WO2017076191A1 - 光伏板的工作状态检测方法、装置和系统及光伏电器系统 - Google Patents

光伏板的工作状态检测方法、装置和系统及光伏电器系统 Download PDF

Info

Publication number
WO2017076191A1
WO2017076191A1 PCT/CN2016/103202 CN2016103202W WO2017076191A1 WO 2017076191 A1 WO2017076191 A1 WO 2017076191A1 CN 2016103202 W CN2016103202 W CN 2016103202W WO 2017076191 A1 WO2017076191 A1 WO 2017076191A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic panel
photovoltaic
bus
control device
state parameter
Prior art date
Application number
PCT/CN2016/103202
Other languages
English (en)
French (fr)
Inventor
倪卫涛
冯重阳
张雪芬
蒋世用
王京
宋江喜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to AU2016351094A priority Critical patent/AU2016351094B2/en
Priority to ES16861459T priority patent/ES2822978T3/es
Priority to NZ741909A priority patent/NZ741909A/en
Priority to CA3002708A priority patent/CA3002708C/en
Priority to US15/772,411 priority patent/US20180287557A1/en
Priority to EP16861459.2A priority patent/EP3373266B1/en
Publication of WO2017076191A1 publication Critical patent/WO2017076191A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device and system for detecting a working state of a photovoltaic panel and a photovoltaic electrical system.
  • control device and the photovoltaic device do not have direct communication, or another bus is set up for communication.
  • the upper computer cannot know the specific working state of the photovoltaic panel in the photovoltaic device, and when the bus is additionally installed, the cost and structure of the photovoltaic central air conditioning system are affected.
  • the control equipment of the photovoltaic air conditioning system does not directly communicate with the photovoltaic panel
  • the upper computer of the photovoltaic air conditioning system cannot know the specific working state of the photovoltaic panel, and when the bus is additionally installed, the cost and structure of the photovoltaic central air conditioning system are affected.
  • the main object of the present invention is to provide a method, a device and a system for detecting the working state of a photovoltaic panel and a photovoltaic electrical system, so as to solve the problem that the communication bus between the photovoltaic device and the control device is too long and the communication quality is degraded.
  • a method of detecting an operating state of a photovoltaic panel is provided.
  • the photovoltaic panel is arranged in a photovoltaic electrical system, the photovoltaic electrical system comprises a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, the control device comprises a demodulator, and the photovoltaic device and the control device are connected by a DC bus,
  • the photovoltaic panel Working condition detection method includes: detecting photovoltaic panel Working state, obtaining the state parameter of the photovoltaic panel; modulating the state parameter of the photovoltaic panel by the modulator, obtaining a modulated signal, and loading the modulated signal to the DC bus; and transmitting the modulated signal to the demodulator through the DC bus, wherein
  • the demodulator is configured to perform demodulation on the modulated signal to obtain a state parameter of the photovoltaic panel.
  • the working state detecting method of the photovoltaic panel further comprises: detecting an output voltage of the DC bus; and determining whether the state parameter of the photovoltaic panel is successful according to the output voltage of the DC bus
  • the result is transmitted to the control device, and the judgment result is obtained, and the judgment result is transmitted to the upper computer, wherein the upper computer is used to perform monitoring on the state of the photovoltaic panel according to the judgment result.
  • the communication period between the photovoltaic device and the control device is a preset period
  • the control device includes a host computer
  • the preset period includes an adjacent first time period, a second time period, and a third time period
  • detecting the output voltage of the DC bus includes: detecting the output voltage of the DC bus in the first time period to obtain the first voltage value; and in the third
  • the time period detects the output voltage of the DC bus to obtain a second voltage value
  • determining whether the state parameter of the photovoltaic panel is successfully transmitted to the control device according to the output voltage of the DC bus includes: determining whether the difference between the first voltage value and the second voltage value is greater than a preset threshold; if the difference between the first voltage value and the second voltage value is greater than a preset threshold, determining that the state parameter of the photovoltaic panel is not successfully transmitted to the control device; and if the difference between the first voltage
  • detecting the status parameter of the photovoltaic panel includes detecting any one or more of the following state parameters of the photovoltaic panel: a voltage state parameter of the photovoltaic panel; a positional state parameter of the photovoltaic panel; and a temperature state parameter of the photovoltaic panel.
  • control is performed on the state of the photovoltaic panel according to the state parameters of the photovoltaic panel.
  • the photovoltaic electrical system is a photovoltaic air conditioning system.
  • an operating state detecting device for a photovoltaic panel is also provided.
  • the photovoltaic panel is arranged in a photovoltaic electrical system, the photovoltaic electrical system comprises a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, the control device comprises a demodulator, and the photovoltaic device and the control device are connected by a DC bus, the photovoltaic panel
  • the working state detecting device comprises: a first detecting a unit for detecting a working state of the photovoltaic panel to obtain a state parameter of the photovoltaic panel; a modulating unit configured to perform modulation on a state parameter of the photovoltaic panel by the modulator, obtain a modulated signal, and load the modulated signal to the DC bus; and transmit And a unit for transmitting the modulated signal to the demodulator through the DC bus, wherein the demodulator is configured to perform demodulation
  • the apparatus further includes: a second detecting unit that detects an output voltage of the DC bus after transmitting the modulated signal to the demodulator through the DC bus; and a determining unit configured to determine a state of the photovoltaic panel according to an output voltage of the DC bus Whether the parameter is successfully transmitted to the control device, the judgment result is obtained, and the judgment result is transmitted to the upper computer, wherein the upper computer is used to perform monitoring on the state of the photovoltaic panel according to the judgment result.
  • an operating state detecting system for a photovoltaic panel is also provided.
  • the photovoltaic panel is arranged in a photovoltaic electrical system, the photovoltaic electrical system comprises a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, the control device comprises a demodulator, and the photovoltaic device and the control device are connected by a DC bus, wherein the photovoltaic device It is used for detecting the working state of the photovoltaic panel, obtaining the state parameter of the photovoltaic panel, performing modulation on the state parameter of the photovoltaic panel through the modulator, obtaining a modulated signal, and loading the modulated signal to the DC bus; the control device is used for detecting the DC bus output.
  • the signal is modulated, and the modulated signal is demodulated by a demodulator to obtain a state parameter of the photovoltaic panel.
  • the photovoltaic device further includes: a first sensor for detecting an operating state of the photovoltaic panel to obtain a state parameter of the photovoltaic panel; and a first controller for receiving a state parameter of the photovoltaic panel and according to a state of the photovoltaic panel The parameters perform control on the photovoltaic panel.
  • the first sensor comprises any one or more of the following: a voltage sensor for detecting a voltage state parameter of the photovoltaic panel; a position sensor for detecting a position state parameter of the photovoltaic panel, the first controller being used for the photovoltaic panel The position signal adjusts the position of the photovoltaic panel; and a temperature sensor for detecting the temperature state parameter of the photovoltaic panel.
  • control device further includes: a second sensor, configured to detect an output signal of the DC bus; and a second controller, configured to determine, according to the output signal of the DC bus, whether the state parameter of the photovoltaic panel is successfully transmitted to the control device, and obtain a determination result.
  • the upper computer is configured to receive the judgment result, and perform monitoring on the state of the photovoltaic panel according to the judgment result.
  • the second sensor is a voltage sensor for detecting an output voltage of the DC bus.
  • the communication cycle between the photovoltaic device and the control device is a preset period
  • the preset period packet is Include adjacent first time period, second time period and third time period, wherein the modulation signal is loaded to the DC bus in the second time period, or demodulation is performed on the modulated signal, and the voltage sensor is used in the first
  • the time period detects the output voltage of the DC bus to obtain a first voltage value
  • the second controller determines the difference between the first voltage value and the second voltage value.
  • the value is greater than a preset threshold; if the difference between the first voltage value and the second voltage value is greater than a preset threshold, determining that the state parameter of the photovoltaic panel is not successfully transmitted to the control device; if the first voltage value and the second voltage value are If the difference is less than or equal to the preset threshold, it is determined that the state parameter of the photovoltaic panel is successfully transmitted to the control device.
  • a photovoltaic electrical system includes the working state detecting device of the photovoltaic panel provided by the present invention, or the working state detecting system of the photovoltaic panel provided by the present invention.
  • the photovoltaic electrical system is a photovoltaic air conditioning system.
  • the photovoltaic panel is disposed in a photovoltaic electrical system
  • the photovoltaic electrical system includes a photovoltaic device and a control device
  • the photovoltaic device includes a photovoltaic panel and a modulator
  • the control device includes a demodulator
  • the photovoltaic device and the control device are connected by a DC bus.
  • the regulator By detecting the working state of the photovoltaic panel, obtaining the state parameter of the photovoltaic panel; performing modulation on the state parameter of the photovoltaic panel by the modulator, obtaining a modulated signal, and loading the modulated signal to the DC bus; transmitting the modulated signal to the solution through the DC bus
  • the regulator obtains the state parameters of the photovoltaic panel, and solves the problem that the communication bus between the photovoltaic device and the control device is too long, resulting in a decrease in communication quality, thereby achieving the effect of improving the communication quality between the photovoltaic device and the control device.
  • FIG. 1 is a schematic view of a working state detecting system of a photovoltaic panel according to a first embodiment of the present invention
  • FIG. 2 is a schematic view of a working state detecting system of a photovoltaic panel according to a second embodiment of the present invention
  • FIG. 3 is a flow chart of a method for detecting an operating state of a photovoltaic panel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing voltage changes of an unloaded wave of a DC bus according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of voltage variations of a DC bus added to a carrier according to an embodiment of the present invention.
  • Figure 6 is a schematic illustration of an operational state detecting device for a photovoltaic panel in accordance with an embodiment of the present invention.
  • the invention provides a working state detecting system for a photovoltaic panel.
  • FIG. 1 is a schematic view of a working state detecting system of a photovoltaic panel according to a first embodiment of the present invention.
  • the working state detecting system of the photovoltaic panel comprises: a photovoltaic device 10 and a control device 20.
  • the photovoltaic panel is disposed in a photovoltaic electrical system comprising a photovoltaic device 10 and a control device 20, the photovoltaic device comprising a photovoltaic panel and a modulator, the control device comprising a demodulator, the photovoltaic device 10 and the control device 20 passing through a DC bus Connected.
  • the communication between the photovoltaic device 10 and the control device 20 is preferably a transmission of the state parameters of the photovoltaic panels of the photovoltaic device to the control device 20.
  • the photovoltaic device 10 is configured to detect the working state of the photovoltaic panel, obtain the state parameter of the photovoltaic panel, perform modulation on the state parameter of the photovoltaic panel through the modulator, obtain a modulated signal, and load the modulated signal to the DC bus.
