WO2017078185A1 - Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor - Google Patents

Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor Download PDF

Info

Publication number
WO2017078185A1
WO2017078185A1 PCT/KR2015/011617 KR2015011617W WO2017078185A1 WO 2017078185 A1 WO2017078185 A1 WO 2017078185A1 KR 2015011617 W KR2015011617 W KR 2015011617W WO 2017078185 A1 WO2017078185 A1 WO 2017078185A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
terminal
cyclic shift
shift value
transmission
Prior art date
Application number
PCT/KR2015/011617
Other languages
French (fr)
Korean (ko)
Inventor
이상림
고현수
이호재
노광석
김동규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2015/011617 priority Critical patent/WO2017078185A1/en
Publication of WO2017078185A1 publication Critical patent/WO2017078185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for performing connectionless based transmission in a wireless communication system.
  • Massive Machine Type Communications which maintains a massive connection and transmits short packets intermittently, is being considered.
  • Massive MTC service has very high Connection Density Requirement, while Data Rate and End-to-End (E2E) Latency Requirement are very free (Connection Density: Up to 200,000 / km2, E2E Latency: Seconds to hours, DL / UL Data) Rate: typically 1-100 kbps).
  • An object of the present invention is to provide a communication method of a terminal for performing connectionless based transmission in a wireless communication system.
  • Another object of the present invention is to provide a communication method of a base station for performing connectionless based transmission in a wireless communication system.
  • Another object of the present invention is to provide a terminal for performing connectionless based transmission in a wireless communication system.
  • Another object of the present invention is to provide a base station for performing connectionless based transmission in a wireless communication system.
  • a communication method of a terminal performing connectionless based transmission in a wireless communication system includes a physical resource block (PRB) and a DMRS (Physical Uplink Shared CHannel) for PUSCH transmission; Demodulation Reference Signal) determining a cyclic shift value; Transmitting the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value; Randomly determining a DMRS cyclic shift value when receiving a NACK signal for the PUSCH from the base station; And retransmitting the PUSCH based on the re-determined DMRS cyclic shift value.
  • the NACK signal may be transmitted when the PUSCH of the UE and the PUSCH of the other UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value, or when the PUSCH of the UE is not received.
  • the method further includes receiving information about a time and frequency domain for the connectionless based transmission, wherein the determined PRB is included in the time and frequency domain.
  • the method includes receiving random access preamble index information for the connectionless transmission; And performing a random access procedure based on the random access preamble index information.
  • a communication method of a base station for performing connectionless based transmission in a wireless communication system includes a PUSCH (Physical Uplink) based on a determined physical resource block (PRB) and a DMRS cyclic shift value Receiving a shared channel from a terminal; Transmitting a negative ACKnowledgement (NACK) signal for the PUSCH to the terminal; And re-receiving the PUSCH applied to the re-determined DMRS cyclic shift value as a response to the NACK from the terminal, wherein the determined PRB and DMRS cyclic shift value are determined by the terminal, and the re-determined DMRS cyclic shift
  • the transition value may be randomly re-determined by the terminal.
  • the NACK signal may be transmitted when the PUSCH of the UE and the PUSCH of the other UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value, or when the PUSCH of the UE is not received.
  • the method further includes transmitting information on a time and frequency domain for the connectionless transmission, wherein the determined PRB is included in the time and frequency domain.
  • the method includes transmitting random access preamble index information for the connectionless transmission; And performing a random access procedure based on the random access preamble index information.
  • a terminal performing connectionless based transmission in a wireless communication system includes a physical resource block (PRB) and a demodulation reference (DMRS) for physical uplink shared channel (PUSCH) transmission.
  • PRB physical resource block
  • DMRS demodulation reference
  • Signal a processor configured to determine a cyclic shift value;
  • a transmitter configured to transmit the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value;
  • a receiver configured to receive a NACK (Negative ACKnowledgement) signal for the PUSCH from the base station, wherein the processor is configured to randomly re-determine a DMRS cyclic shift value when the receiver receives the NACK. May be configured to retransmit the PUSCH based on the re-determined DMRS cyclic shift value.
  • NACK Negative ACKnowledgement
  • a base station performing connectionless based transmission in a wireless communication system includes a physical uplink shared channel (PUSCH) based on a determined physical resource block (PRB) and a DMRS cyclic shift value.
  • a receiver configured to receive a) from the terminal; And a transmitter configured to transmit a negative acknowledgment (NACK) signal for the PUSCH to the terminal, wherein the receiver is configured to re-receive the PUSCH applied to the DMRS cyclic shift value determined as a response to the NACK from the terminal.
  • the determined PRB and DMRS cyclic shift value may be determined by the terminal, and the re-determined DMRS cyclic shift value may be randomly re-determined by the terminal.
  • a zone allocation and HARQ scheme for uplink connectionless data transmission of a massive terminal is newly proposed to reduce overhead of a base station and efficiently support connectionless transmission of massive terminals.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • 2 is an uplink access method of a 3GPP LTE / LTE-A communication system.
  • FIG. 3 is a diagram exemplarily illustrating a connection / connectionless zone allocation for supporting both a connection transmission scheme and a connectionless transmission scheme according to the present invention.
  • FIG. 4 is a diagram illustrating a procedure of allocating a connection-based zone.
  • 5 is a diagram illustrating a procedure of allocating to a connectionless zone.
  • FIG. 6 is a diagram illustrating an example of connectionless transmission as an embodiment of a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving a NACK.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • connection less data transmission for supporting a massive device terminal.
  • 2 is an uplink access method of a 3GPP LTE / LTE-A communication system.
  • a connection-based transmission method is supported, and in order to support connectivity transmission, the terminal first requests connectivity transmission from a base station through a random access channel (RACH) procedure.
  • RACH random access channel
  • 2 shows an RACH performing procedure of a terminal.
  • the terminal when a terminal (MS) transmits a random access (RA) preamble to a base station, the base station transmits a RA response to the terminal in response.
  • the RA response may include Timing Advance, UL grant, and temp C-RNTI.
  • the terminal may perform a radio resource control (RRC) connection setup process with the base station (transmit the RRC connection request message and receive the RRC connection setup message) and then perform data communication with the base station.
  • RRC radio resource control
  • the base station can increase the number of terminals that can be accommodated in the system by allocating a new frequency domain in the case of a terminal that performs connectionless transmission.
  • the connectionless transmission refers to a transmission scheme in which data is initially transmitted to a base station without receiving an R preamble transmission and an RA response (message) and then undergoing an RRC connection process. In this case, there is no need to manage RRC context separately in the network.
  • the present invention newly defines system information for supporting the connectionless transmission method between the base station and the terminal, and proposes a procedure for controlling the operation of the connectionless connection method and the connection method according to the new access procedure based on the information.
  • the base station may consider operating time-frequency resources as shown in FIG. 3 to support both connected and disconnected schemes.
  • FIG. 3 is a diagram exemplarily illustrating a connection / connectionless zone allocation for supporting both a connection transmission scheme and a connectionless transmission scheme according to the present invention.
  • connection based transmission zone the RACH may be allocated to an existing RACH zone and an additional RACH zone may be allocated thereto to reduce the collision probability.
  • a connectionless transmission zone for connectionless transmission may be allocated to distinguish a connection-based transmission zone from a time resource or a frequency resource.
  • connection-based transmission zones and connectionless-based transmission zones are classified by frequency division multiplexing (FDM).
  • the terminal may transmit the following information to the terminal through physical broadcast channel (PBCH), higher layer signaling, and the like.
  • PBCH physical broadcast channel
  • time-frequency domain for connectionless transmission is a field indicating an area divided further by time-frequency domain in the connectionless transmission zone as shown in FIG. 3. Information about the region may be previously determined in a table.
  • RA Preamble index for non-connectable UE it means a new RA Preamble allocation index for UEs that can be additionally connected in addition to the existing RA Preamble.
  • time to maintain connectionless transmission is a time interval in which a terminal sending data in a connectionless transmission zone can retry in connection transmission mode after a certain time, and must maintain connectionless transmission. It means the minimum time.
  • the existing terminal After the terminal reads the broadcasted information as described in (1), (2) and (3), the existing terminal performs the procedure in the existing connection transmission scheme.
  • a new terminal capable of both connection and connectionless transmission transmits the RA preamble to the base station using the new RA preamble received by the system information or the RRC signal, and the base station determines whether to allocate to the connectionless transmission area according to the current overhead state. Done.
  • a specific UE and BS access procedure is as shown in FIG. 4.
  • FIG. 4 is a diagram illustrating a procedure of allocating a connection-based zone.
  • 5 is a diagram illustrating a procedure of allocating to a connectionless zone.
  • a terminal supporting both connectionless and connection-based transmission selects one of the RA preambles allocated for connectionless transmission and transmits the RA preamble to the base station. send.
  • the base station may determine whether to allocate to the terminal as an unconnected transmission zone based on the overhead (for example, the number of active terminals) at the current base station.
  • the RRC connection request is transmitted to the base station using the uplink resource and behaves in the same manner as in the conventional operation (see FIG. 3).
  • FIG. 4 illustrates a procedure of allocating a terminal capable of connectionless transmission to a connectionless zone because the overhead of the base station is severe.
  • the UE transmits a packet data packet to the base station to allocate a connectionless transmission zone, and at this time, a zone index indicating which time-frequency domain corresponds to the connectionless transmission zone. It can inform the terminal through.
  • the zone index is an index indicating a corresponding time-frequency domain according to a predefined table in the time-frequency domain for (1) unconnected transmission transmitted by the base station.
  • the terminal may directly transmit data to the base station without performing the RRC connection establishment procedure through the time-frequency domain for the unconnected transmission corresponding to the zone index.
  • the base station can enable the acceptance of a large number of terminals by checking the overhead state of the current base station and allocating a new time-frequency region according to whether the terminal can be connected without connection.
  • the present invention proposes a scheme for allocating frequency resources in a situation where existing terminals and terminals supporting a new transmission scheme coexist in a system for supporting a massive connection.
