WO2017077638A1 - Endoscope and optical transmission module - Google Patents

Endoscope and optical transmission module Download PDF

Info

Publication number
WO2017077638A1
WO2017077638A1 PCT/JP2015/081310 JP2015081310W WO2017077638A1 WO 2017077638 A1 WO2017077638 A1 WO 2017077638A1 JP 2015081310 W JP2015081310 W JP 2015081310W WO 2017077638 A1 WO2017077638 A1 WO 2017077638A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
light
wiring board
transmission module
Prior art date
Application number
PCT/JP2015/081310
Other languages
French (fr)
Japanese (ja)
Inventor
弘典 河原
洋志 祝迫
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017548594A priority Critical patent/JPWO2017077638A1/en
Priority to PCT/JP2015/081310 priority patent/WO2017077638A1/en
Publication of WO2017077638A1 publication Critical patent/WO2017077638A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention provides an optical transmission module comprising a wiring board made of a light-transmitting material on which a light emitting element and a light receiving element are mounted, and an optical waveguide board on which the wiring board is disposed on the upper surface.
  • An optical transmission module comprising: an endoscope having a wiring board made of a light-transmitting material on which a light emitting element and a light receiving element are mounted; and an optical waveguide plate on which the wiring board is disposed.
  • the electronic endoscope has an image sensor such as a CCD at the distal end of the elongated insertion portion.
  • an imaging device having a high pixel number for an endoscope has been advanced.
  • the signal amount of the image signal transmitted from the image sensor to the signal processing device (processor) increases, so a thin optical fiber is used instead of electric signal transmission via metal wiring.
  • Optical signal transmission via is preferred.
  • bidirectional optical communication for example, the first optical signal generated by the light emitting element and the second optical signal received by the light receiving element are multiplexed / demultiplexed in the optical transmission module.
  • Japanese Unexamined Patent Application Publication No. 2013-228467 discloses an opto-electric hybrid flexible wiring board that includes a wiring board having a light emitting element and a light receiving element mounted on the main surface, and an optical waveguide board.
  • Japanese Laid-Open Patent Publication No. 2013-41922 discloses a light receiving device that blocks infrared rays entering through a hole in a wiring board.
  • a hole formed for wiring is filled with a resin having a predetermined configuration that transmits visible light and blocks only infrared light.
  • the light receiving device can block light entering from the hole, but cannot block stray light guided through the inside of the wiring board.
  • Embodiments of the present invention include an endoscope having an endoscope module in which transmission quality does not deteriorate due to stray light guided through a wiring board, and transmission by stray light guided through the wiring board.
  • An object of the present invention is to provide an endoscope module in which the quality does not deteriorate.
  • An endoscope guides an incident first optical signal and emits an optical waveguide plate that emits the guided second optical signal, and light emission that generates the first optical signal.
  • An element, a light receiving element that receives the second optical signal, a light emitting element and the light receiving element mounted on a first main surface, and a second main surface facing the first main surface is the light guide
  • the waveguide plate is disposed on a surface where the first optical signal is incident and the second optical signal is emitted, and the wall surface connecting the first main surface and the second main surface is conductive.
  • An endoscope provided at a distal end of the wiring board, wherein the interior of the wiring board is disposed between an incident part of the wiring board on which the first optical signal is incident and an emitting part from which the second optical signal is emitted.
  • the light shielding wall which blocks the light guided is formed, and the light shielding hole constituting the light shielding wall has the same configuration as the conduction hole.
  • An optical transmission module guides an incident first optical signal, emits the guided second optical signal, and the first optical signal.
  • an optical transmission module comprising a wiring board made of a light-transmitting material and disposed on a surface of the optical waveguide plate on which the first optical signal is incident and the second optical signal is emitted.
  • a light shielding wall that blocks light guided through the wiring board between the incident part where the first optical signal is incident on the wiring board and the emitting part from which the second optical signal is emitted. Is formed.
  • an endoscope having an endoscope module in which transmission quality is not likely to deteriorate due to stray light guided through the wiring board, and stray light guided through the wiring board.
  • an endoscope module in which the transmission quality does not deteriorate.
  • FIGS. 1-3 The optical transmission module 1 of 1st Embodiment is demonstrated using FIGS. 1-3.
  • the drawings based on each embodiment are schematic, and the relationship between the thickness and width of each part, the thickness ratio of each part, and the like are different from the actual ones. It should be noted that the drawings may include portions having different dimensional relationships and ratios between the drawings. In addition, illustration of some components may be omitted.
  • the light transmission module 1 includes a light emitting element 20, a light receiving element 30, an optical waveguide plate 10, a wiring board 40, and optical fibers 51 and 52.
  • a wiring board 40 on which the light emitting element 20 and the light receiving element 30 are mounted is disposed via an adhesive layer (not shown).
  • Optical fibers 51 and 52 are respectively disposed on the side surfaces 10SS1 and 10SS2 of the optical waveguide plate 10 so as to be optically coupled.
  • the first optical signal L 1 generated by the light emitting element 20 is guided through the optical fiber 51.
  • the light receiving element 30 receives the second optical signal L2 guided through the optical fiber 52.
  • the multimode type optical fibers 51 and 52 having a diameter of 125 ⁇ m include a core having a cross section of 50 ⁇ m ⁇ for transmitting light and a clad covering the outer periphery of the core.
  • the optical fibers 51 and 52 may be covered with an outer skin made of resin.
  • the light emitting element 20 is, for example, a vertical cavity surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting LASER), and is vertically downward (Z-axis) with respect to the light emitting surface (XY plane) in accordance with an input drive electric signal. Direction) to emit the first optical signal L1.
  • VCSEL VerticalVerCavity Surface Emitting LASER
  • the ultra-small light emitting element 20 having a size in plan view of 250 ⁇ m ⁇ 300 ⁇ m includes a light emitting unit 21 having a diameter of 20 ⁇ m and a connection terminal 22 that is electrically connected to the light emitting unit 21 and supplies a drive electric signal. , On the light emitting surface.
  • the light receiving element 30 is, for example, a photodiode (PD), and converts the second optical signal L2 incident from the direction perpendicular to the light receiving surface into an electric signal and outputs it.
  • the microscopic light receiving element 30 having a size in plan view of 350 ⁇ m ⁇ 300 ⁇ m includes a light receiving unit 31 having a diameter of 50 ⁇ m, a connection terminal 32 for outputting a reception electric signal electrically connected to the light receiving unit 31, On the light receiving surface.
  • the optical waveguide plate 10 is a polymer type in which a clad 12 (12A, 12B) surrounds an elongated rectangular parallelepiped core 11, which is an optical waveguide whose longitudinal direction is the X-axis direction for guiding an optical signal.
  • the core 11 which is an optical waveguide is made of a first resin
  • the clad 12 is made of a second resin having a refractive index smaller than that of the first resin.
  • the difference between the refractive index of the core 11 and the refractive index of the cladding 12 is preferably 0.01 or more.
  • the core 11 constitutes an optical waveguide that is an optical path for guiding an optical signal.
  • the core 11 and the clad 12 are made of a fluorinated polyimide resin having a refractive index of 1.50 to 1.60, which is excellent in heat resistance, transparency, and isotropic properties.
  • the polymer type optical waveguide plate 10 in which the core 11 and the clad 12 are made of resin is easier to process and more flexible than the optical waveguide plate made of an inorganic material such as quartz.
  • a first reflection surface 13 and a second reflection surface 14 are formed on the core 11 of the optical waveguide plate 10.
  • the 1st reflective surface 13 and the 2nd reflective surface 14 are the inclined surfaces of the groove
  • the first reflecting surface 13 reflects the first optical signal L1 incident on the core 11 from the vertical direction (Z-axis direction) by 90 degrees and guides it in the longitudinal direction (X-axis direction) of the core 11.
  • the second reflecting surface 14 reflects the second optical signal L2 guided in the longitudinal direction (X-axis direction) of the core 11 by 90 degrees and emits it in the vertical direction (Z-axis direction).
  • the first reflective surface 13 and the second reflective surface 14 may be formed with a reflective film made of a metal such as gold in order to increase the reflectance, and the inside of the groove is made of resin. It may be filled.
  • a prism may be disposed as a reflecting surface inside the groove.
  • the wiring board 40 having the first main surface 40SA and the second main surface facing the first main surface 40SA is made of a light transmissive material such as polyimide or polyethylene terephthalate (PET).
  • a light transmissive material such as polyimide or polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the wiring board 40 is a material having a light transmittance of 75% or more for the wavelengths of the first optical signal L1 and the second optical signal L2 at a thickness of 50 ⁇ m, the transmittance of light of other wavelengths is used. May be made of a low material.
  • the wiring board 40 is preferably a flexible wiring board because it can be easily bonded to the optical waveguide board 10 and the like.
  • the light emitting element 20 generates a first optical signal L1 based on a first electric signal (for example, an imaging signal) received through the electrode pad 41 of the wiring board 40.
  • a first electric signal for example, an imaging signal
  • the light enters the optical waveguide plate 10 from the incident portion 15 and enters the optical fiber 51 disposed on the side surface 10SS1 via the first reflecting surface 13 and the core 11.
  • the second optical signal L2 guided by the optical fiber 52 enters from the side surface 10SS2 of the optical waveguide plate 10, and exits from the upper surface 10SA of the optical waveguide plate 10 via the core 11 and the second reflecting surface 14. 16 is emitted.
  • the second optical signal L2 is incident from the second main surface 40SB of the wiring board 40, passes through the inside of the wiring board 40, is emitted from the emitting portion 44 of the first main surface 40SA, and is received by the light receiving portion 31 of the light receiving element 30. Is incident on.
  • a second electric signal (for example, a control signal) output from the light receiving element 30 is transmitted via the electrode pad 43 to an imaging element or the like (not shown) connected to the wiring board 40.
  • the incident portion 15 of the optical waveguide plate 10 is a region directly below the light emitting portion 21, but the region is not clearly distinguished from the surroundings.
  • the emitting portion 16 is a region immediately below the light receiving portion 31, but the region is not clearly distinguished from the surroundings.
  • a part of the first optical signal L1 generated by the light emitting element 20 may be guided inside the wiring board 40 as stray light L1A.
  • the stray light L1A is received by the light receiving element 30, it becomes noise and the quality of the second optical signal L2 is lowered.
  • a light shielding wall 49 that blocks light guided through the inside of the wiring board 40 is formed by a light shielding hole between the incident part 42 and the emitting part 44 of the wiring board 40.
  • the light shielding wall 49 is a wall surface of a groove-shaped light shielding hole that penetrates the wiring board 40 and is covered with, for example, a plating film. As shown in FIG. 3, the light shielding wall 49 is disposed on a line CL connecting the center of the incident portion 42 and the center of the emitting portion 44 of the wiring board 40.
