WO2017075905A1 - 参考信号的发送方法及装置、接收方法及装置 - Google Patents

参考信号的发送方法及装置、接收方法及装置 Download PDF

Info

Publication number
WO2017075905A1
WO2017075905A1 PCT/CN2016/000599 CN2016000599W WO2017075905A1 WO 2017075905 A1 WO2017075905 A1 WO 2017075905A1 CN 2016000599 W CN2016000599 W CN 2016000599W WO 2017075905 A1 WO2017075905 A1 WO 2017075905A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
index
subcarrier
crs
symbol
Prior art date
Application number
PCT/CN2016/000599
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
戴博
戴谦
石靖
韩祥辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510754859.6A external-priority patent/CN106656446B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21195704.8A priority Critical patent/EP3996446A1/en
Priority to EP16861178.8A priority patent/EP3373673B1/en
Priority to US15/773,264 priority patent/US10749645B2/en
Publication of WO2017075905A1 publication Critical patent/WO2017075905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for transmitting a reference signal, and a receiving method and apparatus.
  • 5G will support higher speed (Gbps), massive link (1M/Km2), ultra-low latency (1ms), higher reliability, and 100 times energy efficiency improvement. Support new changes in demand.
  • Gbps gigabits
  • M/Km2 massive link
  • ultra-low latency is a key indicator of 5G technology, which directly affects the development of time-limited services such as car networking, industrial automation, remote control, and smart grid.
  • a series of current standards for 5G delay reduction are gradually being advanced.
  • Transmission Time Interval is an important research direction for reducing the current delay. It aims to reduce the current TMS length of 1ms to 0.5ms or even 1-2 orthogonal frequency division multiplexing (Orthogonal Frequency Division).
  • the length of the multiplexing (referred to as OFDM) symbol is reduced by a minimum of the minimum scheduling time, and the single transmission delay can be reduced by multiple times without changing the frame structure.
  • DMRS De Modulation Reference Signal
  • the embodiments of the present invention provide a method and a device for transmitting a reference signal, and a method and a device for receiving the same, so as to at least solve the problem that the processing time delay of the user equipment is caused by the backward position of the DMRS in the related art.
  • a method for transmitting a reference signal includes: determining a time-frequency resource location of a reference signal in a transmission time interval TTI according to a preset manner; and transmitting the location according to the time-frequency resource location Reference signal.
  • the sub-carrier corresponding to the reference signal in a PRB is preset, and the symbol corresponding to the reference signal is one or more of the TTI that meets a first preset condition.
  • the first preset condition includes at least one of the following: the symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS: an index n of the symbol satisfies: n is greater than or equal to m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is an index of symbols in one slot, for normal tracking
  • an index k ⁇ ⁇ 0, 1, 5, 6, 10, 11 ⁇ of the subcarrier corresponding to the reference signal; a manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes: At least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 5, 10, 11 ⁇
  • On the subcarrier an index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇
  • the index of the subcarrier corresponding to the reference signal is k ⁇ ⁇ 0, 6 ⁇
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 5, 10, 11 ⁇ , on the subcarrier, the index corresponding to the reference signal is n ⁇ 0 , 1, 2, 3, 4, 5, 6 ⁇ ; if the index k ⁇ ⁇ 0, 6 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier
  • if the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 1, 6, 10 ⁇ , then on the subcarrier, An index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ; if the index of the subcarrier corresponding to the reference signal is k ⁇ ⁇ 5, 11 ⁇ , then the subcarrier Above
  • the index corresponding to the test signal is n ⁇ 1,2,3,5,6 ⁇ ;
  • the subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • an index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponding to the reference signal; on the subcarrier, a manner of determining the symbol according to a transmit antenna port and/or a cell identifier of the CRS includes at least one of the following:
  • the index of the subcarrier k ⁇ 1,4,7,10 ⁇ corresponds to the index n ⁇ 0,1,2,3,4,5 ⁇
  • the index of the subcarrier corresponding to the reference signal is p on the subcarrier, the reference signal corresponding to the index n ⁇ ⁇ 1, 2, 4, 5 ⁇ ;
  • an index k ⁇ 2, 5, 8, 11 ⁇ of the subcarrier corresponding to the reference signal determining, on the subcarrier, the symbol according to a transmit antenna port and/or a cell identifier of the CRS.
  • the way includes at least one of the following:
  • the index corresponding to the reference signal is k ⁇ 2, 5, 8, 11 ⁇ , the index corresponding to the reference signal is n ⁇ 0, 1, 2, 3 on the subcarrier. , 4, 5 ⁇ ;
  • the subcarrier corresponding to the reference signal is Taking k ⁇ 2,5,8,11 ⁇ , on the subcarrier, the index corresponding to the reference signal n ⁇ 1, 2, 4, 5 ⁇ ;
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the first preset condition, and the symbol corresponding to the reference signal is that the first preset is met in the TTI.
  • the index of the condition is the smallest one or more symbols.
  • the determining, by the preset time, the time-frequency resource location of the reference signal in the transmission time interval TTI, where the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition The subcarrier corresponding to the reference signal is determined according to a transmit antenna port and/or a cell identifier of the CRS, and the second preset condition is: the symbol is according to a transmit antenna port and/or a cell of the CRS.
  • the identifier is determined; the index n of the symbol satisfies: n ⁇ m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is a time slot
  • n ⁇ m a non-negative integer
  • m the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols
  • the index of the symbol is a time slot
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ ;
  • the reference signal corresponds in one PRB.
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0,1,3,4,5,6,7,9,10,11 ⁇ ;
  • the subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition, where the symbol corresponding to the reference signal is that the second preset condition is met in the TTI
  • the index is the smallest one or more symbols.
  • a symbol index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ; for an extended cyclic prefix CP, the time-frequency resource corresponds to The symbol index is n ⁇ 2,4,5 ⁇ .
  • the symbol index corresponding to the time-frequency resource is n ⁇ 2, 3 ⁇ , and the time-frequency resource is corresponding to the sub-carrier in one PRB.
  • Index k ⁇ 0, 1, 5, 6, 10, 11 ⁇ ;
  • the symbol index in the TTI is 0, 1, 2, 3, 4, 5, and 6, wherein the subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • the symbol corresponding to the reference signal is one or more symbols with the smallest index in the TTI.
  • the reference signal of the TTI is located on one or more symbols in the overlapping symbols.
  • the granularity of the frequency domain resource allocation is 12 ⁇ y subcarriers, where y is an integer greater than 1.
  • the number of REs occupied by the reference signal is one of 1, 2, 3, and 4 in 12 resource units RE included in one physical resource block PRB.
  • the REs are contiguous in the frequency domain.
  • a method for receiving a reference signal includes: receiving, by a terminal, a reference signal that is sent by a base station according to a time-frequency resource location, where the time-frequency resource location is that the base station is in a preset manner.
  • a time-frequency resource location of the reference signal is determined in a transmission time interval TTI.
  • the subcarrier corresponding to the reference signal is preset, and on the subcarrier, the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the first preset condition;
  • the first preset condition includes at least one of the following: the symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS; the index n of the symbol satisfies: n is greater than or equal to m, where m is non a negative integer, where m is the number of symbols occupied by the physical downlink control channel PDCCH or a preset number of symbols, and the index of the symbol is an index of symbols in one slot.
  • a normal cyclic prefix CP n ⁇ ⁇ 0, 1, 2,3,4,5,6 ⁇
  • the extended cyclic prefix CP n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ .
  • the determining, by the preset time, the time-frequency resource location of the reference signal in the transmission time interval TTI, where the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition The subcarrier corresponding to the reference signal is determined according to the transmit antenna port and/or the cell identifier of the CRS, and the second preset condition is that the index n of the symbol satisfies: n ⁇ m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is an index of symbols in one slot.
  • n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ for the extended CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ; for the extended cyclic prefix CP, the time-frequency resource corresponds to The index n ⁇ 2,4,5 ⁇ .
  • a device for transmitting a reference signal includes: a determining module configured to determine a time-frequency resource position of a reference signal in a transmission time interval TTI according to a preset manner; and a sending module configured to The time-frequency resource location transmits the reference signal.
  • a receiving apparatus for a reference signal which is applied to a terminal side, and includes: a receiving module, configured to receive a reference signal sent by a base station, where the reference signal is in a transmission time interval TTI The location of the time-frequency resource in the medium is determined according to a preset manner.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps;
  • the time-frequency resource location of the reference signal is determined in the transmission time interval TTI according to a preset manner, and the reference signal is sent according to the time-frequency resource location, so that the DMRS position can be changed, thereby solving the related art in the DMRS.
  • the problem that the user equipment has a higher processing delay is caused by the lower position, which reduces the delay of the UE processing.
  • FIG. 1 is a flowchart of a method of transmitting a reference signal according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a transmitting apparatus of a reference signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a time-frequency resource location of an existing DMRS under a normal CP according to an alternative embodiment of the present invention
  • FIG. 4 is a schematic diagram of a position after shifting an existing DMRS time domain according to an alternative embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time-frequency resource location of a DMRS according to an alternative embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a frequency domain position of a DMRS in a related art according to an alternative embodiment of the present invention, where a time domain position is moved to a symbol without a CRS;
  • FIG. 7 is a schematic diagram of moving a DMRS in the related art to the first two symbols, where the frequency domain is located at a location outside the CRS, in accordance with an alternative embodiment of the present invention
  • a time domain location is a preset number of symbols or a PDCCH symbol according to an alternative embodiment of the present invention.
  • FIG. 9 is a schematic diagram 1 of a definition of a TTI according to an alternative embodiment of the present invention.
  • FIG. 10 is a schematic diagram 2 of a definition of a TTI according to an alternative embodiment of the present invention.
  • FIG. 11 is a schematic diagram 3 of a definition of a TTI according to an alternative embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a method of designing a DMRS according to an alternative embodiment of the present invention.
  • FIG. 13 is a fourth schematic diagram of the definition of a TTI in accordance with an alternate embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 determining a time-frequency resource location of the reference signal in the transmission time interval TTI according to a preset manner
  • Step S104 Send a reference signal according to the time-frequency resource location.
  • the time-frequency resource location of the reference signal is determined in the transmission time interval TTI according to a preset manner, and the reference signal is sent according to the time-frequency resource location, so that the DMRS position can be changed, thereby solving the related art. Since the DMRS position is relatively late, the processing delay of the user equipment is high, and the delay of the UE processing is reduced.
  • An alternative embodiment of the embodiment will be used to illustrate how to determine the DMRS location by a preset manner.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in an optional implementation manner of the embodiment:
  • the position of the subcarrier corresponding to the location of the time-frequency resource is set, that is, the subcarrier corresponding to the reference signal is preset.
  • the reference signal is one of the corresponding symbols in the TTI that satisfies the first preset condition or Multiple symbols;
  • the first preset condition includes at least one of the following:
  • Manner 1 The symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS;
  • n is greater than or equal to m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is a time slot.
  • the index k of the subcarrier corresponding to the time-frequency resource location in this embodiment may be multiple, and the following may be combined with the centralized selection in this embodiment, based on the time-frequency location in the foregoing preset manner, and the first mode and the second mode.
  • the embodiments illustrate the invention
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least the following
  • the index k ⁇ 1, 5, 10, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier , the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the reference signal corresponds Index n ⁇ 1,2,3,5,6 ⁇ ;
  • the same value of the transmitting antenna port of the CRS mentioned below is similar to the above explanation.
  • the index k ⁇ 0, 5, 6, 10, 11 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal is ⁇ ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ ⁇ 1 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 1, 2, 3 , 5,6 ⁇ ;
  • the index k ⁇ 0, 5, 6, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier, the index corresponding to the reference signal N ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ 1,10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 1 , 2, 3, 5, 6 ⁇ ;
  • subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponds to the index n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ,
  • the index k ⁇ 1,7 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 2,8 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4, 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • subcarriers in one PRB are indexed from 0 to 11 in order of frequency from lowest to highest.
  • the method may be implemented as follows;
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that have the smallest index that satisfies the first preset condition.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in another optional implementation manner of this embodiment.
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition.
  • the subcarrier corresponding to the reference signal is determined according to the transmit antenna port and/or the cell identifier of the CRS.
  • the second preset condition includes at least one of the following: the symbol is determined according to the transmit antenna port and/or the cell identifier of the CRS; the index n of the symbol satisfies; n ⁇ m, where m is a non-negative integer, and m is a physical downlink control channel PDCCH occupation The number of symbols or the preset number of symbols, if the reference signal corresponds to the subcarrier index k ⁇ ⁇ 2, 5, 8, 11 ⁇ , for normal CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5 , 6 ⁇ , for the extended CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • an optional implementation manner of determining a frequency domain location of a symbol according to a transmit antenna port and/or a cell identifier of the CRS in this embodiment includes at least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 1,2,4,5,7,8,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 0,2,3,5,6,8,9,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0,1,3,4,5,6,7,9,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k ⁇ 0 , 1, 3, 4, 6, 7, 9, 10 ⁇ .