  • Table 1 shows uplink HARQ contents in 3GPP LTE system.
  • Uplink HARQ operation scheme in the current LTE system operates synchronously.
  • the UE transmits data through a data channel (for example, a physical uplink shared channel (PUSCH)) after 4 subframes, that is, at subframe n + 4, from a time point of receiving a UL grant from a base station (subframe n).
  • the ACK / NACK for the transmitted data is received from the base station through the PHICH in a subframe after 4 subframes (that is, subframe n + 8). If the base station receives the NACK, data is retransmitted after 4 subframes, that is, in a subframe corresponding to subframe n + 12.
  • the UE should know the information on the resource location and multiplexing in the PHICH ACK / NACK for its uplink data.
  • the PHICH resource information of the ACK / NACK for the uplink data is the lowest physical resource block (PRB) index and the demodulation reference signal (DMRS) in the first slot of the corresponding PUSCH transmission according to the UL grant determined by the base station as shown in Table 1 above. It is determined by cyclic shift.
  • PRB physical resource block
  • DMRS demodulation reference signal
  • connectionless transmission contention is allocated based on a UL grant, and contention-based transmission is performed rather than transmission.
  • the UE determines a resource to be transmitted and a DMRS cyclic shift value. Therefore, when determining the location and multiplexing method of the PHICH based on the lowest PRB index and DMRS cyclic shift in the first slot of the corresponding PUSCH transmission according to the conventional method, another UE using the transmission of the connection method Resources may collide with each other in the PHICH. Therefore, there is a need for a new technique of PHICH resource allocation and multiplexing.
  • the code for the location and multiplexing of the PHICH is determined by the lowest index value and the DMRS cyclic shift value of the PRB.
  • the PRB and DMRS cyclic shift values for transmitting the PUSCH are determined by the terminal, not the base station.
  • a collision may occur if the PHICH is allocated in the current manner.
  • the existing LTE scheme allocates the same PRB to different terminals, but multiplexes by setting different DMRS cyclic shift values, and the terminals are multiplexed due to differences in DMRS cyclic shift values.
  • the ACK / NACK of the PHICH can be decoded.
  • various UEs may determine an ACK / NACK in a PHICH at the same location. Solutions for solving this problem are described in the following embodiments.
  • a method to prevent a collision when a collision occurs while maintaining an existing PHICH allocation method For example, if two UEs transmit data (eg, PUSCH) on the same time-frequency resource and the same DMRS cyclic shift value is used, the received base station decodes data of each UE. DMRS and data of each terminal may be divided into an orthogonal code domain, and the used code may be indicated before the data through a preamble.) Then, the ACK / NACK is transmitted to the terminal. When you lower it to the same resource, it uses the same code. Therefore, whether ACK / NACK of the two terminals are not distinguished from each other and it is not known which terminal is ACK / NACK. As a result, two terminals may receive an ACK even if they are not actual ACKs and receive NACKs even if they are not NACKs.
  • PUSCH Physical Uplink Control Channel
  • the base station gives an ACK to the same position only when the terminals using the same DMRS cyclic shift value for the same time-frequency resources are both ACK, NACK for any one of them Send.
  • NACK may have occurred due to poor link performance.
  • the BS may transmit NACK.
  • PUSCH can be transmitted using a new DMRS cyclic shift value different from the one used. If the same DMRS is used for the next transmission, the same phenomenon may continue to occur. Accordingly, resource collision of the PHICH can be reduced by randomly selecting and using a DMRS cyclic shift value.
  • the base station and the terminal using the preamble To determine the location of ACK / NACK and the code used
  • This method is a method of reducing PHICH resource collision by replacing a new key parameter, unlike a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving the NACK described above.
  • a preamble is used instead of the DMRS cyclic shift value among the lowest PRB index and the DMRS cyclic shift value of the first slot of the existing two parameters corresponding to the PUSCH transmission.
  • Table 2 below shows a Cyclic shift field value of Downlink Control Information (DCI) format 0.
  • DCI Downlink Control Information
  • the DMRS cyclic shift value is currently assigned in the form of 3 bits.
  • a method using a preamble may be used. That is, collision probability can be reduced by allocating a preamble sequence type sufficiently (for example, 32 sequences) or by applying a unique code to the preamble.
  • a preamble sequence type sufficiently (for example, 32 sequences) or by applying a unique code to the preamble.
  • a preamble is transmitted before the data in the process of sending data. By assigning a random sequence to this preamble, a key for the corresponding data can be associated.
  • FIG. 6 is a diagram illustrating an example of connectionless transmission as an embodiment of a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving a NACK.
  • each terminal arbitrarily determines and transmits a DMRS cyclic shift value, when transmitting with the same value, even if reception is possible at the base station, two terminals decode ACK / NACK of the same PHICH, which causes a problem. Therefore, by additionally transmitting a random value to the preamble, even if two users transmit the same DMRS cyclic shift value, ACK / NACK allocation of PHICHs orthogonal to each other based on the preamble value is possible.
  • data between terminals can be distinguished at the base station. For example, the classification may be performed through a code domain or a spatial domain.
  • the base station and the terminal using the preamble before the data To determine the location of ACK / NACK and the code used
  • the base station and the terminal described above using a preamble Unlike the method of determining the location of the ACK / NACK and the code used based on the above, the existing DMRS cyclic shift value is used and the value of the preamble is additionally used.
  • the collision probability of the PHICH can be reduced by using a random value of the preamble and a conventional DMRS cyclic shift value.
  • the base station and the terminal by using a preamble in front of the data Compared to the method of determining the location of the ACK / NACK and the code used, the probability of collision can be reduced even if fewer Preamble sequences are used.
  • a HARQ scheme for a connectionless transmission scheme is proposed.
  • the ACK / NACK location and code of the PHICH is determined based on the values according to the resource allocation of the base station, while determining the location of the ACK / NACK in a new connectionless transmission method (transmission without UL grant)
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Method for performing connectionless based transmission according to the present invention and apparatus for the same can be used industrially in various wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication method of a mobile station that performs connectionless-based transmission in a wireless communication system may comprise the steps of: determining a PRB and a DMRS cyclic shift value for transmission of a PUSCH; transmitting the PUSCH to a base station on the basis of the determined PRB and DMRS cyclic shift value; randomly redetermining a DMRS cyclic shift value when a negative acknowledgement (NACK) signal for the PUSCH is received from the base station; and retransmitting the PUSCH on the basis of the redetermined DMRS cyclic shift value.

Description

무선통신 시스템에서 비연결 기반 전송을 수행하는 방법 및 이를 위한 장치Method for performing connectionless based transmission in wireless communication system and apparatus therefor
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 비연결 기반 전송을 수행하는 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for performing connectionless based transmission in a wireless communication system.
차세대 5G 시스템에서는 Massive Connection을 유지하며 short packet을 간헐적으로 전송하는 Massive MTC(Machine Type Communications) 등이 고려되고 있다. Massive MTC 서비스는 Connection Density Requirement가 매우 높은데 반해, Data Rate과 End-to-End (E2E) Latency Requirement는 매우 자유롭다(Connection Density: Up to 200,000/km2, E2E Latency: Seconds to hours, DL/UL Data Rate: typically 1-100kbps). In next-generation 5G systems, Massive Machine Type Communications (MTC), which maintains a massive connection and transmits short packets intermittently, is being considered. Massive MTC service has very high Connection Density Requirement, while Data Rate and End-to-End (E2E) Latency Requirement are very free (Connection Density: Up to 200,000 / km2, E2E Latency: Seconds to hours, DL / UL Data) Rate: typically 1-100 kbps).
또한, 현재 3GPP GRAN에서 논의 되고 있는 Cellular IoT(Internet of Things)의 경우에도 한 셀에 약 50000개 이상의 단말이 존재하는 모델에서의 기술 개발이 이루어지고 있다.In addition, in the case of the Cellular Internet of Things (IoT) currently being discussed in the 3GPP GRAN, technology development is being performed in a model in which about 50 000 terminals exist in one cell.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말의 통신 방법을 제공하는 데 있다.An object of the present invention is to provide a communication method of a terminal for performing connectionless based transmission in a wireless communication system.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국의 통신 방법을 제공하는 데 있다.Another object of the present invention is to provide a communication method of a base station for performing connectionless based transmission in a wireless communication system.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말을 제공하는 데 있다.Another object of the present invention is to provide a terminal for performing connectionless based transmission in a wireless communication system.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국을 제공하는 데 있다.Another object of the present invention is to provide a base station for performing connectionless based transmission in a wireless communication system.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말의 통신 방법은, PUSCH(Physical Uplink Shared CHannel) 전송을 위한 물리자원블록(Physical Resource Block, PRB)와 DMRS(Demodulation Reference Signal) 순환 천이 값을 결정하는 단계; 상기 결정된 PRB와 DMRS 순환 천이값에 기초하여 상기 PUSCH를 기지국으로 전송하는 단계; 상기 기지국으로부터 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 수신하는 경우에는 DMRS 순환 천이 값을 랜덤하게 재결정하는 단계; 및 상기 재결정된 DMRS 순환 천이값에 기초하여 상기 PUSCH를 재전송하는 단계를 포함할 수 있다. 상기 NACK 신호는 상기 단말의 PUSCH 및 다른 단말의 PUSCH가 동일한 DMRS 순환 천이값에 기초하여 동일한 시간 및 주파수 자원에 전송된 경우 또는 상기 단말의 PUSCH를 수신하지 못한 경우에 전송될 수 있다. In order to achieve the above technical problem, a communication method of a terminal performing connectionless based transmission in a wireless communication system includes a physical resource block (PRB) and a DMRS (Physical Uplink Shared CHannel) for PUSCH transmission; Demodulation Reference Signal) determining a cyclic shift value; Transmitting the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value; Randomly determining a DMRS cyclic shift value when receiving a NACK signal for the PUSCH from the base station; And retransmitting the PUSCH based on the re-determined DMRS cyclic shift value. The NACK signal may be transmitted when the PUSCH of the UE and the PUSCH of the other UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value, or when the PUSCH of the UE is not received.
