WO2017077835A1 - Radiographic image capturing element and method of manufacturing radiographic image capturing element - Google Patents

Radiographic image capturing element and method of manufacturing radiographic image capturing element Download PDF

Info

Publication number
WO2017077835A1
WO2017077835A1 PCT/JP2016/080433 JP2016080433W WO2017077835A1 WO 2017077835 A1 WO2017077835 A1 WO 2017077835A1 JP 2016080433 W JP2016080433 W JP 2016080433W WO 2017077835 A1 WO2017077835 A1 WO 2017077835A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
pixel electrode
conversion film
scintillator
amorphous silicon
Prior art date
Application number
PCT/JP2016/080433
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
裕也 藤森
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2017077835A1 publication Critical patent/WO2017077835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention relates to a radiographic image sensor that captures an image using radiation.
  • a radiation image pickup element for taking a so-called X-ray photograph.
  • a radiographic imaging device has a structure including a scintillator that absorbs radiation and emits light, and a photodiode having a photoelectric conversion film that detects scintillation light emitted from the scintillator and converts it into an electrical signal.
  • Patent Document 1 discloses an example of such a radiation image pickup element.
  • the radiographic image pickup device it is desired to obtain a clearer radiographic image by increasing the light detection efficiency in the photoelectric conversion film corresponding to each pixel electrode.
  • the present invention has been made in view of the above-described demand, and an object thereof is to provide a radiographic imaging device capable of capturing a clearer radiographic image and a manufacturing method thereof.
  • a radiographic imaging device includes a scintillator that absorbs radiation and emits light, a TFT circuit that generates and outputs an image signal, a transparent electrode, and the transparent electrode
  • a photoelectric conversion film that detects the light emission through the photoelectric conversion film and converts it into an electrical signal
  • a pixel electrode corresponding to each pixel that receives the electrical signal obtained by the conversion by the photoelectric conversion film and transmits it to the TFT circuit
  • a radiographic image pickup device comprising a substrate and a layer, wherein the photoelectric conversion film has a central region including a portion corresponding to at least a central portion of the pixel electrode, and a portion corresponding to an end portion of the pixel electrode.
  • the photoelectric conversion efficiency with respect to the emission wavelength of the scintillator is higher than that of the end region including
  • the photoelectric conversion film includes amorphous silicon formed in the end region, polysilicon formed in the center region, and It may be composed of:
  • the photoelectric conversion film includes polysilicon formed in the end region, amorphous silicon formed in the central region, and It may be composed of:
  • the radiation image pickup device may be formed by laminating a TFT circuit, a pixel electrode, a photoelectric conversion film, a transparent electrode, and a scintillator in this order on a substrate.
  • a method for manufacturing a radiographic imaging device includes a step of forming a TFT circuit on a substrate, and a step of forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed.
  • a step of forming an amorphous silicon film as a photoelectric conversion film on the side where the pixel electrode is formed, and a central region including a portion corresponding to the central portion of each pixel electrode of amorphous silicon are annealed and converted to polysilicon.
  • a step of forming a transparent electrode on the side on which the photoelectric conversion film is formed and a step of forming a scintillator that absorbs radiation and emits light on the side on which the transparent electrode is formed. It matches the absorption wavelength of polysilicon rather than the absorption wavelength of amorphous silicon.
  • a method for manufacturing a radiographic imaging device includes a step of forming a TFT circuit on a substrate, and a step of forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed.
  • the step of forming an amorphous silicon film as a photoelectric conversion film on the side where the pixel electrode is formed and the end region including the portion corresponding to the end of each pixel electrode of amorphous silicon are annealed and converted to polysilicon
  • the central region corresponding to the central portion of the pixel electrode corresponding to each pixel is more photoelectrically sensitive to the emission wavelength of the scintillator than the end region corresponding to the end portion of the pixel electrode. It has a configuration with high conversion efficiency. Therefore, in the edge area, the light that should be detected by the adjacent pixels is detected as noise, and the image may be blurred. By reducing the photoelectric conversion efficiency of the edge area compared to the central area, the pixel The noise component contained in the electrical signal to be detected by the electrode can be reduced, and the possibility that a blurred image is generated can be suppressed.
  • An upper part is sectional drawing which shows the structure of the radiographic image pick-up element based on Embodiment.
  • the middle part is a graph showing the S / N ratio in the radiation image element.
  • the lower part is a graph showing the photoelectric conversion efficiency of the radiation image element. It is a flowchart which shows the manufacturing method of a radiographic image pick-up element.
  • An upper part is sectional drawing which shows the structure of the conventional radiographic image pick-up element.
  • the middle part is a graph showing the S / N ratio in a conventional radiographic image element.
  • the lower part is a graph showing the photoelectric conversion efficiency of the radiation image element.
  • the radiation image pickup device 300 includes a TFT circuit 302 that converts an electrical signal into an image signal, pixel electrodes 303 a, 303 b, and 303 c corresponding to each pixel, a photoelectric conversion film 304, on a substrate 301.
  • a transparent electrode 305, a scintillator 306 that absorbs radiation and emits light, and a reflective film 307 that reflects light are laminated.
  • the scintillator 306 absorbs radiation (not shown), and emits light starting from the light sources 308 and 309, for example.
  • light originating from the light source 308 should be converted into an electrical signal by the photoelectric conversion film 304 and transmitted to the pixel electrode 303b, and light originating from the light source 309 is similarly converted to an electrical signal.
  • an electrical signal based on the light indicated by the optical axes 308b and 308c starting from the light source 308 is transmitted to the pixel electrode 303b.
  • the light indicated by the optical axis 308a reaches between the pixel electrode 303a and the pixel electrode 303b, an electric signal is not transmitted to any pixel electrode.
  • the electrical signal based on the light indicated by the optical axes 309b and 309c starting from the light source 309 is transmitted to the pixel electrode 303c, the light indicated by the optical axis 309a reaches the pixel electrode 303b. Then, it is converted into an electric signal and transmitted by the pixel electrode 303b. That is, the pixel electrode 303b is in a state of detecting light that should not be detected, starting from the light source 309, and an electrical signal based on the light is a noise component.
  • the S / N ratio in the radiation image pickup device 300 is like the S / N ratio graph shown in the middle part of FIG. Further, the photoelectric conversion film 304 is uniformly formed, and the photoelectric conversion efficiency is also uniform throughout the radiation image pickup device 300 as shown in the lower part of FIG. Therefore, a radiographic image is generated by receiving an electric signal mixed with a noise component as indicated by the S / N ratio in the middle of FIG. The inventors have found that the radiation image may be blurred because such a state occurs.
  • Patent Document 1 in order to avoid such a state, the photoelectric conversion film in the region located between the pixel electrodes is removed by a photolithography process so that light components that should not be detected are not detected. ing. However, there is a problem that it is troublesome to remove an unnecessary photoelectric conversion film by this photolithography process.
  • a radiographic imaging device 100 includes a scintillator 106 that absorbs radiation and emits light, a TFT circuit 102 that generates and outputs an image signal, a transparent electrode 105, and a transparent electrode 105.
  • a photoelectric conversion film 104 that detects light emission and converts it into an electric signal; a pixel electrode 103 corresponding to each pixel that receives an electric signal converted by the photoelectric conversion film 104 and transmits the electric signal to the TFT circuit 102; a substrate 101;
  • the photoelectric conversion film 104 includes end regions 141a, 142a, 142b, and 142c that include portions corresponding to at least the central portion of the pixel electrode. 141b, 141c, and 141d have higher photoelectric conversion efficiency.
  • FIG. 1 is a cross-sectional view showing a detailed configuration of the radiation image pickup element 100.
  • a TFT circuit 102 is formed on a substrate 101, pixel electrodes 103a to 103c are formed thereon, and a photoelectric conversion film 104 is formed thereon.
  • a transparent electrode 105 is formed thereon, a scintillator 106 is formed on the transparent electrode 105, and a reflective film 107 is further formed thereon.
  • the pixel electrode is collectively referred to as the pixel electrode 103.
  • the substrate 101 is made of, for example, glass.
  • the TFT circuit 102 has a function of generating and outputting an image signal indicating one radiation image based on the electrical signal transmitted from each pixel electrode 103.
  • the pixel electrode 103 is an electrode corresponding to each pixel that forms a radiographic image, and transmits an electrical signal based on the electrical signal transmitted from the photoelectric conversion film 104 to the TFT circuit 102.
  • the photoelectric conversion film 104 detects the light emitted from the scintillator 106, converts the light into an electric signal corresponding to the light amount, and transmits the electric signal to the pixel electrode 103.
  • the photoelectric conversion film 104 is photoelectrically converted into a central region 142a, 142b, 142c including a portion corresponding to the central portion of the pixel electrode 103 and an end region 141a, 141b, 141c, 141d including a portion corresponding to the end portion. It has a structure with different efficiency.
  • the photoelectric conversion film 104 has a structure in which the central regions 142a, 142b, and 142c have higher photoelectric conversion efficiency than the end regions 141a, 141b, 141c, and 141d.
  • the central regions 142a, 142b, 142c are realized by, for example, p-Si (polysilicon).
  • the end regions 141a, 141b, and 141c are realized by a-Si (amorphous silicon).
  • the transparent electrode 105 is an electrode that is paired with the pixel electrode and allows an electric signal generated in the photoelectric conversion film 104 to flow from the transparent electrode 105 side to the pixel electrode side.
