WO2017080486A1 - 信号的传输方法、终端侧设备和系统侧设备、存储介质 - Google Patents

信号的传输方法、终端侧设备和系统侧设备、存储介质 Download PDF

Info

Publication number
WO2017080486A1
WO2017080486A1 PCT/CN2016/105320 CN2016105320W WO2017080486A1 WO 2017080486 A1 WO2017080486 A1 WO 2017080486A1 CN 2016105320 W CN2016105320 W CN 2016105320W WO 2017080486 A1 WO2017080486 A1 WO 2017080486A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
downlink
uplink
module
analog
Prior art date
Application number
PCT/CN2016/105320
Other languages
English (en)
French (fr)
Inventor
李思军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017080486A1 publication Critical patent/WO2017080486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a signal transmission method, a terminal side device, a system side device, and a storage medium.
  • LTE Long Term Evolution
  • DAS distributed distributed antenna system
  • RF feeder or network cable indoor wiring construction
  • the present invention provides a signal transmission method, a terminal side device, a system side device, and a storage medium, in order to overcome the technical problem of the 4G wireless indoor coverage investment and the difficulty in obtaining the construction permit of the household.
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a method for transmitting a signal, which is applied to a system side device, and includes:
  • BBU Building Base Band Unit
  • the downstream analog signal is coupled to a power line for transmission.
  • the embodiment of the present invention further provides a signal transmission method, which is applied to a terminal side device, and includes:
  • the embodiment of the present invention further provides a system side device, including:
  • An interface configured to receive a downlink digital signal sent by the baseband processing unit BBU;
  • a system side processing module configured to convert the downlink digital signal into a downlink analog signal
  • the system side coupling module is configured to couple the downlink analog signal to a power line for transmission.
  • the embodiment of the present invention further provides a terminal side device, including:
  • a terminal side coupling module configured to receive a downlink analog signal sent by the system side device of the power line transmission
  • a terminal-side processing module configured to convert the downlink analog signal into a downlink radio signal of a long-term evolution LTE signal or a 4G signal support frequency;
  • the communication module is configured to send the downlink wireless signal.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions configured to perform the signal provided by the first aspect or the second aspect of the present invention. Transmission method.
  • the beneficial effects of the embodiment of the present invention are: introducing the signal of the base station accepted by the mobile signal baseband pool BBU into the power line, and the signal is filled with the entire building through the power line; the method is convenient and fast, and does not need to be wired in the building, and the investment of the operator equipment is small; Users can decide whether they want according to their needs.
  • the signal is obtained through the power line.
  • FIG. 1 is a schematic flow chart showing a method for transmitting a signal applied to a system side device according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for transmitting a signal applied to a terminal side device according to an embodiment of the present invention
  • FIG. 3 is a view showing the main configuration of a system side device in an embodiment of the present invention.
  • FIG. 4 is a detailed structural diagram of a system side device in an embodiment of the present invention.
  • Figure 5 is a diagram showing the main configuration of a terminal side device in an embodiment of the present invention.
  • FIG. 6 is a detailed structural diagram of a terminal side device in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing changes in signal frequency during signal transmission between a system side device and a terminal side device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing an FDD (Frequency Division) system for signal transmission by a system side device and a terminal side device through a power line according to an embodiment of the present invention.
  • FDD Frequency Division
  • Fig. 9 is a view showing a conventional TDD (Time Division) system for signal transmission of a power line.
  • the invention provides a signal transmission method, which is applied to a system side device, and includes:
  • Step 1 Receive a downlink digital signal sent by the baseband processing unit BBU.
  • Step 2 converting the downlink digital signal into a downlink analog signal
  • step 3 the downlink analog signal is coupled to the power line for transmission.
  • a downlink digital signal sent by the BBU is obtained, where the downlink digital signal is a base station The digital signal sent by the BBU.
  • the obtained downlink digital signal is converted from a digital signal into a downlink analog signal.
  • the downlink digital signal is frequency-converted to form a downlink analog signal, and then coupled into the power line, and the signal coverage of the building is realized by the power line disposed in the building.
  • the user can choose whether to receive the use of the downstream analog signal that has been coupled into the power line, thereby avoiding the user's fear of radiation and refusing to route the signal transmission line in the building. Because the downlink analog signal is transmitted through the power line, the cost of laying the signal transmission line is greatly saved, and the investment of the operator is reduced.
  • step 1 the downlink digital signal transmitted by the BBU is received through the optical fiber to ensure the transmission efficiency of the downlink digital signal.
  • step 2 comprises:
  • the third signal is subjected to frequency conversion processing to obtain a downlink analog signal whose frequency is lower than the first preset frequency value.
  • the downlink analog signal whose frequency is lower than the first preset frequency value is favorable for transmission in the power line.
  • the method further includes:
  • the process includes:
  • the uplink digital signal supported by the BBU is sent to the BBU through the optical fiber.
  • the process ensures that the uplink analog signal sent by the terminal side device is obtained from the power line and is sent to the BBU, so that the power line can be used instead of the signal transmission line, thereby saving the operator's cost.
  • the step of converting the uplink analog signal to the uplink digital signal supported by the BBU includes:
  • the first preset frequency value is 100 MHz.
  • the present invention also provides a signal transmission method, which is applied to a terminal side device, and includes:
  • Step 10 Receive a downlink analog signal sent by a system side device of the power line transmission
  • Step 20 Convert the downlink analog signal into a downlink wireless signal of an LTE signal or a 4G signal supporting frequency
