WO2017081294A1 - Verfahren und vorrichtung zur optischen distanzmessung - Google Patents

Verfahren und vorrichtung zur optischen distanzmessung Download PDF

Info

Publication number
WO2017081294A1
WO2017081294A1 PCT/EP2016/077499 EP2016077499W WO2017081294A1 WO 2017081294 A1 WO2017081294 A1 WO 2017081294A1 EP 2016077499 W EP2016077499 W EP 2016077499W WO 2017081294 A1 WO2017081294 A1 WO 2017081294A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
subset
transmission
receiving
transmitting
Prior art date
Application number
PCT/EP2016/077499
Other languages
English (en)
French (fr)
Inventor
Michael Kiehn
Michael KÖHLER
Original Assignee
Ibeo Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54539979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017081294(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibeo Automotive Systems GmbH filed Critical Ibeo Automotive Systems GmbH
Priority to EP16795318.1A priority Critical patent/EP3374793B1/de
Priority to EP22157415.5A priority patent/EP4020014B1/de
Priority to CN201680066229.2A priority patent/CN108463739B/zh
Publication of WO2017081294A1 publication Critical patent/WO2017081294A1/de
Priority to US15/976,432 priority patent/US11262438B2/en
Priority to US17/577,903 priority patent/US20220137189A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • the invention relates to a method and a device for optical distance measurement.
  • Optical distance measurements in particular for use in the driverless navigation of vehicles, based on the time of flight principle.
  • a scanning sensor preferably LIDAR (short for "light detection and ranging”) sensor, which emits pulses periodically, the pulses are reflected by objects, whereby the reflected pulses are detected Sensor to objects and back can be closed to the distance to these objects using the speed of light, in particular 3D LIDAR sensors are used where two different distance measurement techniques are known in the art:
  • scanning LIDAR sensors that typically have mechanical scanning, i. a rotational movement or oscillation of the LIDAR sensor or a component thereof is based.
  • An example of such a scanning LIDAR sensor is described, for example, in EP 2 388 615 A1, in which the field of view of the transmitter and that of the receiver are mechanically deflected.
  • Another type of 3D LIDAR sensor is Flash LIDAR sensors, which illuminate the entire field of view at the same time. However, this requires very large pulse power, typically a few kW, so that a technically meaningful range can be achieved in a large field of view.
  • Flash LIDAR sensors known from the prior art are extremely susceptible to external influences. This applies to targeted attacks as well as to unconscious disturbances caused by similar sensors from other vehicles that are approaching or viewing the same scene. Especially in the field of autonomous driving, ie the driverless navigation of a vehicle, such a lack of robustness against deliberately introduced or unconsciously existing sources of interference is unacceptable, especially for safety reasons.
  • the invention is based on the object to improve a method for distance measurement such that is dispensed with moving parts for scanning. Furthermore, the method should be as robust as possible against interference pulses. The aim is also to provide a corresponding device for distance measurement, which is not dependent on movable to scan and which is further formed in particular with an increased robustness against interference pulses.
  • the above object is achieved by the inventive method for optical distance measurement, according to which a plurality of measuring pulses is transmitted through at least one transmission matrix having a plurality of transmitting elements. At least one emitted measuring pulse is reflected by a measuring object in the form of a reflected measuring pulse, which is received by at least one receiving matrix having a plurality of receiving elements.
  • the measuring pulse reflected by the measuring object is a measuring pulse that was previously transmitted, only that its propagation direction has changed as a result of the reflection at the measuring object.
  • the reflected measuring pulse can be understood as an echo of the emitted measuring pulse.
  • the transit time of the at least one measurement pulse to the measurement object and back is determined and from this with the help of the speed of light the determined pulse distance to the measured object. It is also possible for a measuring pulse to hit one after the other several measuring objects which have only a partial overlap, so that a measuring pulse generates a plurality of echoes, ie several reflected pulses.
  • the transmission matrix has a first subset of the transmission elements and a second subset of the transmission elements each comprising at least one transmission element, wherein the transmission elements of the transmission matrix are activated and / or deactivated such that only the first subset of the transmission elements is active at a first time, so only the at least one of the first subset of the transmitting elements zugordnete transmitting element emits a measuring pulse, and wherein at a second time only the second subset of the transmitting elements is active, so that only the at least one of the second subset of the transmitting elements zugordnete transmitting element emits a measuring pulse.
  • An optical distance measurement is characterized in that distances are determined by using optical signals, in particular optical measuring pulses.
  • the term "distance” is understood to mean a distance below the distance traveled by the measuring pulse is the distance between the transmitting element which emitted the measuring pulses and the measuring object plus the distance between the measuring object and the receiving element of the receiving matrix, which reflected the corresponding one
  • the method includes the consideration of the exact position of the transmitting element and of the receiving element, in particular in relation to each other Since the measuring object is typically a three-dimensional object, some areas of the measuring object are closer and other areas of the measuring object Measuring object could be located further away, is meant by the term “distance to the measurement object” the distance to at least one point of the measurement object, namely the point to which a measuring pulse has been hit and at which this was reflected. Run time is the time taken by the measurement pulse for the distance mentioned.
  • the measurement object is located in particular in the transmitter-side and / or receiver-side field of view.
  • a measuring pulse is an optical, in particular electromagnetic, signal.
  • the measuring pulse is advantageously a light pulse, ie a pulse with a Wavelength from the part of the electromagnetic spectrum visible to the human eye.
  • a measuring pulse has a pulse duration. So you can understand a measuring pulse as a temporary portion of electromagnetic radiation. Since a measuring pulse is an electromagnetic signal and thus the speed of the pulse is known, it can be concluded from the transit time of a measuring pulse with the aid of the speed of light, which distance the measuring pulse has passed during the running time.
  • a matrix is a two-dimensional arrangement of elements, here transmitting or receiving elements, or parts or surfaces thereof, that is to say an arrangement in a plane.
  • it is a three-dimensional body on which elements or parts or surfaces thereof are arranged in a two-dimensional plane.
  • the matrix preferably also has an extension.
  • the matrix can thus be seen in particular as a three-dimensional, in particular plate-shaped, body, on whose one surface the transmitting or receiving elements are arranged.
  • the elements themselves have a three-dimensional extension, that is to say an extension not only in the plane but also perpendicularly thereto.
  • the transmitting elements have an active area for sending measuring pulses.
  • the transmitting element This is primarily to be understood as the area of the transmitting element at which a measuring pulse leaves the element.
  • the receiving elements also have an active area for receiving the measuring pulses. This is above all the area on which a measuring pulse is detected.
  • precisely these active surfaces of the transmitting and / or receiving elements are arranged by means of the matrix in a plane plane.
  • the transmission elements are arranged in a first plane of the transmission matrix and the reception elements in a second plane of the reception matrix.
  • the first and the second plane are advantageously formed parallel to one another.
  • the transmission elements on the transmission matrix and / or the reception elements on the reception matrix do not directly adjoin one another.
  • the transmission elements on the transmission matrix and / or the reception elements on the reception matrix are arranged uniformly, in particular in a uniform grid pattern.
  • the arrangement of the elements on the matrix can be divided into columns and / or rows, the columns and / or the rows preferably having a constant column spacing or line spacing.
  • the column spacing and the line spacing are the same.
  • the rows of the transmission matrix and / or reception matrix are each offset from one another by half a column spacing.
  • a column comprises one element in each row of the matrix, while in particular one row has an element in each column of the matrix.
  • the straight lines of the rows would preferably all be parallel to one another.
  • the straight lines of the columns would also advantageously be arranged parallel to one another. In this case, the straight lines of the columns and the lines of the lines would preferably intersect one another substantially at right angles. The distance between adjacent lines of the columns would correspond to the column spacing, the distance between adjacent lines of the lines to the line spacing.
  • the distances between the elements on the transmission matrix and / or the reception matrix can vary.
  • the distance in the central region of the matrix can be designed differently than in the edge regions of the matrix, so that different angular resolutions result in these regions.
  • a transmission element of the transmission matrix is a laser, in particular a pulsed laser, so that the transmission matrix comprises a plurality of lasers.
  • the transmitting elements are advantageously arranged such that the measuring pulses are emitted by different transmitting elements in directions which are substantially parallel to each other.
  • the term "substantially” should, above all, take into account a divergence of the transmission elements and thus a slight deviation from a parallel transmission.
  • the transmission elements of the transmission matrix form a set of the transmission elements.
  • a subset is to be understood as a real subset of the set of transmit elements, so that the subset is smaller than the set of transmit elements of the transmit matrix.
  • the first subset and the second subset differ, and advantageously do not overlap. No transmitting element of the first subset is thus a part of the second subset and vice versa.
  • the transmission elements of the transmission matrix are activated and / or deactivated such that only the first subset of the transmission elements is active at a first time.
  • the transmitting elements of the first subset emit at least one measuring pulse, in particular in each case a plurality of measuring pulses in a periodic manner.
  • the transmission can also take place aperiodically, for example on the basis of pseudo-random sequences.
  • only the second subset of the transmitting elements are active, so that only the at least one transmitting element which is associated with the second subset of the transmitting elements transmits a measuring pulse, in particular a plurality of measuring pulses, in a periodic manner.
  • the first time differs from the second time, in particular, the second time follows the first time.
  • the first and / or the second subset comprises a multiplicity of transmitting elements which emit at least one or more measuring pulses simultaneously during activity. Above all, elements which are active immediately before the first time but are not part of the activating subset are deactivated.
  • the measuring pulses of the first subset illuminate a different, in particular spatially contiguous, subarea of the field of view than the measuring pulses of the second subset.
  • illumination is to be understood as meaning that measuring pulses are sent to and received from a specific part of the field of vision.
  • scanning is to be understood as a scanning of the field of view.
  • a single transmit matrix and / or receive matrix is used.
  • multiple transmit arrays and / or receive arrays may be employed, with the transmit arrays preferably all being in the first plane and / or the receive arrays advantageously all being in the second plane, with the first and second planes being different.
  • first and / or second subset may have only one transmitting element.
  • Each transmitter element is preferably assigned an, in particular exactly one, transmit pixel.
  • the first and / or the second subset can have only one transmission pixel and thus pixel-by-pixel scanning takes place.
  • the method further comprises converting different positions of transmission elements on the transmission matrix by means of at least one transmission optical system into different transmission angles, so that an angle scan can take place.
  • at least part of the transmitting elements preferably all transmitting elements, are arranged in the focal plane of at least one transmitting optics for this purpose.
  • the transmission matrix is divided into different, preferably contiguous areas, in particular sub-matrices, each of which has its own transmission optics.
  • the sub-matrices preferably have the same, in particular square, shape, but they may also have different shapes. It is even possible that each transmission element is assigned its own transmission optics. Even in the event that multiple transmit matrices are used, it is advantageous to assign each matrix its own transmission optics.
  • the subsets to which their own transmission optics are assigned do not have to, but may be the subsets of the transmission matrix, which are activated simultaneously.
  • the transmission elements grouped behind a transmission optics can be spatially separated from the other transmission elements grouped behind a transmission optics, ie the amount of transmission elements assigned to a transmission optics or the corresponding pixels need not be on a semiconductor chip. As a result, the chips to be produced can be smaller and the system gains in configurability.
  • the at least one transmitting optical system is used to transmit the measuring pulses at different angles.
  • the at least one transmission optics is above all a wide-angle lens.
  • the transmission matrix is advantageously a "focal plane array", ie a two-dimensional arrangement of transmission elements in the focal plane of a transmission optical system , especially the transmission optics.
  • the position of the individual transmission elements or pixels of the matrix is converted by the optics into an angle.
  • the measuring pulses impinging on the transmitting optics preferably in parallel directions, are deflected by the transmitting optics into different angles, so that a large field of view can be illuminated without the need for moving parts for deflecting or receiving the measuring pulses.
  • the reception elements of the reception matrix are, above all, photosensitive surfaces which can receive and in particular detect measurement pulses reflected on measurement objects.
  • the method further comprises a step of imaging the reflected measuring pulses from different angles onto the at least one receiving matrix.
  • at least one receiving optical system is used, in the focal plane of which the receiving matrix is advantageously also placed.
  • the at least one receiving optical system is above all a wide-angle objective, while the receiving matrix is advantageously formed by a "focal plane array", ie a two-dimensional arrangement of receiving elements in the focal plane of a receiving optical system
  • receiving elements of the receiving matrix are preferably assigned receiving pixels, and each receiving element is preferably assigned a receiving pixel, in particular exactly one.
  • the focal length of the transmission optics, the dimensions of the pixels of the transmission matrix and the dimensions of the entire transmission matrix are set such that the illumination pattern is adapted to the field of view used at the receiver end and its pixels.
  • the arrangement of the reception matrix and the reception optics is adapted to the illumination pattern generated on the transmitter side.
  • the photosensitive surfaces are preferably avalanche photodetectors, in particular single photon avalanche detectors which are operated in particular with a bias voltage above their break-down voltage. These detectors work in the so-called Geiger mode, so that a single photon can trigger avalanche breakdown. Alternatively, other detectors may also be used without the use of avalanche breakdown, such as pin diodes.
  • the method is preferably a method for longitudinal and lateral control of a vehicle, in particular an automobile, based on recognized objects or free spaces, the vehicle in particular autonomously controlling, i. a driverless locomotion of the vehicle is made possible. This is for path planning and movement along this path through the vehicle.
  • object of measurement can be understood to mean markings which are arranged exclusively for controlling the vehicle and are used exclusively for this purpose .
  • Duration objects can also represent environmental features which are located in the surroundings of the vehicle and whose positions are used to control the vehicle In such a case, typically no additional markers arranged exclusively for the control are used.
  • the method relates to a method for navigating the vehicle.
  • the first subset of the transmitting elements are assigned a first subset of the receiving elements and the second subset of the transmitting elements a second subset of the receiving elements each comprising at least one receiving element.
  • each transmission element of the transmission matrix is assigned a reception element of the reception matrix.
  • each transmitting element is assigned exactly one receiving element, so that it is a one-to-one classification.
  • the transmitting elements and the receiving elements which are associated with one another are located at similar, in particular identical, locations on the transmitting matrix or receiving matrix.
  • the first and / or second subset of the receiving elements comprises at least one, preferably several, receiving elements.
  • the receive elements of the receive matrix form - analogous to the transmit matrix - a set, of which the first and / or the second subset is a real subset.