  • the scintillator 106 is an element that absorbs emitted radiation and emits light, and emits so-called scintillation light.
  • the light sources 108 and 109 are indicated by dots, and light indicated by the optical axes 108 a, 108 b, 108 c, 109 a, 109 b, and 109 c starting from the light sources 108 and 109 is applied to the transparent electrode 105.
  • the scintillator 106 absorbs and emits light from the side irradiated with radiation, but in a scintillator 106, in a rod shape (cylindrical shape) at a position irradiated with radiation while reducing the amount of emitted light. Emits light.
  • the scintillator 106 has an emission wavelength that matches the absorption wavelength (light absorption wavelength) of polysilicon rather than the absorption wavelength (light absorption wavelength) of amorphous silicon.
  • the wavelength is matched means that the overlapping degree of the emission wavelength with respect to one absorption wavelength is higher than the overlapping degree of the emission wavelength with respect to the other absorption wavelength.
  • the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon or polysilicon means that the photoelectric conversion rate of the material with respect to the emission wavelength is high.
  • the absorption wavelength of amorphous silicon is approximately 300 to 600 nm
  • the absorption wavelength of polysilicon is approximately 600 to 1100 nm. That is, the absorption wavelength range of polysilicon is longer than the absorption wavelength range of amorphous silicon, and in this embodiment, the emission wavelength of scintillator 106 is in the range of 600 to 1100 nm.
  • the reflection film 107 is a mirror that reflects the scintillation light generated by the scintillator 106 and collects it on the photoelectric conversion film 104.
  • the radiographic imaging device 100 detects an electrical signal based on scintillation light to be detected at an adjacent pixel electrode as noise at the end of the pixel electrode.
  • the abundance ratio can be suppressed. More specifically, since the ratio of the noise component can be suppressed with respect to the entire electrical signal detected by the pixel electrode 103, a clearer radiation image can be obtained.
  • the S / N ratio in the radiation image pickup element 100 photoelectric conversion film 104 having such a configuration will be described with reference to the graph in the middle of FIG.
  • the horizontal axis of the graph in the middle of FIG. 1 corresponds to the arrangement of the central region and the end region of the radiation image pickup element 100 shown in the upper part of FIG.
  • the graph in the middle of FIG. 1 shows the S / N ratio of the photoelectric conversion film 104 on the vertical axis.
  • the S / N ratio varies depending on a noise component generated by detecting light from a light source that does not correspond to the pixel electrode. Accordingly, as can be seen from the middle part of FIG.
  • the central part of the pixel electrode 103 is the farthest from the other pixel electrode and is the position where the light corresponding to the other pixel electrode is most difficult to detect.
  • the position corresponding to is the highest S / N ratio. Further, since the position corresponding to the end of the pixel electrode 103 is closest to the other pixel electrodes, the S / N ratio is the lowest.
  • the radiation image pickup element 100 has the photoelectric conversion efficiency shown in the lower part of FIG.
  • the photoelectric conversion efficiency is high at positions corresponding to the central regions 142a, 142b, 142c of the photoelectric conversion film 104 of the radiation image pickup device 100, and corresponds to the end regions 141a, 141b, 141c, 141d.
  • the photoelectric conversion efficiency is low at the position where it is to be performed. Therefore, the substantial S / N ratio in the radiographic image pickup device 100 according to the present embodiment is obtained by multiplying the S / N ratio in the middle part of FIG. 1 by the photoelectric conversion efficiency in the lower part of FIG. Therefore, the ratio of the electrical signal of the noise component included in the electrical signal transmitted through the pixel electrode 103 can be reduced as compared with the conventional case. Therefore, a clearer radiographic image than conventional can be obtained.
  • the substrate 101 is prepared, and the TFT circuit 102 is formed thereon (step S201).
  • the pixel electrode 103 corresponding to each pixel is formed on the TFT circuit 102 (step S202).
  • An amorphous silicon layer is formed on the pixel electrode 103 (step S203).
  • step S203 uniformly irradiate the formed amorphous silicon layer to a position corresponding to the central region of each pixel electrode, and anneal it.
  • the laser is used to irradiate amorphous silicon into polysilicon, and each pixel is output from a laser irradiation device to a 100 nm amorphous silicon layer with a wavelength of 308 nm and a laser output of 400 J / cm 2.
  • the amorphous silicon is annealed.
  • the central region corresponding to the central portion of each pixel electrode 103 is annealed and transformed into polysilicon, and a photoelectric conversion film 104 (see FIG. 1) in which amorphous silicon and polysilicon are mixed is formed.
  • the transparent electrode 105 is formed on the photoelectric conversion film 104 (step S205).
  • the scintillator 106 is formed on the transparent electrode 105 (step S206).
  • the scintillator 106 to be formed has an emission wavelength that matches the absorption wavelength of polysilicon with respect to the emission wavelength of light that is emitted by absorbing radiation.
  • the scintillator 106 is formed, and then the reflective film 107 is formed (step S207), and the radiation image pickup device 100 is manufactured.
  • a part of the radiation irradiated from a radiation irradiation apparatus (not shown) is reflected and absorbed by the imaging target, and the rest is transmitted and reaches the radiation image capturing element 100.
  • the radiation irradiated from the reflective film 107 side of the radiation image pickup device 100 passes through the reflective film 107 and is absorbed by the scintillator 106.
  • the scintillator 106 emits light by absorbing radiation (see the light sources 108 and 109).
  • the light originating from the light sources 108 and 109 includes light directed toward the transparent electrode 105 indicated by the optical axes 108a, 108b, and 108c, and the optical axes 109a, 109b, and 109c.
  • the light passes through the transparent electrode 105 and is converted into an electrical signal corresponding to the detected light amount in the photoelectric conversion film 104.
  • the light indicated by the optical axis 108b detected in the central region 142b and the light indicated by the optical axis 109c detected in the central region 142c are converted into electrical signals with high efficiency. Converted.
  • the light indicated by the optical axis 108a detected in the end region 141b and the light indicated by the optical axes 108c, 109a, and 109b detected in the end region 141c are converted into electric signals with low efficiency. Accordingly, in the case of the upper part of FIG.
  • the electrical signal obtained by the photoelectric conversion film 104 is transmitted to the TFT circuit 102 via the pixel electrodes 103a to 103c.
  • the TFT circuit 102 generates and outputs a radiation image according to the electrical signals obtained from the pixel electrodes 103a to 103c and the coordinates of the image corresponding to the pixel electrodes.
  • the radiographic image capturing device 100 can capture a radiographic image that is clearer than before.
  • ⁇ Reference example> In the above embodiment, a configuration example is shown in which the central region is polysilicon and the end region is amorphous silicon. As described above, this is a configuration for adjusting the emission wavelength of the scintillator 106 to the absorption wavelength of polysilicon.
  • amorphous silicon and polysilicon have been described as examples of materials that absorb radiation and emit light, but other materials may be used as long as they absorb radiation and emit light.
  • a radiographic imaging device includes a scintillator that absorbs radiation to emit light, a TFT circuit that generates and outputs an image signal, a transparent electrode, and the transparent electrode through the transparent electrode.
  • a photoelectric conversion film that detects light emission and converts it into an electric signal; a pixel electrode corresponding to each pixel that receives an electric signal obtained by conversion by the photoelectric conversion film and transmits the electric signal to the TFT circuit; and a substrate;
  • the photoelectric conversion film has a central region including a portion corresponding to at least a central portion of the pixel electrode, and an end portion including a portion corresponding to an end portion of the pixel electrode. The photoelectric conversion efficiency with respect to the emission wavelength of the scintillator is higher than that of the region.
  • the photoelectric conversion film is formed in the end region. It may be made of amorphous silicon and polysilicon formed in the central region.
  • the photoelectric conversion film when the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon, the photoelectric conversion film includes polysilicon formed in the end region and amorphous silicon formed in the central region. It may be characterized by comprising.
  • the radiographic image capturing device includes a TFT circuit, a pixel electrode, a photoelectric conversion film, a transparent electrode, and a scintillator on a substrate. It is good also as being laminated
  • a method of manufacturing a radiographic imaging device includes a step of forming a TFT circuit on a substrate, and a pixel electrode corresponding to each pixel is formed on the side on which the TFT circuit is formed.
  • the photoelectric conversion film is appropriately formed with a portion with a high photoelectric conversion efficiency and a portion with a low photoelectric conversion film by a simple process called laser annealing without removing the end region by a photolithography process. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Provided is a radiographic image capturing element with which it is possible to suppress detection, as a noise component by a pixel electrode, of scintillation light that should be detected by an adjoining pixel electrode. A radiographic image capturing element according to the present invention is formed by stacking on one another: a scintillator which absorbs radiation and emits light; a TFT circuit which generates and outputs an image signal; a transparent electrode; a photoelectric conversion film which detects the emitted light via the transparent electrode and converts the detected light into an electrical signal; pixel electrodes which correspond to pixels and which receive the electrical signals converted by the photoelectric conversion film and transfer the electrical signals to the TFT circuit; and a substrate. The photoelectric conversion film has a configuration in which central regions including locations corresponding at least to a central portion of each pixel electrode have an increased photoelectric conversion efficiency with respect to the wavelength of the light emitted by the scintillator, compared with end portion regions including locations corresponding to end portions of each pixel electrode.

