WO2017077801A1 - Engine compressor blade with corrosion resistant coating and coating method therefor - Google Patents

Engine compressor blade with corrosion resistant coating and coating method therefor Download PDF

Info

Publication number
WO2017077801A1
WO2017077801A1 PCT/JP2016/079400 JP2016079400W WO2017077801A1 WO 2017077801 A1 WO2017077801 A1 WO 2017077801A1 JP 2016079400 W JP2016079400 W JP 2016079400W WO 2017077801 A1 WO2017077801 A1 WO 2017077801A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
film
bias voltage
chamber
cathode
Prior art date
Application number
PCT/JP2016/079400
Other languages
French (fr)
Japanese (ja)
Inventor
荒木 隆人
勇太 田中
和彦 柿沼
馬場 正信
一生 大寺
直紀 坂本
杉山 裕一
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2017077801A1 publication Critical patent/WO2017077801A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the following disclosure relates to compressor blades for aircraft jet engines or gas turbine engines, and more particularly to compressor blades with a corrosion resistant coating such as TiAlN and methods of coating.
  • a combustor In an aircraft jet engine or gas turbine engine, a combustor generates high-speed high-temperature gas, the turbine extracts energy from the high-temperature gas, and the compressor is driven with a part of the energy. The compressor sucks outside air, compresses it, and supplies it to the combustor. When air is compressed adiabatically in the compressor, a high temperature of, for example, about 400 to 700 ° C. is generated.
  • the outside air contains various dusts, sand, and, in some cases, volcanic ash, which inevitably flows into the compressor. They hit the compressor blades at high speed and erode or stick to them.
  • the outside air also contains moisture, sulfate, sulfite, chloride, carbonate, etc. in the form of gas or fine droplets, which can also adhere to the compressor blades.
  • Patent Documents 1 and 2 disclose related techniques.
  • Some coating materials such as TiAlN, are considered to be suitable for protecting compressor blades because they have excellent properties in both erosion resistance and corrosion resistance. However, according to the study by the present inventors, it has been found that even the same material has a difference in the corrosion resistance especially depending on the coating method.
  • An object of the present disclosure is to provide a method for forming a coating exhibiting particularly excellent corrosion resistance for TiAlN, and a compressor blade having a coating formed by such a method.
  • a coating method for coating a compressor blade for an engine is as follows.
  • a working gas containing nitrogen is introduced into a chamber of an arc ion plating apparatus, a discharge is generated using a titanium aluminum alloy as a cathode in the chamber, and the discharge is introduced into the chamber.
  • the film is formed by applying an initial bias voltage of ⁇ 32 to ⁇ 42 V to the base of the compressor blade as compared with the cathode.
  • the film is grown by changing the bias voltage from ⁇ 48 to ⁇ 84 V stepwise from the initial bias voltage.
  • the bias voltage is changed from ⁇ 48 to ⁇ 63V stepwise from the initial bias voltage to grow the film, and the bias voltage changed from ⁇ 48 to ⁇ 63V is further changed to ⁇ 64 to ⁇ 84V.
  • Change to grow the grown film further.
  • the base is shielded from the discharge leaving the blade surface and the platform portion or the inner band portion and the outer band portion so as to limit the coating to the blade surface and the platform portion.
  • the pressure of the working gas is maintained in the range of 8.5 ⁇ 4.0 Pa.
  • the cathode current flowing between the substrate and the cathode is in the range of 120 to 150A.
  • FIG. 1 is a schematic diagram of an ion plating apparatus used in one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a compressor blade having a coating formed according to the embodiment.
  • FIG. 3 is a schematic diagram of a cross section of the compressor blade after the corrosion test.
  • an arc ion plating apparatus 1 generally includes a chamber 3, a gas supply device 5, a vacuum pump 7, an evaporation source 9, a holder 11 installed in the chamber 3, and a discharge device.
  • a power source 13 and a bias power source 17 are included.
  • the chamber 3 is hermetically configured so that the inside thereof is controlled to an atmosphere corresponding to the target film and a vacuum of about 0.1 to 10 Pa can be maintained.
  • a gas supply device 5 is connected to the chamber 3 and supplies a working gas to the chamber 3.
  • the gas supply device 5 may be composed of a plurality of cylinders and valves each supplying pure gas, or may supply premixed gas.
  • a mixed gas atmosphere of argon and nitrogen is used.
  • Argon is exclusively for maintaining the discharge, and nitrogen is to form nitrides.
  • a vacuum pump 7 is further connected to the chamber 3. Due to the balance between the gas supply amount and the exhaust speed of the vacuum pump 7, the inside of the chamber 3 is maintained at a desired pressure.
  • the evaporation source 15 is connected to an evaporation source 15 installed in the chamber 3, and an external discharge power source 13 is connected in a direction of a negative potential with respect to the chamber 3.
  • the chamber 3 is grounded.
  • Arc discharge occurs with the evaporation source 9 as a cathode (cathode), and the raw material becomes vapor from the evaporation raw material 15.
  • the arc ion plating apparatus 1 can include a plurality of sets of evaporation sources 9 and evaporation raw materials 15.
  • the base B to be coated is coupled to the holder 11.
  • the holder 11 has a structure suitable for coupling with the base B.
  • the holder 11 has a shape complementary to the dovetail portion so as to be coupled using the dovetail portion.
  • the shaft of the holder 11 is pulled out of the chamber 3 and connected to a bias power source 17 in a direction that is a negative potential with respect to the chamber 3.
  • the holder 11 including the shaft is usually made of metal so that the bias voltage reaches the base B.
  • the holder 11 is normally rotatable, and a driving device 19 is coupled to give the rotation R. Forming the film while applying the rotation R promotes uniformization of the film.
  • the arc ion plating apparatus 1 can further include a heater for preheating the substrate B, a discharge device for cleaning the chamber, a trigger for starting discharge, and the like.
  • the film is formed as follows.
  • the base B is a compressor blade for an aircraft jet engine or a gas turbine engine, and may be either a moving blade or a stationary blade.