상기 방법은, 상기 비연결 기반 전송을 위한 시간 및 주파수 영역에 대한 정보를 수신하는 단계를 더 포함하되, 상기 결정된 PRB는 상기 시간 및 주파수 영역에 포함되어 있다. The method further includes receiving information about a time and frequency domain for the connectionless based transmission, wherein the determined PRB is included in the time and frequency domain.
상기 방법은, 상기 비연결 기반 전송을 위한 랜덤 액세스 프리앰블 인덱스 정보를 수신하는 단계; 및 상기 랜덤 액세스 프리앰블 인덱스 정보에 기초하여 랜덤 액세스 프로시저를 수행하는 단계를 더 포함할 수 있다.The method includes receiving random access preamble index information for the connectionless transmission; And performing a random access procedure based on the random access preamble index information.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국의 통신 방법은, 결정된 물리자원블록(Physical Resource Block, PRB)와 DMRS 순환 천이 값에 기초하는 PUSCH(Physical Uplink Shared CHannel)를 단말로부터 수신하는 단계; 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 상기 단말로 전송하는 단계; 및 상기 NACK에 대한 응답으로서 재결정된 DMRS 순환 천이값에 적용된 상기 PUSCH를 상기 단말로부터 재수신하는 단계를 포함하되, 상기 결정된 PRB와 DMRS 순환 천이 값은 상기 단말에 의해 결정된 것이며, 상기 재결정된 DMRS 순환 천이값은 상기 단말에 의해 랜덤하게 재결정된 것일 수 있다. 상기 NACK 신호는 상기 단말의 PUSCH 및 다른 단말의 PUSCH가 동일한 DMRS 순환 천이값에 기초하여 동일한 시간 및 주파수 자원에 전송된 경우 또는 상기 단말의 PUSCH를 수신하지 못한 경우에 전송될 수 있다.In order to achieve the above technical problem, a communication method of a base station for performing connectionless based transmission in a wireless communication system includes a PUSCH (Physical Uplink) based on a determined physical resource block (PRB) and a DMRS cyclic shift value Receiving a shared channel from a terminal; Transmitting a negative ACKnowledgement (NACK) signal for the PUSCH to the terminal; And re-receiving the PUSCH applied to the re-determined DMRS cyclic shift value as a response to the NACK from the terminal, wherein the determined PRB and DMRS cyclic shift value are determined by the terminal, and the re-determined DMRS cyclic shift The transition value may be randomly re-determined by the terminal. The NACK signal may be transmitted when the PUSCH of the UE and the PUSCH of the other UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value, or when the PUSCH of the UE is not received.
상기 방법은, 상기 비연결 기반 전송을 위한 시간 및 주파수 영역에 대한 정보를 전송하는 단계를 더 포함하되, 상기 결정된 PRB는 상기 시간 및 주파수 영역에 포함되어 있다. The method further includes transmitting information on a time and frequency domain for the connectionless transmission, wherein the determined PRB is included in the time and frequency domain.
상기 방법은, 상기 비연결 기반 전송을 위한 랜덤 액세스 프리앰블 인덱스 정보를 전송하는 단계; 및 상기 랜덤 액세스 프리앰블 인덱스 정보에 기초하여 랜덤 액세스 프로시저를 수행하는 단계를 더 포함할 수 있다.The method includes transmitting random access preamble index information for the connectionless transmission; And performing a random access procedure based on the random access preamble index information.
상기의 또 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말은, PUSCH(Physical Uplink Shared CHannel) 전송을 위한 물리자원블록(Physical Resource Block, PRB)와 DMRS(Demodulation Reference Signal) 순환 천이 값을 결정하도록 구성된 프로세서; 상기 결정된 PRB와 DMRS 순환 천이값에 기초하여 상기 PUSCH를 기지국으로 전송하도록 구성된 송신기; 및 상기 기지국으로부터 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 수신하도록 구성된 수신기를 포함하되, 상기 프로세서는 상기 수신기가 상기 NACK을 수신한 경우에는 DMRS 순환 천이 값을 랜덤하게 재결정하도록 구성되며, 상기 송신기는 상기 재결정된 DMRS 순환 천이값에 기초하여 상기 PUSCH를 재전송하도록 구성될 수 있다.In order to achieve the above technical problem, a terminal performing connectionless based transmission in a wireless communication system includes a physical resource block (PRB) and a demodulation reference (DMRS) for physical uplink shared channel (PUSCH) transmission. Signal) a processor configured to determine a cyclic shift value; A transmitter configured to transmit the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value; And a receiver configured to receive a NACK (Negative ACKnowledgement) signal for the PUSCH from the base station, wherein the processor is configured to randomly re-determine a DMRS cyclic shift value when the receiver receives the NACK. May be configured to retransmit the PUSCH based on the re-determined DMRS cyclic shift value.
상기의 또 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국은, 결정된 물리자원블록(Physical Resource Block, PRB)와 DMRS 순환 천이 값에 기초하는 PUSCH(Physical Uplink Shared CHannel)를 단말로부터 수신하도록 구성된 수신기; 및 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 상기 단말로 전송하도록 구성된 송신기를 포함하되, 상기 수신기는, 상기 NACK에 대한 응답으로서 재결정된 DMRS 순환 천이값에 적용된 상기 PUSCH를 상기 단말로부터 재수신하도록 구성되고, 상기 결정된 PRB와 DMRS 순환 천이 값은 상기 단말에 의해 결정된 것이며, 상기 재결정된 DMRS 순환 천이값은 상기 단말에 의해 랜덤하게 재결정된 것일 수 있다.In order to achieve the above technical problem, a base station performing connectionless based transmission in a wireless communication system includes a physical uplink shared channel (PUSCH) based on a determined physical resource block (PRB) and a DMRS cyclic shift value. A receiver configured to receive a) from the terminal; And a transmitter configured to transmit a negative acknowledgment (NACK) signal for the PUSCH to the terminal, wherein the receiver is configured to re-receive the PUSCH applied to the DMRS cyclic shift value determined as a response to the NACK from the terminal. The determined PRB and DMRS cyclic shift value may be determined by the terminal, and the re-determined DMRS cyclic shift value may be randomly re-determined by the terminal.
Massive 단말의 상향링크 비연결 전송(Connection less data transmission)을 위한 존 할당과 HARQ 방식을 새롭게 제안하여 기지국의 오버헤드를 줄이며 Massive 단말들을 비연결 전송을 효율적으로 지원할 수 있다.A zone allocation and HARQ scheme for uplink connectionless data transmission of a massive terminal is newly proposed to reduce overhead of a base station and efficiently support connectionless transmission of massive terminals.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
도 2는 3GPP LTE/LTE-A 통신 시스템의 상향링크 접속 방식이다. 2 is an uplink access method of a 3GPP LTE / LTE-A communication system.
도 3은 본 발명에 따른 연결 전송 방식 및 비연결 전송 방식을 모두 지원하기 위한 연결/비연결 방식 존(Zone) 할당을 예시적으로 나타낸 도면이다.3 is a diagram exemplarily illustrating a connection / connectionless zone allocation for supporting both a connection transmission scheme and a connectionless transmission scheme according to the present invention.
도 4는 연결 기반 존으로 할당되는 절차를 도시한 도면이다.4 is a diagram illustrating a procedure of allocating a connection-based zone.
도 5는 비연결 기반 존으로 할당되는 절차를 도시한 도면이다.5 is a diagram illustrating a procedure of allocating to a connectionless zone.
도 6은 NACK를 받을 시에는 DMRS cyclic shift 값을 랜덤하게 선택하여 전송하는 방법의 일 실시예로서 비연결 전송 일 예를 도시한 도면이다.6 is a diagram illustrating an example of connectionless transmission as an embodiment of a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving a NACK.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. For example, the following detailed description will be described in detail on the assumption that the mobile communication system is a 3GPP LTE, LTE-A system, but is also applied to any other mobile communication system except for the specific matters of 3GPP LTE, LTE-A. Applicable
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.In addition, in the following description, it is assumed that a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like. In addition, it is assumed that the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP). Although described herein based on the IEEE 802.16 system, the contents of the present invention can be applied to various other communication systems.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.In a mobile communication system, a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink. The information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used in various radio access systems. CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA. LTE-A (Advanced) is an evolution of 3GPP LTE.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.Although one base station 105 and one terminal 110 (including a D2D terminal) are shown to simplify the wireless communication system 100, the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.Referring to FIG. 1, the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197. The terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150. Although the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다. On the downlink, the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols "). The symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.The symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125. In this case, each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero. In each symbol period, pilot symbols may be sent continuously. The pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다. Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다. In the configuration of the terminal 110, the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140. Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples. The symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.The symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.The processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.The terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols. The symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175. The transmitter 175 receives and processes a stream of symbols to generate an uplink signal. The transmit antenna 135 transmits the generated uplink signal to the base station 105.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다. In the base station 105, an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples. The symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink. The received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다. Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively. Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data. The memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다. The processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. The processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. When implementing embodiments of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) configured to perform the present invention. Field programmable gate arrays (FPGAs) may be provided in the processors 155 and 180.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.Meanwhile, when implementing embodiments of the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention. The firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.The layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3. The physical layer belongs to the first layer and provides an information transmission service through a physical channel. A Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network. The terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.In the present specification, the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively. For convenience of description, the following description does not specifically refer to the processors 155 and 180. Although not specifically mentioned by the processors 155 and 180, it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
본 발명에서는 Massive device 단말을 지원하기 위한 비연결 전송(Connection less data transmission)을 지원하는 시스템을 고려한다. 기존 연결 기반 전송뿐만 아니라 비연결 전송을 하기 위한 시간-주파수 자원 할당 기법을 제안한다. In the present invention, a system supporting connection less data transmission for supporting a massive device terminal is considered. We propose a time-frequency resource allocation scheme for connectionless transmission as well as conventional connection-based transmission.