  • step 30 the downlink wireless signal is sent out.
  • the downlink analog signal sent by the system side device is received, and the downlink analog signal is converted into a signal of the LTE signal or the 4G signal support frequency, so that the mobile terminal receives the downlink analog signal, which is convenient for the user to select whether to receive or not.
  • Downlink analog signal transmitted by power line is transmitted by power line.
  • step 20 includes:
  • the eighth signal is amplified to obtain a downlink wireless signal.
  • the method further includes: receiving, by the mobile terminal, an uplink mobile signal coupled to the power line, the process comprising: receiving an uplink mobile signal sent by the mobile terminal;
  • the upstream analog signal is coupled to the power line for transmission.
  • the step of converting the uplink mobile signal to the uplink analog signal comprises:
  • the tenth signal is amplified to obtain an uplink analog signal.
  • the second preset frequency value is 100 MHz.
  • the present invention further provides a system side device, corresponding to the foregoing method for transmitting a signal applied to a system side device, including:
  • the interface 100 is configured to receive a downlink digital signal sent by the baseband processing unit BBU.
  • the system side processing module 200 is configured to convert the downlink digital signal into a downlink analog signal
  • the system side coupling module 300 is configured to couple the downlink analog signal to the power line for transmission.
  • the system side device couples the downstream digital signal in the BBU to the power line, thereby avoiding the user's fear of radiation and refusing to route the signal transmission line in the building. Because the signal is transmitted through the power line, the cost of laying the signal transmission line is greatly reduced, and the investment of the operator is reduced.
  • the interface 100 is a fiber optic interface, and receives the downlink digital signal sent by the BBU through the optical fiber to ensure the transmission efficiency of the downlink digital signal.
  • system side processing module 200 includes:
  • the digital-to-analog conversion module is configured to perform digital-to-analog conversion on the downlink digital signal to obtain a first signal
  • the first amplifying module is configured to perform amplification processing on the first signal to obtain a second signal
  • the first filtering module is configured to perform filtering processing on the second signal to obtain a third signal
  • the first frequency conversion module is configured to perform frequency conversion processing on the third signal to obtain a downlink analog signal whose frequency is lower than the first preset frequency value.
  • the system side device is further configured to transmit the uplink analog signal sent by the terminal side device through the power line to the BBU.
  • the system side coupling module 300 is further configured to receive an uplink analog signal sent by the terminal side device through the power line;
  • the system side processing module 200 is further configured to convert the uplink analog signal into an uplink digital signal supported by the BBU;
  • the interface 100 is further configured to send the uplink digital signal supported by the BBU to the BBU through the optical fiber.
  • system side processing module further includes:
  • a second filtering module configured to filter the uplink analog signal to obtain a fourth signal
  • the second frequency conversion module is configured to perform frequency conversion processing on the fourth signal to obtain a fifth signal having a frequency higher than the first preset frequency value;
  • a second amplification module configured to perform amplification processing on the fifth signal to obtain a sixth signal
  • the analog-to-digital conversion module is configured to perform analog-to-digital conversion on the sixth signal to obtain an uplink digital signal supported by the baseband processing unit BBU.
  • the first preset frequency value may be 100 MHz.
  • the system side device is applied to the outdoor end of the power line.
  • the main function is to complete the signal interaction with the BBU, and convert the downlink digital signal transmitted from the BBU into a 4G or LTE downlink analog signal and couple it into the power line transmission, and transmit the terminal side device.
  • the upstream signal is converted and transmitted to the BBU through the optical fiber.
  • the hardware architecture of the system side device includes two parts of the uplink processing path and the downlink path.
  • the downlink digital signal sent by the base station to the BBU is coupled to the power line, and the downlink
  • the path includes: an interface, a digital to analog conversion module, a first amplification module, a first filtering module, and a system side coupling module.
  • the uplink analog signal sent by the terminal side device to the power line is coupled to the BBU, and the uplink path includes:
  • System side coupling module second filtering module, second frequency conversion module, second amplification module, analog to digital conversion module and interface.
  • the system side device performs digital-to-analog conversion, amplification, and filtering on the downlink digital signal received from the BBU, and converts the frequency to the intermediate frequency signal f1 (below 100 MHz), and transmits the power to the terminal side device through the power line.
  • the uplink analog signal f2 transmitted from the terminal side is filtered, frequency-converted, amplified, and digital-analog transformed, and the uplink analog signal is transmitted to the BBU through the interface.
  • the present invention further provides a terminal-side device, which includes a method for transmitting a signal applied to a terminal-side device, and includes:
  • the terminal side coupling module 400 is configured to receive a downlink analog signal sent by the system side device of the power line transmission;
  • the terminal-side processing module 500 is configured to convert the downlink analog signal into a downlink radio signal of a long-term evolution LTE signal or a 4G signal support frequency;
  • the communication module 600 is configured to send the downlink wireless signal.
  • the communication module 600 includes a duplexer and an antenna.
  • the terminal side processing module 500 includes:
  • the third filtering module is configured to perform filtering processing on the downlink analog signal to obtain a seventh signal
  • the third frequency conversion module is configured to perform frequency conversion processing on the seventh signal to obtain an eighth signal of a frequency LTE signal or a 4G signal use frequency;
  • the third amplification module is configured to perform amplification processing on the eighth signal to obtain a downlink wireless signal.
  • the terminal side device is further configured to receive an uplink mobile signal sent by the mobile terminal, and move the uplink The dynamic signal is converted into an upstream analog signal that is coupled into the power line.