  • the evaporation raw material 15 is a titanium aluminum alloy ingot.
  • the composition is selected according to the desired composition in the coating.
  • the ratio of titanium and aluminum in the ingot is almost reflected in the ratio in the coating.
  • the base B when the base B is a moving blade, the base B is coupled to the holder 11 by inserting the dovetail portion into the holder 11.
  • This serves not only for electrical coupling, but also for shielding the dovetail portion from the discharge by the holder 11 and thus limiting the portion where the film is formed. That is, the formation of the coating is limited to the blade surface and platform surface of the moving blade that are not shielded.
  • a structure outside the outer band part or inside the inner band part is used. Due to the shielding by the holder, the formation of the coating is limited to the blade surface of the stationary blade, the outer band portion, and the inner band portion. By limiting the formation of the coating film, it is possible to prevent the hard surface from unintentionally damaging surrounding members.
  • the chamber 3 is hermetically closed, the vacuum pump 7 is operated, and the chamber 3 is communicated with the chamber 3 so that the chamber 3 is evacuated to a vacuum. This is useful for eliminating impurities, and for example, exhaustion is continued with a vacuum degree of about 0.01 Pa as a guide.
  • the holder 11 is rotated by the driving device 19 while the exhaust is continued, and the preheating of the base B is started.
  • the rotation speed is, for example, about 1 to 10 rpm.
  • the valve of the gas supply device 5 is opened to introduce argon and nitrogen, and the pressure in the chamber 3 is adjusted by adjusting the opening of the valve and / or the capacity of the vacuum pump 7.
  • the pressure is, for example, 2 to 10 Pa.
  • the discharge power supply 13 applies a voltage between the evaporation source 9 and the chamber 3 to start the discharge, and at the same time, the bias power supply 17 applies a bias voltage having a negative potential to the chamber 3 to the substrate B.
  • Titanium aluminum alloy which is an evaporation raw material, becomes a cathode and discharge is generated. Titanium and aluminum are vaporized, partly ionized and accelerated toward the base B by a bias voltage, and react with nitrogen in the gas phase. As a result, a TiAlN coating 100 is formed on the substrate B as shown in FIG.
  • the bias voltage may be kept constant, but can be changed stepwise or continuously.
  • a relatively small bias voltage can be applied at the initial stage of film formation. Applying a relatively small initial bias voltage contributes to reducing defects at the interface between the substrate and the film, at the expense of film formation speed.
  • the film can then be grown by increasing the bias voltage stepwise or continuously from the initial bias voltage. This contributes to an increase in the deposition rate.
  • the cathode current can also be kept constant, or may be changed stepwise or continuously.
  • the gas phase particles are attracted by the bias electric field, so that the entire surface exposed on the substrate B is circulated, and in principle, all of the film is coated. 100 is formed. That is, the coating 100 covers and is limited to all surfaces that are not shielded.
  • the bias voltage, cathode current, and film formation time are appropriately adjusted in view of the required film thickness.
  • the thickness of the coating 100 is not always uniform throughout the substrate B.
  • the electric field concentrates on a convex surface such as an edge, resulting in a thicker film than an open plane, and conversely, the film is thinner on a concave surface such as the blade-platform boundary.
  • the film thickness is required to be about 2 ⁇ m from experience. That is, in view of the shape of the substrate B, the bias voltage, the cathode current, and the film formation time are adjusted so that a film thickness of 2 ⁇ m can be secured even in the portion where the film 100 is thinnest.
  • the ingot having the composition shown in Table 1 was adopted as the evaporation raw material.
  • a TiAlN film was formed under each bias voltage shown in Table 2 and each cathode current shown in Table 3.
  • the cathode current is the same as the example of the symbol d in Table 3 (150 A)
  • the bias voltage is the same as the example of the symbol d in Table 2.
  • the bias voltage was changed in three stages at the initial stage, the middle stage, and the latter stage of film formation.
  • the initial bias was ⁇ 40 V
  • the intermediate bias was ⁇ 60 V
  • the bias described later was ⁇ 80 V.
  • the film formation time was 20 minutes in the initial period, 90 minutes in the middle period, and 50 minutes in the latter period.
  • the surface temperature of the substrate B during film formation was in the range of 300 to 600 ° C., and the pressure was controlled in the range of 8.5 ⁇ 4.0 Pa.
  • Specimens were cut out from each substrate, and appearance observation and coating component analysis were performed. Appearance observation was performed with the naked eye and a scanning electron microscope (SEM), and component analysis was performed with an electron probe microanalysis (EPMA).
  • SEM scanning electron microscope
  • EPMA electron probe microanalysis
  • the cut sample was washed with ethanol and dried, and a corrosion test was performed.
  • the corrosion test was performed by burying each test piece in a crucible filled with a powder composed of calcium sulfate and the balance of an inert substance, and maintaining the temperature at 760 ° C. for 100 hours or more.
  • samples a, b, c, d, and e obtained under the condition where the bias voltage does not exceed ⁇ 84V have good coating appearance, and the initial bias voltage is ⁇ 32 to ⁇ 40V.
  • Samples a, b, c, and d obtained in the range have a relatively small maximum corrosion depth and good corrosion resistance.
  • samples b, c, and d obtained with an initial bias voltage in the range of ⁇ 36 to ⁇ 40 V have fewer corrosion points and better corrosion resistance.
  • a coating made of TiAlN is formed under various conditions. Under any condition, it is difficult to find a clear difference in the structure of the coating and the characteristics other than the corrosion resistance, but as will be understood from the above, there is a clear difference in the corrosion resistance.
  • the above disclosure provides coatings that exhibit excellent corrosion resistance under specific manufacturing conditions based on the arc ion plating method.
  • Compressor blades for engines with high corrosion resistance are provided.