  • the receiving elements are activated and / or deactivated such that only the first subset of the receiving elements is active substantially simultaneously with the activation of the first subset of the transmitting elements, so that the first subset of the receiving elements receive the measuring pulses emitted and reflected by the first subset of the transmitting elements , and that only the second subset of the receiving elements is active substantially simultaneously with the activation of the second subset of the transmitting elements, so that the second subset of the receiving elements receive the measuring pulses emitted and reflected by the second subset of the transmitting elements.
  • reception elements are activated which are assigned to the first or the second subset of the transmission elements.
  • Substantially simultaneously means that the activation of the subsets of the receiving elements takes place either simultaneously with the activation of the corresponding subsets of the transmitting elements or at least at the same time that measuring pulses emitted by a subset of the transmitting elements can be detected by the assigned subset of the receiving elements.
  • the maximum time difference between the activation of the transmitting elements and the corresponding receiving elements must therefore never exceed the duration of the measuring window.
  • the measurement window results from the assumption of a maximum allowable measurement distance, since no detectable reflections of objects are to be expected when exceeding a certain distance.
  • the duration of the measuring window results from the maximum permissible measuring distance and the speed of light.
  • the measurement is terminated after the duration of the measuring window.
  • the provision of a time difference between the activation of the transmitting elements and the activation of the corresponding receiving elements can advantageously also be used for influencing the detection range at depth.
  • the activation of the receiving elements only take place after the measuring pulses have already traveled a certain distance, so that objects in the vicinity are hidden, since they would have arrived before activation of the receiving elements at these.
  • Such a close-up object could be, for example, a dirty sensor faceplate.
  • the unused, since not illuminated, reception elements or pixels of the reception matrix are deactivated. This happens with avalanche photodetectors z. B. by lowering the bias voltage.
  • the first subset and / or the second subset of the transmitting elements and / or the receiving elements form a spatially contiguous region of the transmission matrix or of the reception matrix.
  • the transmitting elements and / or receiving elements of the first and / or the second subset are arranged adjacent to one another.
  • the measuring pulses of the first and / or second subset of the transmitting elements are sent by the transmitting optics in similar directions.
  • the transmitting elements of the first and / or second subset illuminate a spatially contiguous region of the field of view.
  • first subset and / or the second subset of the transmitting elements and / or the receiving elements are preferably at least one row and / or at least one column of the transmitting matrix or the receiving matrix.
  • the subsets may be any sub-matrix of the transmission matrix or of the reception matrix.
  • the first subset and / or the second subset of the transmitting elements and / or the receiving elements are spatially adjacent to one another.
  • the entire transmit matrix and / or receive matrix can be divided into a specific number of subsets, wherein each subset is activated at least once, preferably exactly once, during a scan of the field of view. By activating, in other words activating, this number of subsets, the entire field of view can be scanned or illuminated.
  • the subsets of the transmitting elements and / or the receiving elements are controlled in such a way that spatially contiguous and adjacent regions of the transmitting matrix and / or the receiving matrix are activated one after the other, so that, in particular, a sequential detection of the field of view takes place along one scanning direction.
  • the scanning direction runs from one end of the transmission matrix and / or the reception matrix to the opposite end of the latter.
  • a horizontal scan can be performed in which one column after the other - as subsets of the transmitting elements and / or receiving elements - are activated or deactivated sequentially in ascending or descending order.
  • Another example is a vertical scan in which, analogously, the lines of the transmission matrix or reception matrix-as subsets of the transmission elements and / or reception elements-are activated sequentially.
  • the activation or deactivation of the subsets does not take place in ascending or descending order, but in arbitrary order, which can change from scan to scan.
  • the activation or deactivation of the subsets of the transmission elements and / or reception elements takes place in such a way that subsets which are not adjacent to one another are activated one after the other, but an at least seemingly random sequence of activation of the subsets results.
  • Such a method has a much higher robustness against glitches, since its scheme is difficult to see from the outside.
  • the activation and deactivation of the subset is based on the results of previous scans so that regions of particular interest can be more closely monitored.
  • the method preferably includes the determination of the times at which measuring pulses were received, in particular by means of at least one evaluation unit.
  • subsets, in particular sub-matrices and / or rows and / or columns, of the receive elements of the receive matrix are each assigned an evaluation unit.
  • the subsets to which an evaluation unit is assigned need not be, but may be the subsets for receiving reflected measuring pulses that are activated simultaneously. All of an evaluation unit associated with receiving elements are connected to this.
  • each active receiving element can be assigned a, preferably exactly one, evaluation unit.
  • the assignment of the evaluation units is such that an evaluation unit is always assigned to one pixel of the active sub-matrix. The number of evaluation units required therefore results from the number of pixels active in a sub-matrix.
  • connection of the receiving elements or pixels of the receiving matrix to the evaluation units via a selection circuit, in particular multiplexer the ensures that only the active receiving elements or pixels are connected to the transmitter.
  • the invention comprises a device for distance measurement, which has a transmission matrix with a plurality of transmission elements for emitting measurement pulses and a reception matrix with a plurality of reception elements for receiving measurement pulses reflected on objects.
  • the transmission matrix comprises a first subset of the transmission elements and a second subset of the transmission elements, each having at least one, preferably a plurality of transmission elements.
  • the transmission elements of the transmission matrix can be activated and / or deactivated such that only the first subset of the transmission elements is active at a first time, so that the at least one transmission element allocated to the first subset of transmission elements transmits a measurement pulse, and exclusively at a second time the second subset of the transmission elements is active, so that the at least one of the second subset of the transmission elements zugordnete transmitting element emits a measuring pulse.
  • the first subset of the transmitting elements is a first subset of the receiving elements and the second subset of the transmitting elements, a second subset of the receiving elements, each having at least one receiving element, preferably a plurality of receiving elements, assigned.
  • the receiving elements are in particular so activatable and / or deactivatable that substantially simultaneously with the activation of the first subset of the transmitting elements, only the first subset of the receiving elements is active, so that the first subset of the receiving elements emitted and reflected by the first subset of the transmitting elements Receives measuring pulses, and wherein substantially simultaneously with the activation of the second subset of the transmitting elements, only the second subset of the receiving elements is active, so that the second subset of the receiving elements receives the emitted and reflected from the second subset of the transmitting elements measuring pulses.
  • the device for optical distance measurement comprises at least one transmitting optics for emitting the measuring pulses in different directions, wherein at least part of the transmission elements, preferably all transmission elements, of the transmission matrix is arranged in the focal plane of the at least one transmission optical system.
  • the device preferably has at least one receiving optical system, in particular an imaging lens, for imaging the measuring pulses onto the receiving matrix, wherein at least part of the receiving elements, preferably all receiving elements, of the receiving matrix are advantageously arranged in the focal plane of the at least one receiving optical system.
  • at least a part of the transmitting elements, preferably all the transmitting elements is assigned exactly one transmitting optics.
  • a microlens array can be arranged between the receiving optics and the receiving elements and / or between the transmitting optics and the transmitting elements in such a way that exactly one receiving or transmitting element is assigned to each microlens of the microlens array.
  • the focal length of the transmission optics the dimensions of the pixels of the transmission matrix as well as the dimensions of the entire transmission matrix adjusted such that the illumination pattern is adapted to the receiver-side field of view and its pixels.
  • the arrangement of the reception matrix and the reception optics is adapted to the illumination pattern generated on the transmitter side.
  • the device has a multiplicity of transmitting matrices and / or receiving matrices, the matrices each being assigned a transmitting optics or receiving optics.
  • the device is a LIDAR sensor, furthermore advantageously a Flash LIDAR sensor.
  • the Flash LIDAR sensor can be operated both in "flash" mode so that the entire field of view is simultaneously illuminated, as well as in a scanning mode, namely by successively activating subsets of the transmission matrix and / or the reception matrix the elements of the device are arranged in the direction of travel of the measuring pulse in such a way that the transmission matrix follows the transmission optics After traversing the distance to the measuring object, the reflection at a measuring object and the renewed covering of the distance, the receiving optics and then the reception matrix follow.
  • the transmitting elements each have a transmitting pixel and the receiving elements are each assigned an Ennpfangspixel, wherein the transmitting pixels are designed to be larger in size than the receiving pixels.
  • the transmission pixels are smaller than the reception pixels or, in other words, the reception pixels are larger than the transmission pixels. This permits tolerances in the production of the transmission and reception matrix as well as in the assembly and alignment of the components of the device. Furthermore, this distortion of the optics can be compensated.
  • the device is designed for carrying out the method according to the invention.
  • Figure la is a plan view of a transmission matrix of a device according to the invention.
  • Figure lb is a plan view of a receive matrix of the device according to the invention comprising the transmission matrix of Figure 1;
  • FIG. 2 shows the overall illumination of the reception elements of the reception matrix of a device according to the invention comprising the transmission matrix and the reception matrix according to FIGS. 1 a and 1 b;
  • FIG. 3 shows a partial illumination of the reception elements of the reception matrix according to FIGS. 1a and 2 at a first time
  • FIG. 4 shows the connection of the reception elements of the reception matrix according to FIG. 3 to evaluation units
  • FIG. 5 Assignment of the reception elements of the reception matrix according to FIGS. 1b and 2 to reception optics;
  • FIG. 6 shows the overall illumination of the receiving elements of a further receiving matrix of a device according to the invention.
  • FIG. 1 a shows a plan view of a transmission matrix (10) of a device according to the invention
  • FIG. 1a shows a side (11) of the transmission matrix (10) on which transmission elements (12 00 to 12 127255 ) are arranged in a regular pattern.
  • the pattern is a uniform grid (13).
  • the transmission elements (12 00 to 12 127255 ) can be in lines (Z 0 to Z 127 ) and columns (S 0 to
  • the transmit matrix (10) comprises 128 rows and 256 columns of transmit elements.
  • the symbol "" in the figure indicates that more elements of the matrix are present at this point, which have not been shown for clarity.
  • the transmitting elements (12 00 to 12 127255 ) are formed by lasers (20) and are arranged such that each column (for example S 0 ) has a transmitting element (in this example: 12 00 , 12 10 , 12 20 to 12 1260 , 12 1270 ) of each line (Z 0 to Z 127 ), and that each line (eg Z 0 ) has a transmitting element (in this example: 12 00 , 12 01 , 12 02 to 12 0254 , 12 0255 ) of each column (S 0 to S 255 ).
  • the rows (Z 0 to Z 127 ) have a constant line spacing (17), while the columns (S 0 to S 255 ) have a constant column spacing (16).
  • Assigned send pixel (19) The transmission pixels (19) are the same size.
  • Figure lb is a plan view of a side (51) of a receiving matrix (50) of a device according to the invention with a plurality of receiving elements (52 00 to
  • Receiving elements (52 00 to 52 127255 ) are in the form of a uniform grid grid
  • the receiving elements (52 00 to 52 127255 ) are formed by single photo avalanche detectors (60) and are arranged - like the transmitting elements (12 00 to 12 127255 ) - such that each column (eg S 0 ) has a receiving element (in this Example: 52 00 , 52 10 , 52 20 to 52 1260 , 52 1270 ) of each line (Z 0 to Z 127 ), and that each line (for example, Z 0 ) comprises a receiving element (in this example: 52 00/52 01 / 52 02 to 52 0254 , 52 0255 ) of each column (S 0 to S 255 ).
  • the rows (Z 0 to Z 127 ) and the columns (S 0 to S 255 ) have a constant distance, the line spacing (57) and the column spacing (56), respectively. Thought straight lines (here exemplary 54 0 to 54 2 ) by the
  • Each receiving element (52 00 to 52 127255 ) is associated with a receiving pixel (59).
  • the receiving pixels (59) are formed equal to each other, but smaller than the transmitting pixels (19) formed.
  • FIG. 2 shows the illumination of the reception matrix (50), more precisely the reception elements (52 00 to 52 127255 ) or the reception pixels (59) of the reception matrix (50)
  • FIG. 2 shows a plan view of the side (51) of the reception matrix (50).
  • the overall illumination is shown, that is to say the illumination that results when each transmission element (12 00 to 12 127255 ) of the transmission matrix (10) is active and transmits measuring pulses.
  • FIG. 3 shows a partial illumination of the reception matrix according to FIGS. 1b and 2 by the transmission matrix (10) according to FIG.
  • the first column (S 0 ) of the transmission matrix (10) forms a first subset (21a) of the transmission elements (12 00 to 12 127255 ) with the transmission elements (12 00 , 12 10 , 12 20 to 12 1260 , 12 1270 ) while the first column (S 0 ) of the reception matrix (10) forms a first subset (61a) of the reception elements (52 00 to 52 127255 ) with the reception elements (52 00 , 52 10 , 52 20 to 52 1260 , 52 1270 ).
  • the first subset (61a) of the receiving elements (52 00 to 52 127255 ) is assigned to the first subset (21a) of the transmitting elements (12 00 to 12 127255 ).
  • Figure 3 shows the illumination at a first time at which only the first subset (21a) of the transmitting elements (12 00 to 12 127255 ) and the corresponding first Subset (61a) of the receiving elements (52 00 to 52 127255 ) are active.
  • the other transmitting elements more precisely the sub-matrix with the elements (12 01 to 12 127255 ) and the other receiving elements, more precisely the sub-matrix with the elements (52 01 to 52 127255 ), are deactivated, so that the receiving elements are shown in Figure 2 as not illuminated .
  • the second column (S as second subset (21b) of the transmission matrix (10) and the second column (S as second subset are activated one after the other, thus making the entire field of view in a sequential manner Scan, more precisely a horizontal scan, illuminated.
  • FIG. 4 shows the connection of the reception elements (52 00 to 52 127255 ) of the reception matrix (50) according to FIG. 3 to evaluation units (A 0 to A l21 ).
  • Each line (Z 0 to Z 127 ) of the reception elements (52 00 to 52 127255 ) is assigned to an evaluation units (A 0 to A l21 ). All receiving elements of a line (Z 0 to Z 127 ) are thus connected to the same evaluation unit.
  • the non-illuminated receiving elements more precisely the elements (52 01 to 52 127255 ) of the non-illuminated sub-matrix, are characterized by
  • FIG. 5 shows the assignment of the reception elements (52 00 to 52 127255 ) of the reception matrix (50) according to FIGS. 1 b and 2 to reception optics .
  • Different subsets (62a, 62b, 62c, 62d, 62e, 62f) of the receiving elements (52 00 to 52 127 255) are assigned to single receiving optics.
  • the subsets (62a, 62b, 62c, 62d, 62e, 62f) form 3x3 submatrices of the receive matrix (50).
  • the subsets (62a, 62b, 62c, 62d, 62e, 62f) do not correspond to the subsets (21a, 21b) that are activated for scanning.
  • Receiving matrix (50) of a device according to the invention shown.
  • a plan view of one side (51) of the receive matrix (50) is shown.
  • the relevant difference to the transmission matrix (10) and reception described in FIGS. 1 a, 1 b and 2 fangsmatrix (50) is that the rows (Z 0 to Z 127 ) of the transmission matrix (10) by a half column spacing (16, 56) are offset from each other, namely the second line (ZJ against the first line (Z 0 ) to half a column distance (16, 56) to the right, while the third row (Z 2 ) is again shifted to the left by half a column distance (16, 56)
  • This scheme continues to the bottom row (Z 127 ) Offset, the columns (S 0 to S 255 ) are not rectilinear, but run in zig-zag lines, so to speak, where the column spacing (16, 56) is simply the constant distance between elements in a row (Z 0 to Z 127 ).
  • the above explanations also

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Es wird ein verbessertes Verfahren zur optischen Distanzmessung vorgeschlagen, nach dem unter Verwendung einer Sendematrix zum Aussenden von Messpulsen und einer Empfangsmatrix zum Empfangen dieser nur Untermengen der Sendeelemente der Sendematrix aktiviert werden.