Description

放射線画像撮像素子及び放射線画像撮像素子の製造方法Radiation image pickup device and method for manufacturing radiation image pickup device
 本発明は、放射線を用いた画像を撮像する放射線画像撮像素子に関する。 The present invention relates to a radiographic image sensor that captures an image using radiation.
 従来、いわゆるレントゲン写真を撮像するための放射線画像撮像素子がある。そのような放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、そのシンチレータが発したシンチレーション光を検出して電気信号に変換する光電変換膜を有するフォトダイオードとを含む構造を有する。特許文献1には、そのような放射線画像撮像素子の一例が開示されている。 Conventionally, there is a radiation image pickup element for taking a so-called X-ray photograph. Such a radiographic imaging device has a structure including a scintillator that absorbs radiation and emits light, and a photodiode having a photoelectric conversion film that detects scintillation light emitted from the scintillator and converts it into an electrical signal. Patent Document 1 discloses an example of such a radiation image pickup element.
特開2012-247327号公報JP 2012-247327 A
 ところで、放射線画像撮像素子においては、各画素電極に対応する光電変換膜における光の検出効率を高めて、より鮮明な放射線画像を得ることが望まれている。 By the way, in the radiographic image pickup device, it is desired to obtain a clearer radiographic image by increasing the light detection efficiency in the photoelectric conversion film corresponding to each pixel electrode.
 そこで、本発明は、上記要望に鑑みて成されたものであり、より鮮明な放射線画像を撮像できる放射線画像撮像素子及びその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described demand, and an object thereof is to provide a radiographic imaging device capable of capturing a clearer radiographic image and a manufacturing method thereof.
 上記課題を解決するために、本発明の一態様に係る放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、画像信号を生成して出力するTFT回路と、透明電極と、前記透明電極を介して前記発光を検出して電気信号に変換する光電変換膜と、前記光電変換膜で変換して得られた電気信号を受け取って前記TFT回路に伝達する、各画素に対応した画素電極と、基板と、が積層されて成る放射線画像撮像素子であって、前記光電変換膜は、前記画素電極の少なくとも中央部に対応する箇所を含む中央領域が、当該画素電極の端部に対応する箇所を含む端部領域よりも、シンチレータの発光波長に対する光電変換効率が高い構成を有する。 In order to solve the above problems, a radiographic imaging device according to an aspect of the present invention includes a scintillator that absorbs radiation and emits light, a TFT circuit that generates and outputs an image signal, a transparent electrode, and the transparent electrode A photoelectric conversion film that detects the light emission through the photoelectric conversion film and converts it into an electrical signal; and a pixel electrode corresponding to each pixel that receives the electrical signal obtained by the conversion by the photoelectric conversion film and transmits it to the TFT circuit; A radiographic image pickup device comprising a substrate and a layer, wherein the photoelectric conversion film has a central region including a portion corresponding to at least a central portion of the pixel electrode, and a portion corresponding to an end portion of the pixel electrode. The photoelectric conversion efficiency with respect to the emission wavelength of the scintillator is higher than that of the end region including
 また、シンチレータの発光波長がアモルファスシリコンの吸収波長よりもポリシリコンの吸収波長に適合する場合に、光電変換膜は、端部領域に形成されるアモルファスシリコンと、中央領域に形成されるポリシリコンとから成ることとしてもよい。 In addition, when the emission wavelength of the scintillator is more suitable for the absorption wavelength of polysilicon than the absorption wavelength of amorphous silicon, the photoelectric conversion film includes amorphous silicon formed in the end region, polysilicon formed in the center region, and It may be composed of:
 また、シンチレータの発光波長がポリシリコンの吸収波長よりもアモルファスシリコンの吸収波長に適合する場合に、光電変換膜は、端部領域に形成されるポリシリコンと、中央領域に形成されるアモルファスシリコンとから成ることとしてもよい。 In addition, when the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon, the photoelectric conversion film includes polysilicon formed in the end region, amorphous silicon formed in the central region, and It may be composed of:
 また、放射線画像撮像素子は、基板上に、TFT回路と、画素電極と、光電変換膜と、透明電極と、シンチレータとがこの順に積層されて成ることとしてもよい。 Further, the radiation image pickup device may be formed by laminating a TFT circuit, a pixel electrode, a photoelectric conversion film, a transparent electrode, and a scintillator in this order on a substrate.
 また、本発明の一態様に係る放射線画像撮像素子の製造方法は、基板上にTFT回路を形成するステップと、TFT回路が形成された側に、各画素に対応する画素電極を形成するステップと、画素電極が形成された側に、光電変換膜としてアモルファスシリコン膜を成膜するステップと、アモルファスシリコンの画素電極各々の中央部に対応する箇所を含む中央領域をアニールしてポリシリコンに変換するステップと、光電変換膜が形成された側に透明電極を形成するステップと、透明電極が形成された側に放射線を吸収して発光するシンチレータを形成するステップとを含み、シンチレータの発光波長は、アモルファスシリコンの吸収波長よりもポリシリコンの吸収波長に適合する。 In addition, a method for manufacturing a radiographic imaging device according to an aspect of the present invention includes a step of forming a TFT circuit on a substrate, and a step of forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed. A step of forming an amorphous silicon film as a photoelectric conversion film on the side where the pixel electrode is formed, and a central region including a portion corresponding to the central portion of each pixel electrode of amorphous silicon are annealed and converted to polysilicon. And a step of forming a transparent electrode on the side on which the photoelectric conversion film is formed, and a step of forming a scintillator that absorbs radiation and emits light on the side on which the transparent electrode is formed. It matches the absorption wavelength of polysilicon rather than the absorption wavelength of amorphous silicon.
 また、本発明の一態様に係る放射線画像撮像素子の製造方法は、基板上にTFT回路を形成するステップと、TFT回路が形成された側に、各画素に対応する画素電極を形成するステップと、画素電極が形成された側に、光電変換膜としてアモルファスシリコン膜を成膜するステップと、アモルファスシリコンの画素電極各々の端部に対応する箇所を含む端部領域をアニールしてポリシリコンに変換するステップと、光電変換膜が形成された側に透明電極を形成するステップと、透明電極が形成された側に放射線を吸収して発光するシンチレータを形成するステップとを含み、シンチレータの発光波長は、ポリシリコンの吸収波長よりもアモルファスシリコンの吸収波長に適合する。 In addition, a method for manufacturing a radiographic imaging device according to an aspect of the present invention includes a step of forming a TFT circuit on a substrate, and a step of forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed. The step of forming an amorphous silicon film as a photoelectric conversion film on the side where the pixel electrode is formed and the end region including the portion corresponding to the end of each pixel electrode of amorphous silicon are annealed and converted to polysilicon The step of forming a transparent electrode on the side where the photoelectric conversion film is formed, and the step of forming a scintillator that absorbs radiation and emits light on the side where the transparent electrode is formed, and the emission wavelength of the scintillator is It matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon.
 本発明の一態様に係る放射線画像撮像素子は、各画素に対応する画素電極の中央部分に対応する中央領域が、当該画素電極の端部に対応する端部領域よりもシンチレータの発光波長に対する光電変換効率が高い構成を有する。したがって、端部領域において、隣接画素が検出すべき光をノイズとして検出してしまい、画像がぼける可能性があるところ、その端部領域の光電変換効率を中央領域よりも低くすることで、画素電極が検出すべき電気信号に含まれるノイズ成分を低下させ、不鮮明な画像が生成される可能性を抑制することができる。 In the radiographic imaging device according to one embodiment of the present invention, the central region corresponding to the central portion of the pixel electrode corresponding to each pixel is more photoelectrically sensitive to the emission wavelength of the scintillator than the end region corresponding to the end portion of the pixel electrode. It has a configuration with high conversion efficiency. Therefore, in the edge area, the light that should be detected by the adjacent pixels is detected as noise, and the image may be blurred. By reducing the photoelectric conversion efficiency of the edge area compared to the central area, the pixel The noise component contained in the electrical signal to be detected by the electrode can be reduced, and the possibility that a blurred image is generated can be suppressed.
上部は、実施の形態に係る放射線画像撮像素子の構成を示す断面図である。中部は、放射線画像素子におけるS/N比を示すグラフである。下部は、放射線画像素子の光電変換効率を示すグラフである。An upper part is sectional drawing which shows the structure of the radiographic image pick-up element based on Embodiment. The middle part is a graph showing the S / N ratio in the radiation image element. The lower part is a graph showing the photoelectric conversion efficiency of the radiation image element. 放射線画像撮像素子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a radiographic image pick-up element. 上部は、従来の放射線画像撮像素子の構成を示す断面図である。中部は、従来の放射線画像素子におけるS/N比を示すグラフである。下部は、放射線画像素子の光電変換効率を示すグラフである。An upper part is sectional drawing which shows the structure of the conventional radiographic image pick-up element. The middle part is a graph showing the S / N ratio in a conventional radiographic image element. The lower part is a graph showing the photoelectric conversion efficiency of the radiation image element.
<発明者らが得た知見>
 図3上部には、一般的な放射線画像撮像素子300の一例を示す断面図を示している。図3上部に示すように、放射線画像撮像素子300は、基板301上に、電気信号を画像信号に変換するTFT回路302、各画素に対応する画素電極303a、303b、303c、光電変換膜304、透明電極305、放射線を吸収して発光するシンチレータ306、光を反射する反射膜307が積層されて成る。
<Knowledge obtained by the inventors>
In the upper part of FIG. 3, a cross-sectional view showing an example of a general radiographic image pickup device 300 is shown. As shown in the upper part of FIG. 3, the radiation image pickup device 300 includes a TFT circuit 302 that converts an electrical signal into an image signal, pixel electrodes 303 a, 303 b, and 303 c corresponding to each pixel, a photoelectric conversion film 304, on a substrate 301. A transparent electrode 305, a scintillator 306 that absorbs radiation and emits light, and a reflective film 307 that reflects light are laminated.