  • the working state detecting system of the photovoltaic panel comprises a photovoltaic electrical system
  • the photovoltaic electrical system comprises a photovoltaic device 10.
  • photovoltaic device 10 includes a photovoltaic panel and a modulator.
  • Photovoltaic panels that is, solar panels, are a kind of power generating device that generates direct current when exposed to sunlight. Almost all of them are composed of thin solid-state photovoltaic cells made of semiconductor materials, and the light is generated by the photovoltaic effect of the semiconductor interface. Straight The connection is converted to electrical energy to control the load, or sent to the battery for storage.
  • the photovoltaic panel has no moving parts, so the photovoltaic panel can be used reliably and stably for a long time, and has long life and easy installation and maintenance.
  • the photovoltaic panels are arranged in the photovoltaic electrical system.
  • the photovoltaic panels are arranged in the photovoltaic air conditioning system, and the photovoltaic panels use the light energy to provide long-lasting electrical energy for the photovoltaic air conditioning system, so that the photovoltaic air conditioning system operates reliably, stably and permanently.
  • the photovoltaic device 10 also includes a first sensor and a first controller.
  • the photovoltaic device 10 detects the state parameter of the photovoltaic panel through the first sensor, for example, detecting the voltage state parameter, the temperature state parameter and the position state parameter of the photovoltaic panel during operation by the first sensor.
  • the first sensor comprises a voltage sensor, a temperature sensor and a position sensor.
  • the photovoltaic device 10 detects the voltage state parameter of the photovoltaic panel through the voltage sensor, detects the temperature state parameter of the photovoltaic panel through the temperature sensor, and detects the position state parameter of the photovoltaic panel through the position sensor.
  • the photovoltaic device 10 After the photovoltaic device 10 detects the state parameter of the photovoltaic panel through the first sensor, the photovoltaic device 10 receives the state parameter of the photovoltaic panel through the first controller, and performs control on the photovoltaic panel according to the state parameter of the photovoltaic panel, for example, the photovoltaic device 10 passes
  • the position state parameter received by the first controller controls the position of the photovoltaic panel according to the position state parameter of the photovoltaic panel, so that the photovoltaic panel receives effective light energy in an effective area, thereby converting effective light energy into photovoltaic power supply.
  • the system is powered by electricity to support the normal operation of the photovoltaic power system.
  • the photovoltaic device 10 After the photovoltaic device 10 receives the state parameter of the photovoltaic panel through the first controller, the photovoltaic device 10 performs modulation on the state parameter of the photovoltaic panel through the modulator to obtain a modulated signal, and loads the modulated signal to the DC bus, and the modulated signal carries the photovoltaic panel.
  • the status parameter in particular, the photovoltaic device 10 also loads the status parameters of the photovoltaic panel onto the DC bus and transmits it to the control device via the DC bus.
  • the DC bus is a total wire that converts alternating current into direct current and is used to transport electrical energy. It can transmit large currents, thereby improving the power efficiency of the photovoltaic electrical system and the safety and reliability of the operation of the photovoltaic electrical system.
  • the control device 20 is configured to detect a modulated signal output by the DC bus, and perform demodulation on the modulated signal by the demodulator to obtain a state parameter of the photovoltaic panel.
  • the working state detecting system of the photovoltaic panel includes a photovoltaic electrical system, and the photovoltaic electrical system includes a control device 20.
  • the control device 20 includes a second sensor, a second controller, and a host computer. Specifically, the control device 20 detects the output signal of the DC bus through the second sensor.
  • the second sensor is a voltage sensor, and the control device 20 detects the output voltage of the DC bus through the voltage sensor.
  • the control device 20 performs demodulation on the modulated signal from the DC bus through the demodulator to obtain the state parameters of the photovoltaic panel.
  • the status parameters of the photovoltaic panel include the voltage state parameters of the photovoltaic panel, the temperature state parameters of the photovoltaic panel and the photovoltaic
  • the positional parameter of the board, etc., the demodulator can be a decoding chip, performing demodulation on the modulated signal from the DC bus, obtaining a demodulated signal, and extracting state parameters of the photovoltaic panel from the demodulated signal, thereby enabling photovoltaic in the photovoltaic device
  • the state parameters of the board are transmitted to the control device, enabling direct communication between the photovoltaic device and the control device.
  • the control device 20 After the control device 20 performs demodulation on the modulated signal from the DC bus through the demodulator to obtain the state parameter of the photovoltaic panel, the control device 20 determines whether the state parameter of the photovoltaic panel is successfully transmitted according to the output signal of the DC bus through the second controller. To the control device 20, the judgment result is obtained.
  • the communication period between the photovoltaic device 10 and the control device 20 is a preset period, and the preset period includes an adjacent first time period, a second time period, and a third time period.
  • the output voltage of the busbar obtains a second voltage value which is the output voltage of the DC bus obtained after the modulation signal is applied to the DC bus in the second time period or after the demodulation is performed on the modulated signal.
  • the transmission to the control device 20, that is, the communication information of the photovoltaic device 10 and the control device 20 is successfully transmitted.
  • the control device 20 After determining, by the second controller, whether the state parameter of the photovoltaic panel is successfully transmitted to the control device 20 according to the output signal of the DC bus, the control device 20 uploads the determination result to the upper computer through the second controller, that is, the upper computer receives the photovoltaic
  • the upper computer receives the photovoltaic
  • the state parameter of the board is not successfully transmitted to the judgment result of the control device 20, or the state parameter of the photovoltaic panel is successfully transmitted to the judgment result of the control device 20, and the host computer also receives the information collected by the second sensor and the information collected by the demodulator. And further display it.
  • the upper computer performs monitoring on the working state of the photovoltaic panel according to the judgment result.
  • the upper computer When the upper computer receives the determination result that the state parameter of the photovoltaic panel is not successfully transmitted to the control device 20, the upper computer displays that the state parameter of the photovoltaic panel is not successfully transmitted to the control device 20
  • the information is controlled to control the photovoltaic device 10 to re-detect the state parameters of the photovoltaic panel, obtain the state parameters of the photovoltaic panel, perform modulation on the state parameters of the photovoltaic panel through the modulator, obtain a modulated signal, and load the modulated signal to the DC bus through the DC bus. Transmitting the modulated signal to Demodulator.
  • the upper computer When the upper computer receives the determination result that the state parameter of the photovoltaic panel is successfully transmitted to the control device 20, the upper computer displays the information that the state parameter of the photovoltaic panel is successfully transmitted to the control device 20, and optionally, the upper computer displays the information collected by the second sensor. And the information collected by the demodulator, and real-time monitoring of the working state of the photovoltaic panel, so that the manager can know in real time whether the state parameter of the photovoltaic panel is within the normal state parameter range, so that the manager can work abnormally in the photovoltaic electrical system. At that time, it is controlled in time, thus avoiding the failure of the photovoltaic electrical system, and preventing the further deterioration of the fault, and better maintaining the photovoltaic electrical system.
  • the upper computer can further control the working state of the photovoltaic panel according to the state parameters of the photovoltaic panel, so that the photovoltaic panel outputs normal state parameters, and improves the monitorability of the photovoltaic panel, thereby making the photovoltaic panel work safely, stably and reliably.
  • the photovoltaic panel is disposed in the photovoltaic electrical system, the photovoltaic electrical system includes a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, and the control device comprises a demodulator, a photovoltaic device and a control device.
  • the device is connected through the DC bus, the working state of the photovoltaic panel is detected by the photovoltaic device, the state parameter of the photovoltaic panel is obtained, the state parameter of the photovoltaic panel is modulated by the modulator, the modulated signal is obtained, and the modulated signal is loaded to the DC bus through
  • the control device detects the modulated signal outputted by the DC bus, performs demodulation on the modulated signal through the demodulator, and obtains the state parameter of the photovoltaic panel, thereby realizing the transmission of the state parameter of the photovoltaic panel of the photovoltaic device to the control device, and improving the photovoltaic device and Control the quality of communication between devices.
  • the working state detecting system of the photovoltaic panel comprises: a photovoltaic panel 30, a first sensor 40, a first controller 50, a modulation chip 60, a second sensor 70, a decoding chip 80, and a second controller 90.
  • the upper computer 100 and the inverter 110 are schematic views of a working state detecting system of a photovoltaic panel according to a second embodiment of the present invention.
  • the working state detecting system of the photovoltaic panel comprises: a photovoltaic panel 30, a first sensor 40, a first controller 50, a modulation chip 60, a second sensor 70, a decoding chip 80, and a second controller 90.
  • the upper computer 100 and the inverter 110 is the working state detecting system of the photovoltaic panel 30, a first sensor 40, a first controller 50, a modulation chip 60, a second sensor 70, a decoding chip 80, and a second controller 90.
  • Photovoltaic electrical systems include photovoltaic equipment.
  • the photovoltaic device includes a photovoltaic panel 30, a first sensor 40, a first controller 50 and a modulation chip 60.
  • the photovoltaic panel 30, that is, the solar panel, is disposed in the photovoltaic electrical system.
  • Photovoltaic electrical systems work when photovoltaic panels use the photovoltaic effect to convert light energy directly into electrical energy.
  • the photovoltaic panel 30 has no moving parts, so the photovoltaic panel 30 can be used reliably and stably for a long time, and has a long life and is easy to install and maintain.
  • the photovoltaic panel 30 is disposed in a photovoltaic air conditioning system, and the photovoltaic panel 30 utilizes light energy to provide long-lasting electrical energy to the photovoltaic air conditioning system, and output state parameters, such as voltage state parameters, temperature state parameters, and position state parameters, etc., to enable the photovoltaic air conditioning system. Reliable, stable and long-lasting operation.
  • the first sensor 40 is connected to the photovoltaic panel 30 for detecting the state parameter of the photovoltaic panel 30.
  • the first sensor comprises a voltage sensor, a temperature sensor and a position sensor.
  • the voltage state parameter of the photovoltaic panel 30 during operation is detected by the first sensor
  • the temperature state parameter of the photovoltaic panel 30 is detected by the temperature sensor
  • the position state parameter of the photovoltaic panel 30 is detected by the position sensor.
  • the first controller 50 is connected to the first sensor 40 for receiving the state parameter of the photovoltaic panel 30 and performing control on the photovoltaic panel according to the state parameter of the photovoltaic panel 30.
  • the first controller 50 receives the photovoltaic panel 30.
  • Voltage status parameters, temperature status parameters, and position status parameters receives the photovoltaic panel 30.
  • the first controller 50 performs control on the position of the photovoltaic panel according to the position state parameter of the photovoltaic panel 30, thereby adjusting the photovoltaic panel 30 to the optimal position state, and converting the effective light energy into the effective energy of the photovoltaic power supply system.