  • the light shielding hole constituting the light shielding wall 49 is a through hole penetrating the wiring board 40, but becomes a light shielding via with a bottom after being bonded to the optical waveguide plate 10. Further, the light shielding hole may not penetrate through the wiring board 40 as long as stray light can be sufficiently blocked.
  • the inside of the light shielding hole may be filled with a conductor such as copper by a via fill plating method.
  • the optical transmission module 1 since the stray light L1A is blocked by the light shielding wall 49, there is no possibility that the transmission quality of the optical signal is deteriorated.
  • optical transmission modules 1A to 1H according to modifications of the first embodiment will be described. Since the optical transmission modules 1A to 1H are similar to the optical transmission module 1 and have the same effect, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the light shielding wall 49A of the wiring board 40A includes a light shielding hole H49A having a triangular cross section.
  • the inner wall of the through hole H49A is covered with a plating film 49A1.
  • the inside of the light shielding hole H49A is hollow, but may be filled with resin or the like.
  • the stray light reflected by the light shielding wall 49A has a phase different from that of the first optical signal L1, and if mixed into the first optical signal L1, there is a possibility that it becomes noise.
  • the cross section of the light shielding wall 49A is a substantially isosceles triangle, and its apex is arranged on the center line CL so as to face the incident portion 15. For this reason, since the stray light incident from the direction of the incident portion 15 is reflected in a direction different from the incident direction when reflected by the light shielding wall 49A, the reflected stray light causes the noise of the first optical signal L1. There is no risk of becoming.
  • the quality of the first optical signal L1 does not deteriorate due to the reflected stray light.
  • the light shielding wall 49B of the wiring board 40B is a light shielding hole having an oval cross section filled with a light absorbing material.
  • the light absorbing material is made of, for example, a resin mixed with carbon fine particles.
  • the incident stray light is not reflected on the light shielding wall 49B formed by the light shielding holes filled with the light absorbing material.
  • the quality of the first optical signal L1 does not deteriorate due to the reflected stray light.
  • the light shielding wall 49C of the wiring board 40C includes six light shielding holes 49C1 and light shielding holes 49C2. That is, the light shielding wall 49C is configured by a plurality of light shielding holes.
  • the light shielding hole 49C1 having a rectangular cross section is arranged on the center line CL.
  • the interiors of the light shielding hole 49C1 and the light shielding hole 49C2 are filled with a plating film.
  • the light shielding wall 49D of the wiring board 40D includes six light shielding holes 49D1 and light shielding holes 49D2.
  • the cylindrical light shielding hole 49D2 is arranged on the center line CL.
  • the light shielding wall 49E of the wiring board 40E includes eight light shielding holes 49E1 and light shielding holes 49E2.
  • the light shielding hole 49E2 having a T-shaped cross section is disposed on the center line CL.
  • the light shielding wall 49F of the wiring board 40F includes two light shielding holes 49F1 and 49F2.
  • the vertex of the light shielding hole 49F2 having a triangular cross section is disposed on the center line CL.
  • the stray light reflected by the light shielding wall 49F does not become noise of the first optical signal L1, and does not deteriorate the quality of the first optical signal L1.
  • the light shielding wall 49G of the wiring board 40G includes six light shielding holes 49G1.
  • the six light shielding holes 49G1 having a triangular cross section are arranged so that the light blocking rate is maximized on the center line CL.
  • the vertex of the light shielding hole 49G1 having a triangular cross section is disposed on the center line CL.
  • the stray light reflected by the light shielding wall 49G does not become noise of the first optical signal L1, and does not deteriorate the quality of the first optical signal L1.
  • the light shielding wall 49H of the wiring board 40H includes 15 light shielding holes 49H1.
  • the fifteen light shielding holes 49H1 having a circular cross section are arranged so that the light blocking rate is maximized on the center line CL.
  • the cross-sectional shape of the light shielding hole is not limited to a circle or a rectangle, and the wall surface may be covered with a light shielding material, or the inside may be filled with a light absorbing material.
  • the light shielding wall may be constituted by a plurality of light shielding holes.
  • the plurality of light shielding holes may be arranged so that the light shielding rate is maximized on a line connecting the center of the incident portion and the center of the emission portion. preferable.
  • optical transmission module 1I according to the second embodiment will be described with reference to FIGS.
  • the optical transmission module 1I is similar to the optical transmission module 1 and has the same effect.
  • the wiring board 40I is disposed on the upper surface 10SA of the optical waveguide board 10I via the adhesive layer 19 made of a transparent resin.
  • a plurality of conduction holes 48I that connect the first main surface 40SA and the second main surface 40SB are formed in the wiring board 40I.
  • the conductive hole 48I whose wall surface is covered with a conductive material is thickened by a known method, for example, by depositing a base copper plating film on the inner wall of a through hole formed by a laser by an electroless plating method and then by an electroplating method. It is produced by forming a copper plating film.
  • the wiring 45 extending from the electrode pad 41 to which the connection terminal 22 of the light emitting element 20 is bonded is electrically connected to the wiring 45 of the second main surface 40SB through the conduction hole 48I.
  • the wiring board 40I is a double-sided wiring board in which the wirings 45 and 43 are disposed on the first main surface 40SA and the second main surface 40SB, the design is easy.
  • the wiring board 40I may be a multilayer wiring board as long as it has the conduction hole 48I, or an electronic component may be mounted on the first main surface 40SA.
  • the light shielding wall 49I of the wiring board 40I includes 15 light shielding holes 49I1.
  • the fifteen light shielding holes 49I1 having a circular cross section are arranged so that the light blocking rate is maximized on the center line CL.
  • the transmission quality of the optical signal does not deteriorate.
  • the light blocking hole 49I1 has the same configuration as the conduction hole 48I. That is, the light shielding hole 49I1 is simultaneously manufactured by the same method when the conduction hole 48I is manufactured.
  • the diameter of the conduction hole 48I is as small as 5 ⁇ m to 50 ⁇ m, for example, it is not easy to sufficiently block stray light with one light shielding hole 49I1 having the same size.
  • the light shielding wall 49I of the light transmission module 1I is configured by the plurality of light shielding holes 49I1, stray light can be sufficiently blocked.
  • the plurality of light blocking holes 49I1 are arranged so that the light blocking rate is maximized on the line CL connecting the center of the incident portion and the center of the emission portion, stray light can be blocked more reliably.
  • optical transmission modules 1J and 1K according to modifications of the second embodiment will be described with reference to FIGS. Since the optical transmission modules 1J and 1K are similar to the optical transmission module 1I and have the same effect, the same components are denoted by the same reference numerals and description thereof is omitted.
  • an optical signal is bidirectionally transmitted. That is, the wavelength ⁇ 1 of the first optical signal L1 generated by the light emitting element 20 is different from the wavelength ⁇ 2 of the second optical signal L2 received by the light receiving element 30.
  • the single optical fiber 50 guides the third optical signal obtained by combining the first optical signal L1 and the second optical signal L2.
  • the first wavelength ⁇ 1 is 850 nm
  • the second wavelength ⁇ 2 is 1300 nm.
  • the optical waveguide plate 10J has a function of multiplexing and demultiplexing the first optical signal L1 and the second optical signal L2.
  • the second optical signal L2 incident from the side surface 10SS2 is the first optical signal L1 generated by the light emitting element 20 incident on the light receiving portion 31 of the light receiving element 30 by the second reflecting surface 14J formed on the core 11.
  • the first reflection surface 13 enters the core 11, passes through the second reflection surface 14, and enters the optical fiber 50.
  • the second reflecting surface 14J is made of a prism that transmits the first optical signal L1 and reflects the second optical signal L2, for example, a prism having a dielectric multilayer film disposed on the surface thereof.
  • the light guide path has a small diameter.
  • the wiring board 40K includes the first through hole H48 and the second optical signal that serve as the optical path of the first optical signal L1.
  • the first through hole H48 is formed immediately above the incident portion 15 of the optical waveguide plate 10J.
  • the second through hole H49 is formed immediately above the emitting portion 16 of the optical waveguide plate 10J.
  • the adhesive layer 19 may also be formed with a through hole serving as an optical path.
  • the optical transmission module 1K has the effect of the optical transmission module 1J, and furthermore, since the through holes H48 and H49 serving as optical paths are formed in the wiring board 40K, light attenuation is small and transmission efficiency is good.
  • the optical transmission module 1K has the same effect.
  • the endoscope 9 includes an insertion portion 9B in which the optical transmission module 1 is disposed at the distal end portion 9A, an operation portion 9C disposed on the proximal end side of the insertion portion 9B, and an operation portion.
  • a universal cord 9D extending from 9C and a connector 9E connected to a signal processing device (not shown) and the like are provided.
  • the first optical signal L1 transmitted from the optical transmission module 1 disposed at the distal end portion 9A and guided by the optical fiber 50 (51, 52) inserted through the insertion portion 9B is disposed in the operation portion 9C. It is converted into an electric signal by the optical transmission module 1X.
  • the second optical signal L2 transmitted from the optical transmission module 1X disposed in the operation unit 9C and guided by the optical fiber 52 inserted through the insertion unit 9B is the optical transmission module disposed in the distal end 9A. 1 is converted into an electric signal.
  • the endoscope 9 Since the endoscope 9 has a small optical transmission module 1, the distal end portion 9A has a small diameter. Further, in the optical transmission module 1, since the stray light L1A is blocked by the light shielding wall 49, there is no possibility that the transmission quality of the optical signal is deteriorated.
  • the endoscope 9 having the light transmission modules 1A to 1K further has the effects of the respective light transmission modules 1A to 1K.
  • an endoscope guides an incident first optical signal, emits a guided second optical signal, and a light emitting element that generates the first optical signal.
  • a light receiving element that receives the second optical signal, the light emitting element and the light receiving element are mounted on a first main surface, and a second main surface facing the first main surface is the optical waveguide.
  • a wall surface is disposed on a surface of the plate on which the first optical signal is incident and the second optical signal is emitted, and the wall surface connecting the first main surface and the second main surface is a conductive material.
  • An optical transmission module comprising a wiring board made of a light-transmitting material and having a conduction hole covered with an optical signal; and generating an imaging signal converted into the first optical signal; and An image sensor that operates in accordance with a drive signal converted from the optical signal 2 of FIG.
  • An endoscope provided at a distal end of the wiring board, wherein the interior of the wiring board is disposed between an incident part of the wiring board on which the first optical signal is incident and an emitting part from which the second optical signal is emitted.
  • the light shielding wall which blocks the light guided is formed, and the light shielding hole constituting the light shielding wall has the same configuration as the conduction hole.

