WO2017075875A1 - 用于步态信息采集的压力传感器、可穿戴设备及系统 - Google Patents

用于步态信息采集的压力传感器、可穿戴设备及系统 Download PDF

Info

Publication number
WO2017075875A1
WO2017075875A1 PCT/CN2015/098589 CN2015098589W WO2017075875A1 WO 2017075875 A1 WO2017075875 A1 WO 2017075875A1 CN 2015098589 W CN2015098589 W CN 2015098589W WO 2017075875 A1 WO2017075875 A1 WO 2017075875A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
pressure
gait information
module
wearable device
Prior art date
Application number
PCT/CN2015/098589
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
Original Assignee
深圳市易特科信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市易特科信息技术有限公司 filed Critical 深圳市易特科信息技术有限公司
Publication of WO2017075875A1 publication Critical patent/WO2017075875A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the utility model relates to the technical field of signal detection, in particular to a pressure sensor, a wearable device and a system for gait information collection.
  • pressure distribution measurement in gait information collection is a necessary step to achieve the above research or guidance.
  • the pressure sensor can be divided into pressure imprinting, resistive, capacitive, Hall effect and the like. Currently used are resistive and capacitive.
  • capacitive pressure sensors currently available in the market are softness, durability, and high precision; the disadvantage is that they are thicker, which affects the accuracy of the surface pressure value to be measured.
  • Resistive pressure sensors typically use a hard substrate that is limited in use and has a short life span. Sensors need to be replaced every six months to one year, whether used or not.
  • the main purpose of the utility model is to provide a pressure sensor, a wearable device and a system for gait information collection, which have high flexibility and adapt to more occasions.
  • the present invention provides a pressure sensor for gait information collection, the pressure sensor comprising an upper layer and a lower layer, wherein the upper layer and the lower layer are both flexible substrates on the flexible substrate
  • the sensitive layer is printed, and the sensitive layer of the upper layer and the sensitive layer of the lower layer form a grid-shaped measuring loop, and each node of the grid-shaped measuring loop is provided with a pressure sensitive point, and the output of the network measuring loop The end is provided with an output line.
  • the shape of the pressure sensor is set according to the shape of the human foot, and the pressure sensitive point is disposed in a region where the human body is subjected to pressure during the movement.
  • the flexible substrate is a high temperature resistant polyester film.
  • the sensitive layer is printed with a silver paste conductor and a pressure sensitive slurry, and the pressure sensitive paste of the upper sensitive layer and the pressure sensitive paste of the lower sensitive layer are in abutment with each other.
  • a wearable device including a wearable body and the above-described pressure sensor disposed on the wearable body, the wearable device further including a signal conversion module, a micro control module, and a communication Module and power module;
  • the pressure sensor is electrically connected to the signal conversion module for collecting a pressure signal of a human foot
  • the signal conversion module is electrically connected to the micro control module, configured to perform filter amplification and analog to digital conversion on the pressure signal, and output the converted digital pressure signal to the micro control module;
  • the micro control module is electrically connected to the communication module, configured to extract and analyze gait information from the digital pressure signal, and send the gait information to the communication module;
  • the communication module is configured to send the gait information to the smart terminal
  • the power module is electrically connected to the pressure sensor, the signal conversion module, the micro control module, and the communication module, respectively, for providing power to the pressure sensor, the signal conversion module, the micro control module, and the communication module.
  • the wearing body is a shoe
  • the pressure sensor, the signal conversion module, the micro control module, the communication module, and the power module are integrally disposed on the wearing body that the human foot contacts.
  • the power module includes a rechargeable battery and a power management unit, and the power management unit provides powering, powering off, and battery power detection for the wearable device.
  • a further aspect of the present invention provides a system, the system comprising an intelligent terminal and the wearable device, wherein the smart terminal and the wearable device are connected by a network, and the wearable device collects human body gait information and transmits The human gait information is sent to the smart terminal, and the smart terminal displays human gait information.