도 2는 3GPP LTE/LTE-A 통신 시스템의 상향링크 접속 방식이다. 2 is an uplink access method of a 3GPP LTE / LTE-A communication system.
기존 LTE 시스템에서는 연결을 기반으로 하는 전송 방법을 지원하며, 연결성 전송을 지원하기 위해서 기본적으로 먼저 RACH(Random Access Channel) 절차를 통해서 단말은 기지국에게 연결성 전송을 요청한다. 도 2는 단말의 RACH 수행 절차를 나타낸다. 도 2에 도시한 바와 같이, LTE/LTE-A 시스템에서, 단말(MS)은 기지국(Base station)으로 RA(Random Access) 프리앰블(preamble)을 전송하면, 이에 대한 응답으로 기지국은 단말에게 RA 응답을 전송하고, 여기 RA 응답에는 Timing Advance, UL grant, temp C-RNTI를 포함할 수 있다. 이후, 단말은 기지국과 RRC(Radio Resource Control) 연결 설정 과정을 수행한 후(RRC 연결 요청 메시지 전송 및 RRC 연결 셋업 메시지 수신), 기지국과 데이터 통신을 수행할 수 있다.In the existing LTE system, a connection-based transmission method is supported, and in order to support connectivity transmission, the terminal first requests connectivity transmission from a base station through a random access channel (RACH) procedure. 2 shows an RACH performing procedure of a terminal. As shown in FIG. 2, in the LTE / LTE-A system, when a terminal (MS) transmits a random access (RA) preamble to a base station, the base station transmits a RA response to the terminal in response. In this case, the RA response may include Timing Advance, UL grant, and temp C-RNTI. Thereafter, the terminal may perform a radio resource control (RRC) connection setup process with the base station (transmit the RRC connection request message and receive the RRC connection setup message) and then perform data communication with the base station.
그러나, Massive 단말들을 기존 LTE 구조인 연결기반 전송으로 지원하기에는 무리가 있다. 첫째, 현재의 구조로 Massive 단말들을 지원하기 위해서는 엄청난 주파수 자원의 확보가 필요하다. 하지만, 주파수 자원은 한정되어 있으며 무한정 자원 확보는 불가능하다. 또한, 주파수 자원을 확보하더라도 기존 기지국의 용량 또한 단말의 증가에 따른 오버헤드가 발생할 수 밖에 없다. 따라서, 기존의 전송 방식으로는 RACH를 올리는 과정에서 많은 충돌이 일어날 것이 자명하다. 기존의 주파수 자원을 유지하면서 동시에 기존 기지국의 용량의 큰 변화 없이 많은 수의 단말들을 지원하기 위해서는 기존의 연결 전송 방식이 아닌 새로운 방식의 데이터 전송 기법이 필요하다. 또한, 기존 단말들과의 새로운 기능을 가진 단말들이 공존할 때의 새로운 방법의 자원 할당 기법이 필요하다. However, it is not possible to support massive terminals with connection-based transmission, which is an existing LTE structure. First, in order to support massive terminals in the current structure, it is necessary to secure tremendous frequency resources. However, frequency resources are limited and it is impossible to secure resources indefinitely. In addition, even if the frequency resources are secured, the capacity of the existing base station is also inevitably caused by the increase of the terminal. Therefore, it is obvious that many collisions occur in the process of raising the RACH in the conventional transmission scheme. In order to support a large number of terminals without large changes in the capacity of the existing base station while maintaining the existing frequency resources, a new data transmission scheme is required rather than the conventional connection transmission scheme. In addition, there is a need for a new method for resource allocation when terminals with new functions coexist with existing terminals.
기존 단말(only 연결 전송 방식만 가능한 단말)과 새로운 단말(연결 전송 및 비연결 전송 방식 모두 가능한 단말)이 공존하는 시나리오를 가정한다. 상기 언급한 것처럼 단말 수가 massive하게 많아지는 경우는 RA 충돌 확률이 높아지고, RA에서 충돌이 일어나지 않더라도 RRC context를 기지국이 관리해야 하므로 overload 또한 증가하는 문제가 발생한다. 또한, 새로운 단말이 MTC 단말 같은 경우는 전송하는 데이터의 특성이 적은 양인 경우가 많다. 이 경우 적은 양의 데이터를 보내기 위해서 RRC connection request (UL자원)와 RRC connection response(DL자원)을 시그널링을 위해서 사용하게 된다. 다시 말해서, 보내고자 하는 데이터 양보다 시그널링을 위한 오버헤드가 심각하여 상당히 비효율적인 시스템이 된다. 이러한 비효율적인 시그널링이 차지하던 시간-주파수 자원을 RACH를 위한 공간으로 활용하고 또한 비연결 전송을 이용하면 RRC context를 위한 기지국의 오버헤드도 현저히 줄일 수 있다. Assume a scenario where an existing terminal (terminal capable of only connection transmission method) and a new terminal (terminal capable of both connection transmission and connectionless transmission method) coexist. As mentioned above, when a large number of terminals increases, the probability of RA collision increases, and even when collision does not occur in the RA, the overload also increases because the base station must manage the RRC context. In addition, when the new terminal is an MTC terminal, the characteristic of the data to be transmitted is often small. In this case, RRC connection request (UL resource) and RRC connection response (DL resource) are used for signaling to send a small amount of data. In other words, the overhead for signaling is greater than the amount of data to be sent, resulting in a highly inefficient system. By using the time-frequency resources occupied by such inefficient signaling as a space for the RACH and using the connectionless transmission, the overhead of the base station for the RRC context can be significantly reduced.
따라서, 기지국에서는 비연결 기반의 전송을 하는 단말의 경우 새로운 주파수 영역을 할당함으로써 시스템에서 수용할 수 있는 단말의 수를 증가시킬 수 있다. 여기서, 비연결 전송이란 초기 접속 시 RA Preamble 전송 및 RA 응답 (메시지)를 받고 난 다음 RRC 연결 과정을 거치지는 않고 바로 기지국으로 데이터를 보내는 전송 방식을 의미한다. 즉, 이 경우에는 네트워크에서 RRC context를 따로 관리할 필요 없다. Accordingly, the base station can increase the number of terminals that can be accommodated in the system by allocating a new frequency domain in the case of a terminal that performs connectionless transmission. Here, the connectionless transmission refers to a transmission scheme in which data is initially transmitted to a base station without receiving an R preamble transmission and an RA response (message) and then undergoing an RRC connection process. In this case, there is no need to manage RRC context separately in the network.
본 발명에서는 기지국과 단말 간의 비연결 전송 방식을 지원하기 위한 시스템 정보를 새롭게 정의하고, 그 정보를 바탕으로 새로운 접속 절차에 따라 비연결 방식과 연결 방식의 동작을 제어하는 프로시저를 제안한다. 기지국은 연결/비연결 방식을 모두 지원하기 위해서 시간-주파수 자원을 다음 도 3에 도시한 것과 운용할 것을 고려할 수 있다. The present invention newly defines system information for supporting the connectionless transmission method between the base station and the terminal, and proposes a procedure for controlling the operation of the connectionless connection method and the connection method according to the new access procedure based on the information. The base station may consider operating time-frequency resources as shown in FIG. 3 to support both connected and disconnected schemes.
도 3은 본 발명에 따른 연결 전송 방식 및 비연결 전송 방식을 모두 지원하기 위한 연결/비연결 방식 존(Zone) 할당을 예시적으로 나타낸 도면이다.3 is a diagram exemplarily illustrating a connection / connectionless zone allocation for supporting both a connection transmission scheme and a connectionless transmission scheme according to the present invention.
도 3을 참조하면, 연결 기반 전송 존에서 RACH는 기존의 RACH 존에 할당하고 여기에 추가적인 RACH 존을 할당함으로써 충돌 확률을 줄일 수 있다. 이와 더불어 비연결 기반 전송을 위한 비연결 기반 전송 존은 연결 기반 전송 존과 시간 자원 혹은 주파수 자원이 구별되도록 할당할 수 있다. 도 3에서는 연결 기반 전송 존과 비연결 기반 전송 존이 FDM(Frequency Division Multiplexing) 방식으로 구분되어 있다.Referring to FIG. 3, in the connection based transmission zone, the RACH may be allocated to an existing RACH zone and an additional RACH zone may be allocated thereto to reduce the collision probability. In addition, a connectionless transmission zone for connectionless transmission may be allocated to distinguish a connection-based transmission zone from a time resource or a frequency resource. In FIG. 3, connection-based transmission zones and connectionless-based transmission zones are classified by frequency division multiplexing (FDM).
먼저, 단말은 기지국이 현재 사용하고 있는 시간-주파수 자원 할당 형태를 알기 위해서 다음과 같은 정보를 기지국이 단말에게 PBCH(Physical Broadcast Channel), 상위 계층 시그널링 등으로 전송해 줄 수 있다.First, in order to know the time-frequency resource allocation type currently used by the base station, the terminal may transmit the following information to the terminal through physical broadcast channel (PBCH), higher layer signaling, and the like.
