperature constant, and the fiber coupler 115, the reference mirror 116, the fiber 117, and the fiber attenuator 118 are put in the temperature control box 1901.
  • the actual fiber length may be calculated and the distance calculated by accurately measuring the fiber temperature and taking into account the thermal effect of the fiber from the temperature change.
  • Example 9 The surface shape measuring method and apparatus in Example 9 will be described with reference to FIG.
  • the difference from the first embodiment described with reference to FIG. 1 is that the ninth embodiment is configured without a reference clock generating optical system. Even if there is no reference clock, the beat signal obtained by the equation (5) and the beat signal obtained by the reflection surface of the fiber 117 can be compared to obtain the distance.
  • the surface shape measuring method and apparatus in Example 10 will be described with reference to FIG.
  • a part of the light emitted from the semiconductor laser is guided to the reference optical system by the fiber coupler 103.
  • the laser beam is branched into two by the fiber coupler 104 and is further selectively guided to the optical fibers 2103 and 2104 having different lengths by the optical switch 2101 to provide a certain optical path difference, and then the optical switch 2101.
  • the optical fiber is selected by the optical switch 2102 so that the same optical fiber as the optical fiber selected in (1) is selected, multiplexed by the fiber coupler 105, and received by the light receiver 107.
  • This has the structure of a Mach-Zehnder interferometer, and the light receiver 107 generates a constant beat signal proportional to the optical path difference.
  • the light that has not been guided to the reference optical system passes through the circulator 108 and is branched by the fiber coupler 111, part of the light is reflected by the reference mirror 112 and becomes the reference light, and most of the rest is made into space by the collimator lens 113.
  • the target 114 is irradiated.
  • the light reflected from the object 114 passes through the collimator lens 113 again and merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, and then guided to the light receiver 109 by the circulator 108 to be measured with the reference light.
  • a beat signal is generated by light interference.
  • the beat signal received by the light receiver 109 is sampled with the beat signal received by the light receiver 107.
  • the optical fiber 2103 or 2104 of the reference optical system selects a fiber that is close to the distance to the object by the optical switch.
  • the second term of Equation (7) is reduced, and the non-linear influence can be suppressed.
  • the number of optical fibers is two in FIG. 20, a plurality of optical fibers may be provided according to the measurement distance.
  • Example 11 The surface shape measuring method and apparatus in Example 11 will be described with reference to FIG.
  • the distance measuring unit 2201 of any of the first to tenth embodiments is held, and the stage 2203 on which the focus lens 2202 is mounted is driven to adjust the focus on the target, and the galvanometer mirrors 2204 and 2205 are shaken.
  • the galvanometer mirrors 2204 and 2205 are shaken.
  • a galvanometer mirror As an example of beam scanning, a galvanometer mirror is used. However, a method of scanning by rotating a mirror mounted on a rotary motor or a method of scanning by a polygon mirror may be used.
  • DESCRIPTION OF SYMBOLS 101 Semiconductor laser, 102 ... Signal generator, 103 ... Fiber coupler, 104 ... Fiber coupler, 105 ... Fiber, 106 ... Fiber coupler, 107 ... Light receiver, 108 ... Circulator, 109 ... Light receiver, 110 ... Fiber switch, DESCRIPTION OF SYMBOLS 111 ... Fiber coupler, 112 ... Reference mirror, 113 ... Fiber collimator, 114 ... Measurement object, 115 ... Fiber coupler, 116 ... Reference mirror, 117 ... Calibration fiber, 118 ... Attenuator, 119 ... PC, 120 ... Monitor , 201 ... reference mirror, 202 ... beam splitter, 203 ...
  • Calibration fiber with different reflection point intervals 1501 ... Polarizing beam splitter, 1502 ... Circulator, 1503 ... Light receiver, 1701 ... Fiber coupler, 1702 ... Calibration fiber, 1703 ... Calibration Fiber 1704 ... Calibration fiber 1705 ... Reflective surface, 1706 ... reflective surface, 1707 ... reflective surface, 1801 ... fiber coupler, 1802 ... reflection point, 1901 ... temperature control box, 1902 ... temperature control box, 2101 ... fiber switch, 2102 ... fiber switch, 2103 ... see 2104.
  • Reference fiber 2201. Distance measuring unit, 2202. Focus lens, 2203 Focus lens, 2204 Galvanometer mirror, 2205 Galvanometer mirror.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention provides a plurality of means for addressing the problem, one example of these means being a measurement device, wherein the measurement device is characterized by including: a light source for emitting light; a first optical system provided with a separation unit for separating the light into reference light and measurement light, and an object-of-measurement-installation unit, the first optical system emitting the reference light and the reflected light, which is reflected by the object of measurement; a second optical system provided with a separation unit for separating the light into reference light and measurement light, and a plurality of reflection units of which the positions are established in advance, the second optical system emitting the reference light and the reflected light, which is reflected by each of the reflection units; an optical system selection unit for selecting either the first optical system or the second optical system; a reception unit for receiving the plurality of rays of light emitted by the first optical system or the second optical system; a distance calculation unit for analyzing the light rays received by the reception unit and calculating the distance to the object of measurement or to the reflection units; a correction value calculation unit for calculating a correction value by using the distance to the reflection units as calculated by the distance calculation unit; and a correction unit for correcting the distance to the object of measurement by using the correction value.