  • the flexible substrate is printed with a sensitive layer printed with a silver paste conductor and a pressure sensitive paste, which can improve the conductivity, acquisition accuracy and circuit integration of the pressure sensor circuit.
  • Pressure sensitive points are disposed at each node of the grid-shaped measuring circuit, and corresponding pressure values are collected when the pressure sensitive points generate pressure, thereby improving the accuracy of pressure information collection.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a pressure sensor for gait information collection according to the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment of a wearable device for gait information collection according to the present invention
  • FIG. 3 is a schematic structural view of a preferred embodiment of a gait information collection system of the present invention.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a pressure sensor for gait information collection according to the present invention.
  • the pressure sensor 01 includes an upper layer 10 and a lower layer 11. It should be noted that the shapes of the upper layer 10 and the lower layer 11 in FIG. 1 are only for describing and explaining that the pressure sensor 01 has a two-layer structure, The shape can be set according to the specific application and the force range.
  • the upper layer 10 and the lower layer 11 are both flexible substrates.
  • the flexible substrate is a high temperature resistant polyester film (PET), and the polyester film is made of polyethylene terephthalate.
  • PET high temperature resistant polyester film
  • the polyester film is made of polyethylene terephthalate.
  • the film material made by extrusion method and then biaxially stretched, the biaxially stretched polyester film has the characteristics of high strength, good rigidity, transparency, high gloss, etc., and has excellent wear resistance and folding resistance.
  • the sensitive substrate 12 is printed on the flexible substrate; it should be noted that the shape of the sensitive layer 12 in FIG. 1 is only used to illustrate that the sensitive layer 12 is disposed on the upper layer 10 and the lower layer 11.
  • the sensitive layer 12 is printed with a silver paste conductor 121 and a pressure sensitive paste 122, and the silver paste conductor 121 and the pressure sensitive paste 122 in FIG. 1 are only used to illustrate the silver paste conductor 121 and the pressure.
  • the piezoresistor in the circuit of the pressure sensor 01 employs a pressure sensitive paste 122
  • the wires in the circuit of the pressure sensor 01 employ a silver paste conductor.
  • Silver paste is a viscous slurry of a mechanical mixture of high-purity (99.9%) metallic silver particles, binders, solvents, and auxiliaries.
  • a silver paste conductor 121 can be used.
  • the conductivity of the pressure sensor 01 circuit is improved, and the pressure sensitive slurry 122 can improve the collection accuracy and circuit integration of the pressure sensor 01.
  • the pressure sensitive slurry 122 of the sensitive layer 12 of the upper layer 10 and the pressure sensitive slurry 122 of the sensitive layer 12 of the lower layer 11 are in abutment with each other.
  • the sensitive layer 12 of the upper layer 10 and the sensitive layer 12 of the lower layer 11 form a grid-like measurement loop, and each node of the grid-shaped measurement loop is provided with a pressure sensitive point, which is understandably
  • a pressure sensitive slurry 122 is provided at the pressure sensitive point for collecting a corresponding pressure value when the pressure sensitive point generates pressure.
  • the output end of the network-shaped measuring circuit is provided with an output line 13 for transmitting the collected pressure information of the human foot to the processing device, and the output line 13 can be disposed on the upper layer 10 by a certain pressure sensitive slurry.
  • the 122 is taken out (set in the upper layer 10 as shown in FIG. 1), and may be provided in the lower layer 11.
  • the shape of the pressure sensor 01 can be set according to the shape of the human foot, and the pressure sensitive point is set in a region where the human body is under pressure during the movement of the human body, and the pressure signal generated at the pressure sensitive point when the human body moves. It is collected by the pressure sensor 01 to accurately acquire the pressure information of the human body during the movement process, and improve the accuracy of the pressure information collection.
  • FIG. 2 is a schematic structural diagram of a preferred embodiment of a wearable device for gait information collection according to the present invention.