Description

Verfahren und Vorrichtung zur optischen Distanzmessung
Technisches Gebiet
Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur optischen Distanzmessung.
Stand der Technik
Optische Distanzmessungen, insbesondere zur Anwendung in der fahrerlosen Navigation von Fahrzeugen, beruhen auf dem Time of Flight Prinzip. Meistens wird ein scannender Sensor, bevorzugterweise LIDAR (Abkürzung für„Light detection and ranging") Sensor, eingesetzt, der periodisch Pulse aussendet. Die Pulse werden von Objekten reflektiert, wobei die reflektierten Pulse detektiert werden. Aus der Bestimmung der Laufzeit der Pulse von dem Sensor zu Objekten und zurück kann mithilfe der Lichtgeschwindigkeit auf die Distanz zu diesen Objekten geschlossen werden. Insbesondere werden 3D LIDAR Sensoren eingesetzt, bei denen aus dem Stand der Technik zwei verschiedene Verfahren zur Distanzmessung bekannt sind:
Zu Einen gibt es scannende LIDAR Sensoren, denen in der Regel ein mechanisches Scannen, d.h. eine Rotationsbewegung oder Oszillation des LIDAR Sensors oder einem Bestandteil davon, zugrunde liegt. Ein Beispiel für einen solchen scannenden LIDAR Sensor ist bspw. in EP 2 388 615 AI beschrieben, bei dem das Sichtfeld des Senders und das des Empfängers mechanisch abgelenkt werden.
Nachteilig bei den aus dem Stand der Technik bekannten, scannenden LIDAR Sensoren, ist die Tatsache, dass das Scannen stets mit einer Bewegung mechanischer Teile einhergeht. Bei diesen beweglichen Teilen handelt es sich vor allem um relativ große Rotationsspiegel oder sogar größere Teile, bspw. den Scankopf, des Sensors, bei denen die insgesamt bewegte Masse sehr groß ist. Aus diesem Grund trägt der Scanmechanismus bei dieser Art von LIDAR Sensoren grundsätzlich maßgeblich zur Baugröße und zu den Kosten des Sensors bei, da abgesehen von den bewegten Teilen ebenso Platz für eine entsprechende Elektronik zur Ansteuerung der Elektronik zur Verfügung stehen muss. Eine andere Art von 3D LIDAR Sensoren sind Flash LIDAR Sensoren, bei denen das gesamte Sichtfeld zur gleichen Zeit ausgeleuchtet wird. Dies erfordert allerdings sehr große Pulsleistungen, typischerweise einige kW, damit eine technisch sinnvolle Reichweite in einem großen Sichtfeld erzielt werden kann. Dadurch dass empfänger- seitig während des Messfensters immer das gesamte Sichtfeld ausgewertet wird, sind die aus dem Stand der Technik bekannten Flash LIDAR Sensoren äußerst anfällig für Fremdbeeinflussung. Dies gilt für gezielte Angriffe sowie für unbewusste Störungen durch gleichartige Sensoren anderer Fahrzeuge, die entgegen kommen oder die gleiche Szene betrachten. Gerade im Bereich des autonomen Fahrens, d.h. der fahrerlosen Navigation eines Fahrzeugs, ist eine derartige fehlende Robustheit gegen gezielt eingebrachte oder unbewusst vorhandene Störquellen insbesondere aus Sicherheitsaspekten nicht hinnehmbar.
Darstellung der Erfindung: Aufgabe, Lösung, Vorteile
Der Erfindung liegt die Aufgabe zu Grunde ein Verfahren zur Distanzmessung derart zu verbessern, dass auf bewegliche Teile zum Scannen verzichtet wird. Ferner soll das Verfahren möglichst robust gegenüber Störpulsen ausgebildet sein. Ziel ist es ferner eine entsprechende Vorrichtung zur Distanzmessung bereitzustellen, die nicht auf bewegliche zum Scannen angewiesen ist und die ferner insbesondere mit einer erhöhten Robustheit gegenüber Störpulsen ausgebildet ist.
Gelöst wird die oben genannte Aufgabe durch das erfindungsgemäße Verfahren zur optischen Distanzmessung, nach dem eine Vielzahl von Messpulsen durch mindestens eine Sendematrix mit mehreren Sendeelementen ausgesendet wird. Mindestens ein ausgesendeter Messpuls wird von einem Messobjekt in Form eines reflektierten Messpulses reflektiert wird, der durch mindestens eine Empfangsmatrix mit mehreren Empfangselementen empfangen wird. Bei dem von dem Messobjekt reflektierten Messpuls handelt es sich um einen Messpuls, der zuvor ausgesendet wurde, nur dass sich durch die Reflexion an dem Messobjekt seine Ausbreitungsrichtung verändert hat. Man kann den reflektierten Messpuls somit als Echo des ausgesendeten Messpulses verstehen. Es wird die Laufzeit des mindestens einen Messpulses zum Messobjekt und zurück ermittelt und aus dieser mithilfe der Lichtgeschwindigkeit die vom Mess- puls zurückgelegte Distanz zu dem Messobjekt bestimmt. Es ist auch möglich, dass ein Messpuls nacheinander auf mehrere hintereinander liegende Messobjekte trifft, die nur eine teilweise Überdeckung haben, sodass ein Messpuls mehrere Echos, d.h. mehrere reflektierte Pulse, erzeugt.
Erfindungsgemäß weist die Sendematrix eine erste Untermenge der Sendeelemente und eine zweite Untermenge der Sendeelemente jeweils umfassend mindestens ein Sendeelement auf, wobei die Sendeelemente der Sendematrix derart aktiviert und/oder deaktiviert werden, dass zu einem ersten Zeitpunkt ausschließlich die erste Untermenge der Sendeelemente aktiv ist, sodass ausschließlich das mindestens eine der ersten Untermenge der Sendeelemente zugordnete Sendeelement einen Messpuls aussendet, und wobei zu einem zweiten Zeitpunkt ausschließlich die zweite Untermenge der Sendeelemente aktiv ist, sodass ausschließlich das mindestens eine der zweiten Untermenge der Sendeelemente zugordnete Sendeelement einen Messpuls aussendet.
Eine optische Distanzmessung zeichnet sich dadurch aus, dass unter Ausnutzung von optischen Signalen, insbesondere optischen Messpulsen, Distanzen bestimmt werden. Unter dem Begriff „Distanz" ist eine Entfernung zu verstehen. Unter der vom Messpuls zurückgelegten Distanz ist die Strecke zwischen dem Sendeelement, das den Messpulse ausgesandt hat, und dem Messobjekt plus der Strecke zwischen dem Messobjekt und dem Empfangselement der Empfangsmatrix, das den entsprechenden reflektierten Messpulse empfangen hat, zu verstehen. Insbesondere umfasst das Verfahren die Berücksichtigung der genauen Position der Sendeelementes und des Empfangselementes, insbesondere in Relation zueinander. Da es sich bei dem Messobjekt typischerweise um ein dreidimensionales Objekt handelt, sodass einige Bereiche des Messobjektes näher und andere Bereiche des Messobjektes weiter entfernt angeordnet sein könnten, ist mit dem Begriff„Distanz zu dem Messobjekt" die Entfernung zu zumindest einer Stelle des Messobjektes gemeint, und zwar der Stelle, auf die ein Messpuls aufgetroffen und an der dieser reflektiert wurde. Mit Laufzeit ist die Zeit zu verstehen, die der Messpuls für die genannte Distanz gebraucht hat. Das Messobjekt befindet sich insbesondere im senderseitigen und/oder empfängerseitigen Sichtfeld.
Bei einem Messpuls handelt es sich um ein optisches, insbesondere elektromagnetisches, Signal. Der Messpuls ist vorteilhafterweise ein Lichtpuls, d.h. ein Puls mit einer Wellenlänge aus dem für das menschliche Auge sichtbaren Teil des elektromagnetischen Spektrums. Bevorzugterweise weist ein Messpuls eine Pulsdauer auf. So kann man einen Messpuls als eine zeitlich begrenzte Portion elektromagnetischer Strahlung verstehen. Da es sich bei einem Messpuls um ein elektromagnetisches Signal handelt und somit die Geschwindigkeit des Pulses bekannt ist, kann aus der Laufzeit eines Messpulses mithilfe der Lichtgeschwindigkeit darauf geschlossen werden, welche Strecke der Messpuls in der Laufzeit hinter sich gebracht hat.
Bei einer Matrix handelt es sich insbesondere um eine zweidimensionale Anordnung von Elementen, hier Sende- oder Empfangselementen, oder Teilen oder Oberflächen davon, sprich einer Anordnung in einer Ebene. Insbesondere handelt es sich um einen dreidimensionalen Körper, auf dem Elemente oder Teile oder Oberflächen davon in einer zweidimensionalen Ebene angeordnet sind. In einer zu der Ebene senkrechten Richtung hat die Matrix bevorzugterweise ebenfalls eine Ausdehnung. Die Matrix kann somit insbesondere als dreidimensionaler, insbesondere plattenförmiger, Körper gesehen werden, auf dessen einen Oberfläche die Sende- oder Empfangselemente angeordnet sind. Insbesondere weisen die Elemente selber eine dreidimensionale Ausdehnung, sprich eine Ausdehnung nicht nur in der Ebene, sondern auch senkrecht dazu auf. Vorteilhafterweise weisen die Sendeelemente eine aktive Fläche zum Versenden von Messpulsen auf. Darunter ist vor allem die Fläche des Sendeelementes zu verstehen, an der ein Messpuls das Element verlässt. Auch die Empfangselemente weisen vor allem eine aktive Fläche zum Empfangen der Messpulse auf. Das ist vor allem die Fläche, auf denen ein Messpuls detektiert wird. Vorteilhafterweise sind genau diese aktiven Flächen der Sende- und/oder Empfangselemente mittels der Matrix in einer planen Ebene angeordnet.
Die Sendeelemente sind in einer ersten Ebene der Sendematrix und die Empfangselemente in einer zweiten Ebene der Empfangsmatrix angeordnet. Dabei sind die erste und die zweite Ebene vorteilhaft parallel zueinander ausgebildet.
Insbesondere grenzen die Sendeelemente auf der Sendematrix und/oder die Empfangselemente auf der Empfangsmatrix nicht direkt aneinander. Vorteilhafterweise sind die Sendeelemente auf der Sendematrix und/oder die Empfangselemente auf der Empfangsmatrix gleichmäßig, insbesondere in einem gleichmäßigen Gitterraster, angeordnet. Insbesondere lässt sich die Anordnung der Elemente auf der Matrix in Spalten und/oder Zeilen aufteilen, wobei die Spalten und/oder die Zeilen bevorzugterweise einen konstanten Spaltenabstand bzw. Zeilenabstand aufweisen. Insbesondere sind der Spaltenabstand und der Zeilenabstand gleich groß. In einer besonders bevorzugten Ausführung sind die Zeilen der Sendematrix und/oder Empfangsmatrix jeweils um einen halben Spaltenabstand gegeneinander versetzt.
Die Elemente einer Spalte und/oder einer Zeile weisen vorteilhaft einen konstanten Abstand zueinander auf. Bevorzugterweise umfasst eine Spalte ein Element in jeder Zeile der Matrix, während insbesondere eine Zeile ein Element in jeder Spalte der Matrix aufweist. Würde man gedanklich eine Gerade durch jede Zeile sowie durch jede Spalte legen, insbesondere durch die jeweiligen Mittelpunkte der Elemente jeder Zeile und Spalte der Matrix, wären die Geraden der Zeilen bevorzugterweise alle parallel zueinander. Auch die Geraden der Spalten würden vorteilhafterweise parallel zueinander angeordnet sein. Dabei würden sich die Geraden der Spalten und die Geraden der Zeilen untereinander bevorzugterweise im Wesentlichen im rechten Winkel schneiden. Der Abstand zwischen benachbarten Geraden der Spalten entspräche dem Spaltenabstand, der Abstand zwischen benachbarten Geraden der Zeilen dem Zeilenabstand. Alternativ zu einer uniformen Ausgestaltung können die Abstände zwischen den Elementen auf der Sendematrix und/oder der Empfangsmatrix variieren. Insbesondere kann der Abstand im zentralen Bereich der Matrix anders ausgestaltet sein als in den Randbereichen der Matrix, sodass sich in diesen Bereichen unterschiedliche Winkelauflösungen ergeben.
Insbesondere handelt es sich bei einem Sendeelement der Sendematrix um einen Laser, insbesondere einen gepulste Laser, sodass die Sendematrix eine Vielzahl von Lasern umfasst.
Die Sendeelemente sind vorteilhafterweise derart angeordnet, dass die Messpulse von verschiedenen Sendeelementen in Richtungen ausgesendet werden, die im Wesentlichen parallel zueinander sind. Der Begriff„im Wesentlichen" soll vor allem eine Divergenz der Sendeelemente und somit eine geringfügige Abweichung von einer parallelen Aussendung berücksichtigen. Die Sendeelemente der Sendematrix bildet eine Menge der Sendeelemente. Unter eine Untermenge ist eine echte Teilmenge der Menge der Sendeelemente zu verstehen, sodass die Untermenge kleiner ist als die Menge der Sendeelemente der Sendematrix. Insbesondere unterscheiden sich die erste Untermenge und die zweite Untermenge, wobei sie sich vorteilhaft nicht überschneiden. Kein Sendeelement der ersten Untermenge ist somit ein Teil der zweiten Untermenge und umgekehrt.
Erfindungsgemäß werden die Sendeelemente der Sendematrix derart aktiviert und/oder deaktiviert, dass zu einem ersten Zeitpunkt ausschließlich die erste Untermenge der Sendeelemente aktiv ist. Dabei senden die Sendeelemente der ersten Untermenge bei Aktivität jeweils mindestens einen Messpuls, insbesondere jeweils mehrere Messpulse in periodischer Weise, aus. Ferner kann die Aussendung ebenso aperiodisch, bspw. auf Basis von Pseudozufallsfolgen, erfolgen. Zu einem zweiten Zeitpunkt sind ausschließlich die zweite Untermenge der Sendeelemente aktiv, sodass ausschließlich das mindestens eine der zweiten Untermenge der Sendeelemente zugordnete Sendeelement einen Messpuls, insbesondere mehrere Messpulse in periodischer Weise, aussendet. Der erste Zeitpunkt unterscheidet sich von dem zweiten Zeitpunkt, insbesondere folgt der zweite Zeitpunkt auf den ersten Zeitpunkt. Vorteilhafterweise umfasst die erste und/oder die zweite Untermenge eine Vielzahl von Sendeelementen, die bei Aktivität simultan je mindestens einen oder mehrere Messpulse aussenden. Deaktiviert werden vor allem Elemente, die unmittelbar vor dem ersten Zeitpunkt aktiv sind, jedoch nicht zur aktivierenden Untermenge gehören.
Durch die simultane Aktivierung von nur Untermengen der Sendeelemente können gezielt Teilbereiche des Sichtfeldes ausgeleuchtet werden. Dadurch dass sich die erste und die zweite Untermenge unterscheiden, leuchten die Messpulse der ersten Untermenge einen anderen, insbesondere räumlich zusammenhängenden, Teilbereich des Sichtfeldes aus als die Messpulse der zweiten Untermenge. Unter dem Begriff Ausleuchtung ist zu verstehen, dass in einen bestimmten Teil des Sichtfeldes Messpulse gesandt und aus diesem empfangen werden. Durch eine zeitliche Aneinanderreihung der Aktivierung verschiedener Untermengen nacheinander kann ein Scannen des Sichtfeldes ohne die dazu notwendige Verwendung jeglicher beweglicher Teile erreicht werden. Unter dem Begriff„Scannen" ist ein Abtasten des Sichtfeldes zu verstehen. Vorteilhafterweise wird eine einzige Sendematrix und/oder Empfangsmatrix verwendet. Alternativ können mehrere Sendematrizen und/oder Empfangsmatrizen eingesetzt werden, wobei die Sendematrizen bevorzugterweise sämtlich in der ersten Ebene liegen und/oder die Empfangsmatrizen vorteilhafterweise sämtlich in der zweiten Ebene, wobei sich die ersten und die zweite Ebene unterscheiden.
Ferner kann die erste und/oder zweite Untermenge lediglich ein Sendeelement aufweisen. Jedem Sendeelement wird bevorzugterweise ein, insbesondere genau ein, Sendepixel zugeordnet. So können die erste und/oder die zweite Untermenge nur einen Sendepixel aufweisen und somit ein pixelweises Scannen erfolgen.
Das Verfahren umfasst ferner das Umsetzen verschiedener Positionen von Sendeelementen auf der Sendematrix mittels mindestens einer Sendeoptik in unterschiedliche Aussendewinkel, sodass ein Winkelscan erfolgen kann. Insbesondere ist hierfür zumindest ein Teil der Sendeelemente, bevorzugterweise sämtliche Sendeelemente, in der Brennebene mindestens einer Sendeoptik angeordnet.