 放射線画像撮像素子300において、シンチレータ306が放射線(図示せず)を吸収して、例えば、光源308、309を起点として発光する。このとき、光源308を起点とする光は、光電変換膜304で電気信号に変換されて画素電極303bに伝達されるべきであり、光源309を起点とする光は、同様に電気信号に変換されて画素電極303cに伝達されるべきである。図3上部に示す断面図によれば、光源308を起点とする光軸308b、308cで示される光に基づく電気信号は、画素電極303bに伝達される。また、光軸308aで示される光は画素電極303aと画素電極303bとの間に到達するため、いずれの画素電極にも電気信号は伝達されない。その一方で、光源309を起点とする光軸309b、309cで示される光に基づく電気信号は、画素電極303cに伝達されるものの、光軸309aで示される光は、画素電極303bの上に到達して電気信号に変換され、画素電極303bにより伝達される。すなわち、画素電極303bにとって、検出すべきではない、光源309を起点とする光を検出している状態が発生し、当該光に基づく電気信号がノイズ成分となっている。 In the radiation image pickup device 300, the scintillator 306 absorbs radiation (not shown), and emits light starting from the light sources 308 and 309, for example. At this time, light originating from the light source 308 should be converted into an electrical signal by the photoelectric conversion film 304 and transmitted to the pixel electrode 303b, and light originating from the light source 309 is similarly converted to an electrical signal. Should be transmitted to the pixel electrode 303c. According to the cross-sectional view shown in the upper part of FIG. 3, an electrical signal based on the light indicated by the optical axes 308b and 308c starting from the light source 308 is transmitted to the pixel electrode 303b. Further, since the light indicated by the optical axis 308a reaches between the pixel electrode 303a and the pixel electrode 303b, an electric signal is not transmitted to any pixel electrode. On the other hand, although the electrical signal based on the light indicated by the optical axes 309b and 309c starting from the light source 309 is transmitted to the pixel electrode 303c, the light indicated by the optical axis 309a reaches the pixel electrode 303b. Then, it is converted into an electric signal and transmitted by the pixel electrode 303b. That is, the pixel electrode 303b is in a state of detecting light that should not be detected, starting from the light source 309, and an electrical signal based on the light is a noise component.
 この考察のもと、放射線画像撮像素子300におけるS/N比は、図3中部に示されるS/N比のグラフのようになっていると考察される。また、光電変換膜304は一様に成膜されており、その光電変換効率もまた、図3下部に示されるように、放射線画像撮像素子300全体において一様になっている。そのため、図3中部のS/N比で示される通りのノイズ成分混じりの電気信号を受け付けて放射線画像を生成することになる。発明者らはこのような状態が発生するために、放射線画像がぼやける可能性があることを知見した。 Based on this consideration, it is considered that the S / N ratio in the radiation image pickup device 300 is like the S / N ratio graph shown in the middle part of FIG. Further, the photoelectric conversion film 304 is uniformly formed, and the photoelectric conversion efficiency is also uniform throughout the radiation image pickup device 300 as shown in the lower part of FIG. Therefore, a radiographic image is generated by receiving an electric signal mixed with a noise component as indicated by the S / N ratio in the middle of FIG. The inventors have found that the radiation image may be blurred because such a state occurs.
 そこで、特許文献1においては、このような状態を回避すべく、画素電極と画素電極の間に位置する領域の光電変換膜をフォトリソ工程により除去し、検出すべきでない光成分を検出しないようにしている。しかしながら、このフォトリソ工程により不要な光電変換膜を除去するのは手間がかかるという問題がある。 Therefore, in Patent Document 1, in order to avoid such a state, the photoelectric conversion film in the region located between the pixel electrodes is removed by a photolithography process so that light components that should not be detected are not detected. ing. However, there is a problem that it is troublesome to remove an unnecessary photoelectric conversion film by this photolithography process.
 そこで、発明者らは放射線画像撮像素子を作成するにあたって、従来よりも容易かつ不要な光成分をノイズとして検出しにくい手法がないかを模索し、本発明を創造するに至った。以下、本発明に係る放射線画像撮像素子の一実施態様及びその製造方法について図面を参照しながら説明する。 Therefore, the inventors have sought to find a method that makes it easier to detect unnecessary and undesired light components as noise when creating a radiation image pickup device, and has created the present invention. Hereinafter, an embodiment of a radiographic imaging device according to the present invention and a manufacturing method thereof will be described with reference to the drawings.
<実施の形態>
<構成>
 本発明の一実施態様に係る放射線画像撮像素子100は、放射線を吸収して発光するシンチレータ106と、画像信号を生成して出力するTFT回路102と、透明電極105と、透明電極105を介して発光を検出して電気信号に変換する光電変換膜104と、光電変換膜104で変換された電気信号を受け取ってTFT回路102に伝達する、各画素に対応した画素電極103と、基板101と、が積層されて成り、光電変換膜104は、画素電極の少なくとも中央部に対応する箇所を含む中央領域142a、142b、142cが、当該画素電極の端部に対応する箇所を含む端部領域141a、141b、141c、141dよりも、光電変換効率が高い構成を有する。
<Embodiment>
<Configuration>
A radiographic imaging device 100 according to an embodiment of the present invention includes a scintillator 106 that absorbs radiation and emits light, a TFT circuit 102 that generates and outputs an image signal, a transparent electrode 105, and a transparent electrode 105. A photoelectric conversion film 104 that detects light emission and converts it into an electric signal; a pixel electrode 103 corresponding to each pixel that receives an electric signal converted by the photoelectric conversion film 104 and transmits the electric signal to the TFT circuit 102; a substrate 101; The photoelectric conversion film 104 includes end regions 141a, 142a, 142b, and 142c that include portions corresponding to at least the central portion of the pixel electrode. 141b, 141c, and 141d have higher photoelectric conversion efficiency.
 図1は、その放射線画像撮像素子100の詳細構成を示す断面図である。図1に示すように、放射線画像撮像素子100は、基板101上に、TFT回路102が構成され、その上に、各画素電極103a~103cが構成され、その上に光電変換膜104が成膜され、その上に透明電極105が形成され、透明電極105の上には、シンチレータ106が形成され、さらにその上に反射膜107が形成されて成る。なお、本明細書においては、画素電極を総称する場合に、画素電極103と記載する。 FIG. 1 is a cross-sectional view showing a detailed configuration of the radiation image pickup element 100. As shown in FIG. 1, in the radiographic imaging device 100, a TFT circuit 102 is formed on a substrate 101, pixel electrodes 103a to 103c are formed thereon, and a photoelectric conversion film 104 is formed thereon. A transparent electrode 105 is formed thereon, a scintillator 106 is formed on the transparent electrode 105, and a reflective film 107 is further formed thereon. Note that in this specification, the pixel electrode is collectively referred to as the pixel electrode 103.
 基板101は、例えば、ガラスにより構成されている。 The substrate 101 is made of, for example, glass.
 TFT回路102は、各画素電極103から伝達された電気信号に基づいて、1枚の放射線画像を示す画像信号を生成して出力する機能を有する。 The TFT circuit 102 has a function of generating and outputting an image signal indicating one radiation image based on the electrical signal transmitted from each pixel electrode 103.
 画素電極103は、放射線画像を形成する各画素に対応する電極であり、光電変換膜104から伝達された電気信号に基づく電気信号をTFT回路102に伝達する。 The pixel electrode 103 is an electrode corresponding to each pixel that forms a radiographic image, and transmits an electrical signal based on the electrical signal transmitted from the photoelectric conversion film 104 to the TFT circuit 102.
 光電変換膜104は、シンチレータ106が発した光を検出して、その光量に応じた電気信号に変換し、その電気信号を画素電極103に伝達する。光電変換膜104は、画素電極103の中央部に対応する箇所を含む中央領域142a、142b、142cと、端部に対応する箇所を含む端部領域141a、141b、141c、141dとで、光電変換効率を異ならせた構造を有する。具体的には、光電変換膜104は、中央領域142a、142b、142cが端部領域141a、141b、141c、141dよりも光電変換効率が高い構造を有する。中央領域142a、142b、142cは、例えば、p-Si(ポリシリコン)により実現される。また、端部領域141a、141b、141cは、a-Si(アモルファスシリコン)により実現される。 The photoelectric conversion film 104 detects the light emitted from the scintillator 106, converts the light into an electric signal corresponding to the light amount, and transmits the electric signal to the pixel electrode 103. The photoelectric conversion film 104 is photoelectrically converted into a central region 142a, 142b, 142c including a portion corresponding to the central portion of the pixel electrode 103 and an end region 141a, 141b, 141c, 141d including a portion corresponding to the end portion. It has a structure with different efficiency. Specifically, the photoelectric conversion film 104 has a structure in which the central regions 142a, 142b, and 142c have higher photoelectric conversion efficiency than the end regions 141a, 141b, 141c, and 141d. The central regions 142a, 142b, 142c are realized by, for example, p-Si (polysilicon). The end regions 141a, 141b, and 141c are realized by a-Si (amorphous silicon).
 透明電極105は、画素電極と対になって、光電変換膜104で発生した電気信号を透明電極105側から画素電極側に流すための電極である。 The transparent electrode 105 is an electrode that is paired with the pixel electrode and allows an electric signal generated in the photoelectric conversion film 104 to flow from the transparent electrode 105 side to the pixel electrode side.
 シンチレータ106は、照射された放射線を吸収して発光する素子であり、いわゆるシンチレーション光を発する。なお、図1においては、理解しやすくするために、光源108、109を点で示し、それぞれを起点とする光軸108a、108b、108c、109a、109b、109cで示される光が透明電極105に向かう様子を示しているが、実際には、シンチレータ106においては、放射線が照射された側から吸収され発光するので、その発光量を弱めながら、放射線が照射された位置において棒状(円柱状)に発光する。 The scintillator 106 is an element that absorbs emitted radiation and emits light, and emits so-called scintillation light. In FIG. 1, for easy understanding, the light sources 108 and 109 are indicated by dots, and light indicated by the optical axes 108 a, 108 b, 108 c, 109 a, 109 b, and 109 c starting from the light sources 108 and 109 is applied to the transparent electrode 105. In fact, the scintillator 106 absorbs and emits light from the side irradiated with radiation, but in a scintillator 106, in a rod shape (cylindrical shape) at a position irradiated with radiation while reducing the amount of emitted light. Emits light.