  • the modulation chip 60 the input end of the modulation chip 60 is connected to the first controller 50, and the output end of the modulation chip is connected to the DC bus for performing modulation on the state parameter of the photovoltaic panel 30, obtaining a modulated signal, and modulating the signal Loading to the DC bus, specifically, the modulation chip 60 loads the state parameters of the photovoltaic panel 30 onto the DC bus, for example, loading the voltage state parameter, the temperature state parameter, the position state parameter of the photovoltaic panel onto the DC bus, and passing The DC bus is transmitted to the control device, thereby improving the power efficiency of the photovoltaic electrical system and the safety and reliability of the operation of the photovoltaic electrical system.
  • the photovoltaic electrical system includes a control device, and the demodulator is mounted on the control device for detecting a modulated signal output by the DC bus, and performing demodulation on the modulated signal to obtain a state parameter of the photovoltaic panel.
  • the control device includes a second sensor 70, a decoding chip 80, a second controller 90, and a host computer 100.
  • the second sensor 70 is connected to the DC bus for detecting the output signal of the DC bus.
  • the second sensor is a voltage sensor
  • the control device detects the output voltage of the DC bus through the voltage sensor.
  • the communication period between the photovoltaic device and the control device is a preset period, and the preset period includes an adjacent first time period, a second time period, and a third time period.
  • the modulated signal is applied to the DC bus during the second time period, or demodulation is performed on the modulated signal.
  • the output voltage of the DC bus is detected by the voltage sensor in the first time period to obtain a first voltage value; and the output voltage of the DC bus is detected by the voltage sensor in the third time period to obtain a second voltage value.
  • the decoding chip 80 is connected to the DC bus for performing demodulation on the modulated signal to obtain a demodulated signal, and extracting state parameters of the photovoltaic panel 30 from the demodulated signal, thereby obtaining a voltage state parameter of the photovoltaic panel 30, and a photovoltaic panel. 30 temperature state parameters and positional parameters of the photovoltaic panel 30, etc., to make photovoltaic
  • the state parameters of the photovoltaic panel 30 in the device are transmitted to the control device through the DC bus, enabling direct communication between the photovoltaic device and the control device.
  • the second controller 90 is connected to the second sensor 70 and the decoding chip 80 for determining whether the state parameter of the photovoltaic panel is successfully transmitted to the control device according to the output signal of the DC bus, and obtaining a determination result. Specifically, determining whether the difference between the first voltage value and the second voltage value is greater than a preset threshold; determining that the state parameter of the photovoltaic panel is unsuccessful when the difference between the first voltage value and the second voltage value is greater than a preset threshold And transmitting to the control device, when the difference between the first voltage value and the second voltage value is less than or equal to a preset threshold, determining that the state parameter of the photovoltaic panel is successfully transmitted to the control device.
  • the upper computer 100 is connected to the second controller 90 for receiving the determination result, and performs monitoring on the state of the photovoltaic panel according to the determination result. Specifically, after the second controller 90 determines whether the state parameter of the photovoltaic panel is successfully transmitted to the control device according to the output voltage of the DC bus, monitoring is performed on the working state of the photovoltaic panel 30.
  • the upper computer 100 receives the determination result that the state parameter of the photovoltaic panel 30 is not successfully transmitted to the control device, or the determination result that the state parameter of the photovoltaic panel 30 is successfully transmitted to the control device, and the upper computer 100 also receives the information collected by the second sensor 70 and The information acquired by the demodulator is further displayed.
  • the upper computer 100 performs monitoring on the working state of the photovoltaic panel 30 according to the judgment result.
  • the upper computer 100 receives the determination result that the state parameter of the photovoltaic panel is not successfully transmitted to the control device, the upper computer 100 displays that the state parameter of the photovoltaic panel 30 is not successfully transmitted.
  • the information to the control device 20 when the host computer 100 receives the determination result that the state parameter of the photovoltaic panel is successfully transmitted to the control device, the host computer 100 displays the information that the state parameter of the photovoltaic panel is successfully transmitted to the control device, optionally, the upper computer 100 displays the information collected by the second sensor 70 and the information collected by the decoding chip 80, and performs real-time monitoring on the operating state of the photovoltaic panel 30 to enable the manager to know in real time whether the state parameter of the photovoltaic panel 30 is within the normal state parameter range.
  • the upper computer 100 can further control the working state of the photovoltaic panel according to the state parameter of the photovoltaic panel 30, so that the photovoltaic panel 30 outputs normal state parameters, and improves the monitorability of the photovoltaic panel 30, thereby making the photovoltaic panel 30 safe, stable and reliable. Work.
  • the control device also includes an inverter 110 coupled to the second controller 100 and coupled to the photovoltaic panel 30 via two DC busses.
  • the inverter 110 converts the direct current of the DC bus into alternating current, and receives the information collected by the second controller 90 and collected by the second controller 90.
  • the communication between the photovoltaic device and the control device improves the communication quality between the photovoltaic device and the control device.
  • the working state detecting system of the photovoltaic panel outputs the state parameter of the photovoltaic panel through the photovoltaic panel, detects the state parameter of the photovoltaic panel through the first sensor, receives the state parameter of the photovoltaic panel through the first controller, and adjusts the state parameter of the photovoltaic panel by the modulation chip Performing modulation, obtaining a modulated signal, and loading the modulated signal to the DC bus, detecting the output signal of the DC bus through the second sensor, performing demodulation on the modulated signal by the decoding chip to obtain a state parameter of the photovoltaic panel, and using the second controller according to the DC
  • the output voltage of the busbar determines whether the state parameter of the photovoltaic panel is successfully transmitted to the control device, receives the judgment result through the host computer, performs monitoring on the state of the photovoltaic panel according to the judgment result, and receives the second sensor by the inverter through the second controller.
  • the invention also provides a method for detecting the working state of a photovoltaic panel.
  • the photovoltaic panel-based communication method includes the following steps:
  • Step S301 detecting the working state of the photovoltaic panel, and obtaining the state parameter of the photovoltaic panel.
  • the photovoltaic panel is arranged in a photovoltaic electrical system, the photovoltaic electrical system comprises a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, the control device comprises a demodulator, and the photovoltaic device and the control device are connected by a DC bus.
  • the photovoltaic electrical system may be an electrical system in which a photovoltaic panel is provided for a photovoltaic air conditioning system, a solar water heater, or the like.
  • Photovoltaic panels that is, solar panels, use photovoltaic energy to provide long-lasting electrical energy to photovoltaic electrical systems, enabling photovoltaic electrical systems to operate reliably, consistently, and permanently.
  • the photovoltaic electrical system includes a photovoltaic device, the photovoltaic device includes a photovoltaic panel and a modulator, and the modulator modulates the state parameter of the photovoltaic panel by modulating the chip.
  • the state parameters of the photovoltaic panel are detected, for example, detecting a voltage state parameter of the photovoltaic panel during operation, a temperature state parameter of the photovoltaic panel, and a position state parameter of the photovoltaic panel.
  • the modulator detects a voltage state parameter of the photovoltaic panel by using a voltage sensor, detects a temperature state parameter of the photovoltaic panel by the temperature sensor, and detects a position state of the photovoltaic panel by the position sensor. parameter.
  • Step S302 performing modulation on a state parameter of the photovoltaic panel by the modulator to obtain a modulated signal, and loading the modulated signal to the DC bus.
  • the photovoltaic device After detecting the state parameters of the photovoltaic panel, the state parameters of the photovoltaic panel are received, and the photovoltaic panel is controlled according to the state parameters of the photovoltaic panel.
  • the photovoltaic device includes a first controller, and receives a voltage state parameter, a temperature state parameter, and a position state parameter of the photovoltaic panel through the first controller, and can perform control on the position of the photovoltaic panel according to the position state parameter of the photovoltaic panel, thereby adjusting the photovoltaic
  • the position of the board enables the photovoltaic panel to replace the light energy into electrical energy in an effective area, so that the photovoltaic electrical system works normally.
  • the state parameters of the photovoltaic panel are modulated to obtain a modulated signal, that is, the state parameters of the photovoltaic panel are converted into digitally modulated signals suitable for channel transmission, and the modulated signals are loaded to the DC bus.
  • the photovoltaic device performs modulation on the state parameter of the photovoltaic panel through the modulation chip, obtains a modulation signal, and loads the state parameter of the photovoltaic panel onto the DC bus, thereby improving the power efficiency of the photovoltaic electrical system, and the photovoltaic electrical system. Work safety and reliability.
  • Step S303 the modulated signal is transmitted to the demodulator through the DC bus.
  • Carrier a radio wave of a specific frequency, used to convey information.
  • the modulated signal can be loaded onto the carrier signal and the modulated signal transmitted over the carrier. Specifically, the carrier signal is added to the DC bus, and the modulated signal is transmitted to the demodulator through the carrier signal.
  • the demodulator receives the modulated signal according to the frequency of the carrier, performs demodulation on the modulated signal, and obtains a demodulated signal, that is, a solution.
  • the modulator restores the received modulated signal to a digital baseband signal that carries state parameters of the photovoltaic panel, such as voltage state parameters, temperature state parameters, and position state parameters that carry the photovoltaic panel.
  • the control device After transmitting the modulated signal to the demodulator through the DC bus, detecting the output voltage of the DC bus; and determining whether the state parameter of the photovoltaic panel is successfully transmitted to the control device according to the output voltage of the DC bus, obtaining the judgment result, and transmitting the judgment result
  • the upper computer performs monitoring on the status of the photovoltaic panel according to the judgment result.
  • the control device includes a second controller, after transmitting the modulation signal to the demodulator through the DC bus, determining, by the second controller, whether the state parameter of the photovoltaic panel is successfully transmitted to the control device according to the output voltage of the DC bus. Get the judgment result.
  • the host computer receives the judgment result that the state parameter of the photovoltaic panel is not successfully transmitted to the control device, or the judgment result of the state parameter of the photovoltaic panel is successfully transmitted to the control device, and the upper computer also receives the information collected by the second sensor and the information collected by the demodulator. information.
  • the host computer displays the information collected by the second sensor and the information collected by the demodulator, and The working state of the photovoltaic panels is monitored in real time to enable managers to better maintain the photovoltaic electrical system.
  • the upper computer can further control the working state of the photovoltaic panel according to the state parameters of the photovoltaic panel, so that the photovoltaic panel outputs normal state parameters, and improves the monitorability of the photovoltaic panel, thereby making the photovoltaic panel work safely, stably and reliably.