  • the symbol corresponding to the reference signal mentioned above is one or more symbol modes in the TTI that meet the second preset condition, and may be implemented in the following manner; the symbol corresponding to the reference signal is an index in the TTI that satisfies the second preset condition. The smallest one or more symbols.
  • step S102 and step S104 in this embodiment there is an overlap of one or more symbols between adjacent TTIs involved in the embodiment, wherein the reference signal of the TTI is located in one or more of the overlapping symbols.
  • the symbol index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ;
  • the symbol index corresponding to the time-frequency resource is n ⁇ 2, 4, 5 ⁇ ,
  • the symbol corresponding to the reference signal is one or more symbols with the smallest index.
  • the symbol index corresponding to the time-frequency resource is n ⁇ ⁇ 2, 3 ⁇
  • the index of the corresponding sub-carrier of the time-frequency resource in one PRB is k ⁇ ⁇ 0, 1, 5, 6, 10, 11 ⁇ ; wherein the symbol index in the TTI is 0, 1, 2, 3, 4, 5, 6, wherein the subcarriers in one PRB are respectively indexed according to the frequency from lowest to highest. 0 to 11.
  • the granularity of the frequency domain resource allocation is 12 ⁇ y subcarriers, where y is an integer greater than 1.
  • the number of REs occupied by the reference signal is one of 1, 2, 3, and 4, wherein the RE is in the frequency domain. It is continuous.
  • a method for receiving a reference signal includes the following steps: the terminal receives the reference signal sent by the base station, where the time-frequency resource position of the reference signal in the transmission time interval TTI is pre-prescribed. The way of setting is determined.
  • the step of the receiving method may be implemented in the following manner: the terminal receives the reference signal sent by the base station according to the time-frequency resource location, where the time-frequency resource location is the base station according to a preset manner.
  • the time-frequency resource location of the reference signal is determined in the transmission time interval TTI.
  • the subcarrier corresponding to the reference signal involved in the embodiment is preset, and on the subcarrier, the reference signal is one of the corresponding symbols in the TTI that satisfies the first preset condition. Or multiple symbols;
  • the first preset condition includes at least one of the following;
  • Manner 1 The symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS;
  • n is greater than or equal to m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is a time slot.
  • the index k of the subcarrier corresponding to the time-frequency resource location in this embodiment may be multiple, and the following may be combined with the centralized selection in this embodiment, based on the time-frequency location in the foregoing preset manner, and the first mode and the second mode.
  • the embodiments illustrate the invention
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 1, 5, 10, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier , the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the reference signal corresponds Index n ⁇ 1,2,3,5,6 ⁇ ;
  • the same value of the transmitting antenna port of the CRS mentioned below is similar to the above explanation.
  • the index k ⁇ 0, 5, 6, 10, 11 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal is ⁇ ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ ⁇ 1 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 1, 2, 3 , 5,6 ⁇ ;
  • the index k ⁇ 0, 5, 6, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier, the index corresponding to the reference signal N ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ 1,10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 1 , 2, 3, 5, 6 ⁇ ;
  • the index k ⁇ 0,1,5,6,10,11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier
  • the index corresponding to the reference signal is n. ⁇ 0,1,2,3,4,5,6 ⁇ :
  • the index k ⁇ 0, 1, 6, 10 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier, the index corresponding to the reference signal is ⁇ ⁇ 0,1,2,3,4,5,6 ⁇ ; if the index k ⁇ 5,11 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier, the index corresponding to the reference signal n ⁇ 1,2 , 3, 5, 6 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponds to the index n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ,
  • the index k ⁇ 1,7 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 2,8 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4, 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the method may be implemented as follows: The symbol corresponding to the reference signal is one or more symbols in the TTI that have the smallest index that satisfies the first preset condition.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in another optional implementation manner of this embodiment.
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition.
  • the subcarrier corresponding to the reference signal is determined according to the transmit antenna port and/or the cell identifier of the CRS;
  • the second preset condition includes at least one of the following: the symbol is determined according to the transmit antenna port and/or the cell identifier of the CRS; the index n of the symbol satisfies: n ⁇ m, where m is a non-negative integer, and m is a physical downlink control channel PDCCH occupation The number of symbols or the preset number of symbols, if the reference signal corresponds to the subcarrier index k ⁇ ⁇ 2, 5, 8, 11 ⁇ , for normal CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5 , 6 ⁇ , for the extended CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • an optional implementation manner of determining a frequency domain location of a symbol according to a transmit antenna port and/or a cell identifier of the CRS in this embodiment includes at least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 1,2,4,5,7,8,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 1, 3, 4,5,6,7,9,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k ⁇ 0 , 1, 3, 4, 6, 7, 9, 10 ⁇ .
  • the symbol corresponding to the reference signal mentioned above is one or more symbol modes in the TTI that meet the second preset condition, and may be implemented by: the symbol corresponding to the reference signal is an index that satisfies the second preset condition in the TTI. The smallest one or more symbols.
  • step S102 and step S104 in this embodiment there is an overlap of one or more symbols between adjacent TTIs involved in the embodiment, wherein the reference signal of the TTI is located in one or more of the overlapping symbols.
  • the index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ;
  • the index corresponding to the time-frequency resource is n ⁇ 2, 4, 5 ⁇ , where The symbol corresponding to the reference signal is one or more symbols with the smallest index.
  • the granularity of the frequency domain resource allocation is 12 ⁇ y subcarriers, where y is an integer greater than 1.
  • the number of REs occupied by the reference signal is one of 1, 2, 3, and 4, wherein the RE is in the frequency domain. It is continuous.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a device for transmitting a reference signal is also provided in the embodiment, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the device includes: a determining module 22 configured to determine a time-frequency of a reference signal in a transmission time interval TTI according to a preset manner.
  • the resource location the sending module 24 is coupled to the determining module 22 and configured to send the reference signal according to the time-frequency resource location.
  • An alternative embodiment of the embodiment will be used to illustrate how to determine the DMRS location by a preset manner.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in an optional implementation manner of the embodiment: Set the position of the subcarrier corresponding to the location of the time-frequency resource, that is, the subcarrier corresponding to the reference signal is preset, on the subcarrier,
  • the reference signal is one or more symbols in which the corresponding symbol in the TTI satisfies the first preset condition;
  • the first preset condition includes at least one of the following:
  • Manner 1 The symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS;
  • n is greater than or equal to m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is a time slot.
  • the index k of the subcarrier corresponding to the time-frequency resource location in this embodiment may be multiple, and the following may be combined with the centralized selection in this embodiment, based on the time-frequency location in the foregoing preset manner, and the first mode and the second mode.
  • the embodiments illustrate the invention
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 1, 5, 10, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier , the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the reference signal corresponds Index n ⁇ 1,2,3,5,6 ⁇ ;
  • the same value of the transmitting antenna port of the CRS mentioned below is similar to the above explanation.
  • the index k ⁇ 0, 5, 6, 10, 11 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal is ⁇ ⁇ 0,1,2,3,4,5,6 ⁇ ; if reference The index k ⁇ ⁇ 1 ⁇ of the subcarrier corresponding to the signal, on the subcarrier, the index corresponding to the reference signal n ⁇ ⁇ 1, 2, 3, 5, 6 ⁇ ;
  • the index k ⁇ 0, 5, 6, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier, the index corresponding to the reference signal N ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ 1,10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 1 , 2, 3, 5, 6 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponds to the index n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ,
  • the index k ⁇ 1,7 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 2,8 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4, 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the method may be implemented as follows: The symbol corresponding to the reference signal is one or more symbols in the TTI that have the smallest index that satisfies the first preset condition.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in another optional implementation manner of this embodiment.
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition.
  • the subcarrier corresponding to the reference signal is determined according to the transmit antenna port and/or the cell identifier of the CRS.
  • the second preset condition includes at least one of the following: the symbol is determined according to the transmit antenna port and/or the cell identifier of the CRS; the index n of the symbol satisfies: n ⁇ m, where m is a non-negative integer, and m is a physical downlink control channel PDCCH occupation The number of symbols or the preset number of symbols, if the reference signal corresponds to the subcarrier index k ⁇ ⁇ 2, 5, 8, 11 ⁇ , for normal CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5 , 6 ⁇ , for the extended CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • an optional implementation manner of determining a frequency domain location of a symbol according to a transmit antenna port and/or a cell identifier of the CRS in this embodiment includes at least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 1,2,4,5,7,8,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 0,2,3,5,6,8,9,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0,1,3,4,5,6,7,9,10,11 ⁇ ;
  • the symbol corresponding to the reference signal mentioned above is one or more symbol modes in the TTI that meet the second preset condition, and may be implemented by: the symbol corresponding to the reference signal is an index that satisfies the second preset condition in the TTI. The smallest one or more symbols.
  • step S102 and step S104 in this embodiment there is an overlap of one or more symbols between adjacent TTIs involved in this embodiment.
  • the reference signal of the TTI is located on one or more symbols in the overlapping symbols, and further, for the normal CP, the index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ; for the extended CP, the time-frequency resource Corresponding index n ⁇ ⁇ 2, 4, 5 ⁇ , wherein the symbol corresponding to the reference signal is one or more symbols with the smallest index.
  • the granularity of the frequency domain resource allocation is 12 ⁇ y subcarriers, where y is an integer greater than 1.
  • the number of REs occupied by the reference signal is one of 1, 2, 3, and 4, wherein the RE is in the frequency domain. It is continuous.
  • the embodiment further provides a receiving device for a reference signal, the device is applied to the terminal side, and the device includes: a receiving module, configured to receive, by the terminal, a reference signal sent by the base station, where the reference signal is transmitted
  • the time-frequency resource location in the time interval TTI is determined in a preset manner.
  • the receiving module may be further configured to receive a reference signal that is sent by the base station according to the time-frequency resource location, where the time-frequency resource location is the base station according to the preset manner in the transmission time interval TTI. Determine the location of the time-frequency resource of the reference signal.
  • the subcarrier corresponding to the reference signal involved in the embodiment is preset, and on the subcarrier, the reference signal is one of the corresponding symbols in the TTI that satisfies the first preset condition. Or multiple symbols;
  • the first preset condition includes at least one of the following:
  • Manner 1 The symbol is determined according to a transmit antenna port and/or a cell identifier of the cell reference signal CRS;
  • n is greater than or equal to m, where m is a non-negative integer, m is the number of symbols occupied by the PDCCH of the physical downlink control channel or is a preset number of symbols, and the index of the symbol is a time slot.
  • the index k of the subcarrier corresponding to the time-frequency resource location in this embodiment may be multiple, and the following may be combined with the centralized selection in this embodiment, based on the time-frequency location in the foregoing preset manner, and the first mode and the second mode.
  • the embodiments illustrate the invention
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ (1, 5, 10, 11 ⁇ of the subcarrier corresponding to the reference signal is on the carrier
  • the index corresponding to the reference signal n ⁇ (0, 1, 2, 3, 4, 5, 6 ⁇
  • the reference signal corresponds Index n ⁇ 1,2,3,5,6 ⁇
  • the same value of the transmitting antenna port of the CRS mentioned below is similar to the above explanation.
  • the index k ⁇ 0, 5, 6, 10, 11 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal is ⁇ ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ ⁇ 1 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 1, 2, 3 , 5,6 ⁇ :
  • the index k ⁇ 0, 5, 6, 11 ⁇ of the subcarrier corresponding to the reference signal is on the subcarrier, the index corresponding to the reference signal N ⁇ 0,1,2,3,4,5,6 ⁇
  • the index k ⁇ 1,10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 1 , 2,3,5,6 ⁇ :
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponds to the index n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ,
  • the index k ⁇ 1,7 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 2,8 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier is n ⁇ 1, 2, 4 , 5 ⁇
  • the index k ⁇ ⁇ 4, 10 ⁇ of the subcarrier corresponding to the reference signal, on the subcarrier the index corresponding to the reference signal n ⁇ 0, 1, 2, 3, 4, 5 ⁇ ;
  • the method may be implemented as follows: The symbol corresponding to the reference signal is one or more symbols in the TTI that have the smallest index that satisfies the first preset condition.
  • the method for determining the time-frequency resource location of the reference signal in the transmission time interval TTI in the preset manner in the step S102 in this embodiment may be implemented in the following manner in another optional implementation manner of this embodiment.
  • the symbol corresponding to the reference signal is one or more symbols in the TTI that meet the second preset condition.
  • the subcarrier corresponding to the reference signal is determined according to the transmit antenna port and/or the cell identifier of the CRS;
  • the second preset condition includes at least one of the following: the symbol is determined according to the transmit antenna port and/or the cell identifier of the CRS; the index n of the symbol satisfies: n ⁇ m, where m is a non-negative integer, and m is a physical downlink control channel PDCCH occupation The number of symbols or the preset number of symbols, if the reference signal corresponds to the subcarrier index k ⁇ ⁇ 2, 5, 8, 11 ⁇ , for normal CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5 , 6 ⁇ , for the extended CP, n ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • an optional implementation manner of determining a frequency domain location of a symbol according to a transmit antenna port and/or a cell identifier of the CRS in this embodiment includes at least one of the following:
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 1,2,4,5,7,8,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k 0,2,3,5,6,8,9,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal is k ⁇ 0, 1, 3, 4,5,6,7,9,10,11 ⁇ ;
  • the index of the subcarrier corresponding to the reference signal k ⁇ 0 , 1, 3, 4, 6, 7, 9, 10 ⁇ .