 また、本実施の形態に係るシンチレータ106は、その発光波長が、アモルファスシリコンの吸収波長(光の吸収波長)よりも、ポリシリコンの吸収波長(光の吸収波長)に適合することとする。ここで、波長が適合するとは、一方の吸収波長に対する発光波長の重複度合が、他方の吸収波長に対する発光波長の重複度合よりも高いことを意味する。また、シンチレータの発光波長とアモルファスシリコンまたはポリシリコンの吸収波長が適合するとは、発光波長に対するその素材の光電変換率が高いことを意味する。アモルファスシリコンの吸収波長は、およそ300~600nmであり、ポリシリコンの吸収波長は、およそ600~1100nmである。すなわち、ポリシリコンの吸収波長範囲は、アモルファスシリコンの吸収波長範囲よりも、長波長側になり、本実施の形態においては、シンチレータ106の発光波長は600~1100nmの範囲とする。 In addition, the scintillator 106 according to the present embodiment has an emission wavelength that matches the absorption wavelength (light absorption wavelength) of polysilicon rather than the absorption wavelength (light absorption wavelength) of amorphous silicon. Here, that the wavelength is matched means that the overlapping degree of the emission wavelength with respect to one absorption wavelength is higher than the overlapping degree of the emission wavelength with respect to the other absorption wavelength. Further, that the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon or polysilicon means that the photoelectric conversion rate of the material with respect to the emission wavelength is high. The absorption wavelength of amorphous silicon is approximately 300 to 600 nm, and the absorption wavelength of polysilicon is approximately 600 to 1100 nm. That is, the absorption wavelength range of polysilicon is longer than the absorption wavelength range of amorphous silicon, and in this embodiment, the emission wavelength of scintillator 106 is in the range of 600 to 1100 nm.
 反射膜107は、シンチレータ106で発生したシンチレーション光を反射させて、光電変換膜104に集光させる鏡体である。 The reflection film 107 is a mirror that reflects the scintillation light generated by the scintillator 106 and collects it on the photoelectric conversion film 104.
 図1に示す構成を備えることにより、本実施の形態に係る放射線画像撮像素子100は、画素電極の端部において、隣接する画素電極において検出されるべきシンチレーション光に基づく電気信号をノイズとして検出してもその存在比を抑制することができる。より具体的には、画素電極103において検出した電気信号全体に対して、ノイズ成分の比率を抑制することができるので、より鮮明な放射線画像を得ることができる。 By providing the configuration shown in FIG. 1, the radiographic imaging device 100 according to the present embodiment detects an electrical signal based on scintillation light to be detected at an adjacent pixel electrode as noise at the end of the pixel electrode. However, the abundance ratio can be suppressed. More specifically, since the ratio of the noise component can be suppressed with respect to the entire electrical signal detected by the pixel electrode 103, a clearer radiation image can be obtained.
 このような構成の放射線画像撮像素子100光電変換膜104におけるS/N比について、図1中部のグラフを用いて説明する。図1中部のグラフの横軸は図1上部に示す放射線画像撮像素子100の中央領域と端部領域の配置に対応している。また、図1中部のグラフは、縦軸に、光電変換膜104のS/N比をとる。当該S/N比は、前述したとおり、画素電極に対応しない光源の光を検出することによるノイズ成分によって変動する。したがって、図1中部を見ればわかるように、画素電極の中央部分が他の画素電極から最も遠く、他の画素電極に対応する光を最も検出しにくい位置になるので、画素電極103の中央部に対応する位置が最もS/N比が高い。また、画素電極103の端部に対応する位置が、最も他の画素電極に近い位置になるため、最もS/N比が低い。 The S / N ratio in the radiation image pickup element 100 photoelectric conversion film 104 having such a configuration will be described with reference to the graph in the middle of FIG. The horizontal axis of the graph in the middle of FIG. 1 corresponds to the arrangement of the central region and the end region of the radiation image pickup element 100 shown in the upper part of FIG. Further, the graph in the middle of FIG. 1 shows the S / N ratio of the photoelectric conversion film 104 on the vertical axis. As described above, the S / N ratio varies depending on a noise component generated by detecting light from a light source that does not correspond to the pixel electrode. Accordingly, as can be seen from the middle part of FIG. 1, the central part of the pixel electrode 103 is the farthest from the other pixel electrode and is the position where the light corresponding to the other pixel electrode is most difficult to detect. The position corresponding to is the highest S / N ratio. Further, since the position corresponding to the end of the pixel electrode 103 is closest to the other pixel electrodes, the S / N ratio is the lowest.
 このような状態において、放射線画像撮像素子100は、図1下部に示す光電変換効率を有する。図1下部に示されるように、放射線画像撮像素子100の光電変換膜104の中央領域142a、142b、142cに対応する位置において光電変換効率が高く、端部領域141a、141b、141c、141dに対応する位置において光電変換効率が、低くなっている。したがって、本実施の形態に係る放射線画像撮像素子100における実質的なS/N比は、図1中部のS/N比に、図1下部の光電変換効率を乗算した形になる。したがって、従来よりも、画素電極103において伝達される電気信号に含まれるノイズ成分の電気信号の比率を低減することができる。よって、従来よりも鮮明な放射線画像を得ることができる。 In such a state, the radiation image pickup element 100 has the photoelectric conversion efficiency shown in the lower part of FIG. As shown in the lower part of FIG. 1, the photoelectric conversion efficiency is high at positions corresponding to the central regions 142a, 142b, 142c of the photoelectric conversion film 104 of the radiation image pickup device 100, and corresponds to the end regions 141a, 141b, 141c, 141d. The photoelectric conversion efficiency is low at the position where it is to be performed. Therefore, the substantial S / N ratio in the radiographic image pickup device 100 according to the present embodiment is obtained by multiplying the S / N ratio in the middle part of FIG. 1 by the photoelectric conversion efficiency in the lower part of FIG. Therefore, the ratio of the electrical signal of the noise component included in the electrical signal transmitted through the pixel electrode 103 can be reduced as compared with the conventional case. Therefore, a clearer radiographic image than conventional can be obtained.
<放射線画像撮像素子の製造方法>
 以下、上述した放射線画像撮像素子100の製造方法について図2を用いて説明する。
<Method for Manufacturing Radiation Imaging Device>
Hereinafter, the manufacturing method of the radiographic imaging device 100 described above will be described with reference to FIG.
 まず、基板101を用意し、その上にTFT回路102を形成する(ステップS201)。次に、TFT回路102上に各画素に対応する画素電極103を形成する(ステップS202)。 First, the substrate 101 is prepared, and the TFT circuit 102 is formed thereon (step S201). Next, the pixel electrode 103 corresponding to each pixel is formed on the TFT circuit 102 (step S202).
 画素電極103が形成された上に、アモルファスシリコン層を成膜する(ステップS203)。 An amorphous silicon layer is formed on the pixel electrode 103 (step S203).
 そして、一様に、成膜されたアモルファスシリコン層に対して、各画素電極の中央領域に対応する位置に対して、レーザーを照射し、アニールする(ステップS203)。当該レーザーは、アモルファスシリコンをポリシリコンに変質させるために照射するものであり、レーザー照射装置から、100nmのアモルファスシリコン層に対して、波長308nm、レーザーを出力400J/cmの出力で、各画素電極103の中央部分に対応する中央領域に対して照射することで、アモルファスシリコンをアニールする。これにより、各画素電極103の中央部分に対応する中央領域がアニールされてポリシリコンに変質し、アモルファスシリコンとポリシリコンが混在する光電変換膜104(図1参照)を形成する。 Then, uniformly irradiate the formed amorphous silicon layer to a position corresponding to the central region of each pixel electrode, and anneal it (step S203). The laser is used to irradiate amorphous silicon into polysilicon, and each pixel is output from a laser irradiation device to a 100 nm amorphous silicon layer with a wavelength of 308 nm and a laser output of 400 J / cm 2. By irradiating the central region corresponding to the central portion of the electrode 103, the amorphous silicon is annealed. Thereby, the central region corresponding to the central portion of each pixel electrode 103 is annealed and transformed into polysilicon, and a photoelectric conversion film 104 (see FIG. 1) in which amorphous silicon and polysilicon are mixed is formed.
 その次に、光電変換膜104が成膜された上に、透明電極105を形成する(ステップS205)。透明電極105が形成された上に、シンチレータ106を形成する(ステップS206)。ここで、形成するシンチレータ106は、放射線を吸収して発光する光の発光波長が、ポリシリコンの吸収波長に適合する発光波長であることとする。そして、最後にシンチレータ106が形成された上に、反射膜107を形成して(ステップS207)、放射線画像撮像素子100を製造する。 Next, the transparent electrode 105 is formed on the photoelectric conversion film 104 (step S205). The scintillator 106 is formed on the transparent electrode 105 (step S206). Here, it is assumed that the scintillator 106 to be formed has an emission wavelength that matches the absorption wavelength of polysilicon with respect to the emission wavelength of light that is emitted by absorbing radiation. Finally, the scintillator 106 is formed, and then the reflective film 107 is formed (step S207), and the radiation image pickup device 100 is manufactured.
<放射線画像撮像素子の動作>
 以下には、放射線画像撮像素子100の動作について簡単に説明する。
<Operation of radiation image sensor>
Below, operation | movement of the radiographic image pick-up element 100 is demonstrated easily.
 放射線照射装置(図示せず)から照射された放射線は、その一部が撮像対象により反射・吸収され、その残りが透過して放射線画像撮像素子100に到達する。放射線画像撮像素子100の反射膜107側から照射された放射線は、反射膜107を透過し、シンチレータ106に吸収される。 A part of the radiation irradiated from a radiation irradiation apparatus (not shown) is reflected and absorbed by the imaging target, and the rest is transmitted and reaches the radiation image capturing element 100. The radiation irradiated from the reflective film 107 side of the radiation image pickup device 100 passes through the reflective film 107 and is absorbed by the scintillator 106.