Dabei kann nur eine Sendeoptik verwendet werden, oder es können unterschiedlichen Untermengen, insbesondere Untermatrizen und/oder Spalten und/oder Zeilen, der Sendeelemente der Sendematrix verschiedene Sendeoptiken mit bevorzugterweise gleicher Brennebene zugeordnet werden. Die Untermengen sind vorteilhafterweise gleich groß ausgebildet. In einem solchen Fall wird die Sendematrix in verschiedene, bevorzugterweise zusammenhängende Bereiche, insbesondere Untermatrizen, aufgeteilt, die jeweils eine eigene Sendeoptik erhalten. Die Untermatrizen haben bevorzugterweise die gleiche, insbesondere quadratische, Form, sie können jedoch auch unterschiedliche Formen aufweisen. Es ist sogar möglich, dass jedem Sendeelement eine eigene Sendeoptik zugeordnet wird. Auch für den Fall, dass mehrere Sendematrizen eingesetzt werden, ist es vorteilhaft jeder Matrix eine eigene Sendeoptik zuzuordnen.
Bei den Untermengen, denen eine eigene Sendeoptik zugeordnet ist, muss es sich insbesondere nicht, kann es sich aber, um die Untermengen der Sendematrix handeln, die simultan aktiviert werden. Die hinter einer Sendeoptik gruppierten Sendeelemente können räumlich von den anderen hinter einer Sendeoptik gruppierten Sendeelennenten getrennt sein, d.h. die einer Sendeoptik zugeordnete Menge der Sendeelemente bzw. die entsprechenden Pixel müssen sich nicht auf einem Halbleiter-Chip befinden. Dadurch können die herzustellenden Chips kleiner sein und das System gewinnt an Konfigurierbarkeit.
Die Verwendung mehrere Sendematrizen mit eigenen Sendeoptiken oder die Aufteilung der Sendematrix in mehrere Untermatrizen mit einzelnen Optiken erlaubt den Aufbau unterschiedlicher Gerätevarianten. Über die Anzahl der Sendeelemente kann die in die Szene transmittierte Leistung und somit die Reichweite des Sensors in einfacher Weise skaliert werden.
Die mindestens eine Sendeoptik dient zum Aussenden der Messpulse unter unterschiedlichen Winkeln. Bei der mindestens einen Sendeoptik handelt es sich vor allem um ein Weitwinkelobjektiv.
Bei der Sendematrix handelt es sich vorteilhafterweise um einen„focal plane array", d.h. eine zweidimensionale Anordnung von Sendeelementen in der Brennebene einer Sendeoptik. Die Brennebene der mindestens einen Sendeoptik bestimmt entsprechend der Ausdehnungen der Sendematrix das Sichtfeld des Senders, sprich der sen- derseitigen Optik, vor allem der Sendeoptik.
Durch die Platzierung der Sendematrix oder Teilen davon in der Brennebene der Sendeoptik wird die Position der einzelnen Sendeelemente bzw. Pixel der Matrix durch die Optik in einen Winkel umgesetzt. In anderen Worten werden die auf die Sendeoptik treffenden, bevorzugterweise in parallele Richtungen verlaufenden, Messpulse durch die Sendeoptik in unterschiedliche Winkel abgelenkt, sodass ein großes Sichtfeld ausgeleuchtet werden kann, ohne dass dazu bewegliche Teile zum Ablenken oder Empfangen der Messpulse notwendig sind.
Durch das Adressieren verschiedener Untermengen der Sendeelemente ergibt sich ein Winkelscan. Es sind keine weiteren Komponenten zum Scannen erforderlich. Dadurch können die Kosten eines LIDAR Sensors und die Baugröße deutlich verkleinert werden. Weiter kann die Reihenfolge, in der die Messungen eines Scans aufgenommen werden frei bestimmt bzw. sogar während des Betriebs verändert werden. Damit wird eine größere Robustheit gegenüber Fremdbeeinflussung erzielt. Zusätzlich kann damit dynamisch eine Fokussierung auf bestimmte Bereiche des Sichtfeldes erfolgen.
Bei den Empfangselementen der Empfangsmatrix handelt es sich vor allem um photosensitive Flächen, die an Messobjekten reflektierte Messpulse empfangen und insbesondere detektieren können. Insbesondere umfasst das Verfahren ferner einen Schritt der Abbildung der reflektierten Messpulse aus unterschiedlichen Winkeln auf die mindestens eine Empfangsmatrix. Dafür wird insbesondere mindestens eine Empfangsoptik eingesetzt, in deren Brennebene ferner vorteilhaft die Empfangsmatrix platziert wird.
Hinsichtlich der Anzahl der verwendeten Empfangsmatrizen und/oder Empfangsoptiken sowie der Zuordnung der Empfangsoptiken zu den Empfangsmatrizen oder Bereichen von einer Empfangsmatrix gilt bevorzugterweise das zuvor Beschriebene hinsichtlich der Sendematrix und der Sendeoptik.
Bei der mindestens einen Empfangsoptik handelt es sich vor allem um ein Weitwinkelobjektiv, während die Empfangsmatrix vorteilhafterweise von einen„focal plane array", d.h. einer zweidimensionalen Anordnung von Empfangselementen in der Brennebene einer Empfangsoptik, gebildet wird. Die Brennebene der mindestens einen Empfangsoptik bestimmt entsprechend der Ausdehnungen der Empfangsmatrix das Sichtfeld des Empfängers, sprich der empfängerseitigen Optik, vor allem der Empfangsoptik. Ferner werden bevorzugterweise Empfangselementen der Empfangsmatrix Empfangspixel zugeordnet. Jedem Empfangselement wird bevorzugterweise ein, und zwar insbesondere genau ein, Empfangspixel zugeordnet.
Es werden die Brennweite der Sendeoptik, die Dimensionen der Pixel der Sendematrix sowie die Dimensionen der gesamten Sendematrix derart eingestellt, dass das Beleuchtungsmuster an das empfängerseitig verwendete Sichtfeld und dessen Pixel an- gepasst ist. Auf der anderen Seite wird die Anordnung der Empfangsmatrix und der Empfangsoptik an das senderseitig erzeugte Beleuchtungsmuster angepasst.
Bei den fotosensitiven Flächen handelt es sich bevorzugterweise um Avalanche Photodetektoren, insbesondere um Single Photon Avalanche Detektoren, die insbesondere mit einer Biasspannung oberhalb ihrer Break-Down-Spannung betrieben werden. Diese Detektoren arbeiten somit im so genannten Geiger Mode, sodass ein einzelnes Photon kann den Lawinendurchbruch auslöst. Alternativ können ebenfalls andere Detektoren ohne die Verwendung eines Lawinendurchbruchs, bspw. Pin-Dioden, verwendet werden.
Bei dem Verfahren handelt es sich bevorzugterweise um ein Verfahren zur Längs- und Querregelung eines Fahrzeugs, insbesondere Automobils, basierend auf erkannten Objekten bzw. Freiräumen, wobei das Fahrzeug insbesondere autonom steuert, d.h. eine fahrerlose Fortbewegung des Fahrzeugs ermöglicht wird. Dies dient zur Pfadplanung und Bewegung entlang dieses Pfades durch das Fahrzeug. Unter dem Begriff „Messobjekt" können extra zur Regelung des Fahrzeuges angeordnete und ausschließlich dafür dienende Markierungen verstanden werden. Zudem können Messobjekte Umgebungsmerkmale darstellen, die sich in der Umgebung des Fahrzeugs befinden und deren Positionen zur Regelung des Fahrzeuges verwendet werden. Darunter fallen bspw. Bäume, Kantsteine, Fahrbahnmarkierungen oder andere Verkehrsteilnehmer. In einem solchen Fall werden typischerweise keine zusätzlich, ausschließlich für die Regelung angeordnete Markierungen verwendet. Bevorzugterweise betrifft das Verfahren ein Verfahren zur Navigation des Fahrzeuges.
Bevorzugterweise werden der ersten Untermenge der Sendeelemente eine erste Untermenge der Empfangselemente und der zweiten Untermenge der Sendeelemente eine zweite Untermenge der Empfangselemente jeweils umfassend mindestens ein Empfangselement zugeordnet. Insbesondere wird jedem Sendeelement der Sendematrix ein Empfangselement der Empfangsmatrix zugeordnet. Vorteilhafterweise wird jedem Sendeelement genau ein Empfangselement zugeordnet, sodass es sich um eine eineindeutige Zuordnung handelt. Insbesondere befinden sich die Sendeelemente und die Empfangselemente, die einander zugeordnet sind, an ähnlichen, insbesondere identischen, Stellen auf der Sendematrix bzw. Empfangsmatrix.
Die erste und/oder zweite Untermenge der Empfangselemente umfasst mindestens ein, bevorzugterweise mehrere, Empfangselemente. Die Empfangselemente der Empfangsmatrix bilden - analog zur Sendematrix - eine Menge, von denen die erste und/oder die zweiten Untermenge eine echte Teilmenge ist. Vorteilhafterweise werden die Empfangselemente derart aktiviert und/oder deaktiviert, dass im Wesentlichen gleichzeitig mit der Aktivierung der ersten Untergruppe der Sendeelemente ausschließlich die erste Untermenge der Empfangselemente aktiv ist, sodass die erste Untermenge der Empfangselemente die von der ersten Untermenge der Sendeelemente ausgesandten und reflektierten Messpulse empfängt, und dass im Wesentlichen gleichzeitig mit der Aktivierung der zweiten Untergruppe der Sendeelemente ausschließlich die zweite Untermenge der Empfangselemente aktiv ist, sodass die zweite Untermenge der Empfangselemente die von der zweiten Untermenge der Sendeelemente ausgesandten und reflektierten Messpulse empfängt.
Es werden somit nur diejenigen Empfangselemente aktiviert, die der ersten oder der zweiten Untermenge der Sendeelemente zugeordnet sind. Im Wesentlich gleichzeitig bedeutet, dass die Aktvierung der Untermengen der Empfangselemente entweder gleichzeitig mit der Aktivierung der entsprechenden Untermengen der Sendeelemente erfolgt oder zumindest derart zeitgleich, dass von einer Untermenge der Sendeelemente ausgesandte Messpulse von der zugeordneten Untermenge der Empfangselemente detektiert werden können. Die maximale Zeitdifferenz zwischen der Aktivierung der Sendeelemente und der entsprechenden Empfangselemente darf somit keinesfalls die Dauer des Messfensters überschreiten. Das Messfenster ergibt sich aus der Annahme einer maximal zulässigen Messentfernung, da bei der Überschreitung einer bestimmten Entfernung keine detektierbaren Reflexionen von Objekten mehr zu erwarten sind. Die Dauer des Messfensters ergibt sich aus der maximal zulässigen Messentfernung und der Lichtgeschwindigkeit. Üblicherweise wird die Messung nach Ablauf der Dauer des Messfensters beendet. Das Vorsehen einer Zeitdifferenz zwischen der Aktivierung der Sendeelemente und der Aktivierung der entsprechenden Empfangselemente kann vorteilhafterweise auch zur Beeinflussung des Erfassungsbereichs in der Tiefe verwendet werden. Beispielsweise kann die Aktivierung der Empfangselemente erst erfolgen, nachdem die Messpulse bereits eine gewisse Strecke zurückgelegt haben, sodass Objekte im Nahbereich ausgeblendet werden, da deren vor Aktivierung der Empfangselemente bei diesen eingetroffen wäre. Solch ein Objekt im Nahbereich könnte zum Beispiel eine verschmutze Sensorfrontscheibe sein.
Insbesondere werden die nicht benötigten, da nicht beleuchteten Empfangselemente bzw. Pixel der Empfangsmatrix deaktiviert. Dies geschieht bei Avalanche Photodetektoren z. B. durch Absenkung der Biasspannung. Vorteilhafterweise bilden die erste Untermenge und/oder die zweite Untermenge der Sendeelemente und/oder der Empfangselemente einen räumlich zusammenhängenden Bereich der Sendematrix bzw. der Empfangsmatrix. Insbesondere sind die Sendeelemente und/oder Empfangselemente der ersten und/oder der zweiten Untermenge benachbart zueinander angeordnet. Insbesondere werden die Messpulse der ersten und/oder zweiten Untermenge der Sendeelemente mithilfe der Sendeoptik in ähnliche Richtungen versendet. Vorteilhafterweise leuchten die Sendeelemente der ersten und/oder zweiten Untermenge einen räumlich zusammenhängenden Bereich des Sichtfeldes aus.
Ferner bevorzugt handelt es sich bei der ersten Untermenge und/oder der zweiten Untermenge der Sendeelemente und/oder der Empfangselemente um mindestens eine Zeile und/oder mindestens eine Spalte der Sendematrix bzw. der Empfangsmatrix. Ferner kann es sich bei den Untermengen um beliebige Untermatrizen der Sendematrix bzw. der Empfangsmatrix handeln. Insbesondere sind die erste Untermenge und/oder die zweite Untermenge der Sendeelemente und/oder der Empfangselemente räumlich benachbart zueinander ausgebildet.
Bevorzugterweise werden nach der ersten und der zweiten Untermenge der Sendeelemente und/oder Empfangselemente weitere Untermengen der Sendematrix und/oder der Empfangsmatrix aktiviert, die insbesondere einen Großteil der Sendematrix und/oder der Empfangsmatrix ausmachen. Vorteilhafterweise lässt sich die gesamte Sendematrix und/oder Empfangsmatrix in eine bestimmte Anzahl Untermengen aufteilen, wobei jede Untermenge mindestens einmal, bevorzugterweise genau einmal, während eines Scans des Sichtfeldes aktiviert wird. Durch die Ansteue- rung, in anderen Worten Aktivierung, dieser Anzahl von Untermengen lässt sich das gesamte Sichtfeld scannen bzw. ausleuchten. Insbesondere werden die Untermengen der Sendeelemente und/oder der Empfangselemente derart angesteuert, dass räumlich zusammenhängende und benachbarte Bereiche der Sendematrix und/oder der Empfangsmatrix nacheinander aktiviert werden, sodass insbesondere eine sequentielle Erfassung des Sichtfeldes entlang einer Scanrichtung erfolgt. Dabei verläuft die Scanrichtung vor allem von einem Ende der Sendematrix und/oder der Empfangsmatrix zum gegenüberliegenden Ende dieser. Beispielsweise kann ein horizontaler Scan durchgeführt werden, bei dem eine Spalte nach der anderen - als Untermengen der Sendeelemente und/oder Empfangselemente - sequentiell in auf oder absteigender Reihenfolge aktiviert bzw. deaktiviert werden. Ein anderes Beispiel stellt ein vertikaler Scan dar, bei denen analog die Zeilen der Sendematrix oder Empfangsmatrix - als Untermengen der Sendeelemente und/oder Empfangselemente - sequentiell aktiviert werden. In einer weiteren vorteilhaften Ausführung erfolgt die Aktivierung bzw. Deaktivierung der Untermengen nicht in auf- oder absteigender Reihenfolge, sondern in willkürlicher Reihenfolge, die sich von Scan zu Scan ändern kann. Ferner erfolgt die Aktivierung bzw. Deaktivierung der Untermengen der Sendeelemente und/oder Empfangselemente derart, dass nicht zueinander benachbarte Untermengen nacheinander aktiviert werden, sondern sich eine zumindest scheinbar zufällige Abfolge der Aktivierung der Untermengen ergibt. Ein solches Verfahren hat eine sehr viel höhere Robustheit gegenüber Störimpulsen, da sein Schema von außen her schwer durchschaubar ist. Ferner bevorzugt erfolgt die Aktivierung und Deaktivierung der Untermengen basierend auf der Ergebnissen voraus gegangener Scans, so dass Bereiche von besonderem Interesse dichter überwacht werden können.
Ferner bevorzugt umfasst das Verfahren die Bestimmung der Zeitpunkte, zu denen Messpulse empfangen wurden, insbesondere mittels mindestens einer Auswerteeinheit. Insbesondere wird Untermengen, insbesondere Untermatrizen und/oder Zeilen und/oder Spalten, der Empfangselemente der Empfangsmatrix jeweils eine Auswerteeinheit zugeordnet. Bei den Untermengen, denen eine Auswerteeinheit zugeordnet ist, muss es sich insbesondere nicht, kann es sich aber, um die Untermengen zum Empfangen reflektierter Messpulse handeln, die simultan aktiviert werden. Alle einer Auswerteeinheit zugeordneten Empfangselemente sind mit dieser verbunden.
Ferner kann jedem aktiven Empfangselement eine, bevorzugterweise genau eine, Auswerteeinheit zugeordnet sein. Die Zuordnung der Auswerteeinheiten ist derart, dass eine Auswerteeinheit immer einem Pixel der aktiven Untermatrix zugeordnet ist. Die Anzahl der benötigten Auswerteeinheiten ergibt sich demnach aus der Anzahl der in einer Untermatrix aktiven Pixel.
Dabei erfolgt die Anbindung der Empfangselemente bzw. Pixel der Empfangsmatrix an die Auswerteeinheiten über eine Selektionsschaltung, insbesondere Multiplexer, die dafür sorgt, dass nur die aktiven Empfangselemente bzw. Pixel mit der Auswerteelektronik verbunden sind.