  • the symbol corresponding to the reference signal mentioned above is one or more symbol modes in the TTI that meet the second preset condition, and may be implemented by: the symbol corresponding to the reference signal is an index that satisfies the second preset condition in the TTI. The smallest one or more symbols.
  • step S102 and step S104 in this embodiment there is an overlap of one or more symbols between adjacent TTIs involved in the embodiment, wherein the reference signal of the TTI is located in one or more of the overlapping symbols.
  • the index corresponding to the time-frequency resource is n ⁇ 2, 3, 5, 6 ⁇ ;
  • the index corresponding to the time-frequency resource is n ⁇ 2, 4, 5 ⁇ , where The symbol corresponding to the reference signal is one or more symbols with the smallest index.
  • the granularity of the frequency domain resource allocation is 12 ⁇ y subcarriers, where y is an integer greater than 1.
  • the number of REs occupied by the reference signal is one of 1, 2, 3, and 4, wherein the RE is in the frequency domain. It is continuous.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a design method of a DMRS with a TTI of 0.5 ms is provided, and is not limited to being used for DMRS in a specific practical application.
  • the existing DMRS location is relatively backward, which is not conducive to the UE processing delay reduction.
  • One way is to advance the location of the DMRS. Since the DMRS is UE specific, changing the location of the DMRS does not affect the legacy UE. By advancing the location of the DMRS, the UE can be made to perform channel estimation and decoding in time.
  • the advancement of the DMRS location should be considered not to conflict with the location of the CRS.
  • the location of the DMRS needs to be satisfied not to conflict with the CRS.
  • Several methods for determining the location of the DMRS are given below.
  • the following method in the normal CP, there are seven OFDM symbols in one slot, and the indexes are 0, 1, ..., and 6, respectively, in chronological order.
  • the CP is extended, there are six OFDM symbols in one slot, and the indexes are 0, 1, and integers up to 5 in chronological order.
  • the subcarrier indices within a PRB are 0, 1, and up to 11, respectively, in order of frequency from low to high.
  • FIG. 3 is a schematic diagram of a time-frequency resource location of an existing DMRS under a normal CP according to an alternative embodiment of the present invention.
  • the RE of the oblique line portion corresponds to the antenna ports 7, 8, 11, and 13.
  • the RE of the trellis portion is the time-frequency resource corresponding to the antenna ports 9, 10, 12, and 14.
  • FIG. 4 is a schematic diagram of a position after shifting an existing DMRS time domain according to an alternative embodiment of the present invention. As shown in FIG.
  • the RE of the color deepening portion is a time-frequency resource corresponding to the CRS.
  • the number of antenna ports of the CRS is 4. Since the time-frequency resource location of the CRS is determined by the cell identity, the frequency domain resource location of the DMRS is also determined by the cell identity.
  • the time-frequency resource location of the DMRS may be determined according to the maximum number of antenna ports. As shown in FIG. 2, regardless of the actual number of antenna ports of the CRS, the time domain of the DMRS is determined according to the number of antenna ports of the CRS.
  • the time-frequency resource location of the DMRS may be determined according to the actual number of antenna ports of the CRS. For example, when the actual number of antenna ports of the CRS is 2, FIG. 5 is a schematic diagram of a time-frequency resource location of the DMRS according to an alternative embodiment of the present invention. As shown in FIG. 5, the CP is a normal CP.
  • the number of symbols occupied by the DMRS is preset, and is not limited to 2 in the existing LTE, and the number of symbols corresponding to different subcarriers may also be different, for example, some subcarriers are 1, some The carrier is 2, but the symbols of the DMRS on each subcarrier are the one or more symbols with the smallest index in this TTI except for the symbols occupied by the CRS.
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0,1,5,6,10,11 ⁇ ,
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index k ⁇ 1, 5, 10, 11 ⁇ of the subcarrier corresponding to the DMRS is on the subcarrier
  • the index corresponding to the DMRS is n ⁇ 0,1,2,3,4,5,6 ⁇ . If the two symbols of the smallest index are taken as the DMRS, the symbol 0 can be taken.
  • the two symbols of the smallest index are taken as DMR3, then Symbol 0 and symbol 1, if the index k ⁇ 0,6 ⁇ of the subcarrier corresponding to the DMRS, on the subcarrier, there is a CRS on the first two symbols, and the DMRS cannot be transmitted, then on the subcarrier, the DMRS Corresponding index n ⁇ ⁇ 2, 3, 5, 6 ⁇ , if the two symbols of the smallest index are taken as DMRS, then symbol 2 and symbol 3 can be taken;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0, 5, 6, 10, 11 ⁇ , then on the subcarrier, the DMRS corresponds to Index n ⁇ 0,1,2,3,4,5,6 ⁇ ; if the index of the subcarrier corresponding to the DMRS is k ⁇ 1 ⁇ , then on the subcarrier, the index corresponding to the DMRS is n ⁇ 1 , 2, 3, 5, 6 ⁇ ;
  • the index k ⁇ 0, 5, 6, 11 ⁇ of the subcarrier corresponding to the DMRS the index corresponding to the DMRS on the subcarrier N ⁇ 0,1,2,3,4,5,6 ⁇
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 1,10 ⁇ , then on the subcarrier, the index corresponding to the DMRS is n ⁇ 1 , 2, 3, 5, 6 ⁇ ;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0, 1, 6, 10 ⁇ , on the subcarrier, the index corresponding to the DMRS is n. ⁇ 0,1,2,3,4,5,6 ⁇
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 5,11 ⁇ , then on the subcarrier, the index corresponding to the DMRS is n ⁇ 1, 2,3,5,6 ⁇ ;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 1, 4, 7, 10 ⁇ ;
  • the manner of determining a symbol according to a transmit antenna port and/or a cell identifier of the CRS includes at least one of the following;
  • the index k ⁇ ⁇ 1, 4, 7, 10 ⁇ of the subcarrier corresponds to the index n ⁇ ⁇ 0, 1, 2, 3, 4, 5 ⁇ ,
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 1,7 ⁇
  • the index corresponding to the DMRS is n ⁇ 1, 2, 4, 5 ⁇
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 4, 10 ⁇ , then on the subcarrier, the DMRS corresponds to Index n ⁇ 0,1,2,3,4,5 ⁇ ;
  • the index of the subcarrier corresponding to DMR5 is k ⁇ 2, 5, 8, 11 ⁇ ;
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • DMRSDMRS On the subcarrier, DMRSDMRS, on the subcarrier, the index corresponding to the DMRS is n ⁇ 2, 4, 5 ⁇ .
  • the frequency domain location of the DMRS is a preset location, and is not limited to the frequency domain location of the DMRS in the existing LTE.
  • the frequency domain position of the DMRS is unchanged, and the time domain position is moved to the symbol without the CRS.
  • the time-frequency resource location of the DMRS may be determined according to the maximum number of antenna ports, or the time-frequency resource location of the DMRS may be determined according to the actual number of antenna ports of the CRS.
  • the symbols #2, 3, 5, and 6 can be selected.
  • symbols 2 and 3 can be selected.
  • the symbols that can be selected are symbols #2, 4, 5; preferably, symbols #2, 4 can be selected.
  • Figure 6 is based on this ALTERNATIVE EMBODIMENT OF THE INVENTION In the related art, the frequency domain position of the DMRS is unchanged, and the time domain position is moved to the symbol without the symbol of the CRS.
  • the frequency domain location of the DMRS is a preset location, and is not limited to the frequency domain location of the DMRS in the existing LTE.
  • the number of symbols occupied by the DMRS is preset, and is not limited to 2 in the existing LTE, and the number of symbols corresponding to different subcarriers may also be different, for example, some subcarriers are 1, some The carrier is 2, but there is no CRS on the symbol where the DMRS is located.
  • FIG. 7 is a schematic diagram of moving a DMRS in the related art to the foremost two symbols, where the frequency domain is located at a location outside the CRS, according to an alternative embodiment of the present invention, when the antenna port of the CRS is 4, the first two There are CRSs on the symbols, so you need to bypass the RE where the CRS is located.
  • the manner of determining the symbol according to the transmit antenna port and/or the cell identifier of the CRS includes at least one of the following:
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 ⁇ :
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 1. , 2, 4, 5, 7, 8, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0, 2, 3, 4, 5, 6, 8, 9, 10, 11 ⁇ ;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0. , 2,3,5,6,8,9,11 ⁇ ;
  • the index of the subcarrier corresponding to the DMRS is k ⁇ 0,1,3,4,5,6,7,9,10,11 ⁇ ;
  • the number of symbols occupied by the DMRS is preset, and is not limited to 2 in the existing LTE, and the number of symbols corresponding to different subcarriers may also be different, for example, some subcarriers are 1, some The carrier is 2, but the symbols of the DMRS on each subcarrier are the one or more symbols that are indexed the smallest in this TTI.
  • the starting position of the DMRS may also be affected by the PDCCH region, that is, the time domain location of the DMRS should be outside the symbol where the PDCCH is located.
  • the number of symbols can be designed by a preset number of symbols, for example, the DMRS is designed according to the maximum number of PDCCH symbols, that is, the time domain position of the DMRS is outside the number of symbols of the largest PDCCH symbol, for example, for a system bandwidth greater than 10 PRBs, The PDCCH symbol is at most three, and the starting position of the DMRS is on the fourth symbol and the following symbols.
  • the DMRS may be designed according to the actual number of PDCCH symbols. For example, the actual number of PDCCH symbols is 1, and then the second symbol of the start position of the DMRS and the subsequent symbols.
  • FIG. 8 is a schematic diagram of a symbol having the smallest index other than the RE where the CRS is located outside the preset number of symbols or the PDCCH symbol according to an alternative embodiment of the present invention, as shown in FIG. The scenario, the number of antenna ports of the CRS is 4. The number of PDCCH symbols is 1, and the DMRS in FIG. 8 is on a symbol other than the actual PDCCH symbol.
  • the time-frequency resource location of the DMRS may be determined according to the maximum number of antenna ports.
  • the time-frequency resource location of the DMRS may be determined according to the actual number of antenna ports of the CRS.
  • the manner described by the mathematical formula is similar to the method 1 in the case of odd slots, except that the DMRS is on the symbol of the PDCCH symbol or a preset number of symbols.
  • the frequency domain position of the existing DMRS is unchanged, and the time domain position is moved to a preset number of symbols or symbols without CRS outside the PDCCH symbol, and the number of PDCCH symbols is the maximum number of PDCCH symbols, or is the actual PDCCH symbol. number.
  • the time-frequency resource location of the DMRS may be determined according to the maximum number of antenna ports, or the time-frequency resource location of the DMRS may be determined according to the actual number of antenna ports of the CRS.
  • the existing DMRS is moved to a preset number of symbols or the first two symbols other than the PDCCH symbol, and the frequency domain position changes.
  • the number of PDCCH symbols is the largest number of PDCCH symbols, or the actual number of PDCCH symbols.
  • CRS The time-frequency resource location is determined by the cell identity, so the frequency domain resource location of the DMRS is also determined by the cell identity.
  • the DMRS configurations of the parity slots may be the same, such as in the manner of even slots.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a design method of DMRS when the TTI is 3 symbols or 4 symbols is given.
  • FIG. 9 is a schematic diagram 1 of a definition of a TTI according to an alternative embodiment of the present invention. As shown in FIG. 9, the method provided in this embodiment is not limited to the definition method of the TTI.
  • the DMRS is located in TTIs #1 and 3.
  • TTIs #1 and 3 the time-frequency resource positions occupied by the DMRS are determined in three manners similar to those in Embodiment 1, as shown in FIG. In FIG. 9, the indexes of the symbols occupied by TTIs #1 and 3 are all 3, 4, and 5.
  • the DMRS is the first two symbols in the TTI in the time domain, and the frequency domain is Subcarriers other than CRS.
  • TTI#1 may be related to the number of PDCCH symbols. If the PDCCH symbol includes the first symbol of TTI#1, the time domain position of the DMRS shall be on a symbol other than the PDCCH symbol, and the above-mentioned even number The time slots are similar.
  • TTI #0 and 2 may be demodulated by CRS
  • TTIs #1 and 3 may be demodulated by DMRS
  • the locations of DMRSs of TT#1 and 3 may also be different.
  • the overhead of the DMRS is not increased, and it can be ensured that each TTI has a reference signal that can be demodulated.
  • there may be DMRS in each TTI and the method for determining the location of the DMRS is the three methods in the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a design method of a DMRS when the TTI is 2 symbols or 3 symbols is given.
  • FIG. 10 is a schematic diagram 2 of a definition of a TTI according to an alternative embodiment of the present invention.
  • each time slot is divided into three TTIs, and the number of symbols of the TTI in FIG. 10 is 2, 2, and 3, and may also be three. , 2, 2, or 2, 3, 2.