  • the communication module 600 is further configured to receive an uplink mobile signal sent by the mobile terminal;
  • the terminal side processing module 500 is further configured to convert the uplink mobile signal into an uplink analog signal.
  • the terminal side coupling module 400 is further configured to couple the uplink analog signal to the power line for transmission.
  • the terminal side processing module 500 further includes:
  • a fourth filtering module configured to filter the uplink motion signal to obtain a ninth signal
  • the fourth frequency conversion module is configured to perform frequency conversion processing on the ninth signal to obtain a tenth signal whose frequency is lower than the second preset frequency value;
  • the fourth amplifying module amplifies the tenth signal to obtain an uplink analog signal.
  • the second preset frequency value is 100 MHz.
  • the terminal side device converts the downlink analog signal transmitted by the system side device into a 4G signal or an LTE signal frequency signal operated by the operator, and then transmits the antenna through the antenna to complete the downlink coverage.
  • the system side device receives an uplink mobile signal sent by a mobile terminal such as a mobile phone, and converts the uplink mobile signal to an intermediate frequency, and transmits the uplink mobile signal to the system side device through the power line.
  • a mobile terminal such as a mobile phone
  • the hardware architecture of the terminal side device mainly includes two parts: an uplink path and a downlink path.
  • the downlink path transmits the wireless signal coupled to the power line in the system side device, and the downlink path includes: a terminal side coupling module, a third filtering module, a third frequency conversion module, a third amplification module, a duplexer and an antenna.
  • the uplink path converts the uplink mobile signal sent by the mobile terminal into a power line for transmission, and the uplink path includes an antenna, a duplexer, a fourth filtering module, a fourth frequency conversion module, and a fourth amplification module.
  • the terminal side device filters the downlink analog signal transmitted by the system side device through the power line to remove the interference, and converts the frequency to the actual 4G signal of the operator or the signal of the LTE signal frequency, and then after amplification, transmits the antenna through the antenna to complete the downlink coverage;
  • the terminal side device simultaneously filters the uplink mobile signal sent by the received mobile terminal, converts it into an intermediate frequency signal, amplifies it, and transmits it to the system side device through the power line.
  • the LTE signal of 1800 MHz is taken as an example to describe in detail the frequency variation of the LTE signal during transmission of the terminal side device and the system side device of the present invention through the power line.
  • the system side device first converts the 1800MHz LTE signal to 50MHz, transmits it in the power line, and completes the first frequency conversion;
  • the terminal side device then converts the 50 MHz LTE signal to 1800 MHz to complete the second frequency conversion.
  • the double conversion technology can increase the coverage distance by more than 300%.
  • the conventional power line transmission equipment adopts the TDD system, that is, the same frequency is used for signal transmission and reception, and the bandwidth is shared by the time division mode.
  • the system side device and the terminal side device are transmitted using the FDD system, and the signals are transmitted and received using different frequencies.
  • the theoretical system capacity of the FDD system is doubled.
  • the system side device introduces a 4G signal or an LTE signal into a power line inside the building, and the signal is transmitted to each corner of the building via the power line.
  • a terminal device can be directly inserted into the power line socket, which is convenient and quick, no wiring is required, and the investment of the operator equipment is small.
  • the terminal equipment is family-level, small in size, low in price, and whether or not the decision-making right is in the hands of the users. There is no concern that the residents are concerned about electromagnetic radiation.
  • the modules included in the system-side device provided by the embodiment of the present invention can be implemented by the processor in the system-side device.
  • the modules included in the terminal-side device provided by the embodiment of the present invention can be processed through the terminal-side device.
  • the functions implemented by the processor can also be passed Logic circuit implementation; in the process of implementation, the processor can be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP) or a field programmable gate array (FPGA).
  • CPU central processing unit
  • MPU microprocessor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the signal transmission method of the system side device or the terminal side device described above is implemented in the form of a software function module, and is sold or used as an independent product, it may also be stored in one computer. Readable in storage media.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are configured to perform a signal transmission method in the embodiment of the present invention.
  • the modules may be implemented in software for execution by various types of processors.
  • a terminal-side processing module can include one or more physical or logical blocks of computer instructions, which can be constructed, for example, as objects, procedures, or functions. Nevertheless, the executable code of the terminal side processing module need not be physically located together, but may comprise different instructions stored in different bits, when these instructions are logically combined, they constitute a module and implement the module. Prescribed purpose.
  • the terminal-side processing module can be a single instruction or a number of instructions, and can even be distributed over multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operation The data may be collected as a single data set, or may be distributed over different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software, and the technician can construct a corresponding hardware circuit to implement the corresponding function without considering the cost.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • the signal of the base station accepted by the mobile signal baseband pool BBU is introduced into the power line, and the signal is filled with the entire building through the power line; the method is convenient and fast, and does not need to be wired in the building, and the investment of the operator equipment is small; It is necessary to determine whether to obtain signals through the power line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信号的传输方法、终端侧设备和系统侧设备、存储介质。其中,一种应用于系统侧设备的信号的传输方法包括:接收基带处理单元BBU发送的下行数字信号;将所述下行数字信号转换成下行模拟信号;将所述下行模拟信号耦合到电力线上进行传输。