Unter einem weiteren Aspekt umfasst die Erfindung eine Vorrichtung zur Distanzmessung, die eine Sendematrix mit mehreren Sendeelementen zum Aussenden von Messpulsen und eine Empfangsmatrix mit mehreren Empfangselementen zum Empfangen von an Objekten reflektierten Messpulsen aufweist. Die Sendematrix umfasst eine erste Untermenge der Sendeelemente und eine zweite Untermenge der Sendeelemente, die jeweils mindestens ein, bevorzugterweise mehrere, Sendeelemente aufweisen. Erfindungsgemäß sind die Sendeelemente der Sendematrix derart aktivierbar und/oder deaktivierbar ausgebildet, dass zu einem ersten Zeitpunkt ausschließlich die erste Untermenge der Sendeelemente aktiv ist, sodass das mindestens eine der ersten Untermenge der Sendeelemente zugordnete Sendeelement einen Messpuls aussendet, und wobei zu einem zweiten Zeitpunkt ausschließlich die zweite Untermenge der Sendeelemente aktiv ist, sodass das mindestens eine der zweiten Untermenge der Sendeelemente zugordnete Sendeelement einen Messpuls aussendet.
Bevorzugterweise ist der ersten Untermenge der Sendeelemente eine erste Untermenge der Empfangselemente und der zweiten Untermenge der Sendeelemente eine zweite Untermenge der Empfangselemente, die jeweils mindestens ein Empfangselement, bevorzugterweise eine Vielzahl von Empfangselementen, aufweisen, zugeordnet. Dabei sind die Empfangselemente insbesondere derart aktivierbar und/oder deaktivierbar ausgebildet, dass im Wesentlichen gleichzeitig mit der Aktivierung der ersten Untergruppe der Sendeelemente ausschließlich die erste Untermenge der Empfangselemente aktiv ist, sodass die erste Untermenge der Empfangselemente die von der ersten Untermenge der Sendeelemente ausgesandten und reflektierten Messpulse empfängt, und wobei im Wesentlichen gleichzeitig mit der Aktivierung der zweiten Untergruppe der Sendeelemente ausschließlich die zweite Untermenge der Empfangselemente aktiv ist, sodass die zweite Untermenge der Empfangselemente die von der zweiten Untermenge der Sendeelemente ausgesandten und reflektierten Messpulse empfängt.
Vorteilhafterweise umfasst die Vorrichtung zur optischen Distanzmessung mindestens eine Sendeoptik zum Aussenden der Messpulse in unterschiedliche Richtungen, wobei zumindest ein Teil der Sendeelemente, bevorzugterweise sämtliche Sendeelemente, der Sendematrix in der Brennebene der mindestens einen Sendeoptik angeordnet ist. Ferner bevorzugt weist die Vorrichtung insbesondere mindestens eine Empfangsoptik, insbesondere eine abbildende Linse, zum Abbilden der Messpulse auf die Empfangsmatrix auf, wobei zumindest ein Teil der Empfangselemente, bevorzugterweise sämtliche Empfangselemente, der Empfangsmatrix vorteilhafterweise in der Brennebene der mindestens einen Empfangsoptik angeordnet ist. Vorzugsweise ist zumindest einem Teil der Sendeelemente, bevorzugterweise sämtlichen Sendeelementen, genau eine Sendeoptik zugeordnet. Ferner bevorzugt ist zumindest einem Teil der Empfangselemente, bevorzugterweise sämtlichen Empfangselementen, genau eine Empfangsoptik zugeordnet. Zusätzlich kann zwischen der Empfangsoptik und den Empfangselementen und/oder zwischen der Sendeoptik und den Sendelementen ein Mikrolinsen-Array angeordnet sein, und zwar derart, dass jeder Mikrolinse des Mikro- linsen-Arrays genau ein Empfangs- bzw. Sendelement zugeordnet ist.
Es ist die Brennweite der Sendeoptik, die Dimensionen der Pixel der Sendematrix sowie die Dimensionen der gesamten Sendematrix derart eingestellt, dass das Beleuchtungsmuster an das empfängerseitig verwendetes Sichtfeld und dessen Pixel ange- passt ist. Auf der anderen Seite ist die Anordnung der Empfangsmatrix und der Empfangsoptik an das senderseitig erzeugte Beleuchtungsmuster angepasst.
In einer besonders bevorzugten Weiterbildung weist die Vorrichtung eine Vielzahl von Sendematrizen und/oder Empfangsmatrizen aufweist, wobei den Matrizen jeweils eine Sendeoptik bzw. Empfangsoptik zugeordnet ist.
Insbesondere handelt es sich bei der Vorrichtung um einen LIDAR Sensor, ferner vorteilhaft um einen Flash LIDAR Sensor. Gemäß der Erfindung lässt sich der Flash LIDAR Sensor sowohl im„Flash"-Modus betreiben, sodass simultan das gesamte Sichtfeld ausgeleuchtet wird, als auch in einem Scan-Modus, nämlich durch die aufeinanderfolgende Aktivierung von Untermengen der Sendematrix und/oder der Empfangsmatrix. Vorteilhafterweise sind die Elemente der Vorrichtung in Fortbewegungsrichtung des Messpulses derart angeordnet, dass der Sendematrix die Sendeoptik folgt. Nach Zurücklegen der Distanz zum Messobjekt, der Reflexion an einem Messobjekt und dem erneuten Zurücklegen der Distanz folgen die Empfangsoptik und darauf die Empfangsmatrix. Insbesondere ist den Sendeelementen je ein Sendepixel und den Empfangselementen je ein Ennpfangspixel zugeordnet, wobei die Sendepixel in ihrer Ausdehnung größer ausgebildet sind als die Empfangspixel. Alternativ sind die Sendepixel kleiner als die Empfangspixel oder in anderen Worten die Empfangspixel größer als die Sendepixel ausgebildet. Dies erlaubt Toleranzen bei der Herstellung von Sende - und Empfangsmatrix sowie bei der Montage und Ausrichtung der Bestandteile der Vorrichtung. Weiterhin können damit Verzerrungen der Optiken ausgeglichen werden.
Insbesondere ist die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet.
Kurze Beschreibung der Zeichnungen
Es zeigen schematisch:
Figur la eine Draufsicht auf eine Sendematrix einer erfindungsgemäßen Vorrichtung;
Figur lb eine Draufsicht auf eine Empfangsmatrix der erfindungsgemäßen Vorrichtung umfassend die Sendematrix nach Figur 1;
Figur 2 die Gesamtausleuchtung der Empfangselemente der Empfangsmatrix einer erfindungsgemäßen Vorrichtung umfassend die Sendematrix und die Empfangsmatrix nach den Figuren la und lb;
Figur 3 eine teilweise Ausleuchtung der Empfangselemente der Empfangsmatrix nach der Figur la und 2 zu einem ersten Zeitpunkt;
Figur 4 die Anbindung der Empfangselemente der Empfangsmatrix nach Figur 3 an Auswerteeinheiten;
Figur 5 Zuordnung der Empfangselemente der Empfangsmatrix nach den Figuren lb und 2 zu Empfangsoptiken; und
Figur 6 die Gesamtausleuchtung der Empfangselemente einer weiteren Empfangsmatrix einer erfindungsgemäßen Vorrichtung. Bevorzugte Ausführungsformen der Erfindung
Figur la zeigt eine Draufsicht auf eine Sendennatrix (10) einer erfindungsgemäßen
Vorrichtung. In der Figur la ist eine Seite (11) der Sendematrix (10) dargestellt, auf denen Sendeelemente (1200 bis 12127255 ) in einem regelmäßigen Muster angeordnet sind. Bei dem Muster handelt es sich um ein gleichmäßiges Gitterraster (13). Die Sendeelemente (1200 bis 12127255 ) lassen sich in Zeilen (Z0 bis Z127) und Spalten (S0 bis
S255 ) unterteilen. Insgesamt umfasst die Sendematrix (10) 128 Zeilen und 256 Spalten von Sendeelementen. Das Zeichen„..." in der Figur zeigt an, dass an dieser Stelle noch weitere Elemente der Matrix vorhanden sind, die der Übersichtlichkeit halber nicht dargestellt wurden. Die Unterzahl in der Bezifferung der Sendeelemente (1200 bis
12127255 ) gibt durch die erste Zahl an, in welcher Zeile der Sendematrix (10) sich ein bestimmtes Sendeelement befindet, während die zweite Zahl in der Unterzahl die Spalte beziffert, in der dieses Sendeelement angeordnet ist.
Die Sendeelemente (1200 bis 12127255 ) werden durch Laser (20) gebildet und sind derart angeordnet, dass jede Spalte (bspw. S0) ein Sendeelement (in diesem Beispiel: 1200,1210 ,1220 bis 121260,121270) jeder Zeile (Z0 bis Z127) umfasst, und dass jede Zeile (bspw. Z0) ein Sendeelement (in diesem Beispiel: 1200 ,1201 ,1202 bis 120254 ,120255 ) jeder Spalte (S0 bis S255 ) umfasst. Die Zeilen (Z0 bis Z127) weisen einen konstanten Zeilenabstand (17) auf, während die Spalten (S0 bis S255 ) einen konstanten Spaltenabstand (16) haben. Legt man gedachte Geraden durch die Mittelpunkte der Sendeelemente der Spalten (hier beispielhaft 140 bis 142) und durch die Mittelpunkte der Sendeelemente der Zeilen (hier beispielhaft 150 bis 152), weisen diese genau diesen Spaltenabstand (16) bzw. Zeilenabstand (17) zueinander auf. Ferner treffen sich die gedachten Geraden (140 bis 142) der Spalten und die gedachten Geraden (150 bis 152) der Zeilen unter rechten Winkeln (18). Jedem Sendeelemente ( 1200 bis 12127255 ) ist ein
Sendepixel (19) zugeordnet. Die Sendepixel (19) sind gleich groß ausgebildet.
In Figur lb ist eine Draufsicht auf eine Seite (51) einer Empfangsmatrix (50) einer erfindungsgemäßen Vorrichtung mit einer Vielzahl von Empfangselementen (5200 bis
52i27,255 ) gezeigt. Je einem Sendeelement (1200 bis 12127255 ) der Sendematrix (10) ist ein Empfangselement (5200 bis 52127255 ) der Empfangsmatrix (50) zugeordnet. Die
Empfangselemente (5200 bis 52127255 ) sind in Form eines gleichmäßigen Gitterrasters
(13) in 256 Spalten (S0 bis S255 ) und 128 Zeilen (Z0 bis Z127) angeordnet. Die Empfangselemente (5200 bis 52127255 ) sind durch Single Photo Avalanche Detektoren (60) gebildet und sind - wie die Sendeelemente (1200 bis 12127255 ) - derart angeordnet, dass jede Spalte (bspw. S0) ein Empfangselement (in diesem Beispiel: 5200,5210,5220 bis 521260,521270) jeder Zeile (Z0 bis Z127 ) umfasst, und dass jede Zeile (bspw. Z0) ein Empfangselement (in diesem Beispiel: 5200/5201/5202 bis 520254,520255 ) jeder Spalte (S0 bis S255 ) umfasst. Die Zeilen (Z0 bis Z127) und die Spalten (S0 bis S255 ) weisen einen konstanten Abstand, den Zeilenabstand (57) bzw. den Spaltenabstand (56), auf. Gedachte Geraden (hier beispielhaft 540 bis 542) durch die
Mittelpunkte der Empfangselemente der Spalten sowie gedachte Geraden (hier beispielhaft 550 bis 552) durch die Mittelpunkte der Empfangselemente der Zeilen treffen sich unter einem rechten Winkel (18). Jedem Empfangselement (5200 bis 52127255 ) ist ein Empfangspixel (59) zugeordnet. Die Empfangspixel (59) sind untereinander gleich groß ausgebildet, jedoch kleiner als die Sendepixel (19) ausgebildet.
In Figur 2 ist die Ausleuchtung der Empfangsmatrix (50), genauer der Empfangselemente (5200 bis 52127255 ) bzw. der Empfangspixel (59) der Empfangsmatrix (50), nach
Figur lb durch die Sendematrix (10), genauer durch die Sendeelemente (1200 bis
12127255 ) bzw. den Sendepixeln (19) der Sendematrix (10), nach Figur la dargestellt.
Dazu zeigt die Figur 2 eine Draufsicht auf die Seite (51) der Empfangsmatrix (50). Es ist die Gesamtausleuchtung gezeigt, das heißt, die Ausleuchtung, die resultiert, wenn jedes Sendeelemente (1200 bis 12127255 ) der Sendematrix (10) aktiv ist und Messpulse aussendet.
Figur 3 zeigt eine teilweise Ausleuchtung der Empfangsmatrix nach den Figuren lb und 2 durch die Sendematrix (10) nach Figur la. Dazu bildet die erste Spalte (S0) der Sendematrix (10) mit den Sendeelementen (1200,1210 ,1220 bis 121260,121270) eine erste Untermenge (21a) der Sendeelemente (1200 bis 12127255 ), während die erste Spalte (S0) der Empfangsmatrix (10) mit den Empfangselementen (5200,5210,5220 bis 521260,521270 ) eine erste Untermenge (61a) der Empfangselemente (5200 bis 52127255 ) bildet. Die erste Untermenge (61a) der Empfangselemente (5200 bis 52127255 ) ist der ersten Untermenge (21a) der Sendeelemente (1200 bis 12127255 ) zugeordnet.
Figur 3 zeigt die Ausleuchtung zu einem ersten Zeitpunkt, an dem nur die erste Untermenge (21a) der Sendeelemente (1200 bis 12127255 ) sowie die entsprechende erste Untermenge (61a) der Empfangselemente (5200 bis 52127255) aktiv sind. Die übrigen Sendeelemente, genauer die Untermatrix mit den Elementen (1201 bis 12127255 ) und die übrigen Empfangselemente, genauer die Untermatrix mit den Elementen (5201 bis 52127255 ), sind deaktiviert, sodass die Empfangselemente in Figur 2 als nicht beleuchtet dargestellt sind. Nach Aktivierung der ersten Untermengen (21a, 61a) der Sendematrix (10) und Empfangsmatrix (50) wird nach erfindungsgemäßem Verfahren die zweite Spalte (S als zweite Untermenge (21b) der Sendematrix (10) und die zweite Spalte (S als zweite Untermenge (61b) der Empfangsmatrix (50) aktiviert. Insbesondere werden nacheinander die sich an die zweite Spalte (S anschließenden Spalten der Sendematrix (10) und der Empfangsmatrix (50) in Scanrichtung (80) einzeln aktiviert. Es wird somit das gesamte Sichtfeld in einem sequentiellen Scan, genauer einem horizontalen Scan, ausgeleuchtet.
Figur 4 stellt die Anbindung der Empfangselemente (5200 bis 52127255 ) der Empfangsmatrix (50) nach Figur 3 an Auswerteeinheiten (A0bis Al21) dar. Jeder Zeile (Z0 bis Z127) der Empfangselemente (5200 bis 52127255) ist eine Auswerteeinheiten (A0bis Al21) zugeordnet. Alle Empfangselemente einer Zeile (Z0 bis Z127) sind somit an dieselbe Auswerteeinheit angebunden. Die nicht beleuchteten Empfangselemente, genauer die Elemente (5201 bis 52127255 ) der nicht beleuchteten Untermatrix, sind durch
Absenken der Biasspannung deaktiviert. Die Anbindung der Empfangselemente (5200 bis 52127255 ) bzw. der Empfangspixel (59) an die Auswerteeinheiten ( A0 bis A127 ) erfolgt über Multiplexer.
Figur 5 zeigt die Zuordnung der Empfangselemente (5200 bis 52127255 ) der Empfangsmatrix (50) nach den Figuren lb und 2 zu Empfangsoptiken. Verschiedenen Untermengen (62a, 62b, 62c, 62d, 62e, 62f) der Empfangselemente (5200 bis 52127255 ) werden einzelne Empfangsoptiken zugeordnet. Die Untermengen (62a, 62b, 62c, 62d, 62e, 62f) bilden 3x3 Untermatrizen der Empfangsmatrix (50). Die Untermengen (62a, 62b, 62c, 62d, 62e, 62f) entsprechen nicht den Untermengen (21a, 21b), die zum Scannen aktiviert werden.
In Figur 6 ist die Gesamtausleuchtung der Empfangselemente (5200 bis 52127255 ) einer
Empfangsmatrix (50) einer erfindungsgemäßen Vorrichtung abgebildet. Es ist eine Draufsicht auf eine Seite (51) der Empfangsmatrix (50) gezeigt. Der relevante Unterschied zu den in den Figuren la, lb und 2 beschriebenen Sendematrix (10) und Emp- fangsmatrix (50) ist, dass die Zeilen (Z0 bis Z127) der Sendematrix (10) um einen halben Spaltenabstand (16, 56) gegeneinander versetzt sind, und zwar die zweite Zeile (ZJ gegenüber der erste Zeile (Z0) um einen halben Spaltenabstand (16, 56) nach rechts, während die dritte Zeile (Z2) wiederum um einen halben Spaltenabstand (16, 56) nach links verschoben ist. Dieses Schema setzt sich bis zur untersten Zeile (Z127) fort. Durch den Versatz sind die Spalten (S0 bis S255 ) nicht geradlinig ausgebildet, sondern verlaufen sozusagen in Zick-Zack-Linien. Als Spaltenabstand (16, 56) wird hier einfacherweise der konstante Abstand zwischen Elementen in einer Zeile ( Z0 bis Z127 ) verstanden. Die obigen Ausführungen gelten ebenso für die Empfangsmatrix (50).
Bezugszeichenliste
10 Sendematrix
11 Seite der Sendematrix
120 0 bis l2127 255 Sendeelemente der Sendematrix
13 gleichmäßiges Gitterraster
140 bis 142 gedachte Geraden durch die Mittelpunkte der Sendeelemente der Spalten
150 bis 152 gedachte Geraden durch die Mittelpunkte der Sendeelemente der Zeilen
16 Spaltenabstand
17 Zeilenabstand
18 rechter Winkel
19 Sendepixel
20 Laser
21a erste Untermenge der Sendeelemente
21b zweite Untermenge der Sendeelemente
Z0 bis Z127 Zeilen
S0 bis S255 Spalten
50 Empfangsmatrix
51 Seite der Empfangsmatrix
520 0 bis 52127 255 Empfangselemente
540 bis 543 gedachte Geraden durch die Mittelpunkte der Empfangselemente der Spalten
550 bis 553 gedachte Geraden durch die Mittelpunkte der Empfangselemente der Zeilen
56 Spaltenabstand
57 Zeilenabstand
59 Empfangspixel
60 Single Photon Avalanche Detektoren
61a erste Untermenge der Empfangselemente b zweite Untermenge der Empfangselementea, 62b, 62c, 62d, 62e, 62f einzelnen Ennpfangsoptiken zugeordnete Untermengen der Empfangselemente
Scanrichtung