 シンチレータ106は、放射線を吸収して発光する(光源108、109参照)。シンチレータ106において光源108、109を起点とする光には、光軸108a、108b、108c、光軸109a、109b、109cに示される直接透明電極105に向かう光と、直接向かわずに反射膜107に向かい、反射膜107で反射されて透明電極105に向かう光がある。これらの光は、透明電極105を透過し、光電変換膜104において、検出した光量に応じた電気信号に変換される。図1上部に示す放射線画像撮像素子100の場合、中央領域142bで検出された光軸108bで示される光や、中央領域142cで検出された光軸109cで示される光は高効率で電気信号に変換される。一方、端部領域141bで検出された光軸108aで示される光、端部領域141cで検出された光軸108c、109a、109bで示される光は、低効率で電気信号に変換される。したがって、図1上部の場合、光軸109aで示される光は、画素電極103bに対応する端部領域141cで検出されて電気信号に変換されるものの、その変換効率は低いため、画素電極103b全体に対応する光電変換膜で得られる電気信号に対する割合は低いものとなる。よって、光軸109aで示される光に基づく電気信号がノイズとなる成分が低下することになるので、画素電極103bに対応する部分の光電変換膜104におけるS/N比を従来よりも高くすることができている。 The scintillator 106 emits light by absorbing radiation (see the light sources 108 and 109). In the scintillator 106, the light originating from the light sources 108 and 109 includes light directed toward the transparent electrode 105 indicated by the optical axes 108a, 108b, and 108c, and the optical axes 109a, 109b, and 109c. In the opposite direction, there is light that is reflected by the reflective film 107 and travels toward the transparent electrode 105. The light passes through the transparent electrode 105 and is converted into an electrical signal corresponding to the detected light amount in the photoelectric conversion film 104. In the case of the radiation image pickup device 100 shown in the upper part of FIG. 1, the light indicated by the optical axis 108b detected in the central region 142b and the light indicated by the optical axis 109c detected in the central region 142c are converted into electrical signals with high efficiency. Converted. On the other hand, the light indicated by the optical axis 108a detected in the end region 141b and the light indicated by the optical axes 108c, 109a, and 109b detected in the end region 141c are converted into electric signals with low efficiency. Accordingly, in the case of the upper part of FIG. 1, although the light indicated by the optical axis 109a is detected by the end region 141c corresponding to the pixel electrode 103b and converted into an electric signal, the conversion efficiency is low, so the entire pixel electrode 103b The ratio with respect to the electric signal obtained by the photoelectric conversion film corresponding to is low. Therefore, the noise component of the electrical signal based on the light indicated by the optical axis 109a is reduced, so that the S / N ratio in the photoelectric conversion film 104 in the portion corresponding to the pixel electrode 103b is made higher than before. Is done.
 光電変換膜104で得られた電気信号は、各画素電極103a~103cを介して、TFT回路102に伝達される。TFT回路102は、各画素電極103a~103cから得た電気信号及び各画素電極に対応する画像の座標に応じて放射線画像を生成して出力する。 The electrical signal obtained by the photoelectric conversion film 104 is transmitted to the TFT circuit 102 via the pixel electrodes 103a to 103c. The TFT circuit 102 generates and outputs a radiation image according to the electrical signals obtained from the pixel electrodes 103a to 103c and the coordinates of the image corresponding to the pixel electrodes.
 このようにして、放射線画像撮像素子100は、従来よりも鮮明な放射線画像を撮像することができる。 In this way, the radiographic image capturing device 100 can capture a radiographic image that is clearer than before.
<参考例>
 上記実施の形態においては、中央領域をポリシリコンとし、端部領域をアモルファスシリコンとする構成例を示している。これは、上述の通り、シンチレータ106の発光波長がポリシリコンの吸収波長に適合するための構成である。
<Reference example>
In the above embodiment, a configuration example is shown in which the central region is polysilicon and the end region is amorphous silicon. As described above, this is a configuration for adjusting the emission wavelength of the scintillator 106 to the absorption wavelength of polysilicon.
 そのため、逆に、シンチレータ106の発光波長がポリシリコンの吸収波長よりもアモルファスシリコンの吸収波長に適合する場合には、中央領域をアモルファスシリコンとし、端部領域をポリシリコンとする構成を用いることとする。この場合には、ポリシリコンを端部領域に形成するために、光電変換層を形成する際には、端部領域に対してレーザーアニール処理を施すこととなる。 Therefore, conversely, when the emission wavelength of the scintillator 106 matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon, a configuration in which the central region is amorphous silicon and the end region is polysilicon is used. To do. In this case, in order to form polysilicon in the end region, when the photoelectric conversion layer is formed, a laser annealing process is performed on the end region.
 また、上述では、放射線を吸収して発光するものとして、アモルファスシリコンとポリシリコンを例に説明したが、放射線を吸収して発光する素材であれば、その他の素材を用いることとしてもよい。 In the above description, amorphous silicon and polysilicon have been described as examples of materials that absorb radiation and emit light, but other materials may be used as long as they absorb radiation and emit light.
<補足>
 ここに、本発明に係る放射線画像撮像素子の一実施態様とその効果について説明する。
<Supplement>
Here, one embodiment of the radiation image pickup device according to the present invention and the effect thereof will be described.
 (a)本発明の一実施態様に係る放射線画像撮像素子は、放射線を吸収して発光するシンチレータと、画像信号を生成して出力するTFT回路と、透明電極と、前記透明電極を介して前記発光を検出して電気信号に変換する光電変換膜と、前記光電変換膜で変換して得られた電気信号を受け取って前記TFT回路に伝達する、各画素に対応した画素電極と、基板と、が積層されて成る放射線画像撮像素子であって、前記光電変換膜は、前記画素電極の少なくとも中央部に対応する箇所を含む中央領域が、当該画素電極の端部に対応する箇所を含む端部領域よりも、シンチレータの発光波長に対する光電変換効率が高い構成を有する。 (A) A radiographic imaging device according to an embodiment of the present invention includes a scintillator that absorbs radiation to emit light, a TFT circuit that generates and outputs an image signal, a transparent electrode, and the transparent electrode through the transparent electrode. A photoelectric conversion film that detects light emission and converts it into an electric signal; a pixel electrode corresponding to each pixel that receives an electric signal obtained by conversion by the photoelectric conversion film and transmits the electric signal to the TFT circuit; and a substrate; The photoelectric conversion film has a central region including a portion corresponding to at least a central portion of the pixel electrode, and an end portion including a portion corresponding to an end portion of the pixel electrode. The photoelectric conversion efficiency with respect to the emission wavelength of the scintillator is higher than that of the region.
 これにより、各画素電極の端部付近において、隣接する画素電極が検出すべきシンチレーション光を検出してしまったとしても、画素電極全体で検出する電気信号に対する割合を低くすることができるので、従来よりも鮮明な放射線画像を得ることができる。 As a result, even if the scintillation light to be detected by the adjacent pixel electrode is detected near the end of each pixel electrode, the ratio to the electrical signal detected by the entire pixel electrode can be reduced. A clearer radiation image can be obtained.
 (b)上記(a)に係る放射線画像撮像素子において、シンチレータの発光波長がアモルファスシリコンの吸収波長よりもポリシリコンの吸収波長に適合する場合に、光電変換膜は、端部領域に形成されるアモルファスシリコンと、中央領域に形成されるポリシリコンとから成ることとしてもよい。 (B) In the radiographic imaging device according to (a) above, when the emission wavelength of the scintillator matches the absorption wavelength of polysilicon rather than the absorption wavelength of amorphous silicon, the photoelectric conversion film is formed in the end region. It may be made of amorphous silicon and polysilicon formed in the central region.
 あるいは、シンチレータの発光波長がポリシリコンの吸収波長よりもアモルファスシリコンの吸収波長に適合する場合に、光電変換膜は、端部領域に形成されるポリシリコンと、中央領域に形成されるアモルファスシリコンとから成ることを特徴とすることとしてもよい。 Alternatively, when the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon, the photoelectric conversion film includes polysilicon formed in the end region and amorphous silicon formed in the central region. It may be characterized by comprising.
 これにより、放射線画像撮像素子を一般に光電変換膜として使用されるアモルファスシリコン及びポリシリコンを利用することができるので、放射線画像撮像素子の実現が容易になる。 This makes it possible to use amorphous silicon and polysilicon, which are generally used as a photoelectric conversion film for the radiation image pickup device, so that the radiation image pickup device can be easily realized.
 (c)上記(a)又は(b)に係る放射線画像撮像素子において、放射線画像撮像素子は、基板上に、TFT回路と、画素電極と、光電変換膜と、透明電極と、シンチレータとがこの順に積層されて成ることとしてもよい。
 これにより、放射線画像撮像素子を実現することができる。
(C) In the radiographic image capturing device according to (a) or (b), the radiographic image capturing device includes a TFT circuit, a pixel electrode, a photoelectric conversion film, a transparent electrode, and a scintillator on a substrate. It is good also as being laminated | stacked in order.
Thereby, a radiation image pick-up element is realizable.
 (d)本発明の一実施態様に係る放射線画像撮像素子の製造方法は、基板上にTFT回路を形成するステップと、TFT回路が形成された側に、各画素に対応する画素電極を形成するステップと、画素電極が形成された側に、光電変換膜としてアモルファスシリコン膜を成膜するステップと、アモルファスシリコンの画素電極各々の中央部に対応する箇所を含む中央領域をアニールしてポリシリコンに変換するステップと、光電変換膜が形成された側に透明電極を形成するステップと、透明電極が形成された側に放射線を吸収して発光するシンチレータを形成するステップとを含む。 (D) A method of manufacturing a radiographic imaging device according to an embodiment of the present invention includes a step of forming a TFT circuit on a substrate, and a pixel electrode corresponding to each pixel is formed on the side on which the TFT circuit is formed. A step of forming an amorphous silicon film as a photoelectric conversion film on the side where the pixel electrode is formed, and annealing a central region including a portion corresponding to a central portion of each of the amorphous silicon pixel electrodes to form polysilicon. Converting, forming a transparent electrode on the side where the photoelectric conversion film is formed, and forming a scintillator that absorbs radiation and emits light on the side where the transparent electrode is formed.
 これにより、従来と異なり、フォトリソ工程により、端部領域を除去することなく、レーザーアニールという簡単な工程により、光電変換膜に、適切に光電変換効率の高い箇所と、低い箇所とを構成することができる。 Thus, unlike the conventional case, the photoelectric conversion film is appropriately formed with a portion with a high photoelectric conversion efficiency and a portion with a low photoelectric conversion film by a simple process called laser annealing without removing the end region by a photolithography process. Can do.
100 放射線画像撮像素子
101 基板
102 TFT回路
103a、103b、103c 画素電極
104 光電変換膜
105 透明電極
106 シンチレータ
107 反射膜
141a、141b、141c、141d 端部領域
142a、142b、142c 中央領域
DESCRIPTION OF SYMBOLS 100 Radiographic image pick-up element 101 Board | substrate 102 TFT circuit 103a, 103b, 103c Pixel electrode 104 Photoelectric conversion film 105 Transparent electrode 106 Scintillator 107 Reflective film 141a, 141b, 141c, 141d End area 142a, 142b, 142c Central area