Description

計測方法および装置Measuring method and apparatus
 本発明は,測定対象までの距離を非接触に測定するための距離計測方法及び距離計測装置に関する。 The present invention relates to a distance measurement method and a distance measurement device for measuring a distance to a measurement object in a non-contact manner.
 測定対象までの距離を非接触に計測する方法としてFMCW(Frequency Modulated Continuous Waves)方式が知られている。 FMCW (Frequency Modulated Continuous Waves) method is known as a method for measuring the distance to the measurement object in a non-contact manner.
 FMCW方式を使った距離測定の例として特許文献1に記載の技術があげられる。特許文献1では測定光学系とは別に校正用の光学系を設けることで,半導体レーザの経時変化による距離誤差を補正している。 The technique described in Patent Document 1 is an example of distance measurement using the FMCW method. In Patent Literature 1, a calibration optical system is provided in addition to the measurement optical system, thereby correcting a distance error due to a change with time of the semiconductor laser.
特開2013-180111JP2013-180111A
 まず、図2にFMCW方式の一構成例を示す。半導体レーザ101に対して発振機102から三角波電流を注入し,駆動電流を変調すると,一定の変調速度で時間的に周波数掃引されたFM光が発生する。そのFM光をビームスプリッター202で分割し,出力光の一部を測定対象物114に照射し,一部を参照ミラー201で反射させる。測定対象からの戻り光と参照光の干渉光を受光器203にて検出し,検出されるビート信号をPC119にて解析し,画面120に表示させる。 First, FIG. 2 shows a configuration example of the FMCW system. When a triangular wave current is injected from the oscillator 102 to the semiconductor laser 101 and the drive current is modulated, FM light that is temporally frequency swept at a constant modulation speed is generated. The FM light is divided by the beam splitter 202, a part of the output light is irradiated onto the measurement object 114, and a part is reflected by the reference mirror 201. The return light from the measurement object and the interference light of the reference light are detected by the light receiver 203, and the detected beat signal is analyzed by the PC 119 and displayed on the screen 120.
 図3に受光器で観測されるビート信号301を示す。グラフ横軸は観測されるビート周波数であり,縦軸が信号強度である。図4に距離計測原理を示す。参照光401と測定光402の受光器における光周波数の時間変化を示しており,グラフ横軸は時間であり,縦軸は光周波数である。ビート周波数fb,参照光401と測定光402の受光器への到着時間の差Δt,周波数掃引幅Δν,変調周期Tには次式の関係があることがわかる。 FIG. 3 shows the beat signal 301 observed by the light receiver. The horizontal axis of the graph is the observed beat frequency, and the vertical axis is the signal intensity. FIG. 4 shows the principle of distance measurement. The time change of the optical frequency in the light receiver of the reference light 401 and the measuring light 402 is shown, the horizontal axis of the graph is time, and the vertical axis is the optical frequency. It can be seen that the beat frequency fb, the difference Δt in the arrival time of the reference beam 401 and the measuring beam 402 at the light receiver Δt, the frequency sweep width Δν, and the modulation period T have the following relationship.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 よって,測定対象までの距離Lは大気中の光速度cを用いて,次式のように算出できる。 Therefore, the distance L to the measurement object can be calculated as follows using the light velocity c in the atmosphere.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)より距離Lを精度良く測定するためには,ビート周波数fbが変調周期Tの間,一定である必要がある。しかし半導体レーザの特性として注入電流の変化量に対して光周波数の変化量は非線形であるため,計測精度が劣化するという課題がある。 In order to accurately measure the distance L from Equation (2), the beat frequency fb needs to be constant during the modulation period T. However, as a characteristic of the semiconductor laser, since the change amount of the optical frequency is nonlinear with respect to the change amount of the injection current, there is a problem that the measurement accuracy is deteriorated.
 また、FMCW方式において,光周波数掃引の変化が非線形になった場合の距離誤差について図5を用いて説明する。非線形性を2次と仮定して説明する(実際は高次の非線形性である可能性があるが説明する上で簡略化のため2次と仮定した)。参照光501の光周波数は次式で表される。 In the FMCW method, the distance error when the change in the optical frequency sweep becomes nonlinear will be described with reference to FIG. The description will be made assuming that the non-linearity is second-order (actually, it may be a high-order non-linearity, but for the sake of explanation, it is assumed that it is second-order). The optical frequency of the reference light 501 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここでaは時間tの2次の係数,bは1次の係数である。同様に測定光502の光周波数は次式で表される。 Where a is a secondary coefficient of time t, and b is a primary coefficient. Similarly, the optical frequency of the measuring light 502 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 参照光501と測定光502が受光器で受光される際に生じる干渉ビート周波数は次式となる。 The interference beat frequency generated when the reference light 501 and the measurement light 502 are received by the light receiver is represented by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)より光周波数が線形に掃引された場合は第3項のみとなり,ビート周波数はΔtに比例する,つまり測定対象までの距離に比例するため,ビート周波数から距離を精度良く求めることが可能となる。しかし非線形に掃引される場合は,第1項と第2項が生じるため,ビート周波数から距離を精度良く求めることができない。そこで一般的に半導体レーザの注入電流を非線形な波形にし,掃引周波数が線形になるように調整する手法が取られる。しかしながら,注入電流に対する半導体レーザの特性は経時変化してしまう。経時変化した場合,式(5)において,係数a,bが変動してしまうため,ビート周波数から距離を正確に求めることができない。 When the optical frequency is swept linearly from equation (5), only the third term is obtained, and the beat frequency is proportional to Δt, that is, proportional to the distance to the measurement object. It becomes possible. However, in the case of non-linear sweeping, the first and second terms are generated, and therefore the distance cannot be obtained accurately from the beat frequency. Therefore, generally, a method is adopted in which the injection current of the semiconductor laser is made into a non-linear waveform and the sweep frequency is adjusted to be linear. However, the characteristics of the semiconductor laser with respect to the injection current change with time. When it changes over time, the coefficients a and b in Equation (5) fluctuate, so the distance cannot be determined accurately from the beat frequency.
 このような課題に対し、特許文献1では対象を測定するための光学系とは別に校正用の光学系を設けることで,半導体レーザの経時変化の影響を補正している。 For such a problem, Patent Document 1 corrects the influence of the semiconductor laser over time by providing an optical system for calibration in addition to the optical system for measuring the target.
 説明のため特許文献1図1を引用して図7に示す。半導体レーザ光源から照射された光はビームスプリッターを通過した後,別のビームスプリッターを通過する。二つ目のビームスプリッターにより,距離が正確にわかっている反射面までの距離を測定対象と同時に計測する。特許文献1の図4に検出されたビート信号が示されている。特許文献1では、対象からの反射光と反射面からの反射光とは同時検出されるため,ビート周波数が重ならないように対象までの距離よりも反射面の距離を離す必要がある。この方式の場合,半導体レーザの経時変化によって式(5)における係数bが変動し,周波数が線形に変動した場合であれば,校正可能である。しかし,式(5)における係数aが変動し,周波数が非線形に変動した場合は,対象までの距離の間に校正用のビート周波数の情報がないため,精度良く校正することができない。 Referring to FIG. 1 of Patent Document 1 for explanation, it is shown in FIG. The light emitted from the semiconductor laser light source passes through a beam splitter and then passes through another beam splitter. The second beam splitter measures the distance to the reflecting surface whose distance is accurately known at the same time as the object to be measured. A beat signal detected in FIG. 4 of Patent Document 1 is shown. In Patent Document 1, since the reflected light from the object and the reflected light from the reflecting surface are detected at the same time, it is necessary to increase the distance of the reflecting surface from the distance to the object so that the beat frequencies do not overlap. In the case of this method, calibration is possible if the coefficient b in Equation (5) fluctuates due to the change of the semiconductor laser with time and the frequency fluctuates linearly. However, if the coefficient a in Equation (5) fluctuates and the frequency fluctuates nonlinearly, there is no information on the beat frequency for calibration during the distance to the target, so calibration cannot be performed with high accuracy.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、計測装置であって、光を出射する光源と、光を参照光と測定光とに分離する分離部と測定対象を設置する測定対象設置部とを備え、参照光および測定対象で反射した反射光を出射する第1の光学系と、光を参照光と測定光とに分離する分離部と予め位置が判明している複数の反射部とを備え、参照光およびそれぞれの反射部で反射した反射光を出射する第2の光学系と,第1の光学系、第2の光学系のいずれかを選択する光学系選択部と、第1の光学系あるいは第2の光学系が出射する複数の光を受光する受光部と、受光部が受光した光の解析を行い、測定対象あるいは反射部までの距離を算出する距離算出部と、距離算出部が算出した反射部までの距離を用いて補正値を算出する補正値算出部と,補正値を用いて測定対象までの距離を補正する補正部と、を有することを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. To give an example, a measuring device is a light source that emits light, a separation unit that separates light into reference light and measurement light, and measurement. A measurement target installation unit for installing a target, a first optical system that emits reference light and reflected light reflected by the measurement target, a separation unit that separates the light into reference light and measurement light, and a position previously determined A second optical system that emits the reference light and the reflected light reflected by the respective reflective units, and the first optical system and the second optical system are selected. An optical system selection unit, a light receiving unit that receives a plurality of light beams emitted from the first optical system or the second optical system, and an analysis of the light received by the light receiving unit to determine the distance to the measurement target or the reflection unit Using the distance calculation unit to calculate and the distance to the reflection unit calculated by the distance calculation unit A correction value calculation unit for calculating a correction value, and having a correction unit for correcting the distance to the measurement object by using the correction value.