  • the wearable device 2 includes a wearing body (not shown) and a pressure sensor 01, a signal conversion module 02, a micro control module 03, a communication module 04, and a power source disposed on the wearing body.
  • Module 05; the pressure sensor 01 employs the pressure sensor 01 of the preferred embodiment shown in FIG.
  • the wearing body in the embodiment is preferably a shoe, and the pressure sensor 01, the signal conversion module 02, the micro control module 03, the communication module 04, and the power module 05 are integrated in a place where the wearing body contacts the human foot (for example, a sole) The position where the face is in contact with the foot).
  • the pressure sensor 01 may be formed in the shape of an insole or integrated on the sole.
  • the pressure sensor 01 is electrically connected to the signal conversion module 02 for collecting a pressure signal of a human foot; specifically, when the human body moves, a pressure is generated between the human foot and the pressure sensor 01 located at the sole.
  • the pressure sensor 01 collects the pressure signal of the human foot and transmits the collected pressure signal to the signal conversion module 02 through the output line of the pressure sensor 01.
  • the signal conversion module 02 is electrically connected to the micro control module 03 for filtering amplification and analog-to-digital conversion of the pressure signal, and outputting the converted digital pressure signal to the micro control module 03;
  • the signal conversion module 02 is implemented by the filtering amplification and analog-to-digital conversion unit in the prior art, and performs filtering amplification and analog-to-digital conversion on the collected pressure signals of different pressure sensitive points, and outputs the digital signals that can be processed by the control module 03 to realize The details are not described here.
  • the micro control module 03 is electrically connected to the communication module 04 for extracting and analyzing gait information from the digital pressure signal, and transmitting the gait information to the communication module 04.
  • the micro control module 03 can use an existing single chip microcomputer, DSP or other processor with digital signal acquisition and processing functions for extracting and analyzing gait information, and the gait information extraction and analysis method can be adopted. The method of extracting and analyzing the pitch, the number of steps and the exercise time in the technology. After the micro control module 03 completes the extraction and analysis of the gait information, the gait information is sent to the communication module 04.
  • the communication module 04 is configured to send the gait information to the smart terminal for viewing by the user; the communication module 04 can use a wireless communication module with remote wireless communication function, for example, supporting GSM, GPRS, WCDMA, and CDMA. Communication modules for communication technologies such as TD-SCDMA and WiMAX.
  • the power module 05 is electrically connected to the pressure sensor 01, the signal conversion module 02, the micro control module 03, and the communication module 04, respectively, for the pressure sensor 01, the signal conversion module 02, the micro control module 03, and the communication.
  • Module 04 provides power.
  • the power module 05 includes a rechargeable battery 051 and a power management unit 052 that provides power-on, power-off, and battery power detection for the wearable device.
  • FIG. 3 is a schematic structural diagram of a preferred embodiment of a gait information collection system according to the present invention.
  • the system includes a smart terminal 1 and the wearable device 2 described above.
  • the smart terminal 1 and the wearable device 2 are connected by a network 3, and the network 3 can adopt any wireless network capable of transmitting digital signals in the prior art, and the wearable device 2 collects human body gait information and transmits the same.
  • the human gait information is described to the smart terminal 2, and the smart terminal 2 displays human gait information.
  • the smart terminal 2 is connected to the remote monitoring center through the network 3, and sends the human gait information to the remote monitoring center for scientific research personnel in the field of sports scientific research, biomechanical engineering and medical rehabilitation. Human gait information is analyzed and studied to achieve new application goals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种用于步态信息采集的压力传感器、可穿戴设备及系统。压力传感器(01)包括上层(10)和下层(11),两层均为柔性基材,柔性基材上印刷有敏感层(12),上层(10)的敏感层(12)和下层(11)的敏感层(12)构成网格状测量回路,网格状测量回路的各个节点处设置有压力敏感点,网格状测量回路的输出端设置有输出线(13)。该用于步态信息采集的压力传感器采用了柔性基材,其能够提高压力传感器的使用寿命,在使用时具有良好的拉伸性、柔软性和抗静电性。