Claims (6)

  1.  放射線を吸収して発光するシンチレータと、
     画像信号を生成して出力するTFT回路と、
     透明電極と、
     前記透明電極を介して前記発光を検出して電気信号に変換する光電変換膜と、
     前記光電変換膜で変換して得られた電気信号を受け取って前記TFT回路に伝達する、各画素に対応した画素電極と、
     基板と、
     が積層されて成る放射線画像撮像素子であって、
     前記光電変換膜は、前記画素電極の少なくとも中央部に対応する箇所を含む中央領域が、当該画素電極の端部に対応する箇所を含む端部領域よりも、前記シンチレータの発光波長に対する光電変換効率が高い構成を有する
     ことを特徴とする放射線画像撮像素子。
    A scintillator that absorbs radiation and emits light;
    A TFT circuit that generates and outputs an image signal;
    A transparent electrode;
    A photoelectric conversion film that detects the light emission through the transparent electrode and converts it into an electrical signal;
    A pixel electrode corresponding to each pixel that receives an electrical signal obtained by conversion by the photoelectric conversion film and transmits the electrical signal to the TFT circuit;
    A substrate,
    A radiographic image pickup device comprising:
    The photoelectric conversion film has a photoelectric conversion efficiency with respect to a light emission wavelength of the scintillator in which a central region including a portion corresponding to at least a central portion of the pixel electrode is more than an end region including a portion corresponding to an end of the pixel electrode. The radiation image pick-up element characterized by having high composition.
  2.  前記シンチレータの発光波長がアモルファスシリコンの吸収波長よりもポリシリコンの吸収波長に適合する場合に、
     前記光電変換膜は、前記端部領域に形成されるアモルファスシリコンと、前記中央領域に形成されるポリシリコンとから成ることを特徴とする請求項1に記載の放射線画像撮像素子。
    When the emission wavelength of the scintillator matches the absorption wavelength of polysilicon rather than the absorption wavelength of amorphous silicon,
    The radiographic imaging device according to claim 1, wherein the photoelectric conversion film is made of amorphous silicon formed in the end region and polysilicon formed in the central region.
  3.  前記シンチレータの発光波長がポリシリコンの吸収波長よりもアモルファスシリコンの吸収波長に適合する場合に、
     前記光電変換膜は、前記端部領域に形成されるポリシリコンと、前記中央領域に形成されるアモルファスシリコンとから成ることを特徴とする請求項1に記載の放射線画像撮像素子。
    When the emission wavelength of the scintillator matches the absorption wavelength of amorphous silicon rather than the absorption wavelength of polysilicon,
    The radiographic imaging device according to claim 1, wherein the photoelectric conversion film is made of polysilicon formed in the end region and amorphous silicon formed in the central region.
  4.  前記放射線画像撮像素子は、前記基板上に、
     前記TFT回路と、前記画素電極と、前記光電変換膜と、前記透明電極と、前記シンチレータとがこの順に積層されて成ることを特徴とする請求項1又は2に記載の放射線画像撮像素子。
    The radiation image pickup element is on the substrate.
    The radiation image pickup device according to claim 1, wherein the TFT circuit, the pixel electrode, the photoelectric conversion film, the transparent electrode, and the scintillator are stacked in this order.
  5.  基板上にTFT回路を形成するステップと、
     前記TFT回路が形成された側に、各画素に対応する画素電極を形成するステップと、
     前記画素電極が形成された側に、光電変換膜としてアモルファスシリコン膜を成膜するステップと、
     前記アモルファスシリコンの前記画素電極各々の中央部に対応する箇所を含む中央領域をアニールしてポリシリコンに変換するステップと、
     前記光電変換膜が形成された側に透明電極を形成するステップと、
     前記透明電極が形成された側に放射線を吸収して発光するシンチレータを形成するステップとを含み、
     前記シンチレータの発光波長は、前記アモルファスシリコンの吸収波長よりも前記ポリシリコンの吸収波長に適合する放射線画像撮影素子の製造方法。
    Forming a TFT circuit on the substrate;
    Forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed;
    Forming an amorphous silicon film as a photoelectric conversion film on the side on which the pixel electrode is formed;
    Annealing the central region including a portion corresponding to the central portion of each of the pixel electrodes of the amorphous silicon to convert it into polysilicon;
    Forming a transparent electrode on the side where the photoelectric conversion film is formed;
    Forming a scintillator that absorbs radiation and emits light on the side on which the transparent electrode is formed,
    The method of manufacturing a radiographic imaging element in which the emission wavelength of the scintillator is more suitable for the absorption wavelength of the polysilicon than the absorption wavelength of the amorphous silicon.
  6.  基板上にTFT回路を形成するステップと、
     前記TFT回路が形成された側に、各画素に対応する画素電極を形成するステップと、
     前記画素電極が形成された側に、光電変換膜としてアモルファスシリコン膜を成膜するステップと、
     前記アモルファスシリコンの前記画素電極各々の端部に対応する箇所を含む端部領域をアニールしてポリシリコンに変換するステップと、
     前記光電変換膜が形成された側に透明電極を形成するステップと、
     前記透明電極が形成された側に放射線を吸収して発光するシンチレータを形成するステップとを含み、
     前記シンチレータの発光波長は、前記ポリシリコンの吸収波長よりも前記アモルファスシリコンの吸収波長に適合する放射線画像撮影素子の製造方法。
    Forming a TFT circuit on the substrate;
    Forming a pixel electrode corresponding to each pixel on the side on which the TFT circuit is formed;
    Forming an amorphous silicon film as a photoelectric conversion film on the side on which the pixel electrode is formed;
    Annealing the end region including the portion corresponding to the end of each of the pixel electrodes of the amorphous silicon to convert it to polysilicon;
    Forming a transparent electrode on the side where the photoelectric conversion film is formed;
    Forming a scintillator that absorbs radiation and emits light on the side on which the transparent electrode is formed,
    The method of manufacturing a radiographic imaging element in which the emission wavelength of the scintillator is more suitable for the absorption wavelength of the amorphous silicon than the absorption wavelength of the polysilicon.
PCT/JP2016/080433 2015-11-06 2016-10-13 Radiographic image capturing element and method of manufacturing radiographic image capturing element WO2017077835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218617 2015-11-06
JP2015218617A JP2017090164A (en) 2015-11-06 2015-11-06 Radiation image taking element and method for manufacturing radiation image taking element