Abstract

An optical transmission module 1 is provided with: an optical waveguide plate 10, which guides a first optical signal L1 inputted from an upper surface 10SA, and which outputs, from the upper surface 10SA, a second optical signal L2 that has been guided; a light emitting element 20 that generates the first optical signal L1; a light receiving element 30 that receives the second optical signal L2; and a wiring board 40 wherein the light emitting element 20 and the light receiving element 30 are mounted on a first main surface 40SA, and a second main surface 40SB is disposed on the upper surface 10SA of the optical waveguide plate 10, said wiring board being formed of a light transmissive material. A light blocking wall 49 that blocks light that has been guided in the wiring board 40 is formed between an input section 42 to which the first optical signal L1 is inputted, and an output section 44 from which the second optical signal L2 is outputted, said input section and output section being parts of the wiring board 40.

Description

内視鏡、および光伝送モジュールEndoscope and light transmission module
 本発明は、発光素子および受光素子が実装された光透過性材料からなる配線板と前記配線板が上面に配設されている光導波路板とを具備する光伝送モジュール、を挿入部の先端部に有する内視鏡、および、発光素子および受光素子が実装された光透過性材料からなる配線板と、前記配線板が上面に配設されている光導波路板と、を具備する光伝送モジュールに関する。 The present invention provides an optical transmission module comprising a wiring board made of a light-transmitting material on which a light emitting element and a light receiving element are mounted, and an optical waveguide board on which the wiring board is disposed on the upper surface. An optical transmission module comprising: an endoscope having a wiring board made of a light-transmitting material on which a light emitting element and a light receiving element are mounted; and an optical waveguide plate on which the wiring board is disposed. .
 電子内視鏡は、細長い挿入部の先端部にCCD等の撮像素子を有する。近年、高画素数の撮像素子の内視鏡への使用が進んでいる。高画素数の撮像素子を使用した場合には、撮像素子から信号処理装置(プロセッサ)へ伝送する撮像信号の信号量が増加するため、メタル配線を介した電気信号伝送に替えて細い光ファイバを介した光信号伝送が好ましい。 The electronic endoscope has an image sensor such as a CCD at the distal end of the elongated insertion portion. In recent years, use of an imaging device having a high pixel number for an endoscope has been advanced. When an image sensor with a large number of pixels is used, the signal amount of the image signal transmitted from the image sensor to the signal processing device (processor) increases, so a thin optical fiber is used instead of electric signal transmission via metal wiring. Optical signal transmission via is preferred.
 また、双方向光通信技術を活用することで、1本の光ファイバにより、撮像信号だけでなく、信号処理装置から撮像素子への制御信号等の伝送も行うことができる。双方向光通信では、例えば、発光素子が発生する第1の光信号と受光素子が受光する第2の光信号とが光伝送モジュールにおいて合波/分波される。 Further, by utilizing the bidirectional optical communication technology, it is possible to transmit not only the image pickup signal but also the control signal from the signal processing device to the image pickup device by one optical fiber. In bidirectional optical communication, for example, the first optical signal generated by the light emitting element and the second optical signal received by the light receiving element are multiplexed / demultiplexed in the optical transmission module.
 日本国特開2013-228467号公報には、主面に発光素子と受光素子とが実装された配線板と、光導波路板と、を具備する光電気混載フレキシブル配線板が開示されている。 Japanese Unexamined Patent Application Publication No. 2013-228467 discloses an opto-electric hybrid flexible wiring board that includes a wiring board having a light emitting element and a light receiving element mounted on the main surface, and an optical waveguide board.
 発光素子と受光素子とが配設された配線板では、発光素子が発生した光の一部が迷光として配線板の中を導光され、受光素子に受光されることで、伝送品質が劣化するおそれがあった。 In a wiring board in which a light emitting element and a light receiving element are arranged, a part of the light generated by the light emitting element is guided as stray light through the wiring board and received by the light receiving element, so that transmission quality deteriorates. There was a fear.
 日本国特開2013-41922号公報には、配線板の孔を介して進入する赤外線を遮光する受光装置が開示されている。配線のために形成された孔の内部には、可視光は透過し赤外線のみを遮光する所定の構成の樹脂が充填されている。 Japanese Laid-Open Patent Publication No. 2013-41922 discloses a light receiving device that blocks infrared rays entering through a hole in a wiring board. A hole formed for wiring is filled with a resin having a predetermined configuration that transmits visible light and blocks only infrared light.
 上記受光装置では、孔から進入してくる光を遮断することはできるが、配線板の内部を導光される迷光を遮断することはできない。 The light receiving device can block light entering from the hole, but cannot block stray light guided through the inside of the wiring board.
特開2013-228467号公報JP 2013-228467 A 特開2013-41922号公報JP 2013-41922 A
 本発明の実施形態は、配線板の中を導光される迷光により伝送品質が劣化するおそれのない内視鏡モジュールを有する内視鏡、および、配線板の中を導光される迷光により伝送品質が劣化するおそれのない内視鏡モジュールを提供することを目的とする。 Embodiments of the present invention include an endoscope having an endoscope module in which transmission quality does not deteriorate due to stray light guided through a wiring board, and transmission by stray light guided through the wiring board. An object of the present invention is to provide an endoscope module in which the quality does not deteriorate.
 本発明の実施形態の内視鏡は、入射した第1の光信号を導光するととともに、導光した第2の光信号を出射する光導波路板と、前記第1の光信号を発生する発光素子と、前記第2の光信号を受光する受光素子と、第1の主面に前記発光素子および前記受光素子が実装され、前記第1の主面と対向する第2の主面が前記光導波路板における前記第1の光信号が入射するとともに前記第2の光信号が出射する面に配置されており、前記第1の主面と前記第2の主面とを接続する、壁面が導電材料で覆われている導通孔が形成されている、光透過性材料からなる配線板と、を具備する光伝送モジュールと、前記第1の光信号に変換される撮像信号を発生するとともに、前記第2の光信号から変換された駆動信号に応じて動作する撮像素子と、を挿入部の先端部に有する内視鏡であって、前記配線板の前記第1の光信号が入射する入射部と前記第2の光信号が出射する出射部との間に、前記配線板の内部を導光される光を遮断する遮光壁が形成されており、前記遮光壁を構成している遮光孔が、前記導通孔と同じ構成である。 An endoscope according to an embodiment of the present invention guides an incident first optical signal and emits an optical waveguide plate that emits the guided second optical signal, and light emission that generates the first optical signal. An element, a light receiving element that receives the second optical signal, a light emitting element and the light receiving element mounted on a first main surface, and a second main surface facing the first main surface is the light guide The waveguide plate is disposed on a surface where the first optical signal is incident and the second optical signal is emitted, and the wall surface connecting the first main surface and the second main surface is conductive. A wiring board made of a light transmissive material in which a conduction hole covered with the material is formed; and an optical transmission module that generates an imaging signal that is converted into the first optical signal, and An image sensor that operates in accordance with a drive signal converted from the second optical signal. An endoscope provided at a distal end of the wiring board, wherein the interior of the wiring board is disposed between an incident part of the wiring board on which the first optical signal is incident and an emitting part from which the second optical signal is emitted. The light shielding wall which blocks the light guided is formed, and the light shielding hole constituting the light shielding wall has the same configuration as the conduction hole.
 また本発明の別の実施形態の光伝送モジュールは、入射した第1の光信号を導光するととともに、導光した第2の光信号を出射する光導波路板と、前記第1の光信号を発生する発光素子と、前記第2の光信号を受光する受光素子と、第1の主面に前記発光素子および前記受光素子が実装され、前記第1の主面と対向する第2の主面が前記光導波路板における前記第1の光信号が入射するとともに前記第2の光信号が出射する面に配置されている、光透過性材料からなる配線板と、を具備する光伝送モジュールであって、前記配線板の前記第1の光信号が入射する入射部と前記第2の光信号が出射する出射部との間に、前記配線板の内部を導光される光を遮断する遮光壁が形成されている。 An optical transmission module according to another embodiment of the present invention guides an incident first optical signal, emits the guided second optical signal, and the first optical signal. A light emitting element that generates light, a light receiving element that receives the second optical signal, and a second main surface that is mounted on the first main surface and that faces the first main surface. Is an optical transmission module comprising a wiring board made of a light-transmitting material and disposed on a surface of the optical waveguide plate on which the first optical signal is incident and the second optical signal is emitted. A light shielding wall that blocks light guided through the wiring board between the incident part where the first optical signal is incident on the wiring board and the emitting part from which the second optical signal is emitted. Is formed.
 本発明の実施形態によれば、配線板の中を導光される迷光により伝送品質が劣化するおそれのない内視鏡モジュールを有する内視鏡、および、配線板の中を導光される迷光により伝送品質が劣化するおそれのない内視鏡モジュールを提供できる。 According to the embodiment of the present invention, an endoscope having an endoscope module in which transmission quality is not likely to deteriorate due to stray light guided through the wiring board, and stray light guided through the wiring board. Thus, it is possible to provide an endoscope module in which the transmission quality does not deteriorate.
第1実施形態の光伝送モジュールの分解斜視図である。It is a disassembled perspective view of the optical transmission module of 1st Embodiment. 第1実施形態の光伝送モジュールの断面図である。It is sectional drawing of the optical transmission module of 1st Embodiment. 第1実施形態の光伝送モジュールの上面図である。It is a top view of the optical transmission module of a 1st embodiment. 第1実施形態の変形例1の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 1 of 1st Embodiment. 第1実施形態の変形例2の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 2 of 1st Embodiment. 第1実施形態の変形例3の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 3 of 1st Embodiment. 第1実施形態の変形例4の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 4 of 1st Embodiment. 第1実施形態の変形例5の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 5 of 1st Embodiment. 第1実施形態の変形例6の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 6 of 1st Embodiment. 第1実施形態の変形例7の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 7 of 1st Embodiment. 第1実施形態の変形例8の光伝送モジュールの遮光孔の上面図である。It is a top view of the light shielding hole of the optical transmission module of the modification 8 of 1st Embodiment. 第2実施形態の光伝送モジュールの上面図である。It is a top view of the light transmission module of 2nd Embodiment. 第2実施形態の光伝送モジュールの断面図である。It is sectional drawing of the optical transmission module of 2nd Embodiment. 第2実施形態の変形例1の光伝送モジュールの上面図である。It is a top view of the optical transmission module of the modification 1 of 2nd Embodiment. 第2実施形態の変形例1の光伝送モジュールの断面図である。It is sectional drawing of the optical transmission module of the modification 1 of 2nd Embodiment. 第2実施形態の変形例2の光伝送モジュールの断面図である。It is sectional drawing of the optical transmission module of the modification 2 of 2nd Embodiment. 第3実施形態の内視鏡斜視図である。It is an endoscope perspective view of a 3rd embodiment.
<第1実施形態>
 図1から図3を用いて第1実施形態の光伝送モジュール1について説明する。なお、以下の説明において、各実施の形態に基づく図面は、模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また一部の構成要素の図示を省略することがある。
<First Embodiment>
The optical transmission module 1 of 1st Embodiment is demonstrated using FIGS. 1-3. In the following description, the drawings based on each embodiment are schematic, and the relationship between the thickness and width of each part, the thickness ratio of each part, and the like are different from the actual ones. It should be noted that the drawings may include portions having different dimensional relationships and ratios between the drawings. In addition, illustration of some components may be omitted.