Description

信号的传输方法、终端侧设备和系统侧设备、存储介质 技术领域
本发明涉及移动通讯领域,尤其涉及一种信号的传输方法、终端侧设备和系统侧设备、存储介质。
背景技术
随着智能终端的普及和移动第四代(4G,The 4th Generation)移动通信技术长期演进(Long Term Evolution,LTE)等技术飞跃式发展,人们对无线数据的需求越来越大。另外据相关统计,70%的移动数据业务发生在室内,因此室内成为4G覆盖的重中之重。
目前室内覆盖的主流解决方案为室分无源的分布式天线系统(DAS,Distribute Antenna System),系统或者微蜂窝覆盖系统,这些方案无一例外都需要进行室内布线施工(射频馈线或者网线),前期设备投资大;当今居民电磁辐射环保意识越来越强,物业租赁协调变得越发困难。
发明内容
为了克服现有技术中4G无线室内覆盖投资大、获取住户施工许可困难的技术问题,本发明实施例提供了一种信号的传输方法、终端侧设备和系统侧设备、存储介质。
为了解决上述技术问题,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种信号的传输方法,应用于系统侧设备,包括:
接收基带处理单元(Building Base band Unit,BBU)发送的下行数字信号;
将所述下行数字信号转换成下行模拟信号;
将所述下行模拟信号耦合到电力线上进行传输。
第二方面,本发明实施例还提供了一种信号的传输方法,应用于终端侧设备,包括:
接收电力线传输的系统侧设备发送的下行模拟信号;
将所述下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号;
将下行无线信号发送出去。
第三方面,本发明实施例还提供了一种系统侧设备,包括:
接口,配置为接收基带处理单元BBU发送的下行数字信号;
系统侧处理模块,配置为将所述下行数字信号转换成下行模拟信号;
系统侧耦合模块,配置为将所述下行模拟信号耦合到电力线上进行传输。
第四方面,本发明实施例还提供了一种终端侧设备,包括:
终端侧耦合模块,配置为接收电力线传输的系统侧设备发送的下行模拟信号;
终端侧处理模块,配置为将所述下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号;
通讯模块,配置为将下行无线信号发送出去。
第五方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行本发明第一方面或第二方面实施例提供的信号的传输方法。
本发明实施例的有益效果是:把移动信号基带池BBU接受的基站的信号引入电力线,信号经电力线布满整个建筑物;该方法方便快捷,无需在建筑内布线,运营商设备投资小;是用户可以根据自身的需要来决定是否 通过电力线获取信号。
附图说明
图1表示本发明实施例中应用于系统侧设备的信号的传输方法的流程示意图;
图2表示本发明实施例中应用于终端侧设备的信号的传输方法的流程示意图;
图3表示本发明实施例中系统侧设备的主要构成图;
图4表示本发明实施例中系统侧设备的详细构成图;
图5表示本发明实施例中终端侧设备的主要构成图;
图6表示本发明实施例中终端侧设备的详细构成图;
图7表示本发明实施例中系统侧设备和终端侧设备信号传输过程中信号频率变化的示意图;
图8表示本发明实施例中系统侧设备和终端侧设备通过电力线进行信号传输采用FDD(频分)制式的示意图。
图9表示现有技术中电力线进行信号传输采用TDD(时分)制式的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明进行详细描述。
本发明提供了一种信号的传输方法,应用于系统侧设备,包括:
步骤1,接收基带处理单元BBU发送的下行数字信号;
步骤2,将下行数字信号转换成下行模拟信号;
步骤3,将下行模拟信号耦合到电力线上进行传输。
该方法中,获取BBU发送的下行数字信号,该下行数字信号为基站向 BBU发送的数字信号。将获取的下行数字信号由数字信号转换成下行模拟信号。在已经模拟化的下行移动信号进行预处理后,对下行数字信号变频形成下行模拟信号,然后耦合至电力线内,通过布置在建筑中的电力线实现对该建筑的信号覆盖。用户可以选择是否接收使用已经耦合至电力线中的下行模拟信号,从而避免了用户担心辐射而拒绝在建筑中布设信号传输线的问题。因为通过电力线传输下行模拟信号,大大节约了铺设信号传输线的成本,减少了运营商的投入。
在本发明的其他实施例中,步骤1中,通过光纤接收BBU发送的下行数字信号,保证了下行数字信号的传输效率。
在本发明的其他实施例中,步骤2包括:
将下行数字信号进行数模转换,得到第一信号;对第一信号进行放大处理,得到第二信号;
对第二信号进行滤波处理,得到第三信号;
对第三信号进行变频处理,得到频率低于第一预设频率值的下行模拟信号。其中,频率低于第一预设频率值的下行模拟信号有利于在电力线中传输。
在将基带处理单元BBU发送的下行数字信号耦合至电力线的步骤之后,还包括:
将终端侧设备发送的上行模拟信号传递至BBU的过程。该过程包括:
接收终端侧设备通过电力线发送的上行模拟信号;