(1) 비연결 전송을 위한 시간-주파수 영역(1) time-frequency domain for connectionless transmission
(2) 비연결 가능 단말을 위한 RA Preamble index(2) RA Preamble index for unconnectable UE
(3) 비연결 전송을 유지해야 하는 시간(3) time to maintain connectionless transmission
좀 더 구체적으로, (1) “비연결 전송을 위한 시간-주파수 영역”은 도 3에서 보는 것처럼 비연결 기반 전송 존에서 시간-주파수 영역에서 더 세분으로 나눈 영역을 알려주는 필드이다. 해당 영역에 대한 정보는 미리 테이블로 정해질 수 있다. (2) “비연결 가능 단말을 위한 RA Preamble index”의 경우는 기존의 RA Preamble 외에 추가적으로 비연결이 가능한 단말들을 위한 새로운 RA Preamble 할당한 Index를 의미한다. 마지막으로 (3) “비연결 전송을 유지해야 하는 시간”은 비연결 전송 존에서 데이터를 보내던 단말이 일정 시간이 지나서 연결 전송 모드로 다시 시도할 수 있는 시간 간격으로, 비연결 전송을 유지해야 하는 최소 시간을 의미한다. More specifically, (1) “time-frequency domain for connectionless transmission” is a field indicating an area divided further by time-frequency domain in the connectionless transmission zone as shown in FIG. 3. Information about the region may be previously determined in a table. (2) In the case of “RA Preamble index for non-connectable UE”, it means a new RA Preamble allocation index for UEs that can be additionally connected in addition to the existing RA Preamble. Finally, (3) “Time to maintain connectionless transmission” is a time interval in which a terminal sending data in a connectionless transmission zone can retry in connection transmission mode after a certain time, and must maintain connectionless transmission. It means the minimum time.
단말은 상기 (1), (2) 및 (3)와 같은 브로드캐스트 되는 정보를 읽고 나서, 기존 단말의 경우는 기존 연결 전송 방식으로 절차를 수행하게 된다. 반면, 연결/비연결 전송이 모두 가능한 새로운 단말은 시스템 정보 혹은 RRC 시그널로 수신한 새로운 RA Preamble을 사용하여 RA Preamble을 기지국에 전송하고 기지국은 현재 오버헤드 상태에 따라 비연결 전송 영역으로 할당할지를 결정하게 된다. 구체적인 단말과 기지국의 접속 절차는 다음 도 4와 같다. After the terminal reads the broadcasted information as described in (1), (2) and (3), the existing terminal performs the procedure in the existing connection transmission scheme. On the other hand, a new terminal capable of both connection and connectionless transmission transmits the RA preamble to the base station using the new RA preamble received by the system information or the RRC signal, and the base station determines whether to allocate to the connectionless transmission area according to the current overhead state. Done. A specific UE and BS access procedure is as shown in FIG. 4.
도 4는 연결 기반 존으로 할당되는 절차를 도시한 도면이다.4 is a diagram illustrating a procedure of allocating a connection-based zone.
도 4를 참조하면, 단말은 연결 기반 전송을 위해 할당된 RA 프리앰블 중 어느 하나를 기지국으로 전송한다. 그러면, 기지국은 RA 응답을 단말로 전송하는데, 기존과 다르게 RA 응답에는 연결 기반 전송을 허락(혹은 수용)함을 확인하는 지시자(예를 들어, CL_ind=0)가 추가되어 전송될 수 있다. 이후, 단말은 기지국과 RRC 연결 설정 프로시저들을 수행한 후에 연결 기반 데이터 전송을 시작할 수 있다.4, the terminal transmits any one of the RA preamble allocated for connection-based transmission to the base station. Then, the base station transmits an RA response to the terminal. Unlike the conventional one, an indicator (for example, CL_ind = 0) confirming that the connection-based transmission is allowed (or accepted) may be added and transmitted. Thereafter, the terminal may start connection-based data transmission after performing RRC connection establishment procedures with the base station.
도 5는 비연결 기반 존으로 할당되는 절차를 도시한 도면이다.5 is a diagram illustrating a procedure of allocating to a connectionless zone.
비연결 기반 전송 및 연결 기반 전송을 모두 지원하는 단말의 경우는 비연결 전송이 가능하다는 것을 기지국에 알려주기 위해, 비연결 기반 전송을 위해 할당된 RA Preamble들 중에 하나를 선택하여 기지국으로 RA Preamble을 전송한다. 기지국은 RA Preamble을 수신한 후, 현재의 기지국에서 오버헤드(예를 들어, active 단말 수)를 바탕으로 단말에게 비연결 전송 존으로 할당할 것인지 아닌지 여부를 판단할 수 있다. In order to inform the base station that connectionless transmission is possible, a terminal supporting both connectionless and connection-based transmission selects one of the RA preambles allocated for connectionless transmission and transmits the RA preamble to the base station. send. After receiving the RA Preamble, the base station may determine whether to allocate to the terminal as an unconnected transmission zone based on the overhead (for example, the number of active terminals) at the current base station.
먼저 연결 기반으로 동작으로 하는 존에 여유가 있을 때를 가정하자. 예를 들어, 총 단말 수용 용량의 80% 이하 인 경우로 생각할 수 있다. 이 경우에는 기지국이 RA 응답에 기존의 연결 기반 전송을 허락(혹은 수용)한다는 지시자(예를 들어, CL_ind=0)을 포함시키고, 단말은 RA 응답에 포함된 UL grant에 기초하여 UL grant가 가리키는 상향링크 자원을 이용하여 RRC 연결 요청을 기지국으로 전송하여 기존에 동작하는 방식과 동일하게 행동한다(도 3 참조). First assume that there is room in the zone to operate on a connection basis. For example, it may be considered to be 80% or less of the total terminal capacity. In this case, the base station includes an indicator (eg CL_ind = 0) indicating that the base station permits (or accepts) existing connection-based transmission, and the terminal indicates that the UL grant is indicated based on the UL grant included in the RA response. The RRC connection request is transmitted to the base station using the uplink resource and behaves in the same manner as in the conventional operation (see FIG. 3).
이와 달리, 도 4는 기지국의 오버헤드가 심해 비연결 전송이 가능한 단말을 비연결 기반 존으로 할당하는 절차에 대한 것이다. 이 경우는 단말에게 비연결 기반 전송 존을 할당한다는 지시자 (예를 들어, CL_ind=1)를 전송해 주고, 이때 비연결 기반 전송 존에서 어떤 시간-주파수 영역에 해당하는 지를 존 인덱스(Zone index)를 통해서 단말에게 알려줄 수 있다. 여기서 존 인덱스는 기지국이 전송한 (1) 비연결 전송을 위한 시간-주파수 영역에서 사전에 정의된 테이블에 따른 해당 시간-주파수 영역을 가리키는 인덱스이다. 단말은 상기 존 인덱스에 해당하는 비연결 전송을 위한 시간-주파수 영역을 통해 RRC 연결 설정 프로시저를 수행함이 없이 바로 기지국에 데이터를 전송할 수 있다. On the contrary, FIG. 4 illustrates a procedure of allocating a terminal capable of connectionless transmission to a connectionless zone because the overhead of the base station is severe. In this case, an indicator (for example, CL_ind = 1) is transmitted to the UE to allocate a connectionless transmission zone, and at this time, a zone index indicating which time-frequency domain corresponds to the connectionless transmission zone. It can inform the terminal through. Here, the zone index is an index indicating a corresponding time-frequency domain according to a predefined table in the time-frequency domain for (1) unconnected transmission transmitted by the base station. The terminal may directly transmit data to the base station without performing the RRC connection establishment procedure through the time-frequency domain for the unconnected transmission corresponding to the zone index.
상기 절차를 통해서, 기지국은 현재 기지국의 오버헤드 상태를 확인하고 단말의 비연결 전송 가능 여부에 따라 새로운 시간-주파수 영역을 할당함으로써 많은 단말의 수용을 가능하게 할 수 있다. 이와 같이, 본 발명에서는 Massive 연결을 지원하기 위한 시스템에서 기존 단말들과 새로운 전송 기법을 지원하는 단말들이 공존하는 상황에서 주파수 자원을 할당하는 기법을 제안하였다. Through the above procedure, the base station can enable the acceptance of a large number of terminals by checking the overhead state of the current base station and allocating a new time-frequency region according to whether the terminal can be connected without connection. As described above, the present invention proposes a scheme for allocating frequency resources in a situation where existing terminals and terminals supporting a new transmission scheme coexist in a system for supporting a massive connection.
이하에서는 Massive 단말을 위한 RACH 프로시저를 수행한 이후에 Massive 단말의 상향링크 비연결 전송(Connection less data transmission)을 위한 HARQ 설계 방안을 제안한다. 다음 표 1은 3GPP LTE 시스템에서의 상향링크 HARQ 내용이다.Hereinafter, a HARQ design method for uplink connectionless data transmission of a massive terminal after performing the RACH procedure for the massive terminal is proposed. Table 1 below shows uplink HARQ contents in 3GPP LTE system.
표 1
Figure PCTKR2015011617-appb-T000001
Table 1
Figure PCTKR2015011617-appb-T000001
Figure PCTKR2015011617-appb-I000001
Figure PCTKR2015011617-appb-I000001
현재 LTE 시스템에서의 Uplink HARQ 동작 방식은 동기식으로 동작한다. 구체적으로, 단말은 기지국으로부터 UL grant를 받은 시점(subframe n)으로부터 4 subframe 후에 즉 subframe n+4에서 데이터 채널(예를 들어, Physical Uplink Shared Channel, PUSCH)를 통해 데이터를 전송한다. 이렇게 전송된 데이터에 대한 ACK/NACK을 4 subframe 다음의 서브프레임(즉, subframe n+8)에서 PHICH를 통해 기지국으로부터 ACK/NACK을 수신하게 된다. 만약 기지국으로부터 NACK을 받으면 다시 4 subframe 후에 즉 subframe n+12에 해당하는 서브프레임에서 데이터를 재전송 한다. 이 때, 단말이 자신의 상향링크 데이터에 대한 ACK/NACK이 PHICH에서의 자원 위치와 멀티플렉싱에 대한 정보를 알아야만 한다. 상향링크 데이터에 대한 ACK/NACK의 PHICH 자원 정보는 상기 표 1에서와 같이 기지국에 의해서 결정된 UL grant에 따른 해당 PUSCH 전송의 first slot에서의 lowest PRB(Physical Resource Block) index 와 DMRS(Demodulation Reference Signal) cyclic shift 에 의해서 결정된다. Uplink HARQ operation scheme in the current LTE system operates synchronously. In more detail, the UE transmits data through a data channel (for example, a physical uplink shared channel (PUSCH)) after 4 subframes, that is, at subframe n + 4, from a time point of receiving a UL grant from a base station (subframe n). The ACK / NACK for the transmitted data is received from the base station through the PHICH in a subframe after 4 subframes (that is, subframe n + 8). If the base station receives the NACK, data is retransmitted after 4 subframes, that is, in a subframe corresponding to subframe n + 12. At this time, the UE should know the information on the resource location and multiplexing in the PHICH ACK / NACK for its uplink data. The PHICH resource information of the ACK / NACK for the uplink data is the lowest physical resource block (PRB) index and the demodulation reference signal (DMRS) in the first slot of the corresponding PUSCH transmission according to the UL grant determined by the base station as shown in Table 1 above. It is determined by cyclic shift.