 光伝送モジュール1は、発光素子20と、受光素子30と、光導波路板10と、配線板40と、光ファイバ51、52と、を具備する。光導波路板10の上面10SAには、発光素子20および受光素子30が実装された配線板40が接着層(不図示)を介して配設されている。光導波路板10の側面10SS1、10SS2には、それぞれ光ファイバ51、52が光結合するように配設されている。 The light transmission module 1 includes a light emitting element 20, a light receiving element 30, an optical waveguide plate 10, a wiring board 40, and optical fibers 51 and 52. On the upper surface 10SA of the optical waveguide plate 10, a wiring board 40 on which the light emitting element 20 and the light receiving element 30 are mounted is disposed via an adhesive layer (not shown). Optical fibers 51 and 52 are respectively disposed on the side surfaces 10SS1 and 10SS2 of the optical waveguide plate 10 so as to be optically coupled.
 光伝送モジュール1では、発光素子20が発生する第1の光信号L1は光ファイバ51を介して導光される。受光素子30は、光ファイバ52を介して導光された第2の光信号L2を受光する。例えば、径が125μmのマルチモード型の光ファイバ51、52は、光を伝送する断面が50μmφのコアと、コアの外周を覆うクラッドとからなる。光ファイバ51、52は、樹脂からなる外皮に覆われていてもよい。 In the optical transmission module 1, the first optical signal L 1 generated by the light emitting element 20 is guided through the optical fiber 51. The light receiving element 30 receives the second optical signal L2 guided through the optical fiber 52. For example, the multimode type optical fibers 51 and 52 having a diameter of 125 μm include a core having a cross section of 50 μmφ for transmitting light and a clad covering the outer periphery of the core. The optical fibers 51 and 52 may be covered with an outer skin made of resin.
 発光素子20は、例えば、垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)であり、入力された駆動電気信号に応じて、発光面(XY平面)に対して垂直下方向(Z軸方向)に第1の光信号L1を出射する。例えば、平面視寸法が250μm×300μmと超小型の発光素子20は、直径が20μmの発光部21と、発光部21と電気的に接続された、駆動電気信号を供給するための接続端子22と、を発光面に有する。 The light emitting element 20 is, for example, a vertical cavity surface emitting laser (VCSEL: VerticalVerCavity Surface Emitting LASER), and is vertically downward (Z-axis) with respect to the light emitting surface (XY plane) in accordance with an input drive electric signal. Direction) to emit the first optical signal L1. For example, the ultra-small light emitting element 20 having a size in plan view of 250 μm × 300 μm includes a light emitting unit 21 having a diameter of 20 μm and a connection terminal 22 that is electrically connected to the light emitting unit 21 and supplies a drive electric signal. , On the light emitting surface.
 受光素子30は、例えば、フォトダイオード(PD)であり、受光面に対して垂直方向から入射した第2の光信号L2を電気信号に変換して出力する。例えば、平面視寸法が350μm×300μmと超小型の受光素子30は、直径が50μmの受光部31と、受光部31と電気的に接続された受信電気信号を出力するための接続端子32と、を受光面に有する。 The light receiving element 30 is, for example, a photodiode (PD), and converts the second optical signal L2 incident from the direction perpendicular to the light receiving surface into an electric signal and outputs it. For example, the microscopic light receiving element 30 having a size in plan view of 350 μm × 300 μm includes a light receiving unit 31 having a diameter of 50 μm, a connection terminal 32 for outputting a reception electric signal electrically connected to the light receiving unit 31, On the light receiving surface.
 光導波路板10は、光信号を導光するX軸方向が長手方向の光導波路である、細長い直方体のコア11の周囲をクラッド12(12A、12B)が取り囲んでいるポリマー型である。光導波路であるコア11は第1の樹脂からなり、クラッド12は、屈折率が第1の樹脂よりも小さい第2の樹脂からなる。効率的な光伝送のために、コア11の屈折率とクラッド12の屈折率との差は、0.01以上が好ましい。コア11は、光信号を導光する光路である光導波路を構成している。 The optical waveguide plate 10 is a polymer type in which a clad 12 (12A, 12B) surrounds an elongated rectangular parallelepiped core 11, which is an optical waveguide whose longitudinal direction is the X-axis direction for guiding an optical signal. The core 11 which is an optical waveguide is made of a first resin, and the clad 12 is made of a second resin having a refractive index smaller than that of the first resin. For efficient optical transmission, the difference between the refractive index of the core 11 and the refractive index of the cladding 12 is preferably 0.01 or more. The core 11 constitutes an optical waveguide that is an optical path for guiding an optical signal.
 例えば、コア11およびクラッド12は、耐熱性、透明性、等方性に優れている、屈折率1.50~1.60のフッ素化ポリイミド樹脂からなる。コア11およびクラッド12が樹脂からなるポリマー型の光導波路板10は、石英等の無機材料からなる光導波路板よりも、加工が容易で柔軟性に優れている。 For example, the core 11 and the clad 12 are made of a fluorinated polyimide resin having a refractive index of 1.50 to 1.60, which is excellent in heat resistance, transparency, and isotropic properties. The polymer type optical waveguide plate 10 in which the core 11 and the clad 12 are made of resin is easier to process and more flexible than the optical waveguide plate made of an inorganic material such as quartz.
 光導波路板10のコア11には、第1の反射面13と第2の反射面14とが形成されている。第1の反射面13および第2の反射面14は、ダイシングブレードを用いて下面側から形成された溝の傾斜面である。図示しないが、溝の内部には樹脂が充填されている。 A first reflection surface 13 and a second reflection surface 14 are formed on the core 11 of the optical waveguide plate 10. The 1st reflective surface 13 and the 2nd reflective surface 14 are the inclined surfaces of the groove | channel formed from the lower surface side using the dicing blade. Although not shown, the groove is filled with resin.
 第1の反射面13は、垂直方向(Z軸方向)からコア11に入射した第1の光信号L1を90度反射して、コア11の長手方向(X軸方向)に導光する。第2の反射面14は、コア11の長手方向(X軸方向)を導光された第2の光信号L2を90度反射して、垂直方向(Z軸方向)に出射する。 The first reflecting surface 13 reflects the first optical signal L1 incident on the core 11 from the vertical direction (Z-axis direction) by 90 degrees and guides it in the longitudinal direction (X-axis direction) of the core 11. The second reflecting surface 14 reflects the second optical signal L2 guided in the longitudinal direction (X-axis direction) of the core 11 by 90 degrees and emits it in the vertical direction (Z-axis direction).
 なお、第1の反射面13および第2の反射面14には、反射率を高くするために、金等の金属からなる反射膜が成膜されていてもよいし、溝の内部が樹脂で充填されていてもよい。また、溝の内部に反射面としてプリズムが配設されていてもよい。 The first reflective surface 13 and the second reflective surface 14 may be formed with a reflective film made of a metal such as gold in order to increase the reflectance, and the inside of the groove is made of resin. It may be filled. In addition, a prism may be disposed as a reflecting surface inside the groove.
 第1の主面40SAと第1の主面40SAと対向する第2の主面とを有する配線板40は、ポリイミドまたはポリエチレンテレフタレート(PET)等の光透過性材料からなる。配線板40の第1の主面40SAには、発光素子20の接続端子22が接合されている電極パッド41と受光素子30の接続端子32が接合されている電極パッド43とが配設されている。 The wiring board 40 having the first main surface 40SA and the second main surface facing the first main surface 40SA is made of a light transmissive material such as polyimide or polyethylene terephthalate (PET). On the first main surface 40SA of the wiring board 40, an electrode pad 41 to which the connection terminal 22 of the light emitting element 20 is bonded and an electrode pad 43 to which the connection terminal 32 of the light receiving element 30 is bonded are arranged. Yes.
 配線板40は、厚さ50μmにおける、第1の光信号L1および第2の光信号L2の波長の光の光透過率が75%以上の材料であれば、それ以外の波長の光の透過率が低い材料から構成されていてもよい。また、配線板40は、光導波路板10への接着等が容易であるために、フレキシブル配線板であることが好ましい。 If the wiring board 40 is a material having a light transmittance of 75% or more for the wavelengths of the first optical signal L1 and the second optical signal L2 at a thickness of 50 μm, the transmittance of light of other wavelengths is used. May be made of a low material. The wiring board 40 is preferably a flexible wiring board because it can be easily bonded to the optical waveguide board 10 and the like.
 発光素子20は、配線板40の電極パッド41を介して受電した第1の電気信号(例えば、撮像信号)に基づき、第1の光信号L1を発生する。そして、配線板40の第1の主面40SAの入射部42から入射した第1の光信号L1は、配線板40の内部を透過して、第2の主面40SBから出射され、上面10SAの入射部15から光導波路板10に入射し、第1の反射面13およびコア11を介して側面10SS1に配設された光ファイバ51に入射する。 The light emitting element 20 generates a first optical signal L1 based on a first electric signal (for example, an imaging signal) received through the electrode pad 41 of the wiring board 40. And the 1st optical signal L1 which injected from the entrance part 42 of 1st main surface 40SA of the wiring board 40 permeate | transmits the inside of the wiring board 40, is radiate | emitted from 2nd main surface 40SB, and is upper surface 10SA. The light enters the optical waveguide plate 10 from the incident portion 15 and enters the optical fiber 51 disposed on the side surface 10SS1 via the first reflecting surface 13 and the core 11.
 一方、光ファイバ52が導光した第2の光信号L2は、光導波路板10の側面10SS2から入射し、コア11および第2の反射面14を介して光導波路板10の上面10SAの出射部16から出射される。第2の光信号L2は、配線板40の第2の主面40SBから入射し配線板40の内部を透過して第1の主面40SAの出射部44から出射し受光素子30の受光部31に入射する。受光素子30が出力する第2の電気信号(例えば、制御信号)は電極パッド43を介して、配線板40に接続されている撮像素子等(不図示)に伝送される。 On the other hand, the second optical signal L2 guided by the optical fiber 52 enters from the side surface 10SS2 of the optical waveguide plate 10, and exits from the upper surface 10SA of the optical waveguide plate 10 via the core 11 and the second reflecting surface 14. 16 is emitted. The second optical signal L2 is incident from the second main surface 40SB of the wiring board 40, passes through the inside of the wiring board 40, is emitted from the emitting portion 44 of the first main surface 40SA, and is received by the light receiving portion 31 of the light receiving element 30. Is incident on. A second electric signal (for example, a control signal) output from the light receiving element 30 is transmitted via the electrode pad 43 to an imaging element or the like (not shown) connected to the wiring board 40.
 なお、光導波路板10の入射部15は、発光部21の直下領域であるが、その領域は周囲と明瞭に区別されるものではない。同様に出射部16は受光部31の直下領域であるが、その領域は周囲と明瞭に区別されるものではない。 The incident portion 15 of the optical waveguide plate 10 is a region directly below the light emitting portion 21, but the region is not clearly distinguished from the surroundings. Similarly, the emitting portion 16 is a region immediately below the light receiving portion 31, but the region is not clearly distinguished from the surroundings.
 ここで、発光素子20が発生した第1の光信号L1の一部が、迷光L1Aとして配線板40の内部を導光されるおそれがある。迷光L1Aが受光素子30に受光されるとノイズとなり、第2の光信号L2の品質が低下する。 Here, a part of the first optical signal L1 generated by the light emitting element 20 may be guided inside the wiring board 40 as stray light L1A. When the stray light L1A is received by the light receiving element 30, it becomes noise and the quality of the second optical signal L2 is lowered.
 光伝送モジュール1では、配線板40の入射部42と出射部44との間に、配線板40の内部を導光される光を遮断する遮光壁49が遮光孔により形成されている。遮光壁49は、配線板40を貫通する溝状の遮光孔の、例えば、めっき膜で覆われている壁面である。図3に示すように、遮光壁49は配線板40の入射部42の中心と出射部44の中心とを結ぶ線上CLに配置されている。 In the light transmission module 1, a light shielding wall 49 that blocks light guided through the inside of the wiring board 40 is formed by a light shielding hole between the incident part 42 and the emitting part 44 of the wiring board 40. The light shielding wall 49 is a wall surface of a groove-shaped light shielding hole that penetrates the wiring board 40 and is covered with, for example, a plating film. As shown in FIG. 3, the light shielding wall 49 is disposed on a line CL connecting the center of the incident portion 42 and the center of the emitting portion 44 of the wiring board 40.