Description

用于步态信息采集的压力传感器、可穿戴设备及系统
技术领域
本实用新型涉及信号检测技术领域,尤其涉及一种用于步态信息采集的压力传感器、可穿戴设备及系统。
背景技术
在体育科研、生物力学工程和医疗康复领域内,经常需要准确知道人体行走或运动时,人体足底与地面间的作用力、足底与地面的接触状况,足底所受压力的分布情况,以期获得体育科研、体育训练指导、医疗科研、残体康复训练指导的科学依据。因此,步态信息采集中的压力分布测量是实现上述研究或指导的必要步骤。在进行压力分布测量过程中,压力传感器可分为压力印迹、电阻式、电容式、霍尔效应式等。目前常用的以电阻式和电容式为主。然而,目前市场中存在的电容式压力传感器的优点是柔软、耐用、精度较高;缺点是较厚,这样会影响所要测量的表面压力值的准确性。电阻式压力传感器通常采用硬质基底,使用场合受限,而且其传感器的寿命较短,无论使用与否,每半年到一年需更换一次传感器。
基于此,需要设计一种用于步态信息采集的压力传感器、可穿戴设备及系统,使其具有较高的柔软性,适应更多的场合。
实用新型内容
本实用新型的主要目的在于提供一种用于步态信息采集的压力传感器、可穿戴设备及系统,使其具有较高的柔软性,适应更多的场合。
为实现上述目的,本实用新型提供了一种用于步态信息采集的压力传感器,所述压力传感器包括上层和下层,所述上层和所述下层均为柔性基材,所述柔性基材上印刷有敏感层,所述上层的敏感层和所述下层的敏感层构成网格状测量回路,所述网格状测量回路的各个节点处设置有压力敏感点,所述网络状测量回路的输出端设置有输出线。
优选地,所述压力传感器的形状根据人体足底形状设置,所述压力敏感点设置于人体在运动过程中足底承受压力的区域。
优选地,所述柔性基材为耐高温聚酯薄膜。
优选地,所述敏感层印刷有银浆导体和压力敏感浆料,所述上层的敏感层的压力敏感浆料与所述下层的敏感层的压力敏感浆料相互一一对合。
本实用新型的另一方面提供一种可穿戴设备,所述可穿戴设备包括穿戴本体以及设置于所述穿戴本体上的上述压力传感器,该可穿戴设备还包括信号转换模块、微控制模块、通讯模块以及电源模块;其中:
所述压力传感器,与所述信号转换模块电连接,用于采集人体足底的压力信号;
所述信号转换模块,与所述微控制模块电连接,用于对所述压力信号进行滤波放大和模数转换,并输出转换后的数字压力信号至所述微控制模块;
所述微控制模块,与所述通讯模块电连接,用于从所述数字压力信号中提取和分析步态信息,并发送所述步态信息至所述通讯模块;
所述通讯模块,用于将所述步态信息发送至智能终端;
所述电源模块,分别与所述压力传感器、信号转换模块、微控制模块以及通讯模块电连接,用于为所述压力传感器、信号转换模块、微控制模块以及通讯模块提供电源。
优选地,所述穿戴本体为鞋,所述压力传感器、信号转换模块、微控制模块、通讯模块以及电源模块集成设置于人体足部接触的穿戴本体上。
优选地,所述电源模块包括充电电池和电源管理单元,所述电源管理单元为所述可穿戴设备提供上电、断电和电池电量检测。
本实用新型的再一方面提供一种系统,所述系统包括智能终端以及上述可穿戴设备,所述智能终端和所述可穿戴设备通过网络连接,所述可穿戴设备采集人体步态信息并发送所述人体步态信息至所述智能终端,所述智能终端显示人体步态信息。