  • the method given in this embodiment is not limited to the definition method of such a TTI.
  • the number of ports of the CRS in Figure 10 is 4. It is assumed that the PDCCH only occupies the first two symbols.
  • FIG. 11 is a schematic diagram 3 of a definition of a TTI according to an alternative embodiment of the present invention.
  • DMRS is in TTI #1 and 4, TTI #0, 2, 3, 5 are demodulated by CRS, and 1, 4 are demodulated by DMRS.
  • DMRS is in TTI #1, 2, 4, and 5, TTI #0, 3 is demodulated by CRS, and 1, 2, 4, and 5 are demodulated by CRS/DMRS.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 12 is a schematic diagram of a method for designing a DMRS according to an alternative embodiment of the present invention. As shown in FIG. 12, symbols 0, 1, 4, 7, 8, and 11 have CRS symbols, and are demodulated by CRS.
  • Symbols 3, 6, 10, and 13 have DMRS symbols and are demodulated by DMRS.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the DMRS may conflict with other reference signals configured in the system.
  • the eNB may avoid scheduling the DMRS demodulated UE, or DMRS on the conflicting RE, or CSI on the conflicting RE. RS.
  • the UE may be sent on the PRB outside the bandwidth where the PRS is located, or if a collision occurs, the DMRS may be deleted on the conflicting RE or the PRS may be deleted on the conflicting RE.
  • FIG. 13 is a schematic diagram 4 of the definition of the TTI according to an alternative embodiment of the present invention, as shown in FIG.
  • An uplink time slot is divided into two TTIs, which are TTI #0 and 1, respectively. There is a symbol overlap between TTI #0 and 1. For these two TTIs, the DMRS is on this overlapping symbol.
  • the DMRSs of the two UEs of the TTIs #0 and 1 may be orthogonal to avoid interference of the DMRSs of the two TTIs, for example,
  • the DMRSs of the two TTIs are made orthogonal.
  • the resources occupied by the PUSCHs of the UEs scheduled by the preceding and following TTI #0 and 1 should be the same.
  • the end of the DMRS bit will affect the processing delay. If the eNB's processing capability is considered strong, this The impact can be ignored.
  • TTI 13 is a scenario of a normal CP.
  • an uplink slot has 6 OFDM symbols, and can also be divided into two TTIs, which are TTI#0 and 1, respectively.
  • TTI#0 can be the first three symbols, TTI#. 1 may be the last 4 symbols; or, TTI#0 may be the first 4 symbols, TTI#1 may be the last 3 symbols, and DMRS may be transmitted on the overlapping symbols.
  • the frequency domain resource allocation granularity of the UE may be increased, that is, more than 12 subcarriers in the frequency domain. That is, 12 ⁇ k subcarriers, and k is an integer greater than 1. For example, k is equal to 1, 2, 3, 4, 5, and so on.
  • the frequency domain resource allocation granularity is 24 subcarriers. That is, each resource allocated to the UE is 0.5 ms in the time domain and an integer multiple of 24 subcarriers in the frequency domain.
  • the frequency domain resource allocation granularity may also change with time, for example, a system of 0.5 ms TTI, the frequency domain resource allocation granularity of the odd time slots may be 12 subcarriers, and the frequency domain resource allocation granularity of the even time slots may be 24 subcarriers.
  • the frequency domain resource allocation granularity may be determined by the size of the TTI, and the frequency domain resource allocation granularity may be, for example, 3 symbols or 4 symbols for the TTI in the second embodiment, and the frequency domain resource allocation when the TTI is 3 symbols.
  • the granularity is 4 ⁇ 12 subcarriers; when the TTI is 4 symbols, the frequency domain resource allocation granularity is 3 ⁇ 12 subcarriers.
  • the eNB may also configure the granularity of the frequency domain resource allocation for the UE.
  • the frequency domain density of the reference signal in the 12 REs included in one PRB may be the same as the existing density, that is, there are 3 REs or 4
  • the RE is used to transmit the reference signal, or it may be more sparse. For example, within 12 REs, there are 1 or 2 REs for transmitting the reference signal.
  • the existing time domain spreading method for performing DMRS multiplexing between UEs may no longer be suitable, so that spreading in the frequency domain may be considered, and the frequency domain density of the reference signal may be 2 or 4 Preferably, two or four consecutive REs are occupied in the frequency domain.
  • the DMRSs of different UEs are spread between 2 or 4 REs in the frequency domain.
  • the RE where the reference signal is located should try to avoid the location of the existing CSI-RS to avoid conflict with the existing CRI-RS.
  • the DMRS transmitted to the UE may be the same as the port of the CRS, further increasing the density of each port of the CRS, for example, for a scene with high speed or poor channel.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps;
  • S2 Send a reference signal according to a time-frequency resource location.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the time-frequency resource location of the reference signal is determined in the transmission time interval TTI according to a preset manner, and the reference signal is sent according to the time-frequency resource location, so that the DMRS position can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种参考信号的发送方法及装置、接收方法及装置,其中,该发送方法包括;按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;根据时频资源位置发送参考信号。通过本发明,解决了相关技术中由于DMRS位置比较靠后而导致用户设备处理时延较高的问题,降低了UE处理的时延。

Description

参考信号的发送方法及装置、接收方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种参考信号的发送方法及装置、接收方法及装置。
背景技术
移动互联网和物联网的快速发展引发了数据流量的爆发式增长和多样化、差异化业务的广泛兴起。5G作为新一代的移动通信技术,相对4G将支持更高速率(Gbps)、巨量链接(1M/Km2)、超低时延(1ms)、更高的可靠性、百倍的能量效率提升等以支撑新的需求变化。其中,超低时延作为5G技术的关键指标,直接影响着如车联网、工业自动化、远程控制、智能电网等时延受限业务的发展。当前一系列关于5G时延降低的标准研究正在逐步推进。
传输时间间隔(Transmission Time Interval,简称为TTI)降低作为当前时延降低的重要研究方向,旨在将现在1ms长度的TTI降低为0.5ms甚至1-2个正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号的长度,成倍的降低了最小调度时间,进而在不改变帧结构情况下也能成倍的降低单次传输时延。
对于TTI降低为0.5ms的系统,如果沿用相关技术中的解调参考信号(De Modulation Reference Signal,简称为DMRS)方式,现有的DMRS位置比较靠后,导致用户设备(User Equipment,简称为UE)处理时延较高。而且当TTI降到0.5ms以下时,可能会导致某些TTI没有DMRS。
针对相关技术中的上述问题,目前尚未存在有效的解决方案。
发明内容
本发明实施例提供了一种参考信号的发送方法及装置、接收方法及装置,以至少解决相关技术中由于DMRS位置比较靠后而导致用户设备处理时延的问题。
根据本发明实施例的一个方面,提供了一种参考信号的发送方法,包括:按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;根据所述时频资源位置发送所述参考信号。
可选地,所述参考信号在一个PRB中对应的子载波是预设的,在所述子载波上,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号;所述第一预设条件包括以下至少之一:所述符号根据小区参考信号CRS的发送天线端口和/或小区标识确定:所述符号的索引n满足:n大于或等于m,其中,m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常循 环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
可选地,所述参考信号对应的子载波的索引k∈{0,1,5,6,10,11};根据所述CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000001
时,其中,
Figure PCTCN2016000599-appb-000002
为物理层小区标识;
在所述CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果所述参考信号对应的子载波的索引k∈{1,5,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{0,6},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};在所述CRS的发送天线端口p=0、p=1、p=2、以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{1,5,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{0,6},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000003
时,
在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{1},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
在所述CRS的发送天线端口为p=0以及p=1的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{1,10},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{1,10},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000004
时,
在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{0,1,5,6,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};
在所述CRS的发送天线端口为p=0以及p=1情况下,如果所述参考信号对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{5,11},则在所述子载波上,所述参 考信号对应的索引n∈{1,2,3,5,6};
在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{5,11},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
可选地,所述参考信号对应的子载波的索引k∈{1,4,7,10};在所述子载波上,根据CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000005
Figure PCTCN2016000599-appb-000006
mod3=2时,则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000007
时,
在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{1,7},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};如果所述参考信号对应的子载波的索引k∈{4,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5};
在所述CRS的发送天线端口为p=0以及p=1的情况下,所述参考信号对应的子载波的索引
Figure PCTCN2016000599-appb-000008
则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};
在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,所述参考信号对应的子载波的索引k∈{1,4,7,10},则在所述子载波上,所述参考信号对应的索引n∈{2,4,5}。
可选地,所述参考信号对应的子载波的索引k∈{2,5,8,11};在所述子载波上,根据所述CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000009
或者
Figure PCTCN2016000599-appb-000010
时,如果所述参考信号对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5};
Figure PCTCN2016000599-appb-000011
时,
在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{2,8},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};如果所述参考信号对应的子载波的索引k∈{4,10},则在所述子载波上,所述参考信号对应的索引n∈0,1,2,3,4,5};
在所述CRS的发送天线端口为p=0以及p=1的情况下,所述参考信号对应的子载波的索 引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};
在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,所述参考信号对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{2,4,5}。
可选地,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号,包括:所述参考信号对应的符号为所述TTI中满足所述第一预设条件的索引最小的一个或多个符号。
可选地,所述按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置包括:所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号,在所述符号上,所述参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;所述第二预设条件为:所述符号根据CRS的发送天线端口和/或小区标识确定;所述符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
可选地,根据CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000012
时,