将上行模拟信号转换为BBU支持的上行数字信号;
将BBU支持的上行数字信号通过光纤发送给BBU。
该过程保证了从电力线中获取终端侧设备发送的上行模拟信号输送至BBU内,从而可以使用电力线替代信号传输线的布置,节约了运营商的成本。
在本发明的其他实施例中,将上行模拟信号转换为BBU支持的上行数字信号的步骤包括:
将上行模拟信号进行滤波,得到第四信号;
对第四信号进行变频处理,得到频率高于第一预设频率值的第五信号;
对第五信号进行放大处理,得到第六信号;
对第六信号进行模数转换,得到基带处理单元BBU支持的上行数字信号。其中,上述的第一预设频率值为100MHz。
本发明还提供了一种信号的传输方法,应用于终端侧设备,包括:
步骤10,接收电力线传输的系统侧设备发送的下行模拟信号;
步骤20,将下行模拟信号转换为LTE信号或4G信号支持频率的下行无线信号;
步骤30,将下行无线信号发送出去。
本方法中,通过接收系统侧设备发送的下行模拟信号,将下行模拟信号转换为LTE信号或4G信号支持频率的信号进行发送,实现了移动终端对下行模拟信号的接收,便于用户选择是否接收通过电力线传输的下行模拟信号。
在本发明的其他实施例中,步骤20包括:
对下行模拟信号进行滤波处理,得到第七信号;
对第七信号进行变频处理,得到频率LTE信号或4G信号使用频率的第八信号;
对第八信号进行放大处理,得到下行无线信号。
将电力线传输的系统侧设备发送的下行无线信号发送出去的过程之后,还包括:接收移动终端发送的上行移动信号耦合至电力线的过程,该过程包括:接收移动终端发送的上行移动信号;
将上行移动信号转换为上行模拟信号;
将上行模拟信号耦合到电力线上进行传输。
从而实现了将移动终端发送至电力线的目的,从而可以使用电力线替代信号传输线的布置,节约了运营商的成本。
在本发明的其他实施例中,将上行移动信号转换为上行模拟信号的步骤包括:
将上行移动信号进行滤波,得到第九信号;
对第九信号进行变频处理,得到频率低于第二预设频率值的第十信号;
对第十信号进行放大处理,得到上行模拟信号。
其中,第二预设频率值为100MHz。
参照图3所示,对应上述应用于系统侧设备的信号的传输方法,本发明还提供了一种系统侧设备,包括:
接口100,配置为接收基带处理单元BBU发送的下行数字信号;
系统侧处理模块200,配置为将下行数字信号转换成下行模拟信号;
系统侧耦合模块300,配置为将下行模拟信号耦合到电力线上进行传输。
系统侧设备将BBU中的下行数字信号耦合至电力线中,从而避免了用户担心辐射而拒绝在建筑中布设信号传输线的问题。因为通过电力线传输信号,大大节约了铺设信号传输线的成本,减少了运营商的投入。
接口100是光纤接口,通过光纤接收BBU发送的下行数字信号,保证了下行数字信号的传输效率。
为了实现下行数字信号转换成下行模拟信号,系统侧处理模块200包括:
数模转换模块,配置为将下行数字信号进行数模转换,得到第一信号;
第一放大模块,配置为对第一信号进行放大处理,得到第二信号;
第一滤波模块,配置为对第二信号进行滤波处理,得到第三信号;
第一变频模块,配置为对第三信号进行变频处理,得到频率低于第一预设频率值的下行模拟信号。
系统侧设备还配置为将终端侧设备通过电力线发送的上行模拟信号传递至BBU。
其中,系统侧耦合模块300,还配置为接收终端侧设备通过电力线发送的上行模拟信号;
系统侧处理模块200,还配置为将上行模拟信号转换为BBU支持的上行数字信号;
接口100,还配置为将BBU支持的上行数字信号通过光纤发送给BBU。
为了实现将终端侧设备通过电力线发送的上行模拟信号传递至BBU,系统侧处理模块还包括:
第二滤波模块,配置为将上行模拟信号进行滤波,得到第四信号;
第二变频模块,配置为对第四信号进行变频处理,得到频率高于第一预设频率值的第五信号;
第二放大模块,配置为对第五信号进行放大处理,得到第六信号;
模数转换模块,配置为对第六信号进行模数转换,得到基带处理单元BBU支持的上行数字信号。
本发明的上述实施例中,第一预设频率值可以为100MHz。
系统侧设备应用于电力线的室外端,主要功能是完成与BBU的信号交互,把BBU传过来的下行数字信号变频为4G或LTE的下行模拟信号耦合进电力线传输,同时把终端侧设备传递过来的上行信号变频并通过光纤传递给BBU。
参照图4所示,系统侧设备的硬件架构中,包括上行通路和下行通路两部分信号处理通路。
下行通路,将基站发送至BBU的下行数字信号耦合至电力线内,下行 通路包括:接口、数模变换模块、第一放大模块、第一滤波模块和系统侧耦合模块。
上行通路,将终端侧设备发送至电力线中的上行模拟信号耦合至BBU中,上行通路包括:
系统侧耦合模块、第二滤波模块、第二变频模块、第二放大模块、模数转换模块和接口。
系统侧设备把从BBU接收的下行数字信号进行数模转换、放大、滤波,变频为中频信号f1(低于100MHz),通过电力线传递给终端侧设备。
同时,把终端侧传递过来的上行模拟信号f2进行滤波、变频、放大和数模变换,通过接口把上行模拟信号传递给BBU。
参照图5所示,对应上述应用于终端侧设备的信号的传输方法,本发明还提供了一种终端侧设备,包括:
终端侧耦合模块400,配置为接收电力线传输的系统侧设备发送的下行模拟信号;