 または、計測方法であって、光源が出射した光の光路を光学系選択部で選択する第1ステップと、光学系選択部が第1の光学系を選択した場合に、光を第1参照光と第1測定光とに分離し、測定対象で第1測定光が反射した第1反射光と第1参照光とを受光部へ出射する第2ステップと、光学系選択部が第2の光学系を選択した場合に、光を第2参照光と第2測定光との分離し、予め位置が判明している複数の反射部で第2測定光が反射した第2反射光と第2参照光とを受光部へ出射する第3ステップと、受光部が受光した光の解析を行い、測定対象あるいは反射部までの距離を算出する第4ステップと、第4ステップにおいて算出した反射部までの距離を用いて補正値を算出する第5ステップと、補正値を用いて測定対象までの距離を補正する第6ステップと、を有することを特徴とする。 Alternatively, in the measurement method, when the optical system selection unit selects the optical path of the light emitted from the light source, and when the optical system selection unit selects the first optical system, the light is the first reference light. And the first measurement light, the second step of emitting the first reflected light and the first reference light reflected by the first measurement light on the measurement target to the light receiving unit, and the optical system selection unit is the second optical When a system is selected, the second reference light and the second reference light are separated from the second reference light and the second measurement light, and the second reflected light and the second reference light are reflected by the plurality of reflection portions whose positions are known in advance. A third step for emitting light to the light receiving unit, a fourth step for analyzing the light received by the light receiving unit, calculating a distance to the measurement object or the reflecting unit, and a step for calculating the distance to the reflecting unit calculated in the fourth step. The fifth step of calculating the correction value using the distance and the distance to the measurement object are corrected using the correction value. A sixth step of, characterized by having a.
本発明によれば,高精度に距離を計測することが可能になる。 According to the present invention, the distance can be measured with high accuracy.
第1の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 1st Example. FMCW方式の構成を示した図である。It is the figure which showed the structure of the FMCW system. 受光器で発生するビート信号を示した図である。It is the figure which showed the beat signal which generate | occur | produces with a light receiver. FMCW方式の原理を説明する図である。It is a figure explaining the principle of FMCW system. FMCW方式において距離誤差が生じる原因を説明する図である。It is a figure explaining the cause which a distance error produces in a FMCW system. 第1の実施例における制御部の構成を示した図である。FIG. 3 is a diagram illustrating a configuration of a control unit in the first embodiment. 特許文献2を引用して説明する図である。It is a figure which quotes and demonstrates patent document 2. FIG. 第1の実施例におけるファイバの反射面を示した図である。It is the figure which showed the reflective surface of the fiber in a 1st Example. 第1の実施例における受光器で発生するビート信号を示した図である。It is the figure which showed the beat signal which generate | occur | produces with the light receiver in a 1st Example. 第1の実施例における初回の校正方法を示した図である。It is a figure showing the first calibration method in the 1st example. 第1の実施例における測定毎の校正方法を示した図である。It is the figure which showed the calibration method for every measurement in a 1st Example. 第2の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 2nd Example. 第3の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 3rd Example. 第4の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 4th Example. 第5の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 5th Example. 第6の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 6th Example. 第7の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 7th Example. 第8の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in an 8th Example. 第9の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 9th Example. 第10の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in a 10th Example. 第11の実施例における距離計測装置の構成を示した図である。It is the figure which showed the structure of the distance measuring device in an 11th Example.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 実施例1における面形状計測方法および装置について図1を用いて説明する。制御部119から任意信号発生器102に掃引波形信号を送信する。任意信号発生器102によって半導体レーザ101の駆動電流に変調をかけることによって,光周波数の掃引を行う。半導体レーザからの射出光の一部をファイバカプラ103によって参照光学系132に導光する。参照光学系ではレーザ光はファイバカプラ104によって更に2分岐され,光ファイバ105によって一定の光路差を設けた後,再びファイバカプラ106によって合波され,受光器107に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器107では光路差に比例した一定のビート信号が発生する。受光器107で発生するビート周波数は次式となる。 The surface shape measuring method and apparatus in Example 1 will be described with reference to FIG. A sweep waveform signal is transmitted from the control unit 119 to the arbitrary signal generator 102. The optical signal is swept by modulating the drive current of the semiconductor laser 101 by the arbitrary signal generator 102. A part of the light emitted from the semiconductor laser is guided to the reference optical system 132 by the fiber coupler 103. In the reference optical system, the laser beam is further branched into two by the fiber coupler 104, provided with a certain optical path difference by the optical fiber 105, and then combined again by the fiber coupler 106 and received by the light receiver 107. Yes. This has the structure of a Mach-Zehnder interferometer, and the light receiver 107 generates a constant beat signal proportional to the optical path difference. The beat frequency generated by the light receiver 107 is as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
ここで,Δt0は参照用光学系の光路差を光が伝搬する時間である。 Here, Δt 0 is the time during which light propagates through the optical path difference of the reference optical system.
 一方,参照光学系に導かれなかった光はサーキュレータ108を通過し,光切替え器110によって,測定光学系(第1光学系)131と校正用光学系(第2光学系)130に選択的に導かれる。測定光学系131に導かれた場合,ファイバカプラ111によって分岐され,一部は参照用ミラー112によって反射され参照光となり、残りの大部分はコリメータレンズ113により空間に照射され,測定対象設置部133に設置されている対象114に照射される。測定対象設置部133はある程度の範囲内で、対象物設置位置133を動かすことができる。 On the other hand, the light that has not been guided to the reference optical system passes through the circulator 108 and is selectively transmitted to the measurement optical system (first optical system) 131 and the calibration optical system (second optical system) 130 by the optical switch 110. Led. When guided to the measurement optical system 131, it is branched by the fiber coupler 111, part of it is reflected by the reference mirror 112 and becomes reference light, and most of the rest is irradiated to the space by the collimator lens 113, and the measurement target installation unit 133 The object 114 installed in The measurement object installation unit 133 can move the object installation position 133 within a certain range.
 対象114から反射した光は再びコリメータレンズ113を通過して,参照用ミラー112からの参照光とファイバカプラ111部分で合流した後,光切替え器110を通過し,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。受光器109で受光されたビート信号は式(5)となる。ここで,受光器107で受光されたビート信号でサンプリングすると次式となる The light reflected from the object 114 passes through the collimator lens 113 again, merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, passes through the optical switch 110, and reaches the light receiver 109 by the circulator 108. The light is guided and a beat signal is generated by the interference between the reference light and the measurement light. The beat signal received by the light receiver 109 is expressed by Equation (5). Here, when sampling is performed with the beat signal received by the light receiver 107, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
式(7)より測定対象までの距離と参照用光学系の光路差が近い場合は第2項がゼロになるため,対象を測定する際のビート周波数と参照用の光学系で発生するビート周波数との比から距離を算出することが可能である。しかし,測定対象までの距離が参照用光学系の光路差から離れると第2項が無視できなくなり,距離の誤差を生じる。そこで,半導体レーザに加える電流波形を非線形にして,掃引周波数をなるべく線形にすることで,式(7)の係数aを小さくし,第2項の影響を抑制している。しかしながら,半導体レーザの電流特性は経時変化するため,aの値が変動し,距離誤差を生じる可能性がある。そこで,校正用の光学系を別途設ける。 If the distance to the measurement target is close to the optical path difference of the reference optical system from Equation (7), the second term becomes zero, so the beat frequency when measuring the target and the beat frequency generated by the reference optical system It is possible to calculate the distance from the ratio. However, if the distance to the measurement object is away from the optical path difference of the reference optical system, the second term cannot be ignored, resulting in a distance error. Therefore, by making the current waveform applied to the semiconductor laser non-linear and making the sweep frequency as linear as possible, the coefficient a in equation (7) is reduced and the influence of the second term is suppressed. However, since the current characteristics of the semiconductor laser change with time, the value of a may fluctuate and a distance error may occur. Therefore, a calibration optical system is provided separately.