相较于现有技术,本实用新型提供的用于步态信息采集的压力传感器,包括上层和下层,所述上层和所述下层均采用柔性基材,能够提高压力传感器的使用寿命,在使用时具有良好的拉伸性、柔软性和抗静电性,能够适应更多的场合。所述柔性基材上印刷有敏感层,所述敏感层印刷有银浆导体和压力敏感浆料,能够提高压力传感器电路的导电性、采集精度以及电路集成度。所述网格状测量回路的各个节点处设置有压力敏感点,当所述压力敏感点产生压力时采集相应的压力值,提高压力信息采集的准确性。
附图说明
图1为本实用新型用于步态信息采集的压力传感器的较佳实施例的结构示意图;
图2为本实用新型用于步态信息采集的可穿戴设备的较佳实施例的结构示意图;
图3为本实用新型步态信息采集系统的较佳实施例结构示意图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本实用新型的具体实施方式、结构、特征及其功效进行详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
参照图1,图1为本实用新型用于步态信息采集的压力传感器较佳实施例的结构示意图。
在本实施例中,所述压力传感器01包括上层10和下层11,需要说明的是,图1中上层10和下层11的形状仅仅用于描述和说明所述压力传感器01具有两层结构,其形状可以根据具体应用场合以及受力范围来设置。所述上层10和所述下层11均为柔性基材,优选地,所述柔性基材为耐高温聚酯薄膜(PET),聚酯薄膜是以聚对苯二甲酸乙二醇酯为原料,采用挤出法制成厚片,再经双向拉伸制成的薄膜材料,双向拉伸聚酯薄膜具有强度高、刚性好、透明、光泽度高等特点,有极好的耐磨性、耐折叠性、耐针孔性、抗撕裂性和抗静电性等,用在本方案中能够提高压力传感器的使用寿命,在使用时具有良好的拉伸性、柔软性和抗静电性,能够适应更多的场合。所述柔性基材上印刷有敏感层12;需要说明的是,图1中敏感层12的形状仅仅用于说明所述敏感层12设置于所述上层10和下层11上。优选地,所述敏感层12印刷有银浆导体121和压力敏感浆料122,图1中所述银浆导体121和压力敏感浆料122仅仅用于说明所述银浆导体121和所述压力敏感浆料122之间具有电连接关系,所述银浆导体121和所述压力敏感浆料122设置的数量和位置不做限定。具体地,压力传感器01电路中的压电电阻采用压力敏感浆料122,压力传感器01电路中的导线采用银浆导体。银浆是由高纯度的(99.9%)金属银的微粒、粘合剂、溶剂、助剂所组成的一种机械混和物的粘稠状的浆料,在本方案中采用银浆导体121能够提高压力传感器01电路的导电性,采用压力敏感浆料122能够提高压力传感器01的采集精度以及电路集成度。所述上层10的敏感层12的压力敏感浆料122与所述下层11的敏感层12的压力敏感浆料122相互一一对合。其中,所述上层10的敏感层12和所述下层11的敏感层12构成网格状测量回路,所述网格状测量回路的各个节点处设置有压力敏感点,可以理解地,在所述压力敏感点处设置压力敏感浆料122,用于当所述压力敏感点产生压力时采集相应的压力值。所述网络状测量回路的输出端设置有输出线13,用于将采集到的人体足底的压力信息传输至处理设备,所述输出线13可以设置于上层10,由某一个压力敏感浆料122引出(如图1所示设置于上层10),也可以设置于下层11。优选地,所述压力传感器01的形状可以根据人体足底形状设置,所述压力敏感点设置于人体在运动过程中足底承受压力的区域,当人体运动时,在压力敏感点产生的压力信号被压力传感器01采集,以准确地获取人体在运动过程中足底承受的压力信息,提高压力信息采集的准确性。