  • FIG. 4 is a schematic diagram of voltage variations of unloaded waves of a DC bus according to an embodiment of the present invention.
  • the output voltage of the photovoltaic panel changes correspondingly with the intensity of the photovoltaic panel being exposed to sunlight.
  • t1, t2 indicate different moments when the photovoltaic panel is exposed to sunlight of different illumination intensities, and ⁇ V indicates the photovoltaic panel.
  • the instability of the output voltage of the photovoltaic panel causes the carrier of the DC bus to have certain difficulties in transmitting the tempered signal.
  • the change in the output voltage of the photovoltaic panel is smooth, and generally no step occurs.
  • the voltage difference ⁇ V can be demodulated by demodulating the modulated signal to obtain a demodulated signal.
  • the communication period between the photovoltaic device and the control device is set to a preset period, and the control device includes a host computer.
  • the preset period includes an adjacent first time period, a second time period, and a third time period.
  • the modulated signal is applied to the DC bus during the second time period, or demodulation is performed on the modulated signal.
  • detecting the output voltage of the DC bus comprises: detecting the output voltage of the DC bus in the first time period to obtain a first voltage value; detecting the output voltage of the DC bus in the third time period to obtain a second voltage value according to the DC bus
  • the output voltage determining whether the state parameter of the photovoltaic panel is successfully transmitted to the control device comprises: determining whether a difference between the first voltage value and the second voltage value is greater than a preset threshold; if the difference between the first voltage value and the second voltage value is greater than The preset threshold determines that the state parameter of the photovoltaic panel is not successfully transmitted to the control device; if the difference between the first voltage value and the second voltage value is less than or equal to the preset threshold, it is determined that the state parameter of the photovoltaic panel is successfully transmitted to the control device.
  • FIG. 5 is a diagram showing voltage variations of a DC bus added to a carrier signal in accordance with an embodiment of the present invention.
  • communication is performed between the photovoltaic device and the control device to complete information transfer between the photovoltaic device and the control device, including the transfer of state parameters of the photovoltaic panel.
  • the communication cycle between the photovoltaic device and the control device is a preset period T. Due to the existence of ⁇ V, all carrier signals are directly added in one communication cycle, which may result in abnormal detection of signals during demodulation.
  • the preset period T is set to be sufficiently small, and the preset period T includes the adjacent first time period ⁇ t1, the second time period ⁇ t2, and the third time period ⁇ t3, and the voltage of the DC bus is detected in the first time period ⁇ t1, First voltage value, that is, at the reference voltage
  • the sampling area ⁇ t1 time period detects the fundamental voltage V1 of the DC power line carrier; the modulation signal is loaded to the DC bus in the second time period ⁇ t2, or the modulation signal is demodulated in the second time period ⁇ t2, that is, in the carrier area
  • the modulation signal is applied to the DC bus during the ⁇ t2 period, or demodulation is performed on the modulated signal; the voltage of the DC bus is detected in the third time period ⁇ t3 to obtain a second voltage value V2, that is, between the photovoltaic device and the control device.
  • the photovoltaic electrical system of this embodiment is a photovoltaic air conditioning system.
  • the photovoltaic air conditioning system includes a photovoltaic device and a control device, the photovoltaic device includes a photovoltaic panel and a modulator, and the control device includes a modulator.
  • the photovoltaic equipment of the photovoltaic air conditioning system and the control equipment of the photovoltaic air conditioning system are connected by a DC bus and perform communication. Detecting the state parameter of the photovoltaic panel, performing modulation on the state parameter of the photovoltaic panel, obtaining a modulated signal, and loading the modulated signal to the DC bus, wherein the modulated signal carries the state parameter of the photovoltaic panel.
  • the modulator of the photovoltaic air conditioning system includes a first sensor, a first controller and a modulation chip.
  • the status parameter of the photovoltaic panel is detected by the first sensor.
  • the first sensor includes a voltage sensor, a position sensor, and a temperature sensor.
  • the voltage sensor is used for detecting the voltage signal state parameter of the photovoltaic panel when the photovoltaic air conditioning system is working
  • the position sensor is used for detecting the position state parameter of the photovoltaic panel when the photovoltaic air conditioning system is working
  • the temperature sensor is used for detecting the photovoltaic panel when the air conditioning system is working. Temperature status parameters, etc.
  • the first controller receives and processes the voltage state parameter, the position state parameter and the temperature state parameter of the photovoltaic panel detected by the first sensor, and adjusts the position of the photovoltaic panel according to the position state parameter of the photovoltaic panel detected by the first sensor. .
  • the modulation chip loads the operating state parameters of the photovoltaic panel and the like onto the DC bus.
  • the modulator of the photovoltaic air conditioning system After the modulator of the photovoltaic air conditioning system performs modulation on the signal of the photovoltaic panel to obtain a modulated signal and loads the modulated signal onto the DC bus, the modulated signal is transmitted to the demodulator through the DC bus, preferably, the demodulator is used for modulation
  • the signal performs demodulation to obtain a demodulated signal.
  • the demodulator includes a second sensor, a second controller, a decoding chip and a host computer. Specifically, loading the modulated signal onto the DC bus After that, the output signal of the DC bus is detected.
  • the second sensor is a voltage sensor, and the output voltage of the DC bus terminal is detected by the voltage sensor; demodulation is performed on the modulated signal, and the modulated signal can be demodulated by the decoding chip to obtain demodulation.
  • the photovoltaic panel is disposed in the photovoltaic electrical system, the photovoltaic electrical system includes a photovoltaic device and a control device, the photovoltaic device includes a photovoltaic panel and a modulator, and the control device includes a demodulator, modulation
  • the device and the control device are connected through a DC bus, and the state parameter of the photovoltaic panel is obtained by detecting the working state of the photovoltaic panel;
  • the modulation state signal is modulated by the modulator to obtain a modulated signal, and the modulated signal is loaded to the DC bus;
  • the invention also provides an operating state detecting device for a photovoltaic panel.
  • FIG. 6 is a schematic illustration of an operational state detecting device for a photovoltaic panel in accordance with an embodiment of the present invention.
  • the working state detecting device of the photovoltaic panel comprises: a detecting unit 120, a modulating unit 130 and a transmitting unit 140.
  • the photovoltaic panel is arranged in a photovoltaic electrical system, the photovoltaic electrical system comprises a photovoltaic device and a control device, the photovoltaic device comprises a photovoltaic panel and a modulator, the control device comprises a demodulator, and the modulator and the control device are connected by a DC bus.
  • the first detecting unit 120 is configured to detect an operating state of the photovoltaic panel to obtain a state parameter of the photovoltaic panel.
  • the modulating unit 130 is configured to perform modulation on a state parameter of the photovoltaic panel by the modulator, obtain a modulated signal, and load the modulated signal to the DC bus.
  • the transmission unit 140 is configured to transmit the modulation signal to the demodulator through the DC bus, wherein the demodulator is configured to perform demodulation on the modulated signal to obtain a state parameter of the photovoltaic panel.
  • the working state detecting device of the photovoltaic panel further includes a second detecting unit and a determining unit.
  • the second detecting unit detects the output voltage of the DC bus after transmitting the modulated signal to the demodulator through the DC bus; and the determining unit is configured to determine whether the state parameter of the photovoltaic panel is successfully transmitted to the control according to the output voltage of the DC bus.
  • the device obtains the judgment result, and transmits the judgment result to the upper computer, wherein the upper computer is used to perform monitoring on the state of the photovoltaic panel according to the judgment result.
  • the communication period between the photovoltaic device and the control device is a preset period
  • the control device includes a host computer
  • the preset period includes an adjacent first time period, a second time period, and a third time period
  • the second detecting unit includes: a first detecting module and a second detecting module.
  • the first detecting module is configured to detect the output voltage of the DC bus in the first time period to obtain a first voltage value
  • the second detecting module is configured to detect the output voltage of the DC bus in the third time period to obtain a second voltage value.
  • the determining unit includes a determining module, a first determining module and a second determining module.
  • the determining module is configured to determine whether the difference between the first voltage value and the second voltage value is greater than a preset threshold; the first determining module is configured to determine that the difference between the first voltage value and the second voltage value is greater than a preset threshold When it is determined that the state parameter of the photovoltaic panel is not successfully transmitted to the control device; the second determining module is configured to determine that the state parameter of the photovoltaic panel is successful when it is determined that the difference between the first voltage value and the second voltage value is less than or equal to a preset threshold Transfer to the control device.
  • the working state detecting device of the photovoltaic panel detects the working state of the photovoltaic panel through the first detecting unit, obtains the state parameter of the photovoltaic panel, performs modulation on the state parameter of the photovoltaic panel by the modulator of the modulating unit, obtains a modulated signal, and modulates
  • the signal is loaded to the DC bus; and the modulation signal is transmitted to the demodulator by the transmission unit under the action of the DC bus, thereby improving the communication quality between the photovoltaic device and the control device.
  • Embodiments of the present invention also provide a photovoltaic electrical system.
  • the photovoltaic electrical system includes the working state detecting device of the photovoltaic panel and the working state detecting system of the photovoltaic panel according to the embodiment of the invention.
  • the communication process between the photovoltaic device of the photovoltaic electrical system and the control device of the photovoltaic electrical system is based on the medium voltage signal, and the communication between the photovoltaic device and the control device is completed by the DC line power carrier method, optionally, the carrier is added through the DC bus.
  • the signal serves as a transmission medium for communication between the photovoltaic device and the control device, thereby realizing data transmission and information exchange between the photovoltaic device and the control device.
  • the information detection and processing of the photovoltaic panel is performed in the photovoltaic device, including detecting and processing the state parameters of the photovoltaic panel, and then detecting the fundamental voltage of the carrier signal on the DC bus, and modulating the state parameters of the photovoltaic panel.
  • the modulation signal is applied to the DC bus
  • the output voltage of the DC bus is detected, and the modulated signal is demodulated by the demodulator to obtain a demodulated signal.
  • the demodulator After obtaining the demodulated signal, detecting the output voltage of the DC bus, determining whether the communication between the photovoltaic device and the control device is normal through the difference between the DC bus and the output voltage before demodulation and after demodulation, thereby realizing the photovoltaic device and
  • the communication between the control devices completes the transmission of the state parameters of the photovoltaic panels of the photovoltaic device to the control device, improves the monitorability of the photovoltaic panel, and reduces the communication bus wiring cost of the photovoltaic device and the control device, and improves the photovoltaic The quality of communication between photovoltaic devices and control devices in electrical systems.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Abstract