 光切替え器110によって校正用光学系130に導かれた光はファイバカップラ115によって分岐され,一部は参照用ミラー116によって反射され,参照光となり,残りの大部分は等間隔に反射面が刻まれた光ファイバ117を通過する。光ファイバ117では等間隔に反射面が刻まれており,各点で光の一部が反射し,大部分は透過する。これにより,複数点で光が反射する。この校正用光学系130内の各反射面までの距離は既知であり、この値を使って測定光学系131で測定した距離を校正する。校正方法の詳細は後述する。この時、複数の反射面のうち最も光源に近い反射面の位置は、測定対象設置部133の可動域の光源側の端よりも光源に近い。また、反射面のうち最も光源から遠い反射面の位置は、測定対象設置部133の可動域の光源から遠い側の端よりも光源から遠い。このように構成することで、複数の反射面までの距離内に、必ず測定対象設置部までの距離と同じ距離が含まれることになり、適切な範囲で校正することができる。 The light guided to the calibration optical system 130 by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the rest is engraved with a reflecting surface at equal intervals. It passes through the optical fiber 117. In the optical fiber 117, reflecting surfaces are engraved at equal intervals, a part of the light is reflected at each point, and most of the light is transmitted. As a result, light is reflected at a plurality of points. The distance to each reflecting surface in the calibration optical system 130 is known, and the distance measured by the measurement optical system 131 is calibrated using this value. Details of the calibration method will be described later. At this time, the position of the reflection surface closest to the light source among the plurality of reflection surfaces is closer to the light source than the end of the movable range of the measurement target installation unit 133 on the light source side. In addition, the position of the reflective surface farthest from the light source among the reflective surfaces is farther from the light source than the end of the movable range of the measurement target installation unit 133 that is far from the light source. With this configuration, the distance to the plurality of reflecting surfaces is always included in the same distance as the distance to the measurement target installation unit, and calibration can be performed in an appropriate range.
 ファイバ117の末端(光源から遠い方の端)にはファイバ減衰器118が設置されており,末端部で光が吸収され反射しないようにする。各点で反射した光は参照用ミラー116からの参照光とファイバカプラ115部分で合流した後,光切替え器110を通過し,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。受光器109で受光されたビート信号を受光器107で受光されたビート信号でサンプリングする。 A fiber attenuator 118 is installed at the end of the fiber 117 (the end far from the light source) so that light is absorbed and not reflected at the end. The light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light A beat signal is generated by the interference. The beat signal received by the light receiver 109 is sampled with the beat signal received by the light receiver 107.
 図9にファイバ117の各点で反射した光によって発生するビート信号901を示す。距離に応じてビート信号が複数発生する。またファイバ切替え器110を切り替えて対象に光を照射した場合に得られるビート信号902も同図に示す。ここで,対象までの最大距離がファイバ117の長さ以内となるようファイバ117の長さは決定される。これによって,半導体レーザが経時変化し,式(5)における係数aが変動し,周波数が非線形に変動した場合でも,対象までの距離の間に校正用のビート周波数の情報が多数あるため,精度良く校正することができる。 FIG. 9 shows a beat signal 901 generated by light reflected at each point of the fiber 117. Multiple beat signals are generated according to the distance. The beat signal 902 obtained when the fiber switch 110 is switched and the target is irradiated with light is also shown in FIG. Here, the length of the fiber 117 is determined so that the maximum distance to the object is within the length of the fiber 117. As a result, even when the semiconductor laser changes with time, the coefficient a in Equation (5) fluctuates, and the frequency fluctuates nonlinearly, there is a lot of information on the beat frequency for calibration between the distance to the target. It can be calibrated well.
 校正方法を図10を用いて説明する。まずファイバ117に刻まれた各反射の距離を正確に求める必要がある。1実施例として,ファイバ切替え器で測定光学系に光を導き,FMCW計測に求められる精度よりも高精度な位置決めステージに搭載されたミラーを測定対象として,ステージを駆動しミラーまでの距離を測る。このときFMCWによる距離計測結果がステージの移動距離と等しくなるよう半導体レーザの注入電流の調整を行う。 The calibration method will be described with reference to FIG. First, it is necessary to accurately obtain the distance of each reflection carved in the fiber 117. As an example, a fiber switch is used to guide light to the measurement optical system, and a mirror mounted on a positioning stage with higher accuracy than that required for FMCW measurement is used as a measurement target to drive the stage and measure the distance to the mirror. . At this time, the injection current of the semiconductor laser is adjusted so that the distance measurement result by FMCW becomes equal to the moving distance of the stage.
 次にファイバ切替え器で校正用光学系130に光を導き,ファイバ117の各反射点のビート周波数から各反射点の距離を求めてPCのメモリに記録する。本方法は装置製作後に初回に1度のみ実施すれば良い。 Next, light is guided to the calibration optical system 130 by the fiber switch, and the distance of each reflection point is obtained from the beat frequency of each reflection point of the fiber 117 and recorded in the memory of the PC. This method only needs to be performed once after the device is manufactured.
 次に測定毎の校正方法を図11を用いて説明する。対象を測定する前にファイバ切替え器110によって校正光学系130を測定し,各反射点までの距離を距離算出部601が算出する。1001は図10で求めた距離を示し,1101は測定前に測定した距離を示す。1001と1101の距離がずれていなければ,校正の必要はない。しかし1001と1101がずれている場合は,校正が必要である。校正方法を図6を用いて説明する。校正光学系の各反射までの距離を距離算出部601にて算出する。次に補正値算出部602にて初回校正時にPCのメモリに記録された距離データと距離算出部601にて算出された距離データとの差分あるいは比を求める。求めた差分あるいは比から補正値を算出する。補正値は例えば多項式近似などを用いて,反射点が存在しない領域のデータも算出する。次にファイバ切替え器110によって対象を測定し,距離算出部601によって求めた距離に対して,距離補正部603にて補正値算出部602で求めた補正値を補正する。 Next, the calibration method for each measurement will be described with reference to FIG. Before measuring the target, the calibration optical system 130 is measured by the fiber switch 110, and the distance calculation unit 601 calculates the distance to each reflection point. 1001 indicates the distance obtained in FIG. 10, and 1101 indicates the distance measured before the measurement. If the distance between 1001 and 1101 is not shifted, calibration is not necessary. However, if 1001 and 1101 are misaligned, calibration is required. The calibration method will be described with reference to FIG. A distance calculation unit 601 calculates the distance to each reflection of the calibration optical system. Next, the correction value calculation unit 602 obtains the difference or ratio between the distance data recorded in the memory of the PC at the time of the first calibration and the distance data calculated by the distance calculation unit 601. A correction value is calculated from the obtained difference or ratio. As the correction value, for example, data of an area where no reflection point exists is calculated using polynomial approximation or the like. Next, the object is measured by the fiber switch 110, and the correction value obtained by the correction value calculation unit 602 is corrected by the distance correction unit 603 with respect to the distance obtained by the distance calculation unit 601.
 あるいは,半導体レーザの注入電流を変更して,補正する方法も可能である。このとき複数点を校正に使うことで,高次の非線形まで校正可能である。 Alternatively, a method of correcting by changing the injection current of the semiconductor laser is also possible. By using multiple points for calibration at this time, it is possible to calibrate even higher-order nonlinearities.
 ファイバ117に反射面を刻む一例を図8に示す。例えば,紫外線を照射してファイバ中に加工する方法がある。この手法はFBG(Fiber Bragg Grating)ファイバを製作する際に用いられている方法であり,一般的な手法である。 FIG. 8 shows an example of carving a reflection surface on the fiber 117. For example, there is a method of processing into a fiber by irradiating ultraviolet rays. This method is a method used when manufacturing FBG (Fiber Bragg Grating) fiber, and is a general method.
 以上を踏まえると、本実施例に記載されている計測装置は、光を出射する光源101と、光を参照光と測定光とに分離する分離部111と測定対象設置部とを備え、参照光および測定対象で反射した反射光を出射する第1の光学系131と、光を参照光と測定光とに分離する分離部111と予め位置が判明している複数の反射部117とを備え、参照光およびそれぞれの反射部で反射した反射光を出射する第2の光学系130と,第1の光学系131、第2の光学系130のいずれかを選択する光学系選択部110と、第1の光学系あるいは第2の光学系が出射する複数の光を受光する受光部109と、受光部が受光した光の解析を行い、測定対象あるいは反射部までの距離を算出する距離算出部601と、距離算出部が算出した反射部までの距離を用いて補正値を算出する補正値算出部602と,補正値を用いて測定対象までの距離を補正する補正部603と、を有することを特徴とする。 Based on the above, the measurement apparatus described in the present embodiment includes a light source 101 that emits light, a separation unit 111 that separates light into reference light and measurement light, and a measurement target installation unit. And a first optical system 131 that emits reflected light reflected by the measurement object, a separation unit 111 that separates the light into reference light and measurement light, and a plurality of reflection units 117 whose positions are known in advance, A second optical system 130 that emits the reference light and the reflected light reflected by the respective reflecting units; an optical system selecting unit 110 that selects one of the first optical system 131 and the second optical system 130; A light receiving unit 109 that receives a plurality of lights emitted from one optical system or the second optical system, and a distance calculation unit 601 that analyzes the light received by the light receiving unit and calculates the distance to the measurement target or the reflection unit. And a correction value calculation unit 6 that calculates a correction value using the distance to the reflection unit calculated by the distance calculation unit 02 and a correction unit 603 that corrects the distance to the measurement object using the correction value.
 また、本実施例に記載されている計測方法は、光源101が出射した光の光路を光学系選択部110で選択する第1ステップと、光学系選択部110が第1の光学系131を選択した場合に、光を第1参照光と第1測定光とに分離し、測定対象114で第1測定光が反射した第1反射光と第1参照光とを受光部109へ出射する第2ステップと、光学系選択部110が第2の光学系130を選択した場合に、光を第2参照光と第2測定光との分離し、予め位置が判明している複数の反射部117で第2測定光が反射した第2反射光と第2参照光とを受光部109へ出射する第3ステップと、受光部109が受光した光の解析を行い、測定対象あるいは反射部までの距離を算出する第4ステップ601と、第4ステップにおいて算出した反射部までの距離を用いて補正値を算出する第5ステップ602と、補正値を用いて測定対象までの距離を補正する第6ステップ603と、を有することを特徴とする計測方法。 これらの構成により、複数の反射面までの距離内に、必ず測定対象設置部までの距離と同じ距離が含まれる二つの光学系を光学系選択部で切り替えることにより、測定対象までの距離の間で校正用のビート周波数の情報を得ることができ、精度よく距離を構成することができる。 In addition, the measurement method described in the present embodiment includes a first step in which the optical system selection unit 110 selects the optical path of light emitted from the light source 101, and the optical system selection unit 110 selects the first optical system 131. In this case, the light is separated into the first reference light and the first measurement light, and the first reflected light and the first reference light reflected by the measurement object 114 are emitted to the light receiving unit 109. And when the optical system selection unit 110 selects the second optical system 130, the light is separated into the second reference light and the second measurement light, and a plurality of reflection units 117 whose positions are known in advance are used. The third step of emitting the second reflected light and the second reference light reflected by the second measurement light to the light receiving unit 109, analyzing the light received by the light receiving unit 109, and determining the distance to the measurement object or the reflection unit Fourth step 601 to calculate, and fifth step 6 to calculate the correction value using the distance to the reflection part calculated in the fourth step 6 02 and a sixth step 603 for correcting the distance to the measurement object using the correction value. With these configurations, by switching between two optical systems that always include the same distance as the distance to the measurement target installation unit within the distance to the plurality of reflecting surfaces, the optical system selection unit switches between the distances to the measurement target. Thus, information on the beat frequency for calibration can be obtained, and the distance can be constructed with high accuracy.