在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号在一个PRB中对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
Figure PCTCN2016000599-appb-000013
时,
在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
Figure PCTCN2016000599-appb-000014
时,
在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{0,1,3,4,5,6,7,9,10,11};
在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10};
其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
可选地,所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号包括:所述参考信号对应的符号为所述TTI中满足所述第二预设条件的索引最小的一个或多个符号。
可选地,在所述TTI中,对于正常循环前缀CP,所述时频资源对应的符号索引n∈{2,3,5,6};对于扩展循环前缀CP,所述时频资源对应的符号索引n∈{2,4,5}。
可选地,当所述TTI的长度是一个时隙,对于正常CP,所述时频资源对应的符号索引n∈{2,3},所述时频资源在一个PRB中对应的子载波的索引k∈{0、1、5、6、10、11};
其中,所述TTI中的符号索引为0、1、2、3、4、5、6,其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
可选地,所述参考信号对应的符号为所述TTI中索引最小的一个或者多个符号。
可选地,相邻的所述TTI之间有一个或多个符号的重叠。
可选地,所述TTI的参考信号位于所述重叠的符号中的一个或者多个符号上。
可选地,在所述TTI中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。
可选地,在包含所述参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,所述参考信号占用的RE数为1、2、3、4其中之一。
可选地,所述RE在频域上是连续的。
根据本发明的再一个方面,提供了一种参考信号的接收方法,包括;终端接收基站根据时频资源位置发送的参考信号,其中,所述时频资源位置为所述基站按照预设方式在传输时间间隔TTI中确定所述参考信号的时频资源位置。
可选地,所述参考信号对应的子载波是预设的,在所述子载波上,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号;所述第一预设条件包括以下至少之一;所述符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;所述符号的索引n满足:n大于或等于m,其中,m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
可选地,所述按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置包括:所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号,在所述符号上,所述参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;所述第二预设条件为:所述符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常CP, n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
可选地,包括:在所述TTI中,对于正常循环前缀CP,所述时频资源对应的索引n∈{2,3,5,6};对于扩展循环前缀CP,所述时频资源对应的索引n∈{2,4,5}。
根据本发明的再一个方面,提供了一种参考信号的发送装置,包括:确定模块,设置为按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;发送模块,设置为根据所述时频资源位置发送所述参考信号。
根据本发明实施例的又一个方面,提供了一种参考信号的接收装置,应用于终端侧,包括:接收模块,设置为接收基站发送的参考信号,其中,所述参考信号在传输时间间隔TTI中的时频资源位置按照预设的方式确定。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码;
按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;
根据所述时频资源位置发送所述参考信号。
通过本发明实施例,采用按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置,并根据时频资源位置发送参考信号,从而可以改变DMRS位置,进而解决了相关技术中由于DMRS位置比较靠后而导致用户设备处理时延较高的问题,降低了UE处理的时延。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的参考信号的发送方法的流程图;
图2是根据本发明实施例的参考信号的发送装置的结构框图;
图3是根据本发明可选实施例的在正常CP下现有的DMRS的时频资源位置的示意图;
图4是根据本发明可选实施例将将现有的DMRS时域平移之后的位置示意图;
图5是根据本发明可选实施例DMRS的时频资源位置示意图;
图6是根据本发明可选实施例相关技术中的DMRS的频域位置不变,时域位置移到没有CRS的符号上的示意图;
图7是根据本发明可选实施例的将相关技术中的DMRS移到最前面的两个符号,频域位于CRS之外的位置上的示意图;
图8是根据本发明可选实施例时域位置为预设数目的符号或者PDCCH符号之外的CRS 所在的RE之外的索引最小的符号上的示意图;
图9是根据本发明可选实施例的TTI的定义示意图一;
图10是根据本发明可选实施例的TTI的定义示意图二;
图11是根据本发明可选实施例的TTI的定义示意图三;
图12是根据本发明可选实施例的DMRS的设计方法的示意图;
图13是根据本发明可选实施例的TTI的定义示意图四。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种参考信号的发送方法,图1是根据本发明实施例的参考信号的发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102:按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;
步骤S104:根据时频资源位置发送参考信号。
通过上述步骤S102至步骤S104可知,采用按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置,并根据时频资源位置发送参考信号,从而可以改变DMRS位置,进而解决相关技术中由于DMRS位置比较靠后而导致用户设备处理时延较高的问题,降低了UE处理的时延。
下面将结合本实施例的可选实施方式,举例说明如何通过预设方式确定DMRS位置;
本实施例中的步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的一个可选实施方式中,可以通过如下方式来实现:预设与时频资源位置对应的子载波的位置,也就是说,参考信号对应的子载波是预设的,在子载波上,参考信号是TTI中对应的符号满足第一预设条件的一个或多个符号;
第一预设条件包括以下至少之一:
方式一:符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
方式二:符号的索引n满足:n大于或等于m,其中,m为非负整数,m为1物理下行控制信道PDCCH占用的符号数或为预设的符号数,符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3, 4,5}。
基于上述预设方式中的时频位置,以及方式一和方式二,本实施例中的与时频资源位置对应的子载波的索引k可以是多种,下面结合本实施例中的集中可选实施方式对本发明进行举例说明;
可选实施方式一:
参考信号在一个PRB中对应的子载波的索引k∈{0,1,5,6,10,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之
Figure PCTCN2016000599-appb-000015
mod 3=0时,
在CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
需要说明的是上述CRS的发送天线端口为p=0或者(p=0以及p=1)是指:CRS的发送天线端口有两种情况的取值,一种是天线端口为0,还有一种是天线端口为0和1;而CRS的发送天线端口为p=0、p=1、p=2以及p=3是指:CRS的发送天线端口只有一种情况,即天线端口为0、1、2和3。同样的下述涉及到的CRS的发送天线端口的取值情况和上述解释类似。
Figure PCTCN2016000599-appb-000016
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0以及p=1的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载 波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000017
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,1,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};
在CRS的发送天线端口为p=0以及p=1情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6}:如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{2,3,5,6}。
需要说明的是,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
可选实施方式二:
参考信号在一个PRB中对应的子载波的索引k∈{1,4,7,10};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000018
mod 3=0或
Figure PCTCN2016000599-appb-000019
mod 3=2时,
则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000020
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{1,7},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{2,4,5}。
需要说明的是,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
可选实施方式三:
参考信号在一个PRB中对应的子载波的索引k∈{2,5,8,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000021
mod 3=0或者
Figure PCTCN2016000599-appb-000022
mod 3=1时,如果参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
Figure PCTCN2016000599-appb-000023
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{2,8},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{2,4,5}。
需要说明的是,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
需要说明的是上述的可选实施方式1、2、3三种情况都是本实施例可选实施方式,并不构成对本发明的限定。
此外,对于本实施例中参考信号对应的符号是TTI中满足第一预设条件的一个或多个符号的方式,在本实施例的另一个可选实施方式中,可以通过如下方式来实现;参考信号对应的符号为TTI中满足第一预设条件的索引最小的一个或多个符号。
而对于本实施例中步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的再一个可选实施方式中,可以通过如下方式来实现:参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号,在符号上,参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
第二预设条件包括以下至少之一:符号根据CRS的发送天线端口和/或小区标识确定;符号的索引n满足;n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,如果参考信号对应的子载波的索引k∈{2,5,8,11},对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
基于上述第二预设条件,本实施例中的根据CRS的发送天线端口和/或小区标识确定符号的频域位置的可选实施方式包括以下至少之一:
可选实施方式一:
Figure PCTCN2016000599-appb-000024
mod 3=0时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
可选实施方式二:
Figure PCTCN2016000599-appb-000025
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
可选实施方式三:
Figure PCTCN2016000599-appb-000026
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,5,6,7,9,10,11};
在CRS的发送天线端口(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10}。
需要说明的是上述可选实施方式1、2、3也仅仅是本实施例中可选实施方式,并不构成对本发明的限定。
对于上述涉及到的参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号方式,可以通过如下方式来实现;参考信号对应的符号为TTI中满足第二预设条件的索引最小的一个或多个符号。
在本实施例中的步骤S102和步骤S104中,本实施例中涉及到的相邻的TTI之间有一个或多个符号的重叠,其中,TTI的参考信号位于重叠的符号中的一个或者多个符号上,此外,对于正常CP,时频资源对应的符号索引n∈{2,3,5,6};对于扩展CP,时频资源对应的符号索引n∈{2,4,5},其中,参考信号对应的符号为索引最小的一个或者多个符号。
其中,当TTI的长度是一个时隙,对于正常CP,时频资源对应的符号索引n∈{2,3},时频资源在一个PRB中对应的子载波的索引k∈{0、1、5、6、10、11};其中,TTI中的符号索引为0、1、2、3、4、5、6,其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
另外,在TTI中,在本实施例中的步骤S102和步骤S104中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。以及,在包含参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,参考信号占用的RE数为1、2、3、4其中之一,其中,RE在频域上是连续的。
需要说明的是,上述实施例都是从基站侧进行相应的描述,下面将以接收参考信号的终端侧对本实施例进行相应的描述;
也就是说,本实施例中还提供了一种参考信号的接收方法,该方法的步骤包括:终端接收基站发送的参考信号,其中,参考信号在传输时间间隔TTI中的时频资源位置按照预设的方式确定。
对于该接收方法的步骤,在本实施例的一个可选实施方式中可以通过如下方式来实现:终端接收基站根据时频资源位置发送的参考信号,其中,时频资源位置为基站按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置。
在本实施例的可选实施方式中,本实施例中涉及到的参考信号对应的子载波是预设的,在子载波上,参考信号是TTI中对应的符号满足第一预设条件的一个或多个符号;
第一预设条件包括以下至少之一;
方式一:符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
方式二:符号的索引n满足:n大于或等于m,其中,m为非负整数,m为1物理下行控制信道PDCCH占用的符号数或为预设的符号数,符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
基于上述预设方式中的时频位置,以及方式一和方式二,本实施例中的与时频资源位置对应的子载波的索引k可以是多种,下面结合本实施例中的集中可选实施方式对本发明进行举例说明;
可选实施方式一:
参考信号对应的子载波的索引k∈{0,1,5,6,10,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000027
mod 3=0时,
在CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
需要说明的是,上述CRS的发送天线端口为p=0或者(p=0以及p=1)是指:CRS的发送天线端口有两种情况的取值,一种是天线端口为0,还有一种是天线端口为0和1;而CRS的发送天线端口为p=0、p=1、p=2以及p=3是指:CRS的发送天线端口只有一种情况,即天线端口为0、1、2和3。同样的下述涉及到的CRS的发送天线端口的取值情况和上述解释类似。
Figure PCTCN2016000599-appb-000028
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0以及p=1的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000029
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,1,5,6,10,11}则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6}:
在CRS的发送天线端口为p=0以及p=1情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10}则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{2,3,5,6}。
可选实施方式二:
参考信号对应的子载波的索引k∈{1,4,7,10};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000030
mod 3=0或
Figure PCTCN2016000599-appb-000031
mod 3=2时,
则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000032
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{1,7},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{2,4,5}。
可选实施方式三:
参考信号对应的子载波的索引k∈{2,5,8,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000033
mod 3=0或者
Figure PCTCN2016000599-appb-000034
mod 3=1时,如果参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5}:
Figure PCTCN2016000599-appb-000035
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{2,8},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{2,4,5}。
需要说明的是上述的可选实施方式1、2、3三种情况都是本实施例可选实施方式,并不构成对本发明的限定。
此外,对于本实施例中参考信号对应的符号是TTI中满足第一预设条件的一个或多个符号的方式,在本实施例的另一个可选实施方式中,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第一预设条件的索引最小的一个或多个符号。
而对于本实施例中步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的再一个可选实施方式中,可以通过如下方式来实现;参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号,在符号上,参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
第二预设条件包括以下至少之一:符号根据CRS的发送天线端口和/或小区标识确定;符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,如果参考信号对应的子载波的索引k∈{2,5,8,11},对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
基于上述第二预设条件,本实施例中的根据CRS的发送天线端口和/或小区标识确定符号的频域位置的可选实施方式包括以下至少之一:
可选实施方式一:
Figure PCTCN2016000599-appb-000036
mod 3=0时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
可选实施方式二:
Figure PCTCN2016000599-appb-000037
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11}:
可选实施方式三:
Figure PCTCN2016000599-appb-000038
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,1,3, 4,5,6,7,9,10,11};
在CRS的发送天线端口(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10}。
需要说明的是上述可选实施方式1、2、3也仅仅是本实施例中可选实施方式,并不构成对本发明的限定。
对于上述涉及到的参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号方式,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第二预设条件的索引最小的一个或多个符号。
在本实施例中的步骤S102和步骤S104中,本实施例中涉及到的相邻的TTI之间有一个或多个符号的重叠,其中,TTI的参考信号位于重叠的符号中的一个或者多个符号上,此外,对于正常CP,时频资源对应的索引n∈{2,3,5,6};对于扩展CP,时频资源对应的索引n∈{2,4,5},其中,参考信号对应的符号为索引最小的一个或者多个符号。
另外,在TTI中,在本实施例中的步骤S102和步骤S104中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。以及,在包含参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,参考信号占用的RE数为1、2、3、4其中之一,其中,RE在频域上是连续的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
在本实施例中还提供了一种参考信号的发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的参考信号的发送装置的结构框图,如图2所示,该装置包括:确定模块22,设置为按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;发送模块24,与确定模块22耦合连接,设置为根据时频资源位置发送参考信号。
下面将结合本实施例的可选实施方式,举例说明如何通过预设方式确定DMRS位置;
本实施例中的步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的一个可选实施方式中,可以通过如下方式来实现:预设与时频资源位置对应的子载波的位置,也就是说,参考信号对应的子载波是预设的,在子载波上, 参考信号是TTI中对应的符号满足第一预设条件的一个或多个符号;
第一预设条件包括以下至少之一:
方式一:符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
方式二:符号的索引n满足:n大于或等于m,其中,m为非负整数,m为1物理下行控制信道PDCCH占用的符号数或为预设的符号数,符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
基于上述预设方式中的时频位置,以及方式一和方式二,本实施例中的与时频资源位置对应的子载波的索引k可以是多种,下面结合本实施例中的集中可选实施方式对本发明进行举例说明;
可选实施方式一:
参考信号对应的子载波的索引k∈{0,1,5,6,10,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000039
mod 3=0时,
在CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
需要说明的是,上述CRS的发送天线端口为p=0或者(p=0以及p=1)是指:CRS的发送天线端口有两种情况的取值,一种是天线端口为0,还有一种是天线端口为0和1;而CRS的发送天线端口为p=0、p=1、p=2以及p=3是指:CRS的发送天线端口只有一种情况,即天线端口为0、1、2和3。同样的下述涉及到的CRS的发送天线端口的取值情况和上述解释类似。
Figure PCTCN2016000599-appb-000040
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考 信号对应的子载波的索引k∈{1},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0以及p=1的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000041
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,1,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};
在CRS的发送天线端口为p=0以及p=1情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{2,3,5,6}。
可选实施方式二:
参考信号对应的子载波的索引k∈{1,4,7,10};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000042
mod 3=0或
Figure PCTCN2016000599-appb-000043
mod 3=2时,
则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000044
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{1,7},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{2,4,5}。
可选实施方式三:
参考信号对应的子载波的索引k∈{2,5,8,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000045
mod 3=0或者
Figure PCTCN2016000599-appb-000046
mod 3=1时,如果参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
Figure PCTCN2016000599-appb-000047
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{2,8},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{2,4,5}。
需要说明的是上述的可选实施方式1、2、3三种情况都是本实施例可选实施方式,并不构成对本发明的限定。
此外,对于本实施例中参考信号对应的符号是TTI中满足第一预设条件的一个或多个符号的方式,在本实施例的另一个可选实施方式中,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第一预设条件的索引最小的一个或多个符号。
而对于本实施例中步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的再一个可选实施方式中,可以通过如下方式来实现:参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号,在符号上,参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
第二预设条件包括以下至少之一:符号根据CRS的发送天线端口和/或小区标识确定;符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,如果参考信号对应的子载波的索引k∈{2,5,8,11},对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
基于上述第二预设条件,本实施例中的根据CRS的发送天线端口和/或小区标识确定符号的频域位置的可选实施方式包括以下至少之一:
可选实施方式一:
Figure PCTCN2016000599-appb-000048
mod 3=0时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
可选实施方式二:
Figure PCTCN2016000599-appb-000049
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
可选实施方式三:
Figure PCTCN2016000599-appb-000050
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,5,6,7,9,10,11};
在CRS的发送天线端口(p=0以及p=1)或者(p=0、p=1、p2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10}。
需要说明的是上述可选实施方式1、2、3也仅仅是本实施例中可选实施方式,并不构成对本发明的限定。
对于上述涉及到的参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号方式,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第二预设条件的索引最小的一个或多个符号。
在本实施例中的步骤S102和步骤S104中,本实施例中涉及到的相邻的TTI之间有一个或多个符号的重叠。其中,TTI的参考信号位于重叠的符号中的一个或者多个符号上,此外,对于正常CP,时频资源对应的索引n∈{2,3,5,6};对于扩展CP,时频资源对应的索引n∈{2,4,5},其中,参考信号对应的符号为索引最小的一个或者多个符号。
另外,在TTI中,在本实施例中的步骤S102和步骤S104中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。以及,在包含参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,参考信号占用的RE数为1、2、3、4其中之一,其中,RE在频域上是连续的。
需要说明的是,上述装置实施例都是从基站侧进行相应的描述,下面将从接收参考信号的终端侧进行相应的描述;
也就是说,本实施例还提供了一种参考信号的接收装置,该装置应用于终端侧,该装置包括:接收模块,设置为终端接收基站发送的参考信号,其中,所述参考信号在传输时间间隔TTI中的时频资源位置按照预设的方式确定。
在本实施例的一个可选实施方式中,该接收模块,还可以用于接收基站根据时频资源位置发送的参考信号,其中,时频资源位置为基站按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置。
在本实施例的可选实施方式中,本实施例中涉及到的参考信号对应的子载波是预设的,在子载波上,参考信号是TTI中对应的符号满足第一预设条件的一个或多个符号;
第一预设条件包括以下至少之一:
方式一:符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
方式二:符号的索引n满足:n大于或等于m,其中,m为非负整数,m为1物理下行控制信道PDCCH占用的符号数或为预设的符号数,符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
基于上述预设方式中的时频位置,以及方式一和方式二,本实施例中的与时频资源位置对应的子载波的索引k可以是多种,下面结合本实施例中的集中可选实施方式对本发明进行举例说明;
可选实施方式一:
参考信号对应的子载波的索引k∈{0,1,5,6,10,11}:
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000051
mod 3=0时,
在CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果参考信号对应的子载波的索引k∈(1,5,10,11},则在了载波上,参考信号对应的索引n∈(0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{1,5,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{0,6},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
需要说明的是,上述CRS的发送天线端口为p=0或者(p=0以及p=1)是指:CRS的发送天线端口有两种情况的取值,一种是天线端口为0,还有一种是天线端口为0和1;而CRS的发送天线端口为p=0、p=1、p=2以及p=3是指:CRS的发送天线端口只有一种情况,即天线端口为0、1、2和3。同样的下述涉及到的CRS的发送天线端口的取值情况和上述解释类似。
Figure PCTCN2016000599-appb-000052
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6}:
在CRS的发送天线端口为p=0以及p=1的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6}:
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,5,6,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{1,10},则在子载波上,参考信号对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000053
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{0,1,5,6,10,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};
在CRS的发送天线端口为p=0以及p=1情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果参考信号对应的子载波的索引k∈{0,1,6,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5,6};如果参考信号对应的子载波的索引k∈{5,11},则在子载波上,参考信号对应的索引n∈{2,3,5,6}。
可选实施方式二:
参考信号对应的子载波的索引k∈{1,4,7,10};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000054
mod 3=0或
Figure PCTCN2016000599-appb-000055
mod 3=2时,
则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000056
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{1,7},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,参考信号对应的子载波的索引k∈{1,4,7,10},则在子载波上,参考信号对应的索引n∈{2,4,5}。
可选实施方式三:
参考信号对应的子载波的索引k∈{2,5,8,11};
在该子载波上,根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000057
mod 3=0或者
Figure PCTCN2016000599-appb-000058
mod 3=1时,如果参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{0,1,2,3,4,5};
Figure PCTCN2016000599-appb-000059
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果参考信号对应的子载波的索引k∈{2,8},则在子载波上,参考信号对应的索引n∈{1,2,4,5};如果参考信号对应的子载波的索引k∈{4,10},则在子载波上,参考信号对应的索引n∈0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{1,2,4,5};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,参考信号对应的子载波的索引k∈{2,5,8,11},则在子载波上,参考信号对应的索引n∈{2,4,5}。
需要说明的是上述的可选实施方式1、2、3三种情况都是本实施例可选实施方式,并不构成对本发明的限定。
此外,对于本实施例中参考信号对应的符号是TTI中满足第一预设条件的一个或多个符号的方式,在本实施例的另一个可选实施方式中,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第一预设条件的索引最小的一个或多个符号。
而对于本实施例中步骤S102中的按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置的方式,在本实施例的再一个可选实施方式中,可以通过如下方式来实现;参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号,在符号上,参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
第二预设条件包括以下至少之一:符号根据CRS的发送天线端口和/或小区标识确定;符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,如果参考信号对应的子载波的索引k∈{2,5,8,11},对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
基于上述第二预设条件,本实施例中的根据CRS的发送天线端口和/或小区标识确定符号的频域位置的可选实施方式包括以下至少之一:
可选实施方式一:
Figure PCTCN2016000599-appb-000060
mod 3=0时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
可选实施方式二:
Figure PCTCN2016000599-appb-000061
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
可选实施方式三:
Figure PCTCN2016000599-appb-000062
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,则参考信号对应的子载波的索引k∈{0,1,3, 4,5,6,7,9,10,11};
在CRS的发送天线端口(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10}。
需要说明的是上述可选实施方式1、2、3也仅仅是本实施例中可选实施方式,并不构成对本发明的限定。
对于上述涉及到的参考信号对应的符号是TTI中满足第二预设条件的一个或者多个符号方式,可以通过如下方式来实现:参考信号对应的符号为TTI中满足第二预设条件的索引最小的一个或多个符号。
在本实施例中的步骤S102和步骤S104中,本实施例中涉及到的相邻的TTI之间有一个或多个符号的重叠,其中,TTI的参考信号位于重叠的符号中的一个或者多个符号上,此外,对于正常CP,时频资源对应的索引n∈{2,3,5,6};对于扩展CP,时频资源对应的索引n∈{2,4,5},其中,参考信号对应的符号为索引最小的一个或者多个符号。
另外,在TTI中,在本实施例中的步骤S102和步骤S104中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。以及,在包含参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,参考信号占用的RE数为1、2、3、4其中之一,其中,RE在频域上是连续的。
下面结合本发明的可选实施例对本发明进行举例说明:
实施例一:
本实施例中,提供了一种TTI为0.5ms时的DMRS的设计方法,在具体的实际应用中不限于用于DMRS。
对于short TTI,如果沿用现有的DMRS方式,现有的DMRS位置比较靠后,不利于UE处理时延的降低。一种方式是将DMRS的位置提前,由于DMRS是UE specific的,改变DMRS的位置并不会对legacy UE造成影响。通过提前DMRS的位置,可以使得UE及时做信道估计和解码。
DMRS位置的提前应考虑不和CRS的位置冲突。
下面分奇数时隙和偶数时隙来进行举例说明;
●奇数时隙,即每个现有LTE子帧的第二个时隙
DMRS的位置需要满足不和CRS冲突,下面给出几种DMRS的位置的确定方法。在以下的方法中,在正常CP时,一个时隙内的OFDM符号有7个,索引按照时间顺序分别是0、1、……、6。在扩展CP时,一个时隙内的OFDM符号有6个,索引按照时间顺序分别是0、1、直到5的整数。一个PRB内的子载波索引按照频率从低到高的顺序分别是0、1、直到11。
方式一:
将现有的DMRS的频域位置不变,时域位置平移到CRS所在的RE之外的索引最小的符号上。图3是根据本发明可选实施例的在正常CP下现有的DMRS的时频资源位置的示意图,如图3所示,斜线部分的RE为天线端口7、8、11、13对应的时频资源,格型部分的RE为天线端口9、10、12、14对应的时频资源。图4是根据本发明可选实施例将将现有的DMRS时域平移之后的位置示意图,如图4所示,颜色加深部分的RE为CRS对应的时频资源。CRS的天线端口数为4。由于CRS的时频资源位置是由小区标识确定的,因此DMRS的频域资源位置也由小区标识确定。