一种光伏板(30)的工作状态检测方法、装置和系统及光伏电器系统。光伏板(30)设置在光伏电器系统中,光伏电器系统包括光伏设备(10)和控制设备(20),光伏设备(10)包括光伏板(30)和调制器,控制设备(20)包括解调器,光伏设备(10)和控制设备(20)通过直流母线相连接;该光伏板(30)的工作状态检测方法包括:检测光伏板(30)的工作状态,得到光伏板(30)的状态参数(S301);通过调制器对光伏板(30)的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线(S302);通过直流母线将调制信号传输至解调器(S303),其中,解调器用于对调制信号执行解调,得到光伏板(30)的状态参数。通过该方法,达到了提高光伏设备(10)和控制设备(20)之间的通讯质量的效果。

Description

光伏板的工作状态检测方法、装置和系统及光伏电器系统
本申请要求于2015年11月02日提交中国专利局、申请号为201510741827.2、发明名称为“光伏板的工作状态检测方法、装置和系统及光伏电器系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通讯领域,具体而言,涉及一种光伏板的工作状态检测方法、装置和系统及光伏电器系统。
背景技术
目前,随着全球能源危机的不断加重以及环境问题的不断恶化,各种可再生能源以及绿色能源的发展和应用对社会产业的发展而言,已经变得越来越迫切。因此,节能型产品和环保产品的发展和应用成为市场发展的方向。比如,光伏空调系统,光伏中央空调的技术已发展得较为成熟。
但是,控制设备和光伏设备没有直接通讯,或者是另外架设总线进行通讯。当控制设备和光伏设备没有直接通讯时,上位机无法获知光伏设备中的光伏板的具体工作状态,当另外架设总线进行通讯影响光伏中央空调系统的成本和结构美观。比如,当光伏空调系统的控制设备与光伏板没有直接通讯时,光伏空调系统的上位机无法获知光伏板的具体工作状态,当另外架设总线进行通讯影响光伏中央空调系统的成本和结构美观。
针对相关技术中光伏设备和控制设备之间的通讯总线过长导致通讯质量下降的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种光伏板的工作状态检测方法、装置和系统及光伏电器系统,以解决光伏设备和控制设备之间的通讯总线过长导致通讯质量下降问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光伏板的工作状态检测方法。光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接,该光伏板的工作状态检测方法包括:检测光伏板 的工作状态,得到光伏板的状态参数;通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;以及通过直流母线将调制信号传输至解调器,其中,解调器用于对调制信号执行解调,得到光伏板的状态参数。
进一步地,在通过直流母线将调制信号传输至解调器之后,该光伏板的工作状态检测方法还包括:检测直流母线的输出电压;以及根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,得到判断结果,并将判断结果传输至上位机,其中,上位机用于根据判断结果对光伏板的状态执行监控。
进一步地,光伏设备和控制设备之间的通讯周期为预设周期,控制设备包括上位机,预设周期包括相邻的第一时间段、第二时间段和第三时间段,其中,在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调,检测直流母线的输出电压包括:在第一时间段检测直流母线的输出电压,得到第一电压值;以及在第三时间段检测直流母线的输出电压,得到第二电压值,根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备包括:判断第一电压值和第二电压值的差值是否大于预设阈值;如果第一电压值和第二电压值的差值大于预设阈值,则确定光伏板的状态参数未成功传输至控制设备;以及如果第一电压值和第二电压值的差值小于等于预设阈值,则确定光伏板的状态参数成功传输至控制设备。
进一步地,检测光伏板的状态参数包括检测光伏板的以下任意一个或多个状态参数:光伏板的电压状态参数;光伏板的位置状态参数;以及光伏板的温度状态参数。
进一步地,在检测光伏板的工作状态之后,根据光伏板的状态参数对光伏板的状态执行控制。
进一步地,光伏电器系统为光伏空调系统。
为了实现上述目的,根据本发明的另一方面,还提供了一种光伏板的工作状态检测装置。光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接,该光伏板的工作状态检测装置包括:第一检测 单元,用于检测光伏板的工作状态,得到光伏板的状态参数;调制单元,用于通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;以及传输单元,用于通过直流母线将调制信号传输至解调器,其中,解调器用于对调制信号执行解调,得到光伏板的状态参数。
进一步地,装置还包括:第二检测单元,在通过直流母线将调制信号传输至解调器之后,检测直流母线的输出电压;以及判断单元,用于根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,得到判断结果,并将判断结果传输至上位机,其中,上位机用于根据判断结果对光伏板的状态执行监控。
为了实现上述目的,根据本发明的另一方面,还提供了一种光伏板的工作状态检测系统。光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接,其中,光伏设备用于检测光伏板的工作状态,得到光伏板的状态参数,通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;控制设备用于检测直流母线输出的调制信号,通过解调器对调制信号执行解调,得到光伏板的状态参数。
进一步地,该光伏设备还包括:第一传感器,用于检测光伏板的工作状态,得到光伏板的状态参数;以及第一控制器,用于接收光伏板的状态参数,并根据光伏板的状态参数对光伏板执行控制。
进一步地,第一传感器包括以下任意一个或多个传感器:电压传感器,用于检测光伏板的电压状态参数;位置传感器,用于检测光伏板的位置状态参数,第一控制器用于根据光伏板的位置信号调整光伏板的位置;以及温度传感器,用于检测光伏板的温度状态参数。
进一步地,控制设备还包括:第二传感器,用于检测直流母线的输出信号;第二控制器,用于根据直流母线的输出信号判断光伏板的状态参数是否成功传输至控制设备,得到判断结果;上位机,用于接收判断结果,根据判断结果对光伏板的状态执行监控。
进一步地,第二传感器为电压传感器,用于检测直流母线的输出电压。
进一步地,光伏设备和控制设备之间的通讯周期为预设周期,预设周期包 括相邻的第一时间段、第二时间段和第三时间段,其中,在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调,电压传感器用于在第一时间段检测直流母线的输出电压,得到第一电压值;在第三时间段检测直流母线的输出电压,得到第二电压值,第二控制器用于判断第一电压值和第二电压值的差值是否大于预设阈值;如果第一电压值和第二电压值的差值大于预设阈值,则确定光伏板的状态参数未成功传输至控制设备;如果第一电压值和第二电压值的差值小于等于预设阈值,则确定光伏板的状态参数成功传输至控制设备。
为了实现上述目的,根据本发明的另一方面,还提供了一种光伏电器系统。该光伏电器系统包括本发明提供的光伏板的工作状态检测装置,或本发明提供的光伏板的工作状态检测系统。
进一步地,光伏电器系统为光伏空调系统。
在本发明中,光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接,通过检测光伏板的工作状态,得到光伏板的状态参数;通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;通过直流母线将调制信号传输至解调器,得到光伏板的状态参数,解决了光伏设备和控制设备之间的通讯总线过长导致通讯质量下降的问题,从而达到了提高光伏设备和控制设备之间的通讯质量的效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明第一实施例的光伏板的工作状态检测系统的示意图;
图2是根据本发明第二实施例的光伏板的工作状态检测系统的示意图;
图3是根据本发明实施例的光伏板的工作状态检测方法的流程图;
图4是根据本发明实施例的直流母线未加载波的电压变化的示意图;
图5是根据本发明实施例的直流母线加入载波的电压变化的示意图;以及
图6是根据本发明实施例的光伏板的工作状态检测装置的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明提供了一种光伏板的工作状态检测系统。
图1是根据本发明第一实施例的光伏板的工作状态检测系统的示意图。如图1所示,该光伏板的工作状态检测系统包括:光伏设备10和控制设备20。
优选地,光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备10和控制设备20,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备10和控制设备20通过直流母线相连接。光伏设备10和控制设备20之间的通讯,优选地,为光伏设备的光伏板的状态参数向控制设备20的传输。
光伏设备10,用于检测光伏板的工作状态,得到光伏板的状态参数,通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线。
光伏板的工作状态检测系统包括光伏电器系统,光伏电器系统包括光伏设备10。具体而言,光伏设备10包括光伏板和调制器。光伏板,也即,太阳能电池板,为一种暴漏在阳光下便会产生直流电的发电装置,几乎全部以半导体物料制成的薄身固体光伏电池组成,利用半导体界面的光生伏特效应将光能直 接转变为电能控制负载工作,或者送往蓄电池中存储起来。光伏板没有活动的部分,因此光伏板可以长时间可靠、稳定地使用,其寿命长、安装维护简便。光伏板设置在光伏电器系统中,比如,光伏板设置在光伏空调系统中,光伏板利用光能为光伏空调系统提供持久的电能,使光伏空调系统可靠、稳定、持久地运行。光伏设备10还包括第一传感器和第一控制器。光伏设备10通过第一传感器检测光伏板的状态参数,比如,通过第一传感器检测光伏板在工作时的电压状态参数、温度状态参数和位置状态参数。可选地,第一传感器包括电压传感器,温度传感器和位置传感器。光伏设备10通过电压传感器检测光伏板的电压状态参数,通过温度传感器检测光伏板的温度状态参数,通过位置传感器检测光伏板的位置状态参数。在光伏设备10通过第一传感器检测光伏板的状态参数之后,光伏设备10通过第一控制器接收光伏板的状态参数,并根据光伏板的状态参数对光伏板执行控制,比如,光伏设备10通过第一控制器接收的位置状态参数,根据光伏板的位置状态参数对光伏板的位置执行控制,使光伏板在有效的面积区域内接收有效的光能,从而将有效的光能转变为光伏供电系统有效的电能以支持光伏供电系统的正常运行。
在光伏设备10通过第一控制器接收光伏板的状态参数之后,光伏设备10通过调制器对光伏板的状态参数执行调制,得到调制信号,且将调制信号加载至直流母线,调制信号携带光伏板的状态参数,具体而言,光伏设备10将光伏板的状态参数也加载至直流母线上,通过直流母线传输至控制设备。直流母线是将交流电转化成直流电,用于输送电能的总导线,可以传输大电流,从而提高了光伏电器系统的用电效率,以及光伏电器系统工作的安全性和可靠性。
控制设备20,用于检测直流母线输出的调制信号,通过解调器对调制信号执行解调,得到光伏板的状态参数。
光伏板的工作状态检测系统包括光伏电器系统,光伏电器系统包括控制设备20。控制设备20包括第二传感器,第二控制器和上位机。具体而言,控制设备20通过第二传感器检测直流母线的输出信号。可选地,第二传感器为电压传感器,控制设备20通过电压传感器检测直流母线的输出电压。控制设备20通过解调器对来自直流母线的调制信号执行解调,得到光伏板的状态参数。光伏板的状态参数包括光伏板的电压状态参数,光伏板的温度状态参数和光伏 板的位置状态参数等,解调器可以为解码芯片,对来自直流母线的调制信号执行解调,得到解调信号,从解调信号中提取光伏板的状态参数,从而使光伏设备中的光伏板的状态参数传输至控制设备,实现了光伏设备和控制设备的直接通讯。
在控制设备20通过解调器对来自直流母线的调制信号执行解调,得到光伏板的状态参数之后,控制设备20通过第二控制器根据直流母线的输出信号判断光伏板的状态参数是否成功传输至控制设备20,得到判断结果。具体而言,光伏设备10和控制设备20之间的通讯周期为预设周期,预设周期包括相邻的第一时间段、第二时间段和第三时间段。在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调,通过电压传感器在第一时间段检测直流母线的输出电压,得到第一电压值;在第三时间段检测直流母线的输出电压,得到第二电压值,第二电压值是在在第二时间段加载调制信号至直流母线上之后,或者,对调制信号执行解调之后获得的直流母线的输出电压。通过第二控制器判断第一电压值和第二电压值的差值是否大于预设阈值;如果第一电压值和第二电压值的差值大于预设阈值,则确定光伏板的状态参数未成功传输至控制设备20,也即,光伏设备10和控制设备20的通讯信息传输失败;如果第一电压值和第二电压值的差值小于等于预设阈值,则确定光伏板的状态参数成功传输至控制设备20,也即,光伏设备10和控制设备20的通讯信息传输成功。
在通过第二控制器根据直流母线的输出信号判断光伏板的状态参数是否成功传输至控制设备20之后,控制设备20通过第二控制器将判断结果上传至上位机,也即,上位机接收光伏板的状态参数未成功传输至控制设备20的判断结果,或者,光伏板的状态参数成功传输至控制设备20的判断结果,上位机还接收第二传感器采集的信息和解调器采集的信息,并且对其进一步显示。上位机根据判断结果对光伏板的工作状态执行监控,当上位机接收光伏板的状态参数未成功传输至控制设备20的判断结果时,上位机显示光伏板的状态参数未成功传输至控制设备20的信息,控制光伏设备10重新检测光伏板的状态参数,得到光伏板的状态参数,通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线,通过直流母线将调制信号传输至 解调器。当上位机接收光伏板的状态参数成功传输至控制设备20的判断结果时,上位机显示光伏板的状态参数成功传输至控制设备20的信息,可选地,上位机显示第二传感器采集的信息和解调器采集的信息,并且对光伏板的工作状态执行实时监控,以使管理人员实时了解光伏板的状态参数是否在正常的状态参数范围之内,以使管理人员在光伏电器系统工作异常时,对其及时控制,从而避免了光伏电器系统出现故障,并制止故障进一步恶化,对光伏电器系统更好地维护。上位机还可以根据光伏板的状态参数进一步控制光伏板的工作状态,使光伏板输出正常的状态参数,提高了光伏板的可监控性,从而使光伏板安全、稳定、可靠地工作。