Abstract

A coating method for coating an engine compressor blade comprises: introducing a nitrogen-containing working gas in a chamber of an arc ion plating device; generating an electric discharge inside the chamber with a titanium aluminum alloy as the cathode; and applying an initial bias voltage of −32 to −42 V compared to the cathode on a compressor blade substrate that has been introduced into the chamber to form a coating.

Description

耐食性コーティングを有するエンジン用圧縮機翼およびそのコーティング方法Compressor blade for engine having corrosion resistant coating and coating method thereof
 以下の開示は、航空機用ジェットエンジンないしガスタービンエンジンのための圧縮機の翼に関し、特にTiAlNのごとき耐食性コーティングの施された圧縮機翼およびそのコーティングの方法に関する。 The following disclosure relates to compressor blades for aircraft jet engines or gas turbine engines, and more particularly to compressor blades with a corrosion resistant coating such as TiAlN and methods of coating.
 航空機用ジェットエンジンないしガスタービンエンジンにおいては、燃焼器が高速の高温ガスを生み出し、かかる高温ガスからタービンがエネルギを取り出し、そのエネルギの一部をもって圧縮機が駆動される。圧縮機は外気を吸引し、圧縮して燃焼器に供給する。圧縮機において空気が断熱的に圧縮されることにより、例えば400~700℃程度の高温が生じる。 In an aircraft jet engine or gas turbine engine, a combustor generates high-speed high-temperature gas, the turbine extracts energy from the high-temperature gas, and the compressor is driven with a part of the energy. The compressor sucks outside air, compresses it, and supplies it to the combustor. When air is compressed adiabatically in the compressor, a high temperature of, for example, about 400 to 700 ° C. is generated.
 外気には種々の塵埃や砂、また場合により火山灰が含まれており、これらが圧縮機に流入することは避けられない。これらは高速で圧縮機の翼に衝突し、これを侵食し、あるいはこれに付着する。外気には、また、気体ないし微細な液滴の態様で、水分、硫酸塩、亜硫酸塩、塩化物、炭酸塩等が含まれており、これらも圧縮機の翼に付着しうる。 The outside air contains various dusts, sand, and, in some cases, volcanic ash, which inevitably flows into the compressor. They hit the compressor blades at high speed and erode or stick to them. The outside air also contains moisture, sulfate, sulfite, chloride, carbonate, etc. in the form of gas or fine droplets, which can also adhere to the compressor blades.
 圧縮機の翼は、上述のごとき高温と外来の物質に常に曝されている。苛酷な環境から圧縮機の翼を保護するべく、コーティングの技術が提案されている。特許文献1,2は、関連する技術を開示する。 Compressor blades are constantly exposed to high temperatures and foreign substances as described above. Coating techniques have been proposed to protect compressor blades from harsh environments. Patent Documents 1 and 2 disclose related techniques.
日本国特許出願公開2013-019051号Japanese Patent Application Publication No. 2013-019051 日本国特許出願公開2011-080149号Japanese Patent Application Publication No. 2011-080149
 いくつかのコーティングの素材、たとえばTiAlNは、耐エロージョン性と耐食性の両方の点で優れた性質を有するので、圧縮機翼を保護するに適していると考えられている。ところが本発明者らが検討したところによれば、同一の素材であってもコーティングの方法によって、特に耐食性には相違が生じることが分かった。 Some coating materials, such as TiAlN, are considered to be suitable for protecting compressor blades because they have excellent properties in both erosion resistance and corrosion resistance. However, according to the study by the present inventors, it has been found that even the same material has a difference in the corrosion resistance especially depending on the coating method.
 本明細書に開示されるものは、TiAlNについて、特に優れた耐食性を呈示するコーティングを形成する方法、およびかかる方法により形成されたコーティングを有する圧縮機翼を提供することを目的とする。 An object of the present disclosure is to provide a method for forming a coating exhibiting particularly excellent corrosion resistance for TiAlN, and a compressor blade having a coating formed by such a method.
 エンジン用圧縮機翼を被覆するコーティングの方法は、アークイオンプレーティング装置のチャンバに窒素を含む作動ガスを導入し、前記チャンバ内においてチタンアルミニウム合金をカソードとして放電を発生し、前記チャンバ内に導入した前記圧縮機翼の基体に前記カソードに比して-32乃至-42Vの初期バイアス電圧を印加して被膜を形成する、ことよりなる。 A coating method for coating a compressor blade for an engine is as follows. A working gas containing nitrogen is introduced into a chamber of an arc ion plating apparatus, a discharge is generated using a titanium aluminum alloy as a cathode in the chamber, and the discharge is introduced into the chamber. The film is formed by applying an initial bias voltage of −32 to −42 V to the base of the compressor blade as compared with the cathode.
 好ましくは、前記初期バイアス電圧より段階的にバイアス電圧を-48乃至-84Vに変更して前記被膜を成長せしめる。あるいは好ましくは、前記初期バイアス電圧より段階的にバイアス電圧を-48乃至-63Vに変更して前記被膜を成長せしめ、-48乃至-63Vに変更された前記バイアス電圧をさらに-64乃至-84Vに変更して前記成長した被膜をさらに成長せしめる。より好ましくは、前記放電を発生する段階に先立ち、前記被膜を翼面およびプラットフォーム部に限定するべく、前記基体を前記翼面および前記プラットフォーム部またはインナバンド部およびアウタバンド部を残して前記放電から遮蔽する。さらに好ましくは、前記被膜を形成する段階において、前記作動ガスの圧力は8.5±4.0Paの範囲に維持される。さらにまた好ましくは、前記被膜を形成する段階および前記被膜を成長せしめる段階において、前記基体と前記カソードとの間に流れるカソード電流は120乃至150Aの範囲である。 Preferably, the film is grown by changing the bias voltage from −48 to −84 V stepwise from the initial bias voltage. Alternatively, preferably, the bias voltage is changed from −48 to −63V stepwise from the initial bias voltage to grow the film, and the bias voltage changed from −48 to −63V is further changed to −64 to −84V. Change to grow the grown film further. More preferably, prior to the step of generating the discharge, the base is shielded from the discharge leaving the blade surface and the platform portion or the inner band portion and the outer band portion so as to limit the coating to the blade surface and the platform portion. To do. More preferably, in the step of forming the coating film, the pressure of the working gas is maintained in the range of 8.5 ± 4.0 Pa. Still preferably, in the step of forming the film and the step of growing the film, the cathode current flowing between the substrate and the cathode is in the range of 120 to 150A.
 TiAlNよりなるコーティングを備えた圧縮機翼に優れた耐食性が付与される。 Exceptional corrosion resistance is imparted to compressor blades provided with a coating made of TiAlN.