 なお、遮光壁49を構成している遮光孔は、配線板40を貫通している貫通孔であるが、光導波路板10に接着された後は有底の遮光ビアとなる。また、遮光孔は迷光を十分に遮断できれば、配線板40を貫通していなくともよい。 The light shielding hole constituting the light shielding wall 49 is a through hole penetrating the wiring board 40, but becomes a light shielding via with a bottom after being bonded to the optical waveguide plate 10. Further, the light shielding hole may not penetrate through the wiring board 40 as long as stray light can be sufficiently blocked.
 さらに、遮光孔は、少なくとも壁面が導体で覆われていれば、例えば、ビアフィルめっき法により内部が銅等の導体で充填されていてもよい。 Furthermore, as long as at least the wall surface is covered with a conductor, the inside of the light shielding hole may be filled with a conductor such as copper by a via fill plating method.
 光伝送モジュール1では、迷光L1Aは遮光壁49により遮断されるため、光信号の伝送品質が低下するおそれがない。 In the optical transmission module 1, since the stray light L1A is blocked by the light shielding wall 49, there is no possibility that the transmission quality of the optical signal is deteriorated.
<第1実施形態の変形例>
 次に第1実施形態の変形例の光伝送モジュール1A~1Hについて説明する。光伝送モジュール1A~1Hは、光伝送モジュール1と類似し同じ効果を有するため、同じ構成要素には同じ符号を付し説明は省略する。
<Modification of First Embodiment>
Next, optical transmission modules 1A to 1H according to modifications of the first embodiment will be described. Since the optical transmission modules 1A to 1H are similar to the optical transmission module 1 and have the same effect, the same components are denoted by the same reference numerals and description thereof is omitted.
<第1実施形態の変形例1>
 図4に示す変形例1の光伝送モジュール1Aでは、配線板40Aの遮光壁49Aは、断面が三角形の遮光孔H49Aからなる。貫通孔H49Aの内壁はめっき膜49A1で覆われている。なお、遮光孔H49Aの内部は空洞であるが、樹脂等により充填されていてもよい。
<Variation 1 of the first embodiment>
In the optical transmission module 1A of Modification Example 1 shown in FIG. 4, the light shielding wall 49A of the wiring board 40A includes a light shielding hole H49A having a triangular cross section. The inner wall of the through hole H49A is covered with a plating film 49A1. The inside of the light shielding hole H49A is hollow, but may be filled with resin or the like.
 遮光壁49Aで反射された迷光は第1の光信号L1とは位相等が異なり、第1の光信号L1に混入するとノイズとなるおそれがある。しかし、遮光壁49Aの断面は略二等辺三角形で、その頂点が、入射部15と対向するように中心線上CLに配置されている。このため、入射部15の方向から入射した迷光は、遮光壁49Aで反射されると、入射方向とは異なる方向に反射されるため、反射した迷光が第1の光信号L1のノイズの原因となるおそれがない。 The stray light reflected by the light shielding wall 49A has a phase different from that of the first optical signal L1, and if mixed into the first optical signal L1, there is a possibility that it becomes noise. However, the cross section of the light shielding wall 49A is a substantially isosceles triangle, and its apex is arranged on the center line CL so as to face the incident portion 15. For this reason, since the stray light incident from the direction of the incident portion 15 is reflected in a direction different from the incident direction when reflected by the light shielding wall 49A, the reflected stray light causes the noise of the first optical signal L1. There is no risk of becoming.
 光伝送モジュール1Aは、反射した迷光により第1の光信号L1の品質が低下するおそれがない。 In the optical transmission module 1A, the quality of the first optical signal L1 does not deteriorate due to the reflected stray light.
<第1実施形態の変形例2>
 図4Bに示す変形例2の光伝送モジュール1Bでは、配線板40Bの遮光壁49Bは、内部が光吸収材料で充填されている、断面が楕円形の遮光孔である。
<Modification 2 of the first embodiment>
In the optical transmission module 1B of Modification 2 shown in FIG. 4B, the light shielding wall 49B of the wiring board 40B is a light shielding hole having an oval cross section filled with a light absorbing material.
 光吸収材料は、例えば炭素微粒子が混合された樹脂からなる。 The light absorbing material is made of, for example, a resin mixed with carbon fine particles.
 内部が光吸収材料で充填されている遮光孔からなる遮光壁49Bは、入射した迷光が反射されない。 The incident stray light is not reflected on the light shielding wall 49B formed by the light shielding holes filled with the light absorbing material.
 光伝送モジュール1Bは、反射した迷光により第1の光信号L1の品質が低下するおそれがない。 In the optical transmission module 1B, the quality of the first optical signal L1 does not deteriorate due to the reflected stray light.
<第1実施形態の変形例3>
 図5Aに示す変形例3の光伝送モジュール1Cでは、配線板40Cの遮光壁49Cは、6個の遮光孔49C1および遮光孔49C2からなる。すなわち、遮光壁49Cは、複数の遮光孔により構成されている。
<Modification 3 of the first embodiment>
In the optical transmission module 1C of Modification 3 shown in FIG. 5A, the light shielding wall 49C of the wiring board 40C includes six light shielding holes 49C1 and light shielding holes 49C2. That is, the light shielding wall 49C is configured by a plurality of light shielding holes.
 断面が矩形の遮光孔49C1は、中心線上CLに配置されている。遮光孔49C1および遮光孔49C2の内部は、めっき膜で充填されている。 The light shielding hole 49C1 having a rectangular cross section is arranged on the center line CL. The interiors of the light shielding hole 49C1 and the light shielding hole 49C2 are filled with a plating film.
<第1実施形態の変形例4>
 図5Bに示す変形例4の光伝送モジュール1Dでは、配線板40Dの遮光壁49Dは、6個の遮光孔49D1および遮光孔49D2からなる。円柱状の遮光孔49D2は、中心線上CLに配置されている。
<Modification 4 of the first embodiment>
In the optical transmission module 1D of Modification 4 shown in FIG. 5B, the light shielding wall 49D of the wiring board 40D includes six light shielding holes 49D1 and light shielding holes 49D2. The cylindrical light shielding hole 49D2 is arranged on the center line CL.
<第1実施形態の変形例5>
 図5Cに示す変形例5の光伝送モジュール1Eでは、配線板40Eの遮光壁49Eは、8個の遮光孔49E1および遮光孔49E2からなる。断面がT字型の遮光孔49E2は、中心線上CLに配置されている。
<Modification 5 of the first embodiment>
In the optical transmission module 1E of Modification 5 shown in FIG. 5C, the light shielding wall 49E of the wiring board 40E includes eight light shielding holes 49E1 and light shielding holes 49E2. The light shielding hole 49E2 having a T-shaped cross section is disposed on the center line CL.
<第1実施形態の変形例6>
 図5Dに示す変形例6の光伝送モジュール1Fでは、配線板40Fの遮光壁49Fは、2個の遮光孔49F1および遮光孔49F2からなる。遮光孔49F2の断面が三角形の頂点は、中心線上CLに配置されている。
<Modification 6 of the first embodiment>
In the optical transmission module 1F of Modification 6 shown in FIG. 5D, the light shielding wall 49F of the wiring board 40F includes two light shielding holes 49F1 and 49F2. The vertex of the light shielding hole 49F2 having a triangular cross section is disposed on the center line CL.
 このため、遮光壁49Fで反射された迷光が、第1の光信号L1のノイズにならず、第1の光信号L1の品質を低下させることがない。 Therefore, the stray light reflected by the light shielding wall 49F does not become noise of the first optical signal L1, and does not deteriorate the quality of the first optical signal L1.
<第1実施形態の変形例7>
 図5Eに示す変形例7の光伝送モジュール1Gでは、配線板40Gの遮光壁49Gは、6個の遮光孔49G1からなる。断面が三角形の6個の遮光孔49G1は、中心線上CLにおいて光の遮断率が最大となるように配置されている。遮光孔49G1の断面が三角形の頂点は、中心線上CLに配置されている。
<Modification 7 of First Embodiment>
In the optical transmission module 1G of Modification 7 shown in FIG. 5E, the light shielding wall 49G of the wiring board 40G includes six light shielding holes 49G1. The six light shielding holes 49G1 having a triangular cross section are arranged so that the light blocking rate is maximized on the center line CL. The vertex of the light shielding hole 49G1 having a triangular cross section is disposed on the center line CL.
 このため、遮光壁49Gで反射された迷光が、第1の光信号L1のノイズにならず、第1の光信号L1の品質を低下させることがない。 For this reason, the stray light reflected by the light shielding wall 49G does not become noise of the first optical signal L1, and does not deteriorate the quality of the first optical signal L1.
<第1実施形態の変形例8>
 図5Fに示す変形例8の光伝送モジュール1Hでは、配線板40Hの遮光壁49Hは、15個の遮光孔49H1からなる。断面が円形の15個の遮光孔49H1は、中心線上CLにおいて光の遮断率が最大となるように配置されている。
<Modification 8 of the first embodiment>
In the optical transmission module 1H of Modification 8 shown in FIG. 5F, the light shielding wall 49H of the wiring board 40H includes 15 light shielding holes 49H1. The fifteen light shielding holes 49H1 having a circular cross section are arranged so that the light blocking rate is maximized on the center line CL.
 以上の説明のように、遮光孔は、断面形状は円形、矩形に限られるものではなく、壁面が遮光材料で覆われていてもよいし、内部が光吸収材料で充填されていてもよい。また、遮光壁は、複数の遮光孔により構成されていてもよい。遮光壁が複数の遮光孔により構成されている場合、複数の遮光孔は、入射部の中心と出射部の中心とを結ぶ線上において光の遮断率が最大となるように配置されていることが好ましい。 As described above, the cross-sectional shape of the light shielding hole is not limited to a circle or a rectangle, and the wall surface may be covered with a light shielding material, or the inside may be filled with a light absorbing material. Further, the light shielding wall may be constituted by a plurality of light shielding holes. When the light shielding wall is constituted by a plurality of light shielding holes, the plurality of light shielding holes may be arranged so that the light shielding rate is maximized on a line connecting the center of the incident portion and the center of the emission portion. preferable.
<第2実施形態>
 次に、図6および図7を用いて、第2実施形態の光伝送モジュール1Iについて説明する。光伝送モジュール1Iは、光伝送モジュール1と類似し同じ効果を有するため、同じ構成要素には同じ符号を付し説明は省略する。
Second Embodiment
Next, the optical transmission module 1I according to the second embodiment will be described with reference to FIGS. The optical transmission module 1I is similar to the optical transmission module 1 and has the same effect.
 光伝送モジュール1Iでは、光導波路板10Iの上面10SAに透明樹脂からなる接着層19を介して配線板40Iが配設されている。配線板40Iには、第1の主面40SAと第2の主面40SBとを接続する複数の導通孔48Iが形成されている。壁面が導電材料で覆われている導通孔48Iは、公知の方法、例えば、レーザにより形成した貫通孔の内壁に無電解めっき法により下地銅めっき膜を配設した後に、電気めっき法により厚付け銅めっき膜を成膜することで作製される。 In the optical transmission module 1I, the wiring board 40I is disposed on the upper surface 10SA of the optical waveguide board 10I via the adhesive layer 19 made of a transparent resin. A plurality of conduction holes 48I that connect the first main surface 40SA and the second main surface 40SB are formed in the wiring board 40I. The conductive hole 48I whose wall surface is covered with a conductive material is thickened by a known method, for example, by depositing a base copper plating film on the inner wall of a through hole formed by a laser by an electroless plating method and then by an electroplating method. It is produced by forming a copper plating film.
 例えば、発光素子20の接続端子22が接合された電極パッド41から延設された配線45は、導通孔48Iを介して、第2の主面40SBの配線45と電気的に接続されている。 For example, the wiring 45 extending from the electrode pad 41 to which the connection terminal 22 of the light emitting element 20 is bonded is electrically connected to the wiring 45 of the second main surface 40SB through the conduction hole 48I.
 配線板40Iは、第1の主面40SAおよび第2の主面40SBに配線45、43が配設されている両面配線板であるので、設計が容易である。なお、配線板40Iは、導通孔48Iを有していれば、多層配線板でもよいし、第1の主面40SAに電子部品が実装されていてもよい。 Since the wiring board 40I is a double-sided wiring board in which the wirings 45 and 43 are disposed on the first main surface 40SA and the second main surface 40SB, the design is easy. The wiring board 40I may be a multilayer wiring board as long as it has the conduction hole 48I, or an electronic component may be mounted on the first main surface 40SA.
 配線板40Iの遮光壁49Iは、15個の遮光孔49I1からなる。断面が円形の15個の遮光孔49I1は、中心線上CLにおいて光の遮断率が最大となるように配置されている。 The light shielding wall 49I of the wiring board 40I includes 15 light shielding holes 49I1. The fifteen light shielding holes 49I1 having a circular cross section are arranged so that the light blocking rate is maximized on the center line CL.
 光伝送モジュール1Iは、迷光L1Aは遮光壁49Iにより遮断されるため、光信号の伝送品質が低下するおそれがない。 In the optical transmission module 1I, since the stray light L1A is blocked by the light shielding wall 49I, the transmission quality of the optical signal does not deteriorate.