在该光伏板的工作状态检测系统中,光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接,通过光伏设备检测光伏板的工作状态,得到光伏板的状态参数,通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线,通过控制设备检测直流母线输出的调制信号,通过解调器对调制信号执行解调,得到光伏板的状态参数,从而实现了光伏设备的光伏板的状态参数向控制设备的传输,提高了光伏设备和控制设备之间的通讯质量。
图2是根据本发明第二实施例的光伏板的工作状态检测系统的示意图。如图2所示,该光伏板的工作状态检测系统包括:光伏板30,第一传感器40,第一控制器50,调制芯片60,第二传感器70,解码芯片80,第二控制器90,上位机100和逆变器110。
光伏电器系统包括光伏设备。具体而言,光伏设备包括光伏板30,第一传感器40,第一控制器50和调制芯片60。
光伏板30,也即,太阳能电池板,设置在光伏电器系统中。光伏电器系统在光伏板利用光生伏特效应将光能直接转变为电能时进行工作。光伏板30没有活动的部分,因此光伏板30可以长时间可靠、稳定地使用,其寿命长、安装维护简便。比如,光伏板30设置在光伏空调系统中,光伏板30利用光能为光伏空调系统提供持久的电能,输出状态参数,比如,电压状态参数,温度状态参数和位置状态参数等,使光伏空调系统可靠、稳定、持久地运行。
第一传感器40,与光伏板30相连接,用于检测光伏板30的状态参数,可选地,第一传感器包括电压传感器,温度传感器和位置传感器。通过第一传感器检测光伏板30在工作时的电压状态参数,通过温度传感器检测光伏板30的温度状态参数,通过位置传感器检测光伏板30的位置状态参数。
第一控制器50,与第一传感器40相连接,用于接收光伏板30的状态参数,并根据光伏板30的状态参数对光伏板执行控制,比如,第一控制器50接收光伏板30的电压状态参数、温度状态参数和位置状态参数。可选地,第一控制器50根据光伏板30的位置状态参数对光伏板的位置执行控制,从而使光伏板30调整到最佳位置状态,将有效的光能转变为光伏供电系统有效的电能以支持光伏供电系统的正常运行。
调制芯片60,调制芯片60的输入端与第一控制器50相连接,调制芯片的输出端与直流母线相连接,用于对光伏板30的状态参数执行调制,得到调制信号,且将调制信号加载至直流母线,具体而言,调制芯片60将光伏板30的状态参数加载至直流母线上,比如,将光伏板的电压状态参数、温度状态参数、位置状态参数等加载至直流母线上,通过直流母线传输至控制设备,从而提高了光伏电器系统的用电效率,以及光伏电器系统工作的安全性和可靠性。
光伏电器系统包括控制设备,解调器安装在控制设备上,用于检测直流母线输出的调制信号,对调制信号执行解调得到光伏板的状态参数。控制设备包括第二传感器70,解码芯片80,第二控制器90和上位机100。
第二传感器70,与直流母线相连接,用于检测直流母线的输出信号。可选地,第二传感器为电压传感器,控制设备通过电压传感器检测直流母线的输出电压。光伏设备和控制设备之间的通讯周期为预设周期,预设周期包括相邻的第一时间段、第二时间段和第三时间段。在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调。通过电压传感器在第一时间段检测直流母线的输出电压,得到第一电压值;通过电压传感器在第三时间段检测直流母线的输出电压,得到第二电压值。
解码芯片80,与直流母线相连接,用于对调制信号执行解调,得到解调信号,并从解调信号中提取光伏板30的状态参数,从而得到光伏板30的电压状态参数、光伏板30的温度状态参数和光伏板30的位置状态参数等,使光伏 设备中的光伏板30的状态参数通过直流母线传输至控制设备,实现了光伏设备和控制设备的直接通讯。
第二控制器90,与第二传感器70和解码芯片80相连接,用于根据直流母线的输出信号判断光伏板的状态参数是否成功传输至控制设备,得到判断结果。具体而言,判断第一电压值和第二电压值的差值是否大于预设阈值;当第一电压值和第二电压值的差值大于预设阈值,则确定光伏板的状态参数未成功传输至控制设备,当第一电压值和第二电压值的差值小于等于预设阈值,则确定光伏板的状态参数成功传输至控制设备。
上位机100,与第二控制器90相连接,用于接收判断结果,根据判断结果对光伏板的状态执行监控。具体而言,在第二控制器90根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备之后,对光伏板30的工作状态执行监控。上位机100接收光伏板30的状态参数未成功传输至控制设备的判断结果,或者,光伏板30的状态参数成功传输至控制设备的判断结果,上位机100还接收第二传感器70采集的信息和解调器采集的信息,并且对其进一步显示。上位机100根据判断结果对光伏板30的工作状态执行监控,当上位机100接收光伏板的状态参数未成功传输至控制设备的判断结果时,上位机100显示光伏板30的状态参数未成功传输至控制设备20的信息;当上位机100接收光伏板的状态参数成功传输至控制设备的判断结果时,上位机100显示光伏板的状态参数成功传输至控制设备的信息,可选地,上位机100显示第二传感器70采集的信息和解码芯片80采集的信息,并且对光伏板30的工作状态执行实时监控,以使管理人员实时了解光伏板30的状态参数是否在正常的状态参数范围之内,以使管理人员在光伏电器系统工作异常时,对其及时控制,从而避免了光伏电器系统出现故障,并制止故障进一步恶化,对光伏电器系统更好地维护。上位机100还可以根据光伏板30的状态参数进一步控制光伏板的工作状态,使光伏板30输出正常的状态参数,提高了光伏板30的可监控性,从而使光伏板30安全、稳定、可靠地工作。
控制设备还包括逆变器110,与第二控制器100相连接,且与光伏板30通过两根直流母线相连接。逆变器110将直流母线的直流电转变为交流电,并接收经过第二控制器90对第二传感器70采集的信息和第二控制器90采集的 信息以及对第二传感器70采集的信息和第二控制器90采集的信息进行判断的判断结果,进而通过三路交流电输出,从而完成光伏设备与控制设备基于直流电力线载波的通讯,从而实现了通过光伏设备和控制设备之间的通讯,提高了光伏设备和控制设备之间的通讯质量。
该光伏板的工作状态检测系统通过光伏板输出光伏板的状态参数,通过第一传感器检测光伏板的状态参数,通过第一控制器接收光伏板的状态参数,通过调制芯片对光伏板的状态参数执行调制,得到调制信号,且将调制信号加载至直流母线,通过第二传感器检测直流母线的输出信号,通过解码芯片对调制信号执行解调得到光伏板的状态参数,通过第二控制器根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,通过上位机接收判断结果,根据判断结果对光伏板的状态执行监控,通过逆变器接收经过第二控制器对第二传感器采集的信息和第二控制器采集的信息以及对第二传感器采集的信息和第二控制器采集的信息进行判断的判断结果,进而通过三路交流电输出,从而实现了通过光伏设备和控制设备之间的通讯,提高了光伏设备和控制设备之间的通讯质量。
本发明还提供了一种光伏板的工作状态检测方法。
图3是根据本发明实施例的光伏板的工作状态检测方法的流程图。如图3所示,该基于光伏板的通讯方法包括以下步骤:
步骤S301,检测光伏板的工作状态,得到光伏板的状态参数。
光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,光伏设备和控制设备通过直流母线相连接。具体而言,光伏电器系统可以为光伏空调系统、太阳能热水器等设置有光伏板的电器系统。光伏板,也即,太阳能电池板,利用光能为光伏电器系统提供持久的电能,使光伏电器系统可靠、稳定、持久地运行。光伏电器系统包括光伏设备,光伏设备包括光伏板和调制器,调制器通过调制芯片实现对光伏板的状态参数的调制。检测光伏板的状态参数,比如,检测光伏板在工作时光伏板的电压状态参数、光伏板的温度状态参数和光伏板的位置状态参数。可选地,调制器通过电压传感器检测光伏板的电压状态参数,通过温度传感器检测光伏板的温度状态参数,通过位置传感器检测光伏板的位置状态 参数。
步骤S302,通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线。
在检测光伏板的状态参数之后,接收光伏板的状态参数,并根据光伏板的状态参数对光伏板执行控制。比如,光伏设备包括第一控制器,通过第一控制器接收光伏板的电压状态参数、温度状态参数和位置状态参数,可以根据光伏板的位置状态参数对光伏板的位置执行控制,从而调整光伏板的位置状态,使光伏板在有效的区域内将光能装换为电能,使光伏电器系统正常工作。在接收光伏板的状态参数之后,对光伏板的状态参数执行调制,得到调制信号,也即,将光伏板的状态参数转换成适于信道传输的数字调制信号,且将调制信号加载至直流母线。可选地,光伏设备通过调制芯片对光伏板的状态参数执行调制,得到调制信号,并将光伏板的状态参数加载至直流母线上,从而提高了光伏电器系统的用电效率,以及光伏电器系统工作的安全性和可靠性。
步骤S303,通过直流母线将调制信号传输至解调器。
载波,为特定频率的无线电波,用于传递信息。可以将调制信号加载至载波信号上,通过载波传输调制信号。具体而言,直流母线上加入载波信号,通过载波信号将调制信号传输至解调器,解调器按照载波的频率接收调制信号,对调制信号执行解调,得到解调信号,也即,解调器将接收到的调制信号还原成数字基带信号,其携带有光伏板的状态参数,比如,携带有光伏板的电压状态参数、温度状态参数和位置状态参数。
在通过直流母线将调制信号传输至解调器之后,检测直流母线的输出电压;以及根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,得到判断结果,并将判断结果传输至上位机,上位机根据判断结果对光伏板的状态执行监控。具体而言,控制设备包括第二控制器,在通过直流母线将调制信号传输至解调器之后,通过第二控制器根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,得到判断结果。上位机接收光伏板的状态参数未成功传输至控制设备的判断结果,或者,光伏板的状态参数成功传输至控制设备的判断结果,上位机还接收第二传感器采集的信息和解调器采集的信息。上位机显示第二传感器采集的信息和解调器采集的信息,并且对 光伏板的工作状态执行实时监控,从以使管理人员对光伏电器系统更好地维护。上位机还可以根据光伏板的状态参数进一步控制光伏板的工作状态,使光伏板输出正常的状态参数,提高了光伏板的可监控性,从而使光伏板安全、稳定、可靠地工作。
图4是根据本发明实施例的直流母线未加载波的电压变化的示意图。如图4所示,光伏板的输出电压随着光伏板受太阳光照射的强弱程度发生相应的变化,t1、t2表示光伏板受不同光照强度的太阳光照射的不同时刻,ΔV表示光伏板在t1时刻的输出电压以及光伏板在t2时刻的输出电压的电压差。光伏板的输出电压的不稳定导致直流母线的载波在传输调质信号时有一定的困难。但是光伏板的输出电压的变化是平滑的,一般不会出现阶跃。在t1时刻与时刻t2相差很短的情况下,电压差ΔV在解调时做一定的处理便可以对调制信号进行解调,得到解调信号。
设定光伏设备和控制设备之间的通讯周期为预设周期,控制设备包括上位机。预设周期包括相邻的第一时间段、第二时间段和第三时间段。在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调。优选地,检测直流母线的输出电压包括:在第一时间段检测直流母线的输出电压,得到第一电压值;在第三时间段检测直流母线的输出电压,得到第二电压值,根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备包括:判断第一电压值和第二电压值的差值是否大于预设阈值;如果第一电压值和第二电压值的差值大于预设阈值,则确定光伏板的状态参数未成功传输至控制设备;如果第一电压值和第二电压值的差值小于等于预设阈值,则确定光伏板的状态参数成功传输至控制设备。
图5是根据本发明实施例的直流母线加入载波信号的电压变化的示意图。如图5所示,光伏设备和控制设备之间执行通讯,完成光伏设备和控制设备之间的信息传递,包括光伏板的状态参数的传递。光伏设备和控制设备之间的通讯周期为预设周期T。由于ΔV的存在,直接在一个通讯周期内全部加入载波信号,可能导致信号解调时的检波不正常。因此,设置预设周期T足够小,预设周期T则包括相邻的第一时间段Δt1、第二时间段Δt2和第三时间段Δt3,在第一时间段Δt1检测直流母线的电压,得到第一电压值,也即,在基准电压 采样区Δt1时间段检测直流电力线载波的基波电压V1;在第二时间段Δt2加载调制信号至直流母线上,或者,在第二时间段Δt2对调制信号执行解调,也即,在载波区Δt2时间段加载调制信号至直流母线上,或者,对调制信号执行解调;在第三时间段Δt3检测直流母线的电压,得到第二电压值V2,也即,在光伏设备与控制设备之间的信息传递完成之后,在基准电压校验区Δt3时间段检测直流母线的电压V2;判断第一电压值V1和第二电压值V2的差值ΔV是否大于预设阈值;如果第一电压值V1和第二电压值V2的差值ΔV大于预设阈值,则确定在预设周期内光伏板的状态参数未成功传输至控制设备,光伏设备和控制设备之间通讯失败;如果第一电压值V1和第二电压值V2的差值ΔV小于等于预设阈值,则确定在预设周期内光伏板的状态参数成功传输至控制设备,光伏设备和控制设备之间通讯成功。
优选地,该实施例的光伏电器系统为光伏空调系统。
光伏空调系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括调制器。光伏空调系统的光伏设备与光伏空调系统的控制设备通过直流母线相连接,并执行通讯。检测光伏板的状态参数,对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线,其中,调制信号中携带有光伏板的状态参数。具体而言,光伏空调系统的调制器包括第一传感器,第一控制器和调制芯片。优选地,通过第一传感器检测光伏板的状态参数。第一传感器包括电压传感器、位置传感器和温度传感器。电压传感器用于检测光伏板在光伏空调系统工作时的电压信号状态参数,位置传感器用于检测光伏板在光伏空调系统工作时的位置状态参数,温度传感器用于检测光伏板在空调系统工作时的温度状态参数等。第一控制器对第一传感器检测到的光伏板的电压状态参数、位置状态参数和温度状态参数进行接收并处理,并适时根据第一传感器检测到的光伏板的位置状态参数调整光伏板的位置。调制芯片把光伏板的工作状态参数等加载至直流母线上。