Claims

A n s p r ü c h e
1. Verfahren zur optischen Distanzmessung,
wobei eine Vielzahl von Messpulsen durch mindestens eine Sendematrix (10) mit mehreren Sendeelementen ( 120 0 bis 12127 255 ) ausgesendet wird,
wobei mindestens ein ausgesendeter Messpuls von einem Messobjekt in
Form eines reflektierten Messpulses reflektiert wird,
wobei der mindestens eine am Messobjekt reflektierte Messpuls durch mindestens eine Empfangsmatrix (50) mit mehreren Empfangselementen ( 520 0 bis
52127 255 ) empfangen wird,
wobei die Laufzeit des mindestens einen Messpulses zum Messobjekt ermittelt wird,
wobei mithilfe der Lichtgeschwindigkeit die vom Messpuls zurückgelegte
Distanz zu dem Messobjekt bestimmt wird,
wobei die Sendematrix (10) eine erste Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) und eine zweite Untermenge (21b) der Sendeelemente ( 120 0 bis
12127 255 ) jeweils umfassend mindestens ein Sendelement aufweist,
dadurch gekennzeichnet, dass
die Sendeelemente ( 120 0 bis 12127 255 ) der Sendematrix (10) derart aktiviert und/oder deaktiviert werden, dass zu einem ersten Zeitpunkt ausschließlich die erste Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) aktiv ist, sodass ausschließlich das mindestens eine der ersten Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) zugordnete Sendelement einen Messpuls aussendet, und dass zu einem zweiten Zeitpunkt ausschließlich die zweite Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) aktiv ist, sodass ausschließlich das mindestens eine der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) zugordnete Sendelement einen
Messpuls aussendet.
2. Verfahren zur optischen Distanzmessung nach Anspruch 1,
dadurch gekennzeichnet, dass die erste Untermenge (21a) und/oder die zweite Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) eine Vielzahl von
Sendeelementen ( 120 0 , 121 0 , 122 0 bis 12126 0 , 12127 0 ) umfasst,
wobei die Sendeelemente ( 120 0 , 121 0 , 122 0 bis 12126 0 , 12127 0 ) der ersten Untermenge (21a) und/oder der zweiten Untermenge (21b) bei Aktivität simultan je mindestens einen Messpuls aussenden.
3. Verfahren zur optischen Distanzmessung nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass der ersten Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) eine erste Untermenge (61a) der Empfangselemente ( 520 0 bis 52127 255 ) umfassend mindestens ein Empfangselement zugeordnet wird,
wobei der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) eine zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) umfassend mindestens ein Empfangselement zugeordnet wird,
wobei die Empfangselemente ( 520 0 bis 52127 255 ) insbesondere derart aktiviert und/oder deaktiviert werden,
dass im Wesentlichen gleichzeitig mit der Aktivierung der ersten Untergruppe (21a) der Sendeelemente ( 120 0 bis 12127 255 ) ausschließlich die erste Untermenge
(61a) der Empfangselemente ( 520 0 bis 52127 255 ) aktiv ist, sodass die erste Untermenge
(61a) der Empfangselemente ( 520 0 bis 52127 255 ) die von der ersten Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) ausgesandten und reflektierten Messpulse empfängt, und dass im Wesentlichen gleichzeitig mit der Aktivierung der zweiten Untergruppe (21b) der Sendeelemente ( 120 0 bis 12127 255 ) ausschließlich die zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) aktiv ist, sodass die zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) die von der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) ausgesandten und reflektierten
Messpulse empfängt.
4. Verfahren zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
wobei je einem Sendelement ( 120 0 bis 12127 255 ) der Sendematrix (10) ein Empfangselement ( 520 0 bis 52127 255 ) der Empfangsmatrix (50) zugeordnet wird.
5. Verfahren zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
wobei die erste Untermenge (21a) und/oder die zweite Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) und/oder der Empfangselemente ( 520 0 bis
52127 255 ) einen räumlich zusammenhängenden Bereich der Sendematrix (10) bzw. der Empfangsmatrix (50) bilden.
6. Verfahren zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
wobei es sich bei der ersten Untermenge (21a) und/oder der zweiten Untermenge (21b) der Sendeelemente (1200 bis 12127255 ) und/oder der Empfangselemente (5200 bis 52127255 ) um mindestens eine Zeile (Z0 bis Z127) und/oder mindestens eine Spalte (S0 bis S255 ) und/oder eine Untermatrix der Sendematrix (10) bzw. der Empfangsmatrix (50) handelt.
7. Verfahren zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
wobei die erste Untermenge (21a) und/oder die zweite Untermenge (21b) der Sendeelemente (1200 bis 12127255 ) und/oder der Empfangselemente (5200 bis
52127255 ) räumlich benachbart zueinander ausgebildet sind.
8. Verfahren zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
wobei eine Vielzahl von Untermengen (21a, 21b) der Sendeelemente (1200 bis 12127255 ) und/oder der Empfangselemente (5200 bis 52127255 ) derart angesteuert wird, dass räumlich zusammenhängende und benachbarte Bereiche der Sendematrix (10) und/oder der Empfangsmatrix (50) nacheinander aktiviert werden,
sodass insbesondere eine sequentielle Erfassung des Sichtfeldes entlang einer Scanrichtung (80) erfolgt.
9. Vorrichtung zur optischen Distanzmessung,
wobei die Vorrichtung eine Sendematrix (10) mit mehreren Sendeelementen (1200 bis 12127255 ) zum Aussenden von Messpulsen und eine Empfangsmatrix (50) mit mehreren Empfangselementen (5200 bis 52127255 ) zum Empfangen von an Objekten reflektierten Messpulsen aufweist,
wobei die Sendematrix (10) eine erste Untermenge (21a) der Sendeelemente (1200 bis 12127255 ) und eine zweite Untermenge (21b) der Sendeelemente (1200 bis
12127255 ) je umfassend mindestens ein Sendelement aufweist,
dadurch gekennzeichnet, dass
die Sendeelemente (1200 bis 12127255 ) der Sendematrix (10) derart aktivierbar und/oder deaktivierbar ausgebildet sind, dass zu einem ersten Zeitpunkt ausschließlich die erste Untermenge (21a) der Sendeelemente (1200 bis 12127255 ) aktiv ist, sodass das mindestens eine der ersten Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) zugordnete Sendelement einen Messpuls aussendet, und dass zu einem zweiten Zeitpunkt ausschließlich die zweite Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) aktiv ist, sodass das mindestens eine der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) zugordnete Sendelement einen Messpuls aussendet.
10. Vorrichtung zur optischen Distanzmessung nach Anspruch 9,
dadurch gekennzeichnet, dass der ersten Untermenge (21a) der Sendeelemente ( 120 0 bis 12127 255 ) eine erste Untermenge (61a) der Empfangselemente ( 520 0 bis 52127 255 ) umfassend mindestens ein Empfangselement zugeordnet ist,
wobei der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) eine zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) umfassend mindestens ein Empfangselement zugeordnet ist,
wobei die Empfangselemente ( 520 0 bis 52127 255 ) insbesondere derart aktivierbar und/oder deaktivierbar ausgebildet sind,
dass im Wesentlichen gleichzeitig mit der Aktivierung der ersten Untergruppe (21a) der Sendeelemente ( 120 0 bis 12127 255 ) ausschließlich die erste Untermenge
(61a) der Empfangselemente ( 520 0 bis 52127 255 ) aktiv ist, sodass die erste Untermenge
(61a) der Empfangselemente die von der ersten Untermenge (21) der Sendeelemente ( 120 0 bis 12127 255 ) ausgesandten und reflektierten Messpulse empfängt, und dass im
Wesentlichen gleichzeitig mit der Aktivierung der zweiten Untergruppe (21b) der Sendeelemente ( 120 0 bis 12127 255 ) ausschließlich die zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) aktiv ist, sodass die zweite Untermenge (61b) der Empfangselemente ( 520 0 bis 52127 255 ) die von der zweiten Untermenge (21b) der Sendeelemente ( 120 0 bis 12127 255 ) ausgesandten und reflektierten Messpulse empfängt.
11. Vorrichtung zur optischen Distanzmessung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass
dir Vorrichtung mindestens eine Sendeoptik zum Aussenden der Messpulse in unterschiedliche Richtungen aufweist,
wobei zumindest ein Teil der Sendeelemente ( 120 0 bis 12127 255 ) der Sendematrix (10) in der Brennebene der mindestens einen Sendeoptik angeordnet ist, wobei die Vorrichtung insbesondere mindestens eine Ennpfangsoptik zum
Abbilden der Messpulse auf die Empfangsmatrix aufweist,
wobei zumindest ein Teil der Empfangselemente ( 520 0 bis 52127 255 ) der Empfangsmatrix (50) bevorzugterweise in der Brennebene der mindestens einen Empfangsoptik angeordnet ist.
12. Vorrichtung zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
die Vorrichtung eine Vielzahl von Sendematrizen (10) und/oder Empfangsmatrizen (50) aufweist,
wobei den Sendematrizen (10) und/oder Empfangsmatrizen (50) jeweils eine Sendeoptik bzw. Empfangsoptik zugeordnet ist.
13. Vorrichtung zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
es sich bei der Vorrichtung um einen LIDAR Sensor, insbesondere einen Flash LIDAR Sensor, handelt.
14. Vorrichtung zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
den Sendeelementen ( 120 0 bis 12127 255 ) je ein Sendepixel (19) zugeordnet ist,
wobei den Empfangselementen ( 520 0 bis 52127 255 ) je ein Empfangspixel (59) zugeordnet ist,
wobei die Sendepixel (19) in ihrer Ausdehnung größer oder kleiner ausgebildet sind als die Empfangspixel (59).
15. Vorrichtung zur optischen Distanzmessung nach einem der vorherigen Ansprüche,
dadurch gekennzeichnet, dass
die Vorrichtung zur Durchführung eines der Verfahren nach einem der Ansprüche 1 bis 8 ausgebildet ist.
PCT/EP2016/077499 2015-11-11 2016-11-11 Verfahren und vorrichtung zur optischen distanzmessung WO2017081294A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16795318.1A EP3374793B1 (de) 2015-11-11 2016-11-11 Verfahren und vorrichtung zur optischen distanzmessung
EP22157415.5A EP4020014B1 (de) 2015-11-11 2016-11-11 Verfahren und vorrichtung zur optischen distanzmessung
CN201680066229.2A CN108463739B (zh) 2015-11-11 2016-11-11 用于光学距离测量的方法和装置
US15/976,432 US11262438B2 (en) 2015-11-11 2018-05-10 Method and device for optically measuring distances
US17/577,903 US20220137189A1 (en) 2015-11-11 2022-01-18 Method and device for optically measuring distances