如图4所示,其中,4a、4b和4c分别为
Figure PCTCN2016000599-appb-000063
mod 3=0、
Figure PCTCN2016000599-appb-000064
mod 3=1、
Figure PCTCN2016000599-appb-000065
mod 3=2的DMRS的位置,其中,“mod”为取模运算。
可选地,DMRS的时频资源位置可以根据最大的天线端口数确定,如图2中,不管实际的CRS的天线端口数是多少,都按照CRS的天线端口数为4来确定DMRS的时域资源位置;
或者,可以按照CRS的实际天线端口数来确定DMRS的时频资源位置,比如,当CRS的实际天线端口数是2时,图5是根据本发明可选实施例DMRS的时频资源位置示意图,如图5所示,该CP为正常CP。
可选地,DMRS占用的符号数为预设的即可,不限于为现有LTE中的2,并且,不同子载波对应的符号数也可以不同,比如某些子载波为1,某些子载波为2,但是DMRS在每个子载波上的符号都是在这个TTI中除了CRS占用的符号之外的索引最小的一个或者多个符号。
用数学公式将上述内容描述如下。对于正常CP,DMRS对应的子载波的索引k∈{0,1,5,6,10,11},
根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000066
mod 3=0时,
在CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果DMRS对应的子载波的索引k∈{1,5,10,11},在所述子载波上,没有CRS,则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6},如果取最小索引的两个符号作为DMRS,那么可以取符号0和符号1,如果DMRS对应的所述子载波的索引k∈{0,6},在所述子载波上,第一个符号上有CRS,不能传输DMRS,则在所述子载波上,DMRS对应的索引n∈{1,2,3,5,6},如果取最小索引的两个符号作为DMRS,那么可以取符号1和符号2;
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果DMRS对应的子载波的索引k∈{1,5,10,11},在所述子载波上,没有CRS,则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6},如果取最小索引的两个符号作为DMR3,那么可以取符号0和符号1,如果DMRS对应的子载波的索引k∈{0,6},在所述子载波上,前两个符号上有CRS,不能传输DMRS,则在所述子载波上,DMRS对应的索引n∈{2,3,5,6},如果取最小索引的两个符号作为DMRS,那么可以取符号2和符号3;
Figure PCTCN2016000599-appb-000067
mod 3=1时,
与上述类似,在CRS的发送天线端口为p=0的情况下,如果DMRS对应的子载波的索引k∈{0,5,6,10,11},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};如果DMRS对应的子载波的索引k∈{1},则在所述子载波上,DMRS对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0以及p=1的情况下,如果DMRS对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};如果DMRS对应的子载波的索引k∈{1,10},则在所述子载波上,DMRS对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果DMRS对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};如果DMRS对应的子载波的索引k∈{1,10},则在所述子载波上,DMRS对应的索引n∈{2,3,5,6};
Figure PCTCN2016000599-appb-000068
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,如果DMRS对应的子载波的索引k∈{0,1,5,6,10,11}则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};
在CRS的发送天线端口为p=0以及p=1情况下,如果DMRS对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};如果DMRS对应的子载波的索引k∈{5,11},则在所述子载波上,DMRS对应的索引n∈{1,2,3,5,6};
在CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果DMRS对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5,6};如果DMRS对应的子载波的索引k∈{5,11},则在所述子载波上,DMRS对应的索引n∈{2,3,5,6}。
对于扩展CP,DMRS对应的子载波的索引k∈{1,4,7,10};
根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一;
Figure PCTCN2016000599-appb-000069
mod 3=0或
Figure PCTCN2016000599-appb-000070
mod 3=2时,
则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
Figure PCTCN2016000599-appb-000071
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,如果DMRS对应的子载波的索引k∈{1,7}, 则在所述子载波上,DMRS对应的索引n∈{1,2,4,5};如果DMRS对应的子载波的索引k∈{4,10},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5};
在CRS的发送天线端口为p=0以及p=1的情况下,如果DMRS对应的子载波的索引k∈{1,4,7,10},则在所述子载波上,DMRS对应的索引n∈{1,2,4,5};
在CRS的发送天线端口p=0、p=1、p=2、以及p=3情况下,如果DMRS对应的子载波的索引k∈{1,4,7,10}DMRS则在所述子载波上DMRSDMRS,则在所述子载波上,DMRS对应的索引n∈{2,4,5}。
或者,对于扩展CP,DMR5对应的子载波的索引k∈{2,5,8,11};
根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000072
mod 3=0或者
Figure PCTCN2016000599-appb-000073
mod 3=1时,如果DMRS对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,DMRS对应的索引n∈{0,1,2,3,4,5};
Figure PCTCN2016000599-appb-000074
mod 3=2时,
在CRS的发送天线端口p=0的情况下,如果DMRS对应的子载波的索引k∈{2,8},则在所述子载波上,DMRS对应的索引n∈{1,2,4,5};如果DMRS对应的子载波的索引k∈{4,10},则在所述子载波上,DMRS对应的索引n∈0,1,2,3,4,5};
在CRS的发送天线端口p=0、以及p=1的情况下,如果DMRS对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,DMRS对应的索引n∈{1,2,4,5};
在CRS的发送天线端口p=0、p=1、p=2、以及p=3的情况下,如果DMRS对应的子载波的索引k∈{1,4,7,10}DMRS则在所述子载波上DMRSDMRS,则在所述子载波上,DMRS对应的索引n∈{2,4,5}。
可选地,DMRS的频域位置为预设的位置即可,也不局限于现有LTE中的DMRS的频域位置。比如DMRS的频域位置为子载波#2,则当
Figure PCTCN2016000599-appb-000075
mod 3=0时,在子载波#2上没有CRS,则DMRS的时域资源可以为符号0和符号1。
方式二:
相关技术中的DMRS的频域位置不变,时域位置移到没有CRS的符号上。
可选地,DMRS的时频资源位置可以根据最大的天线端口数确定,或者,可以按照CRS的实际天线端口数来确定DMRS的时频资源位置。
比如对于正常CP,当CRS的天线端口数为4时,可以选择的是符号#2、3、5、6。优选地,为了减少解码时延,可以选用符号2、3。对于扩展CP,当CRS的天线端口数为4时,可以选择的符号是符号#2、4、5;优选地,可以选择符号#2、4。如图6所示,图6是根据本 发明可选实施例相关技术中的DMRS的频域位置不变,时域位置移到没有CRS的符号上的示意图。
可选地,DMRS的频域位置为预设的位置即可,也不局限于现有LTE中的DMRS的频域位置。
可选地,DMRS占用的符号数为预设的即可,不限于为现有LTE中的2,并且,不同子载波对应的符号数也可以不同,比如某些子载波为1,某些子载波为2,但是DMRS所在的符号上均没有CRS。
方式三:
图7是根据本发明可选实施例的将相关技术中的DMRS移到最前面的两个符号,频域位于CRS之外的位置上的示意图,当CRS的天线端口为4时,前两个符号上都有CRS,因此,需要绕开CRS所在的RE。CRS时频资源位置是由小区标识确定的,因此DMRS的频域资源位置也由小区标识确定,其中,图7给出了在正常CP时
Figure PCTCN2016000599-appb-000076
mod 3=0,1,2的情况。
下面用数学公式描述如下,以下公式对于正常CP和扩展CP均适用。根据CRS的发送天线端口和/或小区标识确定符号的方式包括以下至少之一:
Figure PCTCN2016000599-appb-000077
mod 30时,
在CRS的发送天线端口为p=0的情况下,则DMRS对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11}:
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则DMRS对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
Figure PCTCN2016000599-appb-000078
mod 3=1时,
在CRS的发送天线端口为p=0的情况下,则DMRS对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则DMRS对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
Figure PCTCN2016000599-appb-000079
mod 3=2时,
在CRS的发送天线端口为p=0的情况下,则DMRS对应的子载波的索引k∈{0,1,3,4,5,6,7,9,10,11};
在CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下, 则DMRS对应的子载波的索引k∈{0,1,3,4,6,7,9,10}。
可选地,DMRS占用的符号数为预设的即可,不限于为现有LTE中的2,并且,不同子载波对应的符号数也可以不同,比如某些子载波为1,某些子载波为2,但是DMRS在每个子载波上的符号都是在这个TTI中索引最小的一个或者多个符号。
●偶数时隙,即每个现有LTE子帧的第一个时隙
对于偶数时隙,DMRS的起始位置可能还会受到PDCCH区域的影响,即DMRS的时域位置应在PDCCH所在的符号之外。这里,可以一个预设的符号数来设计,比如按照最大的PDCCH符号数来设计DMRS,即DMRS的时域位置在最大的PDCCH符号数个符号之外,比如对于大于10个PRB的系统带宽,PDCCH符号最多是3个,那么DMRS的起始位置在第4个符号以及之后的符号上。或者,也可以按照实际的PDCCH符号数来设计DMRS,比如实际的PDCCH符号数为1,那么DMRS的起始位置第2个符号以及之后的符号上。
类似上述,本可选实施例中也可以有三种方式:
方式一:
将现有的DMRS的频域位置不变,时域位置为预设数目的符号或者PDCCH符号之外的CRS所在的RE之外的索引最小的符号上,PDCCH符号数为最大的PDCCH符号数,或者为实际的PDCCH符号数。,图8是根据本发明可选实施例时域位置为预设数目的符号或者PDCCH符号之外的CRS所在的RE之外的索引最小的符号上的示意图,如图8所示,是正常CP的场景,CRS的天线端口数为4。PDCCH符号数为1,图8中的DMRS在实际的PDCCH符号之外的符号上。
可选地,DMRS的时频资源位置可以根据最大的天线端口数确定。或者,可以按照CRS的实际天线端口数来确定DMRS的时频资源位置。
这种情况下,用数学公式描述的方式类似于奇数时隙时的方法一,不同的是DMRS在PDCCH符号或者预设数目的符号之后的符号上。
方式二:
将现有的DMRS的频域位置不变,时域位置移到预设数目的符号或者PDCCH符号之外的没有CRS的符号上,PDCCH符号数为最大的PDCCH符号数,或者为实际的PDCCH符号数。
可选地,DMRS的时频资源位置可以根据最大的天线端口数确定,或者,可以按照CRS的实际天线端口数来确定DMRS的时频资源位置。
方式三:
将现有的DMRS移到预设数目的符号或者PDCCH符号之外的最前面的两个符号,频域位置发生变化。PDCCH符号数为最大的PDCCH符号数,或者为实际的PDCCH符号数。CRS 时频资源位置是由小区标识确定的,因此DMRS的频域资源位置也由小区标识确定。
可选地,奇偶时隙的DMRS配置也可以相同,比如都按照偶数时隙时的方式来确定。
实施例二:
本实施例中,给出一种TTI为3个符号或者4个符号时的DMRS的设计方法。
图9是根据本发明可选实施例的TTI的定义示意图一,如图9所示,本实施例给出的方法,不限于这种TTI的定义方法。
DMRS位于TTI#1和3中,在TTI#1和3中,DMRS占用的时频资源位置按照类似于实施例一中的三种方式确定,如图9所示。在图9中,TTI#1和3占用的符号的索引都是3、4、和5,类似实施例一中的方法三,DMRS在时域上为TTI中前两个符号,频域上为CRS之外的子载波。
与TTI#3不同的是,TTI#1可能与PDCCH符号数有关,如果PDCCH符号包括TTI#1的第一个符号,那么DMRS的时域位置应在PDCCH符号之外的符号上,与上述偶数时隙类似。
图9中给出了一种DMRS的例子,其方式类似可选实施例中的方式三。
在本可选实施例中,TTI#0和2可以采用CRS解调,TTI#1和3可以采用DMRS解调,或者可以分别采用TTI#0和2的CRS解调。
实际应用中,TT#1和3的DMRS的位置也可以不同。
通过本实施例的方法,没有增加DMRS的开销,并能保证每个TTI都有参考信号可以解调。实际应用中,不限于这些例子,每个TTI中都可以有DMRS,DMRS的位置的确定方法如实施例一中的三种方法。
实施例三:
本实施例中,给出一种TTI为2个符号或者3个符号时的DMRS的设计方法。
图10是根据本发明可选实施例的TTI的定义示意图二,如图10所示,每个时隙划分为3个TTI,图10中TTI的符号数为2、2、3,也可以3、2、2,或者2、3、2。本实施例给出的方法,不限于这种TTI的定义方法。图10中CRS的端口数为4.假设PDCCH只占前两个符号。
以一个时隙来划分TTI的好处是CRS在每个时隙是相同的,这样划分成的TTI上的CRS位置相对固定。每个TTI中的DMRS的位置可以根据实施例一中的三种方法确定。如图10所示和图11所示,图11是根据本发明可选实施例的TTI的定义示意图三。
在图10中,DMRS在TTI#1和4中,TTI#0、2、3、5采用CRS解调,1、4采用DMRS解调。在图10中,DMRS在TTI#1、2、4、5中,TTI#0、3采用CRS解调,1、2、4、5采用CRS/DMRS解调。
与相关技术中的LTE相比,这样的方法没有增加DMRS的RE开销。实际应用中,不限 于这些例子,每个TTI中都可以有DMRS,DMRS的位置的确定方法如实施例一中的三种方法。
实施例四:
本可选实施例中,给出一种TTI为1个符号时的DMRS的设计方法。
图12是根据本发明可选实施例的DMRS的设计方法的示意图,如图12所示,符号0、1、4、7、8、11上有CRS的符号,采用CRS解调。
符号3、6、10、13上有DMRS的符号,采用DMRS解调。
对于符号2、5、9、12,既没有CRS也没有DMRS,可以采用前一个符号的CRS进行解调。
与现有LTE相比,这样的方法没有增加DMRS的RE开销。实际应用中,不限于这些例子,每个TTI中都可以有DMRS,DMRS的位置的确定方法如实施例一中的三种方法。
实施例五:
DMRS可能会和系统中配置的其他参考信号产生冲突。
可以通过eNB配置来尽量避免冲突。对于全带宽发送的CSI-RS,如果和DMRS的时频资源位置可能冲突,eNB可以避免调度DMRS解调的UE,或者在冲突的RE上打掉DMRS,或者在冲突的RE上打掉CSI-RS。
对于PRS,可以在PRS所在的带宽之外的PRB上给UE发送,或者如果发生冲突,可以在冲突的RE上打掉DMRS,或者在冲突的RE上打掉PRS。
实施例六:
对于上行,可以定义4个SC-FDMA符号的TTI,图13是根据本发明可选实施例的TTI的定义示意图四,如图13所示。一个上行时隙分为两个TTI,分别为TTI#0和1,TTI#0和1之间有一个符号的重叠,对于这两个TTI,DMRS都在这个重叠的符号上。
可选地,通过预定义或者配置,可以使得TTI#0和1的两个UE的DMRS正交,避免两个TTI的DMRS产生干扰,比如
Figure PCTCN2016000599-appb-000080
其中
Figure PCTCN2016000599-appb-000081
为DCI中通知的循环移位。使得两个TTI的DMRS正交。
这样,相比相关技术中LTE的上行DMRS设计,没有增加DMRS的开销。
可选地,为了使得RS正交性,前后TTI#0和1调度的UE的PUSCH占用的资源应相同。
对于TTI#0,DMRS位子末尾,会影响处理时延,如果考虑eNB的处理能力较强,这个 影响可以忽略。
图13是正常CP的场景,对于扩展CP,一个上行时隙有6个OFDM符号,也可分为两个TTI,分别为TTI#0和1,TTI#0可以为前3个符号,TTI#1可以为后4个符号;或者,TTI#0可以为前4个符号,TTI#1可以为后3个符号,DMRS在重叠的符号上发送。
实施例七:
在短TTI的系统中,UE的频域资源分配粒度可以增加,即频域上超过12个子载波。即12×k个子载波,k为大于1的整数。比如k等于1、2、3、4、5等。
比如对于TTI内0.5ms的系统,频域资源分配粒度为24个子载波。即每次分配给UE的资源,在时域上为0.5ms,在频域上为24个子载波的整数倍。对于TTI为3个或者4个符号的系统,频域资源分配粒度可以为4×12=48个子载波。对于TTI为2个或者3个符号的系统,频域资源分配粒度可以为6×12=72个子载波。对于TTI为1个符号的系统,频域资源分配粒度可以为12×12=144个子载波。实际应用中不限于这些举例。
频域资源分配粒度也可以随时间变化,比如0.5ms的TTI的系统,奇数时隙的频域资源分配粒度可以为12个子载波,偶数时隙的频域资源分配粒度可以为24个子载波。或者,频域资源分配粒度还可以由TTI的大小确定,频域资源分配粒度可以为比如对于实施例二中的TTI为3个符号或者4个符号,TTI为3个符号时,频域资源分配粒度为4×12个子载波;TTI为4个符号时,频域资源分配粒度为3×12个子载波。
eNB也可以为UE配置频域资源分配的粒度。
对于频域资源分配粒度变大的场景,在包含参考信号的符号上,一个PRB包含的12个RE内的参考信号的频域密度可以和现有的密度相同,即有3个RE或者4个RE用于传输参考信号,或者也可以更稀疏,比如在12个RE内,有1或者2个RE用于传输参考信号。
另外,由于TTI变短,现有的时域扩频进行UE间的DMRS复用的方式可能已经不再适合了,因此可以考虑在频域进行扩频,参考信号的频域密度可以为2或者4优选地,频域上占用连续的2个或者4个RE。不同UE的DMRS在频域的2个或者4个RE间进行扩频。
参考信号所在的RE应尽量避开与现有CSI-RS的位置,以避免和现有的CRI-RS发生冲突。
实施例八:
对于使用CRS解调的UE,发送给UE的DMRS可以和CRS的端口相同,进一步增加CRS每个端口的密度,例如针对高速或者信道较差的场景。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码;
S1:按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;
S2:根据时频资源位置发送参考信号。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,在参考信号的发送过程中,采用按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置,并根据时频资源位置发送参考信号,从而可以改变DMRS位置,进而解决了相关技术中由于DMRS位置比较靠后而导致用户设备处理时延较高的问题,降低了UE处理的时延。

Claims (23)

  1. 一种参考信号的发送方法,包括:
    按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;
    根据所述时频资源位置发送所述参考信号。
  2. 根据权利要求1所述的方法,其中,
    所述参考信号对应的子载波是预设的,在所述子载波上,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号;
    所述第一预设条件包括以下至少之一:
    所述符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
    所述符号的索引n满足;n大于或等于m,其中,m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
  3. 根据权利要求2所述的方法,其中,