在光伏空调系统的调制器对光伏板的信号执行调制,得到调制信号,并将调制信号加载至直流母线上之后,通过直流母线传输调制信号至解调器,优选地,解调器用于对调制信号执行解调,得到解调信号。解调器包括第二传感器,第二控制器,解码芯片和上位机。具体而言,在将调制信号加载至直流母线上 之后,检测直流母线的输出信号,比如,第二传感器为电压传感器,通过电压传感器检测直流母线末端的输出电压;对调制信号执行解调,可以通过解码芯片对调制信号执行解调,得到解调信号,并从解调信号中提取光伏板的状态参数;根据直流母线的输出电压和光伏板的状态参数执行处理,可以通过第二控制器对直流母线的输出电压和通讯信息执行处理,得到处理信息;通过上位机接收处理信息,并根据处理信息对光伏板的工作状态执行监控。
在该光伏板的工作状态检测方法的实施例中,光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,调制器和控制设备通过直流母线相连接,通过检测光伏板的工作状态,得到光伏板的状态参数;通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;以及通过直流母线将调制信号传输至解调器,其中,解调器用于对调制信号执行解调,得到解调信号,解调信号携带光伏板的状态参数,从而提高了光伏设备和控制设备之间的通讯质量。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明还提供了一种光伏板的工作状态检测装置。
图6是根据本发明实施例的光伏板的工作状态检测装置的示意图。如图6所示,该光伏板的工作状态检测装置包括:检测单元120,调制单元130和传输单元140。
光伏板设置在光伏电器系统中,光伏电器系统包括光伏设备和控制设备,光伏设备包括光伏板和调制器,控制设备包括解调器,调制器和控制设备通过直流母线相连接。
第一检测单元120,用于检测光伏板的工作状态,得到光伏板的状态参数。
调制单元130,用于通过调制器对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线。
传输单元140,传输单元,用于通过直流母线将调制信号传输至解调器,其中,解调器用于对调制信号执行解调,得到光伏板的状态参数。
该光伏板的工作状态检测装置还包括第二检测单元和判断单元。其中,第二检测单元,在通过直流母线将调制信号传输至解调器之后,检测直流母线的输出电压;判断单元,用于根据直流母线的输出电压判断光伏板的状态参数是否成功传输至控制设备,得到判断结果,并将判断结果传输至上位机,其中,上位机用于根据判断结果对光伏板的状态执行监控。
光伏设备和控制设备之间的通讯周期为预设周期,控制设备包括上位机,预设周期包括相邻的第一时间段、第二时间段和第三时间段,其中,在第二时间段加载调制信号至直流母线上,或者,对调制信号执行解调,第二检测单元包括:第一检测模块和第二检测模块。其中,第一检测模块用于在第一时间段检测直流母线的输出电压,得到第一电压值;第二检测模块用于在第三时间段检测直流母线的输出电压,得到第二电压值。判断单元包括判断模块,第一确定模块和第二确定模块。其中,判断模块用于判断第一电压值和第二电压值的差值是否大于预设阈值;第一确定模块用于在判断出第一电压值和第二电压值的差值大于预设阈值时,确定光伏板的状态参数未成功传输至控制设备;第二判断模块用于在判断出第一电压值和第二电压值的差值小于等于预设阈值时,确定光伏板的状态参数成功传输至控制设备。
该光伏板的工作状态检测装置通过第一检测单元检测光伏板的工作状态,得到光伏板的状态参数,通过调制单元的调制器的对光伏板的状态参数执行调制,得到调制信号,并将调制信号加载至直流母线;以及通过传输单元在直流母线的作用下将调制信号传输至解调器,从而提高了光伏设备和控制设备之间的通讯质量。
本发明实施例还提供了一种光伏电器系统。需要说明的是,该光伏电器系统包括本发明实施例的光伏板的工作状态检测装置和光伏板的工作状态检测系统。该光伏电器系统的光伏设备和光伏电器系统的控制设备之间的通讯过程基于中压信号,通过直流线电力载波方法完成光伏设备和控制设备之间的通讯,可选地,通过直流母线加入载波信号作为光伏设备和控制设备之间通讯的传输媒介,从而实现光伏设备和控制设备的数据传输和信息交换。具体而言,在光伏设备中进行光伏板的信息检测并处理,包括检测和处理光伏板的状态参数,然后检测直流母线上载波信号的基波电压,对光伏板的状态参数进行调制, 得到调制信号,并将调制信号加载至直流母线上,再检测直流母线上加载调制信号之后的电压,通过直流母线上载波信号的基波电压和直流母线上加载调制信号之后的电压的差值确定光伏设备和控制设备之间的通讯是否正常。在将调制信号加载至直流母线上之后,检测直流母线的输出电压,通过解调器对调制信号执行解调,得到解调信号。在得到解调信号之后,检测直流母线的输出电压,通过直流母线在解调之前和解调之后的输出电压的差值确定光伏设备和控制设备之间的通讯是否正常,从而实现了光伏设备和控制设备之间的通讯,完成了光伏设备的光伏板的状态参数向控制设备的传输,提高了光伏板的可监控性,并且减小了光伏设备和控制设备的通讯总线布线成本,提高了光伏电器系统中的光伏设备和控制设备之间的通讯质量。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种光伏板的工作状态检测方法,其特征在于,光伏板设置在光伏电器系统中,所述光伏电器系统包括光伏设备和控制设备,所述光伏设备包括所述光伏板和调制器,所述控制设备包括解调器,所述光伏设备和所述控制设备通过直流母线相连接,所述方法包括:
    检测所述光伏板的工作状态,得到所述光伏板的状态参数;
    通过所述调制器对所述光伏板的状态参数执行调制,得到调制信号,并将所述调制信号加载至所述直流母线;以及
    通过所述直流母线将所述调制信号传输至所述解调器,其中,所述解调器用于对所述调制信号执行解调,得到所述光伏板的状态参数。
  2. 根据权利要求1所述的方法,其特征在于,在通过所述直流母线将所述调制信号传输至所述解调器之后,所述方法还包括:
    检测所述直流母线的输出电压;以及
    根据所述直流母线的输出电压判断所述光伏板的状态参数是否成功传输至所述控制设备,得到判断结果,并将所述判断结果传输至上位机,其中,所述上位机用于根据所述判断结果对所述光伏板的状态执行监控。
  3. 根据权利要求2所述的方法,其特征在于,所述光伏设备和所述控制设备之间的通讯周期为预设周期,所述控制设备包括所述上位机,所述预设周期包括相邻的第一时间段、第二时间段和第三时间段,其中,在所述第二时间段加载所述调制信号至所述直流母线上,或者,对所述调制信号执行解调,
    检测所述直流母线的输出电压包括:
    在所述第一时间段检测所述直流母线的输出电压,得到第一电压值;以及
    在所述第三时间段检测所述直流母线的输出电压,得到第二电压值,
    根据所述直流母线的输出电压判断所述光伏板的状态参数是否成功传输至所述控制设备包括:
    判断所述第一电压值和所述第二电压值的差值是否大于预设阈值;
    如果所述第一电压值和所述第二电压值的差值大于所述预设阈值,则确定所述光伏板的状态参数未成功传输至所述控制设备;以及
    如果所述第一电压值和所述第二电压值的差值小于等于所述预设阈值,则确定所述光伏板的状态参数成功传输至所述控制设备。
  4. 根据权利要求1所述的方法,其特征在于,检测所述光伏板的状态参数包括检测所述光伏板的以下任意一个或多个状态参数:
    所述光伏板的电压状态参数;
    所述光伏板的位置状态参数;以及
    所述光伏板的温度状态参数。
  5. 根据权利要求2所述的方法,其特征在于,在检测所述光伏板的工作状态之后,根据所述光伏板的状态参数对所述光伏板的状态执行控制。
  6. 根据权利要求1所述的方法,其特征在于,所述光伏电器系统为光伏空调系统。
  7. 一种光伏板的工作状态检测装置,其特征在于,光伏板设置在光伏电器系统中,所述光伏电器系统包括光伏设备和控制设备,所述光伏设备包括所述光伏板和调制器,所述控制设备包括解调器,所述光伏设备和所述控制设备通过直流母线相连接,所述装置包括:
    第一检测单元,用于检测所述光伏板的工作状态,得到所述光伏板的状态参数;
    调制单元,用于通过所述调制器对所述光伏板的状态参数执行调制,得到调制信号,并将所述调制信号加载至所述直流母线;以及
    传输单元,用于通过所述直流母线将所述调制信号传输至所述解调器,其中,所述解调器用于对所述调制信号执行解调,得到所述光伏板的状态参数。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第二检测单元,在通过所述直流母线将所述调制信号传输至所述解调器之后,检测所述直流母线的输出电压;以及
    判断单元,用于根据所述直流母线的输出电压判断所述光伏板的状态参数是否成功传输至所述控制设备,得到判断结果,并将所述判断结果传输至上位机,其中,所述上位机用于根据所述判断结果对所述光伏板的状态执行监控。
  9. 一种光伏板的工作状态检测系统,其特征在于,光伏板设置在光伏电器系统中,所述光伏电器系统包括光伏设备和控制设备,所述光伏设备包括所述 光伏板和调制器,所述控制设备包括解调器,所述光伏设备和所述控制设备通过直流母线相连接,其中,
    所述光伏设备用于检测所述光伏板的工作状态,得到所述光伏板的状态参数,通过所述调制器对所述光伏板的状态参数执行调制,得到调制信号,并将所述调制信号加载至所述直流母线;
    所述控制设备用于检测所述直流母线输出的所述调制信号,通过所述解调器对所述调制信号执行解调,得到所述光伏板的状态参数。
  10. 根据权利要求9所述的系统,其特征在于,所述光伏设备还包括:
    第一传感器,用于检测所述光伏板的工作状态,得到所述光伏板的状态参数;以及
    第一控制器,用于接收所述光伏板的状态参数,并根据所述光伏板的状态参数对所述光伏板执行控制。
  11. 根据权利要求10所述的系统,其特征在于,所述第一传感器包括以下任意一个或多个传感器:
    电压传感器,用于检测所述光伏板的电压状态参数;
    位置传感器,用于检测所述光伏板的位置状态参数,所述第一控制器用于根据所述光伏板的位置信号调整所述光伏板的位置;以及
    温度传感器,用于检测所述光伏板的温度状态参数。
  12. 根据权利要求9所述的系统,其特征在于,所述控制设备还包括:
    第二传感器,用于检测所述直流母线的输出信号;
    第二控制器,用于根据所述直流母线的输出信号判断所述光伏板的状态参数是否成功传输至所述控制设备,得到判断结果;以及
    上位机,用于接收所述判断结果,根据所述判断结果对所述光伏板的状态执行监控。
  13. 根据权利要求12所述的系统,其特征在于,所述第二传感器为电压传感器,用于检测所述直流母线的输出电压。
  14. 根据权利要求13所述的系统,其特征在于,所述光伏设备和所述控制设备之间的通讯周期为预设周期,所述预设周期包括相邻的第一时间段、第二时间段和第三时间段,其中,在所述第二时间段加载所述调制信号至所述直 流母线上,或者,对所述调制信号执行解调,
    所述电压传感器用于在所述第一时间段检测所述直流母线的输出电压,得到第一电压值;在所述第三时间段检测所述直流母线的输出电压,得到第二电压值,
    所述第二控制器用于判断所述第一电压值和所述第二电压值的差值是否大于预设阈值;如果所述第一电压值和所述第二电压值的差值大于所述预设阈值,则确定所述光伏板的状态参数未成功传输至所述控制设备;如果所述第一电压值和所述第二电压值的差值小于等于所述预设阈值,则确定所述光伏板的状态参数成功传输至所述控制设备。
  15. 一种光伏电器系统,其特征在于,包括权利要求7或8所述的光伏板的工作状态检测装置,或权利要求9至14中任意一项所述的光伏板的工作状态检测系统。
  16. 根据权利要求15所述的光伏电器系统,其特征在于,所述光伏电器系统为光伏空调系统。
PCT/CN2016/103202 2015-11-02 2016-10-25 光伏板的工作状态检测方法、装置和系统及光伏电器系统 WO2017076191A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016351094A AU2016351094B2 (en) 2015-11-02 2016-10-25 Method, apparatus, and system for detecting working state of photovoltaic panel, and photovoltaic electrical system
ES16861459T ES2822978T3 (es) 2015-11-02 2016-10-25 Método, aparato y sistema para detectar el estado de funcionamiento de panel fotovoltaico, y sistema eléctrico fotovoltaico
NZ741909A NZ741909A (en) 2015-11-02 2016-10-25 Method, apparatus, and system for detecting working state of photovoltaic panel, and photovoltaic electrical system
CA3002708A CA3002708C (en) 2015-11-02 2016-10-25 Method, apparatus, and system for detecting working state of photovoltaic panel, and photovoltaic electrical system
US15/772,411 US20180287557A1 (en) 2015-11-02 2016-10-25 Method, Apparatus, and System for Detecting Working State of Photovoltaic Panel, and Photovoltaic Electrical System
EP16861459.2A EP3373266B1 (en) 2015-11-02 2016-10-25 Method, apparatus, and system for detecting working state of photovoltaic panel, and photovoltaic electrical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510741827.2A CN105319431B (zh) 2015-11-02 2015-11-02 光伏板的工作状态检测方法、装置和系统及光伏电器系统
CN201510741827.2 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017076191A1 true WO2017076191A1 (zh) 2017-05-11