 実施例2における距離計測方法および装置について図12を用いて説明する。図1で説明した第1の実施例との違いは参照用ミラー116の位置である。校正用ファイバ117の先端に参照用ミラー116を取り付けることで,各点で反射した光とファイバを透過して参照用ミラー116で反射した光が干渉し,ビート信号を生成することが可能となる。この場合,図1で説明したファイバカップラ115と光減衰器118が不要となるため,実施例1と比較して構成がよりシンプルにり、計測装置の製造が簡便となる。 The distance measuring method and apparatus in Example 2 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is the position of the reference mirror 116. By attaching the reference mirror 116 to the tip of the calibration fiber 117, the light reflected at each point and the light transmitted through the fiber and reflected by the reference mirror 116 interfere to generate a beat signal. . In this case, since the fiber coupler 115 and the optical attenuator 118 described with reference to FIG. 1 are not necessary, the configuration is simpler than that of the first embodiment, and the measurement apparatus can be easily manufactured.
 実施例3における距離計測方法および装置について図13を用いて説明する。図1で説明した第1の実施例との違いは図1ではファイバ117の反射点の間隔は均一であったが,図13ではファイバ1401の反射点の間隔を不均一にしている点である。波長オーダーで間隔が均一である場合,FBGと類似した構造になるため,掃引波長内のある波長帯域がファイバ117で高強度に反射してしまい,参照用ミラーに照射されない可能性がある。その場合ビート信号が生じなくなるため,距離を計測できなくなる。よって波長オーダーで間隔が均一とならないように反射面同士の間隔を不均一に製作することで、ビート信号が生じなくなり校正精度が落ちる可能性を低減する。 A distance measuring method and apparatus in Example 3 will be described with reference to FIG. The difference from the first embodiment described with reference to FIG. 1 is that, in FIG. 1, the distance between the reflection points of the fiber 117 is uniform, but in FIG. 13, the distance between the reflection points of the fiber 1401 is non-uniform. . When the intervals are uniform in the wavelength order, the structure is similar to that of the FBG, so that a certain wavelength band within the sweep wavelength is reflected by the fiber 117 with high intensity, and there is a possibility that the reference mirror is not irradiated. In this case, no beat signal is generated, and the distance cannot be measured. Therefore, by making the intervals between the reflecting surfaces non-uniform so that the intervals are not uniform in the wavelength order, the possibility that a beat signal is not generated and the calibration accuracy is reduced is reduced.
 実施例4における距離状計測方法および装置について図14を用いて説明する。実施例4では測定光学系と校正光学系との切替え器110の代わりに偏光ビームスプリッター1501を用いる。半導体レーザから照射される光をS偏光とP偏光が混在した偏光状態としておく。偏光ビームスプリッター1501によってS偏光成分を測定光学系に導入し,P偏光成分を校正光学系に導入する。あるいはP偏光成分を測定光学系に導入し,S偏光成分を校正光学系に導入する。 The distance measurement method and apparatus in Example 4 will be described with reference to FIG. In the fourth embodiment, a polarization beam splitter 1501 is used in place of the switch 110 between the measurement optical system and the calibration optical system. The light irradiated from the semiconductor laser is set to a polarization state in which S polarization and P polarization are mixed. The polarization beam splitter 1501 introduces the S polarization component into the measurement optical system, and introduces the P polarization component into the calibration optical system. Alternatively, the P-polarized component is introduced into the measurement optical system, and the S-polarized component is introduced into the calibration optical system.
 測定光学系に導入された光はサーキュレータ108を通過し,ファイバカプラ111によって分岐され,一部は参照用ミラー112によって反射され参照光となり、残りの大部分はコリメータレンズ113により空間に照射され,対象114に照射される。対象114から反射した光は再びコリメータレンズ113を通過して,参照用ミラー112からの参照光とファイバカプラ111部分で合流した後,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。 The light introduced into the measurement optical system passes through the circulator 108 and is branched by the fiber coupler 111. A part of the light is reflected by the reference mirror 112 to become reference light, and most of the rest is irradiated to the space by the collimator lens 113. The object 114 is irradiated. The light reflected from the object 114 passes through the collimator lens 113 again and merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, and then guided to the light receiver 109 by the circulator 108 to be measured with the reference light. A beat signal is generated by light interference.
 一方,校正光学系に導入された光はサーキュレータ1502を通過し,ファイバカプラ115によって分岐され,一部は参照用ミラー116によって反射され参照光となり,残りの大部分は等間隔に反射面が刻まれた光ファイバ117を通過する。光ファイバ117では等間隔に反射面が刻まれており,各点で光の一部が反射し,大部分は透過する。 On the other hand, the light introduced into the calibration optical system passes through the circulator 1502 and is branched by the fiber coupler 115. A part of the light is reflected by the reference mirror 116 to become reference light, and most of the rest is engraved with a reflecting surface at equal intervals. It passes through the optical fiber 117. In the optical fiber 117, reflecting surfaces are engraved at equal intervals, a part of the light is reflected at each point, and most of the light is transmitted.
 これにより,複数点で光が反射し,ファイバ117の末端にはファイバ減衰器118が設置されており,光は吸収される。各点で反射した光は参照用ミラー116からの参照光とファイバカプラ115部分で合流した後,サーキュレータ1502により,受光器1503まで導光され、参照光と測定光の干渉によりビート信号を発生する。 Thus, light is reflected at a plurality of points, and a fiber attenuator 118 is installed at the end of the fiber 117, and the light is absorbed. The light reflected at each point is merged with the reference light from the reference mirror 116 at the fiber coupler 115 portion, and then guided to the light receiver 1503 by the circulator 1502 to generate a beat signal due to interference between the reference light and the measurement light. .
 制御PC119内では受光器109と1503の信号を切り替え可能な構成となっており,対象測定時は109の信号を選択し,校正時は1503の信号を選択することが可能である。 In the control PC 119, the signals of the light receivers 109 and 1503 can be switched. The 109 signal can be selected during the target measurement, and the 1503 signal can be selected during calibration.
 また偏光ビームスプリッター1501はファイバカップラとしても良い。 Also, the polarization beam splitter 1501 may be a fiber coupler.
 実施例5における距離計測方法および装置について図15を用いて説明する。図1で説明した第1の実施例との違いは光切替え器110の位置をファイバカップラ115の後に配置した点である。こうすることで,参照用ミラー116を測定光学系と校正光学系で共通化し,1つにすることが可能である。これにより部品点数を低減できるメリットがある。しかし,参照用ミラーと測定対象までの距離が延びてしまい距離の変動要因となってしまう可能性や,光切替え器110で発生する反射光がノイズとなってしまう可能性が考えられる。 A distance measuring method and apparatus in Example 5 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is that the position of the optical switch 110 is arranged after the fiber coupler 115. By doing so, the reference mirror 116 can be shared by the measurement optical system and the calibration optical system to be one. This has the advantage that the number of parts can be reduced. However, it is conceivable that the distance between the reference mirror and the measurement target may be increased, causing a variation in the distance, and the reflected light generated by the optical switch 110 may be noise.
 実施例6における距離計測方法および装置について図16を用いて説明する。図1で説明した第1の実施例との違いは校正用ファイバである。実施例6では光切替え器110によって校正用光学系に導かれた光はファイバカップラ115によって分岐され,一部は参照用ミラー116によって反射され,参照光となり,残りの大部分はさらにファイバカップラ1701によって分岐され,それぞれ長さの異なるファイバ1702,1703,1704を通過後に反射面1705,1706,1707によって反射される。これにより,距離の異なる反射面を形成可能となる。 A distance measuring method and apparatus in Example 6 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is a calibration fiber. In the sixth embodiment, the light guided to the calibration optical system by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the remaining part is further the fiber coupler 1701. Are reflected by the reflecting surfaces 1705, 1706 and 1707 after passing through the fibers 1702, 1703 and 1704 having different lengths. This makes it possible to form reflecting surfaces with different distances.
 各点で反射した光は参照用ミラー116からの参照光とファイバカプラ115部分で合流した後,光切替え器110を通過し,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。 The light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light A beat signal is generated by the interference.
 実施例7における距離計測方法および装置について図17を用いて説明する。図1で説明した第1の実施例との違いは校正用ファイバである。実施例7では光切替え器110によって校正用光学系に導かれた光はファイバカップラ115によって分岐され,一部は参照用ミラー116によって反射され,参照光となり,残りの大部分はファイバカップラ1801によって共振器内をループする。 A distance measuring method and apparatus in Example 7 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is a calibration fiber. In the seventh embodiment, the light guided to the calibration optical system by the optical switch 110 is branched by the fiber coupler 115, part of the light is reflected by the reference mirror 116 and becomes reference light, and most of the rest is by the fiber coupler 1801. Loop through the resonator.