 そして、光伝送モジュール1Iは、遮光孔49I1が導通孔48Iと同じ構成である。すなわち、遮光孔49I1は導通孔48Iを作製するときに、同時に同じ方法により作製される。 In the optical transmission module 1I, the light blocking hole 49I1 has the same configuration as the conduction hole 48I. That is, the light shielding hole 49I1 is simultaneously manufactured by the same method when the conduction hole 48I is manufactured.
 導通孔48Iの直径は、例えば5μm~50μmと小さいために、1個の同じ大きさの遮光孔49I1では迷光を十分に遮断することは容易ではない。しかし、光伝送モジュール1Iの遮光壁49Iは、複数の遮光孔49I1により構成されているために十分に迷光を遮断できる。さらに、複数の遮光孔49I1は、入射部の中心と出射部の中心とを結ぶ線上CLにおいて光の遮断率が最大となるように配置されているために、より確実に迷光を遮断できる。 Since the diameter of the conduction hole 48I is as small as 5 μm to 50 μm, for example, it is not easy to sufficiently block stray light with one light shielding hole 49I1 having the same size. However, since the light shielding wall 49I of the light transmission module 1I is configured by the plurality of light shielding holes 49I1, stray light can be sufficiently blocked. Further, since the plurality of light blocking holes 49I1 are arranged so that the light blocking rate is maximized on the line CL connecting the center of the incident portion and the center of the emission portion, stray light can be blocked more reliably.
<第2実施形態の変形例>
 次に、図8および図9を用いて、第2実施形態の変形例の光伝送モジュール1J、1Kについて説明する。光伝送モジュール1J、1Kは、光伝送モジュール1Iと類似し同じ効果を有するため、同じ構成要素には同じ符号を付し説明は省略する。
<Modification of Second Embodiment>
Next, optical transmission modules 1J and 1K according to modifications of the second embodiment will be described with reference to FIGS. Since the optical transmission modules 1J and 1K are similar to the optical transmission module 1I and have the same effect, the same components are denoted by the same reference numerals and description thereof is omitted.
<第2実施形態の変形例1>
 第2実施形態の変形例1の光伝送モジュール1Jでは、光信号が双方向伝送される。すなわち、発光素子20が発生する第1の光信号L1の波長λ1と、受光素子30が受光する第2の光信号L2の波長λ2とは異なる。そして、図9に示すように、1本の光ファイバ50は、第1の光信号L1との第2の光信号L2とが合波された第3の光信号を導光する。例えば、第1の波長λ1は、850nmであり、第2の波長λ2は、1300nmである。
<Modification Example 1 of Second Embodiment>
In the optical transmission module 1J of the first modification of the second embodiment, an optical signal is bidirectionally transmitted. That is, the wavelength λ1 of the first optical signal L1 generated by the light emitting element 20 is different from the wavelength λ2 of the second optical signal L2 received by the light receiving element 30. As shown in FIG. 9, the single optical fiber 50 guides the third optical signal obtained by combining the first optical signal L1 and the second optical signal L2. For example, the first wavelength λ1 is 850 nm, and the second wavelength λ2 is 1300 nm.
 光導波路板10Jは、第1の光信号L1との第2の光信号L2とを合波するとともに、分波する機能を有する。側面10SS2から入射した第2の光信号L2は、コア11に形成された第2の反射面14Jによって受光素子30の受光部31に入射する発光素子20が発生した第1の光信号L1は第1の反射面13によってコア11に入射し、第2の反射面14を通過して光ファイバ50に入射する。すなわち、第2の反射面14Jは、第1の光信号L1は透過し第2の光信号L2を反射する、例えば表面に誘電体多層膜が配設されたプリズムからなる。 The optical waveguide plate 10J has a function of multiplexing and demultiplexing the first optical signal L1 and the second optical signal L2. The second optical signal L2 incident from the side surface 10SS2 is the first optical signal L1 generated by the light emitting element 20 incident on the light receiving portion 31 of the light receiving element 30 by the second reflecting surface 14J formed on the core 11. The first reflection surface 13 enters the core 11, passes through the second reflection surface 14, and enters the optical fiber 50. That is, the second reflecting surface 14J is made of a prism that transmits the first optical signal L1 and reflects the second optical signal L2, for example, a prism having a dielectric multilayer film disposed on the surface thereof.
 光伝送モジュール1Jは、1本の光ファイバ50で第1の光信号L1および第2光信号L2を導光するため、導光経路が細径である。 Since the optical transmission module 1J guides the first optical signal L1 and the second optical signal L2 with one optical fiber 50, the light guide path has a small diameter.
<第2実施形態の変形例2>
 図10に示すように、第2実施形態の変形例2の光伝送モジュール1Kでは、配線板40Kには、第1の光信号L1の光路となる第1の貫通孔H48および第2の光信号L2の光路となる第2の貫通孔H49がある。第1の貫通孔H48は、光導波路板10Jの入射部15の直上に形成されている。第2の貫通孔H49は、光導波路板10Jの出射部16の直上に形成されている。
<Modification 2 of the second embodiment>
As shown in FIG. 10, in the optical transmission module 1K according to the second modification of the second embodiment, the wiring board 40K includes the first through hole H48 and the second optical signal that serve as the optical path of the first optical signal L1. There is a second through hole H49 serving as an optical path of L2. The first through hole H48 is formed immediately above the incident portion 15 of the optical waveguide plate 10J. The second through hole H49 is formed immediately above the emitting portion 16 of the optical waveguide plate 10J.
 光伝送モジュール1Kでは、接着層19には貫通孔は形成されていないが、接着層の透光率が低い場合には、接着層19にも光路となる貫通孔が形成されていてもよい。 In the optical transmission module 1K, no through hole is formed in the adhesive layer 19, but when the adhesive layer has a low light transmittance, the adhesive layer 19 may also be formed with a through hole serving as an optical path.
 光伝送モジュール1Kは、光伝送モジュール1Jの効果を有し、さらに配線板40Kに光路となる貫通孔H48、H49が形成されているため、光の減衰が少なく伝送効率がよい。 The optical transmission module 1K has the effect of the optical transmission module 1J, and furthermore, since the through holes H48 and H49 serving as optical paths are formed in the wiring board 40K, light attenuation is small and transmission efficiency is good.
 なお、光伝送モジュール1~1Jにおいても、第1の光信号L1の光路となる第1の貫通孔H48および第2の光信号L2の光路となる第2の貫通孔H49が形成されていれば、光伝送モジュール1Kと同じ効果を有することは言うまでも無い。 In the optical transmission modules 1 to 1J, as long as the first through hole H48 serving as the optical path of the first optical signal L1 and the second through hole H49 serving as the optical path of the second optical signal L2 are formed. Needless to say, the optical transmission module 1K has the same effect.
<第3実施形態>
 次に、第3実施形態の内視鏡9について説明する。
<Third Embodiment>
Next, the endoscope 9 according to the third embodiment will be described.
 図11に示すように、内視鏡9は、光伝送モジュール1が先端部9Aに配設された挿入部9Bと、挿入部9Bの基端側に配設された操作部9Cと、操作部9Cから延出するユニバーサルコード9Dと、信号処理装置(不図示)等と接続されるコネクタ9Eと、を具備する。なお、先端部9Aに配設された光伝送モジュール1から発信され、挿入部9Bを挿通する光ファイバ50(51、52)が導光した第1の光信号L1は、操作部9Cに配設された光伝送モジュール1Xにより電気信号に変換される。また、操作部9Cに配設された光伝送モジュール1Xから発信され、挿入部9Bを挿通する光ファイバ52が導光した第2の光信号L2は、先端部9Aに配設された光伝送モジュール1により電気信号に変換される。 As shown in FIG. 11, the endoscope 9 includes an insertion portion 9B in which the optical transmission module 1 is disposed at the distal end portion 9A, an operation portion 9C disposed on the proximal end side of the insertion portion 9B, and an operation portion. A universal cord 9D extending from 9C and a connector 9E connected to a signal processing device (not shown) and the like are provided. The first optical signal L1 transmitted from the optical transmission module 1 disposed at the distal end portion 9A and guided by the optical fiber 50 (51, 52) inserted through the insertion portion 9B is disposed in the operation portion 9C. It is converted into an electric signal by the optical transmission module 1X. The second optical signal L2 transmitted from the optical transmission module 1X disposed in the operation unit 9C and guided by the optical fiber 52 inserted through the insertion unit 9B is the optical transmission module disposed in the distal end 9A. 1 is converted into an electric signal.
 内視鏡9は、小型の光伝送モジュール1を有するため先端部9Aが細径である。さらに光伝送モジュール1では、迷光L1Aは遮光壁49により遮断されるため、光信号の伝送品質が低下するおそれがない。 Since the endoscope 9 has a small optical transmission module 1, the distal end portion 9A has a small diameter. Further, in the optical transmission module 1, since the stray light L1A is blocked by the light shielding wall 49, there is no possibility that the transmission quality of the optical signal is deteriorated.
 なお、光伝送モジュール1A~1Kを有する内視鏡9は、それぞれの光伝送モジュール1A~1Kの効果を更に有する。 Note that the endoscope 9 having the light transmission modules 1A to 1K further has the effects of the respective light transmission modules 1A to 1K.
 例えば、実施形態の内視鏡は、入射した第1の光信号を導光するととともに、導光した第2の光信号を出射する光導波路板と、前記第1の光信号を発生する発光素子と、前記第2の光信号を受光する受光素子と、第1の主面に前記発光素子および前記受光素子が実装され、前記第1の主面と対向する第2の主面が前記光導波路板における前記第1の光信号が入射するとともに前記第2の光信号が出射する面に配置されており、前記第1の主面と前記第2の主面とを接続する、壁面が導電材料で覆われている導通孔が形成されている、光透過性材料からなる配線板と、を具備する光伝送モジュールと、前記第1の光信号に変換される撮像信号を発生するとともに、前記第2の光信号から変換された駆動信号に応じて動作する撮像素子と、を挿入部の先端部に有する内視鏡であって、前記配線板の前記第1の光信号が入射する入射部と前記第2の光信号が出射する出射部との間に、前記配線板の内部を導光される光を遮断する遮光壁が形成されており、前記遮光壁を構成している遮光孔が、前記導通孔と同じ構成である。 For example, an endoscope according to an embodiment guides an incident first optical signal, emits a guided second optical signal, and a light emitting element that generates the first optical signal. A light receiving element that receives the second optical signal, the light emitting element and the light receiving element are mounted on a first main surface, and a second main surface facing the first main surface is the optical waveguide. A wall surface is disposed on a surface of the plate on which the first optical signal is incident and the second optical signal is emitted, and the wall surface connecting the first main surface and the second main surface is a conductive material. An optical transmission module comprising a wiring board made of a light-transmitting material and having a conduction hole covered with an optical signal; and generating an imaging signal converted into the first optical signal; and An image sensor that operates in accordance with a drive signal converted from the optical signal 2 of FIG. An endoscope provided at a distal end of the wiring board, wherein the interior of the wiring board is disposed between an incident part of the wiring board on which the first optical signal is incident and an emitting part from which the second optical signal is emitted. The light shielding wall which blocks the light guided is formed, and the light shielding hole constituting the light shielding wall has the same configuration as the conduction hole.
 本発明は、上述した実施形態および変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。 The present invention is not limited to the above-described embodiments and modifications, and various modifications, combinations, and applications are possible without departing from the spirit of the invention.
1、1A~1K・・・光伝送モジュール
9・・・内視鏡
10・・・光導波路板
11・・・コア
12・・・クラッド
13・・・第1の反射面
14・・・第2の反射面
20・・・発光素子
21・・・発光部
22・・・接続端子
30・・・受光素子
31・・・受光部
32・・・接続端子
40・・・配線板
40SA・・・第1の主面
40SB・・・第2の主面
42・・・入射部
44・・・出射部
48I・・・導通孔
49、49A~49I・・・遮光壁
50、51、52・・・光ファイバ
L1・・・第1の光信号
L1A・・・迷光
L2・・・第2の光信号
DESCRIPTION OF SYMBOLS 1, 1A-1K ... Optical transmission module 9 ... Endoscope 10 ... Optical waveguide board 11 ... Core 12 ... Cladding 13 ... First reflective surface 14 ... Second Reflective surface 20 ... light emitting element 21 ... light emitting part 22 ... connecting terminal 30 ... light receiving element 31 ... light receiving part 32 ... connecting terminal 40 ... wiring board 40SA ... first First main surface 40SB ... second main surface 42 ... incident part 44 ... outgoing part 48I ... conduction holes 49, 49A to 49I ... light shielding walls 50, 51, 52 ... light Fiber L1 ... First optical signal L1A ... Stray light L2 ... Second optical signal