Publications (1)

Publication Number Publication Date
WO2017077835A1 true WO2017077835A1 (en) 2017-05-11

Family

ID=58662460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080433 WO2017077835A1 (en) 2015-11-06 2016-10-13 Radiographic image capturing element and method of manufacturing radiographic image capturing element

Country Status (3)

Country Link
JP (1) JP2017090164A (en)
TW (1) TW201717378A (en)
WO (1) WO2017077835A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273340A (en) * 2002-03-18 2003-09-26 Canon Inc Radiation detection device
JP2010165913A (en) * 2009-01-16 2010-07-29 Hamamatsu Photonics Kk Rear-incident photodiode array and radiation detector
US20120153175A1 (en) * 2010-12-21 2012-06-21 Carestream Health, Inc. Digital radiographic detector array including spacers and methods for same
JP2012127735A (en) * 2010-12-14 2012-07-05 Fujifilm Corp Radiation detector and manufacturing method of scintillator panel
JP2012141297A (en) * 2010-12-17 2012-07-26 Fujifilm Corp Radiation imaging apparatus
JP2015025665A (en) * 2013-07-24 2015-02-05 ソニー株式会社 Radiation imaging apparatus and radiation imaging display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273340A (en) * 2002-03-18 2003-09-26 Canon Inc Radiation detection device
JP2010165913A (en) * 2009-01-16 2010-07-29 Hamamatsu Photonics Kk Rear-incident photodiode array and radiation detector
JP2012127735A (en) * 2010-12-14 2012-07-05 Fujifilm Corp Radiation detector and manufacturing method of scintillator panel
JP2012141297A (en) * 2010-12-17 2012-07-26 Fujifilm Corp Radiation imaging apparatus
US20120153175A1 (en) * 2010-12-21 2012-06-21 Carestream Health, Inc. Digital radiographic detector array including spacers and methods for same
JP2015025665A (en) * 2013-07-24 2015-02-05 ソニー株式会社 Radiation imaging apparatus and radiation imaging display system

Also Published As

Publication number Publication date
TW201717378A (en) 2017-05-16
JP2017090164A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP4798254B2 (en) Light receiving device and control method thereof
JP2014036405A5 (en)
KR100585877B1 (en) Radiological image pickup apparatus
JP2003209665A (en) Image reading method and image recording reader
US8340246B2 (en) X-ray imaging apparatus and method for reducing X-ray scattering
US8415759B2 (en) Down-converting and detecting photons
JP2010264181A (en) Radiograph
JP2008287165A (en) Radiographic image reading apparatus
WO2017077835A1 (en) Radiographic image capturing element and method of manufacturing radiographic image capturing element
JP6590950B2 (en) Radiation detector
WO2017056680A1 (en) Radiographic image acquisition system and radiographic image acquisition method
WO2017134896A1 (en) Method for manufacturing x-ray image acquisition device
JP2008178522A (en) Radiographic apparatus and driving method for the same
JP4793397B2 (en) Radiation image detector
WO2017077840A1 (en) Radiographic image capturing element
JP5462480B2 (en) Imaging device
JP5357793B2 (en) Photoconductive target and imaging tube and imaging device using the same
JP4992358B2 (en) Electromagnetic wave detector and radiation imaging apparatus using the same
WO2017073174A1 (en) Method for producing x-ray image sensor
JP2010147878A (en) Imaging apparatus
JP2009081298A (en) Imaging element, and imaging apparatus
JP2009152242A (en) Solid imaging element, and imaging apparatus
JP2007158647A (en) Imaging apparatus and imaging method
JP2010147880A (en) Imaging apparatus
JP2008270675A (en) Light receiving element, method of controlling sensitivity of light receiving element, and spatial information detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861902

Country of ref document: EP

Kind code of ref document: A1