本实用新型的另一方面提供一种可穿戴设备,参照图2,图2为本实用新型用于步态信息采集的可穿戴设备的较佳实施例的结构示意图。
在本实施例中,所述可穿戴设备2包括穿戴本体(图中未示出)以及设置于所述穿戴本体上的压力传感器01、信号转换模块02、微控制模块03、通讯模块04以及电源模块05;所述压力传感器01采用图1所示较佳实施例中的压力传感器01。本实施例中的穿戴本体优选为鞋,将所述压力传感器01、信号转换模块02、微控制模块03、通讯模块04以及电源模块05集成设置于穿戴本体与人体足部接触的地方(例如鞋底面与足部接触的位置)。具体地,可以将压力传感器01做成鞋垫的形状,或者集成于鞋底上。
所述压力传感器01,与所述信号转换模块02电连接,用于采集人体足底的压力信号;具体地,当人体运动时,人体足部与位于鞋底的压力传感器01之间产生压力,所述压力传感器01采集人体足底的压力信号,并通过压力传感器01的输出线将采集的压力信号传输至所述信号转换模块02。
所述信号转换模块02,与所述微控制模块03电连接,用于对所述压力信号进行滤波放大和模数转换,并输出转换后的数字压力信号至所述微控制模块03;所述信号转换模块02采用现有技术中的滤波放大和模数转换单元实现,将采集到的不同压力敏感点的压力信号进行滤波放大以及模数转换,输出为控制模块03能够处理的数字信号,实现细节在此不赘述。
所述微控制模块03,与所述通讯模块04电连接,用于从所述数字压力信号中提取和分析步态信息,并发送所述步态信息至所述通讯模块04。所述微控制模块03可以采用现有的单片机、DSP或其他具有数字信号采集和处理功能的处理器,用于实现步态信息的提取和分析,步态信息的提取和分析方法可以采用现有技术中对步频、步数以及运动时间的提取和分析方法。在所述微控制模块03完成步态信息的提取和分析后,将所述步态信息发送至通讯模块04。
所述通讯模块04,用于将所述步态信息发送至智能终端,供使用者查看;所述通讯模块04可以采用具有远程无线通讯功能的无线通讯模块,例如支持GSM、GPRS、WCDMA、CDMA、TD-SCDMA以及WiMAX等通讯技术的通讯模块。
所述电源模块05,分别与所述压力传感器01、信号转换模块02、微控制模块03以及通讯模块04电连接,用于为所述压力传感器01、信号转换模块02、微控制模块03以及通讯模块04提供电源。优选地,所述电源模块05包括充电电池051和电源管理单元052,所述电源管理单元052为所述可穿戴设备提供上电、断电和电池电量检测。
本实用新型的再一方面提供一种系统,参照图3,图3为本实用新型步态信息采集系统的较佳实施例结构示意图,所述系统包括智能终端1以及上述可穿戴设备2,所述智能终端1和所述可穿戴设备2通过网络3连接,所述网络3可以采用现有技术中能够传输数字信号的任意的无线网络,所述可穿戴设备2采集人体步态信息并发送所述人体步态信息至所述智能终端2,所述智能终端2显示人体步态信息。在其他实施例中,所述智能终端2通过网络3与远程监控中心连接,将人体步态信息发送至远程监控中心,供体育科研、生物力学工程和医疗康复领域内的科研人员对使用者的人体步态信息进行分析和研究,以达到新的应用目的。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (8)