Claims (9)

  1.  入射した第1の光信号を導光するととともに、導光した第2の光信号を出射する光導波路板と、
     前記第1の光信号を発生する発光素子と、
     前記第2の光信号を受光する受光素子と、
     第1の主面に前記発光素子および前記受光素子が実装され、前記第1の主面と対向する第2の主面が前記光導波路板における前記第1の光信号が入射するとともに前記第2の光信号が出射する面に配置されており、前記第1の主面と前記第2の主面とを接続する、壁面が導電材料で覆われている導通孔が形成されている、光透過性材料からなる配線板と、を具備する光伝送モジュールと、
     前記第1の光信号に変換される撮像信号を発生するとともに、前記第2の光信号から変換された駆動信号に応じて動作する撮像素子と、を挿入部の先端部に有する内視鏡であって、
     前記配線板の前記第1の光信号が入射する入射部と前記第2の光信号が出射する出射部との間に、前記配線板の内部を導光される光を遮断する遮光壁が形成されており、
     前記遮光壁を構成している遮光孔が、前記導通孔と同じ構成であることを特徴とする内視鏡。
    An optical waveguide plate for guiding the incident first optical signal and emitting the guided second optical signal;
    A light emitting element for generating the first optical signal;
    A light receiving element for receiving the second optical signal;
    The light emitting element and the light receiving element are mounted on a first main surface, and the second main surface opposite to the first main surface is incident on the second optical surface while the first optical signal is incident on the optical waveguide plate. Is disposed on the surface from which the optical signal is emitted, and is connected to the first main surface and the second main surface, and is formed with a conduction hole whose wall surface is covered with a conductive material. An optical transmission module comprising a wiring board made of a conductive material;
    An endoscope that generates an imaging signal converted into the first optical signal and has an imaging element that operates in accordance with a drive signal converted from the second optical signal at a distal end portion of the insertion portion. There,
    A light shielding wall that blocks light guided through the inside of the wiring board is formed between the incident part where the first optical signal is incident on the wiring board and the emission part from which the second optical signal is emitted. Has been
    The endoscope characterized in that a light shielding hole constituting the light shielding wall has the same configuration as the conduction hole.
  2.  入射した第1の光信号を導光するととともに、導光した第2の光信号を出射する光導波路板と、
     前記第1の光信号を発生する発光素子と、
     前記第2の光信号を受光する受光素子と、
     第1の主面に前記発光素子および前記受光素子が実装され、前記第1の主面と対向する第2の主面が前記光導波路板における前記第1の光信号が入射するとともに前記第2の光信号が出射する面に配置されている、光透過性材料からなる配線板と、を具備する光伝送モジュールであって、
     前記配線板の前記第1の光信号が入射する入射部と前記第2の光信号が出射する出射部との間に、前記配線板の内部を導光される光を遮断する遮光壁が形成されていることを特徴とする光伝送モジュール。
    An optical waveguide plate for guiding the incident first optical signal and emitting the guided second optical signal;
    A light emitting element for generating the first optical signal;
    A light receiving element for receiving the second optical signal;
    The light emitting element and the light receiving element are mounted on a first main surface, and the second main surface opposite to the first main surface is incident on the second optical surface while the first optical signal is incident on the optical waveguide plate. An optical transmission module comprising a wiring board made of a light-transmitting material, disposed on a surface from which the optical signal is emitted,
    A light shielding wall that blocks light guided through the inside of the wiring board is formed between the incident part where the first optical signal is incident on the wiring board and the emission part from which the second optical signal is emitted. An optical transmission module characterized in that
  3.  前記遮光壁は遮光材料で覆われていることを特徴とする請求項2に記載の光伝送モジュール。 The light transmission module according to claim 2, wherein the light shielding wall is covered with a light shielding material.
  4.  前記遮光壁で囲まれた内部が光吸収材料で充填されていることを特徴とする請求項2に記載の光伝送モジュール。 3. The optical transmission module according to claim 2, wherein the interior surrounded by the light shielding wall is filled with a light absorbing material.
  5.  前記遮光壁が、複数の遮光孔により構成されていることを特徴とする請求項2から請求項4のいずれか1項に記載の光伝送モジュール。 The optical transmission module according to any one of claims 2 to 4, wherein the light shielding wall includes a plurality of light shielding holes.
  6.  前記複数の遮光孔は、前記入射部の中心と前記出射部の中心とを結ぶ線上において光の遮断率が最大となるように配置されていることを特徴とする請求項5に記載の光伝送モジュール。 6. The optical transmission according to claim 5, wherein the plurality of light blocking holes are arranged so that a light blocking rate is maximized on a line connecting the center of the incident portion and the center of the emission portion. module.
  7.  前記配線板に前記第1の主面と前記第2の主面とを接続する、壁面が導電材料で覆われている導通孔が形成されており、
     前記遮光孔が、前記導通孔と同じ構成であることを特徴とする請求項5または請求項6に記載の光伝送モジュール。
    A conductive hole in which a wall surface is covered with a conductive material is formed to connect the first main surface and the second main surface to the wiring board,
    The optical transmission module according to claim 5, wherein the light shielding hole has the same configuration as the conduction hole.
  8.  前記配線板に、前記第1の光信号の光路となる第1の貫通孔および前記第2の光信号の光路となる第2の貫通孔があることを特徴とする請求項2から請求項7のいずれか1項に記載の光伝送モジュール。 8. The wiring board according to claim 2, wherein the wiring board has a first through-hole serving as an optical path for the first optical signal and a second through-hole serving as an optical path for the second optical signal. The optical transmission module according to any one of the above.
  9.  前記第1の光信号と前記第2の光信号が、異なる同じ波長であり、
     前記光導波路板が、前記第1の光信号と前記第2の光信号とを合波/分波し、
     前記第1の光信号および前記第2の光信号を伝送する1本の光ファイバを更に具備することを特徴とする請求項2から請求項8のいずれか1項に記載の光伝送モジュール。
    The first optical signal and the second optical signal have the same different wavelength;
    The optical waveguide plate multiplexes / demultiplexes the first optical signal and the second optical signal;
    9. The optical transmission module according to claim 2, further comprising a single optical fiber that transmits the first optical signal and the second optical signal. 10.
PCT/JP2015/081310 2015-11-06 2015-11-06 Endoscope and optical transmission module WO2017077638A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017548594A JPWO2017077638A1 (en) 2015-11-06 2015-11-06 Endoscope and light transmission module
PCT/JP2015/081310 WO2017077638A1 (en) 2015-11-06 2015-11-06 Endoscope and optical transmission module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/081310 WO2017077638A1 (en) 2015-11-06 2015-11-06 Endoscope and optical transmission module