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15194125.9 2015-11-11
EP15194125 2015-11-11
EP16163529.7A EP3168641B1 (de) 2015-11-11 2016-04-01 Verfahren und vorrichtung zur optischen distanzmessung
EP16163529.7 2016-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/976,432 Continuation US11262438B2 (en) 2015-11-11 2018-05-10 Method and device for optically measuring distances

Publications (1)

Publication Number Publication Date
WO2017081294A1 true WO2017081294A1 (de) 2017-05-18

Family

ID=54539979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/077499 WO2017081294A1 (de) 2015-11-11 2016-11-11 Verfahren und vorrichtung zur optischen distanzmessung

Country Status (4)

Country Link
US (2) US11262438B2 (de)
EP (3) EP3168641B1 (de)
CN (1) CN108463739B (de)
WO (1) WO2017081294A1 (de)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222969A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Verfahren zur verbesserten Nah- und Ferndetektion einer LIDAR Empfangseinheit
DE102017222970A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH LIDAR Messsystem
WO2019115148A1 (de) 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Lidar empfangseinheit
EP3537172A1 (de) 2018-03-08 2019-09-11 ZF Friedrichshafen AG Empfangsanordnung zum empfang von lichtsignalen und verfahren zum empfangen von lichtsignalen
DE102018203535A1 (de) 2018-03-08 2019-09-12 Zf Friedrichshafen Ag Sendermodul für eine Entfernungsmessung mit Lichtsignalen, LiDAR-Einrichtung mit einem solchen Sendermodul und Verfahren zur Entfernungsmessung mit Lichtsignalen
DE102018205378A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zur Ansteuerung von Sensorelementen eines LIDAR Messsystems
DE102018205369A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zur Verarbeitung von Messdaten eines LIDAR Messsystems
DE102018205386A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH LIDAR Sende-/Empfangseinheit
DE102018205373A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH LIDAR Sendeeinheit
DE102018205376A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zum Durchführen eines Messvorgangs
WO2019214973A1 (de) 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Lidar messsystem und verfahren zur montage eines lidar messsystems
DE102018207279A1 (de) * 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Verfahren zur Optimierung der Effizienz eines Kraftfahrzeugs
WO2020065016A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Umfelderkennungssystem, fahrzeug sowie verfahren für ein umfelderkennungssystem
WO2020065015A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Lidar-messsystem sowie verfahren für ein lidar-messsystem
DE102018216699A1 (de) * 2018-09-28 2020-04-02 Ibeo Automotive Systems GmbH Feststellvorrichtung und LIDAR-Messsystem mit Feststellvorrichtung
WO2020065019A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Umfelderkennungssystem sowie verfahren für ein umfelderkennungssystem
DE102018217419A1 (de) * 2018-10-11 2020-04-16 Zf Friedrichshafen Ag Drehbar gelagertes Element, System mit einem drehbar gelagerten Element und einer Stromquelle, und Verfahren zum veränderlichen Koppeln einer Nabe mit einer Welle
CN111065936A (zh) * 2018-01-25 2020-04-24 爱贝欧汽车系统有限公司 用于光学距离测量的方法和设备
DE102018220688A1 (de) 2018-11-30 2020-06-04 Ibeo Automotive Systems GmbH Analog-Digital-Wandler
DE102018222049A1 (de) 2018-12-18 2020-06-18 Ibeo Automotive Systems GmbH Einrichtung zum Betreiben einer Lichtquelle zur optischen Laufzeitmessung
DE102019201031A1 (de) 2019-01-28 2020-07-30 lbeo Automotive Systems GmbH Kühlvorrichtung für einen Objekterkennungssensor
DE102019201032A1 (de) 2019-01-28 2020-07-30 lbeo Automotive Systems GmbH Kühlvorrichtung für einen Objekterkennungssensor
EP3736923A1 (de) 2019-05-07 2020-11-11 Ibeo Automotive Systems GmbH Halbleiter-package und lidar-sendeeinheit
WO2020225399A1 (de) 2019-05-08 2020-11-12 Zf Friedrichshafen Ag Lidar-system und gehäuse für ein lidar-system
WO2021001181A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Anpassungsvorrichtung und lidar-messvorrichtung
WO2021001261A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Auslesevorrichtung und lidar-messvorrichtung
WO2021001178A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Anpassungsvorrichtung und lidar-messvorrichtung
WO2021001177A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Lidar-empfangseinheit
WO2021115652A1 (de) 2019-12-11 2021-06-17 Ibeo Automotive Systems GmbH Einrichtung und verfahren zum erzeugen von testdaten zum testen einer distanzbestimmung bei einer optischen laufzeitmessung
DE102020201637A1 (de) 2020-02-11 2021-08-12 Ibeo Automotive Systems GmbH Verfahren zur Analyse von Rückstreuungs-Histogrammdaten bei einem optischen Pulslaufzeit-Verfahren und Vorrichtung zur Datenverarbeitung
DE102020201636A1 (de) 2020-02-11 2021-08-12 Ibeo Automotive Systems GmbH Einrichtung zur Erzeugung von Rückstreuungs-Histogrammdaten für die Bestimmung einer diffusen Rückstreuung bei einer optischen Laufzeitmessung und Verfahren
DE102020207527A1 (de) 2020-03-11 2021-09-16 Ibeo Automotive Systems GmbH Umfelderkennung durch Auswertung von SPAD-Histogrammen mittels einem künstlichen neuronalen Netzwerk
DE102020203596A1 (de) 2020-03-20 2021-09-23 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Sensorsystem
DE102018216700B4 (de) 2018-09-28 2022-01-13 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Lidar-Messsystem mit Schwenkvorrichtung
US11614519B2 (en) 2017-12-15 2023-03-28 Ibeo Automotive Systems GmbH Arrangements of light-receiving elements with different sensitivities and methods for receiving light signals
DE102019214549B4 (de) 2019-09-24 2023-03-30 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Sensorsystem mit Schwenkvorrichtung
US11644539B2 (en) 2017-12-15 2023-05-09 Microvision, Inc. Arrangement and method for using light signals and groups of light-receiving elements with different sensitivities to determine a distance of an object

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761195B2 (en) 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
JP7037830B2 (ja) 2017-03-13 2022-03-17 オプシス テック リミテッド 眼安全性走査lidarシステム
KR20220119769A (ko) 2017-07-28 2022-08-30 옵시스 테크 엘티디 작은 각도 발산을 갖는 vcsel 어레이 lidar 송신기
EP3710855A4 (de) 2017-11-15 2021-08-04 Opsys Tech Ltd. Rauschadaptives festkörper-lidar-system
DE102018131584B4 (de) 2017-12-15 2024-08-14 pmdtechnologies ag Verfahren zur Entfernungsmessung mittels eines Lichtlaufzeit-Entfernungsmesssystems und entsprechendes Lichtlaufzeit-Entfernungsmesssystem
DE102018101846A1 (de) * 2018-01-26 2019-08-01 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
EP3531166B1 (de) * 2018-02-21 2023-06-07 MicroVision, Inc. Verfahren und vorrichtung zur optischen distanzmessung
JP7324518B2 (ja) 2018-04-01 2023-08-10 オプシス テック リミテッド 雑音適応型固体ライダシステム
CN112154348B (zh) 2018-04-09 2024-08-23 奥卢大学 距离成像装置和方法
JP2020091117A (ja) * 2018-12-03 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 測距装置及び測距方法
EP3683599B1 (de) 2019-01-16 2022-06-22 Ibeo Automotive Systems GmbH Verfahren und vorrichtung zur optischen abstandsmessung
DE102019106213A1 (de) * 2019-03-12 2020-10-01 Valeo Schalter Und Sensoren Gmbh Verfahren zur Bestimmung wenigstens einer Positionsinformation wenigstens eines Objekts in einem Überwachungsbereich mit einer optischen Detektionsvorrichtung und optische Detektionsvorrichtung
JP7535313B2 (ja) 2019-04-09 2024-08-16 オプシス テック リミテッド レーザ制御を伴うソリッドステートlidar送光機
CN113906316A (zh) 2019-05-30 2022-01-07 欧普赛斯技术有限公司 使用致动器的眼睛安全的长范围lidar系统
JP7438564B2 (ja) 2019-06-10 2024-02-27 オプシス テック リミテッド 眼に安全な長距離固体lidarシステム
JP2022539706A (ja) 2019-06-25 2022-09-13 オプシス テック リミテッド 適応型多重パルスlidarシステム
CN110780312B (zh) * 2019-10-15 2022-10-21 深圳奥锐达科技有限公司 一种可调距离测量系统及方法
DE102019216932A1 (de) * 2019-11-04 2021-05-06 Robert Bosch Gmbh Optischer Sensor
DE102020110052A1 (de) * 2020-04-09 2021-10-14 Hybrid Lidar Systems Ag Vorrichtung zur erfassung von bilddaten
DE102021108877A1 (de) 2021-04-09 2022-10-13 Horiba Europe Gmbh Laserprojektionsvorrichtung für LIDAR-Testsystem
DE102021121868A1 (de) 2021-08-24 2023-03-02 Ifm Electronic Gmbh Lichtlaufzeitkamerasystem mit hohem Dynamikumfang