図1は、一実施形態に利用するイオンプレーティング装置の模式図である。FIG. 1 is a schematic diagram of an ion plating apparatus used in one embodiment. 図2は、前記実施形態により形成されたコーティングを有する圧縮機翼の断面の模式図である。FIG. 2 is a schematic cross-sectional view of a compressor blade having a coating formed according to the embodiment. 図3は、腐食試験後の圧縮機翼の断面の模式図である。FIG. 3 is a schematic diagram of a cross section of the compressor blade after the corrosion test.
 幾つかの実施形態を添付の図面を参照して以下に説明する。 Several embodiments will be described below with reference to the accompanying drawings.
 本実施形態は、公知のアークイオンプレーティング法およびその装置を利用する。図1を参照するに、アークイオンプレーティング装置1は、概略、チャンバ3と、ガス供給装置5と、真空ポンプ7と、蒸発源9と、チャンバ3内に設置されたホルダ11と、放電用電源13と、バイアス用電源17と、よりなる。 This embodiment uses a known arc ion plating method and its apparatus. Referring to FIG. 1, an arc ion plating apparatus 1 generally includes a chamber 3, a gas supply device 5, a vacuum pump 7, an evaporation source 9, a holder 11 installed in the chamber 3, and a discharge device. A power source 13 and a bias power source 17 are included.
 チャンバ3は、その内部を目的の被膜に応じた雰囲気に制御し、また0.1~10Pa程度の真空を維持し得るよう、気密に構成されている。内部の雰囲気を制御するべく、ガス供給装置5がチャンバ3に接続されており、作動ガスをチャンバ3に供給する。ガス供給装置5は、それぞれが純ガスを供給するボンベおよびバルブの複数の組よりなるものでもよく、あるいは予め混合したガスを供給するものでもよい。本実施形態においては、例えばアルゴンと窒素との混合ガス雰囲気が利用される。アルゴンは専ら放電の維持のためであり、窒素は窒化物を生成するためである。 The chamber 3 is hermetically configured so that the inside thereof is controlled to an atmosphere corresponding to the target film and a vacuum of about 0.1 to 10 Pa can be maintained. In order to control the internal atmosphere, a gas supply device 5 is connected to the chamber 3 and supplies a working gas to the chamber 3. The gas supply device 5 may be composed of a plurality of cylinders and valves each supplying pure gas, or may supply premixed gas. In this embodiment, for example, a mixed gas atmosphere of argon and nitrogen is used. Argon is exclusively for maintaining the discharge, and nitrogen is to form nitrides.
 チャンバ3にはさらに真空ポンプ7が接続される。ガスの供給量と真空ポンプ7による排気速度とのバランスにより、チャンバ3内が所望の気圧に維持される。 A vacuum pump 7 is further connected to the chamber 3. Due to the balance between the gas supply amount and the exhaust speed of the vacuum pump 7, the inside of the chamber 3 is maintained at a desired pressure.
 蒸発源9には、チャンバ3内に設置される蒸発原料15が接続され、またチャンバ3に対して負電位となる向きに外部の放電用電源13が接続される。好ましくはチャンバ3はアースされる。蒸発源9をカソード(陰極)としてアーク放電が生じ、蒸発原料15より原料が蒸気となる。またアークイオンプレーティング装置1は、複数組の蒸発源9と蒸発原料15を備えることができる。 The evaporation source 15 is connected to an evaporation source 15 installed in the chamber 3, and an external discharge power source 13 is connected in a direction of a negative potential with respect to the chamber 3. Preferably the chamber 3 is grounded. Arc discharge occurs with the evaporation source 9 as a cathode (cathode), and the raw material becomes vapor from the evaporation raw material 15. Further, the arc ion plating apparatus 1 can include a plurality of sets of evaporation sources 9 and evaporation raw materials 15.
 コーティングの対象である基体Bは、ホルダ11に結合される。ホルダ11は、基体Bとの結合に適した構造を有する。例えば基体Bが動翼である場合には、そのダブテール部を利用して結合するべく、ホルダ11はダブテール部と相補的な形状とする。ホルダ11のシャフトはチャンバ3外に引き出され、チャンバ3に対して負電位となる向きにバイアス用電源17に接続される。かかるバイアス電圧が基体Bに及ぶよう、シャフトも含めてホルダ11は通常金属よりなる。 The base B to be coated is coupled to the holder 11. The holder 11 has a structure suitable for coupling with the base B. For example, when the base B is a moving blade, the holder 11 has a shape complementary to the dovetail portion so as to be coupled using the dovetail portion. The shaft of the holder 11 is pulled out of the chamber 3 and connected to a bias power source 17 in a direction that is a negative potential with respect to the chamber 3. The holder 11 including the shaft is usually made of metal so that the bias voltage reaches the base B.
 ホルダ11は、通常、回転可能であって、回転Rを与えるべく駆動装置19が結合する。回転Rを与えながら被膜を形成することは、被膜の均一化を促す。 The holder 11 is normally rotatable, and a driving device 19 is coupled to give the rotation R. Forming the film while applying the rotation R promotes uniformization of the film.
 図示されていないが、さらに基体Bを予熱するためのヒータや、チャンバ内のクリーニングのための放電装置、また放電を開始するためのトリガなどを、アークイオンプレーティング装置1は備えることができる。 Although not shown, the arc ion plating apparatus 1 can further include a heater for preheating the substrate B, a discharge device for cleaning the chamber, a trigger for starting discharge, and the like.
 本実施形態によれば、以下のようにして被膜が形成される。 According to the present embodiment, the film is formed as follows.
 基体Bは、航空機用ジェットエンジンないしガスタービンエンジンのための圧縮機の翼であり、動翼と静翼の何れでもよい。ガス供給装置5および真空ポンプ7を閉塞した後、チャンバ3を外気に開放し、蒸発原料15および基体Bをチャンバ3内に導入する。 The base B is a compressor blade for an aircraft jet engine or a gas turbine engine, and may be either a moving blade or a stationary blade. After closing the gas supply device 5 and the vacuum pump 7, the chamber 3 is opened to the outside air, and the evaporation raw material 15 and the substrate B are introduced into the chamber 3.
 蒸発原料15は、チタンアルミニウム合金インゴットである。その組成は被膜において所望する組成に応じて選択される。インゴット中のチタンとアルミニウムとの比は、ほぼ被膜中の当該比率に反映される。 The evaporation raw material 15 is a titanium aluminum alloy ingot. The composition is selected according to the desired composition in the coating. The ratio of titanium and aluminum in the ingot is almost reflected in the ratio in the coating.