    所述参考信号在一个PRB中对应的子载波的索引k∈{0,1,5,6,10,11};
    在所述子载波上,根据所述CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一;
    Figure PCTCN2016000599-appb-100001
    mod3=0时,其中,
    Figure PCTCN2016000599-appb-100002
    为物理层小区标识:
    在所述CRS的发送天线端口为p=0或者(p=0以及p=1)的情况下,如果所述参考信号对应的子载波的索引k∈{1,5,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{0,6},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
    在所述CRS的发送天线端口为p=0、p=1、p=2、以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{1,5,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{0,6},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
    Figure PCTCN2016000599-appb-100003
    mpd3=1时,
    在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1, 2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{I},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
    在所述CRS的发送天线端口为p=0以及p=1的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{1,10},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
    在所述CRS的发送天线端口为p=0、p=1、p=2、以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{0,5,6,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{1,10},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
    Figure PCTCN2016000599-appb-100004
    mod3=2时,
    在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{0,1,5,6,10,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};
    在所述CRS的发送天线端口为p=0以及p=1情况下,如果所述参考信号对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{5,11},则在所述子载波上,所述参考信号对应的索引n∈{1,2,3,5,6};
    在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,如果所述参考信号对应的子载波的索引k∈{0,1,6,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,6};如果所述参考信号对应的子载波的索引k∈{5,11},则在所述子载波上,所述参考信号对应的索引n∈{2,3,5,6};
    其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
  4. 根据权利要求2所述的方法,其中,
    所述参考信号对应的子载波的索引k∈{1,4,7,10};
    在所述子载波上,根据CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
    Figure PCTCN2016000599-appb-100005
    mod3=0或
    Figure PCTCN2016000599-appb-100006
    mod3=2时,其中,
    Figure PCTCN2016000599-appb-100007
    为物理层小区标识;
    则子载波的索引k∈{1,4,7,10}对应的索引n∈{0,1,2,3,4,5},
    Figure PCTCN2016000599-appb-100008
    mod 3=1时,
    在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索 引k∈{1,7},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};如果所述参考信号对应的子载波的索引k∈{4,10},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5};
    在所述CRS的发送天线端口为p=0以及p=1的情况下,所述参考信号对应的子载波的索引k∈{1,4,7,10},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};
    在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3情况下,所述参考信号对应的子载波的索引k∈{1,4,7,10},则在所述子载波上,所述参考信号对应的索引n∈{2,4,5}。
  5. 根据权利要求2所述的方法,其中,
    所述参考信号对应的子载波的索引k∈{2,5,8,11};
    在所述子载波上,根据所述CRS的发送天线端口和/或小区标识确定所述符号的方式包括以下至少之一:
    Figure PCTCN2016000599-appb-100009
    mod3=0或者
    Figure PCTCN2016000599-appb-100010
    mod3=1时,其中,
    Figure PCTCN2016000599-appb-100011
    为物理层小区标识;如果所述参考信号对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{0,1,2,3,4,5,};在
    Figure PCTCN2016000599-appb-100012
    mod3=2时,
    在所述CRS的发送天线端口为p=0的情况下,如果所述参考信号对应的子载波的索引k∈{2,8},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};如果所述参考信号对应的子载波的索引k∈{4,10},则在所述子载波上,所述参考信号对应的索引n∈0,1,2,3,4,5};
    在所述CRS的发送天线端口为p=0以及p=1的情况下,所述参考信号对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{1,2,4,5};
    在所述CRS的发送天线端口为p=0、p=1、p=2以及p=3的情况下,所述参考信号对应的子载波的索引k∈{2,5,8,11},则在所述子载波上,所述参考信号对应的索引n∈{2,4,5}。
  6. 根据权利要求2所述的方法,其中,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号,包括:
    所述参考信号对应的符号为所述TTI中满足所述第一预设条件的索引最小的一个或多个符号。
  7. 根据权利要求1所述的方法,其中,所述按照预设方式在传输时间间隔TTI中确定参考信 号的时频资源位置包括:
    所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号,在所述符号上,所述参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
    所述第二项设条件为:
    所述符号的索引n满足:n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
  8. 根据权利要求7所述的方法,其中,所述参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定,包括以下至少之一:
    Figure PCTCN2016000599-appb-100013
    mod3=0时,其中,
    Figure PCTCN2016000599-appb-100014
    为物理层小区标识;
    在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{1,2,3,4,5,7,8,9,10,11};
    在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号在一个PRB中对应的子载波的索引k∈{1,2,4,5,7,8,10,11};
    Figure PCTCN2016000599-appb-100015
    mod3=1时,
    在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{0,2,3,4,5,6,8,9,10,11};
    在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号对应的子载波的索引k∈{0,2,3,5,6,8,9,11};
    Figure PCTCN2016000599-appb-100016
    mod3=2时,
    在所述CRS的发送天线端口为p=0的情况下,则所述参考信号对应的子载波的索引k∈{0,1,3,4,5,6,7,9,10,11};
    在所述CRS的发送天线端口为(p=0以及p=1)或者(p=0、p=1、p=2以及p=3)的情况下,则所述参考信号对应的子载波的索引k∈{0,1,3,4,6,7,9,10};
    其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
  9. 根据权利要求7所述的方法,其中,所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号包括:
    所述参考信号对应的符号为所述TTI中满足所述第二预设条件的索引最小的一个或多个符号。
  10. 根据权利要求1所述的方法,其中,包括:
    在所述TTI中,对于正常循环前缀CP,所述时频资源对应的符号索引n∈{2,3,5,6};
    对于扩展循环前缀CP,所述时频资源对应的符号索引n∈{2,4,5}。
  11. 根据权利要求1或10所述的方法,其中,包括;
    当所述TTI的长度是一个时隙,对于正常CP,所述时频资源对应的符号索引n∈{2,3},所述时频资源在一个PRB中对应的子载波的索引k∈{0、1、5、6、10、11};
    其中,所述TTI中的符号索引为0、1、2、3、4、5、6,其中,一个PRB中的子载波按照频率从最低到最高的顺序索引分别为0至11。
  12. 根据权利要求10所述的方法,其中,所述参考信号对应的符号为所述TTI中索引最小的一个或者多个符号。
  13. 根据权利要求1所述的方法,其中,相邻的所述TTI之间有一个或多个符号的重叠。
  14. 根据权利要求13所述的方法,其中,所述TTI的参考信号位于重叠的符号中的一个或者多个符号上。
  15. 根据权利要求1所述的方法,其中,在所述TTI中,频域资源分配的粒度为12×y个子载波,其中y为大于1的整数。
  16. 根据权利要求1所述的方法,其中,
    在包含所述参考信号的符号上,在一个物理资源块PRB包含的12个资源单元RE内,所述参考信号占用的RE数为1、2、3、4其中之一。
  17. 根据权利要求16所述的方法,其中,所述RE在频域上是连续的。
  18. 一种参考信号的接收方法,包括:
    终端接收基站发送的参考信号,其中,所述参考信号在传输时间间隔TTI中的时频资源位置按照预设的方式确定。
  19. 根据权利要求18所述的方法,其中,
    所述参考信号对应的子载波是预设的,在所述子载波上,所述参考信号对应的符号是所述TTI中满足第一预设条件的一个或多个符号;
    所述第一预设条件包括以下至少之一:
    所述符号根据小区参考信号CRS的发送天线端口和/或小区标识确定;
    所述符号的索引n满足:n大于或等于m,其中,m为非负整数,m为物理下行控制 信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常循环前缀CP,n∈{0,1,2,3,4,5,6},对于扩展循环前缀CP,n∈{0,1,2,3,4,5}。
  20. 根据权利要求18所述的方法,其中,所述按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置包括:
    所述参考信号对应的符号是所述TTI中满足第二预设条件的一个或者多个符号,在所述符号上,所述参考信号对应的子载波根据CRS的发送天线端口和/或小区标识确定;
    所述第二预设条件为:
    所述符号的索引n满足;n≥m,其中m为非负整数,m为物理下行控制信道PDCCH占用的符号数或为预设的符号数,所述符号的索引是一个时隙中的符号的索引,对于正常CP,n∈{0,1,2,3,4,5,6},对于扩展CP,n∈{0,1,2,3,4,5,6}。
  21. 根据权利要求18所述的方法,其中,包括:
    在所述TTI中,对于正常循环前缀CP,所述时频资源对应的索引n∈{2,3,5,6},对于扩展循环前缀CP,所述时频资源对应的索引n∈{2,4,5}。
  22. 一种参考信号的发送装置,应用于基站侧,包括:
    确定模块,设置为按照预设方式在传输时间间隔TTI中确定参考信号的时频资源位置;
    发送模块,设置为根据所述时频资源位置发送所述参考信号。
  23. 一种参考信号的接收装置,应用于终端侧,包括:
    接收模块,设置为接收基站发送的参考信号,其中,所述参考信号在传输时间间隔TTI中的时频资源位置按照预设的方式确定。
PCT/CN2016/000599 2015-11-03 2016-11-03 参考信号的发送方法及装置、接收方法及装置 WO2017075905A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21195704.8A EP3996446A1 (en) 2015-11-03 2016-11-03 Reference signal transmitting method and device, and reference signal receiving method and device
EP16861178.8A EP3373673B1 (en) 2015-11-03 2016-11-03 Reference signal transmitting method and device, and reference signal receiving method and device
US15/773,264 US10749645B2 (en) 2015-11-03 2016-11-03 Reference signal transmitting method and device, and reference signal receiving method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510738019.0 2015-11-03
CN201510738019 2015-11-03
CN201510754859.6 2015-11-06
CN201510754859.6A CN106656446B (zh) 2015-11-03 2015-11-06 参考信号的发送方法及装置、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2017075905A1 true WO2017075905A1 (zh) 2017-05-11

Family

ID=58661616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000599 WO2017075905A1 (zh) 2015-11-03 2016-11-03 参考信号的发送方法及装置、接收方法及装置

Country Status (2)

Country Link
EP (1) EP3996446A1 (zh)
WO (1) WO2017075905A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314544A (zh) * 2011-01-10 2013-09-18 Lg电子株式会社 在无线通信系统中发送/接收下行链路参考信号的方法和设备
CN103428777A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 参考信号处理方法及装置
EP2706713A1 (en) * 2012-09-10 2014-03-12 Alcatel-Lucent Multi-carrier symbols with varying coding rates
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314544A (zh) * 2011-01-10 2013-09-18 Lg电子株式会社 在无线通信系统中发送/接收下行链路参考信号的方法和设备
CN103428777A (zh) * 2012-05-25 2013-12-04 中兴通讯股份有限公司 参考信号处理方法及装置
EP2706713A1 (en) * 2012-09-10 2014-03-12 Alcatel-Lucent Multi-carrier symbols with varying coding rates
CN103944665A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 上行解调参考信号的发送方法、装置和系统

Also Published As

Publication number Publication date
EP3996446A1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
CN106656446B (zh) 参考信号的发送方法及装置、接收方法及装置
US10547417B2 (en) Method and apparatus for transmitting and receiving signal in communication system using scalable frame structure
CN112106316B (zh) 在无线通信系统中多路复用上行链路控制信息的方法和使用该方法的装置
JP6073514B2 (ja) アップリンクリソース割当のための方法及び装置
US11805520B2 (en) Method and device for transmitting sidelink signal
US11239980B2 (en) Method and apparatus for transmitting physical uplink shared
CN102611524B (zh) 一种传输信息的方法、系统及设备
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
US12003448B2 (en) Method and device for wireless communication
JP7078554B2 (ja) 端末及び無線通信方法
US10993224B1 (en) Method and device for transmitting information
CN106788926B (zh) 一种降低网络延迟的无线通信方法和装置
CN108111270A (zh) 导频信号发送、接收方法及装置
EP3343969A1 (en) Data transmission method and apparatus
US11165606B2 (en) Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus
JP7054389B2 (ja) 端末、無線通信方法、基地局及びシステム
CN103517345A (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
US20220124757A1 (en) Method and apparatus for transmitting uplink channel in wireless communication system
WO2017125090A1 (zh) 一种传输参考信号的方法及网络设备
CN111867109A (zh) 空间参数确定方法及装置
CN111034289A (zh) 用于控制资源映射的方法和装置
KR20210150286A (ko) 비-지상 네트워크에 대한 타이밍 어드밴스 지시 및 타이밍 관계 지시 방법
US11165550B2 (en) Resource mapping method and communication device
WO2017132969A1 (zh) 传输参考信号的方法和装置
WO2018126965A1 (zh) 参考信号的资源确定方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15773264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861178

Country of ref document: EP