반면, 비연결 방식의 전송을 하는 경우, UL grant를 통해 자원을 할당 받아 전송을 하는 방식이 아닌 경쟁 기반의 전송을 한다. 비연결 전송에서는 단말이 자신이 전송할 자원과 DMRS cyclic shift 값을 결정한다. 따라서, 기존 방식대로 해당 PUSCH 전송의 first slot에서의 가장 낮은(lowest) PRB(Physical Resource Block) 인덱스와 DMRS cyclic shift를 기반으로 PHICH의 위치와 멀티플렉싱 방법을 결정할 경우 연결 방식의 전송을 사용하는 다른 단말들과 PHICH에서의 자원의 충돌이 일어날 수 있다. 따라서, 새로운 기법의 PHICH자원의 할당 및 멀티플렉싱 방법이 필요하다. On the other hand, in case of connectionless transmission, contention is allocated based on a UL grant, and contention-based transmission is performed rather than transmission. In connectionless transmission, the UE determines a resource to be transmitted and a DMRS cyclic shift value. Therefore, when determining the location and multiplexing method of the PHICH based on the lowest PRB index and DMRS cyclic shift in the first slot of the corresponding PUSCH transmission according to the conventional method, another UE using the transmission of the connection method Resources may collide with each other in the PHICH. Therefore, there is a need for a new technique of PHICH resource allocation and multiplexing.
상기 언급한 것처럼 PHICH의 위치와 멀티플렉싱을 위한 코드는 PRB의 가장 낮은 인덱스 값과 DMRS cyclic shift 값에 의해서 결정된다. 비연결 방식 즉 경쟁 기반의 전송 방식으로 전송할 경우, PUSCH를 전송할 PRB와 DMRS cyclic shift값은 기지국이 아닌 단말에 의해 결정되게 된다. 이 경우, 현재의 방식으로 PHICH를 할당할 경우 충돌이 일어날 수 있다. 예를 들어, 다중 단말(혹은 사용자) 상향링크를 사용할 경우, 기존 LTE 방식에서는 서로 다른 단말에게 동일한 PRB를 할당하지만 DMRS cyclic shift 값을 다르게 설정함으로써 멀티플렉싱하고 DMRS cyclic shift값의 차이로 인해 단말이 각자 PHICH의 ACK/NACK을 디코딩 할 수 있다. 그러나, 단말들이 DMRS cyclic shift값을 결정하여 사용하는 경우는 여러 단말들이 동일한 위치의 PHICH에서 ACK/NACK을 판단하는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위한 방안들을 이하 실시예들에서 설명한다.As mentioned above, the code for the location and multiplexing of the PHICH is determined by the lowest index value and the DMRS cyclic shift value of the PRB. In case of transmission using a connectionless method, that is, a contention-based transmission method, the PRB and DMRS cyclic shift values for transmitting the PUSCH are determined by the terminal, not the base station. In this case, a collision may occur if the PHICH is allocated in the current manner. For example, when using a multi-terminal (or user) uplink, the existing LTE scheme allocates the same PRB to different terminals, but multiplexes by setting different DMRS cyclic shift values, and the terminals are multiplexed due to differences in DMRS cyclic shift values. The ACK / NACK of the PHICH can be decoded. However, when UEs determine and use a DMRS cyclic shift value, various UEs may determine an ACK / NACK in a PHICH at the same location. Solutions for solving this problem are described in the following embodiments.
NACK를 받을 시에는 DMRS cyclic shift 값을 랜덤하게 선택하여 전송하는 방법 When receiving NACK, a method of randomly selecting and transmitting a DMRS cyclic shift value
기존의 PHICH를 할당하는 방식을 그대로 유지하면서 충돌이 났을 때 충돌을 방지하기 위한 방식을 제안한다. 예를 들어, 2개의 단말들이 동일한 시간-주파수 자원에 데이터(예를 들어, PUSCH)를 전송하였고 동일한 DMRS cyclic shift 의 값이 사용되었다고 하면, 수신한 기지국에서는 각 단말의 데이터를 디코딩한다. 각 단말의 DMRS 및 데이터는 직교 코드 도메인(Orthogonal code domain)으로 구분될 수 있으며, 사용된 코드는 프리앰블(preamble)을 통해 데이터 앞에 지시(indication) 될 수 있다.) 이후 ACK/NACK을 단말에게 PHICH로 내려줄 때 동일한 자원 동일한 코드를 사용하여 내려주게 된다. 따라서, 2개 단말의 ACK/NACK 여부는 서로 구분이 되지 않으며 어느 단말의 ACK/NACK인지도 알 수 없게 된다. 그 결과 2개 단말의 경우는 실제 ACK이 아님에도 ACK을 받을 수 있고 NACK이 아님에도 NACK을 받게 되는 경우가 발생한다. We propose a method to prevent a collision when a collision occurs while maintaining an existing PHICH allocation method. For example, if two UEs transmit data (eg, PUSCH) on the same time-frequency resource and the same DMRS cyclic shift value is used, the received base station decodes data of each UE. DMRS and data of each terminal may be divided into an orthogonal code domain, and the used code may be indicated before the data through a preamble.) Then, the ACK / NACK is transmitted to the terminal. When you lower it to the same resource, it uses the same code. Therefore, whether ACK / NACK of the two terminals are not distinguished from each other and it is not known which terminal is ACK / NACK. As a result, two terminals may receive an ACK even if they are not actual ACKs and receive NACKs even if they are not NACKs.
이를 해결하기 위한 방법으로서, 기지국은 동일한 시간-주파수 자원에 동일 DMRS cyclic shift 값을 사용한 단말들이 둘 다 ACK일 경우만 동일한 위치에 ACK을 내려주고, 둘 중 하나라도 NACK이 난 경우에 대해서는 NACK으로 전송을 한다. 그리고, NACK을 받은 단말의 경우는 링크 성능이 나빠서 NACK이 발생했을 수도 있지만 2개의 단말이 동일한 DMRS cyclic shift 값을 사용한 경우여서 기지국이 NACK을 전송했을 수도 있기 때문에, 단말은 다음 전송에는 이전 전송에 사용한 것과 다른 새로운 DMRS cyclic shift 값을 사용하여 PUSCH를 전송할 수 있다. 만약 다음 전송에도 동일한 DMRS를 사용할 경우 계속 동일한 현상이 발생할 수 있으므로 랜덤하게 DMRS cyclic shift 값을 선택하여 사용함으로써 해당 PHICH의 자원 충돌을 줄일 수 있다. As a method for solving this, the base station gives an ACK to the same position only when the terminals using the same DMRS cyclic shift value for the same time-frequency resources are both ACK, NACK for any one of them Send. In case of NACK terminal, NACK may have occurred due to poor link performance. However, since two UEs use the same DMRS cyclic shift value, the BS may transmit NACK. PUSCH can be transmitted using a new DMRS cyclic shift value different from the one used. If the same DMRS is used for the next transmission, the same phenomenon may continue to occur. Accordingly, resource collision of the PHICH can be reduced by randomly selecting and using a DMRS cyclic shift value.
기지국과 단말이 프리앰블을 활용하여
Figure PCTKR2015011617-appb-I000002
을 기반으로 ACK/NACK의 위치와 사용된 코드를 결정하는 방법
The base station and the terminal using the preamble
Figure PCTKR2015011617-appb-I000002
To determine the location of ACK / NACK and the code used
이 방식은 상기 설명한 NACK를 받을 시에는 DMRS cyclic shift 값을 랜덤하게 선택하여 전송하는 방법과 달리, 새로운 Key 파라미터를 대체하는 방법으로 PHICH 자원 충돌을 줄이는 방법이다. 다시 말해, 기존 두 파라미터 해당 PUSCH 전송의 first slot의 가장 낮은 PRB 인덱스와 DMRS cyclic shift 값 중 에서 DMRS cyclic shift 값 대신에 프리앰블(preamble)을 활용하는 방식이다. 다음 표 2는 DCI(Downlink Control Information) 포맷 0의 Cyclic shift field 값을 나타낸 표이다.This method is a method of reducing PHICH resource collision by replacing a new key parameter, unlike a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving the NACK described above. In other words, a preamble is used instead of the DMRS cyclic shift value among the lowest PRB index and the DMRS cyclic shift value of the first slot of the existing two parameters corresponding to the PUSCH transmission. Table 2 below shows a Cyclic shift field value of Downlink Control Information (DCI) format 0.
표 2
Figure PCTKR2015011617-appb-T000002
TABLE 2
Figure PCTKR2015011617-appb-T000002
상기 표 2를 참조하면, 현재 DMRS cyclic shift 값은 3bits형태로 할당되고 있다. 따라서, 1/8의 확률로 DMRS가 동일 시간-주파수 자원에서 충돌할 수 있다. 해당 충돌 확률을 줄이기 위해서 프리앰블을 이용한 방법을 사용할 수 있다. 즉 프리앰블 시퀀스 종류를 충분히 많이 (예를 들어, 32 개의 시퀀스) 할당함으로써 혹은 프리앰블에 유니크한 코드를 적용하여 충돌 확률을 줄일 수 있다. 예를 들어, 비연결 전송에서는 데이터가 기지국에 언제 도달하는지 인지하기 위해 일반적으로 데이터를 보내는 과정에서 데이터 앞에 프리앰블을 달아서 전송하게 된다. 이 프리앰블에 랜덤한 시퀀스를 할당함으로써 해당 데이터에 대한 key를 연계할 수 있다.Referring to Table 2, the DMRS cyclic shift value is currently assigned in the form of 3 bits. Thus, there is a 1/8 chance that DMRS may collide in the same time-frequency resource. In order to reduce the collision probability, a method using a preamble may be used. That is, collision probability can be reduced by allocating a preamble sequence type sufficiently (for example, 32 sequences) or by applying a unique code to the preamble. For example, in connectionless transmission, in order to recognize when data arrives at a base station, a preamble is transmitted before the data in the process of sending data. By assigning a random sequence to this preamble, a key for the corresponding data can be associated.