终端侧处理模块500,配置为将下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号;
通讯模块600,配置为将下行无线信号发送出去。
其中,通讯模块600包括双工器和天线。
为了实现将下行模拟信号转换为LTE信号或4G信号支持频率的下行无线信号,终端侧处理模块500包括:
第三滤波模块,配置为对下行模拟信号进行滤波处理,得到第七信号;
第三变频模块,配置为对第七信号进行变频处理,得到频率LTE信号或4G信号使用频率的第八信号;
第三放大模块,配置为对第八信号进行放大处理,得到下行无线信号。
终端侧设备还配置为接收移动终端发送的上行移动信号,并将上行移 动信号转变为上行模拟信号发耦合至电力线内。
为了实现这个目的,通讯模块600,还配置为接收移动终端发送的上行移动信号;
终端侧处理模块500,还配置为将上行移动信号转换为上行模拟信号;
终端侧耦合模块400,还配置为将上行模拟信号耦合到电力线上进行传输。
为了实现将上行移动信号转换为上行模拟信号,终端侧处理模块500还包括:
第四滤波模块,配置为将上行移动信号进行滤波,得到第九信号;
第四变频模块,配置为对第九信号进行变频处理,得到频率低于第二预设频率值的第十信号;
第四放大模块,对第十信号进行放大处理,得到上行模拟信号。
其中,第二预设频率值为100MHz。
终端侧设备把系统侧设备传递的下行模拟信号变频为运营商运营的4G信号或LTE信号频率的信号,然后通过天线发射出去,完成下行覆盖。
同时接收手机等移动终端发出的上行移动信号,将上行移动信号变频到中频,通过电力线发送给系统侧设备。
参照图6所示,终端侧设备的硬件架构,主要包括上行通路和下行通路两部分。
下行通路,将系统侧设备耦合至电力线中的无线信号发射出去,下行通路包括:终端侧耦合模块、第三滤波模块、第三变频模块、第三放大模块、双工器和天线。
上行通路,将移动终端发送的上行移动信号变频后耦合到电力线中传输,上行通路包括天线、双工器、第四滤波模块、第四变频模块和第四放大模块。
终端侧设备把系统侧设备通过电力线传输的下行模拟信号滤波,去除干扰,变频为运营商实际4G信号或LTE信号频率的信号,然后经过放大后,通过天线发射出去,完成下行覆盖;
终端侧设备同时把接收的移动终端发送的上行移动信号滤波,变频为中频信号,放大后,通过电力线发送给系统侧设备。
参照图7所示,以1800MHz的LTE信号为例,来详细介绍本发明的终端侧设备和系统侧设备通过电力线的传输过程中LTE信号的频率变化。
系统侧设备首先把1800MHz的LTE信号变频到50MHz,在电力线中传输,完成第一次变频;
终端侧设备再把50MHz的LTE信号变频为1800MHz,完成第二次变频。和1800MHz信号直接在电力线传输相比,双变频技术可以使覆盖距离增大300%以上。
参照图8和图9所示,传统电力线传输设备都是采用TDD制式,即信号发射和接收使用相同的频率,采用时分模式共享带宽。
本发明中,系统侧设备和终端侧设备传输采用FDD制式,信号发射和接收使用不同的频率,和TDD制式相比,FDD制式的理论系统容量增加一倍。
系统侧设备把4G信号或LTE信号引入建筑物内部的电力线,信号经电力线传输到建筑物内部的每一个角落。对于需要信号覆盖的地方直接在电力线插座上插一个终端设备即可,方便快捷,无需布线,运营商设备投资小。终端设备为家庭级,体积小,价格便宜,是否使用决定权在用户手里,不存在居民担心电磁辐射反对问题。
本发明实施例提供的系统侧设备所包括的各模块都可以通过系统侧设备中的处理器来实现;本发明实施例提供的终端侧设备所包括的各模块都可以通过终端侧设备中的处理器来实现;当然处理器实现的功能也可通过 逻辑电路实现;在实施的过程中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的系统侧设备或终端侧设备的信号的传输方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例再提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行本发明实施例中的信号的传输方法。
本发明实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个终端侧处理模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,终端侧处理模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,终端侧处理模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作 数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。
工业实用性
本发明实施例中,把移动信号基带池BBU接受的基站的信号引入电力线,信号经电力线布满整个建筑物;该方法方便快捷,无需在建筑内布线,运营商设备投资小;是用户可以根据自身的需要来决定是否通过电力线获取信号。