 共振器内には反射面1802が設けられており,共振器を複数回ループすることで,距離の異なる反射面を複数個形成可能となる。各点で反射した光は参照用ミラー116からの参照光とファイバカプラ115部分で合流した後,光切替え器110を通過し,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。 A reflecting surface 1802 is provided in the resonator, and a plurality of reflecting surfaces having different distances can be formed by looping the resonator a plurality of times. The light reflected at each point merges with the reference light from the reference mirror 116 at the fiber coupler 115, passes through the optical switch 110, is guided to the light receiver 109 by the circulator 108, and the reference light and the measurement light A beat signal is generated by the interference.
 実施例8における距離計測方法および装置について図18を用いて説明する。図1で説明した第1の実施例との違いは実施例8では温調ボックス1901と1902を備える点である。本発明は距離の基準を校正用ファイバと参照用ファイバとしている。そのため温度によりファイバ長が変化してしまうと距離誤差を生じる。 A distance measuring method and apparatus in Example 8 will be described with reference to FIG. The difference from the first embodiment described in FIG. 1 is that the temperature control boxes 1901 and 1902 are provided in the eighth embodiment. In the present invention, the standard of distance is a calibration fiber and a reference fiber. Therefore, if the fiber length changes with temperature, a distance error occurs.
 そこで,ファイバカップラ104,ファイバ105,ファイバカップラ106を温調ボックス1902に入れ,温度を一定に保ち,さらにファイバカップラ115,参照用ミラー116,ファイバ117,ファイバ減衰器118を温調ボックス1901に入れて,温度を一定に保つ。また温度を一定に保つのではなく,精密にファイバの温度を計測し,温度変化からファイバの熱影響を加味することで,実際のファイバ長を算出し,距離を算出してもよい。 Therefore, the fiber coupler 104, the fiber 105, and the fiber coupler 106 are put in the temperature control box 1902 to keep the temperature constant, and the fiber coupler 115, the reference mirror 116, the fiber 117, and the fiber attenuator 118 are put in the temperature control box 1901. To keep the temperature constant. Instead of keeping the temperature constant, the actual fiber length may be calculated and the distance calculated by accurately measuring the fiber temperature and taking into account the thermal effect of the fiber from the temperature change.
 実施例9における面形状計測方法および装置について図19を用いて説明する。図1で説明した第1の実施例との違いは,実施例9は参照クロック生成用の光学系がない場合の構成である。参照クロックが無かったとしても,式(5)で得られるビート信号とファイバ117の反射面で得られるビート信号を比較して,距離を求めることが可能となる。 The surface shape measuring method and apparatus in Example 9 will be described with reference to FIG. The difference from the first embodiment described with reference to FIG. 1 is that the ninth embodiment is configured without a reference clock generating optical system. Even if there is no reference clock, the beat signal obtained by the equation (5) and the beat signal obtained by the reflection surface of the fiber 117 can be compared to obtain the distance.
 実施例10における面形状計測方法および装置について図20を用いて説明する。半導体レーザからの射出光の一部をファイバカプラ103によって参照光学系に導光する。参照光学系ではレーザ光はファイバカプラ104によって2分岐され,さらに光切替え器2101によって長さの異なる光ファイバ2103,2104に選択的に導かれ,一定の光路差を設けた後,光切替え器2101で選択された光ファイバと同一の光ファイバが選択されるように光切替え器2102で選択され,再びファイバカプラ105によって合波され,受光器107に受光されるように構成されている。これはマッハツェンダー干渉計の構成となっており、受光器107では光路差に比例した一定のビート信号が発生する。 The surface shape measuring method and apparatus in Example 10 will be described with reference to FIG. A part of the light emitted from the semiconductor laser is guided to the reference optical system by the fiber coupler 103. In the reference optical system, the laser beam is branched into two by the fiber coupler 104 and is further selectively guided to the optical fibers 2103 and 2104 having different lengths by the optical switch 2101 to provide a certain optical path difference, and then the optical switch 2101. The optical fiber is selected by the optical switch 2102 so that the same optical fiber as the optical fiber selected in (1) is selected, multiplexed by the fiber coupler 105, and received by the light receiver 107. This has the structure of a Mach-Zehnder interferometer, and the light receiver 107 generates a constant beat signal proportional to the optical path difference.
 一方,参照光学系に導かれなかった光はサーキュレータ108を通過し,ファイバカプラ111によって分岐され,一部は参照用ミラー112によって反射され参照光となり、残りの大部分はコリメータレンズ113により空間に照射され,対象114に照射される。対象114から反射した光は再びコリメータレンズ113を通過して,参照用ミラー112からの参照光とファイバカプラ111部分で合流した後,サーキュレータ108により,受光器109まで導光され、参照光と測定光の干渉によりビート信号を発生する。受光器109で受光されたビート信号を受光器107で受光されたビート信号でサンプリングする。このとき,参照光学系の光ファイバ2103,2104は対象までの距離と近くなるファイバを光切替え器にて選択する。これにより,式(7)の第2項が小さくなり,非線形の影響を抑制できる。また光ファイバの数は図20では2つとしたが測定距離に応じて複数本備えても良い。 On the other hand, the light that has not been guided to the reference optical system passes through the circulator 108 and is branched by the fiber coupler 111, part of the light is reflected by the reference mirror 112 and becomes the reference light, and most of the rest is made into space by the collimator lens 113. The target 114 is irradiated. The light reflected from the object 114 passes through the collimator lens 113 again and merges with the reference light from the reference mirror 112 at the fiber coupler 111 portion, and then guided to the light receiver 109 by the circulator 108 to be measured with the reference light. A beat signal is generated by light interference. The beat signal received by the light receiver 109 is sampled with the beat signal received by the light receiver 107. At this time, the optical fiber 2103 or 2104 of the reference optical system selects a fiber that is close to the distance to the object by the optical switch. As a result, the second term of Equation (7) is reduced, and the non-linear influence can be suppressed. Although the number of optical fibers is two in FIG. 20, a plurality of optical fibers may be provided according to the measurement distance.
 実施例11における面形状計測方法および装置について図21を用いて説明する。実施例11では実施例1~10のいずれかの距離計測部2201を保有し,照射光をフォーカスレンズ2202を搭載したステージ2203を駆動し,対象にフォーカス調整し,ガルバノミラー2204,2205を振ることで,2次元に走査して対象の形状を計測することが可能となる。 The surface shape measuring method and apparatus in Example 11 will be described with reference to FIG. In the eleventh embodiment, the distance measuring unit 2201 of any of the first to tenth embodiments is held, and the stage 2203 on which the focus lens 2202 is mounted is driven to adjust the focus on the target, and the galvanometer mirrors 2204 and 2205 are shaken. Thus, it is possible to measure the shape of the object by scanning in two dimensions.
 ビーム走査の一例としてガルバノミラーとしたが,回転モータにミラーを搭載して回転して走査する方法やポリゴンミラーにより走査する方法でも良い。 As an example of beam scanning, a galvanometer mirror is used. However, a method of scanning by rotating a mirror mounted on a rotary motor or a method of scanning by a polygon mirror may be used.
 101…半導体レーザ,102…信号発生器,103…ファイバカップラ,104…ファイバカップラ,105…ファイバ,106…ファイバカップラ,107…受光器,108…サーキュレータ,109…受光器,110…ファイバ切替え器,111…ファイバカップラ,112…参照用ミラー,113…ファイバコリメータ,114…測定対象,115…ファイバカップラ,116…参照用ミラー,117…校正用ファイバ,118…減衰器,119…PC,120…モニター,201…参照用ミラー,202…ビームスプリッター,203…受光器,301…ビート信号,401…参照光の光周波数,402…測定光の光周波数、501…掃引周波数が非線形の場合の参照光の光周波数,502…掃引周波数が非線形の場合の測定光の光周波数,601…ファイバカップラ,602…ファイバ,603…ファイバカップラ,604…受光器,701…ビームスプリッター,702…参照用ミラー,801…測定対象のビート信号,802…校正用の反射点のビート信号,901…校正用ファイバ各反射点のビート信号,902…測定対象のビート信号,1001…初回校正時の校正用ファイバ各反射点位置,1101…経時変化が起きたときの校正用ファイバ各反射点位置,1201…ファイバ加工方法,1401…反射点の間隔が異なる校正用ファイバ,1501…偏光ビームスプリッター,1502…サーキュレータ,1503…受光器,1701…ファイバカップラ,1702…校正用ファイバ,1703…校正用ファイバ,1704…校正用ファイバ,1705…反射面,1706…反射面,1707…反射面,1801…ファイバカップラ,1802…反射点,1901…温調ボックス,1902…温調ボックス,2101…ファイバ切替え器,2102…ファイバ切替え器,2103…参照用ファイバ,2104…参照用ファイバ,2201…距離測定部,2202…フォーカスレンズ,2203…フォーカスステージ,2204…ガルバノミラー,2205…ガルバノミラー。 DESCRIPTION OF SYMBOLS 101 ... Semiconductor laser, 102 ... Signal generator, 103 ... Fiber coupler, 104 ... Fiber coupler, 105 ... Fiber, 106 ... Fiber coupler, 107 ... Light receiver, 108 ... Circulator, 109 ... Light receiver, 110 ... Fiber switch, DESCRIPTION OF SYMBOLS 111 ... Fiber coupler, 112 ... Reference mirror, 113 ... Fiber collimator, 114 ... Measurement object, 115 ... Fiber coupler, 116 ... Reference mirror, 117 ... Calibration fiber, 118 ... Attenuator, 119 ... PC, 120 ... Monitor , 201 ... reference mirror, 202 ... beam splitter, 203 ... light receiver, 301 ... beat signal, 401 ... optical frequency of reference light, 402 ... optical frequency of measurement light, 501 ... reference light when the sweep frequency is nonlinear Optical frequency, 502 ... Measurement light when sweep frequency is non-linear Optical frequency, 601 ... Fiber coupler, 602 ... Fiber, 603 ... Fiber coupler, 604 ... Light receiver, 701 ... Beam splitter, 702 ... Reference mirror, 801 ... Beat signal to be measured, 802 ... Beat of reflection point for calibration 901... Beat signal of each reflection point of calibration fiber, 902... Beat signal to be measured, 1001... Reflection point position of calibration fiber at the time of initial calibration, 1101. Point position, 1201 ... Fiber processing method, 1401 ... Calibration fiber with different reflection point intervals, 1501 ... Polarizing beam splitter, 1502 ... Circulator, 1503 ... Light receiver, 1701 ... Fiber coupler, 1702 ... Calibration fiber, 1703 ... Calibration Fiber 1704 ... Calibration fiber 1705 ... Reflective surface, 1706 ... reflective surface, 1707 ... reflective surface, 1801 ... fiber coupler, 1802 ... reflection point, 1901 ... temperature control box, 1902 ... temperature control box, 2101 ... fiber switch, 2102 ... fiber switch, 2103 ... see 2104. Reference fiber, 2201. Distance measuring unit, 2202. Focus lens, 2203 Focus lens, 2204 Galvanometer mirror, 2205 Galvanometer mirror.