도 6은 NACK를 받을 시에는 DMRS cyclic shift 값을 랜덤하게 선택하여 전송하는 방법의 일 실시예로서 비연결 전송 일 예를 도시한 도면이다.6 is a diagram illustrating an example of connectionless transmission as an embodiment of a method of randomly selecting and transmitting a DMRS cyclic shift value when receiving a NACK.
도 6을 참조하면, 동일한 시간-주파수 자원에 전송이 되는 상황을 가정하자. 이 때, 각 단말들은 DMRS cyclic shift값을 임의로 결정해서 전송하기 때문에 동일한 값으로 전송하였을 경우, 기지국에서 수신이 가능하더라도 두 단말은 동일한 PHICH의 ACK/NACK을 디코딩하게 되어 문제가 발생한다. 따라서, 위 프리앰블에 랜덤한 값을 추가적으로 전송함으로써 두 사용자가 동일한 DMRS cyclic shift값을 전송하더라도 프리앰블 값을 기반으로 서로 직교하는 PHICH의 ACK/NACK 할당이 가능하다. 여기서, 단말간의 데이터는 기지국에서 구분이 가능하다. 일 예로, 코드 도메인 혹은 공간 도메인(spatial domain)을 통해서 구분이 가능하다.Referring to FIG. 6, assume a situation in which transmission is performed on the same time-frequency resource. In this case, since each terminal arbitrarily determines and transmits a DMRS cyclic shift value, when transmitting with the same value, even if reception is possible at the base station, two terminals decode ACK / NACK of the same PHICH, which causes a problem. Therefore, by additionally transmitting a random value to the preamble, even if two users transmit the same DMRS cyclic shift value, ACK / NACK allocation of PHICHs orthogonal to each other based on the preamble value is possible. Here, data between terminals can be distinguished at the base station. For example, the classification may be performed through a code domain or a spatial domain.
기지국과 단말이 데이터 앞의 프리앰블을 활용하여
Figure PCTKR2015011617-appb-I000003
을 기반으로 ACK/NACK의 위치와 사용된 코드를 결정하는 방법
The base station and the terminal using the preamble before the data
Figure PCTKR2015011617-appb-I000003
To determine the location of ACK / NACK and the code used
상술한 기지국과 단말이 Preamble을 활용하여
Figure PCTKR2015011617-appb-I000004
을 기반으로 ACK/NACK의 위치와 사용된 코드를 결정하는 방법과 달리, 기존 DMRS cyclic shift 값을 활용하고 여기에 추가적으로 프리앰블의 값을 이용하는 방법이다. 해당 방식에서는 프리앰블의 랜덤 값과 기존 DMRS cyclic shift 값을 이용하여 PHICH의 충돌 확률을 줄일 수 있다. 상기 기지국과 단말이 데이터 앞의 프리앰블을 활용하여
Figure PCTKR2015011617-appb-I000005
을 기반으로 ACK/NACK의 위치와 사용된 코드를 결정하는 방식에 비해, 더 적은 Preamble 시퀀스 종류를 활용하더라도 충돌 확률을 줄일 수 있는 효과를 가져올 수 있다.
The base station and the terminal described above using a preamble
Figure PCTKR2015011617-appb-I000004
Unlike the method of determining the location of the ACK / NACK and the code used based on the above, the existing DMRS cyclic shift value is used and the value of the preamble is additionally used. In this method, the collision probability of the PHICH can be reduced by using a random value of the preamble and a conventional DMRS cyclic shift value. The base station and the terminal by using a preamble in front of the data
Figure PCTKR2015011617-appb-I000005
Compared to the method of determining the location of the ACK / NACK and the code used, the probability of collision can be reduced even if fewer Preamble sequences are used.
본 발명에서는 비연결 전송 기법을 위한 HARQ 기법을 제안하였다. 기존 LTE의 경우, 기지국의 자원 할당에 따른 값들을 바탕으로 PHICH의 ACK/NACK 위치와 코드가 결정된 반면, 새로운 비연결 전송 방식(UL grant없이 전송하는 방식)에서의 ACK/NACK의 위치를 결정하는 방식과 충돌을 회피하는 방법을 제안하였다. In the present invention, a HARQ scheme for a connectionless transmission scheme is proposed. In the case of the existing LTE, while the ACK / NACK location and code of the PHICH is determined based on the values according to the resource allocation of the base station, while determining the location of the ACK / NACK in a new connectionless transmission method (transmission without UL grant) We proposed a method and a method to avoid collisions.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
본 발명에 따른 비연결 기반 전송을 수행하는 방법 및 이를 위한 장치는 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.Method for performing connectionless based transmission according to the present invention and apparatus for the same can be used industrially in various wireless communication systems.

Claims (10)

  1. 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말의 통신 방법에 있어서,In a communication method of a terminal performing connectionless based transmission in a wireless communication system,
    PUSCH(Physical Uplink Shared CHannel) 전송을 위한 물리자원블록(Physical Resource Block, PRB)와 DMRS(Demodulation Reference Signal) 순환 천이 값을 결정하는 단계;Determining a physical resource block (PRB) and a demodulation reference signal (DMRS) cyclic shift value for PUSCH (Physical Uplink Shared CHannel) transmission;
    상기 결정된 PRB와 DMRS 순환 천이값에 기초하여 상기 PUSCH를 기지국으로 전송하는 단계;Transmitting the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value;
    상기 기지국으로부터 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 수신하는 경우에는 DMRS 순환 천이 값을 랜덤하게 재결정하는 단계; 및Randomly determining a DMRS cyclic shift value when receiving a NACK signal for the PUSCH from the base station; And
    상기 재결정된 DMRS 순환 천이값에 기초하여 상기 PUSCH를 재전송하는 단계를 포함하는, 비연결 기반 전송을 수행하는 단말의 통신 방법.And retransmitting the PUSCH on the basis of the re-determined DMRS cyclic shift value.
  2. 제 1항에 있어서,The method of claim 1,
    상기 NACK 신호는 상기 단말의 PUSCH 및 다른 단말의 PUSCH가 동일한 DMRS 순환 천이값에 기초하여 동일한 시간 및 주파수 자원에 전송된 경우 또는 상기 단말의 PUSCH를 수신하지 못한 경우에 전송되는, 비연결 기반 전송을 수행하는 단말의 통신 방법.The NACK signal is transmitted when a PUSCH of the UE and a PUSCH of another UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value or when the PUSCH of the UE is not received. Communication method of the terminal to perform.
  3. 제 1항에 있어서,The method of claim 1,
    상기 비연결 기반 전송을 위한 시간 및 주파수 영역에 대한 정보를 수신하는 단계를 더 포함하되,Receiving information on a time and frequency domain for the connectionless transmission;
    상기 결정된 PRB는 상기 시간 및 주파수 영역에 포함되어 있는, 비연결 기반 전송을 수행하는 단말의 통신 방법.The determined PRB is included in the time and frequency domain, the communication method of the terminal for performing connectionless based transmission.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 비연결 기반 전송을 위한 랜덤 액세스 프리앰블 인덱스 정보를 수신하는 단계; 및Receiving random access preamble index information for the connectionless transmission; And
    상기 랜덤 액세스 프리앰블 인덱스 정보에 기초하여 랜덤 액세스 프로시저를 수행하는 단계를 더 포함하는, 비연결 기반 전송을 수행하는 단말의 통신 방법.And performing a random access procedure based on the random access preamble index information.
  5. 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국의 통신 방법에 있어서,A communication method of a base station performing connectionless based transmission in a wireless communication system,
    결정된 물리자원블록(Physical Resource Block, PRB)와 DMRS 순환 천이 값에 기초하는 PUSCH(Physical Uplink Shared CHannel)를 단말로부터 수신하는 단계;Receiving a physical uplink shared channel (PUSCH) based on the determined physical resource block (PRB) and a DMRS cyclic shift value from the terminal;
    상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 상기 단말로 전송하는 단계; 및Transmitting a negative ACKnowledgement (NACK) signal for the PUSCH to the terminal; And
    상기 NACK에 대한 응답으로서 재결정된 DMRS 순환 천이값에 적용된 상기 PUSCH를 상기 단말로부터 재수신하는 단계를 포함하되, Re-receiving from the terminal the PUSCH applied to the re-determined DMRS cyclic shift value as a response to the NACK,
    상기 결정된 PRB와 DMRS 순환 천이 값은 상기 단말에 의해 결정된 것이며, The determined PRB and DMRS cyclic shift value is determined by the terminal,
    상기 재결정된 DMRS 순환 천이값은 상기 단말에 의해 랜덤하게 재결정된 것인, 비연결 기반 전송을 수행하는 기지국의 통신 방법.The re-determined DMRS cyclic shift value is randomly re-determined by the terminal, the communication method of the base station for performing connectionless based transmission.
  6. 제 5항에 있어서,The method of claim 5,
    상기 NACK 신호는 상기 단말의 PUSCH 및 다른 단말의 PUSCH가 동일한 DMRS 순환 천이값에 기초하여 동일한 시간 및 주파수 자원에 전송된 경우 또는 상기 단말의 PUSCH를 수신하지 못한 경우에 전송되는, 비연결 기반 전송을 수행하는 기지국의 통신 방법.The NACK signal is transmitted when the PUSCH of the UE and the PUSCH of the other UE are transmitted on the same time and frequency resource based on the same DMRS cyclic shift value, or when the PUSCH of the UE is not received. A communication method of a base station performed.