Claims (24)

  1. 一种信号的传输方法,应用于系统侧设备,包括:
    接收基带处理单元BBU发送的下行数字信号;
    将所述下行数字信号转换成下行模拟信号;
    将所述下行模拟信号耦合到电力线上进行传输。
  2. 根据权利要求1所述的信号的传输方法,其中,接收基带处理单元BBU发送的下行数字信号的步骤包括:
    通过光纤接收所述BBU发送的下行数字信号。
  3. 根据权利要求1所述的信号的传输方法,其中,将所述下行数字信号转换成下行模拟信号的步骤包括:
    将所述下行数字信号进行数模转换,得到第一信号;
    对所述第一信号进行放大处理,得到第二信号;
    对所述第二信号进行滤波处理,得到第三信号;
    对所述第三信号进行变频处理,得到频率低于第一预设频率值的下行模拟信号。
  4. 根据权利要求1所述的信号的传输方法,其中,将所述下行模拟信号耦合到电力线上进行传输的步骤之后还包括:
    接收终端侧设备通过电力线发送的上行模拟信号;
    将所述上行模拟信号转换为所述BBU支持的上行数字信号;
    将所述BBU支持的上行数字信号通过光纤发送给所述BBU。
  5. 根据权利要求4所述的信号的传输方法,其中,将所述上行模拟信号转换为所述BBU支持的上行数字信号的步骤包括:
    将所述上行模拟信号进行滤波,得到第四信号;
    对所述第四信号进行变频处理,得到频率高于所述第一预设频率值的第五信号;
    对所述第五信号进行放大处理,得到第六信号;
    对所述第六信号进行模数转换,得到所述基带处理单元BBU支持的上行数字信号。
  6. 根据权利要求3或5所述的信号的传输方法,其中,所述第一预设频率值为100MHz。
  7. 一种信号的传输方法,应用于终端侧设备,包括:
    接收电力线传输的系统侧设备发送的下行模拟信号;
    将所述下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号;
    将下行无线信号发送出去。
  8. 根据权利要求7所述的信号的传输方法,其中,将所述下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号的步骤包括:
    对所述下行模拟信号进行滤波处理,得到第七信号;
    对所述第七信号进行变频处理,得到频率LTE信号或4G信号使用频率的第八信号;
    对所述第八信号进行放大处理,得到所述下行无线信号。
  9. 根据权利要求7所述的信号的传输方法,其中,将下行无线信号发送出去的步骤之后还包括:
    接收移动终端发送的上行移动信号;
    将所述上行移动信号转换为上行模拟信号;
    将所述上行模拟信号耦合到电力线上进行传输。
  10. 根据权利要求9所述的信号的传输方法,其中,将所述上行移动信号转换为上行模拟信号的步骤包括:
    将所述上行移动信号进行滤波,得到第九信号;
    对所述第九信号进行变频处理,得到频率低于第二预设频率值的第十信号;
    对所述第十信号进行放大处理,得到所述上行模拟信号。
  11. 根据权利要求10所述的信号的传输方法,其中,所述第二预设频率值为100MHz。
  12. 一种系统侧设备,包括:
    接口,配置为接收基带处理单元BBU发送的下行数字信号;
    系统侧处理模块,配置为将所述下行数字信号转换成下行模拟信号;
    系统侧耦合模块,配置为将所述下行模拟信号耦合到电力线上进行传输。
  13. 根据权利要求12所述的系统侧设备,其中,
    所述接口配置为通过光纤接收所述BBU发送的下行数字信号。
  14. 根据权利要求12所述的系统侧设备,其中,所述系统侧处理模块包括:
    数模转换模块,配置为将所述下行数字信号进行数模转换,得到第一信号;
    第一放大模块,配置为对所述第一信号进行放大处理,得到第二信号;
    第一滤波模块,配置为对所述第二信号进行滤波处理,得到第三信号;
    第一变频模块,配置为对所述第三信号进行变频处理,得到频率低于第一预设频率值的下行模拟信号。
  15. 根据权利要求12所述的系统侧设备,其中,
    所述系统侧耦合模块,还配置为接收终端侧设备通过电力线发送的上行模拟信号;
    所述系统侧处理模块,还配置为将所述上行模拟信号转换为所述BBU支持的上行数字信号;
    所述接口,还配置为将所述BBU支持的上行数字信号通过光纤发送给所述BBU。
  16. 根据权利要求15所述的系统侧设备,其中,所述系统侧处理模块还包括:
    第二滤波模块,配置为将所述上行模拟信号进行滤波,得到第四信号;
    第二变频模块,配置为对所述第四信号进行变频处理,得到频率高于所述第一预设频率值的第五信号;
    第二放大模块,配置为对所述第五信号进行放大处理,得到第六信号;
    模数转换模块,配置为对所述第六信号进行模数转换,得到所述基带处理单元BBU支持的上行数字信号。
  17. 根据权利要求14或16所述的系统侧设备,其中,所述第一预设频率值为100MHz。
  18. 一种终端侧设备,包括:
    终端侧耦合模块,配置为接收电力线传输的系统侧设备发送的下行模拟信号;
    终端侧处理模块,配置为将所述下行模拟信号转换为长期演进LTE信号或4G信号支持频率的下行无线信号;
    通讯模块,配置为将下行无线信号发送出去。
  19. 根据权利要求18所述的终端侧设备,其中,所述终端侧处理模块包括:
    第三滤波模块,配置为对所述下行模拟信号进行滤波处理,得到第 七信号;
    第三变频模块,配置为对所述第七信号进行变频处理,得到频率LTE信号或4G信号使用频率的第八信号;
    第三放大模块,配置为对所述第八信号进行放大处理,得到所述下行无线信号。
  20. 根据权利要求18所述的终端侧设备,其中,
    所述通讯模块,还配置为接收移动终端发送的上行移动信号;
    所述终端侧处理模块,还配置为将所述上行移动信号转换为上行模拟信号;
    所述终端侧耦合模块,还配置为将所述上行模拟信号耦合到电力线上进行传输。
  21. 根据权利要求20所述的终端侧设备,其中,所述终端侧处理模块还包括:
    第四滤波模块,配置为将所述上行移动信号进行滤波,得到第九信号;
    第四变频模块,配置为对所述第九信号进行变频处理,得到频率低于第二预设频率值的第十信号;
    第四放大模块,对所述第十信号进行放大处理,得到所述上行模拟信号。
  22. 根据权利要求21所述的终端侧设备,其中,所述第二预设频率值为100MHz。
  23. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至6任一项所述的信号的传输方法。
  24. 一种计算机存储介质,所述计算机存储介质中存储有计算机可 执行指令,该计算机可执行指令用于执行权利要求7至11任一项所述的信号的传输方法。
PCT/CN2016/105320 2015-11-13 2016-11-10 信号的传输方法、终端侧设备和系统侧设备、存储介质 WO2017080486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510780092.4A CN106714195A (zh) 2015-11-13 2015-11-13 一种信号的传输方法、终端侧设备和系统侧设备
CN201510780092.4 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080486A1 true WO2017080486A1 (zh) 2017-05-18