 既に述べた通り、基体Bが動翼である場合には、そのダブテール部をホルダ11に嵌入することにより、基体Bをホルダ11に結合せしめる。これは電気的結合のためのみならず、ダブテール部をホルダ11により放電から遮蔽し、以って被膜が形成する部位を限定するのにも役立つ。すなわち被膜の形成は、遮蔽されていない動翼の翼面およびプラットフォーム部の面に限定される。静翼である場合には、アウタバンド部より外側またはインナバンド部より内側の構造を利用する。ホルダによる遮蔽のために、被膜の形成は静翼の翼面、アウタバンド部およびインナバンド部に限定される。被膜の形成を限定することにより、硬質な表面が周囲の部材を意図せずに損傷してしまうことが防止できる。 As already described, when the base B is a moving blade, the base B is coupled to the holder 11 by inserting the dovetail portion into the holder 11. This serves not only for electrical coupling, but also for shielding the dovetail portion from the discharge by the holder 11 and thus limiting the portion where the film is formed. That is, the formation of the coating is limited to the blade surface and platform surface of the moving blade that are not shielded. In the case of a stationary blade, a structure outside the outer band part or inside the inner band part is used. Due to the shielding by the holder, the formation of the coating is limited to the blade surface of the stationary blade, the outer band portion, and the inner band portion. By limiting the formation of the coating film, it is possible to prevent the hard surface from unintentionally damaging surrounding members.
 チャンバ3を気密に閉塞し、真空ポンプ7を稼働させ、これをチャンバ3と連通することにより、チャンバ3内を排気して真空にする。これは不純物の排除に役立ち、例えば0.01Pa程度の真空度を目安として排気を継続する。 The chamber 3 is hermetically closed, the vacuum pump 7 is operated, and the chamber 3 is communicated with the chamber 3 so that the chamber 3 is evacuated to a vacuum. This is useful for eliminating impurities, and for example, exhaustion is continued with a vacuum degree of about 0.01 Pa as a guide.
 排気を継続しながら駆動装置19によりホルダ11を回転せしめ、また基体Bの予熱を開始する。回転速度は例えば1~10rpmの程度である。さらに排気を継続しながら、ガス供給装置5のバルブを開いてアルゴンおよび窒素を導入し、バルブの開度および/または真空ポンプ7の能力を調整することにより、チャンバ3内の圧力を調整する。圧力は、例えば2~10Paである。 The holder 11 is rotated by the driving device 19 while the exhaust is continued, and the preheating of the base B is started. The rotation speed is, for example, about 1 to 10 rpm. While continuing the exhaust, the valve of the gas supply device 5 is opened to introduce argon and nitrogen, and the pressure in the chamber 3 is adjusted by adjusting the opening of the valve and / or the capacity of the vacuum pump 7. The pressure is, for example, 2 to 10 Pa.
 放電用電源13により蒸発源9とチャンバ3との間に電圧を印加して放電を開始し、同時にバイアス用電源17により基体Bにチャンバ3に対して負電位となるバイアス電圧を印加する。蒸発原料であるチタンアルミニウム合金がカソードとなって放電が発生するとともに、チタンおよびアルミニウムが蒸気となり、一部がイオン化してバイアス電圧により基体Bに向けて加速され、気相中の窒素と反応することにより、図2に示すごとく基体B上にTiAlN被膜100を生ずる。 The discharge power supply 13 applies a voltage between the evaporation source 9 and the chamber 3 to start the discharge, and at the same time, the bias power supply 17 applies a bias voltage having a negative potential to the chamber 3 to the substrate B. Titanium aluminum alloy, which is an evaporation raw material, becomes a cathode and discharge is generated. Titanium and aluminum are vaporized, partly ionized and accelerated toward the base B by a bias voltage, and react with nitrogen in the gas phase. As a result, a TiAlN coating 100 is formed on the substrate B as shown in FIG.
 成膜の間、バイアス電圧は一定に保持してもよいが、段階的にあるいは連続的に変化させることができる。例えば成膜の初期においては、比較的に小さなバイアス電圧を印加することができる。比較的に小さな初期バイアス電圧を印加することは、成膜速度を犠牲にするものの、基体と被膜との界面における欠陥を少なくすることに寄与する。次いで初期バイアス電圧より段階的にあるいは連続的に、バイアス電圧を増大して被膜を成長させることができる。これは成膜速度の増大に寄与する。一方、カソード電流も一定に保持することができるが、あるいは段階的にまたは連続的に変化させてもよい。 During the film formation, the bias voltage may be kept constant, but can be changed stepwise or continuously. For example, a relatively small bias voltage can be applied at the initial stage of film formation. Applying a relatively small initial bias voltage contributes to reducing defects at the interface between the substrate and the film, at the expense of film formation speed. The film can then be grown by increasing the bias voltage stepwise or continuously from the initial bias voltage. This contributes to an increase in the deposition rate. On the other hand, the cathode current can also be kept constant, or may be changed stepwise or continuously.
 既に述べた通り、ホルダ11により遮蔽された部位には被膜は生じないが、気相粒子はバイアス電場により誘引されるために、基体Bにおいて露出した表面の全体に回り込み、原則においてその全てに被膜100が形成される。すなわち被膜100は、遮蔽されなかった全ての面を覆い且つこれらに限定される。 As already described, no film is formed on the portion shielded by the holder 11, but the gas phase particles are attracted by the bias electric field, so that the entire surface exposed on the substrate B is circulated, and in principle, all of the film is coated. 100 is formed. That is, the coating 100 covers and is limited to all surfaces that are not shielded.
 バイアス電圧、カソード電流および成膜時間は、必要とする膜厚に鑑みて適宜に調整される。被膜100の厚さは基体Bの全体を通じて均一になるとは限らない。通常、エッジのごとき凸な面には電場が集中するために、オープンな平面よりも厚い被膜が生じ、逆にブレードとプラットフォームの境界のごとき凹面では被膜はより薄くなる。膜厚は、耐食性の観点からは、経験的には例えば2μmの程度必要である。すなわち基体Bの形状に鑑み、被膜100が最も薄くなる部位においても2μmの膜厚が確保できるよう、バイアス電圧、カソード電流および成膜時間は調整される。 The bias voltage, cathode current, and film formation time are appropriately adjusted in view of the required film thickness. The thickness of the coating 100 is not always uniform throughout the substrate B. Usually, the electric field concentrates on a convex surface such as an edge, resulting in a thicker film than an open plane, and conversely, the film is thinner on a concave surface such as the blade-platform boundary. From the viewpoint of corrosion resistance, the film thickness is required to be about 2 μm from experience. That is, in view of the shape of the substrate B, the bias voltage, the cathode current, and the film formation time are adjusted so that a film thickness of 2 μm can be secured even in the portion where the film 100 is thinnest.
 被膜形成の条件により耐食性に著しい相違があり、特にバイアス電圧を特定の範囲に制限すると、耐食性に優れた被膜が形成する。幾つかの実施例を参照してその詳細を以下に説明する。 There is a significant difference in corrosion resistance depending on the conditions of film formation. Particularly when the bias voltage is limited to a specific range, a film having excellent corrosion resistance is formed. Details will be described below with reference to several examples.