  7. 제 5항에 있어서,The method of claim 5,
    상기 비연결 기반 전송을 위한 시간 및 주파수 영역에 대한 정보를 전송하는 단계를 더 포함하되,The method may further include transmitting information on a time and frequency domain for the connectionless transmission.
    상기 결정된 PRB는 상기 시간 및 주파수 영역에 포함되어 있는, 비연결 기반 전송을 수행하는 기지국의 통신 방법.The determined PRB is included in the time and frequency domain, the communication method of the base station for performing connectionless based transmission.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 비연결 기반 전송을 위한 랜덤 액세스 프리앰블 인덱스 정보를 전송하는 단계; 및Transmitting random access preamble index information for the connectionless transmission; And
    상기 랜덤 액세스 프리앰블 인덱스 정보에 기초하여 랜덤 액세스 프로시저를 수행하는 단계를 더 포함하는, 비연결 기반 전송을 수행하는 기지국의 통신 방법.And performing a random access procedure based on the random access preamble index information.
  9. 무선통신 시스템에서 비연결 기반 전송을 수행하는 단말에 있어서,In a terminal for performing connectionless based transmission in a wireless communication system,
    PUSCH(Physical Uplink Shared CHannel) 전송을 위한 물리자원블록(Physical Resource Block, PRB)와 DMRS(Demodulation Reference Signal) 순환 천이 값을 결정하도록 구성된 프로세서;A processor configured to determine a Physical Resource Block (PRB) and a Demodulation Reference Signal (DMRS) cyclic shift value for PUSCH (Physical Uplink Shared CHannel) transmission;
    상기 결정된 PRB와 DMRS 순환 천이값에 기초하여 상기 PUSCH를 기지국으로 전송하도록 구성된 송신기; 및A transmitter configured to transmit the PUSCH to a base station based on the determined PRB and DMRS cyclic shift value; And
    상기 기지국으로부터 상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 수신하도록 구성된 수신기를 포함하되,A receiver configured to receive a negative ACKnowledgement (NACK) signal for the PUSCH from the base station,
    상기 프로세서는 상기 수신기가 상기 NACK을 수신한 경우에는 DMRS 순환 천이 값을 랜덤하게 재결정하도록 구성되며,The processor is configured to randomly re-determine a DMRS cyclic shift value when the receiver receives the NACK,
    상기 송신기는 상기 재결정된 DMRS 순환 천이값에 기초하여 상기 PUSCH를 재전송하도록 구성되는, 단말.The transmitter is configured to retransmit the PUSCH based on the re-determined DMRS cyclic shift value.
  10. 무선통신 시스템에서 비연결 기반 전송을 수행하는 기지국에 있어서,A base station performing connectionless based transmission in a wireless communication system,
    결정된 물리자원블록(Physical Resource Block, PRB)와 DMRS 순환 천이 값에 기초하는 PUSCH(Physical Uplink Shared CHannel)를 단말로부터 수신하도록 구성된 수신기; 및A receiver configured to receive from the terminal a Physical Uplink Shared CHannel (PUSCH) based on the determined Physical Resource Block (PRB) and a DMRS cyclic shift value; And
    상기 PUSCH에 대한 NACK(Negative ACKnowledgement) 신호를 상기 단말로 전송하도록 구성된 송신기를 포함하되,Including a transmitter configured to transmit a negative ACKnowledgement (NACK) signal for the PUSCH to the terminal,
    상기 수신기는, 상기 NACK에 대한 응답으로서 재결정된 DMRS 순환 천이값에 적용된 상기 PUSCH를 상기 단말로부터 재수신하도록 구성되고, The receiver is configured to re-receive the PUSCH applied to the re-determined DMRS cyclic shift value as a response to the NACK from the terminal,
    상기 결정된 PRB와 DMRS 순환 천이 값은 상기 단말에 의해 결정된 것이며, The determined PRB and DMRS cyclic shift value is determined by the terminal,
    상기 재결정된 DMRS 순환 천이값은 상기 단말에 의해 랜덤하게 재결정된 것인, 기지국.The re-determined DMRS cyclic shift value is randomly re-determined by the terminal.
PCT/KR2015/011617 2015-11-02 2015-11-02 Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor WO2017078185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/011617 WO2017078185A1 (en) 2015-11-02 2015-11-02 Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/011617 WO2017078185A1 (en) 2015-11-02 2015-11-02 Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2017078185A1 true WO2017078185A1 (en) 2017-05-11

Family

ID=58662072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011617 WO2017078185A1 (en) 2015-11-02 2015-11-02 Method for performing connectionless-based transmission in wireless communication system, and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2017078185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022314A1 (en) * 2017-07-28 2019-01-31 삼성전자주식회사 Method for performing rach procedure between terminal and base station, and base station and terminal therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050766A2 (en) * 2008-10-31 2010-05-06 엘지전자주식회사 Method and apparatus for performing harq process in wireless communication system
US20110205996A1 (en) * 2008-10-30 2011-08-25 Ki Hwan Kim Method of harq acknowledgement transmission and transport block retransmission in a wireless communication system
US20110249632A1 (en) * 2010-04-07 2011-10-13 Erik Eriksson Scheduling Retransmissions for Contention-Based Access
KR20120005935A (en) * 2010-07-09 2012-01-17 엘지전자 주식회사 Method for transmitting uplink reference signal in multiple antenna wireless communication system and apparatus therefor
US20130148593A1 (en) * 2010-05-27 2013-06-13 Shoichi Suzuki Mobile station apparatus, base station apparatus, radio communication system, radio communication method, and integrated circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110205996A1 (en) * 2008-10-30 2011-08-25 Ki Hwan Kim Method of harq acknowledgement transmission and transport block retransmission in a wireless communication system
WO2010050766A2 (en) * 2008-10-31 2010-05-06 엘지전자주식회사 Method and apparatus for performing harq process in wireless communication system
US20110249632A1 (en) * 2010-04-07 2011-10-13 Erik Eriksson Scheduling Retransmissions for Contention-Based Access
US20130148593A1 (en) * 2010-05-27 2013-06-13 Shoichi Suzuki Mobile station apparatus, base station apparatus, radio communication system, radio communication method, and integrated circuit
KR20120005935A (en) * 2010-07-09 2012-01-17 엘지전자 주식회사 Method for transmitting uplink reference signal in multiple antenna wireless communication system and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022314A1 (en) * 2017-07-28 2019-01-31 삼성전자주식회사 Method for performing rach procedure between terminal and base station, and base station and terminal therefor
KR20190012726A (en) * 2017-07-28 2019-02-11 삼성전자주식회사 Method, base station and terminal for performing rach procedure between terminal and base station
CN110999497A (en) * 2017-07-28 2020-04-10 三星电子株式会社 Method for performing RACH procedure between terminal and base station, and base station and terminal using same
US11184932B2 (en) 2017-07-28 2021-11-23 Samsung Electronics Co., Ltd. Method for performing RACH procedure between terminal and base station, and base station and terminal therefor
KR102406365B1 (en) * 2017-07-28 2022-06-08 삼성전자주식회사 Method, base station and terminal for performing rach procedure between terminal and base station
CN110999497B (en) * 2017-07-28 2023-10-20 三星电子株式会社 Method for performing RACH procedure between terminals and base station, and base station and terminal using the same

Similar Documents

Publication Publication Date Title
WO2018066934A2 (en) Method and apparatus for enhanced contention based random access procedure
WO2018080151A1 (en) Method for performing harq for v2x communication in wireless communication system and apparatus therefor
WO2013115567A1 (en) Method for transmitting and receiving feedback information on d2d transmission data in wireless communication system for supporting d2d communication and apparatus therefor
WO2018084382A1 (en) Method for transmitting sr in wireless communication system and terminal therefor
WO2018048273A1 (en) Signal transmission method for v2x communication in wireless communication system and device therefor
WO2010027175A2 (en) Method of requesting radio resource in wireless communication system
WO2013043007A2 (en) Method and apparatus for random-accessing in wireless communication system
WO2012134155A2 (en) Method and device for random access in mobile communication system
WO2015156604A1 (en) Method and apparatus for transmitting data by device-to-device terminal in wireless communication system
WO2014168329A1 (en) Method and device for transmitting uplink data in support of multi-subframe scheduling
WO2017155324A1 (en) Method for performing random access procedure for single tone transmission in wireless communication system and apparatus therefor
WO2011068358A2 (en) Method and apparatus for transceiving data via a contention-based physical uplink data channel
WO2016072685A2 (en) Method for transmitting uplink in unlicensed band and device using same
WO2016182228A1 (en) Method for supporting sporadic high-capacity packet service and apparatus therefor
WO2018164450A1 (en) Method for allocating ack/nack resource in wireless communication system and apparatus therefor
WO2016056877A2 (en) Method for transmitting d2d synchronization signal and terminal therefor
WO2017222351A1 (en) Signal transmission method for v2x communication in wireless communication system, and device therefor
WO2017052251A1 (en) Method and apparatus for transmitting uplink control information (uci) in wireless communication system
WO2018093113A1 (en) Signal transmission/reception method for v2x communication in wireless communication system and device therefor
WO2018084331A1 (en) Method for transmitting rrc connection request, and terminal therefor
WO2019156474A1 (en) Method and apparatus for configuring feedback signal for sidelink communication in wireless communication system
WO2018101738A1 (en) Resource allocation method for v2x communication in wireless communication system and device therefor
WO2013133607A1 (en) Signal transmission method and user equipment, and signal reception method and base station
WO2011139120A2 (en) Terminal for controlling uplink transmission power and an uplink transmission power control method in a wireless communication system
WO2015050417A1 (en) Method and apparatus for transceiving signal from device-to-device terminal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907848

Country of ref document: EP

Kind code of ref document: A1