Publications (1)

Publication Number Publication Date
WO2017077638A1 true WO2017077638A1 (en) 2017-05-11

Family

ID=58662998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081310 WO2017077638A1 (en) 2015-11-06 2015-11-06 Endoscope and optical transmission module

Country Status (2)

Country Link
JP (1) JPWO2017077638A1 (en)
WO (1) WO2017077638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160001A1 (en) * 2018-02-14 2019-08-22 古河電気工業株式会社 Optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249241A (en) * 2000-03-06 2001-09-14 Hitachi Cable Ltd Waveguide type bi-directional light transmission module
JP2003098369A (en) * 2001-09-21 2003-04-03 Konica Corp Optical transmission substrate, image forming apparatus and optical transmission body for optical transmission substrate
WO2006025523A1 (en) * 2004-09-02 2006-03-09 Nec Corporation Photoelectric composite module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987132B2 (en) * 2005-12-02 2012-07-25 京セラ株式会社 Optical wiring board and optical wiring module
JP5370365B2 (en) * 2008-07-07 2013-12-18 日本電気株式会社 Optical wiring structure
JP5704878B2 (en) * 2010-09-30 2015-04-22 オリンパス株式会社 Photoelectric conversion connector, optical transmission module, imaging device, and endoscope
JP5568044B2 (en) * 2011-03-29 2014-08-06 株式会社日立製作所 Optical interconnect module and opto-electric hybrid board
JP2013228467A (en) * 2012-04-24 2013-11-07 Nippon Mektron Ltd Opto-electric hybrid flexible print circuit board and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249241A (en) * 2000-03-06 2001-09-14 Hitachi Cable Ltd Waveguide type bi-directional light transmission module
JP2003098369A (en) * 2001-09-21 2003-04-03 Konica Corp Optical transmission substrate, image forming apparatus and optical transmission body for optical transmission substrate
WO2006025523A1 (en) * 2004-09-02 2006-03-09 Nec Corporation Photoelectric composite module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160001A1 (en) * 2018-02-14 2019-08-22 古河電気工業株式会社 Optical module
JPWO2019160001A1 (en) * 2018-02-14 2021-02-04 古河電気工業株式会社 Optical module
US11283234B2 (en) 2018-02-14 2022-03-22 Furukawa Electric Co., Ltd. Optical module
JP7307045B2 (en) 2018-02-14 2023-07-11 古河電気工業株式会社 optical module

Also Published As

Publication number Publication date
JPWO2017077638A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4759423B2 (en) Optical transmission system
JP5790769B2 (en) Optical module
US9207412B2 (en) Optical transmission module and endoscope
KR100484998B1 (en) Bidirectional optical transmission device
KR20100066464A (en) System and methods for routing optical signals
US20170090121A1 (en) Wavelength division multiplexing and demultiplexing transistor outline (to)-can assemblies for use in optical communications, and methods
US10321815B2 (en) Image pickup module and endoscope
US20190000307A1 (en) Optical transmitter and endoscope
JP2009151106A (en) Single-core bidirectional optical device
JP2016503516A (en) Method and apparatus for high speed short range optical communication using micro light emitting diodes
JP2020513591A (en) Optical cable and optical cable assembly including the same
WO2017077638A1 (en) Endoscope and optical transmission module
US20180011263A1 (en) Optical transmission module and endoscope
TWM457971U (en) Photoelectronic coversion system
JP2009069501A (en) Optoelectronic circuit board and optical transmission device
JP2018194648A (en) Optical transmitter and optical receiver
JP6551808B2 (en) Endoscope, light transmission module, and method of manufacturing light transmission module
JP2011053302A (en) Optical path-converting optical block with lens, and optical transceiver and optical active cable using the same
JP2005091460A (en) Bidirectional optical module, optical transmitter and receiver and optical transmission system
WO2019077643A1 (en) Endoscope and endoscope system
JP2016102834A (en) Optical assembly and optical module
WO2016162943A1 (en) Photoelectric circuit substrate
KR100398045B1 (en) Module for transmitting and receiving an optic signal
US20210382250A1 (en) Manufacturing method for image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
JP2017181665A (en) Connectored optical waveguide, connector, optical waveguide, optical/electrical hybrid substrate, optical module, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907824

Country of ref document: EP

Kind code of ref document: A1