 蒸発原料として表1に示す組成のインゴットを採用した。 The ingot having the composition shown in Table 1 was adopted as the evaporation raw material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に示す各バイアス電圧、および表3に示す各カソード電流の下に、それぞれTiAlN被膜を形成した。表2に示す一連の例においてカソード電流は表3の符号dの例と同一(150A)であり、表3に示す一連の例においてバイアス電圧は表2の符号dの例と同一である。成膜の初期、中期、後期においてバイアス電圧を3段階に変化させており、例えば符号dの例では、初期バイアスは-40V、中期バイアスは-60V、後記バイアスは-80Vであった。また成膜時間は初期において20分、中期において90分、後期において50分であった。成膜中の基体Bの表面温度は300~600℃の範囲であり、圧力は8.5±4.0Paの範囲で制御した。 A TiAlN film was formed under each bias voltage shown in Table 2 and each cathode current shown in Table 3. In the series of examples shown in Table 2, the cathode current is the same as the example of the symbol d in Table 3 (150 A), and in the series of examples shown in Table 3, the bias voltage is the same as the example of the symbol d in Table 2. The bias voltage was changed in three stages at the initial stage, the middle stage, and the latter stage of film formation. For example, in the case of the symbol d, the initial bias was −40 V, the intermediate bias was −60 V, and the bias described later was −80 V. The film formation time was 20 minutes in the initial period, 90 minutes in the middle period, and 50 minutes in the latter period. The surface temperature of the substrate B during film formation was in the range of 300 to 600 ° C., and the pressure was controlled in the range of 8.5 ± 4.0 Pa.
 それぞれの基体より試料を切り出し、外観観察および被膜の成分分析を実施した。外観観察は肉眼および走査型電子顕微鏡(SEM)により、成分分析は電子プローブ微量分析(EPMA)によった。 Specimens were cut out from each substrate, and appearance observation and coating component analysis were performed. Appearance observation was performed with the naked eye and a scanning electron microscope (SEM), and component analysis was performed with an electron probe microanalysis (EPMA).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 肉眼による観察ではいずれの試料の被膜も平滑で均一であるが、SEMによる観察では詳細に見れば表面のところどころにドロップレットと見られる不均一な部分が見出される。SEMの試料台の可動範囲の限りで観察して、ドロップレットが殆ど見られなければ「良好」と、数か所から数十か所にドロップレットが見られるものは「ドロップレットが目立つ」と、表2,3には記載した。 In the observation with the naked eye, the coating of any sample is smooth and uniform, but in the observation with the SEM, the non-uniform portion seen as droplets is found in various places on the surface. Observed as far as the SEM sample stage can move, if there are almost no droplets, “Good”. If droplets are seen from several to several tens, “Droplets are noticeable”. These are shown in Tables 2 and 3.
 さらに、切り出した試料をエタノール洗浄・乾燥し、腐食試験を実施した。腐食試験は、硫酸カルシウムおよび残部不活性物質よりなる粉末で満たした坩堝に各試験片を埋没し、760℃に保持して100時間以上静置することによった。 Furthermore, the cut sample was washed with ethanol and dried, and a corrosion test was performed. The corrosion test was performed by burying each test piece in a crucible filled with a powder composed of calcium sulfate and the balance of an inert substance, and maintaining the temperature at 760 ° C. for 100 hours or more.
 腐食試験の後、レーザー顕微鏡により各試験片の腐食サイトの有無および数を観察した。また腐食Pは、図3に示すごとく、基体Bと被膜100との界面から基体Bに向けて侵食するように進行する。界面から腐食Pの最も深い点までの距離dを最大腐食深さと定義し、レーザー顕微鏡により測定した。結果は表2,3にまとめられている。 After the corrosion test, the presence / absence and number of corrosion sites of each test piece were observed with a laser microscope. Further, as shown in FIG. 3, the corrosion P proceeds so as to erode toward the base B from the interface between the base B and the coating 100. The distance d from the interface to the deepest point of the corrosion P was defined as the maximum corrosion depth and measured by a laser microscope. The results are summarized in Tables 2 and 3.
 表2より理解される通り、バイアス電圧が-84Vを越えない条件で得られた試料a,b,c,d,eは被膜外観が良好であり、さらに初期バイアス電圧が-32乃至-40Vの範囲で得られた試料a,b,c,dは最大腐食深さも比較的に小さく、耐食性が良好である。さらに初期バイアス電圧が-36乃至-40Vの範囲で得られた試料b,c,dは、腐食点の数も少なく、耐食性はより良好である。 As understood from Table 2, the samples a, b, c, d, and e obtained under the condition where the bias voltage does not exceed −84V have good coating appearance, and the initial bias voltage is −32 to −40V. Samples a, b, c, and d obtained in the range have a relatively small maximum corrosion depth and good corrosion resistance. Furthermore, samples b, c, and d obtained with an initial bias voltage in the range of −36 to −40 V have fewer corrosion points and better corrosion resistance.
 表3より理解される通り、符号dに相当するバイアス電圧条件の下では、カソード電流が120乃至150Aの範囲で良好な被膜外観が得られる。特にカソード電流が135乃至150Aの範囲では、最大腐食深さはより小さく、耐食性はより良好である。 As understood from Table 3, under the bias voltage condition corresponding to the symbol d, a good coating appearance can be obtained when the cathode current is in the range of 120 to 150A. In particular, when the cathode current is in the range of 135 to 150 A, the maximum corrosion depth is smaller and the corrosion resistance is better.
 アークイオンプレーティング法によれば種々の条件の下にTiAlNよりなるコーティングが形成される。何れの条件においても、コーティングの構造や、耐食性を除く特性に、明白な相違を見出すことは難しいが、以上より理解される通り耐食性には明瞭な相違が生ずる。以上の開示は、アークイオンプレーティング法に基づき、特定の製造条件の下、優れた耐食性を呈示するコーティングを提供している。 According to the arc ion plating method, a coating made of TiAlN is formed under various conditions. Under any condition, it is difficult to find a clear difference in the structure of the coating and the characteristics other than the corrosion resistance, but as will be understood from the above, there is a clear difference in the corrosion resistance. The above disclosure provides coatings that exhibit excellent corrosion resistance under specific manufacturing conditions based on the arc ion plating method.
 幾つかの実施形態を説明したが、上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態を修正ないし変形することが可能である。 Although several embodiments have been described, those having ordinary skill in the art can modify or change the embodiments based on the above disclosure.
 高耐食性のエンジン用圧縮機翼が提供される。 Compressor blades for engines with high corrosion resistance are provided.