Claims (11)

  1.  光を出射する光源と、
     前記光を参照光と測定光とに分離する分離部と測定対象を設置する測定対象設置部とを備え、前記参照光および前記測定対象で反射した反射光を出射する第1光学系と、
     前記光を参照光と測定光とに分離する分離部と予め位置が判明している複数の反射部とを備え、前記参照光およびそれぞれの反射部で反射した反射光を出射する第2光学系と,
     前記第1光学系、前記第2光学系のいずれかを選択する光学系選択部と、
     前記第1光学系あるいは前記第2光学系が出射する複数の光を受光する受光部と、前記受光部が受光した光の解析を行い、前記測定対象あるいは前記反射部までの距離を算出する距離算出部と、
     前記距離算出部が算出した前記反射部までの距離を用いて補正値を算出する補正値算出部と,
     前記補正値を用いて前記測定対象までの距離を補正する補正部と、を有することを特徴とする計測装置。
    A light source that emits light;
    A first optical system that includes a separation unit that separates the light into reference light and measurement light, and a measurement target installation unit that sets a measurement target, and emits the reference light and reflected light reflected by the measurement target;
    A second optical system that includes a separation unit that separates the light into reference light and measurement light and a plurality of reflection units whose positions are known in advance, and that emits the reference light and the reflected light reflected by the respective reflection units When,
    An optical system selector that selects one of the first optical system and the second optical system;
    A light receiving unit that receives a plurality of lights emitted from the first optical system or the second optical system, and a distance that analyzes the light received by the light receiving unit and calculates a distance to the measurement object or the reflecting unit A calculation unit;
    A correction value calculation unit that calculates a correction value using the distance to the reflection unit calculated by the distance calculation unit;
    And a correction unit that corrects the distance to the measurement target using the correction value.
  2.  請求項1において、
     前記測定対象設置部は所定距離の可動域を有し、
     前記可動域のうち光源から最も遠い位置における光源まで距離と、複数の前記反射部のうち光源から最も遠い反射部における光源までの距離とは等しい
     ことを特徴とする計測装置。
    In claim 1,
    The measurement object installation part has a movable range of a predetermined distance,
    The distance from the light source to the light source at a position farthest from the light source in the movable range is equal to the distance from the light source to the light source at the farthest reflection portion among the plurality of reflection units.
  3.  請求項1において、
     複数の前記反射部の間隔が不均一であることを特徴とする計測装置。
    In claim 1,
    The measuring apparatus, wherein the intervals between the plurality of reflecting portions are non-uniform.
  4.  請求項1において、
     複数の前記反射部は、光源から遠い側の端に反射面を有し、互いに反射面までの距離が異なる複数本のファイバであることを特徴とする記載の計測装置。
    In claim 1,
    The measuring apparatus according to claim 1, wherein the plurality of reflecting units are a plurality of fibers having a reflecting surface at an end far from the light source and having different distances to the reflecting surface.
  5.  請求項1において、
     前記反射部より光源から遠い位置に減衰器をさらに有することを特徴とする計測装置。
    In claim 1,
    The measuring apparatus further comprising an attenuator at a position farther from the light source than the reflecting portion.
  6.  請求項1において、
     前記第1光学系はさらに、校正用の干渉計を有することを特徴とする計測装置。
    In claim 1,
    The first optical system further includes a calibration interferometer.
  7.  請求項1において、
     前記光学系選択部はファイバ切替え器あるいは偏光ビームスプリッターであることを特徴とする計測装置。
    In claim 1,
    The optical system selector is a fiber switch or a polarization beam splitter.
  8.  請求項1において、
     前記第2光学系はさらに温度センサを有することを特徴とする計測装置。
    In claim 1,
    The second optical system further includes a temperature sensor.
  9.  光源が出射した光の光路を光学系選択部で選択する第1ステップと、
     前記光学系選択部が第1の光学系を選択した場合に、前記光を第1参照光と第1測定光とに分離し、測定対象で前記第1測定光が反射した第1反射光と前記第1参照光とを受光部へ出射する第2ステップと、
     前記光学系選択部が第2の光学系を選択した場合に、前記光を第2参照光と第2測定光との分離し、予め位置が判明している複数の反射部で前記第2測定光が反射した第2反射光と前記第2参照光とを前記受光部へ出射する第3ステップと、
     前記受光部が受光した光の解析を行い、前記測定対象あるいは前記反射部までの距離を算出する第4ステップと、
     前記第4ステップにおいて算出した前記反射部までの距離を用いて補正値を算出する第5ステップと、
     前記補正値を用いて前記測定対象までの距離を補正する第6ステップと、を有することを特徴とする計測方法。
    A first step of selecting an optical path of light emitted from the light source by an optical system selection unit;
    When the optical system selection unit selects the first optical system, the light is separated into first reference light and first measurement light, and the first reflected light reflected by the first measurement light on the measurement object A second step of emitting the first reference light to the light receiving unit;
    When the optical system selection unit selects the second optical system, the light is separated into the second reference light and the second measurement light, and the second measurement is performed by a plurality of reflection units whose positions are known in advance. A third step of emitting the second reflected light reflected by the light and the second reference light to the light receiving unit;
    A fourth step of analyzing the light received by the light receiving unit and calculating a distance to the measurement object or the reflection unit;
    A fifth step of calculating a correction value using the distance to the reflecting portion calculated in the fourth step;
    And a sixth step of correcting the distance to the measurement object using the correction value.
  10.  請求項9において、
     複数の前記反射部の間隔が不均一であることを特徴とする計測方法。
    In claim 9,
    The measuring method characterized in that intervals between the plurality of reflecting portions are non-uniform.
  11.  請求項9において、
     前記光学系選択部はファイバ切替え器あるいは偏光ビームスプリッターであることを特徴とする計測方法。
    In claim 9,
    The measurement method, wherein the optical system selection unit is a fiber switch or a polarization beam splitter.
PCT/JP2015/081956 2015-11-13 2015-11-13 Measurement method and device WO2017081808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/081956 WO2017081808A1 (en) 2015-11-13 2015-11-13 Measurement method and device
JP2016563148A JP6303026B2 (en) 2015-11-13 2015-11-13 Measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081956 WO2017081808A1 (en) 2015-11-13 2015-11-13 Measurement method and device