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646716A (en) * 1987-06-27 1989-01-11 Suzuki Motor Co Displacement measuring apparatus
DE19717399A1 (de) * 1997-04-24 1999-06-17 Spies Martin Dipl Ing Fh Einrichtung zur Bestimmung von Abstand und Art von Objekten sowie der Sichtweite
DE102010006943A1 (de) * 2010-02-04 2011-08-04 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart), 86558 Pulslaufzeitsensor für große Entfernungen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325386A (en) * 1992-04-21 1994-06-28 Bandgap Technology Corporation Vertical-cavity surface emitting laser assay display system
US7440084B2 (en) * 2004-12-16 2008-10-21 Arete' Associates Micromechanical and related lidar apparatus and method, and fast light-routing components
US7652752B2 (en) * 2005-07-14 2010-01-26 Arete' Associates Ultraviolet, infrared, and near-infrared lidar system and method
US7544945B2 (en) * 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
EP1860462A1 (de) * 2006-05-23 2007-11-28 Leica Geosystems AG Distanzmessverfahren und Distanzmesser zur Erfassung der räumlichen Abmessung eines Zieles
CN101688774A (zh) 2006-07-13 2010-03-31 威力登音响公司 高精确度激光雷达系统
FR2940463B1 (fr) * 2008-12-23 2012-07-27 Thales Sa Systeme d'imagerie passive equipe d'un telemetre
DE102009029364A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Messvorrichtung zur Messung einer Entfernung zwischen der Messvorrichtung und einem Zielobjekt mit Hilfe optischer Messstrahlung
US8494687B2 (en) * 2010-03-12 2013-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for enhancing a three dimensional image from a plurality of frames of flash LIDAR data
EP3901653A3 (de) 2010-05-17 2022-03-02 Velodyne Lidar USA, Inc. Hochauflösendes lidar-system
US9318877B2 (en) * 2012-03-01 2016-04-19 Iee International Electronics & Engineering S.A. Compact laser source for active illumination for hybrid three-dimensional imagers
US9065239B2 (en) * 2012-04-17 2015-06-23 Trilumina Corp. Multibeam array of top emitting VCSEL elements
EP2708913A1 (de) 2012-09-18 2014-03-19 Sick Ag Optoelektronischer Sensor und Verfahren zur Objekterfassung
US20150260830A1 (en) 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
EP2851704B1 (de) * 2013-09-19 2019-12-11 Pepperl+Fuchs AG Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
US9831630B2 (en) * 2014-02-06 2017-11-28 GM Global Technology Operations LLC Low cost small size LiDAR for automotive
DE102014103010A1 (de) * 2014-03-06 2015-09-10 Skidata Ag Digitalkamera
CN104035097B (zh) * 2014-07-01 2016-09-28 清华大学 一种阵列发射单元接收的无扫描三维激光探测装置及方法
US9810777B2 (en) * 2014-08-22 2017-11-07 Voxtel, Inc. Asynchronous LADAR and imaging array
US9791554B2 (en) * 2015-03-17 2017-10-17 Raytheon Company Multiple-beam triangulation-based range finder and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646716A (en) * 1987-06-27 1989-01-11 Suzuki Motor Co Displacement measuring apparatus
DE19717399A1 (de) * 1997-04-24 1999-06-17 Spies Martin Dipl Ing Fh Einrichtung zur Bestimmung von Abstand und Art von Objekten sowie der Sichtweite
DE102010006943A1 (de) * 2010-02-04 2011-08-04 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart), 86558 Pulslaufzeitsensor für große Entfernungen

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644539B2 (en) 2017-12-15 2023-05-09 Microvision, Inc. Arrangement and method for using light signals and groups of light-receiving elements with different sensitivities to determine a distance of an object
US11639999B2 (en) 2017-12-15 2023-05-02 Ibeo Automotive Systems GmbH Method for improved near and remote detection of a LIDAR receiving unit
WO2019115151A1 (de) 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Lidar messsystem
WO2019115149A1 (de) 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Verfahren zur verbesserten nah- und ferndetektion einer lidar empfangseinheit
US11614519B2 (en) 2017-12-15 2023-03-28 Ibeo Automotive Systems GmbH Arrangements of light-receiving elements with different sensitivities and methods for receiving light signals
DE102017222971A1 (de) 2017-12-15 2019-07-11 Ibeo Automotive Systems GmbH LIDAR Empfangseinheit
DE102017222970A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH LIDAR Messsystem
US11378660B2 (en) 2017-12-15 2022-07-05 Ibeo Automotive Systems GmbH LIDAR receiving unit
WO2019115148A1 (de) 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Lidar empfangseinheit
DE102017222969A1 (de) 2017-12-15 2019-06-19 Ibeo Automotive Systems GmbH Verfahren zur verbesserten Nah- und Ferndetektion einer LIDAR Empfangseinheit
US11686822B2 (en) 2017-12-15 2023-06-27 Microvision, Inc. LIDAR measurement system
CN111065936A (zh) * 2018-01-25 2020-04-24 爱贝欧汽车系统有限公司 用于光学距离测量的方法和设备
CN111065936B (zh) * 2018-01-25 2023-07-28 微视公司 用于光学距离测量的方法和设备
DE102018203533A1 (de) 2018-03-08 2019-09-12 Ibeo Automotive Systems GmbH Empfangsanordnung zum Empfang von Lichtsignalen und Verfahren zum Empfangen von Lichtsignalen
DE102018203535A1 (de) 2018-03-08 2019-09-12 Zf Friedrichshafen Ag Sendermodul für eine Entfernungsmessung mit Lichtsignalen, LiDAR-Einrichtung mit einem solchen Sendermodul und Verfahren zur Entfernungsmessung mit Lichtsignalen
EP3537172A1 (de) 2018-03-08 2019-09-11 ZF Friedrichshafen AG Empfangsanordnung zum empfang von lichtsignalen und verfahren zum empfangen von lichtsignalen
DE102018205376A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zum Durchführen eines Messvorgangs
US12085676B2 (en) 2018-04-10 2024-09-10 Microvision, Inc. Method for controlling sensor elements of a LIDAR measuring system
WO2019197243A1 (de) 2018-04-10 2019-10-17 Zf Friedrichshafen Ag Verfahren zum durchführen eines messvorgangs
WO2019197241A1 (de) 2018-04-10 2019-10-17 Zf Friedrichshafen Ag Verfahren zur ansteuerung von sensorelementen eines lidar messsystems
DE102018205378A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zur Ansteuerung von Sensorelementen eines LIDAR Messsystems
DE102018205369A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH Verfahren zur Verarbeitung von Messdaten eines LIDAR Messsystems
DE102018205386A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH LIDAR Sende-/Empfangseinheit
DE102018205373A1 (de) 2018-04-10 2019-10-10 Ibeo Automotive Systems GmbH LIDAR Sendeeinheit
WO2019214973A1 (de) 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Lidar messsystem und verfahren zur montage eines lidar messsystems
DE102018207279A1 (de) * 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Verfahren zur Optimierung der Effizienz eines Kraftfahrzeugs
DE102018207279B4 (de) 2018-05-09 2023-08-03 Zf Friedrichshafen Ag Verfahren zur Optimierung der Effizienz eines Kraftfahrzeugs
WO2020065016A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Umfelderkennungssystem, fahrzeug sowie verfahren für ein umfelderkennungssystem
DE102018216700B4 (de) 2018-09-28 2022-01-13 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Lidar-Messsystem mit Schwenkvorrichtung
WO2020065019A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Umfelderkennungssystem sowie verfahren für ein umfelderkennungssystem
DE102018216699A1 (de) * 2018-09-28 2020-04-02 Ibeo Automotive Systems GmbH Feststellvorrichtung und LIDAR-Messsystem mit Feststellvorrichtung
WO2020065015A1 (de) 2018-09-28 2020-04-02 Zf Friedrichshafen Ag Lidar-messsystem sowie verfahren für ein lidar-messsystem
DE102018217419A1 (de) * 2018-10-11 2020-04-16 Zf Friedrichshafen Ag Drehbar gelagertes Element, System mit einem drehbar gelagerten Element und einer Stromquelle, und Verfahren zum veränderlichen Koppeln einer Nabe mit einer Welle
WO2020109378A1 (de) 2018-11-30 2020-06-04 Zf Friedrichshafen Ag Analog-digital-wandler
DE102018220688A1 (de) 2018-11-30 2020-06-04 Ibeo Automotive Systems GmbH Analog-Digital-Wandler
DE102018222049A1 (de) 2018-12-18 2020-06-18 Ibeo Automotive Systems GmbH Einrichtung zum Betreiben einer Lichtquelle zur optischen Laufzeitmessung
WO2020127013A1 (de) 2018-12-18 2020-06-25 Zf Friedrichshafen Ag Einrichtung zum betreiben einer lichtquelle zur optischen laufzeitmessung
WO2020157006A1 (de) 2019-01-28 2020-08-06 Zf Friedrichshafen Ag Kühlvorrichtung für einen objekterkennungssensor
WO2020157005A1 (de) 2019-01-28 2020-08-06 Zf Friedrichshafen Ag Kühlvorrichtung für einen objekterkennungssensor
DE102019201031A1 (de) 2019-01-28 2020-07-30 lbeo Automotive Systems GmbH Kühlvorrichtung für einen Objekterkennungssensor
DE102019201032A1 (de) 2019-01-28 2020-07-30 lbeo Automotive Systems GmbH Kühlvorrichtung für einen Objekterkennungssensor
EP3736923A1 (de) 2019-05-07 2020-11-11 Ibeo Automotive Systems GmbH Halbleiter-package und lidar-sendeeinheit
WO2020225399A1 (de) 2019-05-08 2020-11-12 Zf Friedrichshafen Ag Lidar-system und gehäuse für ein lidar-system
WO2021001178A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Anpassungsvorrichtung und lidar-messvorrichtung
DE102019209697A1 (de) * 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Lidar-Empfangseinheit
WO2021001177A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Lidar-empfangseinheit
WO2021001261A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Auslesevorrichtung und lidar-messvorrichtung
WO2021001181A1 (de) 2019-07-02 2021-01-07 Ibeo Automotive Systems GmbH Anpassungsvorrichtung und lidar-messvorrichtung
DE102019214549B4 (de) 2019-09-24 2023-03-30 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Sensorsystem mit Schwenkvorrichtung
WO2021115652A1 (de) 2019-12-11 2021-06-17 Ibeo Automotive Systems GmbH Einrichtung und verfahren zum erzeugen von testdaten zum testen einer distanzbestimmung bei einer optischen laufzeitmessung
DE102020201637A1 (de) 2020-02-11 2021-08-12 Ibeo Automotive Systems GmbH Verfahren zur Analyse von Rückstreuungs-Histogrammdaten bei einem optischen Pulslaufzeit-Verfahren und Vorrichtung zur Datenverarbeitung
DE102020201636A1 (de) 2020-02-11 2021-08-12 Ibeo Automotive Systems GmbH Einrichtung zur Erzeugung von Rückstreuungs-Histogrammdaten für die Bestimmung einer diffusen Rückstreuung bei einer optischen Laufzeitmessung und Verfahren
WO2021160455A1 (de) 2020-02-11 2021-08-19 Ibeo Automotive Systems GmbH Einrichtung zur erzeugung von rückstreuungs-histogrammdaten für die bestimmung einer diffusen rückstreuung bei einer optischen laufzeitmessung und verfahren
WO2021160454A1 (de) 2020-02-11 2021-08-19 Ibeo Automotive Systems GmbH Verfahren zur analyse von rückstreuungs-histogrammdaten bei einem optischen pulslaufzeit-verfahren und vorrichtung zur datenverarbeitung
DE102020207527A1 (de) 2020-03-11 2021-09-16 Ibeo Automotive Systems GmbH Umfelderkennung durch Auswertung von SPAD-Histogrammen mittels einem künstlichen neuronalen Netzwerk
DE102020203596A1 (de) 2020-03-20 2021-09-23 Ibeo Automotive Systems GmbH Schwenkvorrichtung und Sensorsystem

Also Published As

Publication number Publication date
EP3168641A1 (de) 2017-05-17
EP4020014B1 (de) 2024-09-04
US11262438B2 (en) 2022-03-01
US20180259624A1 (en) 2018-09-13
CN108463739A (zh) 2018-08-28
US20220137189A1 (en) 2022-05-05
EP4020014A1 (de) 2022-06-29
EP3374793B1 (de) 2022-06-22
EP3374793A1 (de) 2018-09-19
CN108463739B (zh) 2022-12-09
EP3168641B1 (de) 2020-06-03

Similar Documents

Publication Publication Date Title
EP4020014B1 (de) Verfahren und vorrichtung zur optischen distanzmessung
EP3729137B1 (de) Multipuls-lidarsystem zur mehrdimensionalen erfassung von objekten
EP3724684B1 (de) Lidar empfangseinheit
EP1239300B1 (de) Vorrichtung zur Bestimmung eines Abstandprofils
DE102017002235A1 (de) LIDAR-System mit flexiblen Scanparametern
DE102016114995A1 (de) Vorrichtung und Verfahren zur Aufnahme von Entfernungsbildern
DE102018101847A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
DE102018214140A1 (de) LIDAR-Sensor zur optischen Erfassung eines Sichtfeldes, Arbeitsvorrichtung oder Fahrzeug mit einem LIDAR-Sensor und Verfahren zur optischen Erfassung eines Sichtfeldes
DE102014118055A1 (de) Sendeeinrichtung, Empfangseinrichtung und Objekterfassungsvorrichtung für ein Kraftfahrzeug sowie Verfahren dafür
EP3712647A1 (de) Optoelektronischer sensor und verfahren zur erfassung von objekten
EP3789794A1 (de) Verfahren und vorrichtung zur distanzmessung
WO2016169914A1 (de) Verfahren zum betreiben eines optoelektronischen sensors für ein kraftfahrzeug mit anpassung des aussendens der sendesignale, optoelektronischer sensor, fahrerassistenzsystem sowie kraftfahrzeug
EP2851704B1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
EP3599485B1 (de) Verfahren und vorrichtung zur optischen distanzmessung
EP3329300B1 (de) Optische sensorvorrichtung für ein kraftfahrzeug zum zweidimensionalen abtasten eines umgebungsbereiches des kraftfahrzeugs, kraftfahrzeug sowie verfahren
WO2018060408A1 (de) Abtasteinheit einer optischen sende- und empfangseinrichtung einer optischen detektionsvorrichtung eines fahrzeugs
DE102017211585A1 (de) Vorrichtung zur räumlichen Detektion, insbesondere Lidar-Vorrichtung
DE102018127635A1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
EP2963444B1 (de) Sensor und Verfahren zur ortsgenauen Detektion eines relativ zum Sensor in einer Förderrichtung geförderten Objekts
DE102011001713B3 (de) Einrichtung zur Ortsbestimmung eines Objektes in einem Raumwinkelbereich und Informationsübertragung
WO2022008230A1 (de) Lidar interferenzerkennung
DE102020214041A1 (de) Verfahren und Vorrichtung zur Ansteuerung von Emitterelementen eines LIDAR-Messsystems sowie LIDAR-Messsystem
EP4045931A1 (de) Multipuls-lidarsystem und verfahren zur erfassung eines objekts in einem beobachtungsbereich
WO2020193275A1 (de) Laserabstrahlvorrichtung und lidar-basierter umgebungssensor mit einer laserabstrahlvorrichtung
DE102019124641A1 (de) Detektionsvorrichtung zur Erfassung von Objekten und Verfahren zum Betreiben einer Detektionsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016795318

Country of ref document: EP