Claims (6)

  1.  エンジン用圧縮機翼を被覆するコーティングの方法であって、
     アークイオンプレーティング装置のチャンバに窒素を含む作動ガスを導入し、
     前記チャンバ内においてチタンアルミニウム合金をカソードとして放電を発生し、
     前記チャンバ内に導入した前記圧縮機翼の基体に前記カソードに比して-32乃至-42Vの初期バイアス電圧を印加して被膜を形成する、
     ことよりなる方法。
    A coating method for coating an engine compressor blade,
    Introducing a working gas containing nitrogen into the chamber of the arc ion plating device,
    In the chamber, a discharge is generated using a titanium aluminum alloy as a cathode,
    An initial bias voltage of −32 to −42 V is applied to the base of the compressor blade introduced into the chamber as compared with the cathode to form a film.
    A method consisting of things.
  2.  請求項1の方法であって、さらに、
     前記初期バイアス電圧より段階的にバイアス電圧を-48乃至-84Vに変更して前記被膜を成長せしめる、ことを含む方法。
    The method of claim 1, further comprising:
    Changing the bias voltage stepwise from −48 to −84V from the initial bias voltage to grow the film.
  3.  請求項1の方法であって、さらに、
     前記初期バイアス電圧より段階的にバイアス電圧を-48乃至-63Vに変更して前記被膜を成長せしめ、
     -48乃至-63Vに変更された前記バイアス電圧をさらに-64乃至-84Vに変更して前記成長した被膜をさらに成長せしめる、ことを含む方法。
    The method of claim 1, further comprising:
    The film is grown by changing the bias voltage stepwise from −48 to −63V from the initial bias voltage,
    Changing the bias voltage changed from -48 to -63V to -64 to -84V to further grow the grown film.
  4.  請求項1乃至3の何れか1項の方法であって、さらに、
     前記放電を発生する段階に先立ち、前記被膜を翼面およびプラットフォーム部に限定するべく、前記基体を前記翼面および前記プラットフォーム部またはインナバンド部およびアウタバンド部を残して前記放電から遮蔽する、ことを含む方法。
    4. The method according to any one of claims 1 to 3, further comprising:
    Prior to the step of generating the discharge, in order to limit the coating to the blade surface and the platform portion, the base body is shielded from the discharge leaving the blade surface and the platform portion or the inner band portion and the outer band portion. Including methods.
  5.  請求項1乃至3の何れか1項の方法であって、前記被膜を形成する段階において、前記作動ガスの圧力は8.5±4.0Paの範囲に維持される、方法。 4. The method according to any one of claims 1 to 3, wherein the pressure of the working gas is maintained in a range of 8.5 ± 4.0 Pa in the step of forming the coating film.
  6.  請求項1乃至3の何れか1項の方法であって、前記被膜を形成する段階および前記被膜を成長せしめる段階において、前記基体と前記カソードとの間に流れるカソード電流は120乃至150Aの範囲である、方法。 The method according to any one of claims 1 to 3, wherein in the step of forming the film and the step of growing the film, the cathode current flowing between the substrate and the cathode is in the range of 120 to 150A. There is a way.
PCT/JP2016/079400 2015-11-06 2016-10-04 Engine compressor blade with corrosion resistant coating and coating method therefor WO2017077801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218171A JP2017088937A (en) 2015-11-06 2015-11-06 Compressor blade for engine having anticorrosive coating, and coating method therefor
JP2015-218171 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077801A1 true WO2017077801A1 (en) 2017-05-11