Publications (1)

Publication Number Publication Date
WO2017081808A1 true WO2017081808A1 (en) 2017-05-18

Family

ID=58694930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081956 WO2017081808A1 (en) 2015-11-13 2015-11-13 Measurement method and device

Country Status (2)

Country Link
JP (1) JP6303026B2 (en)
WO (1) WO2017081808A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532743A (en) * 2018-03-14 2020-11-12 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Coherence Tomography Optical Devices Orienting Devices, Coherence Tomography, and Laser Processing Systems
WO2021024614A1 (en) * 2019-08-08 2021-02-11 株式会社日立製作所 Distance measurement system and distance measurement method
JP2021032734A (en) * 2019-08-26 2021-03-01 株式会社小野測器 Measurement device
WO2022209367A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of target object
WO2022209309A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of object
WO2022219911A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of object
WO2024070336A1 (en) * 2022-09-28 2024-04-04 オムロン株式会社 Optical fiber cable, controller connected to same, and optical interferometric range sensor in which optical fiber cable and controller are used
WO2024070034A1 (en) * 2022-09-27 2024-04-04 株式会社日立ハイテク Distance measurement method, distance measurement device, and distance measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131004A (en) * 1986-11-20 1988-06-03 Yaskawa Electric Mfg Co Ltd Length measuring device by laser beam
JP2001041706A (en) * 1999-07-27 2001-02-16 Mitsubishi Heavy Ind Ltd Optical frequency domain reflectometry device and method therefor
JP2013117621A (en) * 2011-12-02 2013-06-13 Olympus Corp Endoscope with ranging function
JP2013180111A (en) * 2012-03-02 2013-09-12 Tomey Corporation Ophthalmic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2128560B1 (en) * 2008-05-28 2015-07-01 Leica Geosystems AG Interferometric distance measuring method with spectrally separable double chirp and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131004A (en) * 1986-11-20 1988-06-03 Yaskawa Electric Mfg Co Ltd Length measuring device by laser beam
JP2001041706A (en) * 1999-07-27 2001-02-16 Mitsubishi Heavy Ind Ltd Optical frequency domain reflectometry device and method therefor
JP2013117621A (en) * 2011-12-02 2013-06-13 Olympus Corp Endoscope with ranging function
JP2013180111A (en) * 2012-03-02 2013-09-12 Tomey Corporation Ophthalmic apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532743A (en) * 2018-03-14 2020-11-12 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Coherence Tomography Optical Devices Orienting Devices, Coherence Tomography, and Laser Processing Systems
JP7005750B2 (en) 2018-03-14 2022-01-24 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Coherence tomography optical device orientation devices, coherence tomography, and laser processing systems
US11623299B2 (en) 2018-03-14 2023-04-11 Precitec Gmbh & Co. Kg Device for determining an orientation of an optical device of a coherence tomograph, coherence tomograph and laser processing system
WO2021024614A1 (en) * 2019-08-08 2021-02-11 株式会社日立製作所 Distance measurement system and distance measurement method
JP2021025952A (en) * 2019-08-08 2021-02-22 株式会社日立製作所 Distance measurement system, and distance measurement method
US20220268929A1 (en) * 2019-08-08 2022-08-25 Hitachi, Ltd Distance Measurement System and Distance Measurement Method
JP2021032734A (en) * 2019-08-26 2021-03-01 株式会社小野測器 Measurement device
WO2022209367A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of target object
WO2022209309A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of object
WO2022219911A1 (en) * 2021-04-15 2022-10-20 パナソニックIpマネジメント株式会社 Device and method for measuring distance and/or speed of object
WO2024070034A1 (en) * 2022-09-27 2024-04-04 株式会社日立ハイテク Distance measurement method, distance measurement device, and distance measurement system
WO2024070336A1 (en) * 2022-09-28 2024-04-04 オムロン株式会社 Optical fiber cable, controller connected to same, and optical interferometric range sensor in which optical fiber cable and controller are used

Also Published As

Publication number Publication date
JPWO2017081808A1 (en) 2017-11-09
JP6303026B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6303026B2 (en) Measuring method and apparatus
US20200386886A1 (en) Chirped coherent laser radar system and method
WO2017187510A1 (en) Distance measurement device, distance measurement method, and shape measurement device
US10935457B2 (en) Optical line testing device using optical signals having continuous waveform to identify fault location in optical line
US8699013B2 (en) Chromatic dispersion measurement device and chromatic dispersion measurement method for measuring the dispersion of light pulses
JP2012502301A (en) Compact optical fiber arrangement for anti-chirp FMCW coherent laser radar
US20120189027A1 (en) System and method for providing chirped electromagnetic radiation
JP2008531993A (en) Compact fiber optic geometry for inverse chirped FMCW coherent laser radar
US11578963B2 (en) Optical interference measurement apparatus
US20210396880A1 (en) Optical distance measurement device
US20230367011A1 (en) Optical measurement device
JP7070281B2 (en) Distance measurement method and distance measurement device
US20210026017A1 (en) Apparatus for ascertaining a distance to an object
JP2012184967A (en) Wavelength scanning interferometer
US20240183650A1 (en) Optical measurement device
KR102447598B1 (en) Optical distance measuring device, and processing device
JP6082222B2 (en) Wavelength swept light source
JP5927805B2 (en) Encoder device and device
WO2023228805A1 (en) Frequency sweep characteristic measurement device, lidar device, and frequency sweep characteristic measurement method
JP2023132668A (en) Optical interferometric range sensor
US9153939B1 (en) System and method for generating and utilizing sample trigger blanking to obviate spurious data and increase sweep rate in an akinetic path-based swept laser

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563148

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908328

Country of ref document: EP

Kind code of ref document: A1