Family

ID=55247261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103202 WO2017076191A1 (zh) 2015-11-02 2016-10-25 光伏板的工作状态检测方法、装置和系统及光伏电器系统

Country Status (8)

Country Link
US (1) US20180287557A1 (zh)
EP (1) EP3373266B1 (zh)
CN (1) CN105319431B (zh)
AU (1) AU2016351094B2 (zh)
CA (1) CA3002708C (zh)
ES (1) ES2822978T3 (zh)
NZ (1) NZ741909A (zh)
WO (1) WO2017076191A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319431B (zh) * 2015-11-02 2018-04-13 珠海格力电器股份有限公司 光伏板的工作状态检测方法、装置和系统及光伏电器系统
CN106656270B (zh) * 2016-11-18 2023-09-29 珠海慧信微电子有限公司 光伏多联空调的载波通信耦合传输方法及载波通信耦合传输电路
CN110808860B (zh) * 2019-11-06 2022-10-18 积成电子股份有限公司 一种高速载波通信采集终端的识别方法及系统
CN113315467A (zh) * 2021-04-30 2021-08-27 深圳拓邦股份有限公司 一种光伏发电站直流载波通信系统

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201054505Y (zh) * 2007-05-29 2008-04-30 北京自动化技术研究院 光伏并网电站数据集中器
CN101877166A (zh) * 2010-06-13 2010-11-03 陕西西科美芯科技集团有限公司 一种监测太阳电池组件板工作状态数据的方法
CN202384835U (zh) * 2011-11-24 2012-08-15 苏州华领太阳能电力技术有限公司 分布式光伏并网发电逆变器的监控系统
US8325059B2 (en) * 2008-11-12 2012-12-04 Tigo Energy, Inc. Method and system for cost-effective power line communications for sensor data collection
CN203689677U (zh) * 2014-02-14 2014-07-02 瑞斯康微电子(深圳)有限公司 一种光伏逆变器电力载波通信系统
CN103986182A (zh) * 2014-01-21 2014-08-13 云南师范大学 一种基于电力线载波通信的光伏并网系统
CN204423628U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种四通道光伏电池板电力线载波智能通信模块
CN204423625U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种双通道光伏电池板电力线载波智能通信模块
CN204423627U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 光伏发电站电池板电力线载波监测系统
CN204423626U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 光伏电站电力线载波智能集中器
CN204423630U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种八通道光伏电池板电力线载波智能通信模块
CN204423629U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种用于光伏发电电池板检测的soc芯片
CN204423624U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种单通道光伏电池板电力线载波智能通信模块
CN105319431A (zh) * 2015-11-02 2016-02-10 珠海格力电器股份有限公司 光伏板的工作状态检测方法、装置和系统及光伏电器系统
CN105515207A (zh) * 2016-02-17 2016-04-20 阳光电源股份有限公司 一种电池板监控系统的数据上传方法及该电池板监控系统
CN205620455U (zh) * 2015-11-02 2016-10-05 珠海格力电器股份有限公司 光伏板的工作状态检测装置和光伏电器系统
CN106023573A (zh) * 2016-07-26 2016-10-12 苏州市职业大学 基于电力载波的电压参数采集系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222621A1 (de) * 2002-05-17 2003-11-27 Josef Steger Verfahren und Schaltungsanordnung zur Steuer- und Regelung von Photovoltaikanlagen
JP3870280B2 (ja) * 2004-01-15 2007-01-17 株式会社日立製作所 空気調和機及び電力線通信システム
DE102006052295B3 (de) * 2006-11-03 2008-06-12 Sma Technologie Ag Verfahren und Schaltungsanordnung zur Überwachung eines Photovoltaikgenerators
US9112379B2 (en) * 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
CN202196155U (zh) * 2011-01-25 2012-04-18 上海岩芯电子科技有限公司 一种太阳能电池板状态监测系统
CN203339729U (zh) * 2013-05-08 2013-12-11 特变电工新疆新能源股份有限公司 一种光伏发电单元及光伏发电系统
CN104776536B (zh) * 2015-05-04 2018-05-18 珠海格力电器股份有限公司 光伏空调系统
CN104935080A (zh) * 2015-06-08 2015-09-23 深圳市大和新能源科技有限公司 一种光伏电站智能监控系统

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201054505Y (zh) * 2007-05-29 2008-04-30 北京自动化技术研究院 光伏并网电站数据集中器
US8325059B2 (en) * 2008-11-12 2012-12-04 Tigo Energy, Inc. Method and system for cost-effective power line communications for sensor data collection
CN101877166A (zh) * 2010-06-13 2010-11-03 陕西西科美芯科技集团有限公司 一种监测太阳电池组件板工作状态数据的方法
CN202384835U (zh) * 2011-11-24 2012-08-15 苏州华领太阳能电力技术有限公司 分布式光伏并网发电逆变器的监控系统
CN103986182A (zh) * 2014-01-21 2014-08-13 云南师范大学 一种基于电力线载波通信的光伏并网系统
CN203689677U (zh) * 2014-02-14 2014-07-02 瑞斯康微电子(深圳)有限公司 一种光伏逆变器电力载波通信系统
CN204423627U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 光伏发电站电池板电力线载波监测系统
CN204423625U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种双通道光伏电池板电力线载波智能通信模块
CN204423628U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种四通道光伏电池板电力线载波智能通信模块
CN204423626U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 光伏电站电力线载波智能集中器
CN204423630U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种八通道光伏电池板电力线载波智能通信模块
CN204423629U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种用于光伏发电电池板检测的soc芯片
CN204423624U (zh) * 2014-12-31 2015-06-24 天津益华微电子有限公司 一种单通道光伏电池板电力线载波智能通信模块
CN105319431A (zh) * 2015-11-02 2016-02-10 珠海格力电器股份有限公司 光伏板的工作状态检测方法、装置和系统及光伏电器系统
CN205620455U (zh) * 2015-11-02 2016-10-05 珠海格力电器股份有限公司 光伏板的工作状态检测装置和光伏电器系统
CN105515207A (zh) * 2016-02-17 2016-04-20 阳光电源股份有限公司 一种电池板监控系统的数据上传方法及该电池板监控系统
CN106023573A (zh) * 2016-07-26 2016-10-12 苏州市职业大学 基于电力载波的电压参数采集系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG, LINGBO ET AL.: "Design of the Power Carrier Communication Module in Monitoring System of the Photovoltaic Power Station", DIGITAL TECHNOLOGY & APPLICATION, no. 12, 31 December 2012 (2012-12-31), pages 17 - 19, XP009511033, ISSN: 1007-9416 *
See also references of EP3373266A4 *

Also Published As

Publication number Publication date
EP3373266A4 (en) 2019-05-01
CA3002708C (en) 2021-04-06
CN105319431A (zh) 2016-02-10
US20180287557A1 (en) 2018-10-04
CN105319431B (zh) 2018-04-13
AU2016351094B2 (en) 2019-01-31
EP3373266B1 (en) 2020-07-15
NZ741909A (en) 2019-02-22
AU2016351094A1 (en) 2018-05-10
EP3373266A1 (en) 2018-09-12
CA3002708A1 (en) 2017-05-11
ES2822978T3 (es) 2021-05-05

Similar Documents

Publication Publication Date Title
US11031906B2 (en) Current-voltage curve scan method for photovoltaic module, and optimizer
WO2017076191A1 (zh) 光伏板的工作状态检测方法、装置和系统及光伏电器系统
US20100201493A1 (en) Photoelectric cell device and malfunction determining method
CN103634572A (zh) 一种基于视频监测的输电线路智能巡线用通信系统
US10892707B2 (en) Photovoltaic module monitoring apparatus and power system
CN204082508U (zh) 一种光伏水泵控制装置
CN106681243A (zh) 基于无线网络的光伏发电站监控系统
CN115149647A (zh) 基于光能发电的智能储能系统
CN206195361U (zh) 一种新型光伏电站的集中并网系统
CN204733432U (zh) Led路灯控制系统
CN205620455U (zh) 光伏板的工作状态检测装置和光伏电器系统
US10218183B2 (en) Household photovoltaic system and smart micro-grid system
CN206348635U (zh) 水处理监控系统
CN210927564U (zh) 一种用于光伏电站的数据采集系统
CN205158616U (zh) 一种多功能光伏数据采集传输
CN107681785A (zh) 一种风光互补发电远程监控系统
CN204675539U (zh) 节能电梯电源系统
CN106681364A (zh) 监控发电站的跟踪系统
CN106681242A (zh) 用于发电站的监控系统
CN106681367A (zh) 自动跟踪式监控系统
CN217824809U (zh) 一种太阳能直流通风及电热系统
CN203563156U (zh) 基于视频监测的输电线路智能巡线用通信系统
CN211579933U (zh) 一种太阳能电池组件及太阳能电池组件的积灰预警系统
CN211046569U (zh) 一种光伏逆变器的监控系统
CN106685068A (zh) 一种发电站监测和管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3002708

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15772411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016351094

Country of ref document: AU

Date of ref document: 20161025

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016861459

Country of ref document: EP