Family

ID=58662897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079400 WO2017077801A1 (en) 2015-11-06 2016-10-04 Engine compressor blade with corrosion resistant coating and coating method therefor

Country Status (2)

Country Link
JP (1) JP2017088937A (en)
WO (1) WO2017077801A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214120B2 (en) * 2018-11-27 2023-01-30 株式会社神戸製鋼所 Hard-coated member and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330914A (en) * 1997-05-28 1998-12-15 Toshiba Tungaloy Co Ltd Laminated coating member containing crystal orientated hard coating
JPH1161380A (en) * 1997-08-20 1999-03-05 Kobe Steel Ltd Wear resistant multi-layer type hard coating film
JP2007154314A (en) * 2005-12-05 2007-06-21 General Electric Co <Ge> Processing method for bond coat having low deposited aluminum level and gas turbine engine component part
WO2011016488A1 (en) * 2009-08-04 2011-02-10 株式会社タンガロイ Coated member
JP2013019051A (en) * 2011-06-17 2013-01-31 Kobe Steel Ltd Hard film coated member
JP2014185636A (en) * 2013-02-15 2014-10-02 Alstom Technology Ltd Turbomachine component with erosion resistant and corrosion resistant coating system, and method of manufacturing turbomachine component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330914A (en) * 1997-05-28 1998-12-15 Toshiba Tungaloy Co Ltd Laminated coating member containing crystal orientated hard coating
JPH1161380A (en) * 1997-08-20 1999-03-05 Kobe Steel Ltd Wear resistant multi-layer type hard coating film
JP2007154314A (en) * 2005-12-05 2007-06-21 General Electric Co <Ge> Processing method for bond coat having low deposited aluminum level and gas turbine engine component part
WO2011016488A1 (en) * 2009-08-04 2011-02-10 株式会社タンガロイ Coated member
JP2013019051A (en) * 2011-06-17 2013-01-31 Kobe Steel Ltd Hard film coated member
JP2014185636A (en) * 2013-02-15 2014-10-02 Alstom Technology Ltd Turbomachine component with erosion resistant and corrosion resistant coating system, and method of manufacturing turbomachine component

Also Published As

Publication number Publication date
JP2017088937A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
Lascovich et al. Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES
Lin et al. Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses
Lin et al. The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering
Lin et al. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering
US8440301B2 (en) Coating apparatus and method
Ferreira et al. Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering
Mei et al. Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-VN composite coatings deposited by HIPIMS
CN112063984A (en) Fluorinated amorphous carbon film and preparation method and application thereof
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
CN105316634A (en) Preparation method for Cr-B-C-N nanocomposite film
Du et al. Evolution of microstructure and properties of TiNbCrAlHfN films grown by unipolar and bipolar high-power impulse magnetron co-sputtering: The role of growth temperature and ion bombardment
WO2017077801A1 (en) Engine compressor blade with corrosion resistant coating and coating method therefor
JP2013096004A (en) Coated tool having excellent peel resistance and method for manufacturing the same
Komiya et al. Hardness and grain size relations for thick chromium films deposited by hallow cathode discharge
Xie et al. Deposition of titanium films on complex bowl-shaped workpieces using DCMS and HiPIMS
Baba et al. Deposition of diamond-like carbon films on inner wall surfaces of millimeter-size-diameter steel tubes by plasma source ion implantation
Zhao et al. Effect of axial magnetic field on the microstructure, hardness and wear resistance of TiN films deposited by arc ion plating
El-Hossary et al. Properties of TiAlN coating deposited by MPIIID on TiN substrates
Bagcivan et al. Investigation of the properties of low temperature (Cr1‐xAlx) N coatings deposited via hybrid PVD DC‐MSIP/HPPMS
JP6408607B2 (en) Compressor blade for engine
Wang et al. Microstructure and mechanical properties of Cr films deposited with different peak powers by high-power impulse magnetron sputtering
KR20150061617A (en) HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF
JP2875892B2 (en) Method of forming cubic boron nitride film
Riascos et al. Characterization of fullerene‐like CNx thin films deposited by pulsed‐laser ablation of graphite in nitrogen
KR101637945B1 (en) Nitride coating layer and the method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861869

Country of ref document: EP

Kind code of ref document: A1