Family

ID=58694505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105320 WO2017080486A1 (zh) 2015-11-13 2016-11-10 信号的传输方法、终端侧设备和系统侧设备、存储介质

Country Status (2)

Country Link
CN (1) CN106714195A (zh)
WO (1) WO2017080486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350943A (zh) * 2018-09-28 2019-10-18 深圳市速腾聚创科技有限公司 带能量传输的无线通讯装置及带能量传输的无线通讯方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116248150B (zh) * 2023-05-12 2023-08-01 国网信息通信产业集团有限公司 一种无线信号在电力线上的传输方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130882A (zh) * 2011-04-14 2011-07-20 北京邮电大学 一种基于ofdm的高铁移动通信方法、系统
CN102446403A (zh) * 2011-12-28 2012-05-09 重庆朗天通讯股份有限公司 基于td-lte无线宽带的新型用电信息采集系统
CN103078669A (zh) * 2013-02-25 2013-05-01 河北人天通信技术有限公司 基于电力载波的信号分布系统
EP2846572A1 (en) * 2012-07-25 2015-03-11 ZTE Corporation Data transmission method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327508B (zh) * 2013-07-09 2016-05-11 武汉虹信通信技术有限责任公司 基于电力线传输无线信号和以太网信号的接入系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130882A (zh) * 2011-04-14 2011-07-20 北京邮电大学 一种基于ofdm的高铁移动通信方法、系统
CN102446403A (zh) * 2011-12-28 2012-05-09 重庆朗天通讯股份有限公司 基于td-lte无线宽带的新型用电信息采集系统
EP2846572A1 (en) * 2012-07-25 2015-03-11 ZTE Corporation Data transmission method and system
CN103078669A (zh) * 2013-02-25 2013-05-01 河北人天通信技术有限公司 基于电力载波的信号分布系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350943A (zh) * 2018-09-28 2019-10-18 深圳市速腾聚创科技有限公司 带能量传输的无线通讯装置及带能量传输的无线通讯方法
CN110350943B (zh) * 2018-09-28 2023-09-15 深圳市速腾聚创科技有限公司 带能量传输的无线通讯装置及带能量传输的无线通讯方法

Also Published As

Publication number Publication date
CN106714195A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CN101841935B (zh) 一种单天线射频拉远单元
US11627482B2 (en) Repeater with integrated modem for remote monitoring
JP7388609B2 (ja) ビーム構成方法および装置
CN101426303A (zh) 通信系统、设备和方法
CA3005868A1 (en) Cellular signal booster with multiple signal chains
US20140115205A1 (en) Secure Digital Card Capable of Transmitting Data Over Wireless Network
CN102136845A (zh) 有源天线的信号接收方法和信号接收机
WO2017080486A1 (zh) 信号的传输方法、终端侧设备和系统侧设备、存储介质
CN203608188U (zh) 一种双通道短波信号分集接收系统
JP6404448B2 (ja) 大容量無線通信のためのファランクス無線システムアーキテクチャ
CN104065396A (zh) 一种无线接入装置及网络设备
CN205961093U (zh) 基于700MHz‑1100MHz可变频率的无线非视距千兆以太网传输系统
CN106162670A (zh) 室内蜂窝系统及其数据传输方法、基站设备与天线装置
CN102281414B (zh) 数字电视射频信号采集装置和方法
CN217363064U (zh) 一种5g室分双路移频系统
CN203788465U (zh) 室内分布系统的连接器和室内分布系统
CN106550371A (zh) 一种多信源接入方法及系统
CN210143008U (zh) 无线中继设备
WO2019228338A1 (zh) 一种信号处理方法、装置、分布式天线系统及存储介质
CN202586988U (zh) 小型无线电监测站
KR20140073116A (ko) Du/ru 분리형 구조의 멀티코어 dsp 기반 기지국 기저대역 신호처리를 위한 무선통신 시스템
CN206835385U (zh) 宽带多频增益均衡设备及分布系统
CN210327583U (zh) 一种5g基站扩展延伸光分布系统
CN202197277U (zh) 低噪声塔顶放大器
CN205408173U (zh) 一种农村宽带无线化基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863662

Country of ref document: EP

Kind code of ref document: A1