  1. 一种用于步态信息采集的压力传感器,其特征在于,所述压力传感器包括上层和下层,所述上层和所述下层均为柔性基材,所述柔性基材上印刷有敏感层,所述上层的敏感层和所述下层的敏感层构成网格状测量回路,所述网格状测量回路的各个节点处设置有压力敏感点,所述网络状测量回路的输出端设置有输出线。
  2. 如权利要求1所述的用于步态信息采集的压力传感器,其特征在于,所述压力传感器的形状根据人体足底形状设置,所述压力敏感点设置于人体在运动过程中足底承受压力的区域。
  3. 如权利要求1所述的用于步态信息采集的压力传感器,其特征在于,所述柔性基材为耐高温聚酯薄膜。
  4. 如权利要求1所述的用于步态信息采集的压力传感器,其特征在于,所述敏感层印刷有银浆导体和压力敏感浆料,所述上层的敏感层的压力敏感浆料与所述下层的敏感层的压力敏感浆料相互一一对合。
  5. 一种可穿戴设备,其特征在于,所述可穿戴设备包括穿戴本体以及设置于所述穿戴本体上的如权利要求1所述的压力传感器,该可穿戴设备还包括信号转换模块、微控制模块、通讯模块以及电源模块,其中:
    所述压力传感器,与所述信号转换模块电连接,用于采集人体足底的压力信号;
    所述信号转换模块,与所述微控制模块电连接,用于对所述压力信号进行滤波放大和模数转换,并输出转换后的数字压力信号至所述微控制模块;
    所述微控制模块,与所述通讯模块电连接,用于从所述数字压力信号中提取和分析步态信息,并发送所述步态信息至所述通讯模块;
    所述通讯模块,用于将所述步态信息发送至智能终端;
    所述电源模块,分别与所述压力传感器、信号转换模块、微控制模块以及通讯模块电连接,用于为所述压力传感器、信号转换模块、微控制模块以及通讯模块提供电源。
  6. 如权利要求5所述的可穿戴设备,其特征在于,所述穿戴本体为鞋,所述压力传感器、信号转换模块、微控制模块、通讯模块以及电源模块集成设置于人体足部接触的穿戴本体上。
  7. 如权利要求5所述的可穿戴设备,其特征在于,所述电源模块包括充电电池和电源管理单元,所述电源管理单元为所述可穿戴设备提供上电、断电和电池电量检测。
  8. 一种系统,其特征在于,所述系统包括智能终端以及如权利要求5所述的可穿戴设备,所述智能终端和所述可穿戴设备通过网络连接,所述可穿戴设备采集人体步态信息并发送所述人体步态信息至所述智能终端,所述智能终端显示人体步态信息。
PCT/CN2015/098589 2015-11-05 2015-12-24 用于步态信息采集的压力传感器、可穿戴设备及系统 WO2017075875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520876067.1 2015-11-05
CN201520876067.1U CN205107687U (zh) 2015-11-05 2015-11-05 用于步态信息采集的压力传感器、可穿戴设备及系统

Publications (1)

Publication Number Publication Date
WO2017075875A1 true WO2017075875A1 (zh) 2017-05-11

Family

ID=55563345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098589 WO2017075875A1 (zh) 2015-11-05 2015-12-24 用于步态信息采集的压力传感器、可穿戴设备及系统

Country Status (2)

Country Link
CN (1) CN205107687U (zh)
WO (1) WO2017075875A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248914A (zh) * 2020-01-19 2020-06-09 北京航空航天大学杭州创新研究院 一种足底压力采集系统
CN113068961A (zh) * 2021-03-09 2021-07-06 青岛大学 一种基于柔性传感器的床垫
CN115624325A (zh) * 2022-10-26 2023-01-20 福州大学 一种无线可穿戴压力与角度检测智能鞋垫及其监测方法
CN115868935A (zh) * 2022-12-16 2023-03-31 临沂中科睿鹤智慧科技有限公司 一种基于可穿戴的便携式平衡评估装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106691455A (zh) * 2016-12-23 2017-05-24 山西澳瑞特健康产业股份有限公司 一种步态分析评价系统
WO2018129631A1 (zh) * 2017-01-13 2018-07-19 石庆学 压力传感器
CN108236469A (zh) * 2017-01-21 2018-07-03 北京理工大学 一种可用于区别人体运动状态的装置
WO2020077482A1 (zh) * 2018-10-15 2020-04-23 王长贵 一种复合瓷砖以及具有它的步态检测系统
CN109738096A (zh) * 2019-01-21 2019-05-10 北京诺亦腾科技有限公司 一种平面压力检测装置
CN114569955B (zh) * 2022-01-19 2023-03-14 同济大学 一种多目标迈步训练装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201279A (zh) * 2007-12-07 2008-06-18 安徽君诚体育器材有限公司 一种压力分布测量装置及其测量方法
US20130192071A1 (en) * 2012-01-30 2013-08-01 Heapsylon LLC Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
CN204133447U (zh) * 2014-09-23 2015-02-04 深圳市易特科信息技术有限公司 可穿戴式生命体征监测仪
CN104473650A (zh) * 2014-12-25 2015-04-01 中国科学院合肥物质科学研究院 一种基于柔性力敏传感器的运动能耗监测鞋及其监测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201279A (zh) * 2007-12-07 2008-06-18 安徽君诚体育器材有限公司 一种压力分布测量装置及其测量方法
US20130192071A1 (en) * 2012-01-30 2013-08-01 Heapsylon LLC Sensors, interfaces and sensor systems for data collection and integrated remote monitoring of conditions at or near body surfaces
CN204133447U (zh) * 2014-09-23 2015-02-04 深圳市易特科信息技术有限公司 可穿戴式生命体征监测仪
CN104473650A (zh) * 2014-12-25 2015-04-01 中国科学院合肥物质科学研究院 一种基于柔性力敏传感器的运动能耗监测鞋及其监测方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111248914A (zh) * 2020-01-19 2020-06-09 北京航空航天大学杭州创新研究院 一种足底压力采集系统
CN113068961A (zh) * 2021-03-09 2021-07-06 青岛大学 一种基于柔性传感器的床垫
CN113068961B (zh) * 2021-03-09 2023-06-13 青岛大学 一种基于柔性传感器的床垫
CN115624325A (zh) * 2022-10-26 2023-01-20 福州大学 一种无线可穿戴压力与角度检测智能鞋垫及其监测方法
CN115868935A (zh) * 2022-12-16 2023-03-31 临沂中科睿鹤智慧科技有限公司 一种基于可穿戴的便携式平衡评估装置
CN115868935B (zh) * 2022-12-16 2024-03-08 临沂中科睿鹤智慧科技有限公司 一种基于可穿戴的便携式平衡评估装置

Also Published As

Publication number Publication date
CN205107687U (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017075875A1 (zh) 用于步态信息采集的压力传感器、可穿戴设备及系统
CN103142236B (zh) 一种测定行走步态的智能鞋垫及方法
CN104406627B (zh) 假肢手穿戴式柔性触觉传感器及其触觉检测系统
CN102207415B (zh) 基于导电橡胶的柔性阵列片式压力传感器及制造方法
Kwon et al. Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes
CN104729769B (zh) 基于电活性聚合物的分布式柔性压力传感器
Lee et al. All-day mobile healthcare monitoring system based on heterogeneous stretchable sensors for medical emergency
GB2521716A (en) Communication module for personal performance monitoring and a related device, system and method
CN107890350A (zh) 一种可穿戴式运动传感器、传感电路及运动检测方法
CN107811616A (zh) 一种柔性多参量人体体征探测器及其使用方法
Kim et al. Soft wireless bioelectronics designed for real‐time, continuous health monitoring of farmworkers
CN105509937B (zh) 一种压感传感器、压力检测方法及制造工艺
CN210871594U (zh) 用于竞技运动员运动探测的可贴式柔性检测贴
CN111248914B (zh) 一种足底压力采集系统
CN113218296A (zh) 一种弹性应变传感器及其制备方法
CN205268157U (zh) 非接触式心电传感器及其可穿戴式多通道心电采样内衣
TWI234449B (en) A electrocardiogram measuring device and its method
CN202589533U (zh) 一种手及手腕康复评定监测装置
CN204863132U (zh) 温度贴片、体温检测系统
CN208659349U (zh) 一种智能监控身体状态的衬衫
CN112504110B (zh) 一种高灵敏度的可穿戴弹性物质形变量的测量装置
CN205163082U (zh) 用于采集人体运动状态数据的可穿戴设备
CN102512143A (zh) 一种组网式人体生理参数实时监测系统
CN105852821A (zh) 一种体温测量装置及其测量方法
CN210301008U (zh) 一种灵活的足底传感插件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907717

Country of ref document: EP

Kind code of ref document: A1